
Quantum Sci. Technol. 9 (2024) 045012 https://doi.org/10.1088/2058-9565/ad5eb6

OPEN ACCESS

RECEIVED

12 January 2024

REVISED

26 April 2024

ACCEPTED FOR PUBLICATION

3 July 2024

PUBLISHED

17 July 2024

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Lift-connected surface codes
Josias Old1,2,∗, Manuel Rispler1,2 and Markus Müller1,2
1 Institute for Quantum Information, RWTH Aachen University, Aachen, Germany
2 Institute for Theoretical Nanoelectronics (PGI-2), Forschungszentrum Jülich, Jülich, Germany
∗ Author to whom any correspondence should be addressed.

E-mail: j.old@fz-juelich.de

Keywords: quantum LDCP codes, 3D local quantum codes, QEC codes for NISQ devices, surface code, quantum error correction,
fault tolerance, lifted product construction

Abstract
We use the recently introduced lifted product to construct a family of quantum low density parity
check codes (QLDPC codes). The codes we obtain can be viewed as stacks of surface codes that are
interconnected, leading to the name lift-connected surface (LCS) codes. LCS codes offer a wide
range of parameters—a particularly striking feature is that they show interesting properties that are
favorable compared to the standard surface code. For example, already at moderate numbers of
physical qubits in the order of tens, LCS codes of equal size have lower logical error rate or
similarly, require fewer qubits for a fixed target logical error rate. We present and analyze the
construction and provide numerical simulation results for the logical error rate under code
capacity and phenomenological noise. These results show that LCS codes attain thresholds that are
comparable to corresponding (non-connected) copies of surface codes, while the logical error rate
can be orders of magnitude lower, even for representatives with the same parameters. This provides
a code family showing the potential of modern product constructions at already small qubit
numbers. Their amenability to 3D-local connectivity renders them particularly relevant for
near-term implementations.

1. Introduction

Quantum error correcting (QEC) codes are essential for the reliable operation of quantum computers [1].
Recent advances in hardware quality and qubit count of quantum computing devices enabled first
experiments realizing different aspects of quantum error correction [2–7].

QEC codes encode logical qubits in a subspace of a higher dimensional Hilbert space. For stabilizer
codes, the codespace is spanned by the simultaneous+1-eigenspace of a set of commuting operators, the
stabilizer generators. The commonly shown parameter triple [[n,k,d]] denotes the number of physical qubits
n employed by the error correcting code to encode k logical qubits with a minimum distance d. The latter is
defined as the minimum number of single qubit Pauli operators that have non-trivial action on the
codespace, i.e. the minimum weight of a logical operator. A code with distance d can correct at least for all
errors up to weight t= ⌊ d

2⌋. A code family is specified by a sequence of stabilizer codes (that share most
properties) with growing number of physical qubits. Promising QEC code families are surface codes [8].
Surface codes only require nearest neighbor connectivity in a planar 2D architecture. This makes them
especially suited for experimental platforms with manifest connectivity constraints, such as superconducting
qubits. Additionally, surface codes have some of the highest known thresholds for realistic circuit level noise
models [9, 10].

Despite these strong upsides, a major shortcoming of surface codes is the observation that a surface code
patch essentially always encodes only a single logical qubit irrespective of the size of the patch. This is
captured by the so-called code rate r= k

n , i.e. the ratio of logical to physical qubit numbers, which is
asymptotically zero for the surface code. In practical terms, this implies that scaling the code to improve its
correction capabilities leads to a substantial qubit overhead. This in turn defines the challenge to find codes
with better encoding rate while giving up as little as possible with respect to connectivity and logical
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(threshold) performance. To highlight a result in this direction, it has been shown that codes with bounded
connectivity attaining a constant encoding rate could be used for constant overhead fault-tolerant quantum
computation [11]. Codes built from stabilizers with bounded degree of connectivity are called quantum
low-density parity check codes (QLDPC). In particular, a (dq,ds)-QLDPC family of codesQi with ni →∞ as
i →∞ has every qubit involved in a maximum of dq stabilizer measurements and every stabilizer
measurement involving at most ds qubits, independent of [12]. A (Q)LDPC code family with both an
asymptotically constant rate and a linear distance scaling, i.e. [[n,k∝ n,d∝ n]], is called ‘good’. For a recent
overview of QLDPC codes see [13].

The definition of QLDPC captures the bounded connectivity found in the surface (or closely related
toric) and color codes. However despite technically being QLDPC, these are far from ‘good’ both due to their
vanishing rate and moreover their sub-optimal distance scaling d∝

√
n. A big leap towards QLDPC codes

with improved scalings was provided by the invention of the hypergraph product (HGP) construction [14].
Here, the product of two classical codes gives a quantum code, which remarkably preserves the (Q)LDPC
property provided the two classical codes are LDPC to begin with. With this construction, the product of two
good classical codes leads to a QLDPC code with constant rate while maintaining the distance scaling of the
surface code (d∝

√
n) [14, 15]. After a series of breakthroughs, this line of research of product code

constructions recently culminated in the remarkable discovery that good quantum (LDPC) codes with
constant rate and linear distance exist [16, 17]. Additional constructions of good QLDPC code families
followed shortly after [18, 19]. While this showcases ‘goodness’ as an important guiding principle inspiring
the search for better codes, a good but also practical code (family) with low enough number of qubits and
embeddability so far remains elusive.

These results establish QLDPC codes as promising candidates for fault-tolerant quantum computation.
By the same token, they define substantial challenges, both on the experimental and on the theory side. As a
first challenge, known constructions of good codes involve prohibitively large numbers of qubits (∼106),
leaving a substantial gap between what will be realistically available in near-term devices and what would be
required for the above. As a second challenge, good QLDPC codes have been proven to require geometrically
non-local connectivity. In fact, no-go theorems prevent good scaling of parameters if the connectivity of the
code is restricted to some neighborhood that does not grow with the code [20, 21]. Several proposals on
circuit constructions and implementation of QLDPC codes with constrained connectivity in mind have been
formulated [22–24] and code constructions that explicitly leverage hardware capabilities like modularity are
also considered [25]. Progress in platforms that allow for more connectivity opens the road to implement
more advanced codes. Ion traps achieve all-to-all connectivity in single crystals mediated by motional modes,
limited to a few tens of qubits [26]. This restriction can be overcome by the ability to shuttle ions [27].
Shuttling also enables effective all-to-all connectivity in neutral atom arrays, where coherent control of
hundreds of atoms can be realized [28–33]. The potential for quantum error correction in neutral atom
quantum processors has very recently been demonstrated in [7].

Further challenges from the conceptual side are logical gates and decoding. Decoders adapted from
classical coding theory like belief propagation and ordered statistics decoding (BP+OSD) perform
reasonably well, but symmetry of certain quantum codes and large distances pose ongoing
challenges [34–37]. While efficient decoders for good QLDPC codes are in principle available, the lack of
codes with reasonable size prevents benchmarking these codes [19, 38, 39]. Additionally, QLDPC codes with
a property known as single-shotness allow for fault-tolerance with only a single round of (noisy) syndrome
measurement, but at the cost of a large qubit overhead [40, 41].

Fault-tolerant implementations of logical gates like transversal, i.e. single qubit decomposable gates, in
general rely on symmetries of the code [42–44]. Several approaches for general codes include teleportation
based gates [45], generalized lattice surgery [46] or codes specifically constructed to support certain
gates [47]. For HGP codes, some implementations of gates have been proposed, but they remain short of
generality or practicality [48, 49].

1.1. Summary of results
In this work, we introduce a new QLDPC code family, which we call lift-connected surface (LCS) codes. For
their construction, we employ the recently established lifted product (LP). This technique is a key ingredient
in the recent groundbreaking discovery of good QLDPC codes. Using comparatively simple input codes, we
obtain QLDPC codes that can be straightforwardly seen as sparsely interconnected copies of surface codes,
leading to the name LCS. While their asymptotic scaling is not ‘good’ in the strict sense of the term, i.e. in a
constant rate regime, the distance grows proportional to the physical qubit number up to a maximum size
(see discussion around equation (28)), they demonstrate the near-term potential of QLDPC (specifically LP)
codes. We benchmark LCS codes under code capacity as well as phenomenological noise (i.e. noisy syndrome
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Table 1. Bit-flip noise thresholds of LCS codes compared to copies of surface codes, obtained from BP+OSD decoding of codes with
increasing distance. For details of the families, refer to the text. All uncertainties here and in the following are readoff errors.

Threshold

Code Code capacity Phenomenological

LCS code family 1 6.7± 0.3% 2.9± 0.1%
LCS code family 2 7.7± 0.2% 3.2± 0.1%
d copies of distance d surface codes 7.5± 0.3% 2.9± 0.1%

measurements) using an adapted BP+OSD decoder. We find that their asymptotic thresholds are
comparable to disjoint copies of surface codes, summarized in table 1. However for concrete realizations they
offer substantially lower logical error rates and higher pseudo-thresholds. We show that this carries over to
circuit-level noise by constructing distance preserving circuits for small LCS codes. Using only a fraction of
the number of physical qubits, they achieve the same logical error rates as copies of surface codes. Given that
these advantages already appear for as few as tens of qubits, these results make LCS codes promising
candidates for near-term QEC experiments.

The manuscript is structured as follows. In section 2, we review the LP construction for QEC codes. In
section 3, we show how LCS codes are constructed from the LP and describe the code parameters and
structure. In section 4 we perform simulations over code capacity and phenomenological noise channels for
several members of the LCS family, showing their error correction capabilities. Section 5 shows the
construction and benchmarking of fault-tolerant syndrome readout circuits for representatives with small
qubit numbers. Finally we outline a path towards logical gates in LCS codes in section 6 before concluding in
section 7.

2. The Lifted Product construction

The LP construction combines classical LDPC codes based on circulant permutation matrices with the HGP
construction for quantum codes [14, 50].

2.1. Hypergraph Product
A parity check matrix of a (classical code) H can be represented by the so-called Tanner graph by identifying
its rows (the parity checks c) with one type of node and its columns (the (qu)-bits q) with another type of
node. An edge between nodes is drawn whenever the corresponding entry Hcq is 1, making the graph
manifestly bipartite [51]. Let TC1 and TC2 be the Tanner graphs of two classical codes C1 and C2 with binary
parity check matrices H1 ∈ Fm1×n1

2 ,H2 ∈ Fm2×n2
2 respectively. We will sometimes refer to these as base

matrices. The Tanner graph of the HGP (quantum) code TQ is based on the Cartesian product of the classical
Tanner graphs TC1 and TC2 . A graphical construction is shown in figure 1, for details refer to [14]. Here, we
review the algebraic construction rule when given two base matrices. The parity check matrices of the HGP
quantum CSS code are given by

H=HGP(H1,H2) =

(
0 HZ

HX 0

)
with (1)

HX = (1n1 ⊗H2 HT
1 ⊗ 1m2) (2)

HZ =
(
H1 ⊗ 1n2 1m1 ⊗HT

2

)
. (3)

The CSS commutativity constraint HZHT
X = 0 is fulfilled by construction since

HZH
T
X =

(
H1 ⊗ 1n2 1m1 ⊗HT

2

)( (1n1 ⊗H2)
T(

HT
1 ⊗ 1m2

)T
)

= (H1 ⊗ 1n2)
(
1n1 ⊗HT

2

)
+
(
1m1 ⊗HT

2

)
(H1 ⊗ 1m2) (4)

=H1 ⊗HT
2 +H1 ⊗HT

2 = 0. (5)
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Figure 1. Pictorial representation of the hypergraph product (HGP) construction. (a) Shows the Cartesian product of two
repetition codes of length two with parity check matrix H. Black circles represent bits and black squares represent parity checks.
With the prescription of (b), the Tanner graph (c) is obtained, which can be identified with the non-rotated [[5,1,2]] surface code.
Purple circles represent qubits, stabilizers are again black squares, where the edge color red (blue) denotes the Pauli-type X (Z). We
furthermore highlight the X-part as a guide to the reader to identify the blocks of the algebraic construction. The vertical stripes
(solid border) correspond to the left 12 ⊗H part ofHX as two copies of the original repetition code. The horizontal stripe (dashed
border) comes from the right HT ⊗ 11 block, corresponding to (one copy of) the Tanner graph of the transposed repetition code.

Any choice of binary matrices H1,H2 gives a valid quantum code. Notably, surface codes can be obtained
from taking the HGP of the ℓ× ℓ+ 1 parity check matrices of (classical) repetition codes, i.e.

H(ℓ)
1 =H(ℓ)

2 =



1 1 0 · · · 0 0
0 1 1 0 · · · 0
...

...
...

. . .
. . . 0

0 0 · · · 0 1 1

≡H(ℓ). (6)

The resulting surface code HGP(H(ℓ),H(ℓ)) then has parameters [[n,k,d]] = [[(ℓ+ 1)2 + ℓ2,1, ℓ+ 1]].
If the base matrices are members of a good classical LDPC code family with parameters

[ncl,kcl ∝ ncl,dcl ∝ ncl], then the resulting HGP codes have constant rate and distance d=Ω(
√
n) [14].

2.2. Lifted Product
To present the LP construction, we will follow the approach by Panteleev and Kalachev [50]. For a
complementary approach see [13]. We restrict ourselves to a subset of LP codes, originally referred to as
quasi-cyclic generalized HGP codes [34]. We first briefly review this generalization, before carefully
explaining the implications for our construction in the next section.

A useful starting point before attempting to go beyond the HGP is to note a subtle requirement in
fulfilling the CSS commutativity constraint of equation (5). Given the two parity check matrices H1 and H2

and using Dirac notation, it is indeed true that

(H1 ⊗ 1n2)
(
1n1 ⊗HT

2

)
(7)

=
∑
abgh

H1,abH
T
2,gh|ag⟩⟨bh| (8)

=H1 ⊗HT
2 , (9)

however when doing the analogous calculation(
1m1 ⊗HT

2

)
(H1 ⊗ 1m2) =

∑
cgaf

HT
2,cgH1,af|ac⟩⟨ fg|, (10)

the conclusion that this is alsoH1 ⊗HT
2 rested on the assumption that allHT

2,cg andH1,af commute. While this
commutativity is trivially true when the entries are numbers, it turns into a non-trivial requirement as soon
as we want to promote the entries to higher-dimensional objects, e.g. matrices. In turn, this suggests that as
long as we fulfill commutativity on this level, it will imply the fulfillment of the CSS constraint. One choice

4
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are elements of a commutative (matrix) ring, like circulant matrices of size L× L. A circulant C can be
represented as sums of cyclic permutations P(i),

C=
L−1∑
i=0

ciP
(i) (11)

where ci are binary coefficients and P(i) denotes the ith cyclic (right) shift. We denote P(0) by I. For any
circulant, we can give a binary representation such that BL(P(i)) is the ith cyclic (right) shift of the identity
matrix 1L. For example

B4

(
P(3)
)
=


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 , (12)

B3

(
I+ P(1)

)
=

1 1 0
0 1 1
1 0 1

 , (13)

B2

[(
0 I+ P(1)

P(1) 0

)]
=


0 0 1 1
0 0 1 1
0 1 0 0
1 0 0 0

 . (14)

The LP construction then takes the HGP of two matrices with circulants as entries and replaces these with
the corresponding binary representations after having taken the product. This increases the number of qubits
and parity checks by a factor of L, which gives the procedure its name lifting. Denoting matrices with
circulant entries with a tilde, an LP code is obtained as

H= LP
(
H̃1,H̃2

)
= BL

(
H̃
)

with (15)

H̃=

(
0 H̃Z

H̃X 0

)
with (16)

H̃X =
(
1n1 ⊗ H̃2

(
H̃1

)T ⊗ 1m2

)
(17)

H̃Z =
(
H̃1 ⊗ 1n2 1m1 ⊗

(
H̃2

)T)
. (18)

Note that the transpose of a matrix with circulant entries Ã= (aij)m×n is ÃT = (aTji)n×m and it holds that

BL(ÃT) = BL(Ã)T.
In graph-theoretical terminology, the parity check matricesHX andHZ are the biadjacency matrices of the

Tanner graphs. We show the lifting procedure for the example equation (13) in figure 2. One edge of a
Tanner graph of a HGP code with parity check matrix H between check ci and qubit qj is shown in
figure 2(a). In the LP construction, the entries of the final parity check matrix are replaced by circulants. This
can be visualized by labeling the corresponding edge in the Tanner graph, as shown in figure 2(b). The lift, in
figure 2(c) with lift parameter L= 4, translates to copying the check and qubit nodes L times and connecting
them according to the non-zero entries of the circulant. In this example, the circulant I+ P(1) connects every
copy of the check (ci,k) with two copies of qubits, (qj,k) and (qj,k+ 1 mod L).

3. The LCS codes

3.1. Construction and parameters
We can use the LP construction to algebraically build copies of the (non-rotated) surface code. To that end,
we take base matrices of size ℓ× (ℓ+ 1) of the same repetition code form as in equation (6). The binary
entries are replaced the trivial circulant (P(0) = I) of size L and zero circulant. The resulting matrix with
circulant entries is denoted by H̃(ℓ). Then the LP quantum code LPL(H̃(ℓ),H̃(ℓ)) consists of L disjoint copies
of distance d= ℓ+ 1 surface codes. The parameters of the code are therefore

[[n,k,d]] =
[[(

(ℓ+ 1)2 + ℓ2
)
L,L, ℓ+ 1

]]
,(

dq,ds
)
= (4,4) . (19)

5
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Figure 2. Lifting of edges of a graph that are part of the Tanner graph of a (quantum) code. (a) A nonzero entry of the parity check
matrixHij corresponds to an edge between check ci and qubit qj. (b) A circulant entry like I+ P(1) of a LP parity check matrix can
be visualized by a label on the edge and a corresponding edge style. (c) The lift of the matrix corresponds to taking L (here L= 4)
copies of the check and qubit nodes. The new connectivity is according to the binary representation of the circulant. In this
example, the circulant I+ P(1) connects every copy of the check (ci,k) with two copies of qubits, (qj,k) and (qj,k+ 1 mod L).

This insight can be used to construct interconnected surface codes. Consider matrices of size ℓ× ℓ+ 1
with

H̃(ℓ) = H̃(ℓ)
rep.+ H̃(ℓ)

int. (20)

=



I I 0 · · · 0 0
0 I I 0 · · · 0
...

...
...

. . .
. . . 0

0 0 · · · 0 I I

+



0 P(1) 0 · · · 0 0
0 0 P(1) 0 · · · 0
...

...
...

. . .
. . . 0

0 0 · · · 0 0 P(1)

 (21)

=



I I+ P(1) 0 · · · 0 0
0 I I+ P(1) 0 · · · 0
...

...
...

. . .
. . . 0

0 0 · · · 0 I I+ P(1)

 . (22)

The parity check matrices resulting from the first step (HGP) then naturally split into two parts,

H̃X =
(
1ℓ+1 ⊗ H̃(ℓ)

rep. H̃(ℓ)T
rep. ⊗ 1ℓ

)
+
(
1ℓ+1 ⊗ H̃(ℓ)

int. H̃(ℓ)T
int. ⊗ 1ℓ

)
=: H̃X,surface+ H̃X,interconnection (23)

H̃Z =
(
H̃(ℓ)

rep.⊗ 1ℓ+1 1ℓ ⊗ H̃(ℓ)T
rep.

)
+
(
H̃(ℓ)

int. ⊗ 1ℓ+1 1ℓ ⊗ H̃(ℓ)T
int.

)
=: H̃Z,surface + H̃Z,interconnection. (24)

The first addends H̃X,surface,H̃Z,surface have the same structure as surface codes. The lift therefore generates L
copies of surface codes. The second addends H̃X,interconnection,H̃Z,interconnection act as additional connections in
between the surface code patches. We therefore call the codes LPL(H̃(ℓ),H̃(ℓ)) the (ℓ,L)-lift-connected surface
codes or simply LCS codes. The interconnections amount to at most two additional connections per check,

because H̃(ℓ)
int. contains at most one entry per row and column. The general form of the parity-check matrices

is shown in appendix A. The LCS code construction is shown pictorially in figure 3.
The LCS codes are therefore (6, 6)-QLDPC. The dimension of a quantum CSS code is given by

k= n− rank(HX)− rank(HZ) . (25)

6
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Figure 3. Pictorial representation of the lifted product construction for LCS codes with (ℓ,L) = (2,4). (a) First, we take the
hypergraph product (HGP) of two repetition codes of length 3. The edges of the input Tanner graphs (top row and leftmost
column) are now decorated and labeled to indicate that the scalar entries of the repetition code are being promoted (i.e. lifted) to
matrices I (solid) and I+ P(1) (dashed) respectively, which are both of dimension L× L. This label carries through to the
resulting Tanner graph. (b) Analogously to the HGP, vertices are respectively identified with qubits, X- and Z-checks. The edge
label again indicates whether the corresponding entries are taken from the identity matrix I (solid) or the circulant I+ P(1)

(dashed). To obtain the stabilizers from this picture, first of all observe that since all edges contain the I matrix, we will obtain L
copies of the code that we would have obtained without lifting. The non-trivial extension comes from the edges containing the
additional term P(1), which define the additional entries in the resulting stabilizer checks between the different copies. Also note
that the edges of the transposed base graphs (indicated by T) also have to be lifted by the transposed circulant. This is exemplarily
spelled out in (c), where we show how the dashed edges of the given X-check in the LP are promoted to four X-checks on four
copies of the underlying code and additional interconnections in the respective checks arise from the non-trivial circulants P(1)

(P(1)T). Note that the interconnections are highly structured, in particular they exclusively appear between neighboring code
copies. We also indicate four logical representatives by small circles on the diagonal qubits of the surface code patches.

7
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Figure 4. Code parameters [[n,k,d]] of LCS (top, bold font) and copies of surface codes (bottom) for different (ℓ,L). The codes
marked in dark green correspond to L= ℓ+ 1 where both surface and LCS codes have the same parameters (family 1). Above that
line for fixed (ℓ,L), the LCS codes have a larger distance compared to the copies of surface codes, indicated by the green shade
behind the corresponding parameters. The purple boxes mark LCS code family 2 where for a fixed rate, codes with maximum
distance and minimum number of physical qubits are chosen. The orange box (ℓ= const.) shows how for the LCS codes, k,d
scale linearly in n up until L= 2ℓ+ 1.

Since both HX and HZ are already in a row echelon form and contain no zero rows, they are full rank and

k=
(
(ℓ+ 1)2 + ℓ2

)
L− 2ℓ(ℓ+ 1)L= L. (26)

There is no general recipe to get the distance of LP codes from the ingredients of the construction [50].
We can, however, calculate it via brute force by searching through all stabiliser equivalent representatives of
logical operators or bound the minimum distance by probabilistic methods using the GAP package
QDistRnd [52]. We find for parameters (ℓ= 1,L< 100),(ℓ= 2,L< 10),(ℓ= 3,L< 5) that

d=min(L,2ℓ+ 1) . (27)

All data shown in this manuscript support this conjecture. In appendix A, we show a constructive approach
to establishing the minimum distance based on the block structure of the parity check matrices. There, we
also show sets of logical operators that can be understood from the point of view of interconnected surface
codes. In (regular) surface codes, there exist representatives of X- and Z-logical operators with the same
support on the diagonal of the surface code patch. These have weight 2ℓ+ 1 for surface code distance ℓ+ 1.
While the canonical logical operators of surface codes do not ‘survive’ the lift trivially, the operators on the
diagonal can be lifted using consecutive shifts of the identity. In figure 3, we indicate these logical operators,
that have support on 2, 2 and 1 qubits of successive copies of surface codes. In summary, the parameters of
the LCS codes are

[[n,k,d]] =
[[(

(ℓ+ 1)2 + ℓ2
)
L,L,min(L,2ℓ+ 1)

]]
,(

dq,ds
)
= (6,6) . (28)

Available codes are shown in figure 4 and discussed in the following section. When unclear, we denote the
construction parameters as a superscript [[n,k,d]](ℓ,L). Note that for fixed ℓ and varying lift-parameter
L⩽ 2ℓ+ 1, both the number of encoded logical qubits and the distance scale linearly in the number of
physical qubits with constant rate r= (2ℓ2 + 2ℓ+ 1)−1.

Asymptotically for L∝ ℓ, the LCS codes achieve a scaling [[n,O(n
1
3 ),O(n

1
3 )]]. Compared to other

3D-local codes, this is better than 3D surface and toric codes with [[n,O(1),O(n
1
3 )]] (or [[n,O(n

1
4 ),O(n

1
4 )]]

when considering n
1
3 copies of 3D surface/toric codes). Recent advances on 3D local codes from subdivisions

or layer codes achieve the optimal scaling [[n,O(n
1
3 ),O(n

2
3 )]] [20, 21, 53–55]. It is, however, not clear if and

how small examples can be constructed and how they perform.

8
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Figure 5. Possible arrangement of qubits of the [[65,5,5]](2,5) LCS code, corresponding to 5 interconnected [[13,1,3]] surface
codes. While only a few interconnections of the patches are shown, note that all connectivity is restricted to neighbors of
neighboring patches and therefore 3D-local.

3.2. Connectivity
Firstly, the LCS codes are QLDPC with (dq,ds)lcs = (6,6) being slightly larger than the surface codes’
(dq,ds)s = (4,4). The additional connectivity however is limited and indeed 3D-local. We label qubits with
the tuple (qi, s) where qubit qi, i ∈ {0,1, . . . ,(ℓ+ 1)2 + ℓ2 − 1} of patch s ∈ {0,1, . . .L− 1} (and checks
correspondingly with (ci, s)). An edge then is the tuple e= [(ci, s),(qj, s ′)]. The circulant P(1) in the
interconnection part of the parity check matrices interconnects only neighboring patches s and s+ 1 mod L.
The transposed circulant P(1)T = P(L−1) turns the cyclic right shift by one into a cyclic left shift by one,
keeping the restricted connectivity by only interconnecting neighboring patches s and s− 1 mod L. Hence,
there only exist edges e= [(ci, s),(qj, s ′)] with s ′ = s+ 1 mod L. Also, for every edge e= [(ci, s),(qj, s ′)] with
s ̸= s ′ there exists an edge e= [(ci, s),(qj, s)], i.e. interconnection only involve checks and qubits that would
have been connected within one patch. An example for (ℓ,L) = (2,5) is shown in figure 5, where the
underlying surface codes are arranged as slices of a torus. Only a few interconnections are shown, but these
have a bounded length. These observations imply that these codes might be suitable, e.g. for implementation
in static 3D Rydberg atom array structures [56], without the need for shuttling. This only holds if the qubits
at the outer edge are close enough to the respective ancillary qubit of the neighboring slice to perform
entangling gates for stabilizer measurements. Concrete implementations and optimizations of qubit
positions in 3D space are left as future work.

Note that the choice of taking P(1) on every entry of H̃(ℓ)
int. is motivated by the restricted connectivity.

Taking P( j) with j ̸= 1 and j ̸= L
2 constructs equivalent codes up to permuting the surface code patches

accordingly. For j = L
2 , P

( j)T = P( j) and both additional connections of a check go to the same copy of the
underlying surface code. In that case, the code decouples into L

2 disjoint copies and has distance d= 2.

Putting different P( j) matrices as entries of H̃(ℓ)
int. renders the codes non-local, which makes it less

straightforward to analyze. However, heuristically we find that such codes typically have the same parameters
compared to their 3D local partners with the same (ℓ,L).

4. Code performance over noisy quantum channels

4.1. Sampling codes in quantum channels
Here we discuss several standard methods for (Monte Carlo) sampling of the combination of a given decoder
and a noise model. We consider two types of noise models:

• Code capacity model: only the data qubits are affected by a single qubit i.i.d. noisy quantum channel (e.g. a
bit-flip channel). The syndrome measurement is assumed to be perfect, see also algorithm 3.

• Phenomenological noisemodel: this noise model extends the code capacity model by additionally including
noisy syndromemeasurements. This can e.g. be modeled by a perfect measurement followed by a (classical)
bit-flip channel on the result, see algorithm 4.
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Typically, to ensure a fault-tolerance level of t= ⌊ d
2⌋, the number of noisy syndrome measurement cycles is

chosen to be nsc = d. This is based on the fact that, even if the t errors occur on measurements of the same
syndrome in the measurements cycles, the d= 2t+ 1 repetitions allow to correctly identify these errors. We
can also think of this as defining repetition codes on the syndrome measurement outcomes, with extra
variables introduced to model syndrome flips. In order to preserve the distance d of the code, the length of
these repetition codes is chosen to be d. This procedure is also shown in figure 6 for a three-bit repetition
code.

4.2. Decoding
A decoder takes syndrome data and potentially parameters of the noise model as input and returns an
inference of the underlying error configuration (which in turn determines the appropriate recovery
operation), that is consistent with the observed syndrome. Based on this error guess, a correction is applied
that puts the state back to the codespace. The ideal maximum likelihood decoder picks a guess from the most
likely error (MLE) class, taking into account the code degeneracy, i.e. that distinct error configurations can
be logically equivalent. Because this is in general computationally hard, practical decoders return an
approximation, trading computational efficiency for non-optimality of the suggested recovery operation.
E.g. theMLE decoder tries to determine the MLE configuration, ignoring potential degeneracies. To be
efficient, practical decoders generally try to exploit structure in the code and noise model, such that not every
existing decoder is suitable for application to a general code. Notably, a matching-based decoder like
minimum weight perfect matching works well whenever elementary errors violate two parity checks [57]. This
is not the case for LCS codes, since here a single error on a qubit violates up to 3 parity checks (considering
only X- and Z- errors). We therefore resort to two general purpose decoders, namely aMLE decoder and a
decoder based on Belief Propagation and Ordered Statistics Decoding (BP+OSD) [34, 58].

Given our codes are symmetric with respect to X and Z, we consider one Pauli type only, e.g. (single
qubit, i.i.d) bit-flips with probability p, for a performance benchmark of the codes. The probability of a fixed
configuration E= {Eq}n−1

q=0 of errors given an observed syndrome s is

p(E|s)∝
n−1∏
q=0

p
(
Eq
) nc−1∏

c=0

δ (⟨E,Sc⟩= sc) (29)

= pw (1− p)n−w (30)

∝
(

p

1− p

)w

, (31)

where w is the weight of the configuration w= |E|. Sc ∈ S denotes the stabilizer c and sc the bit c of the
observed syndrome s. We write ⟨P,P ′⟩ with P,P ′ ∈ Pn for the function that indicates commutation,

⟨P,P ′⟩=

{
0 if [P,P ′] = 0

1 if {P,P ′}= 0.
(32)

With that notation, the syndrome of error E can be written as

σ (E) = (⟨E,Sc⟩)nc−1
c=0 . (33)

4.2.1. MLE Decoding with i.i.d. noise
For p< 0.5 (p> 0.5), the MLE is the one with the lowest (highest) weight w. Landahl et al give an intuitive
implementation of an MLE decoder for quantum codes which we follow here [59].

4.2.1.1. Code capacity noise
Considering pure bit-flip noise, we have one (error free) syndrome sZ = {sZ,c}nc−1

c=0 . Let x= {xq}n−1
q=0 be the

binary representation of the Pauli error. Then MLE decoding can be stated as the optimization problem

min
∑
q

xq (34)

subject to
⊕

q∈Γ(c)

xq = sZ,c ∀c (35)

with xq ∈ GF(2) = {0,1} . (36)
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Here, Γ(c) is the set of qubits involved in stabilizer measurement c and⊕ indicates addition modulo 2. In
words, this procedure states: minimize the weight of an error that is compatible with the syndrome. In
vectorised form with Z-parity check matrix HZ, this can be written as

min 1Tx (37)

subject to HZx= s mod 2 (38)

with x ∈ GF(2)n = {0,1}n . (39)

4.2.1.2. Phenomenological noise
With multiple rounds of noisy syndrome measurements, data errors after time step t are indicated by
differences of syndrome bits from t to t+ 1. We write

∆st = st − st−1 = st + st−1 mod 2 ∀t (40)

with st=0 :=0 for the observed syndrome measurement outcomes. We introduce d data-error vectors
x0, . . .xd−1 ∈ GF(2)n and d syndrome measurement-error vectors s̃0, . . . s̃d−1 ∈ GF(2)nc for d noisy rounds of
error correction. This allows one to formulate the MLE decoding optimization problem as

min
∑
t

1Txt (41)

subject to Hxt + s̃t + s̃t−1 =∆st mod 2 ∀t, (42)

requiring that the noise-less syndrome together with syndrome errors are compatible with the observed
syndrome differences. A last round of perfect syndrome measurements allows us to verify the correction
returned by the optimization (see appendix 4). Vectorized, this reads

min 1Ty (43)

subject to Ay=∆s mod 2 (44)

with y=
(
xT0 , . . . ,x

T
d−1, s̃

T
0 , . . . s̃

T
d−1

)
∈ GF(2)2dn . (45)

Here

A=


H

H
. . .

H

I
I I

. . .

I I

 . (46)

We implement the MLE decoder in python using the optlang interface [60] to the GNU Linear
Programming Kit GLPK [61] to solve the constrained minimization. The run-time of decoding is exponential
in the number of qubits and (noisy) error correction rounds. In practice, this results in a limitation on the
feasibility of simulating the decoding of codes. We restrict the simulations to codes with nd⩽ 250.

4.2.2. BP+OSD
To enable benchmarking beyond low qubit numbers, we employ BP+OSD. BP is a well known decoder for
classical codes, where it works particularly well for good LDPC expander codes [62, 63]. BP calculates
single-qubit error probabilities using statistical inference on the Tanner graph of the code. While BP can be
shown to be exact on trees, Tanner graphs usually contain cycles, which can hinder the performance of BP
(see e.g. [58, 64]). One way to overcome these problems is to use OSD as a post-processor. While BP may be
inconclusive in its output, it usually points to a subset of likely erroneous qubits, OSD then brute-forces the
solution of the decoding problem on that subset [34].

We denote the qubits participating in syndrome measurement c by Γ(c)⊂ Q with Q the set of all qubits.
The syndrome measurements in which qubit q participates are Γ(q). To approximate single qubit marginal
probabilities, two types of quantities, termedmessages, are updated iteratively until convergence or a
maximum number of iterations is reached. The messagesmq→c(Eq) from qubit q to check c correspond to the
current estimate of error probabilities for Eq on qubit q given the estimates of all neighboring checks except c,

m(i+1)
q→c ∝ p0

(
Eq
) ∏
c′∈Γ(q)\c

m(i)
c′→q

(
Eq
)
. (47)
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The messagesmc→q(Eq) from check c to qubit q collect incoming probability estimates of qubits except q and
sum over all compatible configurations fixing the error Eq,

m(i)
c→q ∝

∑
EΓ(c)\q

δ
[
σ (E)c = sc

] ∏
q′∈Γ(c)\q

m(i)
q′→c

(
Eq′
)
. (48)

The product of all these messages incoming at a qubit node gives an estimate for the marginal probabilities of
errors on that qubit, called belief,

bq
(
Eq
)
∝ p0

(
Eq
) ∏
c∈Γ(q)

m(imax)
c→q

(
Eq
)
. (49)

The log-likelihood ratios

lq = log
1− bq (E)

bq (E)
(50)

of qubit q are calculated and used to sort the qubits by their likelihood of being erroneous. In first order
OSD, the parity check matrix H is truncated to a full rank square matrix H[R], with R⊆ Q a set of qubits
which are most likely to have an error based on the log-likelihood ratios. Here H[R] refers to a restriction of H
to the columns specified in the set R. The OSD decoder then assumes no error on the set of remaining qubits
Q\R and inverts the truncated matrix to get as a total error guess (up to reordering of the qubits)

x=
(
H−1

[R] s,0[Q\R]
)
. (51)

Higher-order OSD improves upon that by considering non-zero configurations x[Q\R] for the remaining
qubits and adapting the reliable part to ensure validity as

x=
(
H−1

[R] s+H−1
[R]H[Q\R]x[Q\R],x[Q\R]

)
. (52)

BP+OSD provides a general purpose decoder that is efficient enough for reasonable benchmarking and
has a well tested implementation [35, 65, 66]. In appendix B, we provide details on chosen parameters. For
small qubit numbers, it is typically observed that the performance of BP+OSD comes close to most-likely
error decoding, see appendix C for a comparison.

As BP+OSD essentially provides a solution x to Hx= s mod 2, we can also use the same algorithm to
find a solution to Ay=∆s mod 2 (equation (44)) representing the phenomenological noise model. In the
graphical picture, this corresponds to taking d copies of the code’s Tanner graph, adding new variable nodes
for every check and interconnecting them according to the right part of the matrix A. An example of the
adapted Tanner graph for a three-bit repetition code using three rounds of noisy measurements is shown in
figure 6. Note that also here, we simulate a final destructive single qubit readout by a round of noiseless
syndrome measurement.

4.3. Simulation results
In the following section, we present results we obtain from sampling LCS codes for code capacity and
phenomenological noise channels, which we compare to the performance of the standard surface code.
Because LCS and surface codes are both CSS and X- and Z-stabilizers are symmetric up to permutations, it
suffices to focus on pure bit-flip noise. We start with a discussion of the results for the smallest distance
instances of LCS codes. We then move to larger codes, where we first discuss how to compare different finite
rate codes and then present the core results regarding logical performance and thresholds of LCS codes.

4.3.1. Logical error rate and pseudo-threshold
As we will be considering codes with more than one logical qubit, we will declare logical failure whenever any
of the constituent logical qubits has an error. The logical error rate is given by

pler =
n∑

w=t+1

Nler (w)p
w (1− p)n−w (53)

= (1− p)n
n∑

w=t+1

Nler (w)

(
p

1− p

)w

, (54)
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Figure 6. Phenomenological noise Tanner graph for a three-bit repetition code using three rounds of noisy measurements. Newly
introduced syndrome-error variables s̃ are represented by orange rhombi. Note that this Tanner graph is (up to the rightmost
rhombi) equivalent to the Tanner graph of a distance 3 surface code.

where Nler(w) is the number of failure configurations of weight w and t= ⌊ d
2⌋ is the minimum number of

correctable errors. Let us start by looking at small LCS codes with ℓ= 1, L ∈ {3,4,5} and parameters
[[15,3,3]], [[20,4,3]] and [[25,5,3]] respectively with a rate of r= 1/5. The first two codes are also shown in
figure 14. The logical error rate against the physical error rate is shown in figure 8(a).

We make the following observations about the given distance 3 codes: first of all, the different codes show
a similar logical error rate across the range of physical error rates, where the logical error rate is larger for
larger physical qubit number, as expected when fixing the distance. Furthermore the logical error rate scaling
at low p is consistent with pler ∝ p2, indicating that arbitrary single qubit errors are corrected. Remarkably, 3
copies of distance 3 surface codes with parameters [[39,3,3]] have a logical error rate comparable to the
[[20,4,3]] LCS code encoding one logical qubit more with fewer physical qubits.

To further assess the performance of the error correcting codes, we can look at the physically motivated
pseudo-threshold p⋆th [67]. It is the value of physical error rate p below which the logical error rate is lower
than the physical error rate. In general, we call the presence of any faulty (logical) qubit in our computational
(logical) Hilbert space a (logical) failure. This implies that for k bare physical qubits each failing with p, their
total failure probability is given by

pfail (k) =
k∑

l=1

(
k

l

)
(1− p)k−l pl (55)

= 1− (1− p)k . (56)

This reduces to the well known case for k= 1, pfail = p that is often considered for (planar) color or surface
codes hosting one logical qubit.

As shown in figure 8(a), The pseudo-thresholds are in the range of 8%–9%.

4.3.2. Logical error rate per logical qubit
In a practical setting, we cannot distinguish which of the logical qubits has a logical error and therefore, any
error is bad. Additionally, a rescaling of the logical error rate to a logical error rate per logical qubit in order to
e.g. compare codes with a different number of logical qubits k is only meaningful if they fail independently of
each other. Figure 7 shows the probability of logical errors in the [[15,3,3]] code for a bit-flip error rate
px = 0.01. Most notably, p(X0X1X2) ̸= p(X0)p(X1)p(X2) indicates that the logical qubits do not fail
independently. This is in contrast to using multiple codes each encoding only a single logical qubit. We will
therefore always consider the logical failure of the block as soon as any logical qubit comprising it fails.
Whenever we compare to surface codes with 1 logical qubit, we obtain the logical error rate for k copies of
surface codes by rescaling the single-logical qubit error rate as

p(k)L = 1−
(
1− p(1)L

)k
. (57)
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Figure 7. Probability of logical errors at px = 0.01 for the [[15,3,3]] LCS code. The logical qubits do not fail independently as
p(Xi)p(Xj) ̸= p(XiXj). Because of the symmetry of the code and the noise, we expect the same logical error rates for e.g. X0 and
X2. We attribute the difference seen above to the specific implementation of the decoder that returns only one solution whenever
there are multiple with the same likelihood.

Table 2.Number of low weight failure configurations of three copies of distance 3 surface codes compared to the [[39,3,3]]-LCS code. Up
to and including weight w= 5, the interconnected LCS codes have fewer failure configurations, explaining the lower logical error rates.

Weight w 3 · [[13,1,3]] Surface [[39,3,3]] LCS

2 69 12
3 2253 852
4 34 152 23 093
5 321 690 307 976
6 2 163 638 2 378 071

Table 3. Pseudo-thresholds of small LCS codes, compared to three copies of surface codes. Note that the LCS codes have 26%− 40%
higher pseudo-thresholds than surface codes for code capacity and 40%–56% higher pseudo-thresholds compared to surface codes with
phenomenological noise.

Pseudo-threshold

Code code capacity phenomenological

[[15,3,3]] LCS 8.1± 0.1% 4.3± 0.1%
[[20,4,3]] LCS 8.6± 0.1% 4.2± 0.1%
[[25,5,3]] LCS 8.4± 0.1% 4.2± 0.1%
[[39,3,3]] LCS 8.7± 0.1% 4.6± 0.1%
[[39,3,3]] surface 6.4± 0.1% 3.0± 0.1%
[[75,3,3]] LCS 9.0± 0.1% 4.7± 0.1%

4.3.3. Copies of single-logical qubit codes or single-block codes?
In the following, we will discuss and compare logical error rates of various LCS and surface codes encoding
the same number of logical qubits k= 3 and distance d= 3. This corresponds to ℓ ∈ {1,2,3}, L= 3.
Figure 8(b) shows the logical error rate of these codes sampled over a code capacity channel and decoded
with the MLE decoder. For the interconnected [[39,3,3]]] LCS codes, the logical error rate is almost an order
of magnitude lower for small physical bit-flip rates px compared to three copies of [[13,1,3]] surface codes. To
explain this remember that at low p the logical error rate is dominated by low-weight failure configurations.
Using a look-up table decoder, we count the number of failure configurations, shown in table 2 for a weight
w⩽ 5. The number of failure configurations is significantly lower for the LCS code encoding the 3 logical
qubits in one block which results in the significantly lower logical error rate. Also the pseudo-threshold is
significantly higher with p⋆th([[39,3,3]]− LCS)≈ 8.6% against p⋆th(3 · [[13,1,3]]− S)≈ 6.4%. Note that the
codes with smaller encoding rate r= k

n show a lower logical error rate, which is plausible given their
correspondingly higher number of stabilizers. However, the [[75,3,3]]-LCS code only has a marginally lower
logical error rate compared to the [[39,3,3]]-LCS code, hinting at a tradeoff between physical qubit number
and degeneracy. Table 3 summarizes the pseudo-thresholds for these small codes, which are all in the range
of 8− 9%.

For phenomenological noise, we set the probability of a noisy syndrome measurement to q= px =: p.
Note that slightly different notions of error correction and syndrome measurement cycles are in use in
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Figure 8. Logical error rates of small LCS and surface codes, sampled over a bit-flip channel and decoded using the MLE decoder
(section 4.2.1). (a) Codes with ℓ= 1 and L= 2,3,4, compared to error probabilities of 3,4 and 5 physical qubits (solid lines),
respectively. The smallest distance 3 code has the lowest logical error rate. The curves cross the physical qubit curves at the
pseudo-threshold p⋆th ≈ 8.6%. (b) Codes with ℓ= 1,2,3 and L= 3, compared to error probabilities of 3 physical qubits and 3
copies of [[13,1,3]] surface codes. Interconnected codes can achieve the same logical error rate as surface codes using less physical
qubits (here 15 vs. 39). Using more physical qubits increasing the redundancy gives an improvement of almost one order of
magnitude for low physical error probabilities. The pseudo-threshold is also increased from p⋆th(3 · [[13,1,3]]− S)≈ 6% to
p⋆th([[39,3,3]]− LCS)≈ 8.6%. In this plot and all following, statistical error bars corresponding to one standard deviation in the
Monte Carlo sampling are drawn (occasionally smaller than markers).

Figure 9. Logical error rates of small LCS and surface codes, sampled over a bit-flip channel with d noisy syndrome measurements
and decoded using the MLE decoder (section 4.2.1). (a) Codes with ℓ= 1 and L= 2,3,4, compared to error probabilities of 3,4
and 5 physical qubits, respectively. The smallest distance 3 code has the lowest logical error rate. The curves cross the physical
qubit curves at the pseudo-threshold p⋆th ≈ 4.2%. (b) Codes with ℓ= 1,2,3 and L= 3, compared to error probabilities of 3
physical qubits and 3 copies of [[13,1,3]] surface codes. Interconnected codes can achieve the same logical error rate as surface
codes using less physical qubits (here 15 vs. 39). Using more physical qubits increasing the redundancy gives an improvement of
almost one order of magnitude for low physical error probabilities. The pseudo-threshold is also increased from
p⋆th(3 · [[13,1,3]]− S)≈ 3% to p⋆th([[39,3,3]]− LCS)≈ 4.6%.

literature. We follow [6, 24] and report a lower bound on the logical error rate per syndrome measurement
cycle by rescaling the total logical error rate after nsc cycles as

pL (p)⩾ 1− (1− pL (nsc))
1
nsc . (58)

This can then be compared to the failure probability of k unencoded qubits to get the pseudo-threshold as a
solution to pL(p) = 1− (1− p)k, shown for the MLE decoder and distance 3 bounded LCS codes in figure 9.
The pseudo-thresholds are summarized in table 3 and range between 4 and 5%, higher than the
pseudo-threshold of 3 copies of distance d= 3 surface codes of≈3%. Also note that the quadratic scaling in
the low error rate regime is consistent with the ability to correct for any order p error, data qubit or
measurement error.

15



Quantum Sci. Technol. 9 (2024) 045012 J Old et al

4.3.4. Code families and their thresholds
Beyond pseudo-thresholds of specific codes, the asymptotic threshold of families of code is of interest, in
particular in order to compare the performance of different code families.

It is important to note that the existence of a threshold has been proven for concatenated codes [1, 68],
codes with an asymptotically constant encoding rate [11, 69] and topological codes with rate vanishing
r∝ n−1 [8]. For general QLDPC codes, the existence of and lower bounds on a threshold were proven
subsequently [70]. The threshold of a code family under a specific noise model and decoder is typically
determined by Monte Carlo sampling and plotting the logical error rate versus the physical error rate for
representatives of the code family with growing number of physical qubits and code distance. Heuristically, a
crossing of these curves at a point p= p⋆ indicates the existence of a threshold at p⋆. This is supported by
arguments from statistical mechanics mappings of error correcting codes and is particularly successful for
topological codes with well defined scaling properties [71–73]. Hence for independent copies of surface
codes we can expect the same asymptotic threshold as the copies fail independently. Results for k= 1 logical
qubits that are rescaled according to equation (57) however have finite size crossing points of the curves that
deviate from the asymptotic threshold. For general QLDPC codes, the statistical mechanical picture is more
intricate and far less well understood and part of ongoing research [74, 75]. Nevertheless, crossing points of
such curves give an estimate on the value of the threshold. In the following, crossing points are obtained
from reading off the crossings of quadratic least square fits to the data points. Indicated uncertainties
correspond to estimates of how well we can resolve the respective crossing point.

From all available code parameters when sweeping ℓ,L (figure 4) we can define code families which are
suitable for comparative simulations of error correcting properties. In the following, we will define three
relevant scenarios and report the numerical findings. In the following, we report data for surface codes that is
obtained with the same BP+OSD decoder as used for LCS codes. While BP+OSD is a general purpose
decoder, surface codes are amenable to tailored decoders, most notably weight matching [76]. Comparing
the performance of different decoders can be subtle, however we observed a better logical error rate when
decoding with BP+OSD and therefore use the latter for a direct comparison. We discuss this in more detail
in appendix C.

1. Same parameter LCS code: enforcing the parameters [[n,k,d]] of surface (subindex s) and LCS codes to
be the same corresponds to taking L copies of distance L surface codes and interconnecting them. Hence,
this scenario explores the influence of the higher stabilizer weights with 2D non-local connectivity. This is
achieved by setting ℓs = ℓ= L− 1= Ls − 1, such that the parameters are

[[n,k,d]]lcs = [[n,k,d]]s =
[[(

2L2 − 2L+ 1
)
L,L,L

]]
. (59)

These families are marked dark green in figure 4.
Under code capacity noise, figure 10(a) shows the logical error rate of any logical qubit compared to

the physical bit-flip probability. With growing n,d, the logical error rate is increasingly suppressed.
Compared to copies of surface codes, the interconnected LCS codes show a logical error rate that is up to
2 orders of magnitude lower at physical error rates on the order of 10−2. We observe a crossing of curves
with at p⋆ ≈ 6.5− 7% indicating a threshold of≈6.7± 0.3%, slightly lower than the crossing point for
surface codes at p⋆ ≈ 7.5± 0.3%.
Results using the phenomenological noise model decoded with the adapted BP+OSD decoder are

shown in figure 11(a). The results qualitatively show similar trends as for the previous code capacity case.
To pick out a striking example, at a physical error rate of 10−2, the logical error rate of the [[595,7,7]] LCS
code is 2 orders of magnitude lower compared to the surface code. The estimated threshold value we
report for this code family under phenomenological noise is≈2.9± 0.1% which within resolution
coincides with the surface code family threshold≈2.9± 0.1%.

2. Highest rate LCS code for fixed dimension and distance. We can see in figure 4 that for the same k,d, we
can tune the parameter ℓ for the LCS codes to a higher and lower rate. The highest rate is achieved by
setting ℓ= L−1

2 . These LCS codes are depicted in figure 4 by purple rectangles. This family includes
representatives of codes with the smallest number of physical qubits while having distances d⩾ 3. We
compare this family to surface codes with the same number of logical qubits k and distance d, which gives

[[n,k,d]]lcs =

[[
1

2

(
L2 + 1

)
L,L,L

]]
, (60)

[[n,k,d]]s =
[[(

2L2 − 2L+ 1
)
L,L,L

]]
. (61)
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Figure 10. Logical error rate of LCS codes under code-capacity bit-flip noise using the BP+OSD decoder compared to surface
codes. We compare three different parameter scaling choices, for all of which we observe a reduction of logical error rate with
growing n,d. (a) Codes are chosen such that LCS and surface codes have the same parameters [[n,k,d]]. The logical error rate for
the interconnected codes is up to 2 orders of magnitude lower than for the surface codes at a physical error rate in the order of
10−2. We also observe a crossing of the curves indicating the existence of a threshold at≈6.7± 0.3% . (b) LCS codes are chosen
such that they have the lowest qubit number n for same k,d. As explained in the text, there is still a reduction in logical error rate
compared to disjoint surface codes, however this is less pronounced than in the setting discussed previously. The crossing of the
curves indicates a slightly higher threshold at≈7.7± 0.2%. (c) Codes chosen such that for the same n,k, LCS codes have highest
available distance. Here we observe the largest reduction in logical error rate. Note that this is consistent with the expectation that
the distance is closely related to the number of correctable errors.

Figure 11. Logical error rate of LCS codes under phenomenological bit-flip noise using the BP+OSD decoder compared to surface
codes. We simulate d cycles of syndrome measurements and report the logical error rate per cycle. We compare three different
parameter scaling choices, for all of which we observe a reduction of logical error rate with growing n,d. (a) Codes are chosen
such that LCS and surface codes have the same parameters [[n,k,d]]. The logical error rate for the interconnected codes is up to 2
orders of magnitude lower than for the surface codes at a physical error rate in the order of 10−2. We also observe a crossing of the
curves in the vicinity of≈2.9± 0.1% indicating the existence of a threshold. (b) LCS codes are chosen such that they have the
lowest qubit number for same k,d. As explained in the text, there is still a reduction in logical error rate compared to disjoint
surface codes, however not as large. The crossing of the curves indicates a slightly higher threshold at≈3.2± 0.1%. (c) Codes
chosen such that for the same n,k, LCS codes have highest available distance. Again, note that this is consistent with the
expectation that the distance is closely related to the number of correctable errors.

This implies a saving of a factor 4 in qubit number for the same rate and distance for sufficiently large L.
The simulation results under code capacity noise are shown in figure 10(b). Also in this scenario, we

find a lower logical error rate for the LCS family, which can be attributed to the smaller number of
physical qubits. However the gain is smaller compared to lower rate codes which can be explained with
the higher degeneracy of lower rate codes. We also observe a crossing of curves at a slightly higher
p⋆ ≈ 7.7± 0.2% indicating a threshold in that vicinity.
Under phenomenological noise (figure 11(b)) for the given scenario the crossing indicates a threshold

estimate of≈3.2± 0.1% compared to≈2.9± 0.1% for the corresponding surface codes. The slight
deviation in favor of the LCS family should be interpreted cautiously.
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3. Largest distance LCS code for fixed physical and logical qubit number. This compares codes with
parameters

[[n,k,d]]lcs =

[[
1

2

(
L2 + 1

)
L,L,L

]]
, (62)

[[n,k,d]]s =

[[
1

2

(
L2 + 1

)
L,L,

L+ 1

2

]]
. (63)

This implies a factor of 2 improvement in distance for same qubit number and rate for sufficiently large L.
The logical error rates for this scenario under code capacity noise are shown in figure 10(c) and under
phenomenological noise in figure 11(c). Here, we observe the largest gain among the three scenarios,
i.e. when fixing the number of physical qubits and the desired code rate, choosing LCS codes over surface
codes leads to the largest improvement in logical error rate. This can likely be attributed to the fact that
the corresponding surface codes have a smaller distance ds =

dlcs+1
2 . Compared to the example in the

‘same parameter scenario’, here we observe an improvement of 2 orders of magnitude at physical error
rate p= 10−2 already for the even smaller [[369,9,9]] LCS code compared to the corresponding nine
copies of distance five surface codes with parameters [[369,9,5]]. Note that the threshold values for this
scenario are the same as in the previous scenario.

Overall, these results indicate that LCS codes systematically offer improved performance in terms of
logical error rate compared to standard surface codes under both code capacity and phenomenological noise.

5. Fault tolerant syndromemeasurement circuits

The simulations with a phenomenological noise model show the high intrinsic error correction capabilities
of LCS codes compared to surface codes, even under erroneous syndrome measurements. It is, however, not
clear how this translates to an implementation with full circuit level noise because of the weight-6 instead of
weight-4 stabilizers. Coupling in ancillary qubits increases the number of failure configurations and can even
reduce the effective distance of the code. A noteworthy example are hook errors in topological color codes.
Circuits have to be designed carefully, such that faults occurring during the syndrome measurement do not
spread in an uncontrollable way [59].

For HGP codes, it was shown that any order of two qubit gates does not spread errors catastrophically,
because the relevant stabilizers overlap with any logical operator on one location only [77], which is a
sufficient condition. For (non-rotated) surface codes constructed as HGP of two classical repetition codes,
the order does therefore also not matter. The argument of [77] does not generalize to LP codes. This can be
seen in figure 15, where the first Z-stabilizer overlaps with the first logical Z-operator on two locations.

Remarkably, we find that syndrome measurement circuits based on the coloration circuit of [23] are
distance preserving. We generate the required edge coloring for parallelizing entangling gates according to
algorithm 1. Since the maximum degree of the edges in the Tanner graphs of LCS codes is∆= 6, this
algorithm colors the edges of the Tanner graphs of LCS codes in 6 colors [78]. From this coloring, we
construct circuits as shown in algorithm 2 and implement them using stim [79]. One syndrome
measurement cycle of the [[15,3,3]] code is shown in figure 12. We implement a circuit level noise model
where each circuit element fails with probability p, i.e. after single qubit operations, a single qubit
depolarizing error E ∈ {X,Y,Z} occurs with probability p. After two qubit entangling operations, one of
fifteen E ∈ {I,X,Y,Z}⊗2 \ {I, I} is placed with probability p. Initialization and measurements (of ancilla and
data qubits) are also noisy, modeled by single qubit bit (phase) flips with probability p after the Z (X)-
initialization or before the Z (X)-measurement. Idling positions suffer from uniform depolarizing noise with
pidle = p/10 [80].

The resulting circuits preserve the distance of the static code in the sense that it requires d circuit level
faults (including two qubit errors after entangling gates) to cause a logical error without violating a
stabilizer [81].
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Algorithm 1. Edge coloring of Tanner graph of LCS codes.

Input: X- or Z- Tanner graph T of LCS codeQ
Output: Edge coloring C

1 C= [] (empty list)
2 while T is not empty do
3 m=maximal matching of edges in G
4 C← [m]
5 remove edgesm from T
6 end
7 return C

Algorithm 2. Coloration syndrome readout circuits for LCS codes.

Input: X- and Z- edge colorings CX,CZ of Tanner graphs of (ℓ,L)-LCS codeQ
Output: Syndrome readout circuit

1 for Cycle in range(L) do
2 Initialize n−k

2 Z-ancilla qubits in |0⟩
3 for color c in CZ do
4 for edge e= (d,a) in color c do
5 CXd→a

6 end
7 end
8 Measure n−k

2 Z-ancilla qubits in Z-basis
9 Initialize n−k

2 X-ancilla qubits in |+⟩
10 for color c in CX do
11 for edge e= (d,a) in color c do
12 CXa→d

13 end
14 end
15 Measure n−k

2 X-ancilla qubits in X-basis
16 end
17 return C

We can then benchmark the memory capabilities of the LCS codes by sandwiching the coloration syndrome
readout circuits with initialization in |0⟩⊗n

(|+⟩⊗n
) and single-qubit measurementM⊗n

Z (M⊗n
X ) for the

Z(X)-logical operators. Both these operations are also assumed noisy (with probability p), modeled by single
qubit bit (phase) flips after the Z(X)- initialization or before the Z(X)-measurement .

For decoding, we generate a circuit level parity check matrix. The rows represent detectors, i.e. sets of
deterministic measurements such as two consecutive stabilizer measurement outcomes. The columns
represent error mechanisms [82]. We finally decode using BP+OSD similar to the code capacity and
phenomenological noise model.

Figure 13(a) shows the logical error rate per syndrome measurement cycle after d cycles. We show
[[15,3,3]], [[39,3,3]] and [[65,5,5]] LCS codes compared to d copies of distance 3,5 and 7 surface codes. This
data verifies the fault-tolerance of the circuits by showing a scaling of pL ∝ pt+1 in the regime of low physical
error rates. Sub-threshold and within error bars, the logical error rates of the [[15,3,3]] and [[65,5,5]] LCS
codes are the same as their surface code counterparts with parameters [[39,3,3]] and [[205,5,5]]. LCS codes
can therefore reach the same logical error rate using 2.78 and 3.24 times fewer physical qubits. Again,
encoding 3 logical qubits using more redundancy, i.e. 39 physical qubits decreases the logical error rate by
almost an order of magnitude.

Figure 13(b) shows that pseudo-thresholds of LCS codes are significantly higher, p⋆th([[15,3,3]])≈ 0.45%
and p⋆th(([[39,3,3]])≈ 0.5%, compared to surface codes with p⋆th([[39,3,3]])≈ 0.39%. This is a strong
indication that already at small qubit numbers, even under circuit level noise, LCS codes can outperform
surface codes.

Even if phenomenological noise thresholds are similar, the (asymptotic) value of the circuit level
threshold is typically observed to be reduced for higher stabilizer weights [83]. We observe this in
figure 13(c), showing the crossing of logical error rates for members of the highest rate LCS codes. Their
crossing point is at pth ≈ 0.5% compared to pth ≈ 0.9% for surface codes, indicating a threshold in that
vicinity.
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Figure 12. A syndrome measurement cycle for the [[15,3,3]]-LCS code constructed using the coloration circuit as described in the
main text. Z- and X-stabilizer measurements are performed one after another in six layers respectively, showing potential for
further parallelization. Inset are the Z- and X-Tanner graphs with edges backed with the same colored and shapes as the
corresponding parallel blocks of CXs in the circuit.

Figure 13. Logical error rates of LCS codes under circuit level noise, decoded using BP+OSD, compared surface codes decoded
using a minimum weight perfect matching decoder. We simulate d syndrome measurement cycles and report the logical error rate
per cycle. (a) Distance 3 and 5 LCS codes show the expected scaling pL ∝ p2 and pL ∝ p3 for small p, confirming the
fault-tolerance property of the syndrome readout circuit implementations. Sub-threshold and within error bars, the logical error
rates of the [[15,3,3]] and [[65,5,5]] LCS codes are the same as their surface code counterparts with parameters [[39,3,3]] and
[[205,5,5]]. (b) Pseudo-thresholds of LCS codes are significantly higher, p⋆th([[15,3,3]])≈ 0.45% and p⋆th(([[39,3,3]])≈ 0.5%,
compared to surface codes with p⋆th([[39,3,3]])≈ 0.39%. (c) The crossing point of highest rate LCS codes is at pth ≈ 0.5%
compared to pth ≈ 0.9% for surface codes, indicating threshold in that vicinity.
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Figure 14. First three members of ℓ= 1 LCS codes. X- (top) and Z-stabilizers (bottom). Logical operators shown in squares with
different line styles for X and Z logical operators respectively. Note that they can be chosen to have same support. Swapping pairs
of qubits on a diagonal as shown exemplarily for the k= 2 and k= 4 codes swaps X and Z stabilizers while leaving logical
operators invariant. For k= 3 (center), the partitions A and B, as well the CZ operations of the fold-transversal Phase gate are
indicated (cf equation (70)).

6. Towards logical gates in LCS codes

Implementing logical gates in QLDPC codes is a hard challenge, in particular if the implementation is to be
fault-tolerant. In the following, we show a particular set of fault-tolerant gates for LCS codes when fixing
ℓ= 1. These have an almost planar geometrical representation and useful symmetries. Three representatives
(L= 2,3,4) are shown in figure 14. They correspond to codes with parameters [[n,k,d]] = [[10,1,2]],
[[15,3,3]] and [[20,4,3]] respectively. They have a symmetry also called ZX-duality that exchanges X- and Z-
stabilizers by simple swaps but keeps logical operators invariant. This symmetry is easily seen in the parity
check matrices for ℓ= 1,

H̃X =

(
1 1+ P(1) 0 0 1
0 0 1 1+ P(1) 1+ P(1)T

)
(64)

H̃Z =

(
1 0 1+ P(1) 0 1
0 1 0 1+ P(1) 1+ P(1)T

)
. (65)

Swapping the second and third block, i.e. applying the column permutation

τ =
(
L 2L

)(
L+ 1 2L+ 1

)
. . .
(
2L− 1 3L− 1

)
(66)

brings H̃X → H̃Z and vice versa. Logical operators of these codes are given by

L̃X =
(
1 0 0 P(1) 1

)
(67)

L̃Z =
(
1 0 0 P(1) 1

)
(68)

and therefore left invariant under τ .
This duality enables several fold-transversal gates, in particular a fold-transversal Hadamard that

implements a global logical Hadamard [44],

H=
⊗
i<τ(i)

SWAP(i, τ (i))
n⊗

i=1

Hi =
k⊗

i=1

Hi (69)

and a fold-transversal Phase gate

S=
⊗
i∈A

Si
⊗
i∈B

S†i
⊗

i=1,...,n
i<τ(i)

CZi,τ(i). (70)
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In the latter, A and B are partitions of the qubits not involved in τ such that every X-stabilizer has half
support on A and B respectively. These are also indicated by empty and filled circles in figure 14 for the
[[15,3,3]]-LCS code. The CZs ensure that the stabilizer group is invariant by mapping SX → SXSZ since for
single-qubit Paulis CZijXiCZij = XiZj. The phase gate acts as SiXi S

†
i = iXiZi and S†i Xi Si =−iXiZi, such that

the partitioning guarantees unwanted phase factors to cancel out. We can verify that the fold-transversal
Phase gate implements a global logical Phase gate S=⊗k

i=1Si.
These gates can be supplemented by the transversal CNOT [84] to generate the full Clifford group on the

set of logical qubits of copies of these d= 3 LCS codes. A universal set of fault-tolerant gates operating on
single logical qubits is an open challenge. Approaches towards that goal may be based on (generalized) lattice
surgery and gate teleportation [45, 46, 85], pieceable fault-tolerance [86] or code switching [87, 88].
Generalizing existing approaches for HGP codes [40, 48] to LP codes are another promising avenue.

7. Conclusion

We have introduced LCS codes as a new family of QLDPC codes based on the lifted product construction. We
have shown how they can be viewed as interconnected copies of surface codes and how this additional
connectivity leads to favorable parameters compared to disjoint copies of surface codes. . We adapted a
BP+OSD decoder to the phenomenological noise setting and performed benchmarking of LCS codes for
code-capacity and phenomenological noise. We observed that, while asymptotic thresholds are comparable
to those of standard surface codes, the pseudo-thresholds can be significantly higher and logical error rates
much lower. These advantages in particular also hold for small codes with qubit number below 100.

Implementing the stabilizer measurements of the codes in general involves coupling the data qubits to
ancilla qubits by gates. These introduce another source of noise, that is captured by a circuit level noise
model. Investigating the performance of LCS codes under circuit level noise will hinge on the construction of
fault-tolerant circuits. For HGP codes, constructions of distance-preserving circuits have been recently
introduced [23, 33, 77], a generalization to LP codes would be highly desirable. We have constructed
fault-tolerant circuits for three members of the LCS code family that already demonstrate properties
outperforming copies of surface codes. They also show potential for further improvement, for example by
interleaving X- and Z- stabilizer measurements. Other modern fault-tolerant circuit constructions such as
using flag-qubits [89] should facilitate resource efficient and fault-tolerant stabilizer readout protocols. The
circuit construction also depends on assumptions on available gates and connectivity. Given that LCS codes
are embeddable in three dimensions with local connectivity, this makes them highly attractive for near-term
platforms and particularly suited for the emerging platforms of static 3D optical lattices or reconfigurable 2D
arrays of Rydberg atoms [7, 56].
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Appendix A. Block structure of parity check matrices and distance of LCS codes

The block structure of the parity check matrices of the LCS codes is shown in figure 15, exemplarily for
(ℓ,L) = (2,4) ([[52,4,4]]). The parity check matrices inherit the block structure from the HGP, which can for
example be seen in the block-diagonal structure of HX. In total, the binary parity check matrices consist of
ℓ(ℓ+ 1)× (2ℓ2 + 2ℓ+ 1) blocks of size L× L. Note that both HX and HZ are in row echelon form.

This particular form of the parity check matrices allows us to construct set of logical operators. If we have
a set of k independent generators of logical operators and find their minimal weight, we can find the
minimum distance of the code. By carefully inspecting the parity check matrices, we explicitly construct L= k
logical operators of weight 2ℓ+ 1. To that end, it is useful to first realize that, in regular surface codes, we can
choose representatives of logical X- and Z- operators to have the same support by putting them on the
diagonal. Indexing each column of the left with tuples (i, j) ∈ {0,1, . . . , ℓ}2 and for the right block with tuples
(i, j) ∈ {0,1, . . . , ℓ− 1}2, these diagonal qubits can be identified with columns (0,0),(1,1),(2,2), . . . ,(ℓ,ℓ) in
the left part of the parity check matrices and columns (0,0),(1,1),(2,2), . . . ,(ℓ− 1, ℓ− 1) of the right part.
These positions are also indicated by red boxes at the top of the parity check matrices in figure 15. The lift
requires to select circulants at these positions, such that the resulting operators are also logical operators. It
turns out that choosing logicals (before lifting L times) of the form

(
1 0 · · · 0︸ ︷︷ ︸

ℓ+1

|0 P(1) 0 · · · 0|0 0 P(2) 0 · · · 0| · · · |0 · · · 0 P(ℓ)

︸ ︷︷ ︸
ℓ+1

|

|1 0 · · · 0︸ ︷︷ ︸
ℓ

|0 P(1) 0 · · · 0| · · · |0 · · · 0 P(ℓ−1)

︸ ︷︷ ︸
ℓ

) (A1)

ensures that every stabilizer has even overlap with the logicals. Note that in column (i, i) (of both left and
right part), the circulant P(i) is placed. These are also shown in figure 15 for the [[52,4,4]] code. As binary
representations of logical X- and Z-operators, these are L pairs of disjoint operators since they only consist of
circulants with one term, i.e. cyclic permutation matrices. With the respective partner (LiX,L

i
Z), the

anti-commutation is guaranteed by the odd weight 2ℓ+ 1. Finally, these operators cannot have their weight
reduced by adding stabilizers, which can also be verified using the block-structure of the parity check
matrices. Every attempt to reduce the weight necessarily introduces new qubit connectivity.

However, taking the product of all these L operators results in an operator with ones in all the columns
specified above. Multiplying stabilizers of rows (0,0),(1,1), . . . ,(ℓ− 1, ℓ− 1) will give an operator of
(potentially lower) weight L.

We therefore found a set of L independent operators, each of minimum weight 2ℓ+ 1. Their sum has
minimum weight L and all other combinations of stabilizer and logical operator have weight⩾ 2ℓ+ 1 . We
have therefore further evidence that the minimum distance of the code is

d=min(2ℓ+ 1,L) . (A2)
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Figure 15. Block structure of the parity check matrices of X- (top) and Z-stabilizers (bottom), exemplarily for (ℓ,L) = (2,4).
Note that the block structure is inherited from the HGP product. The red rectangles on top of the matrices indicate the positions
of the diagonal logicals in the regular HGP surface code. Also shown are matrices LZ and LX that are the binary representation of
logical Z- and X-operators. They can be found as described in the text and have weight 2ℓ+ 1. For the first logical operators, the
overlap with the stabilizers of the respective other Pauli type is drawn in a red shade, visualizing the commutation. Additionally,
we show the operator L̃ of weight L which can be constructed from products of all logical operators and some stabilizers as
described in the text and shown with blue rectangles on the right side of the matrices.

Appendix B. Parameters for BP+OSD decoding

The BP+OSD decoder used in section 4 has a range of parameters that influence the decoding performance.
For a comprehensive overview, refer to the source code [65]. Important parameters used in these simulations
are shown in table 4. We observed that the (standard, but more complex) product summethod of BP (also
described in the text) performs better than the lower complexityminimum summethod also provided by the
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Table 4. Parameters used for BP+OSD decoding. Here, [[n,k,d]] refer to the code parameters.

Parameter Value

BP method product sum
maximum BP iterations ⌊ d2 ⌋
osd order min(d2,60)

Figure 16. Logical error rate for the [[369,9,9]]-code using BP+OSD with different maximum BP iterations. Using only four
iterations gives the lowest logical error rate.

Figure 17. Logical error rates for the LCS-codes of family 2 (see main text section 4.3.4) using BP+OSD with different maximum
BP iterations at a fixed physical error rate p= 0.0129. In particular for larger codes, the logical error rate is highly dependent on
the maximum number of BP iterations before OSD post-processing.

package. The maximum number of BP iterations and the OSD order are also set heuristically based on
observations in the decoding. For the [[369,9,9]]-LCS code, logical error rates for code capacity noise and
different numbers of BP iterations are shown in figure 16. For different codes, we show the logical error rate
for different numbers of BP iterations at a fixed physical error rate p= 0.0129 in figure 17. Heuristically, we
find good performance if we set the maximum number of BP iterations to ⌊ d

2⌋. We attribute this to the
observation that if BP is not successful, a large number of iterations will lead to an ‘overfitting’ and move us
away from configurations, where the OSD post-processing step guesses the logical error correctly. A similar
observation was also reported in [41]. Increasing the OSD order gives improved results at the cost of run
time, which is why we limit the order to 60.
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Figure 18. Logical error rate for LCS codes (family 2, see main text section 4.3.4) using MLE and BP+OSD. In particular for low
qubit numbers, BP+OSD comes close to MLE decoding.

Figure 19. Logical error rates for surface codes using pymatching and BP+OSD with a code capacity (left) and phenomenological
(right) noise model. BP+OSD achieves a comparable or lower logical error rate.

Appendix C. Validity of BP+OSD decoding

To verify the validity of BP+OSD decoding, we compare the most-likely error decoder to the BP+OSD
decoder. As can be seen in figure 18, they perform very similarly for small qubit numbers, but for many
qubits and low error rate, the decoding performance of BP+OSD decreases.

We compare the performance of BP+OSD with pymatching in figure 19. While it is typically observed
that decoding surface codes with BP+OSD results in a lower threshold (see [35]), we observe that BP+OSD
achieves lower logical error rates, in particular for the phenomenological noise model. For this reason, we
compare the results for LCS codes with results for surface codes decoded with BP+OSD in the main text.
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Appendix D. Sampling methods

The implementation details of the sampling for code capacity noise and phenomenological noise are shown
in algorithms 3 and 4 respectively.

Algorithm 3. Code capacity sampling of quantum codes.

Input: Quantum Channel E , physical error probabilities pphys = (px,py,pz), number of samples n, Quantum CodeQ
Output: Number of successful runs nsuccess
nsuccess = 0
for i= 0, i< n, i = i+ 1 do

E= E(0,p)
s= σ(E)
E⋆ = Dec(s,p, . . .)
if σ(EE⋆) = 0& ⟨EE⋆,L⟩= 0 ∀L ∈ L(Q) then

nsuccess = nsuccess + 1
end

end
return nsuccess

Algorithm 4. Phenomenological noise sampling of quantum codes.

Input: Quantum Channel E , physical qubit error probabilities pphys = (px,py,pz), Classical Channel B, physical
syndrome error probability q, number of samples n, Quantum CodeQ

Output: Number of successful runs nsuccess
nsuccess = 0
for i= 0, i< n, i = i+ 1 do

E= 0
s= (0)((t+1)×nc)

for t= 0, t,d(Q), t= t+ 1 do
E= E(E,p)
st+1 = B(σ(E))

end
E⋆ = Dec1(s,p,q, . . .)
s⋆ = σ(EE⋆)
E⋆⋆ = Dec2(s⋆,p, . . .)
if σ(EE⋆E⋆⋆) = 0& ⟨EE⋆E⋆⋆,L⟩= 0 ∀L ∈ L(Q)
then

nsuccess = nsuccess + 1
end

end
return nsuccess
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