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Abstract
We present the computational relativity (CoRe) collaboration’s public 
database of gravitational waveforms from binary neutron star mergers. The 
database currently contains 367 waveforms from numerical simulations that 
are consistent with general relativity and that employ constraint satisfying 
initial data in hydrodynamical equilibrium. It spans 164 physically distinct 
configuration with different binary parameters (total binary mass, mass-
ratio, initial separation, eccentricity, and stars’ spins) and simulated physics. 
Waveforms computed at multiple grid resolutions and extraction radii are 
provided for controlling numerical uncertainties. We also release an exemplary 
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set of 18 hybrid waveforms constructed with a state-of-art effective-one-body 
model spanning the frequency band of advanced gravitational-wave detectors. 
We outline present and future applications of the database to gravitational-
wave astronomy.

Keywords: numerical relativity, gravitational wave astronomy, neutron stars

S  Supplementary material for this article is available online

(Some figures may appear in colour only in the online journal)

The era of gravitational-wave (GW) astronomy has been inaugurated with the direct detec-
tion of GWs from binary black hole (BBH) mergers [1–5] soon followed by the breakthrough 
observation of GWs and electromagnetic (EM) signals from a binary neutron star (BNS) col
lision [6–9].

Numerical relativity (NR) is the fundamental tool to study GWs from systems in the 
strong-field regime, and it has crucially supported the first discoveries. In particular, different 
NR groups have publicly released BBH simulation data [10–12]. These catalogs have been 
the cornerstone of many scientific results. They have been used to improve our understanding 
of the merger dynamics [13–18], to develop waveform models [19–26] including surrogates  
[27, 28], and to validate LIGO-Virgo parameter estimation pipelines [29, 30].

Following the first successful BNS merger simulations in full general relativity [31, 32], 
the NR community has made tremendous progresses on several aspects of the problem: (i) the 
exploration of the effect of different equations of state (EOSs), total mass and mass-ratio on 
the merger dynamics [33–39]; (ii) the development of many-orbits simulations for high-pre-
cision GW modeling [40–46]; (iii) the exploration of BNS mergers from eccentric orbits and 
dynamical collisions [47–51]; (iv) the inclusion of aligned spins and spin-precession effects 
[49, 52–59]; (v) the simulation of magnetic effects in connection to gamma-ray bursts engines 
[60–68]; (vi) the study of finite-temperature and composition effects using a microphysical 
descriptions of NS matter together with neutrino transport [65, 69–74]; (vii) the study of mass 
ejecta and EM counterparts [37, 38, 51, 54, 73, 75–81]. New frontiers in BNS merger simula-
tions are the inclusion of general-relativistic radiation hydrodynamics [74, 82, 83] and viscous 
hydrodynamics effects [84–88].

Since 2009 our team has contributed to some of the research lines mentioned above. Here, 
we present the largest-to-date public database of BNS waveforms composed of new simula-
tions and those published in [34, 37, 43, 45, 52, 54, 56, 58, 84, 89–97]. The combined set 
of simulations required about 150 million CPU-hours on supercomputers in Europe and the 
United States. We publicly release these data with the goal of supporting researchers and fur-
ther developments in the field of GW astronomy (www.computational-relativity.org). We plan 
to extend the database with waveforms from upcoming simulations and from other groups/
codes.

This article describes the simulation methods in 3  +  1 NR, summarizes the quality of the 
computed waveforms and the key parameters that characterize the GW, and concludes outlin-
ing some of the many applications. We use geometrized units c  =  G  =  1 and express results 
in terms of solar masses (M� = 1.9889 × 1033 g) if not otherwise stated. Conversion factors 
to CGS are [L] = GM�/c2 � 1.476 70 × 105 cm and [T] = GM�/c3 � 4.925 49 × 10−6 s.
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1.  Simulation methods

1.1.  Initial data

Initial data are constructed by solving the Einstein constraint equations in the conformal thin 
sandwich formalism and by imposing hydrodynamical equilibrium for the star fluid [98–100]. 
The fluid’s flow is chosen to be either irrotational [101], or prescribed according to the constant 
rotational velocity formalism [102, 103]. Binaries in quasi-circular orbits are built imposing a 
helical Killing vector [104], whereas for eccentric orbits an approximate ‘helliptical’ Killing 
vector is used [56, 105]. We use either the public Lorene [106] or the SGRID [56, 103, 107] 
code. Both codes use multi-domain pseudo-spectral methods with surface fitting coordinates 
[104, 108].

1.2.  Evolutions

Dynamical simulations are performed using free-evolution schemes for the Einstein equa-
tions and general relativistic hydrodynamics (GRHD). For the spacetime, we employ either 
the BSSNOK [109–111] formalism or the Z4c formalism [112–116]. The latter has improved 
constraint propagation and damping properties with respect to BSSNOK, especially in mat-
ter simulations [112, 116]. We use the moving puncture gauge [117–121], which can handle 
automatically the gravitational collapse without the need for excision [122–124]. GRHD is 
solved in flux-conservative form [125]. Some mergers are simulated with microphysical EOS 
and neutrino cooling is taken into account with a leakage scheme. Viscous effects in GR are 
also simulated in a few cases using the large eddy scheme (GRLES) developed in [84].

We use two different NR codes: BAM [126–128] and THC [42, 129–133]. Both codes use a 
simple mesh refinement scheme whereby the grid hierarchy is composed of nested Cartesian 
boxes, some of which can be moved to track the orbital motion of the stars [127, 134, 135]. 
The grid setup is controlled by the resolution ∆x in the finest levels. The finest refinement 
levels cover entirely the NSs during the inspiral. The other levels are constructed by progres-
sively coarsening the resolution by factors of two and extend to the wave-extraction zone. 
Discretization is based on fourth (or higher) order finite-differencing stencils and GRHD is 
handled with either standard finite-volume or high-order finite-differencing high-resolution 
shock-capturing methods. The hydrodynamical flux is computed with the local Lax–Friedrichs, 
Roe, or Harten–Lax–van Leer-contact flux scheme employing a number of different flux limit-
ers; details and cross validations have been presented in, e.g. [40, 42, 43]. The THC code also 
implements a neutrino leakage scheme and the GRLES [51, 84].

1.3.  Wave extraction

GWs are extracted on coordinate spheres with radius r using the spin-weighted s  =  −2 spheri-
cal harmonics decomposition of the Weyl scalar Ψ4, e.g. [127]. Some of the THC simulations 
employ the Cauchy characteristic extraction technique to obtain Ψ4 at future null infinity [136]. 
The metric multipoles are reconstructed using the fixed frequency method [137]. We release 
the � = m = 2 metric multipole h22 as a function of the coordinate time t and of the retarded 
time u  =  t  −  r*, e.g. equation (17) of [43], where r*(r) is the tortoise coordinate defined by 
assuming r is the isotropic radius and using the binary total mass for the Schwarzschild space-
time. We also release the GW energy and angular momentum emitted during the simulation 
that are computed as in [138, 139]. Our waveforms are extracted at different extraction radii 
and can be further extrapolated to obtain null-infinity estimates, e.g. [40, 140, 141].

Class. Quantum Grav. 35 (2018) 24LT01
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2.  Input physics

BNS simulations require several assumptions on the NS fluid and input models describing 
the matter interactions. The yet unknown EOS is among the most important quantities deter-
mining the NS properties and the binary dynamics. It determines the tidal deformations and 
interactions of the stars during the inspiral [142–146], the lifetime and rotation frequency of 
the merger remnant [36, 93, 147–149], and the amount of unbound matter ejected during the 
merger process, e.g. [38, 75, 76, 90]. We release data for 15 different EOSs. Two EOSs are 
polytropic models with adiabatic index Γ = 2 [52]. Nine EOSs are zero-temperature nuclear 
physics models represented by piecewise polytropic fits [150]. They are augmented with a Γ-
law pressure component during the simulation to approximate temperature effects [151]. Five 
EOSs are tabulated finite-temperature microphysical models developed in [152–156], which 
we also release. Finite-temperature effects are crucial during and after merger, when compres-
sional and shock heating are present, e.g. [38, 69, 72, 157, 158].

The role of magnetic fields on the post-merger dynamics is currently a key open question 
[61, 68, 84, 86, 88, 159, 160]. Large magnetic field instabilities might cause turbulence and 
induce viscosity, potentially affecting the merger remnant, mass outflows and the GW emis-
sion. Also, while not directly relevant for GW emission on the dynamical timescale of our 
simulations, neutrino transport plays a crucial role in the merger remnant, e.g. [35, 38, 51, 65, 
69, 70, 72, 79, 81]. We plan to include more data from simulations with advanced radiation 
transport schemes and magnetic field effects as robust NR results become available.

3.  Waveform parameters

Figure 1 summarizes our database in terms of the main parameters that characterize the GWs.

3.1.  Binary mass

In contrast to BBHs, BNS dynamics cannot be rescaled by the binary total mass (A, B label 
the NSs)

M = MA + MB,� (1)

since M enters the description of tidal interactions during the inspiral and determines the 
merger remnant.

Formation scenarios and the constraints from GW170817 indicate that NS masses lie 
within  ∼1.0−2.3M� [66, 87, 161–164]. Current observations range from  ∼1.0M� [165, 
166] to  ∼2.0M� [167, 168] or possibly even  ∼2.3M� [169], with BNS masses varying 
in  ∼2.5  −  2.9 M� [170, 171]. The wide mass range in our database fully covers the observa-
tional and a large fraction of the theoretical limits.

GWs from a M = 3.2M� merger are shown in figure 2 (upper right panel). High-mass 
mergers likely result in a prompt BH formation; while high-mass BNS emit strong GWs, they 
are EM faint due to smaller ejecta and disk masses [76, 148, 172, 173].

3.2.  Mass ratio

The mass ratio

q =
MA

MB
� 1,� (2)

Class. Quantum Grav. 35 (2018) 24LT01



5

F
ig

u
re

 1
. 

Si
m

ul
at

io
ns

 c
ur

re
nt

ly
 c

on
ta

in
ed

 i
n 

th
e 
C
o
R
e

 d
at

ab
as

e.
 W

e 
pr

es
en

t 
th

e 
to

ta
l 

m
as

s 
M

, t
he

 m
as

s 
ra

tio
 

q,
 th

e 
in

di
vi

du
al

 d
im

en
si

on
le

ss
 s

pi
ns

 χ
A

,B
z

, t
he

 e
cc

en
tr

ic
ity

 e
 [

no
 e

cc
en

tr
ic

ity
 m

ea
su

re
m

en
t i

s 
gi

ve
n 

fo
r 

to
o 

sh
or

t 
si

m
ul

at
io

ns
],

 th
e 

in
di

vi
du

al
 q

ua
dr

up
ol

ar
 ti

da
l p

ar
am

et
er

s 
Λ

A
,B

2
, t

he
 n

um
be

r o
f o

rb
its

 [n
ot

e 
th

at
 fo

r h
ig

hl
y 

ec
ce

nt
ri

c 
or

bi
ts

 c
lo

se
 t

o 
he

ad
-o

n,
 t

he
 n

um
be

r 
of

 o
rb

its
 c

an
 d

ro
p 

be
lo

w
 1

],
 a

nd
 t

he
 e

m
pl

oy
ed

 r
es

ol
ut

io
n 
∆

x  
of

 t
he

 fi
ne

st
 

le
ve

l c
ov

er
in

g 
th

e 
en

tir
e 

N
S 

fo
r 

di
ff

er
en

t c
on

fig
ur

at
io

ns
. D

if
fe

re
nt

 c
ol

or
ed

 m
ar

ke
rs

 r
ef

er
 to

 d
if

fe
re

nt
 E

O
S,

 s
ee

 
to

p 
co

lo
r b

ar
. I

n 
th

e 
la

st
 p

an
el

 w
e 

al
so

 in
cl

ud
e 

si
m

ul
at

io
ns

 w
ith

 d
if

fe
re

nt
 g

ri
d 

re
so

lu
tio

ns
 a

nd
 n

um
er

ic
al

 m
et

ho
ds

 
(fl

ux
es

, m
es

h 
re

fin
em

en
t s

tr
at

eg
ie

s 
et

c.
);

 s
im

ul
at

io
ns

 o
f 

a 
fix

ed
 c

on
fig

ur
at

io
n 

pe
rf

or
m

ed
 a

t t
he

 s
am

e 
re

so
lu

tio
ns

 
bu

t 
us

in
g 

di
ff

er
en

t 
m

et
ho

ds
 a

re
 m

ar
ke

d 
w

ith
 v

er
tic

al
 b

ar
s 

in
 t

hi
s 

pa
ne

l. 
O

ve
ra

ll 
w

e 
in

cl
ud

e 
51

 u
np

ub
lis

he
d 

si
m

ul
at

io
ns

 in
 th

e 
cu

rr
en

t v
er

si
on

 o
f 

th
e 

da
ta

ba
se

, w
hi

le
 th

e 
re

m
ai

ni
ng

 s
im

ul
at

io
ns

 h
av

e 
be

en
 a

lr
ea

dy
 p

ub
lis

he
d 

in
 [

34
, 3

7,
 4

3,
 4

5,
 5

2,
 5

4,
 5

6,
 5

8,
 8

4,
 8

9–
97

].
 N

ew
 s

im
ul

at
io

ns
 in

cl
ud

e 
se

tu
ps

 w
ith

 la
rg

er
 e

cc
en

tr
ic

iti
es

, h
ig

he
r 

sp
in

 v
al

ue
s,

 a
nd

 la
rg

er
 to

ta
l m

as
se

s 
co

m
pa

re
d 

to
 th

e 
on

es
 p

re
se

nt
ly

 a
va

ila
bl

e 
in

 th
e 

lit
er

at
ur

e.

Class. Quantum Grav. 35 (2018) 24LT01



6

has a clear imprint on the GW/EM signals: BNS with larger q are less luminous in GWs 
[54, 96, 145], but their larger mass ejecta can power bright EM transients [38, 54, 174]. The 
isolated NS mass distribution permits mass ratios up to qmax � 2.3, but population synthesis 
models predicts lower values qmax � 1.8−1.9 [56, 175]. The largest observed mass ratio in 
BNSs is q ∼ 1.3 [176, 177]. The CoRe database contains data with mass ratios up to q  =  2.1, 
which is the largest simulated so far [37, 56]. In this simulation the companion NS is tid-
ally disrupted during the merger leading to postmerger GWs with small amplitude (figure 2, 
middle left panel).

3.3.  Spins

The dimensionless spin of a NS in a binary can be defined as

χA =
SA

M2
A

,� (3)

where the angular momentum SA is computed from the isolated NS with the same EOS, rota-
tional velocity, and baryonic mass as the constituents of the binary [52, 54, 56]. The maximum 
NS spin is not precisely known, since it depends on the EOS, but existing EOS models predict 
breakup spins below |χ| ∼ 0.7, corresponding to spin periods of less than 1 ms [178]. The 
fastest spinning NS in a BNS system is PSR J1946+  2052 [179] which will have |χ| ∼ 0.05 
at merger.

For spins parallel to orbital angular momentum (say z-direction), the effective spin [180]

χeff =
MA

M
χA

z +
MB

M
χB

z − 38
113

MAMB

M2 (χA
z + χB

z ),� (4)

is the quantity determining the leading-order spin–orbit effects on the phase evolution of 
the binary. Spin–orbit interactions quantitatively change the inspiral-merger and remnant 

Figure 2.  Waveforms from the database showing a baseline equal mass case (upper 
left panel), and the influence of total mass (upper right panel), mass ratio (middle left 
panel), spins (middle right panel), eccentricity (lower left panel), and EOS (bottom 
right panel).

Class. Quantum Grav. 35 (2018) 24LT01
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dynamics [52, 181, 182]. Neglecting their effect can bias the GW parameter estimation [183–
185]. Spin-precession effects in BNS have been first simulated in [56, 58]; the computed GW 
signal is shown in figure 2 (middle right panel).

3.4.  Eccentricity

The emission of GWs causes field binaries to circularize to eccentricities e � 10−5 by the time 
they enter the LIGO-Virgo band [186]. Therefore, for an accurate modeling of the GWs, it is 
important to simulate small eccentricity binaries. The residual (numerical) eccentricity of the 
initial data can be reduced to e � 10−3 − 10−4 using an iterative procedure [56, 187, 188], 
which we employed for a subset of our configurations.

On the contrary, dynamically assembled BNSs or those belonging to hierarchical triplets 
could be highly eccentric even at the time of merger [189, 190]. An example of a highly 
eccentric merger with e  =  0.6 is shown in figure 2 (bottom left panel). The bursts in the GW 
amplitude are caused by the close encounters of the two stars. These encounters also induce 
f-mode oscillations which allow an independent constraint of the EOS for upcoming 3rd gen-
eration GW detectors [47, 191, 192]10.

3.5. Tidal parameters

Tidal interactions in the post-Newtonian (PN) formalism are described by a multipolar set of 
parameters proportional to the relativistic Love numbers [142–144, 193]. The dominant effect 
depends on the gravitoelectric quadrupolar Love numbers kA

2  and the compactness CA of the 
NS through the expression ΛA

2 = 2k2/(3C5
A). Tidal interactions are attractive and enter at lead-

ing PN order in the GW phasing evolution through the combination [146, 194–196],

Λ̃ =
16
13

[
(MA + 12MB)M4

A

(MA + MB)5 ΛA
2 + (A ↔ B)

]
.� (5)

The tidal parameter Λ̃ is a key quantity to characterize the non-perturbative regime of the 
merger dynamics as shown in [34, 96, 197] and discussed below. Furthermore, it provides 
a simple but effective parameterization of the characteristic GW post-merger frequencies  
[38, 91, 198] and of the disk mass [94].

The value of Λ̃ for GW170817 is constrained to be �630 on the basis of the analysis of 
the GW signal alone [6, 199]. In addition, [94, 200] suggested that the observation of an 
EM counterpart to GW170817 allows to place a lower bound on the tidal deformability of 
Λ̃ � 400, [94], or Λ̃ � 200, [200]. Further constraints arise from the theoretical modeling of 
matter near nuclear density, e.g. [201], other astrophysical observations, e.g. [162, 202–205], 
and from the combination of all these constraints by considering a large set of possible nuclear 
physics EOSs, e.g. [206, 207].

4.  Data quality

Waveforms’ error budgets based on convergence tests and finite radius extraction have been 
presented in [40, 42, 43, 45, 97, 130, 131]. Phase convergence is typically observed for about 
10–15 orbits at sufficiently high resolutions, corresponding to about � 96 grid points per NS 

10 To allow the study of f-oscillations with constraint solved data, the database contains 21 simulations of 14 differ-
ent configurations with various eccentricities. These include BAM:0116 which is up to our knowledge to date the 
longest NR simulation, covering 172 ms.

Class. Quantum Grav. 35 (2018) 24LT01
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diameter. The error due to finite-radius extraction dominates in the early part of the simula-
tions, but truncation errors increase towards merger and afterwards where the uncertainty is 
the largest [40]. Typical accumulated phase errors up to merger are estimated as δφ ∼ 0.2–1.5 
rad for simulations in which convergence can be proven. We stress, however, that the lowest 
resolutions employed in our runs are not convergent and do not give quantitatively reliable 
results for multiple orbits. Post-merger GWs are typically less accurate, but monotonic behav-
ior with grid resolution can be observed at sufficiently high resolutions, e.g. [93]. Our post-
merger data are sufficiently robust to infer the energy and frequency content, e.g. [91, 93, 96].

We assessed systematic errors due to the use of nonlinear numerical schemes used for 
GRHD [130, 139] with extensive testing of different algorithms and/or extensive code com-
parisons. We have tested consistency between BAM and THC for datasets: BAM:0097 and 
THC:0036, BAM:0063 and THC:0029, BAM:0064 and THC:0028, using exactly the 
same initial data; see the supplementary material (stacks.iop.org/CQG/35/24LT01/mmedia) 
for further details. We found that phase differences are below the estimated uncertainties. A 
simple polytropic EOS setup has also been compared to results obtained with the SpEC code 
[208–210] with similar results [211].

We stress that all of our waveforms are computed using constraint-satisfying initial data in 
hydrostatic equilibrium. Constraint-violating and/or non-hydrostatic initial data exhibits large 
unphysical fluid oscillations that contaminate the GW signals. These oscillations are signifi-
cantly reduced and converge to zero if equilibrium is imposed [97]; see the supplementary 
material for further details and discussions. Systematic errors generated by the initial data 
were studied by comparing the evolution of a binary produced by SGRID and Lorene using 
the same evolution setup (BAM:0026, BAM:0027) [52]. Differences in the GW phase and 
collapse time to a black hole were found to be compatible with those expected from finite grid 
resolutions effects.

5.  Applications

The CoRe waveform database has wide applicability to the study of strong-field BNS dynam-
ics and for GW astronomy.

Our simulations showed that, despite the complexity of the physics involved, the main 
quantities characterizing the merger dynamics, like the mass-rescaled GW frequency and the 
binding energy per unit mass, are determined by parameters like Λ̃, emerging from pertur-
bative (PN and effective-one-body, EOB) analysis [34, 91]. About 100 simulations of the 
CoRe database were used to compute the total GW luminosity in terms of tidal parameters 
and the mass-ratio for all BNS with aligned spins |χz| � 0.14, and to set upper limits on the 
total emitted energy [96]. The current database includes simulations beyond |χz| � 0.14 and 
will therefore allow for an update of quasi-universal relations derived for irrotational or low-
spinning binaries.

A related application is the study of the merger outcome. NR data are crucial to understand 
the formation of massive NS remnant [35, 160, 212] and prompt black hole formation at 
merger [148, 213, 214]. To allow such a study we have performed for the release of the data-
base 18 new simulations with total binary masses M � 3.0 M� for different EOSs.

The data we provide can be used to verify and develop inspiral-merger waveform models 
for LIGO-Virgo analysis. BAM simulations have already been used in the development of the 
TEOBResum model [89]. Further analytical-numerical comparisons showed that state-of-art 
tidal EOB models might underestimate tidal effects at merger for stiff EOS and small M [95]. 
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Our spinning BNS are currently used to test the performances of the TEOBResumS model 
[20, 215].

High-resolution BAM simulations (BAM:0037, BAM:0064, BAM:0095) were employed 
to construct the tidal phase model NRtidal [45, 97, 185]. The latter is a closed-form expres-
sion fitting the inspiral-merger GW composed of PN, TEOBResum, and NR data used to 
augment any BBH waveform model with tidal effects [185]. Notably, NRtidal was used in 
the LIGO-Virgo analysis of GW170817 [6, 199, 216–218], and other groups are using similar 
approaches for GW modeling [219].

A main open challenge is the modeling of GWs from merger remnants [148, 149, 198, 
220–226]. Several features of the signal are understood, but quantitative models are missing. 
We anticipate that CoRe data will be used to develop new post-merger models to be employed 
for the analysis of data from current and third-generation detectors. The latter are the most 
promising observatories to capture high-frequency GW signals, e.g. [92, 93, 227].

Our data can also be injected in synthetic detector noise to test parameter estimation pipe-
lines, similarly to what was done for BBHs [30]. For BNSs, however, complete waveforms 
spanning thousands of GW cycles during the inspiral and tens of GW post-merger cycles 
would be needed. To address the problem, we generate hybrid waveforms combining analyti-
cal models and NR data and covering the frequency range of ground-based interferometers 
[228] (see also [197, 229, 230]). We release 18 of these hybrids corresponding to equal, une-
qual masses and spinning BNSs. Details about all configurations for which hybrids are made 
publicly available are given in [185].

The CoRe database will have a reach beyond the applications we have just discussed. In 
the future, we plan to include more quantities from our simulations. For example, mass out-
flows ejected during merger, e.g. [38, 51, 72, 75, 76, 81, 88, 90, 174], and disk masses and 
profiles [94]. These data will be crucial for the interpretation of EM counterparts.
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