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Abstract
Number Theory in 3d Gravity and from 4d Gauge Theory
by
Haoyu Sun
Doctor of Philosophy in Physics
University of California, Berkeley

Professor Ori J. Ganor, Chair

String theory is very successful in connecting deep results between physics and mathemat-
ics. However, besides the appearance of modular forms in many supersymmetric partition
functions, the relations between string theory and number theory are relatively weak, com-
pared with geometry, algebraic/geometric topology and representation theory. In this thesis,
we aim to strengthen the tie between high-energy physics and various aspects of number the-
ory. We start by investigating Euclidean AdS; quantum gravity, with asymptotic boundary
as either genus-one, namely torus, or higher-genus Riemann surfaces. We will see the ap-
pearance of the asymptotic analysis on coefficients in the Klein’s j-function in Chapter 2]
and two exotic finite-index subgroups of SL(2,Z), with indices 24 and 384 respectively, in
Chapter [3] In the end of that chapter, we also conjecture the existence of a series of finite-
index subgroups for conformal boundary of any genus. Then we switch gear to the realm of
p-adic numbers, and study the discrete semiclassical gravity on a Bruhat-Tits tree and its
quotient, where we encounter a special representation of PGL(2,Q,) and we explore its sur-
prising relation to Chebyshev polynomials. At this point, we will have observed fascinating
number-theoretic objects in studying 3d gravity and 2d conformal field theory. Finally, we
present an example in which we are able to derive sophisticated number-theoretic identities,
including the classic quadratic reciprocity by Gauss, from a careful use of first principles in
string theory and 4d supersymmetric gauge theories.
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Chapter 1

Introduction

String theory has remarkable connections to geometric topology, algebraic geometry and
number theory. Here we further explore the deep ties between string theory and number
theory, with an eye towards geometric topology in 3d.

1.1 First order formalism of 3d gravity

In 3d spacetime (either asymptotically anti-de Sitter, de Sitter, or Minkowski), Einstein
gravity can be classically described by a non-chiral Chern-Simons gauge theory with a non-
compact, possibly complex gauge group, depending on the signature of the metric being
Lorentzian or Euclidean |1}, 2| (for a review, see e.g., [3]). This is possible because 3d gravity
has vanishing Weyl tensor and consequently no propagating degrees of freedom (no gravita-
tional waves). Furthermore, after imposing the Einstein’s equations, the Riemann tensor is
completely defined in terms of the scalar curvature, so all possible solutions are locally equiv-
alent to one with constant curvature everywhere. Consequently, the only possible differences
between the solutions are global differences, for example, ones that change the topology.

The Chern-Simons theory is independent of the metric and can exist on any topological 3-
manifold, so we will use a basis of the gravity theory that is coordinate-independent. Instead
of the usual metric tensor field, we describe geometries using a vielbein field e#. It contains
two types of indices: u labels the general spacetime coordinate and a labels the local Lorentz
laboratory coordinates. The vielbein or frame fields are roughly the matrix square root of
the metric tensor g,, in a coordinate basis,

G = €hey ltap, (1.1)
where fi4;, is the flat Minkwoski metric (—1,1,1,1). They satisfy

a b __ ga a, v __ SV
ene, =0y, epen =0, (1.2)

The local Lorentz indices can be raised or lowered with the Lorentz metric, for example,
Cra = nabeg, while the spacetime indices can be raised or lowered with the spacetime metric
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et = g"e?. The vielbeins enable conversions between local Lorenz and spacetime indices,
for example, T, = etT),.
The spin connection is defined as

wab — TV eab + ega,ueub

% v op
1 rva 14 a a a O C (1.3>
=3 [e (auel; — GnueZ) — et (8Mey — anueu) — Pt (0peoec — Os€pe) eu} ,
which is antisymmetric by construction.
The Riemann curvature tensor is then
RZZZ’, = ((9Hw,‘jb — &,wzb + [wu,wy]ab = (dw 4+ w A w) . (1.4)
The 3d Einstein-Hilbert action is
1
Soraw = dry/—g(R —2A
o = 150G f,, TV )
(1.5)
_ ! / dx [e* A (2dw +ebwb/\w0)+éebe“/\eb/\ec
16’]’(’G M3 a aoc 3 aoc .

where the cosmological constant A is related to the AdS radius [ by A = —1/1%.

In Lorentzian signaturdl} the isometry group of the global AdS; is SO(2,2) ~ SL(2,R) x
SL(2,R), so we have two gauge fields A = AT, and A = A®T, valued in the Lie algebra
sl(2,R), with generators

170 1 1/1 0 1/0 1

Then the Chern-Simons action is

] 2 ) _ -2
SCS:ﬁ Tr( ANdA+-ANANA —ﬁ/Tr ANdA+-ANANA (1.7)
47 3 47 3
By setting the gauge fields to be
A=w+ell, A=w—e¢/l, (1.8)
we see that
Sgrav = SCSa (19)

with & = [/4G, which turns out to be quantized. This quantization is a consequence of
Zamolodchikov’s c-theorem [4], which states that in any continuously varying family of 2d
CF'Ts, the central charge ¢ is constant. More generally, the same is true for the left- and

"'We defer the discussion using Euclidean signature to Chapters [2] and [3| where the isometry group is
analytically continuated to SL(2,C).
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right-moving central charges ¢y, and cg. And in AdS; gravity, k is related to the Brown-
Henneaux central charge ¢ of the boundary 2d Virasoro algebra, as introduced in Section
B.1] by k& = 6c.

However, the identification only works when the vielbein is invertible, which is true
for classical solutions and small fluctuations around them. Nonperturbatively, the vielbein
in Chern-Simons can be degenerate, i.e., there exists a classical solution with A = w =
e = 0. It is unclear how to make sense of this degeneracy in gravity [5|. Furthermore, the
equivalence between diffeomorphisms in gravity and gauge transformations in Chern-Simons
is limited to the small ones which connect to identity continuously. Gravity also contains
large diffeomorphisms, which lack a natural realization in the Chern-Simons theory [5].

In spite of these drawbacks, the Chern-Simons formulation does provide us with a toy
model of gravity that is reasonably effective and exactly soluble, leading towards important
insights.

1.2 (Topological) entanglement entropy

von Neumann entropy

In a quantum system spatially bipartited into regions A and B, the total Hilbert space is
factorized?
H=HiQHB. (1.10)

From the full density matrix of the system p = Y. p; [1/;) (5|, the reduced density matrix of
subsystem A is the partial trace of p with respect to the degrees of freedom in subsystem B:

pa = Trgp, (1.11)
satisfying Tr p4 = 1. The von Neumann entropy is then defined as
Sa=—Trpalnpya. (1.12)

In practice, it is often not easy to compute (1.12)) directly. As an alternative approach, one
can calculate the Rényi entropy of subsystem A defined as

n ]' T
51(4) =1 nlnTrpA, (1.13)

and take the limit P
SA:}LLH}SA:_}ZI—R%@_nTrpA (1.14)

using L’Hospital’s rule. Its connection with replica trick will be introduced in Section [2.2]

2Hilbert space in a continuous QFT is never factorizable 6], but it is OK for a QFT defined on a lattice.
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For a system in a pure state [1)), we apply the Schimdt decomposition to obtain orthonor-
mal basis {|i) 4} of H4 and {|j) 5} of Hp such that

min(dim# 4,dimH )
Wy= Y, Alalis, DN =1 xelol] (1.15)
Then it is straightforward that for pure states, S4 = Sp. We also note that S = S% in this
case.
For two density matrices p and o, Umegaki’s relative entropy [7]:

S(pllo) =Tr(plnp —olno), (1.16)

facilitates the proofs of some key properties of entanglement entropy. Measuring the distance
between p and o, the relative entropy is never negative and is zero if and only if p = o, due
to the positive spectral decompositions of p and o required by unitarity. This non-negativity
implies the triangle inequality of entanglement entropy

|Sa — Sg| < Sap. (1.17)
One can further define the mutual information between subsystems A and B:
](A,B)ES(pAB||pA®,OB):SA+SB—SABZO (118)

This definition is favorable due to the cancellation of divergences in individual terms Sg4,
Sp and Sap. Finally, for a tripartite system H = Hi ® Hp ® He, we obtain the strong
subadditivity inequality:

Sapc +Sp < Sap + Spe, (1.19)

or equivalently, I(A, B) < I(A, BC).

As an example of application, we turn our attention to low-dimensional systems. The
entanglement entropy in a generic 2d CFT has been calculated by Calabrese and Cardy [8|
(also less systematically by [9]). For the simplest case where region A is an interval of length
L in an infinitely long 1d quantum system at zero temperature. The result is [10]

L n 1 L
SAzglnE—l—c'l, Sg):§(1+ﬁ>lng+c;, (1.20)
where non-universal constants are defined
Inc, dey,
C;L = 1_ n, C1 = —% n:1. (121)

The lattice spacing a goes to zero in the continuum limit, rendering S4 with UV divergences.
These results further enjoy generalizations for finite temperature, for finite system size, and
also for region A consisted of multiple intervals, see for example |11} |12} 13, |14].

Other examples include the renowned Ryu-Takayanagi formula in holographic CFT [15],
which will be an essential player in Chapter [2]
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For topological phases

At the first glance, it is tempting to think that the entanglement entropy of a region A should
be extensive, i.e., obey a volume law. This indeed happens for thermal states. For typical
ground states, however, one finds the scaling of entropy is only linear in the circumference of
the region (area law) |16]. Such systems have local short-ranged interactions, which require
that quantum correlations between the region of interest and its exterior are established only
through the neighborhood of its boundary. Additionally, if the system is in a topological
phase, the quantum entanglement in the ground state will have global and topological prop-
erties that manifest themselves as a universal, subleading constant correction to the area law
[17, [18]. In the case when subsystem A has a disk topology, the entanglement of region A
has the form

Sa=al -7, (1.22)

where « is a non-universal coefficient that depends on the details of the system, L is the size of
the boundary of A, and ~ is a topological invariant called the topological entanglement entropy
(TEE). The correction —~ is always negative because it results from a global constraint
consistent with the topological order. It can be computed by decomposing the system into
four parts A, B, C', D. Then

v =984+ S+ Sc —Sap — Spc — Sac + Sapc (1.23)

is exactly the tripartite mutual information I3(A, B, C') of these regions. Equivalently, one
can also write

I5(A, B,C) = I(A,B) + I(A,C) — I(A,BUC). (1.24)

In the case of a pure global state, by the strong subadditivity of entanglement entropy and
the non-negativity of mutual information, the lower and upper bounds on I3(A, B,C) can
be derived [19, 20]:

- 2min(SA, SB, Sc, SD) S ]3(A,B, C) S min(SA,SB, Sc, SD) (125)

In a chiral topological phase described by a modular tensor category (MTC), we have
~v = InD, where D is the total quantum dimension of the MTC

D= > & (1.26)

where d; are quantum dimensionsﬂ of simple objects (or anyon types) of the MTC.

The TEE is sensitive to both the topological order/phase of the system, and the topology
of the subsystems A, B. When the system is in an excited state, it also captures the feature
of the quasiparticles inside each subsystem. One can thus extract the data of the topological

3d; obtains its name because it tells how fast the size of the Hilbert space of multiple anyons of type i
grows as we increase the number of anyons.
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phase and even the mutual fractional statistics of quasiparticles from TEE [21]. TEE is also
very accessible to numerical computations, such as applying density matrix renormalization
groups (DMRG) [22] for a finite-size cylinder system bipartited by a flat cut to compute
TEE [23].

1.3 The modular group SL(2,7Z) and its various
congruence subgroups

Subgroups of SL(2,Z) of finite or infinite indices are of great physical interests because it
can describe discrete symmetries in various systems. Here we list a very incomplete list of
places where SL(2,Z) appears in high-energy and condensed matter theory:

e Mapping class group (MCG) of a two-dimensional torus 72, and hence in modular

transformation in 2d CFT, and rational/integral Dehn surgery in knot theory and
3-manifolddT

e Electromagnetic (Montonen-Olive) duality and S-duality in 4d N' = 4 and N' = 2
(Seiberg-Witten) gauge theories;

e SL(2,Z) actions on (p,q) brane webs of D5- and NS5-branes;

e The axio-dilaton field in Type IIB string theory and F-theory transforms under SL(2,7Z).
In particular, monodromy of 7 around D7-branes, as well as on [p, ¢] 7-branes, on which
(p,q) 5-branes end,;

e One-to-one correspondence between elliptic fibrations and SL(2,Z) bundles in F-
theory;

e Exchange of NS5 and D5 branes by the S action in the Type IIB dual description of
3d mirror symmetry [28];

We will study the first two aspects in Chapters and Chapter [ respectively.
Now the modular group SL(2,7Z) is a matrix Lie group defined as follows:

SL(2,7) = {(Z 2)

4In Dehn surgery [24], one cuts out a tubular neighborhood (isomorphic to a solid torus) of a knot inside
a 3-manifold, and then glues back the solid torus with a diffeomorphism on its torus boundary, to get a
new 3-manifold. The best known applications of Dehn surgery in physics are in Witten’s series of work
on Chern-Simons theory and Jones polynomial |25] [26 27]. The surgery is usually performed on a closed
3-manifold, but it is also well-defined for 3-manifolds with boundary.
There is a variant called the hyperbolic Dehn surgery, in which one only fills in the cusps, which have
torus boundaries, with certain solid tori to get a new hyperbolic 3-manifold, with or without cusps.

a,b,c,dEZ,ad—bc:l}, (1.27)
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generated by two generators S and 7' with canonical representations:

S = (? _01), T = (é }) (1.28)

The matrix S has order 4, while the matrix 7" has an infinite order and ST has order 6,
serving as the defining relations.
It acts on elements 7 on upper half-plane by the fractional linear fashion (3.8)):

ar +b
et +d

T—=y-T= (1.29)

By using S and T generators, one can find the fundamental domain of SL(2,Z) is the “key
hole” region: |Re7| < 1/2 and |7| > 1.
The method of decomposing a given element in SL(2,Z) into a finite-length word

TP STPR2S .. TP ST# (1.30)

is to use continued fractions on the first column of the element [29):

a 1
-—=p— —, 1.31
¢ ' P2 — - ! ( )

1

Pr

or alternatively to use the standard all-plus convention for continued fraction:

a 1
o S Rl 1.32
Pl P [ (1.32)

.. 1
+(17'

with ¢; = (—=1)""p;. Finally, the last power # in (1.30) is determined by solving

(Z Z) = (" ST™S ... T"S) T*. (1.33)

We also see that the decomposition is obviously non-unique. As a side note, this decom-
position is also used when decomposing a rational Dehn surgery on an unknot into integral
Dehn surgeries on a link of finitely many unknots.

Congruence subgroups

There are a variety of congruence subgroups of SL(2,7Z), with various fascinating properties,
and we list the most basic three of them as follows.
Definition For an integer N > 1, the principal congruence subgroup I'(N) is defined as

I(N) = {(‘C” z) € SL(2,7)

a,dzl(modN),b,cEO(modO)}, (1.34)
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i.e., the kernel of the homomorphism 7y : SL(2,Z) — SL(2,Zy) induced by the reduction
modulo N homomorphism Z — Zy. The formula for computing its finite index inside
SL(2,7Z) will be presented in (A.39).

Definition With the above definition, a subgroup of SL(2,Z) is called a congruence
subgroup of level n if there exists N > 1 such that it contains the principal congruence
subgroup I'(N), and n is the smallest such N. The level

Definition One example of a congruence subgroup is the so-called Hecke congruence
subgroup of level N, defined as

To(N) = {(‘z Z) € SL(2,2)

CEO(mOdN)}, (1.35)

and its index inside SI(2,Z) is given by

ISL(2,Z) : To(N)| =n ]| (1 + 219) : (1.36)

p|N

Notice that S and T? generate a congruence subgroup of SL(2,7Z), called the theta sub-

group
a b
[y = {(C d) € SL(2,7)

and is isomorphic to the Hecke congruence subgroup I'o(2) [30} [31] F]

One may ask “are all finite-index subgroups of SL(2,Z) congruence subgroups?” It was
already known by Felix Klein that the answer is no, and actually The number cy of congru-
ence subgroups in SL(2,Z) of level N satisfies log cy = O ((log N)?/loglog N). However, the
number ay of finite index subgroups of index N in SL(2,Z) satisfies Nlog N = O(logay),
so most subgroups of finite index must be non-congruence.

ac = bd = 0 (mod 2)} , (1.37)

1.4 N =4 super Yang-Mills and Type IIB string theory

N = 4 Super Yang-Mills (SYM) plays a central role in high energy theory and also in this
thesis. In order to derive its action, we first review the 4d N' = 1 superspace formalism.

5Tt is easy to check that

(S,T2) = {AESL(Z,Z)‘AE ((1) (1)) or ((1) é) mod 2},

and the conjugation class
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4d N = 1 superspace

In this case, we add anticommuting right- and left-handed Weyl spinor coordinates 6, and
04 to R* to form the superspace R**, parametrized by new coordinates z* = (2%, 0,,04).
Then the expansion of a general superfield F'(x, 0, ) in terms of # and 6 in terms of § and @
truncates at #262. One of its important features is that components of F' do not transform
under an irrep of the supersymmetry algebra, and we impose conditions to get N' = 1 chiral

multiplet and N = 1 vector multiplet.

Chiral multiplets

®(x,0,0) is determined by the constraint Da®(x, 0, 0) = 0, where
_ 0 0
D

= it
aaaxu

L= 1.
“ ol (1.38)

To find its components, we introduce new coordinates Y = at +ifo"0, satisfying Dyl = 0.
Because of D = 0, we can Taylor expand the chiral superfield as:

O(2,0,0) =p(y1) + V200 (y.) + 0°F(y)
=¢(z) + i00"00,6(z) + }192920,,0%(:5) + V204 (x)

PO + PP (),
(1.39)

where ¢(x) is a complex scalar, 1) is a left-handed Weyl spinor, and F is an auxiliary complex
scalar, viewed as a Lagrange multiplier. Note that the lack of y_ coordinate justifies the
name chiral representation, with superderivatives on different footings:

B 9 B
D, = -2 foigr gl p— Y 14
o= ga T et G Pa= T (1.40)

Certainly, the anti-chiral multiplet satisfies the condition D,®'(z,0,0) = 0. Like before,
in terms of y, and #, ® also admits an expansion which is long-winded in chiral represen-
tation but simple in antichiral representation.

Vector multiplets
The vector superfield is defined by the covariant reality condition V(x,6,0) = Vi(z,0,0),
constraining its expression to be

V(x,0,0) =C(x) + i0x(x) — i0x(z) + %92 (M(z) 4+ iN(z)) — %67 (M(z) —iN(x)) — 05"0A, ()

+iop? (m) i %a"@w&x)) i (A@) N %U“aux(x)) L (D(x) i %apapo(x)) ,
(1.41)
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where C, M, N are complex scalars, A is the gauge field, x, ¥, A, A are fermions, and D is an
auxiliary field.

To simplify the above expansion, we resort to the the gauge transformation V— V + &+
®* where ® is the chiral multiplet, so that C' = M = N =y = x = 0, i.e., the Wess-Zumino
guage. Now the multiplet is

Vi 2 (2,0,8) = —00™ A, (2) + i0°0(x) — iT°ON(z) + %629_213(;1:). (1.42)

The superfield V' may be viewed as the supersymmetric generalization of the Yang—Mills
potential, so the supersymmetric field strengths are the following gauge-invariant chiral and
antichiral superfields:

Wo= D% (VD). Wa= D (Dvge™) (1.43)

Field content of 4d N =4 SYM

In 4d spacetime, the maximal amount of supersymmetry with a particle multiplet represen-
tation of spin < 1 is N/ = 4, corresponding to 16 preserved Poincaré supercharges. Each
supercharge Quq, Qs changes the spin it acts on by 1/2; so all massless states with helicities
between —1 and 1 are generated by acting with no more than N,,., = 4 different super-
charges. Theories with more supersymmetry generators involve a spin-2 field, i.e., graviton,

Since any multiplet has to include spin-1 particles, all the N/ = 4 theories must be
constructed only from the massless vector multiplet, which contains:

e One vector field A, forming a singlet representation 1 of SU(4)g;

e Four Weyl fermions A%, a = 1,...,4, forming a fundamental representation 4 of
SU(4)r;
e Six real scalars ¢, 1 = 1,...,6, forming an antisymmetric representation 6 of SU(4)x.

There are two ways to obtain the Lagrangian of NV = 4 SYM. Since N/ = 4 supersym-
metric field theory is automatically N'= 1, we can use N/ = 1 superspace to write down the
theory. Alternatively, it can also be obtained by reducing from its parent, the unique 10d
N =1 SYM, with spin-1 as the highest spin state, down to 4d.

N =4 SYM from N = 1 superspace

The 4d N' = 1 superspace formulation of the 4d N' = 4 SYM needs three chiral super-
fields ®;,7 = 1,2,3 and the vector superfield V' with strength W,. With the normalization
Tr(T,Ty) = dap on the Lie algebra, the unique 4d N' = 4 Lagrangian density is

. . 1 2 . .
/ d*0D eV die~" + glm <T / d20WaW“> + (z'gYM% / d*0e;j, " [P, F] +h.c.)] ,

(1.44)

L="Tr
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where 7 is the complex coupling constant defined as

0 4
T=—41
2m ey
which will be of our main interest in Chapter 5| and W, is the chiral spinor field in (1.43]).
Use the field content in Section |1.4|to write out the components of superﬁeldﬂ, the above
action gives

e C, (1.45)

1 , 0 ~ Y- i i
L="Tr ( 2QYMF V" 4 s B Y — A0 Dy, ZD#d) D¥¢
, (1.47)
+9YMZCab)\ [0, A +9YMZOzab/\a ¢, )\b] + = gYM (0", ¢ ] )
a,b,i a,b,i (2]
where
F.=0,A, —0,A,+i[A, A (1.48)

is the usual non-abelian field strength, and D, is the covariant derivative acting on fields
in adjoint representation by D,- = 0, - +i[A,, ]. Moreover, Fuv = %EW/,\F)") is the Hodge
dual, and C® ; are Clebsh-Gordon coefficients combining two 4 representations into one 6
representation of su(4)g.

Since the coupling constant is dimensionless and all fields are massless, the action of
N =4 SYM theory is scale invariant on the classical level. Remarkably, the scale invariance
survives after quantization, due to its UV finiteness (finite instanton corrections) and its
[B-function vanishes to all orders in pertubation theory. In fact, it is a superconformal field

theory (SCFT), but we will not go into its details.

N =4 SYM from a dimensional reduction of 10d
We start from the 10d N’ = 1 Langrangian density

1  _
L=Tr (—§anan + %\ImeDm\If) , (1.49)

where I'"™ are 10d Dirac matrices, F,, is the field strength F},,,, = 0,, A,y — 0, A +1ig [Am, Asl,
and V¥ is a Majorana-Weyl spinor with 16 real components.m Both F,,, and ¥ both transform

6Expansion for W, and Wy are given by
. P Té
Wa = ~ha(y-) + [0D0) - §(0¥0) Fusly)| 05 + 0,300,
(1.46)

. ) o _; —
Weo =iXa(y4) + |:EQIBD(y+) + §6d;y (cto )5 Flw(y_,_)] g8 — EQ-BQQO'H’B aﬂ)\a(y_,_).

"The only other Majorana-Weyl spinor is in 2d spacetime, with a 1d real representation.
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in the adjoint representation of the gauge group and thus the covariant derivative is
D,V = 0,V +ig [An, V). (1.50)

To perform a Kaluza-Klein reduction on a 6d torus 7%, we bipartite the index m into
pw=0,1,2,3and i =1,...,6. Firstly the 10d gauge field A = A,,dz™ decomposes into a 4d
gauge field with components A, and scalars ¢; which are the last six components of the 10d
gauge field:

A = (Au(2"), ¢i(2")) (1.51)

We also assume that the fields A, and ¢; depend only on the first four coordinates z,,
and are independent of the remaining coordinates. Note that ¢; transform trivially under a
Lorentz transformation of the 4d coordinates x, and thus is a real scalar field in 4d while
A, transforms as a vector. We find out gauge field strength:

F,ui = u¢i + Zg[A,ua ¢z] = Du¢ia Fij = 29[@, ¢j]> (152>

where D, is the 4d covariant derivative in ((1.47]).

The next step is to repeat the dimensional reduction above for the kinetic term iWI'"™D,, ¥
for the Majorana-Weyl spinor ¥ on T, where we decompose '™ into 4d Dirac matrices v*
and gamma matrices 4° on 7. It is not hard to show that we recover the 4d N' = 4 SYM
action.

N =4 SYM as a worldvolume theory of D3-branes

In string theory, D-branes are higher-dimensional objects on which open strings can end.
Perturbatively, this point of view is only reliable if the coupling constant for both open and
closed strings is small, i.e., g, < 1. Moreover, if we ignore massive string excitations of
energy scale ~ v/, the dynamics of the open strings is described by a supersymmetric
gauge theory living on the worldvolume of the D-branes. Massless closed string states give
rise to 10d N/ = 1 supergravity multiplet, while massless open string states form a 4d
N = 4 supermultiplet consisted of a gauge field A, six real scalars ¢; and their fermionic
partners. Considering the rotation of worldvolume of D3-branes, A, correspond to open
string excitations parallel to the D-branes while open string excitations transverse to the
D-branes are scalar fields seen from the worldvolume.

The gauge group of the low-energy worldvolume theory is determined by Chan-Paton
factors, non-dynamical degrees of freedom assigned to the endpoints of open strings con-
necting the various coincident D-branes. For example, the Chan-Paton factor \;; labels
strings stretching between brane ¢ and brane j, with 7,7 = 1,..., N. The resultant matrix
A is an element of u(N), the unique Lie algebra consistent with scattering amplitudes of
oriented open strings, where NV is the number of coincident D-branes. Therefore \;; can
be chosen to be the entries of a Hermitian matrix. Although the Chan-Paton factors are
global symmetries of the worldsheet action, the symmetry turns out to be local in the target
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spacetime. Open strings ending on coincident D-branes can effectively be described by a
non-Abelian gauge theory. More generally, unoriented strings are constructed by imposing
the worldsheet parity transformation €2:

Q:0—09—o0, (1.53)

where og = 27 for closed strings and oy = 7 for open strings. This transformation is a global
symmetry, and can be viewed as an O-plane. With its presence, the low-energy gauge theory
can have gauge group SO(N) or USp(N).

Now we study the low-energy dynamics, starting from the effective action for all massless

string modes
S = Sclosed + Sopen + Sinta (154)

where S, is the interaction between open and closed strings, and Scjeseq 18 the action of 10d
supergravity with higher derivative terms. Si, and Sopen can be drived from Dirac-Born-
Infeld (DBI) action and Wess-Zumino term. For simplicity, we first deal with one single
D3-brane, whose worldvolume fields are bosonic coordinates z*, u = 0,...,3, while the six
transverse directions have coordinates z%,7 = 4,...,9 so that it is related to the six scalars
by 213 = 21ra’¢’. Now the pullback of the spacetime metric gy to the worldvolume under
the embedding ¢ is

¢* (gMN) = gw/ + 277@/ (gi+3,ua,u¢i + gu,j+38u¢i) + (271'@’)2 gi+3,j+3au¢iau¢j7 (155>

which leads to the DBI action with a vanishing Kalb-Ramond field Bj;y:

Sppr = 1 ! /d4x6_¢\/— det [¢p*(gmn) + 2w/ F. (1.56)

27T)30/295

Expanding e=? and gyny ~ naun + £hary, where hyy is the metric fluctuation andﬂ K =
877/2a"%g,, to leading order in o/ we have

_ 1 4 1 % 1 (178 V X 7
Sopen = 2Wg£/dx<4F + 1000, +> (1.58)
St = g / d'e (bF™ Fo +...), (1.59)

where dots represent terms of higher order in o'.

8k is this value to make the kinetic term of h in the closed string action canonically normalized

1
Sclosed :ﬁ/dlo\/ —g€_2¢ (R + 46M¢8M¢) +...
(1.57)

~— % /dl%aMhaMh + O(k).
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In the case of N coincident D-branes, open strings between different branes are massless,
and the effective coupling constant is gs/N so the open string picture is valid for gsN < 1.
To generalize the previous analysis, scalars and gauge fields are now valued in the adjoint
representation of the gauge group U(N): ¢' = ¢"T,, A, = ALT,. After taking the trace to
ensure gauge invariance, the gauge kinetic term is now £ F**. We also need to replace the
usual partial derivatives by covariant derivatives, and to leading order in o we add to Sopen

a scalar potential
1

V =
2mgs,

ST e ¢ (1.60)

0,J

It is clear that in the limit o/ — 0, the terms survived in Sope, are the bosonic part of
the action of N' =4 SYM with the identification

2y = Gops- (1.61)

Sint 18 also zero in this limit, meaning that open and closed strings decouple. However, this
limit is naive as the following. If we pull out one D3-branes from the stack by a distance
r in direction ¢ = 4,...,9, and consider only massless modes, this system is described by a
U(N —1)xU(1) gauge theory rather than a U(N) theory, i.e., the system is in a Higgs phase
with vacuum expectation value (VEV) (¢') = r/(2ra’). In the previous decoupling limit
o/ — 0, all field theory quantities need to be fixed, so in the correct limit called Maldacena
limit, the ratio r/a/ is fixed upon o — 0.

Finally, by analyzing the closed string sector perspective of the same coincident D3-
branes, we will get the celebrated Maldacena duality |32, 33|, but we do not pursue it here
because in this thesis we only study non-supersymmetric quantum gravity and the purely
field-theoretc aspects of 4d N =4 SYM, not any supergravity.

1.5 6d (2,0) SCFT

This theory can facilitate understanding our double-Janus configuration in Chapter [5, and
has a unique place in high energy theory: 6d is the highest dimension where a superconformal
field theory (SCFT) can exist [34]. Those SCFTs are very exotic: for example, (1,0) and (2, 0)
theories have no Langrangian descriptions. In order to appreciate this point, we need to look
at their field contents. First recall that a theory is said to have N' = (n;, n,.) supersymmetry
when it has n; chiral and n, antichiral supersymmetries. The R-symmetry group of such a
theory is Sp(n;) x Sp(n,.). In 6d, a theory with a minimal amount of supersymmetry is then
denoted as N/ = (1,0); it has 8 supercharges and a R-symmetry of Sp(1) ~ SU(2). The
massless content of such a theory at low energy, and at a generic point on the moduli space,
may include a combination of:

e A tensor multiplet, which contains a self-dual two-form By, one left-handed Majorana
spinor, and a single real scalar ¢, whose VEV (¢) parametrizes a tensor branch of the
theory;
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e Some number of vector multiplets contain a gauge field A, and a right-handed Weyl
spinor field. Note that there is no scalar to parametrize the Coulomb branch of a (1, 0)
theory as in more familiar gauge theories, so we refer to a nonzero VEV of a tensor
multiplet as the “Coulomb branch” in 6d;

e A hypermultiplet contains a left-handed Weyl spinor and four real scalars ¢;, whose
VEV’s (¢;) parametrize the Higgs branch of the theory.

To consider 6d SCFTs with more supersymmetries and without gravity, the only two
options are N = (1,1) and N' = (2,0). First let us examine the field content of the former
one. The only multiplet there is a A/ = (1,1) vector multiplet, which is made up of a
N = (1,0) vector multiplet and hypermultiplet. Therefore, the N = (1, 1) multiplet contains
in the bosonic sector one vector field A, and four real scalars ¢;, for a total of 4 +4 =8
degrees of freedom. The fermionic sector contains one Dirac spinor, that is to say one left-
handed Weyl spinor and one right-handed Weyl spinor, for a total of 4 +4 = 8 degrees of
freedom, agreeing with the bosonic amount. The R-symmetry is Sp(1) x Sp(1) ~ Spin(4).
Each spinor is a doublet under one of the two Sp(1) groups, and the scalars transform under
the Spin(4) symmetry. The Lagrangian for this maximally supersymmetric theory is

S = /dﬁxiFG Fow 4 (1.62)
96a

where dots represents fermionic terms dictated by supersymmetry, and they have the same

meaning in the rest of this section. It is IR-free, and since its coupling has mass dimension

[g2,] = (length)?, it is non-renormalizable.

The similar analysis for the A/ = (2,0) theory is much more interesting. The basic
multiplet is no longer a vector multiplet, but an N' = (2,0) tensor multiplet, made up of an
N = (1,0) tensor multiplet and hypermultiplet. The bosonic sector now contains a self-dual
two-form By, ,) and five real scalars ¢;, for a total of 3 +5 = 8 degrees of freedom. The
fermionic sector contains two left-handed Weyl spinors, again giving 4 x 2 = 8 degrees of
freedom. The R-symmetry is Sp(2) ~ Spin(5). The group Sp(2) acts non-trivially on the
fermions, while Spin(5) rotates the scalars. The presence of the tensor By, is unusual in
QFT, because it implies that some of the degrees of freedom of the N' = (2,0) theory are
described by nonlocal strings instead of the usual particles in QFT. The strings couple to
the 2-form field via the coupling:

q/BWda“l’—i—..., (1.63)
b

where ¢ is a charge, do*” is the area element of the string worldsheet. The strings in (2,0)
become tensionless because any scale has to vanish at the superconformal point. However,
we can no longer mimic (1.62)) to write down an action

S = / dﬁx—F"‘ powve 4 (1.64)

wvp
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where F),,, = 0,,B,,), because the self—dualityﬂ of the tensor multiplet implies that the Hodge
dual F),,, = %ez‘ggF \or, Meaning that the tensor kinetic term in ((1.64)) vanishes. It turns out
that the Lagrangian exists for a free (2,0) theory provided that g2, = 1, but it is impossible

to study the interacting theory perturbatively.

6d (2,0) from string theory and M-theory

The 6d N' = (2,0) SCFT was discovered by Witten [35], when studying the Type IIB string
compactified on K3 surfaces. To understand the type IIB side, we first study the Type ITA
theory on the R® x K3 background, which is equivalent to the heterotic string on R% x T by a
string /string duality, from which enhanced gauge symmetry was found at certain singularities
on the moduli space of K3 surfaces. The enhanced gauge symmetry means that extra string
bound states emerge as gauge bosons at these singularitieﬂ, which are locally C?/T for
some discrete subgroups I' of SU(2), allowing for an ADFE classification.

However, because the Type IIB is chiral, it cannot admit the gauge multiplet introduced
in Section [I.4] and there are no extra gauge bosons at those sigularities. Witten pointed
out that the T-duality between Type ITA and Type IIB solves the apparant paradox. We
can further compactify the Type IIA string on R®> x S! x K3. Via T-duality, we could
obtain an equivalent Type IIB theory on R® x S* x K3. Now we have particles in R? for
both configurations. In Type ITA, the enhanced gauge symmetry creates a new guage boson
with mass m o 1/\4, where A4 is the Type ITA string coupling. T-duality then implies
that the Type IIB string obtains a massive gauge boson with M ~ Rp/Ap where Rp is
the radius of S. If we then decompactify the Type IIB string from S, in RS we will get
a non-critical string, with a tension 7" o< 1/Ap. The dynamics of this non-critical string,
which is anti-self-dual, couples to the 2-form field B, with anti-self-dual field strength in
the tensor multiplet, but does not couple to the 2-form field with self-dual field strength in
the Type IIB supergravity multiplet, and it is hence described by the (2,0) theory.

Later, Strominger |36] drew the connection between the 6d (2,0) theory and the world-
volume theory of multiple coincident M5-branes, on which M2-branes can endEr] This con-
figuration is the M-theoretic lift of the fundamental strings ending on the D4-brane in Type
ITA string theory. M2-brane could be considered as a non-critical string in the Mb5-brane
worldvolume, which is also described by the (2,0) theory associated to the self-dual non-
critical Type IIB string on K3. Strominger further showed that when two Mb-branes are
close to each other, this (2,0) theory decouples from gravity and obtains the superconformal
invariance, serving as a stepping stone for understanding the full M5-brane dynamics. On

9Gelf-dual QFTs really are exceptional objects in the moduli space of theories, just like sporadic groups,
manifolds with exceptional holonomies, Platonic solids, and octonians in mathematics.

10A similar gauge symmetry enhancement appears at the T-duality critical radius R = v/a/, where o is
the string coupling constant.

The low-energy effective theory of M-theory is the 11d supergravity theory, containing a 3-form gauge
field C, under which two half-Bogomol’nyi-Prasad—Sommerfield (BPS) states, M5-branes and M2-branes,
are magnetically and electically charged, respectively. They are electromagnetic duals of each other.
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the other hand, the holographic dual of 6d (2,0) has been proposed to be the M-theory on
AdS; x S* in Maldacena’s original paper [32].

Starting from this connection with M5-brane worldvolume action, one can make great
use of the (2,0) theory to study difficult problems in lower-dimensional QFTs. Like in [35],
when the 6d (2,0) theory is toroidally compactified down to 4d, we get the N' = 4 SYM
theory. The modular transformation of the microscopic 72 implies the S-duality of 4d theory
[37]. Moreover, several correspondences have been constructed between lower-dimensional
field theories from the compactifications of the 6d (2,0) theory, e.g., the well-known AGT
correspondence [38], the 3d-3d correspondence [39], and the more recent VOA[M,], a 2d
N = (2,0) theory [40]. Finally, outside of high-energy theory, it also makes connections
with condensed matter physics due to emergent fractional charges similar to the fractional
quantum Hall effect (FQHE) [41].

1.6 OQOutline of the thesis

The rest of this thesis is organized as follows:

In Chapter 2, we study the Bekenstein-Hawking entropy of a two-sided BTZ black hole in
FEuclidean signature as a topological entanglement entropy. The entire spacetime has a torus
asymptotic boundary. The definition of the monster double states depend on the asymptotic
expansion of the Klein’s J-function.

In Chapter 3, we study the Euclidean AdS/CFT dual with a boundary as a Riemann
surface with an arbitrary genus, and mathematically rigorously proved that the only possible
CFT dual to a with central charge smaller than 1, i.e., at strong coupling limit, is the Ising
minimal model. We encounter a special index-3840 subgroup I'. in studying 3d pure gravity
in AdS; with genus-two asymptotic boundary. Whether is it a congruence subgroup or not
deserves a future study.

In Chapter 4, we study a discrete version of holography, in which the bulk spacetime is
replaced by a Bruhat-Tits tree, representing the local number field Q,. We discovered some
subtle relations between the representation theory of Q, and Chebyshev polynomials, and a
new class of eigenfunctions of Laplacian on the Burhat-Tits tree, among many other physical
results.

In Chapter 5, we switch gears to investigate the concept of reciprocity. Reciprocity is a
pivotal concept in number theory with a long history, dating back to Lagrange and Gauss in
the 18th and 19th centuries. We present a purely physical derivation of these classic formulae
from N’ =4 SYM theory, abelian Chern-Simons theory and Type IIB string theory.
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Chapter 2

Topological entanglement entropy in
Fuclidean AdS3 via surgery

2.1 Introduction

Topological entanglement entropy (TEE), first introduced in condensed matter physics |17,
18|, has been widely used to characterize topological phases. It is the constant subleading
term (relative to the area-law term) in the entanglement entropy, only dependent on universal
data of the corresponding topological phase.

At low energy, a large class of topological phases can be effectively described using Chern-
Simons gauge theory with a compact, simple, simply-connected gauge group. When this is
the case, TEE can be found using surgery [42| and replica trick |8| by computing the partition
function on certain 3-manifolds. For compact gauge groups, TEE is expressed [42] in terms of
modular S matrices of Wess-Zumino-Witten (WZW) rational conformal field theory (RCFT)
on a compact Riemann surface, following the CS/WZW correspondence first described in
geometric quantization by [25)].

In three-dimensional spacetime, gravity can be classically described by Chern-Simons
gauge theory with a non-compact, possibly complex gauge group [2, |43|. Specifically, in
Euclidean picture with a negative cosmological constant A = —1/I? < 0, in the first-order
formulation of general relativity, the spin connection w combines with the “vierbein” e to
make the holomorphic Chern-Simons gauge field w + ¢/l and anti-holomorphic gauge field
w — e/l of gauge group SL(2,C), where [ is the AdS; curvature radius. The following
questions thus arise naturally: is there a similar notion of TEE in 3d gravity? If so, can
one compute the TEE for 3d gravity using surgery? Is the TEE related to modular S
matrices of a CFT living on the conformal boundary? In [44], the authors proposed that
the Bekenstein-Hawking entropy of a BTZ black hole |45] 46| in AdS3 can be interpreted as
TEE. The argument is supported by calculations using continuous and noncompact modular
S-matrices [47] in the possible dual Liouville CFT [48] 49, 50]. Unfortunately it is still not
clear what is the meaning of this entanglement entropy, i.e., what are the two subregions or
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components that are entangled together.

We are motivated by these questions to calculate TEE via 3d surgery in an Euclidean
spacetime that is asymptotically AdSs3. In the case of thermal AdS3, the constant time slice
is a disk. We first bipartite this disk into two disks as shown in Figure [2.1] where a denotes
the ratio between the interval length on the boundary circle that is contained in subregion A
and the circumference of the full circle. After applying the replica trick, the glued manifold
is a genus-n handlebody. Using one-loop partition function on this handlebody [51}, 52, |53,
5, 54, 55|, we derive an explicit expression for TEE, which vanishes in the low-temperature
limit. Then we consider two disjoint thermal AdS3’s and calculate the TEE between them,

1-a

Figure 2.1: Bipartition of constant time slice of thermal AdSs.

which turns out to be the thermal entropy of one thermal AdS;. However, this does not
mean any nontrivial entanglement between the two solid tori, and we support this argument
by calculating the mutual information between them, which gives zero.

We also compute TEEs in an eternal BTZ background. In the Euclidean picture there
is only one asymptotic region for the eternal BTZ black hole [56], which corresponds to the
gluing of the two asymptotic regions of the two single-sided black holes in the Lorentzian pic-
ture. We show that TEE between the two single-sided black holes is equal to the Bekenstein-
Hawking entropy of one single-sided black hole. The mutual information between them does
not vanish and again equals to the Bekenstein-Hawking entropy, which guarantees the ex-
planation of the result as supporting the ER=EPR conjecture in 3d bulk to be true |57, |58
59].

Focusing on one single-sided black hole, we then derive an Entangling-Thermal relation,
stating

i [5(4) = ()] = S, (2.1)
where A and A denotes the two complementary subregions. Quantities on both sides of
this equation are intrinsically three-dimensional. The underlying physical reason of this
relation is that, subregion A wraps the non-contractible loop of the constant time slice,
while its complement A does not. The difference between S, and S thus detects the effect
of the non-contractible loop, which is exactly the outer horizon of the BTZ black hole.
This relation is similar to but different from the thermal entropy relation [60] derived from
the Ryu-Takayanagi formula [15], in that our result is topological and does not depend on
geometrical details.

The full modular-invariant genus one partition function of three-dimensional pure grav-
ity is a summation of classical geometries or gravitational instantons, which includes both
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thermal AdSs; and the BTZ black hole. At high temperatures, the full partition function is
dominated by the SL(2,Z) family of black hole solutions, whereas the low-temperature solu-
tion is dominated by the thermal AdS;. We compute TEE for the full partition function with
a bipartition between the two single-sided black holes in the high temperature regime and
again observe ER=EPR explicitly. When Chern-Simons level kp = k;, = [/16G = 1, after
defining the quantum dimension data on the boundary Monster CFT with orbifolding, we see
from the TEE calculation that the black hole geometries correspond to a topological phase
in the bulk which contains a maximally-entangled superposition of 194 types of “anyons”,
labeled by the irreducible representations of the Monster group. This state, dubbed as Moon-
shine double state, has the similar property as the thermofield double state on the asymptotic
boundary in that TEE between the anyon pairs is equal to the Bekenstein-Hawking entropy.

The rest of the chapter is organized as follows. In Section we give a minimal intro-
duction to the knowledge that facilitates the TEE calculation, including replica trick and
Schottky uniformization. In Section we show the calculation of TEE in thermal AdSs;,
which amounts to the computation of the partition function on a genus n-handlebody. We
also compute the TEE between two disjoint thermal AdS3; and show their mutual informa-
tion vanishes. Section 2.4] illustrates the TEE calculation for BTZ black holes for several
different bipartitions. We discuss the relations with ER=EPR and show that mutual infor-
mation between the two single-sided black holes is equal to the Bekenstein-Hawking entropy.
We further propose an Entangling-Thermal relation for single-sided black holes. Then in
Section we demonstrate the TEE of the full modular-invariant partition function after
summing over geometries and present the quantum dimension interpretation. The system is
mapped to a superposition of 194 types of “anyons”. Comments on the implication of TEE
on the Hawking-Page transition and the outlook can be found in Section [2.6]

2.2 Review of relevant components

In this section we will introduce basic concepts that are essential to understanding the rest
of the chapter.

“Surgery” and Replica Trick

Surgery was originally invented by Milnor [61] to study and classify manifolds of dimension
greater than three.E]. In this work we use this concept in a broader sense, i.e., as a collection
of techniques used to produce a new finite-dimensional manifold from an existing one in a
controlled way. Specifically, it refers to cutting out parts of a manifold and replacing it by a
part of another manifold, matching up along the cut.

As a warm-up, we review the usage of surgery in the entanglement calculation of 2d CFT
for a single interval at finite temperature 7" = 1/ [8]. The interval A lies on an infinitely
long line whose thermal density matrix is denoted as p. The reduced density matrix of

!For 3-manifolds, there are famous variants such as (hyperbolic) Dehn surgery [24].
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subregion A is then defined as ps = trzp, where the trace trz; over the complement of A only
glues together points that are not in A, while an open cut is left along A. Entanglement
entropy between A and its complement A is then Sy = —trpsInps. The matrix logarithm
is generally hard to compute, so alternatively one applies the replica trick to obtain an
equivalent expression, with proper normalization (so that the resultant quantity is 1 when
being analytically continued to n = 1):

(a) = -2 (tr(pﬁ))‘ | (2.2)

dn \(trpa)"

Now the problem reduces to the computation of tr(p’). Using surgery, one can interpret it
as the path integral on the glued 2-manifold [62]. An example for n = 3 is shown in Figure
2.2) where the left panel sketches p?, and the right panel is tr(p%). In this case with a finite
temperature, S, is not necessarily equal to Sj.

) )
35 a5 3 A B V|6
A B - -

|6 |8

Figure 2.2: Left: Sketch of p. Right: Sketch of trp3

This operation can be extended to 3-manifolds in a straightforward way, as shown in
[42]. The authors calculated examples where the constant time slices are closed surfaces and
restricted to ground states, so that the [ cycle is infinitely long.

The constant time slices that we are interested in for Euclidean AdS3 are all open surfaces
with asymptotic conformal boundaries, and the quantum states do not necessarily belong to
the ground state Hilbert subspace. Details will be presented in Sections [2.3] and 2.4

Conformal Boundary and H?/T’

We now introduces the hyperbolic three-space H? that describes the Euclidean AdSs. It is
the 3d analogue of hyperbolic plane, with the standard Poincare-like metric

_dy? +dzdz

2
ds e ,

(2.3)
where y > 0 and z is a complex coordinate.

Any 3-manifold M having a genus n Riemann surface ¥, as its conformal boundary that
permits a complete metric of constant negative curvature can be constructed using Schottky
uniformization. The idea is to represent the 3-manifold M as the quotient of H? by a Kleinian
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group I' |63, which is a discrete subgroup of SL(2, C) as well as a discrete group of conformal
automorphisms of >3,.

The conformal boundary of H? is a sphere at infinity, S, on which ' acts discretely,
except for a limit set of accumulation points of I denoted by A(I"). The complement (I') =
S%2 — A(T) is called the domain of discontinuity. Then the 3-manifold M has boundary
Q) /T, a well-defined quotient.

In particular, when M is a handlebody, I' reduces to a Schottky group, which is freely
finitely generated by the loxodromic elementf] Y-V € SL(2,C), that acts on S2 as
a fractional linear transformation. Among these generators, there are 3n — 3 independent
complex parameters, which are coordinates on the Schottky space, a covering space of the
complex moduli of the Riemann surface.

Each 7 € I' is completely characterized by its fixed points and its multiplier ¢,. An
eigenvalue ¢, is defined through the unique conjugation of v under SL(2,C): z — g,z with
lgy| < 1. More explicitly, denoting 7, £ as the fixed points of v, one has

EERES

Within the Schottky group I', there are primitive conjugacy classes (71, ..., 7v,) of I', with
“primitive” meaning that 7 is not a positive power of any other element in I'.

Solid Tori Classified as M, 4

The physical spacetimes we are concerned about in this chapter are all solid tori, i.e., the
n = 1 case in the previous subsection. They have toroidal conformal boundaries, so the
Schottky group actions is relatively simple.

After these topological constructions, we can further classify them into the M, 4 family
according to their geometries. This family first appeared in the discussion of classical gravi-
tational instantons which dominate the path integral in [64], and is further explained in [5]
and [65].

In this case, A(2) composes of the north and south poles of S%. Since solid tori have
boundaries T2 = Q(T) /T, 1 (Q(T)) must be a subgroup of m(7?), so 71 (2(T)) can only be
isomorphic to Z & Z, Z, or the trivial group. When 7 (")) = Z & Z, Q(I") has to be a
Riemann surface of genus 1, which cannot be isomorphic to an open subset of S2. When
1 (Q(T)) is trivial, Q(T) is a simply-connected universal cover of T2, so that T' has to be
Z&Z. Tt is easily seen from that if ' & Z@ Z, then although H?/(Z @ Z) has a toroidal
boundary at y = 0, there is a cusp at y — oo, whose sub-Plackian length scale invalidates
semi-classical treatments.

The only possibility is thus w1 (Q(I")) = Z, where I" can be either Z or Z & Z,,. The latter
yields M to be a Z,-orbifold, indicating the existence of massive particles, which are not
allowed in pure gravity. To avoid undesirable geometries such as cusps and orbifolds in the

2They are of the form (2.5)).
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contributions to path integral |54}, 5], we restrict our Schottky group to be I' = Z, generated
by the matrix
_(a O
o (1 0 o
where |g| < 1.

The boundary torus is thus obtained by quotiening the complex z-plane without the origin
by Z. Redefine z = > so w is defined up to w — w+ 1, and W acts by w — w + In ¢/2mi.
Hence, the complex modulus of the torus is 7 = In ¢/27i, defined up to a PSL(2,7) Mébius
transformation 7 ~ (a7 + b)/(cT + d), where integers a, b, ¢, d satisfy ad — bc = 1.

When constructing a solid torus from its boundary torus, 7 is defined only up to 7 ~ 747
by a choice of solid filling, completely determined by the pair (c,d) of relatively prime
integers. This is because the flip of signs (a,b,c,d) — (—a,—b, —c, —d) does not affect ¢,
and once (c,d) are given, (a,b) can be uniquely determined by ad — bc = 1 up to a shift
(a,b) — (a,b) +t(c,d), t € Z which leaves ¢ unaffected. We call these solid tori M, 4’s, and
any M. 4 can be obtained from M, via a modular transformation on 7. Physically, M is
the Euclidean thermal AdS3; and M, ¢ is the traditional Euclidean BTZ black hole obtained
from Wick rotating the original metric in [45]. Excluding My, M. 4's are collectively called
the SL(2,Z) family of Euclidean black holes, to be discussed in Section [2.5

2.3 Thermal AdS;

The Euclidean thermal AdSs has the topology of a solid torus My ;, whose non-contractible
loop is parametrized by the Euclidean time. The constant time slice is thus a disk D? with
a boundary S!, perpendicular to the non-contractible loop.

Bipartition into Two Disks

We bipartite the disk into upper and lower subregions A and B, both having the topology
of a disk. The solid torus is then turned into a sliced bagel as in Figure 2.3 Boundary
of each subregion contains an interval lying on the S*. In the following we will denote the
ratio between the length of one interval and the circumference of the boundary S! to be a,
satisfying 0 < a < 1. Except for the symmetric case where a = 1/2 and the two subregions
are equivalent, generally Sy # Sp.

As introduced in Section 2.2 one then glues each of n copies of subregion B sepa-
rately while gluing the n copies of subregion A together. The resultant 3-manifold is an
n-handlebody, which is a filled genus-n Riemann surface, shown in Figure . (In the
special case of n = 1, the handlebody reduces to a solid torus.)

With a proper normalization, the entanglement entropy corresponding to subregion A is
then

(2.6)

d (Z(n—handlebody) ) |
StAds = —

dn \ Z(1-handlebody)”
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Figure 2.3: Left: bipartition of the thermal AdS;. Right: the glued 3-manifold is a flat
bouquet-like n-handlebody.

Contribution to the path integral around a classical saddle point for an n-handlebody
takes the form

Z(n) = exp kSo(n)jLZk’i“Si(n) : (2.7)

where k~"1S;(n) is the i-loop free energy of boundary graviton excitations. At tree level
(i = 0), Ziree(n-handlebody) can be derived assuming the dual CFT is an extremal CFT

52f] i
Ziree(n) = H H 11— q1/n|24k’ (2.8)

7 prim. m=1

with the product running over primitive conjugacy classes of 7, ¢, being the multiplier of v
introduced in Section and k = 1/16G.

In general the two products are hard to evaluate. However, in the low-temperature regime
when thermal AdS3; dominates, the leading contribution to the infinite product over m comes
from m = 1. Furthermore, the product over « is dominated by a single-letter contribution

, , [T I1—¢/]|=~]1—q]*. Combining these, we obtain
v prim.

Tiween) =[] 11— @™ =1 — ™, (2.9)

v prim.

with ¢; a function of n and a, having the form

. o
sin®(ma) —

¢ = (2.10)

n? sin?(ma/n)

At one-loop (i = 1) level, the general expression for Zj,,,(n-handlebody) can be derived
from either the boundary extremal CFT [52, 53] or the bulk heat kernel method [54]. They

3This partition function is motivated by the Liouville action of a single free boson on a handlebody, and
is conjectured in as a modular form of weight 12k to avoid singularities of special functions.
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both depend on the Schottky parametrization of the boundary genus n-Riemann surface.

The result is
H 1
Zloop l l |1 - q%|2n7 (2].1>

1 —
'yprlmm2| q7

in the low-temperature regime ¢; < 1. Plugging Z(n-handlebody) = Zice(n)Zioop(n) into
(2.6), we obtain

Stads(a) & [96ke > + (96k — 8)e ™ + O(e )] (macot(ma) — 1). (2.12)

The terms containing k come from tree-level, while others are one-loop contributions. The
entire expression approaches to zero very fast in the low-temperature regime 5 — oo for any
k. The dependence of the above result on a distinguishes itself from the original definition
[17, |18] of TEE, which is a universal constant. We note that a enters as the boundary
condition on the constant time slice, and has nothing to do with the leading area-law term
in usual expressions of entanglement entropies.

When subregion A is “nothing”, i.e., a — 0, macot(ma) — 1, thus the TEE between
subregions A and B vanishes. When A is instead “everything”, i.e., a — 1, wa cot(wa) — —o0,
balanced by the smaller e=?™# < 1 at low temperatures. We observe that apart from the
a — 0 case, the TEE for thermal AdS3 is always negative. Another important case is when
a = 1/2 so that the two subregions are symmetric. In this case we have

ST Ads (a = %) ~— [96]{6’2”5 + (96k — 8)e ™1™ + 0(676”6)} : (2.13)

Two Disjoint Thermal AdS;

Now we take two non-interacting thermal AdSs’s as the whole system, represented by two
disjoint solid tori My ;. There are two non-interacting, non-entangled, identical CF'Ts living
on their asymptotic boundaries. One would naively expect the TEE between these two solid
tori to be zero, which is not really the case. To calculate the entanglement entropy between
these two solid tori, one can simply use

d (ZOJ (nT)Zoa (7)”)

= —— 2.14
STAdS dn ZO71(T>2n ( )

n=1

We have used the shorthand notation Zy,(7) = Zy1(7,7) to take into account both holo-
morphic and anti-holomorphic sectors. The partition function Z;(n7) comes from gluing n
copies of solid torus A, which is a new solid torus with modular parameter nr.

Meanwhile, Z;(7)" comes from gluing individually the n copies of solid torus B. We
can simply multiply the contributions from A and B together because they are disjoint.
Then we can plug these into the expression for the solid torus partition function, i.e., the
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1-handlebody result from (2.8]) and (2.10)),

Zoa(T) = M% H 11— qm|72- (2.15)
m=2
In the low temperatures, we can approximate ¢ = €2™7 = ¢~2™ as a small number and thus
at leading order Zy (1) &~ ¢~ 2*(1 — ¢*)72.
After straightforward calculations we obtain
Sraas =~ 2(1 + 4nB)e 4P, (2.16)

This contains only the loop contribution, i.e., the semi-classical result is zero. For compar-
ison, we also calculate the canonical ensemble thermal entropy of a single thermal AdS; at
temperature f~1: Sthemal — I 7 (1-handlebody) —ﬂZ(l-handlebody)fl@Z(l*gbed”. It has
the low-temperature form

Sihermal ~ 9(1 + 4rB)e ™4™ (2.17)

which again solely comes from loop contributions. We immediately observe that the thermal
entropy of a single thermal AdS3 is the same as the TEE between two independent thermal
AdSy’s.

This does not imply that there are nontrivial topological entanglement between the two
copies of thermal AdSs, but simply reveals the insufficiency of using entanglement entropy
as an entanglement measure at finite temperatures. For example, consider two general
subsystems A and B with thermal density matrices ps and pgp and combine them into a
separable system,

p=pa® pp. (2.18)

These two subregions are thus obviously non-entangled. But if one attempts to calculate
the entanglement entropy between A and B by tracing over B, one can still get an arbitrary
result depending on the details of ps. If we choose ps = |¢)(¥)| where |¢)) is some pure
state, then the entanglement entropy will be zero. If instead we choose ps = m11 as
the proper normalized identity matrix, then the entanglement entropy will be In(dim(H,)).
So depending on the choice of p4, one can obtain any value of the entanglement entropy
between these minimum and maximum values. This shortcoming is due to the fact that
now the entanglement entropy calculation involves undesired classical correlations in mixed
states.

To address this issue, we look at the topological mutual information between the two
solid tori,

(A, B) = S(A) + S(B) — S(AUB), (2.19)

so that the thermal correlations can be canceled. Following similar replica trick calculations,
one easily obtain S(AU B) = 25(A) = 25(B), thus the mutual information vanishes and
there exists no nontrivial topological entanglement between the two disjoint thermal AdS3’s.
We will observe in the next section that this statement no longer holds true for an eternal
BTZ black hole.
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2.4 B'TZ black holes

We will explore in this section the topological entanglement in the bulk of Euclidean BTZ
black hole.

BTZ Geometry

It has been speculated for a long time that the 3d gravity is rather trivial because besides
local fluctuations, there is no gravitational wave due to the vanishing Weyl tensor. However
in the year of 1992, authors of [45] proposed a new type of AdS-Schwarzschild black hole
with Lorentzian metric

ds? = —N2dt? + N 2dr? + r?(d¢ + NYdt)?, (2.20)

where the lapse and shift functions have the form N? = —8G M, + 71’—22 + L6G2J3 , NZ’ — 4G

e po
G is the 3d Newton constant, [ the curvature radius of AdSs3, and M, J;, are the mass and

angular momentum of the black hole, respectively. The outer and inner horizons are defined
by

. J}
71 = 4G M l? (1 +4/1— MgLP) . (2.21)

Let t;, =it and J;, = iJ, and we perform the Wick rotation to get
ds® = N?dt* + N72dr® + r*(d¢ + N?dt)?, (2.22)

with N? = —8GM + &5 — W8G2 No(r) = 1G] The horizons are now given by

J2
ri = 4GMP (1 +4/1+ MQP) : (2.23)

The Euclidean BTZ black hole is locally isometric to the hyperbolic 3-space H? and is globally
described by H? /T with ' = Z. The topology is a solid torus, and one can make it explicit
by performing the following coordinate transformations [67]

RN re I
x = TQ_TQCOS(Z—Qt—{—Tgb exp 7925—[—275 ,

e | T+ |
Y=z 2 sin (Z_Qt + ngﬁ exp ngﬁ — l_zt , (2.24)
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They bring the metric (2.22)) to the 3d upper half-space with z > 0, representing H?. Fur-
ther changing to the spherical coordinates (x,y, z) = (R cos cos x, Rsin 6 cos x, Rsin ), we
finally arrive at

2 & dR? 2 2 2

ds® = — —— + cos” xydO* + dx* ) . (2.25)
sin®y \ R?

In order to incorporate the periodicity of the Schwarzschild angular coordinate ¢ in ([2.22]),

we require terms in ([2.25)) to obey the global identifications

(R,0,x) ~ (Re%”/l, 6 + % x) : (2.26)
Now it is clear that the fundamental region for is the solid slice between inner
and outer hemispheres centered at the origin in Figure 2.4 with radii R = 1 and R =
e?+/l respectively, with an opening of 2x|r_|/l or 27 (if r_ = 0) in azimuthal angle (in
the 6 direction) ] For each fixed x € [0,7/2], the two hemispheres are identified along the
radial direction, and two segments bounding the azimuthal opening angle are also identified,
forming a torus. Hence, the segment on the z-axis between two hemispheres corresponds to
the outer horizon, and it is mapped to the central cord of solid torus, i.e., the fundamental
region, at y = m/2 (the boundary torus is at y = 0).

Figure 2.4: Left: The spherical coordinates on H?, which convert the original AdS-
Schwarzschild metric of BTZ black hole into the right picture. Right: Topology
of the Euclidean BTZ black hole is a solid torus. Horizon is the blue dashed line threading
the central cord of the solid torus. The FEuclidean time runs in the meridian direction.

Finally, to ensure that the coordinate transformations in ([2.24)) are non-singular (contain
no conical singularities) at the z axis (r — r ), we must require periodicity in the arguments
of the trigonometric functions there. That is, we must identify

1 1

4The fundamental region looks just like a slice of cheese, which is not drawn here. See Figure 12.2 in
|68] for an illustration.
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where & = %, b = % We combine the real pair (®, /) into one single complex
FTS +TS
variable
T=d+if, (2.28)

which is the complex modular parameter of the boundary torus.
For convenience, in the rest of this chapter, unless stated otherwise, we only focus on
non-rotating Euclidean BTZ black hole, so that 7 is pure imaginary and r_ = 0.

TEE between Two One-Sided Black Holes and Mutual Information

Following [57, [58, |59} 69], an eternal Lorentzian AdS black hole has two asymptotic regions
and can be viewed as two black holes connected through a non-traversable wormhole. It is
also suggested from the dual CFT perspective that the entanglement entropy between the
CFTs living on the two asymptotic boundaries is equal to the thermal entropy of one CFT.
Motivated by this, we are interested in calculating the TEE between the two single-sided

black holes in the bulk.

Figure 2.5: Left: Constant time slice of each single-sided BTZ black hole is an annulus.
The inner boundary in blue denotes the horizon. Time evolution of this slice corresponds to
rotating angle 7 around the inner blue boundary. Right: Gluing the constant time slices of
single-sided black holes R (light grey) and L (dark grey) along the horizon (blue line) in the
middle.

However, for the Euclidean BTZ black hole and , the metrics only cover the
spacetime outside the horizon of one single-sided black hole. Everything inside the horizon
is hidden, so is another single-sided black hole. In order to make the computation of TEE
between two single-sided black holes possible, we take an alternative view of the solid torus
M, as in Figure 2.5 In the left panel, we sketch the constant time slice of the right
single-sided black hole, called R. It is the constant 6 slice in metric with an annulus
topology, whose inner boundary is identified with the horizon. In the right panel, we glue
the two constant time slices for black holes L and R along the horizon. Then there comes
the most important step: we fold the annulus of black hole L along the horizon, so that
it coincides with the annulus of black hole R. To obtain the full spacetime geometry, one
rotates the constant time slice of L about the horizon counterclockwise by m, while rotating
the constant time slice of R about the horizon clockwise by m. Namely, the two annuli meet
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twice: one at angle 0, the other at w. The resultant manifold is a solid torus, same as the
M, o introduced before. Hence one can view this solid torus either as one single-sided black
hole R with modular parameter 7 = i3, or as two single-sided black holes L and R, each
contributing 7 = i3/2.

It might concern some readers that the CFTs living on the asymptotic boundaries of L
and R in the Lorentzian picture are now glued together. We note that this is a feature of the
Euclidean picture: due to the different direction of evolutions, we have CFT(t) =CFTg(—t).
At t = 0, these obviously coincide. Then at t = /2, this gives CFT(t = 8/2) =CFTg(t =
—(/2). Using the fact that in the Euclidean picture we have —f3/2 = -3 =2+ § = /2,
we arrive at CFT (¢t = 5/2) =CFTg(t = /2), thus they coincide again and the two CFTs
are glued together. This is consistent with the fact that in the Euclidean signature, there
should only be one asymptotic region, as shown in [56].

Now we can calculate the TEE between the constant time slices of L and R, which we
denote as A and B. Importantly, since in general the result can be time dependent, we
specify the cut to be done at ¢ = 0. Shown in the left panel of Figure [2.6] each subregion
contributes 7’ to the modular parameter of the solid torus. We sketch one copy of p4 in the

right panel.

Figure 2.6: The disk perpendicular to the horizon, which pierces the center of the disk.
Left: Here, parts A and B in spacetime are respectively formed by rotating both spatial
subregions A and B by 4m. Right: The graphical representation of ps, with a wedge
missing in spacetime subregion A.

To find S(A), we need to calculate the partition function of the 3-manifold that corre-
spond to trp’. We first enlarge the missing wedge in the right panel of Figure and shrink
the size of A, B. To add the second copy of p4, one should glue A; to Bs, with By glued
with A, as shown in Figure 2.7 Note that this differs from the usual way of doing replica
tricks, where A; is always glued to A,. This is again a result of the opposite directions of
time evolutions for L and R: the B spatial slice at t = §/2 should always be identified with
the A spatial slice at ¢ = 5/2. One can then follow this procedure and glue n-copies of pa.

The resultant 3-manifold is a solid torus with modular parameter 2n7’, since each copy
of A contributes 7/ and the same goes for B. Replica trick then gives

Sprz(A) = i (M)

_ 2.29
dn ZLo(QT/)n ( )

n=1
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Figure 2.7: Left: front view of the pictorial representation of p4. Notice that the cutaway
wedge runs along the longitude (non-contractible loop) of the solid torus, with its vertex
on the horizon. Right: Graphical representation of trp”. The disk is perpendicular to the
horizon.

Partition function Z o(7) can be obtained from that of the thermal AdSs; by a modular
transformation 7 — —1/7,

ZlO |q | 2kH m’Q’ (230)

where we have defined ¢_ = e ?™/7 = ¢=?7/#_ In the high-temperature regime 3 < 1, the
above reduces to Z; o(7) & e/ B (1 — 6*4”/6)_2 . Substituting it into (2.29]), one obtains at
leading order

SBTZ(A) = % — 26747!%8 (% - 1> + 0(67671-/6). (231)

where the first term comes from tree level and is identified with the Bekenstein-Hawking
entropy. The above expression matches with the thermal entropy of one single-sided black
hole at one-loop,

op

Remarkably, this equation holds true regardless of Z; o(7)’s specific form.

It might be confusing at first that the Bekenstein-Hawking entropy, usually viewed as an
area-law term, appears in the calculation of topological entanglement entropy. To make it
explicit that the results above are TEEs instead of the full entanglement entropy, alterna-
tively we can use Z; o(7) derived from supersymmetric localization method in Chern-Simons
theory on 3-manifolds with boundaries |70|. Following the replica trick, we find exactly the
same expression’} Since Chern-Simons theory is a topological quantum field theory, the
resulting entanglement entropy is a TEE. The horizon area r, should be understood as a
topological quantum number of the theory.

Sglﬁlqzmal( ) In Zl,0(7'> — ﬁZl’Q(T)i = SBTZ(A)- (232)

5The supersymmetric localization method involves boundary fermions. We need to remove the contri-
bution from the boundary fermions to match with the partition function (2.30)
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In the calculation of TEE between two disjoint thermal AdS3’s, as stated in Section [2.3]
we have seen that a nonzero TEE is not enough to guarantee true nontrivial entanglement
between two subregions because of the possible contribution from classical correlations. So
we resort to the mutual information (A, B) between two single-sided black holes. We then
need to find S(AU B). Since in the Euclidean picture we are no longer at a pure state, it is
not necessary that S(A U B) vanishes, although A U B consists the entire system.

We start with bipartiting the system into AU B and C at t = 0, as shown in Figure [2.8|
C' is a very small region whose area will finally be taken to zero.

SO
o

C

Figure 2.8: Left: Subregion C' is the small white square in the constant time slice. Right:
One copy of pa. The picture shows the disk perpendicular to the horizon. The thin layer
surrounding the lower half circle corresponds to C', the spacetime region resulting from C.

The glued manifold is a solid torus with modular parameter 2n7’, exactly the same form
as that in Figure [2.6] The contributions from C' vanish because C' is still contractible in the
glued manifold and we can safely take their area to be zero. Plugging into the replica
trick formula , we again obtain

Sprz(AU B) = Sthemal( 4) (2.33)

So indeed the TEE of A U B does not vanish. Combining these, we find that the mutual
information is the same as the Bekenstein-Hawking entropy for a single-sided black hole:

I(A,B) = Sprz(A) + Sprz(B) — Sprz(AU B) = Sthemal( ), (2.34)

Note that, had we naively taken the full partition function of the eternal BTZ black hole
to be Z1(7)?, namely, the two single-sided black holes are independent and non-entangled
so that their partition functions can be multiplied together, then Sprz(A U B) would have
been twice Sthemal( A) and the mutual information would have vanished. So the nonzeroness
of mutual information indicates nontrivial entanglement between L and R.

There is still another surgery that can yield SHemal(A): (1) restrict to the right single-
sided black hole R as the full spacetime, which is a solid torus with modular parameter 7,
obtained from rotating the constant time slice of it by 27 (if r_ = 0); (2) thicken the horizon

S! to a narrow annulus inside the spatial slice of the solid torus R; (3) calculate the TEE
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Figure 2.9: With the absence of black hole L, bipartitions of the constant time slice of black
hole R lead to Z;(nt) after gluing. The gray area corresponds to subregion A, and the
width of the annulus B will be taken to zero.

between the thin solid torus generated by thickened horizon, denoted by B, and the rest,
denoted by A; (4) and finally take the limit that thickness of solid torus B goes to zero.
The bipartition of the constant slice in this case is sketched in Figure In this biparti-
tion, the obtained TEE is between the exterior and the interior of horizon, rather than that
between two single-sided black holes. The glued manifold is again represented by Z; o(nr)
and the replica trick yields the Bekenstein-Hawking entropy.
We have thus come to a conclusion that the followings are equal:

a) TEE between the two single-sided black holes,

(
(b

) TEE between the exterior and the interior of the horizon for a single-sided black hole,
(c) thermal entropy of one single-sided black hole,
(d) mutual information between the two single-sided black holes.

The equivalence of (a) and (c) supports the ER=EPR conjecture [57, 58, 59| in the Euclidean
AdS; case. The equivalence between (b) and (c) shows explicitly from the bulk perspective
that one should view the thermal entropy of a black hole as entanglement entropy (see for
example [71]).

In general for a rotating BTZ black hole, although there is an inner horizon at r = r_,
the z-axis still represents the outer horizon at r = r, in the spherical coordinates for
the upper H®. Hence, the replica trick described earlier still applies to a rotating BTZ black
hole with modular parameter 7 = ® + i3, where ® is the angular potential, the conjugate
variable to angular momentum. Geometrically, we just need to put r = |r_| “inside” the
inner edge of the constant time slice, so that it is not observable[f]

The Entangling-Thermal Relation

In [60], the authors showed a relation (2.35) for a single-sided BTZ black hole between
the entanglement entropy of CF'T on the conformal boundary and the Bekenstein-Hawking

S A similar situation will be described in Appendix
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entropy:
lim(S4(L — 1) — Sa(l)) = Sthermal (2.35)

=0

where S (L — 1) is the entanglement entropy of a subregion A on the boundary 1+1d CFT
with an interval length (L — [), and S*he™al is the thermal entropy in the bulk. In this
section, we propose another similar but different Entangling-Thermal relation.

Figure 2.10: Bipartition of the constant time slice. Left and right panels are equivalent.

We first consider the bipartition of the constant time slice as in Figure 2.10] for a single-
sided black hole. We put the separation between two subregions away from the horizon,
so that region B generates the white contractible region in the left panel. The right panel
is equivalent to the left one, and will be convenient for visualization of the gluing. We
will call the glued manifold as the “ring”, because after time evolution, region B = A (the
complement) will glue to itself and form a ring around the solid torus, as shown in the middle
panel of Figure [2.11], where the small white part corresponds to the unglued part in the left
panel. Hence, a single copy is the middle panel: away from the ring, the open wedge running
around the longitude is the same as that in the left panel of Figure

Figure 2.11: Left: The side view of trps for the ‘“ring”; the dashed line is only used to
separate t = 0 and ¢ = [ ends of the grey region. Middle: the front view of trp, for the
“ring” configuration. Right: the side view of trp% inside the “ring” of the first trpa.

Naively it seems that one is unable to glue n copies of the above geometry, since the ring
blocks a portion of the wedge’s opening. However, there do exist a unique embedding from
n copies to R? up to homotopy equivalence, as shown in the right panel of Figure one
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first stretches the grey region in the left panel to the blue area in right panel, and glue a
second light grey copy so that its ¢t = 0 edge are glued to the t = 8 edge of the blue copy;
now one repeats this process for green and yellow regions and so on, still preserving the
replica symmetry. Notice that rings from gray, green and yellow copies are not in this piece
of paper, but on parallel planes above or below. Then one puts rings from each copy side
by side on the boundary torus, which requires each ring to be infinitesimally thin since n is
arbitrarily large. The resultant manifold is again a solid torus of modular parameter n7. So
the replica trick calculation follows the previous equation and gives
. thermal
Areil(I}X/l)AOS<A) = Sprz - (2.36)
For completeness, we note that Figure has another limiting case, where the width
of the ring covers almost the entire longitudinal direction of the solid torus, and its depth
occupies a considerable portion of the radial direction, as shown in Figure 2.12] Now in
order to put rings side by side upon gluing n copies, we need to stretch the non-contractible
direction for n times to accommodate them, so that the resultant manifold is approximately
a solid torus with modular parameter 7/n. Now plug Z; o(7/n) into (2.29)):

lim S(A) = _4 (ZLO(T/”)Zl,o(T)")

Area(A)—0 dn ZL()(T)Qn

n=1

Figure 2.12: Another limit of the ring configuration.

Using Z (1) = e**™/3(1 4 2e=47/8) again, we obtain

) B 47 _4r)B
Areil(ljkl)ao S(A) =2 (? + 1) e : (2.38)
which vanishes at high temperature. Note that here is no k-dependence, meaning we can
observe the one-loop effect directly.

Now we consider the complementary bipartition of Figure 2.11] as shown in Figure [2.13]
where the grey region is generated by B in Figure [2.10, The gluing here is simple: since
the unglued cut in the grey region A is parallel to the longitude, n copies should be ar-

ranged around a virtual axis tangent to the annulus. The resultant manifold is a vertical
n-handlebody.
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Figure 2.13: Left: The complementary bipartition which leads to Sz. Right: The glued
manifold is a vertical bouquet-like handlebody.

One can calculate the corresponding TEE following a parallel procedure in the calculation
of thermal AdS; in Section [2.3] The partition function of the glued manifold is

T ITI-ar*x 1 H |1 o (2.39)
v prim. m=1 v prim. m=2 v

where the first and second factors come from tree level and one-loop, respectively. The
products are over primitive conjugacy classes of v € I'. In the high-temperature regime, this

expression can be simplified by the single-letter word approximation [] [1—¢,| ~ [1—¢[*",
v prim.
so that
[1— g™
/
41

Here ¢} can be obtained from ¢; in (2.10]) using a modular transformation,

sinh?(wa/B) 28

1(n,a) = 241
hin,a) n?sinh?(ma/nB) (2:41)
The replica trick then gives
S(A) = —— 2.42
= [ | )
This is explicitly written as
S(A) = 96k (% = 2) —2m/8 1 8(12k — 1) (F = 2> —im/8 1 O(e P, (2.43)

We now take the limit a — 0 because this corresponds to the limit where the grey region in
Figure |2.13| goes to zero, so that:

lim S(A) = lim S(A) = —192ke™*/% — 16(12k — 1)e ™5 £ O(e™ /), (2.44)
a—

Area(A)—0
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which vanishes at high temperature. The infinitesimally negative value is a quirk due to
approximation on ¢, ’s.
Combining equations ([2.36) and (2.44)), one obtains the Entangling-Thermal relation:

lim  [S(A) — S(A)] = Sikemal 2.45
it 15(4) = S(A)] = S (2.45)

We give this relation a different name from the two-dimensional thermal entropy relation
in the dual CFT calculation because this is not merely a generalization of it in one
higher dimension. The thermal entropy relation (2.35)) relates the entanglement entropy on
the dual CFT with the thermal entropy of black hole in the bulk, while the entangling-
thermal relation connects the topological entanglement entropy and thermal entropy both
in the bulk gravitational theory. Additionally, the explanation for thermal entropy relation
relies on the geometrical detail (minimal surfaces) in the bulk [60], while the entangling-
thermal relation is of topological origin. In the first bipartition in Figure 2.11] subregion A
sees the non-contractible loop and the nontrivial flux threading through the hole inside the
annulus. In the second bipartition in Figure [2.13] subregion A does not completely surround
the non-contractible circle, i.e., the horizon. The difference between them thus characterizes
the non-contractible loop.

Finally we remark that there are several cases in which gluing procedures are not available.
The no-gluing criterion is that, as long as the boundary of a subregion is contractible and not
anchored on the boundary S*, the spatial slice is not n-glueable. Also, a single copy in which
glued region B completely surrounds region except for the inner edge is not n-glueable.

2.5 Summation over geometries

The partition functions of thermal AdSs, Zy1(7), and BTZ black hole, Z;o(7), are not
modular-invariant by themselves. To obtain the full modular-invariant partition function,
one needs to sum over the pair of parameters (c, d) for Z. 4. This can alternatively be written
as the summation over modular transformations of Z;; as follows:

Z(r) = Z Zea(T) = Z Zoa (Z;j__;) ; (2.46)

Too\SL(2,7Z) Too\SL(2,Z)

where T' \SL(2,Z) denotes the right coset space of I'y, in SL(2,Z) [72]|, and 'y, is the
. . 11 . .

translational subgroup generated by the 2 x 2 matrix 7" = 01 with action 7 — 7 + 1.
Solid torus filling and Schottky parametrization are invariant under I'y,, and the summation
over the coset space is to make the full partition function invariant under both 7" : 7 — 7+1
and S : 7 — —1/7.

Note that in the previous sections we have used Z.4(7) = Z.4(7,7) as the shorthand for
the product of holomorphic and anti-holomorphic pieces, whereas in this section we return
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to the notation that Z.4(7) describes the holomorphic part of the partition function only.
The anti-holomorphic part can easily be found as Z(7) and Z(7,7) = Z(1)Z(7).

Modular-invariant partition function of the form is unique for the most negative
cosmological constant (k = 1) [51, 73] and was investigated in more general situations
(k> 1) in [5]. An important theorem due to [73| is that the moduli space of Riemann
surfaces of genus one is itself a Riemann surface of genus zero, parametrized by the j-
function. Consequently, any modular-invariant function can be written as a function of it.
The J-function is defined as

17285 (7)3
J(1) = — 744
(7) 92(7)% — 27g5(7)? (2.47)
= q '+ 196884q + 21493760¢> + 864299970¢° + 20245856256¢" + . . .

where ¢ = €*™7 as usual, and go(7) = 60G4(7) and g3(7) = 140G4(7), where Goy are
holomorphic Eisenstein series of weight 2k, k > 2, defined as Gy, = Z(mm) 7é(om(rn—l—nT)*Q’C :

Since the pole in the full partition function Z(q) at ¢ = 0 is of order k (due to the
holomorphic tree-level contribution of thermal AdSsz, ¢=*), it must be a polynomial in J of

degree k,
k

Z(q) = Z a;J" = Zc(k,n)q”. (2.48)
=0 n
For k = 1 we simply have Z(q) = J(q). It has been obtained from modular or Rademacher
sum on multiple occasions, see e.g., |65, 74, [72]. The coefficients of J(q) in front of ¢"
was known to be intimately related to the dimensions of irreducible representations of the
monster group M, the largest sporadic group. It has 246 .320.59.76.112.13%.17-19-23-
29-31-41-47-59-71 ~ 8 x 10°® group elements and 194 conjugacy classes. Dimensions of
the irreducible representations of the monster group can be found in the first column of its
character table [75]: 1, 196883, 21296876, 842609326, 18538750076, 19360062527 . . ..
After John McKay’s observation 196884 = 1 4 196883, Thompson further noticed [76]:

21493760 = 1 + 196883 + 21296876,
864299970 = 2 x 1 + 2 x 196883 + 21296876 + 842609326, (2.49)
20245856256 = 2 x 1 + 3 x 196883 + 2 x 21296876 + 842609326 + 19360062527.

This phenomenon is dubbed “monstrous moonshine” by Conway and Norton [77], later proved
by Borcherds [7§].

The author of [51] conjectures that for cosmological constant k = 1/16G € Z, quantum 3d
Euclidean pure gravity including BTZ black holes can be completely described by a rational
CFT (RCFT) called extremal self-dual CFT (ECFT) with Brown-Henneaux central charge
[79] (cr,cr) = (24k,24k), which is factorized into a holomorphic and an anti-holomorphic
pieces. An ECFT is a CFT whose lowest dimension of primary field is k£ + 1, and it has a
sparsest possible spectrum consistent with modular invariance, presenting a finite mass gap.
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The only known example is the £ = 1 one with a monster symmetry, constructed by Frenkel-
Lepowsky-Meurman (FLM) [80] to have partition function as J(g), but its uniqueness has
not been proved. The existence of ECFTs with & > 1 is conjectured to be true [51] and is
still an active open question [81} |82).

In this section we will mainly focus on the k = 1 case.

TEE for the Full Partition Function

The modular-invariant partition function is still defined on a solid torus. We will again
consider the bipartition that separate the two single-sided black holes, similar to the story
in Section [2.4] It is justified in Appendix that one can still cut SL(2,Z) family of BTZ
black holes along their outer horizons, which lie in the core of the solid torus. So one just
needs to plug the partition function J(g) into the replica trick formula. At low temperatures,
q = e 2™ is small, so that the full partition function will be dominated by the ¢! term
with almost trivial thermal entropy and TEE, trivial in the sense that there are no tree-level
contributions. At high temperatures, richer physics is allowed. Below we calculate the TEE
of the full partition function in this regime.

Generally, the coefficient in front of ¢" in the partition function Z(q) for any k can be

written as
193

c(k,n) = Zmi(—k,n)di, (2.50)

where each d; is the dimension of the corresponding irreducible representations M; of M,
and m;(—k,n) is the multiplicity of the irreducible representation M; in the decomposition
similar to . It is guaranteed to be a non-negative integer. At large n, m;(—k,n) has
the following asymptotic form [83],

p[1/4
m;(—k,n) ~ ka—|e4”\/ [knl, (2.51)
V2[M][n[*/4

Now we restrict to the £k = 1 case and let n to be a variable. After taking care of the
anti-holomorphic part, the replica trick (2.29)) gives the following TEE

~10J(q)

op
Note that this is again the same as the expression for calculation of thermal entropy in the
canonical ensemble. (Using 8 = 1/r, = 1/v/M = 1/y/n, n is viewed as a function of 3 so the
second term in is nonzero.) The computation of S4p for the entire SL(2,Z) family of
black holes is also similar to that of M) calculated in Section 2.4 The result is again equal
to the thermal entropy, based on the fact that the SL(2,Z) family of black holes are all solid
tori with horizons living in the core. This implies that the system is again in a mixed state
due to Euclideanization, as expected in [84} 85]. The mutual information I(A, B) is also the
thermal entropy, parallel to the discussion in Section [2.4]

Stan(A) = Spii™™ = 21n.J(q) — 287 (q) (2.52)
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In the high-temperature expansion, we only take the ¢" term .J,,(¢) from the summation
in J(q) to calculate TEE because this desired term has a coefficient exponentially larger than
those at lower temperaturesﬂ:

193
e 4m/n

Z |M| \/_n3/4

(2.53)

Mathematically the two copies of d; in d? are both the dimension of irreducible module M;
of the monster group, which will be explained in detail later in Section [2.5 But physically
they have different origins: one is the contribution from a single M; as shown in equation
(2.50|), while the other is probability amplitude for M; to appear in the summation as in
equation . Namely, there is a correspondence between the partition function J(g) and
a pure state in the bulk, which is a superposition of all different M;’s:

193

=3 )

In analogy to topological phases, the state is a mazimally-entangled state of 194 types of
“anyons” labelled by the irreducible representations of the Monster group M. The d; that
appears explicitly in (2.54)) corresponds to that in , whereas |i,7*) means a quasiparticle-
antiquasiparticle pair labeled by M; and contributes another d;, which correspond to the one
in . In [86], the authors proposed from abstract category theory, that the ER=EPR
realization in the context of TQFT should be exactly of the form . We will show
later that this specific maximally-entangled superposition is the bulk TQFT version of the
thermofield double state on the dual CFTs.
Applying to equation the identity for finite groups: Y . d? = |M]|, we arrive at

(2.54)

dm/n
¢ n_ L gaems (2.55)

Vo T

Plugging it into (2.52)) and taking into account the anti-holomorphic part, we again recover
the Bekenstein-Hawking entropy:

Jnlq) =

Sfuu(A) == %]T + 31115 In2 — 3. (256)

The first three terms agree with Witten’s asymptotic formula for Bekenstein-Hawking en-
tropy |51], and provides an additional term —3. Remarkably, the “anyons” become invisible
in TEE after the summation over 7. This is exactly due to the appearance of the maximally-
entangled superposition in equation . Had we taken another state where only one
single M; appears with probability amplitude 1 and all the others appear with amplitude 0,

the corresponding contribution would have been proportional to In (dj /\/ |M|) instead of 0.
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Figure 2.14: Constant time slice of the eternal BTZ black hole as in Figur The Wilson
line corresponding to the quasiparticle-antiquasiparticle pair ¢, ¢* intersects with horizon
both on the constant time slice and in the 3d bulk.

The latter matches with the entanglement entropy calculations in , , for an excited
state labeled by j in a rational CFTH

In our case, the creation of the quasiparticle-antiquasiparticle pair ¢ and ¢* can be rep-
resented by a Wilson line, as shown in Figure 2.14, The Wilson line intersects the non-
contractible loop of the solid torus, i.e., the horizon, which is the reason why it can be
detected by a cut along the horizon.

To make full understanding of the “anyon” picture, we rewrite state as

193

1 B
V) = e 2Fiq, %), 2.57
V)= e ) (2.57)

where the energy level corresponding to the “anyon” pair 7,¢* is described by the quantum
dimension of M;:

E 11 [d%J()] (2.58)
i — — 51 n\q)| - .

g LM
Denoting |i,7*) = [i)]i*), one can trace over all the [i*)’s and obtain the reduced density

matrix

pa = Ze_ﬁEi

i

i) (1], (2.59)

which is just the thermal density matrix for “anyons”, and different types of anyons i form an
ensemble. Using the expression for energy levels ([2.58]), the entanglement entropy between
the “anyon” pair can be easily calculated as

Sy (A) = Sthermal(4) = S 1(A), (2.60)

where we have added the anti-holomorphic contribution. Thus the state (2.57)) has the similar
property as the thermofield double state does, in that the entanglement entropy between the

"We will take into account all terms of .J(¢) in Appendix

8This disappearance of “anyons” in the TEE for a maximally-entangled superposition is also expected in
the context of topological phases, see equation (40) of , where one takes |1;| there to be d;/D.
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quasiparticle-antiquasiparticle pair is equal to the thermal entropy of one quasiparticle. We
call this state in the 3d bulk as the Moonshine double state, in which the pair of “anyons” are
separated by the horizon, just like the two single-sided black holes L and R are separated
by it.

Unfortunately it has a shortcoming: as a pure state, the Moonshine double state above
cannot reproduce the result of nonzero S(A U B) (2.33)). To account for this, one could
modify the final total quantum state as

p=[U)(¥]© pun, (2.61)

where the modified moonshine double state now reads |¥) = VT doiso€ : i,i*) with

E=-1 3In [IWTI\ I (q)l/Q] These energy levels lead to the partition function Z(q) = J(q)"/2.

When one bipartites the system into two two single-sided black holes A and B, one can
see from straightforward computation that |¥) will contribute half of Bekenstein-Hawking
entropy. The newly introduced py, is purely thermal and exhibits no non-local correlations
between A and B, so that its von Neumann entropy is extensive and scales with volume.
When one bipartites the system into the two single-sided black holes A and B, it will give
half of the Bekenstein-Hawking entropy. Combining the contribution from |¥), we recover
Sg(A) = Sthermal(A) " the Bekenstein-Hawking entropy. When considering S(A U B), the
modified moonshine double state contributes nothing as a pure state, while the result for py,
is simply Sthermal( A) matching with the calculations in ([2.33)).

Another caveat is that since In J is approximately the Bekenstein-Hawking entropy, the
leading term in E; scales with —372 ~ —n. So in order to have a genuine quantum theory, our
theory has to have a UV cutoff scale at a certain n. Furthermore, apart from the asymptotic
expression ([2.51]) which gives rise to the tree-level Bekenstein-Hawking entropy, there is the
remainder formula [90| for coefficients of ¢" in the whole partition function J(g) which is
possibly related to the one-loop contribution to TEE. For general k € Z., the remainder
formula reads

rp(kn) /20?4

ke47r\/% p—1
= 5t W; 8%\/% )4 (k)2 T i S(k,n)

1 r/4a_,.(k) e (=D)™(1,m)  ry(kn)  /2n%*
— Y — (14 R S(k,n) ||,
k1/4 l;k 647r\/ﬁ(\/E—\/F) Z (87-(-, /kn)m (kn)p/2 e47r\/H ( )

c(k,n) 1+

m=1
(2.62)
where p(x) is the integer partition of z € Z,, and
k-1 .
4—(25+1)
(1,k) = HW’ ar(k) = p(r + k) —p(r+k—1),
j=0 (2.63)

(1, p)| onyi v2n/ 1, (3 (rn)*?
< P /i, p/2 PREYE:
[rp(n)] < NCITE + 62v/2¢ nP= 0< iy ——S(k,n) < 4{ 5 ) amvin
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To check this claim, one could restrict to the £ = 1 monstrous case and plug this expression
into . Alternatively one may fix n and view the c(k,n) as the number of possible
microstates at fixed energy, i.e., in the micro-canonical ensemble. One then performs a
unilateral forward Laplace transform to return to canonical ensemble and then plug it into
([2.52). Computations in both methods are in general complicated, and we do not pursue it
here.

We provide another perspective towards the loop contribution in Appendix by plug-
ging in the whole J function instead of only one large n term. We observe that the loop
correction is negative, consistent with both the thermal AdS; case in Section and the
BTZ case in Section 2.4l

d;’s as Quantum Dimensions

In this section we provide more mathematical details and show that d; equals the quantum
dimension of the irreducible module M; of |M|. An ECFT at k = 1 is a special vertex
operator algebra (VOA) V* whose automorphism group is the Monster group M. This VOA,
also known as the moonshine module [80], is an infinite-dimensional graded representation
of Ml with an explicit grading:

vVi= v (2.64)

n=-—1

where every V! is an M-module, called a homogeneous subspace. It can be further decom-

posed into
193

Vi~ @) M, o), (2.65)
=0

with M; labeling the irreducible M-modules, and m;(—1,n) is the multiplicity of M;. This is
the same multiplicity that appears in (2.50)). (For ECFTs with general k, we have a tower of
moonshine modules [83] V=F = @ | V™M where V,\ s are all irreducible M-modules.
For each summand, one can similarly define m;(—k, n) as the multiplicity of the M-modules
M; in Vi so that ViIH ~ @i pmi-hn) )y

Since we restrict to the holomorphic part of Z(7,7) in this section, the entire dual CF'T
contains the ECF'T above as a holomorphic piece. Furthermore, it is diagonal, i.e., its Hilbert
space is a graded sum of tensor products of holomorphic and anti-holomorphic sectors:

"= P M, oM, (2.66)

aeC

where M, and M, are indecomposable representations of right and left Virasoro algebras.
Since Virasoro action is built into the VOA axioms [91], these are also modules of the right
and left monstrous VOAs, so V? admits induced representations from representations of the
Virasoro algebra [92]. Obviously there are infinite number of Virasoro primaries, and V' is
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not an RCFT in this sense. However, V7 is a typical example of a holomorphic/self-dual
VOA, i.e., there is only one single irreducible Vf-module which is itself. Knowing that there
is only one VOA-primary, one can reorganize Virasoro fields in M, and M, into irreducible
representations of V¥, by introducing the graded dimension of the Vf-module N, defined as

ch,N = tryg™ = Z dim N,q", (2.67)

n=0

where Ly is the usual Virasoro generator and N,,’s are homogeneous subspaces of N labelled
by eigenvalues of Ly. (Note that we have omitted the overall prefactor ¢—¢/?* often appeared
in literature.) The above procedure is similar to regrouping an infinite number of Virasoro
primaries in WZW models into finite Kac-Moody primaries.

To explain the d; appearing in (2.53), it is natural to consider quantum dimensions
associated to VM consisted of fixed points of the action by M on V%. By theorem 6.1 in [93)],
we have the following decomposition of V*

194

Vi~ BV @ M; (2.68)
=1

as VM x M-modules, for the 194 V*-submodules V™ in V* with V™ = VM where M; denotes
an irreducible module for M with character d;. This VM is a sub-VOA of V% of CFT type
[94], and is called the monster orbifold, because it is obtained from orbifolding V* by its
automorphism group M [95], in the same sense as orbifolding the Leech lattice VOA by
7,/27 in the FLM construction.

The standard definition of the quantum dimension of a VOA-module N with respect to
a general VOA V is [93]

ch,N
dimy N = lim -
ATV = L v

(2.69)

The quantum dimensions of submodules of orbifold VOA V¢ obtained from orbifolding V
by a subgroup G C Aut(V') only recently found their applications in quantum Galois theory
[93]. In our case, the quantum dimensions of all V’s with respect to VM were first calculated
to be qdimyu VM = d; in 83|, using the asymptotic formula for multiplicities of M-modules
M; in Fourier coefficients of j-invariant, bypassing the knowledge of V*’s rationality, which
is still only conjectured to be true.

The remaining question is to define in parallel a quantum dimension for the the M-
modules in the above pair (ViM, MZ) The definition does not directly apply to an
M-module, but one can extend the definition using the n-graded dimension of M-modules
M;’s. We define ch,M; asﬂ

chyM; = " jo - xi(0). (2.70)

9We are deeply grateful to Richard E. Borcherds for suggesting this alternative formula. It is similar to
the generating function of multiplicity m;(—1,n) in Section 8.6 of [83], but without normalization by 1/|M].
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Here jo, =37 | Xy (0)q™ is the monstrous McKay-Thompson series for each o as well as
the unique Hauptmodul for a genus-0 subgroup T, of SL(2,R) for each o |77, |78|. o belongs
to an index set with order 171, deduced from the 194 conjugacy classes of Ml. The difference
194 — 171 = 23 can be understood from the one-to-one correspondence between conjugacy
classes and irreducible representations of M: most of the 194 irreducible representations have
distinct dimensions, except for 23 coincidences. ¢’s are only sensitive to the dimensions of the
corresponding irreducible representations. x;(o) is complex conjugation of the character of
the irreducible representation M; of the 171 “conjugacy classes” am At large n, summation
in ch,M; is dominated by the first Hauptmodul for the identity element of M, which is
exactly the Klein’s invariant j(q), so that

lim ch,M; ~ j(q) x d,. (2.71)
q—1—
In other words, one can view ch,M; as a function ch,M;(g) on group M, and when defining
the quantum dimension in ([2.70]), we take the value when its argument is the identity element.
With this, we can define the quantum dimension of M-modules M; in (2.65|) relative to
V% as '
ch,M; ~ lim dlm(Mi)n.
chyVE  n=oo dim Vi

Here ch,V*# = J(q) by applying (2.69) to V%, which is a V%module of itself. Combining the
discussions above, the quantum dimension is just

qdimy, M; = lim, ;- (2.72)

qdimy s M; = d;. (2.73)

The d;’s that appeared explicitly in of the TEE calculation are quantum dimensions
of M;, while those in are quantum dimensions of V™. They coincide numerically. As
we mentioned before, the rationality of V™ is widely conjectured to be tru, and by a
theorem of Huang 98|, the module category of any rational, Cy-cofinite VOA is modular,
i.e., it is a modular tensor category with a non-degenerate S-matrix [99, 100]. If one believes

in the rationality conjecture, then qdimyV;""’s have a well-defined interpretation in terms
of modular S-matrices of the orbifold CFT V™:

Note that these 194 “anyons” are the pure charge exitations in the corresponding topological
ordered system described by the modular tensor category associated with the orbifold VOA
VM

0T literature this is often denoted by tr(o|M;) or tr(M;(c)) or chyy, (o) as well.
" Unfortunately, the conjecture has only been proved only when the subgroup of the automorphism group
is solvable |96, 97], which is not our case.
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2.6 Discussion and outlook

In the high-temperature regime, the full modular-invariant partition function (2.46)) is dom-
inated by the black hole solution Z; o(7), while in the low-temperature regime, it is domi-
nated by Zy1(7), the thermal AdS; solution [65, |5]. It is widely believed that there exists a
Hawking-Page 101} [102] transition at the critical temperature 8 ~ 1, or r, ~ [. However,
there is no consensus on whether this transition really exists [5, 103, [104], or if it exists,
whether it is a first-order or a continuous phase transition |105} 106, (107, |108| 109, [110], or
something else that is more subtle. In this section we offer a clue from the TEE perspective.

We compare the a = 1 (defined in Figure case in of thermal AdS3 and the
Figure case of a single-sided black hole, for their subregion A’s both cover the whole
space. One then observes that even at the tree level, TEE of BTZ and thermal AdSs; have
different signs. A natural guess would thus be that, if the transition exists, it should be
topological and happen at where the TEE changes sign.

Our definition of topological entanglement entropy is the constant subleading term in
the expression for entanglement entropy, which is in general different from the tripartite
information as used in [17]. For topological phases in condensed matter physics, these two
formulations differ by a factor of two and are both negative. For gravitational theories in
the bulk, our topological entanglement entropies can be either positive (as in BTZ black
hole case) or negative (as in the thermal AdS; case). To calculate the tripartite information,
one can use the surgery method presented in this chapter and find its time dependence,
which at late times is negative of the Bekenstein-Hawking entropy [111]|. This matches with
the results in CFTs with gravitational duals, it is expected that the tripartite information
should be negative [112| and that for thermofield double state, it equals the negative of the
Bekenstein-Hawking entropy [19).

Quantum dimensions also appears in the calculation of left-right entanglement in RCF'T
[113]. One might perform similar computations in the orbifold VOA VM appeared in Section
, by using the Ishibashi boundary CFT states that were constructed in |114] for open
bosonic strings ending on D-branes.

Given the “anyonic” interpretation in Section one natural question to ask is that,
to what extent 3d pure quantum gravity can be described as a theory of topological order.
Naively one would expect the corresponding topological order to be the 3d Dijkgraaf-Witten
theory of the monster group M, which gives rise to the same modular tensor category as
the one given by orbifold CFT VM as explained in Section . On the other hand, it is
also natural to expect the corresponding topological order to be the one which is effectively
described by the double SL(2,C) Chern-Simons theory. It would be highly non-trivial to
find a mechanism that reconciles these two theories.

Another remark is that we have specified the bipartitions to be done at t = 0 in Section
2.4} while in general the result can be time-dependent. In the latter case one can still use
the surgery method proposed in this chapter to find the TEE or Rényi entropies, which can
serve as an indicator of scrambling [115] |116].

A final mathematically motivated direction is the following. Vaughn Jones considered
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how one von Neumann algebra can be embedded in another and developed the subfactor
theory [117]. In general, the Jones program is about how to embed one infinite object
into another, reminiscent of field extensions in abstract algebra, and quantum dimension is
defined exactly in this spirit. It would be interesting to see how subfactor theory in general
can help connect topological phases and pure quantum gravity [118].
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Chapter 3

Establishing strongly-coupled 3d AdS
quantum gravity with Ising dual using
all-genus partition functions

3.1 Introduction and summary of results

A way of looking at 3d pure gravity with negative cosmological constant using partition
functions and modular properties was initiated in work by Dijkgraaf et al. [65], Witten
[51], and Maloney and Witten [5]. In a pioneering paper [119], Castro et al. argued that
two well-known Conformal Field Theories (CFT) in two-dimensional space time, i.e., Ising
and tricritical Ising minimal models [120} |121], are dual to pure Einstein quantum gravity
in three-dimensional spacetime with negative cosmological constant, i.e., in Anti-de Sitter
spacetime (Ang).D These are theories of strongly-coupled gravity where the AdS radius [
is of the order of the Planck scale. The arguments provided by Castro et al. in support
of these dualities at the corresponding values of the Brown-Henneaux [79| central charges
¢ = 3l/2G (G is the 3d Newton constant) consisted in demonstrating a match between the
gravity partition function of Euclidean AdS3; spacetime when its asymptotic boundary is a
2d torus 12, with the torus partition function of the corresponding 2d minimal model CFT.

To be specific, one can think of the finite-temperature partition function of pure Einstein
gravity in Euclidean AdS3 as being written as a path integral. The latter is formally a sum
over every smooth 3-manifold X whose asymptotic boundary is a torus 72,

s (7, 7) = / Dy ¢ el (3.1)
0X=T2

with 7 the conformal structure parameter of the boundary torus, the Brown-Henneaux cen-
tral charge ¢ = 3[/2G playing the role of the inverse gravity coupling constant (large in

'In the same paper similar arguments are also presented for certain versions of theories of higher spin
quantum gravity. See also Footnote
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the semi-classical regime). Sg[g,,| is the Einstein-Hilbert action with g,, the complete Rie-
mannian metric tensor on X. One will need to both sum over all different geometries of
the bulk 3-manifold X with the same equivalence class of conformal structures (i.e., the
same conformal class) on the boundary torus, as well as integrate over all different boundary
metrics connected by small diffeomorphisms, i.e., those isotopic to the identity. The full
gravitational path integral can then be written as

Zgray = > Z(X,7), (3.2)

X (where 0X=T7?)

where Z(X,7) denotes the contribution from the sum over all metrics related by small
diffeomorphisms on a particular 3-manifold X with a fixed conformal structure parameter
7 on the asymptotic torus boundary, while the summation over X means summing over
different 7’s in the same conformal class.

In the semi-classical (large ¢) limit, the smooth 3-manifolds X contributing to the path
integral turn out to be only those which admit classical solutions, i.e., which are saddle
point{] of the Einstein-Hilbert action Sg[g], and only solid tori are commonly considered,
see |5, 64, 65]. Following the logic pursued in previous work [51} 65, 119] on this problem, the
gravitational path integral can then be thought of as being organized as a sum over classical
solutions, along with a full treatment of all quantum fluctuations around each saddle point.
For the case of solid tori X, different saddles correspond to inequivalent ways of filling in
the bulk X of the boundary torus 72, and are related to each other by SL(2,Z) modular
transformations. The gravity partition function (3.2)) can then be obtained as the sum of
inequivalent images of a certain “vacuum seed” partition function in Euclidean AdS3; under
the action of SL(2,Z). Physically, this “vacuum seed” describes the gravitational partition
function of thermal AdS; where the spatial cycle of the boundary torus 72 is contractible
in the bulk, whereas the cycle of Euclidean time is not. This corresponds to a particular
solid torus X, for example see Figure . As argued in [119], the gravitational “vacuum
seed” partition function can be obtained exactly by using the remarkable and fundamental
results of Brown and Henneaux [79]; this is reviewed in Section below, and the result
summarized in the next paragraph. After action on the “vacuum seed” gravitational parti-
tion function with a non-trivial modular transformation, the spatial cycle may no longer be
contractible in the bulk while the temporal cycle may now be; in that case the corresponding
gravitational partition function describes physically that of a BTZ black hole [45]. The sum
over modular transformations in SL(2,Z) appearing in can also be seen to originate
from general coordinate invariance, independent of invoking semi-classical notions such as
saddle points, because non-trivial modular transformations correspond to large diffeomor-
phisms, not continuously connected to the identity; in the gravitational path integral for

20One main conclusion of |5] is that in the weak-coupling/semiclassical regime, one has to include ge-
ometries corresponding to complex saddle points of Sg[g] in order to have a Hilbert space interpretation of
the gravity theory. However, since here we are only concerned with the strongly coupled regime, we are not
bound by these considerations.
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the “vacuum seed” partition function, on the other hand, these large diffeomorphisms are
thought to be excluded. (This complementary point of view was also stressed in [119].)

As was argued in [119], with certain assumptions the gravitational “vacuum seed” par-
tition function turns out to be precisely equal to the vacuum character of the dual CFT.
Furthermore, owing to the fact that the vacuum character of rational CFTs is invariant un-
der a certain finite index subgroup of the modular group SL(2,Z) 122, 123|, the modular
sum in (3.2)) over the infinite group SL(2,Z) of modular transformations reduces in fact to
the sum over a finite number of right cosets of that finite index subgroup in SL(2,7Z) when
the Brown-Henneaux central charge c is equal to that of a unitary conformal minimal model
CFT [120, [121]. For Brown-Henneaux central charge ¢ = 1/2, the resulting finite sum was
shown in [119] to be proportional to the partition function of the 2d Ising CFT on the torus
T2

Based on the above analysis of solid tori X, Castro et al. argued in [119] that amongst all
[120, 121] the unitary Virasoro minimal models with central charge ¢ < 1, only the Ising and
tricritical Ising CFTs are dual to pure Einstein gravity at the corresponding values of the
Brown-Henneaux central chargef| A possible gravitational explanation of this observation
could be as follows: It turns out that amongst all unitary Virasoro minimal CFTs with
central charge ¢ < 1, only the Ising and tricritical Ising CFTs satisfy the condition that the
conformal weights h of all non-trivial primary states are larger than ¢/24. In CFTs with
large central charge ¢, this inequality describes a necessary condition that a primary state
of conformal weight h can be interpreted as being dual to a black hole [126|. Assuming
that this condition is still valid in the strong-coupling regime where c¢ is not large, Ising
and tricritical Ising would be the only unitary minimal model CFTs with ¢ < 1 in which
all primary states can be interpreted as being dual to black holes. All other ¢ < 1 unitary
minimal model CFTs would then contain, in addition to black holes, other primary matter
fields, and these CFTs could thus not be dual to pure Einstein gravity. (We will come back
in Appendix to the interpretation of primary states in the Ising CFT as states dual to
black holes in strongly-coupled Einstein gravity, by suggesting a possible expression for their
Bekenstein-Hawking entropy.)

The focus of the present chapter is pure Einstein quantum gravity on Euclidean 3-
manifolds X whose asymptotic boundaries 0X are higher-genus Riemann surfaces. This
arises physically because 3-manifolds X whose boundaries are Riemann surfaces of higher

3Some of the Wy minimal models, were also conjectured in [119] to be possibly dual to higher-spin
gravity theories instead of being dual to pure Einstein gravity. This is due to the existence of an extended
chiral conformal algebra, generated by conserved currents possessing (conformal) spins with values ranging
from 3 up to N. These currents generalize the spin-2 stress-energy tensor 7}, which generates “pure graviton”
excitations in the pure Einstein gravity discussed in Section [3.2] and lead to a “truncated version” of higher
spin Vasiliev gravity, the latter containing generalized graviton excitations of arbitrary integer spin (see, e.g.,
(124} [125]). As it is well known, the presence of extended chiral conformal algebras can lead to multiple
modular invariants in 2d CFTs, but by extending the “vacuum seed” to the vacuum representation of the
extended chiral algebra, a single modular invariant can be built, and generalizations to higher spin gravity
of the Virasoro arguments leading to Ising and Tricritical Ising are possible as described in [119] based on
genus-one considerations.



CHAPTER 3. ESTABLISHING STRONGLY-COUPLED 3D ADS QUANTUM
GRAVITY WITH ISING DUAL USING ALL-GENUS PARTITION FUNCTIONS 51

genus g > 2, are known [52, 54, 56, 127, 128,129, 130] to be the Euclidean spacetimes corre-
sponding to multi-boundary wormholes in Lorentzian signature. X is commonly restricted
to handlebodies, and we will follow this assumption here; more complicated saddles such as
non-handlebodies were studied in [131] in the semi-classical regime. We plan to come back to
this issue in future work. There is a variety of interesting and important physical questions
related to such multi-boundary wormholes (see, e.g., |69] for a relatively recent discussion),
and a complete description of the duality between 3d quantum gravity and the associated
2d CFT at the asymptotic boundary must include all those spacetimes. In other words, any
proposed duality must also be valid in any such multi-boundary wormhole spacetime. For
that reason, it is important to investigate the duality between quantum gravity in AdS; and
the CF'T on the asymptotic boundary at higher genus g > 2.

For the gravitational partition function at general genus g, there is again formally a sum
over geometries of the smooth handlebody X and over its boundary geometries

Zgrav(Q, Q) — / Dg/_“/ efc SE[Q#V% (33)
0X=%,

where the “period matrix” €2, a g X g-dimensional symmetric complex matrix, completely
parametrizes the conformal structure of the genus g Riemann surface X, constituting the
boundary of X. The gravitational path integral can then again be written in the form

Doy = > Z(X,9Q), (3.4)

X (where 0X=X%,)

where Z(X, ) stands for the contribution from the sum over all metrics connected by small
diffeomorphisms on a particular smooth handlebody X with a fixed period matrix €2 on its
asymptotic boundary >,, while the summation over X means summing over different period
matrices €2 in the same conformal class.

Different Euclidean saddles can be constructed by specifying which cycles of the Riemann
surface X, are contractible in the interior of the 3-manifold X, and such cycles are mapped
into each other under the action of the mapping class group (MCG) I'; of the Riemann
surface ;. To compute the gravitational path integral in , our strategy is analogous to
the torus case: We again start with the contribution from a certain gravitational “vacuum
seed” partition function Zy,.(€2, Q) corresponding to the trivial saddle and perform a modular
sum to write the complete partition function in in the following more explicit form

Zaar(2,9) = Y Zuac(v2,79). (3.5)

vyelA\Iy

Here, I'. denotes the subgroup of the MCG T’y of the Riemann surface 3, (the latter being an
infinite group) which leaves the “vacuum seed partition function” Z,,.(Q, Q) invariant, and
I\, is the right coset space; it is over this coset space that the sum in is performed.
Whether this sum has an infinite or a finite number of terms depends in general (a): on the
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value of the Brown-Henneaux central charge, and (b): on the genus g. When the sum is
infinite, there is no natural procedure to associate a value to it[] In this chapter, we show
that for all theories of pure Einstein gravity in AdS3; with Brown-Henneaux central charge
¢ < 1, this sum is finite and unique only when ¢ = 1/2, corresponding to the dual CFT at the
asymptotic boundary to be the Ising CFT. Therefore we argue that in the strong-coupling
regime of Brown-Henneaux central charge ¢ = 31/2G < 1, pure Einstein gravity is only dual
toa2d CFT if ¢ = 1/2.

We arrive at this conclusion by extending the results obtained for genus one by Castro
et al. |[119]. Recall that, as mentioned above, Castro et al. argued solely based on genus-one
considerations that the only 2d CFTs with central charge ¢ < 1 that can be dual to pure
Einstein gravity in AdS; at the corresponding Brown-Henneaux central charges are the Ising
and the Tricritical Ising CFTs of central charges ¢ = 1/2 and ¢ = 7/10, respectively. The
results we obtain in the present chapter, based on consideration of arbitrary genus g, are
two-fold:

(i) For Brown-Henneauz central charge ¢ = 1/2. After first identifying the gravitational
genus-¢g “vacuum seed” partition function, we observe that the orbit of the vacuum seed
under the MCG action is dictated by a projective representation p, of the MCG I'y that is
identical to the projective representation induced by the holomorphic conformal blocks of
the 2d Ising CFT. We then show, using the properties of p,, that the action of the MCG I'y
on the vacuum seed generates an orbit that is always a finite set for any genus g and, hence,
leads only to a finite sum in (3.5). We further prove that this projective representation
pg is trreducible, which, by Schur’s Lemma, leads to the conclusion that the finite sum in
for the gravitational partition function is unique, and is precisely proportional to the
partition function of the 2d Ising CFT ] The key mathematical results that we prove in this
chapter and that underlie our physics conclusions on the quantum gravity partition function
at ¢ = 1/2 are: (1) The representation p,, when viewed as a mapping from the MCG I'; to a
unitary group, has a finite image set for any genus ¢, and (2) the projective representation
pg of the MCG TI'y is always irreducible for any genus g. These results are obtained by
exploiting the connection between the 2d Ising CFT and the 3d Ising topological quantum
field theory (TQFT). We first provide a simplified discussion on these results in Section
for the genus-two case, and continue with the discussion of the general genus g case in Section
3.4

(ii) For Brown-Henneaux central charge ¢ = 7/10. While the genus-one considerations

4A natural regularization scheme would require a probability measure on the (infinite) MCG that is also
invariant under “translations” (i.e., under group multiplications). A group with such a translation-invariant
measure that is further finitely additive (the measure of a finite disjoint union of sets is the sum of the
measures of these sets) is called amenable. All MCGs are non-amenable as they contain non-abelian free
groups as subgroups. Subgroups of amenable groups are amenable and non-abelian free groups are known to
be non-amenable. It follows that there are no natural regularization schemes to sum over MCGs in this sense.
However, this theorem does not apply to summations over cosets such as the regularized sum considered for
genus one in [5]. It is not clear how to generalize their treatment to higher genus at the current stage.

5The physical significance of the factor of proportionality is not entirely clear at this point.
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by Castro et al. [119] would permit the conclusion that pure Einstein gravity in AdS; at
¢ = 7/10 is dual to the 2d Tricritical Ising CFT at the asymptotic boundary, their arguments
do not carry over to higher genus g > 2. (As discussed above, consideration of arbitrary
genus is necessary for a complete description of a duality.) We arrive at this conclusion by
considering the 3d TQFT related to the 2d Tricritical Ising CFT at ¢ = 7/10. We show that,
at Brown-Henneaux central charge ¢ = 7/10, the sum occurring in the g > 2 gravitational
partition function has an infinite number of terms and cannot be naturally regularized,
as explained in Footnote [d A detailed discussion will be provided in Section [3.4]

The remainder of this chapter is organized as follows. In Section we review the torus
case. Section presents a discussion of the genus-two case, while Section presents
a complete discussion and proof for general genus ¢, which is independent of the previous
section and is more mathematically involved. The difficulty in extending to the Tricritical
Ising case is discussed in more detail at the end of Section [3.4] Several Appendices spell out
various details. In the last appendix [A.3] the duality is used to compute the gravitational
entropy and we find a resemblance to the topological correction to the entanglement entropy
occurring in the context of topological phases of matter.

3.2 Gravitational partition function with torus
asymptotic boundary

The simplest Euclidean smooth 3-manifold X that contributes to the sum in (3.2)) is that of
thermal AdSs, topologically a solid torus. It is described in the semi-classical limit (¢ > 1)
by the following metric

ds®> = I? (dp* + cosh? p dty, + sinh® p d¢®) (3.6)

where ¢ ~ ¢ + 27w denotes a spatial cycle which is contractible in the bulk of X, and
the Euclidean time tgp parametrizes a non-contractible cycle. Defining z = —tg + i¢, the
complex coordinate z parametrizes points on the asymptotic boundary (p — oo) of X, and
it is periodically identified according to

z~ 2+ 2min ~ z + 2mimT, m,n € 7, (3.7)

where the first identification is automatic (due to the periodicity of ¢), while the second
is to construct the thermal AdS;3 space-time, and 7 is the complex parameter specifying
the conformal structure of the boundary torus. Large diffeomorphisms, i.e., elements of the
MCG, act on this conformal structure parameter as

ar +b B (a b

Ty T=

T d) € SL(2,7). (3.8)

Note that the large diffeomorphisms do not change the conformal structure on the boundary
torus. Therefore, all conformal structure parameters -7 with v € SL(2,7Z) (in other words,
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all 7’s related to each other by the MCG) specify the same conformal structure. Each of y7
gives a classical Euclidean solution to the Einstein’s equation [64], i.e., a valid saddle point
of . These may or may not be different saddle points depending on the choice of . For
example, the combination a =0, b =1, ¢ = —1, d = 0 realizes a modular S transformation,
which maps 7 — —1/7 and the resultant saddle is the Euclidean BTZ black hole [45]. It
is related to thermal AdS; by exchanging the spatial and temporal cycles, consistent with
the defining feature of a Euclidean BTZ black hole - the existence of a a temporal cycle
contractible in the bulk. It was shown in [5] that the only smooth solutions to the equation
of motion with torus boundary conditions are the ones above, but not all these solutions
labeled by « are inequivalent. Specifically, an overall sign flip of a, b, ¢,d does not change
the saddle, neither does a constant integer shift (a,b) — (a,b) + n(c,d) generated by the
modular 7" transformation. Physically, the latter observation corresponds to the fact that
adding a contractible cycle to a non-contractible cycle leaves the non-contractible cycle still
non-contractible. We denote the subgroup of SL(2,Z) generated by T by I'.. So in the
semi-classical regime, different saddles are labeled by different right cosets of I's, in SL(2,Z),
or equivalently by integers (c, d) corresponding to solid tori M. 4. Notice that all solid tori
M, q share the same hyperbolic metric , because by a famous theorem of Sullivan [132,
133,,|134], for a fixed conformal class of the asymptotic boundary, the bulk is a unigue smooth
and infinite-volume hyperbolic 3-manifold, with a rigid complete metric.

These saddle-point Euclidean spacetimes M, 4 can be obtained from the corresponding
Lorentzian ones via analytical continuation, which amounts to taking the Schottky double
of its Lorentzian ¢ = 0 constant time slice |56} |129]. The Schottky double of a surface is
essentially two copies of the surface glued along their boundaries, i.e., a closed surface. (For
a surface without a boundary, the Schottky double is two disconnected copies of the surface,
with all moduli replaced by their complex conjugates in the second copy.) In Figure we
depict the examples of Euclidean thermal AdS; with (¢,d) = (0,1) and the Euclidean BTZ
black hole (¢,d) = (1,0), as well as their constant time slices. Both are non-rotatingf| and
possess an equal time ¢ = 0 surface with a Z, time-reversal symmetry.

It turns out that in the strongly coupled regime, I'y is enhanced to a larger group I'.
(a “new gauge symmetry”) [119], which is a finite index subgroup of SL(2,Z). Hence the
inequivalent manifolds X are then labeled by right cosets v € I'.\SL(2,Z) =T" and one can
write

Zarae(T.7) = Y Zane(Y7,77), (3.9)

vyel

where Z.,,. is the partition function of the “vacuum seed”, by which we here mean here that
of thermal AdS; spacetime.

5For a definition see Appendix
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(a) (b) () (d)

_____

lp

tp

Figure 3.1: From left to right: (a) Geometry for Euclidean thermal AdSs3, with time going
along the longitudinal direction; (b) The constant time slice of (a) is a disk; (¢) Geometry
for Euclidean BTZ black hole, with the event horizon being the dashed line in the core of
the solid torus; (d) Constant time slice of (c) is an annulus,where the inner boundary is the
event horizon.

Vacuum seed

To compute Zyae(T,7T), one needs to evaluate in the path integral the contribution
from metrics that are continuously connected to thermal AdS;. In this subsection (and only
here), we temporarily resort to Lorentzian signature for convenience. These metrics differ
from that of empty AdSs, the Lorentzian counterpart of the Euclidean thermal AdSs, by
small diffeomorphisms that preserve the Brown-Henneaux boundary conditions

1
ds® ~ I? |dp?* + Zezp(—dt2 +d¢?) + O(p°) (3.10)

at large p.

The classical phase space of the theory is the same as the configuration space of all
classical excitations that are continuously connected to the global AdS3 ground state metric
(3-6). Brown and Henneaux [79) observedE] that the phase space charges H((,) corresponding
to such small diffeomorphisms (,, satisfy the Virasoro algebra

iH{H[G] HIGnl} = (n = m) H[Gi] + 550(0” = 1), (3.11)

with central charge ¢ = 3[/2G and {-,-} is the Dirac braket. Acting on the ground state
with these charge operators, one obtains the boundary graviton states, whose norms ||||? =
{H[C*], H[¢]} must be positive. Upon performing canonical quantization as proposed in |79,
119], Dirac brackets are promoted to commutators, while charge operators are promoted to
operators representing the generators of the Virasoro algebra,

L,=H[()], L,=H). (3.12)

Then the vacuum state is annihilated by L, and Lo, as well as other Virasoro lowering
operators. This state corresponds semi-classically to empty Lorentzian AdSs. The conformal

"See also, e.g., the compact review in [126].
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symmetry constrains the theory strongly, and the boundary gravitons are described by the
states obtained by acting with chains of Virasoro raising operators on the vacuum, i.e., these
are the descendant states L_,, --- L_,,|0), with n; > 1. Our desired partition function Zy,.
is then the generating function that counts these states.

In the strongly coupled regime of Brown-Henneaux central charge ¢ < 1, the requirement
of unitarity constrains the central charge to the values ¢ = 1 — 6/m(m + 1) corresponding
to the ‘Virasoro minimal model” CFTs, where m is an integer larger than two. Furthermore,
eliminating the null states gives the vacuum (identity) character of an irreducible highest-
weight representation of the Virasoro algebra (see for example [135]),

Lo_

Zae.g=1 = Tryae ¢ Ix11(7)]>,  where g = ™. (3.13)

Here the subscript 7, s of a general character x,. s denotes indices of the Kac table that label
all possible irreducible representations of the Virasoro algebra at this central charge (where
r=1,2..,m—1and s=1,2,...,m), andﬂ

hrs + E (th+lm,s(71)l+(m+1)[17(71)1]/2 + th,s(fl)l+l(m+1)+(m+1)[17(71)1]/2)

(3.14)
with (1) = ¢/ T[22, (1 — ¢") the Dedekind eta function and the highest weight h, ; given
by
m+ 1)r —ms|> — 1

Am(m + 1)

Ry = I (3.15)

Modular sum and duality to the Ising CFT

The simplest minimal model is the Ising CFT with ¢ = 1/2. There are three irreducible
representations of the Virasoro algebra satisfying hy 1 = 0, hoy = 1/2 and h; o = 1/16. The
partition function of the theory is simply the diagonal modular invariant

ZIsing(Ta 7_') = |Xl,1(7')|2 + |X1,2(7')|2 + |X2,1(T)|27 (316)

where the three summands are conformal characters of the identity, energy and spin oper-
ators, respectively [135]. These characters can also (for Ising) be expressed in terms of the
Riemann or Jacobi theta function, as reviewed in Appendix , equation (A.33)).

8The character is known [136, [137] to take the form n(r)g=(1=9)/24y, =37,  (ghr+2ems — q irsaim, =) =
S.  Using the identity h,iim sti(my1) = hrs for all | € Z, Wthh follows from by inspec-
tion, one can bring the expression above into the form S = ¢"s +> e, [ r+2km,s —|—q 7ost2k (m= 1>]

- [(Z;O:O qh’“+<2""+”m‘—s+(m+1>) + (Zzozl thv—5+2’“<m+1>)]. After expressing this as a single sum over [ from
I =1 to oo, where | = 2k for even [, and | = (2k + 1) for odd [, the sum S is easily seen to yield the result
presented in the following equation.
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On the other hand, the gravitational partition function is obtained by summing all images
of the vacuum character under I' = I'.\SL(2, Z), the right coset space of I'. in SL(2,Z), as

Zgrav(7—7 77_) = Z |X171(’77>|2v (317)

vyel

where ', is the set of all “pure gauge transformations” of the vacuum, which are defined to
be those elements of SL(2,7Z) that act trivially on the modulus of the vacuum character,

X1l

Fe={y € SL2.Z)| [x11(y7)] = [x1a(7)[}- (3.18)
This is a finite index subgroup as proven in [122], so the summation in has a finite
number of terms, unlike the ¢ > 1 Farey-tail cases that were discussed in [65, 5. We will
see in later sections that the finiteness property, seen here at genus one, extends (for Ising)

to the case of higher genus. Starting from the “vacuum seed” |x11/?, (3.13)), and repeatedly
acting on it with the generators

S = (g _01) , T = <é D (3.19)

of SL(2,7Z), one finds 24 inequivalent contributions, which sum up to
Zgrav = 8ZIsing- (320)

The physical meaning of this constant factor of 8 is at present unclear, while its mathematical
meaning, along with extra new results on I'. that go beyond those presented in [119], are
collected in Appendix [A.6] Therefore we see the equality of the partition functions of pure
Einstein gravity in AdS3 at Brown-Henneaux central charge ¢ = 31/2G = 1/2 and that of
the Ising CFT, at genus one.

3.3 Gravitational partition functions with genus-2
asymptotic boundaries

Now we generalize the discussion of the duality between Euclidean AdS3 and Virasoro mini-
mal model CFTs to genus two. The current section is more “physical” or intuitive, compared
to Section which discusses the case for arbitrary genus and will be more mathematically
involved. We will focus on the ¢ = 31/2G = 1/2 theory and present its gravitational partition
function as well as its relation to the Ising CFT in Section followed by a review of the
relevant mathematical concepts in Section [3.3]

Gravitational partition function

Similar to the genus-one case, the key assumption in the computation of the gravitational
partition function is that the path integral is equal to the contribution from classical saddle
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points and the full set of quantum fluctuations around them, irrespective of the fact that
the Brown-Henneaux central charge is now of order one.

As briefly reviewed in the last section, the analytical continuation from Lorentzian to
Euclidean signature basically amounts to taking a Schottky double. When the Lorentzian
geometry contains three asymptotic regions, its constant time slice is a pair of pants. The
boundary of the corresponding Euclidean spacetime is thus obtained (following the notion
of the Schottky double, mentioned above) by gluing two pairs of pants together, thereby
obtaining a genus-two Riemann surface. Different ways of gluing give distinct saddles and
correspond to different choices of contractible cycles in the bulk. In Figure 3.2 we sketch
three bulk geometries that possess a Z, time-reflection symmetry [69]. The left one depicts
the case which corresponds to three disconnected thermal AdSs spacetimes in Lorentzian
signature. The green circles label the interfaces between the two pairs of pants. The middle
panel describes the Euclidean version of the three-sided wormhole. The right figure is the
case with one copy of thermal AdS; and a BTZ black hole. Different bulk saddles can be
transformed into each other by the action of the MCG (whose definition will be reviewed in

Section [3.3)).

Figure 3.2: Different Euclidean saddles with Z, time-reflection symmetry. They analytically
continue to three copies of thermal AdS; (left), three-sided wormhole (middle), and one
thermal AdS;3 plus a BTZ black hole (right). The areas encircled by the green lines are the
sets of fixed points of the action of the Zs symmetry.

The full partition function can thus be written as the modular sum of one of the saddles,
namely as that of the vacuum saddle without black holes,

Zrae(,Q) = Zuao(¥2,79), (3.21)

vyel

where I' = I'/\I', is the right coset space in the MCG I'; of the Riemann surface ¥, with
respect to I'., the symmetry group that leaves Z,,. invariant. - Here ¢ = 2. The 2 x 2-
dimensional complex, symmetric period matrix (2 is a higher-genus generalization of the
modular parameter 7 in genus one, whose definition is presented in Section below. The
conformal structure on the asymptotic boundary is specified by the period matrix Q. All
period matrices {2 related to each other by the MCG correspond to the same conformal
structure.
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Vacuum seed

We are interested in the case where the bulk gravity is a genus-two handlebody, which can
be viewed as three solid cylinders that meet at a cup and a cap (each being a “3-ball” - the
interior of a 2-dimensional sphere), compare e.g., Figure . We will choose the notation for
the elementary cycles depicted in Figure below. The vacuum sector Z,,. dominates the

Olg

Figure 3.3: The canonical homology basis for X,.

full partition function in the low-temperature limit, which we define to be the limit where
the three solid cylinders are long and thin, like in Figure . (This is analogous to the
genus-one case, where in the low-temperature limit, the dominant geometry is the one whose
boundary torus has a longitude much larger than its meridian.) In this limit, a natural local
coordinate system can be chosen, such that a constant time slice is a disjoint union of three
disks, i.e., the cross sections of the three solid cylinders (see Figure , while the time
direction is along the longitudinal direction of the cylindersﬂ Such a topology analytically
continues to three copies of thermal AdS3;. Namely, all the a-cycles in Figure [3.3| need to be
contractible in the bulk.

For a bulk geometry with a higher-genus asymptotic boundary, we believe that the as-

9From a TQFT point of view, this corresponds to the case where only the trivial anyons propagate in
the long cylinders. The relationship with TQFT is discussed briefly in Appendix [A’5] and will be generally
described in Section
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Figure 3.4: The low-temperature or long-cylinder limit of the genus-two geometry.

sociation with the Brown-Henneaux central charge ¢ = 31/2G is still ValidF_UI Recall in the
genus-one case, the boundary torus describes the time evolution of graviton states living on
the boundary of a disk. When the Brown-Henneaux central charge is ¢ = 1/2, these states
correspond to the quantum states of the 2d Ising CFT in the vacuum sector x1; (and x11).
For genus two and in the local coordinate system where a constant time slice consists of three
disjoint disks (see Figure , the boundary graviton states live on the boundary of each
disk. Hence locally, the boundary graviton states correspond to three copies of xi,; states
(and X7 states). Globally, the former should correspond to states in the vacuum conformal
block of the Ising CFT at genus two (the analogue of the x; 1 sector for genus one), which we
denote by Yyac. Therefore, we assume Z,,. to be of the same form as the partition function
of the Ising vacuum conformal block. This assumption is a natural extension of results in
[52, 140]. In the large-c and the pinching limit of the genus-2 asymptotic boundary, the
author of |52 calculated the vacuum seed of AdSs3 to orderl/c?. This was then shown to
match exactly with the partition function of the vacuum conformal block of a 2d large-c
CFT [140]. Naturally, we expect this match to hold to all orders of 1/c, thereby justifying
the assumption.

The full partition function of the 2d Ising CFT theory on a Riemann surface of arbitrary

10Tn their original paper |79)], given the global AdS3 metric with p being the radial direction,
p2 12
ds® = — () dt® + () dp® + p?do?,
12 02

after quotienting it by some discrete subgroup of the isometry group of global AdSs, off-diagonal entries of
the new metric need to satisfy the asymptotic conditions

gtp ~ O(1/p%),  gip ~ O(1), gps ~ O(1/p?),

in order to produce two copies of Virasoro algebras with central charge ¢ on the boundary. In principle,
these conditions can be checked here using the Fefferman-Graham metric for asymptotic AdS411, con-
structed basically by shooting geodesics inwards from the boundary [138, [139]: ds? = g,,dp? + gi;dz'dz?
PPdp? 1. . -
= 'g + —Gij(p, x)dx*dz’ , where the d-dimensional metric g;;(p, z) is the p-dependent Euclidean boundary
P P

metric.
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genus was worked out in [141] using a Z, orbifold of the free compactified boson theory,
and in [142| using a single, non-interacting Majorana fermion. In the formulation using the
Majorana fermion, a choice of boundary conditions (spin structure) has to be imposed. The
contribution from each choice of boundary conditions or spin structure can be written as
the norm of the regularized determinant of the corresponding chiral Dirac operator. The
determinant can further be separated into two factors, one being the Riemann theta function
of the corresponding spin structure (whose definition will be reviewed in Section , while
the other is independent of spin structures and only a function of the metric. In what follows,
the former will be denoted as the classical contribution to the partition function, and the
latter will be called the quantum contribution. (Note this has a different meaning from the
“quantum” used to describe gravitational theories which are beyond semiclassical regime.
The word “quantum” here stems from the fact that this universal factor accounts for the
quantum fluctuations of the boson fields in the Z, orbifold.) For more details about the
quantum contribution, we refer to Appendix [A.5] In fact, not only the full partition of the
2d Ising CF'T, but each of the conformal blocks also factorizes into a classical and a quantum
piece. Given the identification of the gravitational vacuum seed and the vacuum conformal
block of the 2d Ising CFT, discussed above, we can write Zy,. = Z& . Z 3 (where “cl” stands
for classical and “qu” stands for quantum). In the following discussion, we will be interested
in how the different sectors or conformal blocks in the theory transform into each other
under the MCG. For this purpose, it is enough to temporarily ignore the overall quantum
factor that is the same for all conformal blocks and focus on the classical contribution of the
gravitational vacuum seed

2

¢ = . 1 ap =0 a;=0
2@ =P = | ¥ e[ e o) e

b1,bo€{0,1/2}

where |y (Q)? is the classical contribution to the vacuum conformal block of the 2d Ising
CFT, and where 9 denotes the conventional Riemann theta function (see of Section
for a review of relevant notations). Here, a; 5 should be viewed as the two components
of the characteristic vector a = (a1, as) appearing in the theta function for the genus-2 case.
Similarly, by 5 are the two components of the characteristic vector b = (b1, b2). The number
of components of these characteristic vectors is given by the genus g in general. We explain
in the following the specific choice of theta functions ¥ appearing in the above expression.

We know that along a contractible cycle, the boundary condition for a fermion has to
be anti—periodicfj] Since, as discussed above, in the gravitational vacuum seed all the a-
cycles in Figure need to be contractible, all the corresponding boundary conditions on
the (Majorana) fermion along those cycles need to be anti-periodic. Consequently, the top
characteristic vector of the theta functions that are relevant for the vacuum sector is zero,

"This is the natural boundary condition for fermions since they anti-commute. See also for example |142}
135, 169|]. Periodic boundary conditions for fermions would imply a singularity inside the cycle, often called
a Zo-vortex, or Majorana fermion zero mode.
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i.e., a; = as = 0. Furthermore, the vacuum sector must be an equal-weight summation over
both even and odd fermion number parities along every B-cycle. This means Z¢ . has to
be the modulus square of an equal-weight linear combination of the square root of Riemann
theta functions that appear in equation , as displayed in that same equation.

The above form for Z¢ is also analogous to the classical contribution to the
vacuum seed on the torus. The latter, as reviewed in of Appendix is the equal-
weight sum of the square roots of all theta functions whose characteristic ‘vector’ a = (a) is
zero. On the torus, this has a natural Hamiltonian interpretation that exists due to a global
notion of time (leading to a clean separation of 1D space and 1D time), which is absent at
higher genusH

In the pinching limit where the bulk ‘cylinder’ connecting the two tori pinches off |141],
i.e., where Q5,9 — 0, the (classical) vacuum seed partition function (3.22)) reduces to
X (71) x§'1(72)[?, which is the product of the classical parts of the two torus vacuum seeds
Ix1.1(71)]? and |x1.1(72)]? of two tori with modular parameters 7 and 7.

One can check that is invariant under a genus-two generalization of I',, see Ap-
pendix . This is a subgroup of the genus-two MCG FQH generated [52| by integer shifts
of matrix elements of the period matrix 2, as well as the SL(2,7Z) transformation that acts
on €2 by conjugation Q — AQAT. The genus-2 generalization of the group I is the classical
symmetry of the vacuum seed at large ¢, and it is enhanced in the case of strong coupling
(¢ < 1) to the previously mentioned group I, a subgroup of I'j—, which is larger than I'.
This new “gauge symmetry” will be relevant in the modular sum as it turns out to be a
finite-index subgroup.

As a consistency check of , in the low-temperature or long-cylinder limit depicted
in Figure the leading contribution to Z¢  needs to be equal to that of the total classical
contribution to the full Ising partition function at genus two in the same limit, as explained
in Appendix[A.8 The long-cylinder limit can be taken in the following way: The genus-two
Riemann surface can be described as a hyperelliptic curve, which is the set of solutions to

the following equation (see for example [143| for a recent discussion of this)

y(z)? =[] =, (3.23)

12Namely, at genus one there are four (one of them vanishing) holomorphic partition functions, x,,
)F

Otp =
Try, (0t q"°, where I denotes the fermion parity operator, o,,0¢, = +1. Here Fo, denotes spatial
(anti-)periodicity whereas Foy, denotes Euclidean temporal (anti-)periodicity. These holomorphic partition

functions are proportional to 11/2 {Z} with a = (1 — 0,)/2 and b = (1 — 04 )/2. One then sees from (A.33

of Appendix @ that the torus vacuum character i, is proportional to the sum of the square-roots of
theta functions with a = 0, summed over b = 0 and b = 1/2. The sum appearing in is the natural
generalization of this genus-one expression to genus two.
13Basic facts about t[h]is genus-two generalization of I'o, will be discussed in Appendix where this
2

group is referred to as I'ss.
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Such a surface is a two-sheeted branched cover of the Riemann sphere, the points on which
are parametrized by z, and the two sheets are labeled by the choice of the root y which solves
. There is a Zs “replica symmetry” generated by y — —y, which physically corresponds
to the time reversal symmetry discussed above in Figure [3.2] and the corresponding text.
The covering map has 2 x 3 = 6 branch points (ug,v;). Monodromy of z around one of
the six branch points shifts y — —y and moves from one sheet to the other. The locations
of the branch points span the moduli spacﬂ of the Riemann surface. Consequently, the
period matrix can be expressed in terms of the branch points [144], and the long-cylinder
limit corresponds to taking uy — v to be small for £ = 1,2,3,. To obtain the vacuum seed
partition function, the resulting period matrix € is inserted into . For the case of the
long-cylinder limit at general genus g, one simply replaces the number 3 appearing in (|3.23))
by g + 1, and proceeds in an analogous fashion.

A final remark is that, for our gravitational vacuum seed partition function Z. to
be identical with that of the vacuum conformal block of the boundary CFT (up to some
constant factor), we further need to discuss the cup and cap regions, where three cylinders
join. We argue that the three-point correlation functions that describe the graviton scattering
processes in the gravity theory match those in the boundary conformal theoryE|.

Genus two modular sum

With the above expression for the vacuum seed, we now perform the sum over the images of
the action with the MCG (“modular sum”) as in at g = 2.@. We will first provide the
numerical results, and then give a mathematical argument for the finiteness of the modular
sum. Independently, we will present later in Section [3.4] another simple proof from a TQFT
perspective for arbitrary genus.

As reviewed in Section [3.3 the subgroup of the MCG which acts non-trivially on the
period matrix is Sp(4,7Z). The generators of Sp(2g,Z) are reviewed in Appendix . By
acting repeatedly with the two generators of Sp(4,Z) on the vacuum seed partition function,
we find 3840 inequivalent contributions with the aid of Mathematicaly] These modular

14This is a g = 2 coincidence, for general genus g the moduli space M, of a Riemann surface ¥, has real
dimension 6g — 6, while the number of real branches is 2¢g + 2.

15 At genus one, a related but somewhat different two-to-one scattering process in AdSz between the bulk
duals of the light primaries O and x, whose conformal weights less than ¢/12, is described in [145]. Their
CF'T three-point function is found to have the same form as the gravitational scattering amplitude between
their gravitational duals in the BTZ background, with a proportionality factor only dependent on the saddle
geometry. Although this process is not necessarily in pure gravity, this result is in support of our argument
about the form of Z,.

Instead of Z< ., we use the full quantum conformal block Zyuc = |Xvac|? in the modular sum. The
quantum contribution and issues related to it, are discussed in Appendices @ and

17"This set is invariant under the action of Torelli group introduced in Section below. The Torelli
group acts by multiplying {9{1/2,1/2;1/2,1/2](Q) - 9*[1/2,1/2;1/2, 1/2](9)}1/2 by a minus sign, which can
be explicitly verified in the pinching limit using the formalism in [141] and straightforwardly carries over to
the general case away from that limit. Only this specific theta function product is affected by the Torelli
group action, because it is related to the sector (conformal block) X,y» (in the language of Appendix,
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images sum up to 384 times the partition function Zigne of the 2d Ising CFT at genus two

of Appendix |A.5):
Zgrav = 3SZLZIsing- (324)

The factor 10 = 3840/384 is simply the dimension of the conformal block basis, or simply
the number of linearly independent Riemann theta functions. The physical meaning of the
constant factor 384 in is unclear at this point.

We emphasize that all the above arguments are gravitational ones that solely come from
the three-dimensional bulk. In the remainder of this section, we support the above compu-
tation by a mathematical explanation for the finiteness of the summation in the partition

function |as in (3.21)].

In the Ising case, there existﬂ a short exact sequence for any genus g,
1= pg(Dy) = pg(I'g) = Sp(29,Z2) — 1, (3.25)

where p,(I';) is the image group of the MCG [I'y represented as matrices in the basis of
Riemann theta functions, D, is the subgroup of the MCG that acts trivially on H;(X,, Zs),
and p,(D,) is the corresponding image group. The latter turns out to always be a subgroup
of Z{Y, where N is a finite positive integer.

Since py(Dy) is abelian (see Appendix[A.9)), gives a central extension of Sp(2g,Z,).

Such central extensions are classified by the second cohomology group
H2(Sp(29,7:), py(D,)) (3.26)

For every group element h € Sp(2g,Z,) and n € p,(D,), there is an element (n, h) in py(T'y),
satisfying the group multiplication (ny, hy) - (ng, he) = (w(hy, he)ning, hihy) , where w(hy, ho)
is a 2-cocycle with p,(D,) coefficients. Alternatively, one can interpret the above short exact
sequence in terms of projective representations. Irreducible representations of the MCG I'y
correspond to the irreducible projective representations of Sp(2g,7Zs), where the projective
phases are given by p, (D).

Since Z,. involves taking the modulus square of the vacuum character, the overall phases
of p,(D,) will not matter. We can simply focus on the summation over elements of Sp(2g, Z)
that act non-trivially on the absolute values of the theta functions. At genus g = 2, Sp(4, Zs)
turns out to be equal to the permutation group Sg and contains 6! = 720 elements. Due to
the short exact sequence , the image group of I'y is clearly finite.

In Section we will present an alternative simple proof for the finiteness of p,(I'y) that
works for arbitrary genus, from a topological field theory perspective.

Review of the relevant concepts

We first describe the homology of orientable, finite-type two-dimensional surfaces ¥, of genus
g. When ¥, is compact, its homology groups are free, with dimHy(X,) = 1, dimH,(X,) = 2g,
where there is a fermion ¢ in the middle of the genus-two handlebody (denoted by b in Figure ie.,

b — 1), which acquires a negative sign upon the Dehn twist along the separating curve.
18This is a generalization of the mathematical result in [146] which is explained in Appendix F.
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dimH,(X,) = 1. One can choose a canonical homology basis a;, 5; with 1 <i < g for H;(%,)
as in Figure [3.3] Any closed curve on X, generates a homology class, which can be uniquely
decomposed into the classes generated by «;, ;. They are normalized with respect to the
algebraic intersection number J(Cy, Cs) between two simple closed curves C; and Cy, by

J(Oéi,Oéj) = J(ﬂi,ﬁj) =0, J(O%ﬁj) = —J(ﬂi,%’) = 5ij- (3-27)

There are g pairs of holomorphic and anti-holomorphic one-forms on ¥, denoted by
{wi,w;} (i=1,---,g), which satisfy the normalization condition

% w; = 513 (328)

The period matrix defined by
\%\ Wy = Qij (329)

is then a g X g complex symmetric matrix, with a positive-definite imaginary part "] Analo-
gous equations as above hold for the anti-holomorphic counterparts &; and €;;. The period
matrix ) generalizes the modular parameter 7 for the torus, completely parametrizing the
conformal structure of ¥,. Note that a conformal structure of ¥, can be specified by different
period matrices that are related to each other by the MCG [

The MCG I'y of a genus-g Riemann surface ¥, is the group of all isotopy classes of
orientation preserving diffeomorphisms of ¥,. It is generated by Dehn twists around the
cycles C' of ¥,. A Dehn twist acts by excising a tubular neighborhood of C' inside X,
twisting the latter by 27, and then gluing it back to the rest of the surface. There are two
generators for each handle, and one for each closed curve linking the holes of two neighboring
handles.

I'y leaves the intersections invariant, thus acting on the canonical homology basis
by Sp(2g,7Z) transformations. The Sp(2¢g,Z) transformations act on the period matrix by

T= (é g) € Sp(29,Z), v:Q— (AQ+ B)(CQ+ D)™, (3.30)

where A, B,C, D are g by g matrices. At genus g = 2, the minimal number of generators
of Sp(4,Z) is two [147]; these are reviewed in Appendix [A.7] For Sp(2¢,Z) with g > 3 the
minimal number of generators is three |148|.

Some elements of I'; act trivially on the canonical homology basis, leaving it invariant.
These elements are diffeomorphisms homotopic to the identity and they form a normal
subgroup of I';, known as the Torelli group Z, [149} |150|. For genus two, Z, is infinitely

19 An alternative normalization for ) more suitable for computation is considered in Appendix

20The moduli space My, the space of conformal structures of X, has real dimension 6g — 6. The Torelli
map from M, to the space of {2’s quotiented by the MCG Iy is injective, intuitively because the latter has
real dimension g(g + 1), so the parametrization is complete.
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generated by Dehn twists around the separating curve, i.e., the curve that separates the
genus two surface into two tori. For g > 3, besides the ones that twist around the separating
curves, there exists another type of generator, called the “bounding pair map”. A bounding
pair map is the composition of a twist along a non-separating curve C'; and an inverse twist
along another non-separating curve Cy which is disjoint from Cj but represents the same
homology class as C;. So C; U (s separates ¥, into two subsurfaces having C; U Cs as their
common boundary. These two kinds of generators are shown in Figure [3.5

)

bg X

Figure 3.5: Generators of the Torelli group Z,. Left: Dehn twist along a separating curve.
Right: the bounding pair map.

In summary, we have the following non-splitting short exact sequence,
1—-7Z,—-T,— Sp(29,Z) — 1. (3.31)

Riemann or Siegel theta functions, which depend on two g-dimensional row vectors a, b €
RY called characteristics, are defined by the following infinite sum 151} 152 153 |154],

vV {z} (z|Q) = Z exp(itn+a)-Q-(n+a)+2wi(n+a)-(z+Db)), (3.32)
nez9
where z € RY is a g-dimensional vector.
In this chapter, we will be interested in and limit our discussion to the Ising case described
by a single Majorana fermion species, where the characteristic vectors are a,b € (%Z)g . In
this case there is, associated with each theta function, the notion of a spin-structure of

characteristics denoting a 2 X g-matrix. The spin structure is called to be even or odd

a
b )
depending on whether 4a-b is even or odd, respectively. This can be seen from the following
identity

9 [{j (—2z|Q) = (—1)*Py m (z|Q). (3.33)

Additionally, due to the identity

9 {Sirﬂ (2]Q) = e2riamy [;j (2]0), (3.34)
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where m, n € Z9, it is enough to only consider a,b € (%Zg)g. At genus g, there are
2971(29 —1) odd spin structures and 2971 (29 + 1) even ones. The theta functions 9(2) always
vanish for odd spin structures, which is obvious from (|3.33]).

Riemann theta functions are also weight-1/2 modular forms. From now on we will denote

9¥(0]Q2) by ¥(£2) for convenience. When their argument 2 is acted on by v = (é g) €
Sp(2g,7Z), they transform as [142, [154]:

9 {z} (Y9) = e(7)e " ™@P) dot (CQ + D)2 9 {l‘j (Q), (3.35)
where
B-GoORaEm e
and
¢ (a,b) = (aD"Ba+bC" Ab) — [2aB"Cb + (aD" —bC") (AB") |, (3.37)

which is 2-independent.

In (3.36), {} means concatenating two g-dimensional row vectors into a single 2g-

T

. . . a a ,
dimensional column vector, i.e., {b} = { } where -7 denotes the matrix transpose, whereas

bT
(+)q denotes the g-dimensional row vector whose entries are the diagonal elements of the g X g
matrix appearing inside the parentheses (). The subtle phase €(7) is always an eighth root of
unity independent of a and b, and incidentally, if 7 = I5, mod 2, then €?(y) = e P=1)/2,
We note that the action of the group Sp(4,Z) on the Riemann theta functions at genus
g = 2 defines a 10-dimensional projective, not a linear representation. The explicit forms of
the matrix representations of the (two) generators of the group are displayed in Appendix

A7

A conjecture on index of SL(2,7Z) subgroups for higher genus

Here we digress a little bit and present a conjecture without much numerical evidence,
following comments from Shu-Heng Shao and Edward Witten [155].

From genus 1 and 2 cases, we see that the partition functions of ¢ = 1/2 gravity and Ising
model do not exactly agree, but are proportional to each other. If we were to try interpreting
the numerical factor between Zg,, and Zign, as a contribution from the topological term on

the boundary Riemann surface, then we should have the following form
Zgrav = AeiaXZIsinga (338>

where y = 2 — 2g is the Euler characteristic for genus ¢, and a, A are universal constants.
Then we can extrapolate the index of the enhanced symmetry group I'. C SL(2,Z) from the
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data on genus 1 and 2. Because y = 0 for torus, we see from that A = 8, and
tells us that e?* = 48. Then a genus-3 surface has Y = —4, so the numerical factor in front
of Zigng should be 8 (62“)2 = 18, 432 according to (3.38]).

Finally, according to the discussion following ([3.24)), the index of I, should be the factor
times the number of non-vanishing (i.e., even) Riemann theta functions on the genus-3
surface, which is 2971(29 + 1) = 36, so the index should be 663,552. Unfortunately, the
computational power required to obtain this number is much greater than that used for
genus 2, and we have not finished running the code at this point. Nevertheless, we would
still like to propose the following conjecture:

Conjecture The index of the enhanced symmetry group I'. in SL(2,Z) is

8(29+1)96971| (3.39)

If this result were true, it would be extremely dramatic because of the following reason.
According to our ansatz for the vacuum seed, the number of Riemann theta functions
with all zero entries on the first row on a genus-g Riemann surface is 29. Then the algorithm
of computing the index of I', by counting how many new Riemann theta function show up in
total (as shown in Appendix tells us that, by fully forgetting about Sp(2g,Z) modular
transformations, we obtain the most naive upper bound on the index

2971 (27 + 1)), (3.40)

but shows that starting from Z,., all Sp(2g, Z) transformations only connect a doubly
exponentially small portion of all Riemann theta functions as g grows.

It would also be a very interesting problem to study its potential congruence and other
number-theoretic properties.

3.4 Gravitational partition functions with boundaries of
arbitrary genus

In this section, we discuss the full gravitational partition function at Brown-Henneaux central
charge ¢ = 1/2 with an asymptotic boundary being a Riemann surface of arbitrary genus
following the same strategy as in the genus-2 case. The full gravitational partition function
Zgray at Brown-Henneaux central charge ¢ = 1/2 with a genus-g asymptotic boundary X,
is again formulated as a sum over the contributions from different saddle points which are
all related to the “vacuum seed” contribution Z,. by the action of the MCG I'y of the
asymptotic boundary >,. Given the period matrix €2 that specifies the conformal structure
on the asymptotic boundary X , we should write the full gravitational partition function as

Zgrav(Qa Q) = Z Zvac(797 :)/Q)> (341)

vyel



CHAPTER 3. ESTABLISHING STRONGLY-COUPLED 3D ADS QUANTUM
GRAVITY WITH ISING DUAL USING ALL-GENUS PARTITION FUNCTIONS 69

where I' = T'.\I'; is the right coset space, the MCG T'y, of its subgroup I'. that leaves the
vacuum seed invariant. In this sum, the term with trivial v represents the contribution
from the vacuum sector (as known as the “vacuum seed") while other terms present the
contributions from other saddle points.

In the following, we will first argue in Section that the vacuum seed Zy,.(€2, Q) at
Brown-Henneaux central charge ¢ = 1/2 can be identified with the vacuum conformal block
of the 2d Ising CFT on the asymptotic boundary >, with the same period matrix €2. Then,
we will show that the I'j-orbit {Zu..(7Q,7Q)|y € T',} of the vacuum seed, which appears
in , is dictated by the projective representation p, of the MCG Ty induced by the
holomorphic conformal blocks of the 2d Ising CFT on ¥,. Subsequently, we will prove in
Section a mathematical result stating that p,, viewed as a mapping from I'; to a unitary
group, has a finite image set im(p,), which has the immediate consequence that the sum
Zwerg in is finite. Furthermore, in Section , we will prove another mathematical
result stating that the MCG representation p, is irreducible. Using the irreducibility of py, we
can show that the finite sum in for the full gravitational partition function is precisely
proportional to the partition function of the 2d Ising CFT on the asymptotic boundary .
In Section [3.4] we establish duality between 3d AdS quantum gravity at Brown-Henneaux
central charge ¢ = 1/2 and 2d Ising CFT. There, we will also further comment on our
arguments for the gravitational vacuum seed ZvaC(Q,Q). In Section we will discuss,
from the perspective of the higher-genus partition function, the fundamental difficulty in
extending the duality to the case with Brown-Henneaux central charge ¢ = 7/10.

Vacuum seed

Similar to the discussion of the genus-2 asymptotic boundary, to identify the vacuum seed,
namely the gravitational partition function contributed by the vacuum sector, we start with
a handlebody X with a genus-g asymptotic boundary 0X = X,. The classical saddle point
geometry on such a handlebody X is asymptotically AdSs [52, 54, 56, 127, (128|129, 130]. As
stated in Section we believe that the asymptotic behavior of the geometry ensures that
the Brown-Henneaux central charge ¢ = 31/2G is still applicable even if the boundary genus
g is larger than 1. In the following, we will always focus on the case with Brown-Henneaux
central charge ¢ = 1/2.

As far as topology goes, the genus-g handlebody X can be viewed as two 3-balls (the
interiors of two 2-dimensional spheres) connected by g+ 1 solid cylinders. A genus-3 example
is shown in Figure Similar to the genus-2 discussion, we believe that the vacuum seed
Zyvac should dominate the (full) gravitational partition function on the 3-manifold X in the
limit where the boundary period matrix €2 is chosen such that, for each of the solid cylinder
regions, the boundary circumference is much shorter than the length of the cylinder. In
such a limit, it is natural to consider a (local) coordinate system such that the Euclidean

2Tn this chapter, we only study handlebodies in 3 dimensions. A genus-g (3-dimensional) handlebody
means a handlebody with a genus-¢g 2-dimensional boundary.
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time direction is along the longitudinal direction of each solid cylinder region. The Hilbert
space of quantum gravity states should then be associated to a constant-time slice, which is
a disjoint union of the cross sections of each of the solid cylinders, namely the disjoint union
of g + 1 disks. For example, for ¢ = 3, the Hilbert space of quantum gravity states should
be associated with a disjoint union of 4 disks as shown in Figure [3.6]

Recall that in the discussion of the case with a genus-1 asymptotic boundary, the quan-
tum gravity states defined on a single disk are the boundary graviton states that form the
irreducible (identity) representation of the Virasoro algebra with the corresponding Brown-
Henneaux central charge ¢. For ¢ = 1/2 in particular, the boundary graviton states on a
single disk are in one-to-one correspondence with quantum states of the 2d Ising CFT within
the |x1.1]* sector.

Coming back to the genus-g handlebody, we now need to assign a Hilbert space to the
disjoint union of ¢ + 1 disks. We naturally expect the Hilbert space to be identified as
the tensor product of g + 1 copies of boundary graviton states obtained in the genus-1
discussion. In this picture, each solid cylinder region physically describes the time evolution
of the boundary graviton states.

So far, we have have been discussing the solid cylinder regions of the handlebody. Each
of the 3-ball regions in the handlebody glues together all of the solid cylinders. Physically,
each of them should describe the scattering process of g+ 1 boundary graviton states. Since
the boundary graviton states are in one-to-one correspondence with the quantum states
of the 2d Ising CFT, we further make the proposal that the vacuum seed, Z..(Q,€Q), is
identical to the vacuum conformal block of the 2d Ising CFT on the asymptotic boundary
¥, with period matrix (F_ZI, which we naturally expect to factorize into holomorphic and the
anti-holomorphic pieces, i.e.,

Zvac (82, Q) = Xvac(Q)j(vaC(Q)a (3'42)

where Yyac(Q2) and Yyac(Q2) are the respective holomorphic and anti-homolorphic vacuum
conformal blocks of the 2d Ising CFT on the genus-g surface ¥, with period matrix Q. In
fact, our proposed form of the vacuum seed is simply a natural extension of results in [52]
and [140]. To be more specific, |52] calculates the vacuum seed of the pure 3d AdS gravity
with a genus-2 asymptotic boundary in the large-c limit and also in the degeneration limit
of the boundary. The result is obtained to the order 1/c?. [140] shows that the vacuum
conformal block of a 2d large-c CFT matches exactly with the result of [52] to all the orders
calculated. Naturally, such a matching is expected to hold to all orders of 1/c. Hence,
is a reasonable assumption when we take ¢ = 1/2. In addition, we will also see in
the following subsections that a vacuum seed of the form of ((3.42))) does yield a sensible
expression for the full gravitational partition function through the modular sum (3.41)).

22In the vacuum conformal block of the 2d Ising CFT, the states propagating along the boundary of
the solid cylinder regions all belong to the irreducible representation of the Virasoro algebra (and its anti-
holomorphic copy) associated with |x1 1/
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Figure 3.6: A handlebody with a genus-3 asymptotic boundary. Each shaded disk shown
should be associated with a Hilbert space of the boundary graviton states which form the
representation of the Virasoro algebra with ¢ = 1/2.

Finiteness of the Modular Sum

To perform the modular sum (3.41]), we need to ensure that the summation over the set of
right cosets, I' = I'/\I'y, is finite. I'; is the MCG of the asymptotic boundary ¥, and I,
is the subgroup of T, that leaves the vacuum seed Z,..(Q2,{2) invariant. The finiteness of
the set I' is mathematically equivalent to the finiteness of the orbit of the vacuum seed Z,,.
under the MCG action, namely the finiteness of the set {Zyac (¥62,5) |y € I';}. In Section
3.4, we have argued that the vacuum seed Z,,. is given by the product of the holomorphic
and anti-holomorphic vacuum conformal blocks of the 2d Ising CFT. Therefore, the MCG
orbit of the vacuum seed Z,. is dictated by the I'; action on the conformal blocks of the 2d
Ising CF'T on X,.

¥, is a genus-g Riemann surface. Considering only the holomorphic vacuum conformal
block Xvac, the 2d Ising CF'T has a total of N, = 2971(29 + 1) holomorphic conformal blocks
on X,. They form an N ,-dimensional vector space which admits a I'; action:

Ny

w19 =Y (pa) xe (). (3.43)

=1

Here v € T'y, where x;(2) with ¢ = 1,2, .., N, denote the N, different holomorphic conformal
blocks of the 2d Ising CFT on the surface ¥, and p,(y) € U(N,) is an N, X N, unitary
matrix that depends on « (but not on the period matrix €2). In fact, p, is a projective
representation of the MCG I'y: For any 7,7 € I'y, py(7)pys(7) is equal to p,(yy') up to a
U(1) phase. The I'; action on the anti-holomorphic conformal blocks of the 2d Ising CFT is
naturally given by the complex-conjugated version of (3.43)). Therefore, we will only discuss
the representation p, that dictates the I'; action on the holomorphic conformal blocks in the
following discussion.

When viewed as a map from I'; to U(LV,), p, has an image set p,(I'y) = {p,(7)|y € T'y}
which is a subset of U(N,). In the following, we will prove that p,(I'y) is a finite set.
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Combining (3.42) and (3.43)), it is straightforward to see that the finiteness of the set p,(T',)
directly implies the finiteness of the MCG orbit {Z.. (79, WQ) |y € I'y} and, consequently,
leads to the conclusion that the modular sum is finite.

We will prove the finiteness of p,(I'y) by contradiction. Let’s assume that p,(I'y) is an
infinite set. First, we show that this assumption leads to the consequence that {Tr p,(7y)|y €
I'y;} also has to be an infinite set. Since py(y) € U(N,), | Trpy(v)| < N, To show that
{Tr py(7)|y € T'y} is an infinite set, it is sufficient to show that, for any small number € > 0, we
can either find (i) a pair of elements 7,7’ € I'; such that 0 < | Tr p,(y) — Tr py(7')| < € or (ii)
an element 7" € Ty such that Ny, —e < | Tr py(v")| < N, | First, we start with a sufficiently
small ¢ > 0. Since U(N,) is a compact space, the assumption that p,(I'y) is an infinite set
guarantees the existence of a pair of elements 7,7’ € I'; such that 0 < |[p,(7) — ps(7)]| < €
where ||-|| represents the Frobenius norm " py(7) is not identical to py(7'). But we still
need to distinguish two situations depending on whether p,(v) and p,(7') differ by only a
U(1) phase or not. In first situation where p,(v) differs from py(7') by a U(1) phase, the
sufficiently small € can guarantee that 0 < |Tr p,(y) — Trp,(7’)| < €. Hence, we find the
pair of elements 7,7’ described in (i). In second situation where p,(y) is not proportional to
py(7'), we notice p,(7~'v'), which is equal to p,(7)1pys(7) up to a U(1) phase, is then not
proportional to the identity operator. Then, with v = v~/ | Tr p,(7")] < N,. However,
with a sufficiently small €, p,(7”) can be arbitrarily close to the identity operator up a
U(1) phase. Therefore, we have N, — e < | Tr p,(7v")| < N,. Hence, we find the element ~”
described in (ii). Now, we can conclude that the assumption that p,(I'y) is an infinite set
has a consequence that {Tr p,(7)|y € I';} also has to be an infinite set.

In the remainder of this subsection, we will show that {Tr p,(v)|y € 'y} in fact cannot
be an infinite set and, hence, that the assumption that p,(I'y) is an infinite set is incorrect.

For any v € Iy, Tr p,(7y) can be interpreted as a partition function of the 3d Ising topo-
logical quantum field theory (TQFT). The 3d Ising TQFT is closely related to the 2d Ising
CFT. In particular, the 3d Ising TQFT assigns a Ny-dimensional Hilbert space to the genus-
g surface ¥, whose basis vectors are in one-to-one correspondence with the holomorphic
conformal blocks of the 2d Ising CFT on 3, [99]. The details of this correspondence will be
reviewed in the next subsection. A I'y action « on the genus-g surface 3, induces a unitary
transformation within the 3d Ising TQFT Hilbert space which is exactly given by py(7).

Tr py(7y) can be interpreted as the 3d Ising TQFT partition function Zirqrr(M,) evaluated
_ [0,1]xX%

= O~
from gluing the two X, boundary components of the Cartesian product [0, 1] x ¥, with an
MCG action v performed on one of the ¥, components. For a general 3-manifold M3, the

3d Ising TQFT partition can be expressed as [156| [157|

ZiTQFT(M3) = Z e%“(]‘/fs,q (3.44)

spin structure ¢

on the mapping torus M, The mapping torus M, is a 3-manifold obtained

23The full details of mathematical rigor for the rest of this paragraph will be presented in Appendix
24The Frobenius norm ||A|| of a matrix A is defined as the square root of the sum of the absolute squares

of its elements, namely ||A] = /Tr(ATA).
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where ZC represents the summation over all spin structures ¢ on M? and u(M3,() is
Rokhlin’s u—invarian@ of the 3-manifold M? with the spin structure ¢. The invariant
wu(M3,¢) is defined modulo 16 and is always an even integer. For a general 3-manifold
M3, the number of spin structures on M? is equal to |H'(M?,Z,)| = |H,(M?,Z5)|. Here,
we are viewing H' and H; as groups. |- | means the order of the group in this context. For
the mapping torus M, of £,, we can consider the following long exact sequence (see, e.g.,
Example 2.48 of |158]),

e — Hn<Eg,ZQ) — Hn(Eg,Zg) — Hn(M’y;ZQ) — anl(zg,ZQ) — .., (345)

which implies an upper bound on the number of spin structures on M, that only depends
on g but not ~:

|H' (M., Zo)| = |Hy(M,, Zs)| < |Hy(5g, Zs)| X |Ho(5g, Zs)|. (3.46)

The inequality above is a direct consequence of the Hy(X,, Zy) — Hy(M,,Zy) — Ho(X,, Zs)
part of the long exact sequence 1} Therefore, according to (3.44)), for any v € I'y,

Tr py(7) = Zirqer(M,)

2mi
€ { g anpe 16’

n=0,2,4,...,14

ay € Z, 0 S Qp, S ’Hl(zg,Zg)l X |H0(EQ,ZQ)|} . (347)

Notice that the set given in the second line a finite set. Therefore, {Tr p,(7)|y € T'y} cannot
be an infinite set, which is in contradiction to the consequence of the assumption that p,(I',)
is an infinite set. Now, we can conclude that p,(I';) has to be a finite subset of U(N,). It
follows that the modular sum is finite.

This proof of the finiteness of the modular sum @ relies on the expression of the
vacuum seed Zyqc that we argued for in Section @ In fact, as long as the vacuum
seed Z,a. can be written as a product of a holomorphic and an anti-holomorphic conformal
block of the 2d Ising CFT (or even as a sum of products of this type), the proof given in
this subsection is still applicable and the modular sum is still finite.

2For (M?3,(), it is defined as the signature of the intersection form of any smooth compact spin 4-manifold
with the spin boundary (M3, ().

26With the map Hy(M,,Zs) — Ho(X4,Z2) in viewed as a linear map between vector spaces
(over Zs), the sum of the dimensions of its kernel and its image is equal to the dimension of Hy(M,,Zs).
The image of the linear map H(M.,,Z2) — Ho(X4,Zs), as a vector space over Zg, has a dimension less
than or equal to the dimension of Hy(X,4,Zs). From the fact that (3.45) is exact, the kernel of the map
H\(M,,Z3) — Hy(X4,Z2) has the same dimension as the image of the map H:(3,,Z2) — Hi(M,,Zs)
whose dimension is smaller than or equal to the dimension of the vector space Hi(Xy,Zs). Therefore, the
dimension of the vector space Hy(M,,Zs) is not greater than the sum of the dimensions of Hy (X4, Z2) and

of Hy(%y,Zs), which implies ([3.46).
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Irreducibility of the MCG representation and the modular sum

With the modular sum (3.41)) proven to be finite, the full gravitational partition function
Zgrav(£2, Q) is then, by construction, invariant under any I'; action on the asymptotic bound-
ary X,. Since a MCG action generally transforms the holomorphic (anti-holomorphic) vac-

uum conformal blocks of the 2d Ising CFT into a linear superposition of all holomorphic
(anti-holomorphic) conformal blocks, we expect the modular sum (3.41)), together with the

vacuum seed (3.42)), to yield
Ng

Zgran (2, 2) = Z B X () x:(), (3.48)

ii'=1

where B is a N, x N, matrix. The invariance of Zg., (€2, 2) under the action of the MCG
implies that

pe(V) Bpy(y) = B, (3.49)

for any v € I';. Importantly, as we will prove later in this subsection, the projective rep-
resentation p, of the MCG Ty is irreducible. As a consequence, by Schur’s lemma, B has
to be proportional to the identity matrix to satisfy . Therefore, the full gravitational
partition function satisfies

Zin©0,) 3 5 0) (). (3.50)

In the following, we will present the proof of the irreducibility of the MCG representation
Pg-

ay a9 as ag

by | by

~~~~~

trivalent vertex for the fusion diagram to be admissible.

First, we review the connections between the 2d Ising CFT and 3d Ising TQFT that
will be useful for the proof of the irreducibility of the representation p,. On the genus-g
surface g, there are N, holomorphic conformal blocks in the 2d Ising CFT and there are N,
orthogonal quantum states in the 3d Ising TQFT. Each of the holomorphic conformal blocks
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has a corresponding TQFT quantum state and vice versa. Each of holomorphic conformal
blocks and its corresponding TQFT quantum state can be represented by an admissible
fusion diagram as shown in Figure Each line in the fusion diagram is labeled by 1, o
the set {1,0,1}. The labels {1, 0,1} should be viewed as the labels for the primary fields in
the 2d (chiral) Ising CFT and, equivalently, also as the labels for the anyons (or objects or
particles) in the 3d Ising TQFT. Note that the lines in the fusion diagrams are also directed.
In general, a directed line carrying an anyon label a is equivalent to the line with the opposite
direction and with the label a, namely the label for the anti-particle of a. The directions
of all the lines in Figure are chosen merely as a convention. In fact, in 3d Ising TQFT,
each of 1, o0 and v is its own antiparticle. Therefore, it should not cause confusion even if
we don’t specify the directions of the lines in a fusion diagram in in the discussion below.
Also, 1 represents the trivial anyon in the 3d Ising TQFT and the trivial (identity) primary
operator in the 2d Ising CFT. In the fusion diagram, a line labeled by 1 can also be erased.
Only a so-called admissible fusion diagram corresponds to a holomorphic conformal block
or a TQFT quantum state on 3,. For the fusion diagram in Figure to be admissible
in the 2d Ising CFT or the 3d Ising TQFT, we first need to require a; = b; and a, = by.
Moreover, an admissible fusion diagram also requires each trivalent vertex to be admissible.
Each trivalent vertex has two incoming (outgoing) lines and one outgoing (incoming) line.
If the anyons a and b labeling the two incoming (outgoing) lines have a fusion product a x b
that contains the anyon ¢ labeling the one outgoing (incoming) line, the trivalent vertex is
admissible. The full set of fusion rules of the 3d Ising TQFT (or the 2d Ising CFT) is given
by

Ix1=1, 1xo=0, 1xv=1,
VX 1=1vY, Yvxo=0 Yxiy=1, (3.51)

oxl=0 oxtp=0 oxoc=1+7.

One can directly show (see below) that there are N, admissible fusion diagrams (with dif-
N, =2971(2971 4+ 1) is the dimension of the representation p, of the MCG discussed above.

We will denote the Ising TQFT quantum state (and its correspond Ising-CFT confor-
mal block) by the corresponding fusion diagram labels. For example, the Ising TQFT
quantum state associated to the fusion diagram shown in Figure [3.7 will be denoted as
{a;},{b;},{w;}). Physically, in the language of 3d TQFT, one can think of an admissible
fusion diagram as describing the world lines of anyon. Therefore, in the discussion below,
we will also refer to a fusion diagram as an anyon diagram. The correspondence between
the state |{a;},{b;}, {w;}) and its fusion diagram can be understood as follows. The state
{a;},{bi}, {w;}) on X, can be viewed as generated by the 3d Ising TQFT path integral on a
genus-g handlebody H, such that 0H, = ¥,, and such that the corresponding fusion diagram
(or anyon diagram) is embedded in the core of H, (in the same configuration as shown in
Figure 3.7). In particular, there is a “special” state |vac) = [{a; = 1},{b; = 1}, {w; = 1})
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v

Figure 3.8: The Dehn twist along the non-contractible loop C' only yields a U(1) phases
e”?mha that depends on the label a.

with all of the labels on the fusion diagram set to be 1. The state |vac) can be viewed as
the result of the Ising TQFT path integral on the handlebody H, without an anyon diagram
inside (remember that anyon lines labeled by 1 can be erased). The so-defined TQFT state
|vac) corresponds to the holomorphic vacuum conformal block Xyac(€2) of the 2d Ising CFT.

Because of the correspondence between the holomorphic conformal blocks of the 2d
Ising CFT and the states on ¥, of the 3d Ising TQFT, the MCG T, acts on the states
{a:}, {b;},{w;}) via the same representation p,. The I'; action on the Ising-TQFT states
can also be understood as follows. In the picture where the Ising-TQFT states are generated
by the Ising TQFT path integral on a handlebody H, with an anyon diagram, the MCG
action on ¥, = 0H, should be extended to the whole handlebody H,. Such an extended
action of I'; deforms the anyon diagram inside H,. The deformed anyon diagram can be
rewritten in terms of a linear superposition of anyon diagrams of the original shape shown in
Figure [3.7| with different anyon labels. That is to say that when a state |{a;}, {b;}, {w;}) is
acted on by an element v € I'y of the MCG, the resulting state is in general a superposition
of many states with different anyon labels in their fusion diagrams:

pa(V){ai}, {0:}, {wi})
= Z <{a;}7{bg}v{w;}|pg(7)|{ai}v{bi}v{wi}> |{a;}7{b2}v{w;}> (3'52)

a./i 7b; 710;:{170,7/)}

A particularly simple case is when the MCG action is a Dehn twist v along a loop C' that
is threaded by a single anyon line labeled by a (as is shown in Figure [3.8). Such a Dehn
twist does not change the shape of the anyon diagram, the action p,(vc) only yields extra
U(1) phase e?™ on the state represented by the anyon diagram, where h, depends on the
anyon label a:

hi =0, hy=1/16, hy=1/2. (3.53)

Here h, can be viewed as the conformal weight of the primary field labeled by a in the
2d (chiral) Ising CFT. Also, in the 3d Ising TQFT language, we can view 2™ as the
topological spin of the anyon labeled by a.

In the following, we will show that p, is an irreducible projective representation of
the MCG TI'y. In fact, the irreducibility of p, is equivalent to the statement that the
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of the states {a:}, {b:}, {w;})

C-linear matrix algebra C[p,] generated by p, (I',) (through addition and matrix multi-
plication) is identical to the full matrix algebra My, of all N, x N, complex matrices,
namely C[p,] = My,. Obviously, C[p,] € My,. Therefore, what we need to prove is that
My, C C[p,]. The strategy of the proof is to explicitly construct all the operators of the

g

form |{ai}, {0}, {wi}) ({ai}, {bj}, {wi}| within Clp,].
We will first construct the projection operators |{a;}, {b;}, {w;})({a:}, {b;}, {w;}|, which
will be denoted as P{az} {b:},{w;} in the following discussion for any state |{a;}, {bi}, {w;}).

IS}

[RAS}
IR}

[AS]

po(ve) Haik, (bt {wi}) = €™ {ai}, (b}, {wi}),  forj=1,2,...9
po(ver)lfa}, (b}, {wi}) = €™ {ai}, {bi} {wi}),  forj=1,2,..9 (3.54)
povey){aid, (b}, {wi}) = ™5 {ai}, {bi}, {wi}),  forj=1,2,..,9 - 1.

Since e i2mhe - ¢i2mhy are all different, one can use the set of Dehn twists v, ver and

ver to fully distinguish all the states [{a;}, {b;}, {w;}). Building on this, we can construct
the following projection operators associated with any loop C' and an anyon label 1, o, or ¢
within C[p,]:

16
1 n
PC)= 150 (00).
n=1

P(C) = (1= /%) (1= py (1)), (3.55)
Py(C) =1 - P(C) = F(C),

where vo € T’y represents the Dehn twist along the loop C' and 1 represents the N, x Ny
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identity matrix. Choosing C' to be Cj, C} or C7, we see that

Fa(Cj){ai}, {bi}, {wi}) = 0o, {ai}, {bi}, {wi}),  forj=1,2,...9

By (CHHai}, {bi}, {wi}) = dpp, {ai} {bi} {wi}),  for j=1,2,....g (3.56)

Pu(Ci)Hai}, {bi}, {wi}) = dw, {ai}, {bi} {wi}),  forj=1.2,..9-1,
where a;,b;, w; € {1,0,¢}. Any projector P, (v,},{w;} Onto a given state [{a;}, {b;}, {w;})
can then be written as a product of P,(C;), P5(C%) and P, (CY). Therefore, all projection
operators Pia,} (b},{w;} belong to Clp,].

Next, we will show that all the operators of the form |vac)({a;}, {b;}, {w;}| can be con-
structed within C[p,|. Upon inspection we observe that in any admissible fusion diagram of
the form shown in Figure [3.7] the labels w; for i = 1,2, ..., g — 1 can only take values 1 or 1.
We will first focus on the case with w; = 1 for alli = 1,2, ..., g— 1. In this case, an admissible
diagram further requires a; = b; for all © = 1,2, ..., g. Therefore, the relevant states in this
case are of the form |{a;}, {b; = a;}, {w; = 1}), which will be denoted by |{a;}) in short hand
in the following discussion. The anyon diagram of |{a;}), after we have erased all the lines
carrying label 1, is simply a disjoint union of anyon loops labeled by a; 5 . ,. To construct an
operator of the form |vac)({a;}| in C[p,], it is sufficient to find an MCG element y such that
(vac|pg(v)[{ai}) # 0 which allows us to write |vac)({a;}| as |vac)(vac|p,(7)[{a:})({a;}| up to
a non-zero multiplicative constant. Remember that we have already constructed the oper-
ators |vac)(vac| and [{a;})({a;}| within C[p,]. Therefore, we only need to find the suitable
MCG element ~.

In principle, the choice of 7 can depend on the state |[{a;}). Interestingly, we can show
that there is a specific MCG element v, € I'; that works for all |{a;}). The MCG element
v can be identified as follows. Consider the disjoint union of two copies of a genus-g
handlebody H, and H, whose boundaries are given by two identical copies ¥, and ¥ of
the same Riemann surface, i.e., ¥, = 0H, and ¥ = 0H,. In general, we can perform a
MCG action v € I'y on 3} and then glue it to ;. This procedure glues the two genus-g
handlebodies H, and H into a single closed 3-manifold that depends on the choice of ~.
There exists an element -y, such that the resulting closed 3-manifold is the 3-sphere S3. We
will show that (vac|py(70)|{a:}) # 0 for any states |{a;}). Again, consider the setup with two
copies H, and Hj, of the genus-g handlebody. Performing the 3d Ising-TQFT path integral
on H, (without any anyon diagram) yields the state |vac) on its boundary 0H, = 3,. Now,
we embeded the anyon diagram of |{a;}), which is a collection of disjoint anyon loops labeled
by ay3,.4 respectively, in H,. The TQFT path integral on H; then yields the state {a;})
on its boundary 0H, = X|. When Y| is acted on by 7 and then glued to X,, we obtain
a 3d Ising TQFT path integral on S® together with the anyon diagram that was originally
embedded in H). The result of such a path integral is exactly (vac|py(70)[{a;}). Since the
the Ising TQFT path integral on S* with such anyon diagrams is definitely non-vanishing.
Therefore,

(vac|pg(v0)[{ai}) # 0, (3.57)
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Figure 3.10: Local configurations of fusion diagrams with some of the w; labels taking the
value

for any choice of a;5 4, Consequently, we can conclude that the operators of the form
lvac)({a;}| all belong to Clp,]. By Hermitian conjugation, the any operator of the form
[{a;})(vac| also belongs to C[p,].

Now, we are ready to construct the operators |vac){{a;}, {b;}, {w;}| with some of the w;
labels equal to ¢». When some of the w; labels equal to 1, the anyon diagram associated to
{a;},{b;}, {w;}) must be in one of the configurations shown in Figure in the vicinity of
the diagram where the w; labels take the value . In the Ising TQFT, we have the following
linear relations between the diagrams

o o g o T T ﬁ'\(/d
x ! - v = , 3.58
>—< /)\ (3.58)

o

which can help us relate an anyon diagram with some of the w; labels equal to ¥ to another
diagram with less of the w; labels equal to 1. For example, the leftmost configuration shown

in Figure obeys

-y < vV - oo, (3.59)

where the relation between the first two diagrams is a graphical representation of the relation
. The last equality in means that a Dehn twist along the loop C' can transform
the rightmost diagram shown in , before it was acted on by the Dehn twist, to the
diagram shown in the middle of the same equation. Remember that the Dehn twist along
C on the surface should be extended into the interior of the handlebody leading to the
transformation from the third diagram to the second in . Thus, Equation ({3.59)) shows
an example to use Dehn twists to relate a diagram with a w; label equal to ¢ to another
diagram without such a w; label. A similar relation can also be obtained for the second
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configuration shown in Figure [3.10f

| < - \ﬁ , (3.60)

where a Dehn twist along C is performed. In fact, similar procedures can be carried out
on all of the configurations shown in Figure (and their generalizations that are not
depicted). Therefore, all of the states [{a;},{b;}, {w;}) with some w; labels equal to ¢ can
be obtained from the states the states without such w; labels, i.e., the states [{a;}), by
applying one or a sequence of Dehn twists of the type shown above. Consequently, all the
operators |vac)({a;}, {b;}, {w;}| and |{a;}, {b;}, {w;})(vac| can be obtained from multiplying
the operators of the form |vac)({a;}| or [{a;})(vac| with the unitary operators associated to
the proper set of Dehn twists.

Having constructed all of the operators |vac)({a;}, {b;}, {w;}| and [{a;}, {b:}, {w:}){vac|
(regardless of the value of the w; labels) within Clpy], we can simply obtain via matrix
multiplication operators of the more general form [{a}}, {b}}, {w;})({a:}, {b;},{w;}|, which
form a complete basis for the full matrix algebra My, , within C[p,]. At this point, we have
completed the proof for Clp,] = My, and, hence, for the irreducibility of the (projective)
representation pg of the MCG for a general g.

Duality to 2d Ising CFT

In Section , we proposed the expression for the vacuum seed in terms of the prod-
uct of the holomorphic and anti-holomorphic vacuum conformal blocks of the 2d Ising CFT.
Based on this proposed vacuum seed, we proved the finiteness of the “gravitational” mod-
ular sum in Section and obtained the final expression (3.50]) of the gravitational
partition function Zg,, up to a multiplicative constant in Section . We need to empha-
size that, in our discussion, the result is purely a consequence of our arguments for
the vacuum seed Z,,. which were made from the gravity bulk perspective, as well as of the
mathematical results that we proved including the finiteness of p,(I'y) and the irreducibility
of the MCG representation p,. In fact, even if Z,, is not of the form , as long as it be
written as a product of a holomorphic and an anti-holomorphic conformal block of the 2d
Ising CFT (or even as a sum of products of this type), we can still conclude the finiteness
of the modular sum and further obtain the same expression for Zgay, based on
our mathematical results, i.e., the finiteness of p,(I'y) and the irreducibility of p,.

The right hand side of can also be naturally identified with the (full) partition func-
tion of the 2d Ising CFT on the Riemann surface >, with period matrix 2. We therefore
conclude that, at Brown-Henneaux central charge ¢ = 1/2, and for genus g, the full grav-
itational partition function Zgrav(Q,Q) with a genus-g asymptotic boundary 3, is always
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Pinch

Figure 3.11: A schematic picture for pinching off a long cylinder.

proportional to the partition function of the 2d Ising CFT Zggng(, Q) on X,
Ng
Zgrav(Qa Q) X Z XZ(Q)Xz(Q) = leing(Qa Q) (361)
i=1

At this point, we would like to come back to our proposed expression for the vacuum
seed. In Section we have already provided physical arguments that suggest that
is a natural expression for the vacuum seed. Now, we would like to further substantiate this
proposal by commenting on the resulting gravitational partition function Zgay .
is a sensible result from the following perspectives. Firstly, the gravitational partition
function for arbitrary genus ¢ is compatible with and is the natural extension of the
genus-one result obtained in [119]. Secondly, the gravitational partition function , in
the “pinching limits”, is self-consistent and is consistent with the genus-one result obtained
in [119]. The pinching limit we focus on here is the limit of the period matrix 2 of the
asymptotic boundary Y, in which some part of the asymptotic boundary >, is stretched
into a very long cylinder and eventually can be effectively viewed as pinched off. Figure [3.17]
is a schematic picture for pinching off a long cylinder. In the gravity context, such a pinching
limit has previously only been investigated, to the best of our knowledge, in semi-classical
gravity [52,159]. With the gravitational partition function given by , we can now study
the pinching limit of strongly coupled gravity with Brown-Henneaux central charge ¢ = 1/2.
In the pinching limit, intuitively, we expect the genus of the asymptotic boundary to be
effectively reduced by 1. Hence, we expect a reduction of a gravitational partition function
with a genus-g boundary to one with a genus-(¢g — 1) boundary. This physical intuition is
indeed consistent with , since the partition function of 2d Ising CFT on a genus-g
surface indeed reduces to that on a genus-(g — 1) surface in the pinching limit [141].

Starting with a genus-g asymptotic boundary, we can take successive pinching limits such
that the genus of the resulting asymptotic boundaries eventually reduces to g = 1. In this
case, implies that the gravitational partition function eventually reduces, up an overall
multiplicative constant, to the product of genus-one partition functions of the 2d Ising CFT.
This result is again consistent with |119]. Here, we have provided general arguments for the
behavior of the gravitational partition function in the pinching limits using and using
the behavior of the 2d Ising CFT partition in the same limit. In Appendix [A5 we provide
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an example of analytic studies of the pinching limit of the gravitational partition function
with genus-two asymptotic boundaries. Having provided arguments that substantiate the
result [and thereby its starting point ], we would like to conclude that based on a
natural choice for the vacuum seed, we establish duality between 3d AdS quantum gravity at
Brown-Henneaux central charge ¢ = 1/2 and the 2d Ising CFT using the all-genus partition
functions.

Besides the gravitational partition function, the mathematical result that p, is an irre-
ducible projective representation of the MCG I'y of the Riemann surface X, for any ¢ also
has an interesting implication purely for the 2d Ising CFT. It was proven in [137] that, up
to a multiplicative constant, there is only one unique modular invariant partition function
that can be constructed using 2d Ising CFT conformal blocks on a genus-one surface. To the
best of our knowledge, there is no generalization of such a proof to higher-genus surfaces in
previous works. Our result that p, is an irreducible representation of I', implies that, up to
a multiplicative constant, for any fixed genus g, there is always a unique partition function
constructed from Ising-CF'T conformal blocks that is invariant under the MCG I'y action on
a genus-g surface.

Difficulty in extending beyond the 2d Ising CFT

Solely based on the consideration of gravitational partition functions with genus-1 asymptotic
boundary, Castro et al. [119] argued that, for Brown-Henneaux central charge ¢ < 1, the only
2d CFTs that can be dual to pure Einstein gravity in AdSs; at the corresponding Brown-
Henneaux central charge ¢ are the Ising and the Tricritical Ising CFTs of central charges
¢ =1/2 and ¢ = 7/10. Our results obtained in the previous subsections on the all-genus
partition functions has established duality between 3d AdS quantum gravity at Brown-
Henneaux central charge ¢ = 1/2 and the 2d Ising CFT.

However, as we will show later in this subsection, the consideration of higher-genus par-
tition functions at ¢ = 7/10 reveals a fundamental difficulty in establishing duality between
3d gravity at Brown-Henneaux central charge ¢ = 7/10 and the Tricritical Ising CFT.

At Brown-Henneaux central charge ¢ = 7/10, we can follow the same reasoning as in
Section to argue that the corresponding gravitational vacuum seed at ¢ = 7/10 with a
genus-g asymptotic boundary >, should be identified as the vacuum conformal block of the
2d Tricritical Ising CFT on ¥,. Hence, the modular sum (3.41) at ¢ = 7/10 is dictated
by the MCG T’y representation p) that governs how the holomorphic conformal blocks of
the 2d Tricritical Ising CFT transform under the action of I'j. In complete analogy with
the connection between the 2d Ising CFT and the 3d Ising TQFT, the information about
the MCG representation p’g (which is associated with the holomorphic conformal blocks of
the 2d Tricritical Ising CFT) is fully contained in the 3d Tricritical Ising TQFT, which can
be mathematically described, equivalently, by the chiral Tricritical Ising Modular Tensor
Category (MTC) |99, |160].

By inspection, this MTC contains a sub-Modular Tensor Category called Fib, with the
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so-called Fibonacci Fusion Ruled”| (see, e.g., [161]). It follows from a very general Theorem
by Miiger [162]| that the Tricritical Ising MTC at ¢ = 7/10 must then be the tensor product
of the sub MTC Fib and the MTC associated to the chiral Ising CFT. This factorization
implies that the MCG representation p/, given by the Tricritical Ising MTC must be a tensor
product of an MCG representation given by the MTC Fib and an MCG representation given
by the MTC of the 2d chiral Ising CFT. Each of these MCG representations mentioned here
can be viewed as a map from the MCG to a unitary group.

Finally, a fundamental Theorem by Freedman, Larsen and Wang [163] states that the
MCG representations given by the MTC Fib has an infinite image setﬁ It then immediately
follows that the image set of pj must also be infinite, i.e., the set p|(I'y), where Iy is the
MCG of the genus-g Riemann surface, is an infinite set. This result implies that at Brown-
Henneaux central charge ¢ = 7/10, the modular sum of the gravitational partition function
in cannot be defined for genus g > 2 because the sum occurring in this equation has
an infinite number of terms and cannot be naturally regularized, as discussed in Footnote
Footnote [l

2"The MTC Fib has only two labels (=“simple objects” or “particles” or “anyons” types) which, when
denoted by 1 and z, possess the Fusion Rules x xz =1+x, I xx =2 x1 =2, 1 x 1= 1. Strictly speaking,
the MTC Fib that is needed here is the conjugate of the MTC Fib typically used in the literature [161].

28In fact, this image set is dense in a unitary group, a result that, as is well known, is related to the
fundamental importance of the Fib MTC for the subject of fault-tolerant quantum computation.



84

Chapter 4

Probing holography in p-adic CFT

4.1 Introduction

Explorations in the past three decades between the interplay of algebraic number theory
and string theory have been emerging. Once one defines the p-adic norm, a well-known
phenomenon appears in string scattering amplitudes from adelic products. We can construct
the real Veneziano amplitude A (s, ¢,u) for the open bosonic string theory at tree-level
from the product over all prime numbers of the p-adic Veneziano amplitudes A® (s, ¢, u)
[164. |165]

-1

A (s, t,u) = [HA(”)(S, t,u)] =Bo(1=Fky ko, 1 —Fky - ks) = / da|x| Frh2| 1 — p| ks,

, R

(4.1)

where ||y is the usual norm in R and s,¢,u are the Mandelstam variables which are ex-

pressed in terms of the tachyon momenta ky, ks, k3, so that k? = 2. An interpretation of the

p-adic string is given by [166|, where the open string worldsheet is replaced by a Bruhat-Tits
tree (defined in Section 4.2 therein) and its boundary as the p-adic numbers.

Recently inspired by this perspective, Gubser et al. [167] and Heydeman et al. [16§]
proposed a toy model of a non-Archimedean version for the Euclidean AdS/CFT correspon-
dence [32]. In the simplest topology, the usual continuous bulk is replaced by an infinite,
symmetric, and homogeneous (i.e., no preferred central vertex) tree of uniform valency p+ 1.
This tree, known as the Bruhat-Tits tree (or Bethe lattice), is expressed as the left coset
space

T,= PGL(2,Q,) /PGL (2,Z,), (4.2)

where PGL (2,Q,) is the p-adic global conformal groulﬂ, whose maximal compact open
subgroup is PGL (2,Z,). The definition (4.2)) is reminiscent of the hyperbolic 3-space H? ~
SL(2,C)/SU(2) with boundary P!(C), describing Euclidean asymptotic AdS;. Additionally,

Tt is a totally disconnected locally compact (TDLC) group, with respect to the Q, topology as explained
in Section 10.5 in [169], but not compact. Its subgroup PSL (2,Q,) is neither compact nor open.
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for the unramified finite Galois extension Q. of Q,, the tree T,» has valency p" + 1 and
boundary 97,» = P'(Qpn). Using unramified extensions, we are not limited to just one-
dimensional boundaries but we can think of Euclidean AdS,;; analogous to T}».

With this specific discretization of the bulk, one can put physical degrees of freedom on
its vertices. The simplest case is to introduce scalars. Furthermore, the tree as well as its
dual graph can be identified with tensor networks in order to study bulk reconstruction,
quantum error-correction codes [168|, 170] and holographic RG flow [171].

One can study more general fields, such as spins, on the trees. The first realization of
spins in p-adic AdS/CFT was introduced by Gubser et al. [172, |173] with results on the
bulk dual to non-scalar operators and dynamical gauge fields. In particular, they computed
the holographic two-point correlator of an operator O, dual to a spin state |¢)). One of
the main conclusions was that the fermionic two-point correlator is of similar form to the
scalar two-point correlator up to normalization and a non-trivial sign character resembling
the operators’ statistics.

There are other exotic and interesting applications in the context of the p-adics. An
example is to understand higher-order versions of the Klebanov-Tarnopolsky model for both
the real and p-adic cases. Recently in [174], the authors analyzed the situation for ¢ prop-
agators at each interaction vertex as well as found an adelic product relation between the
p-adic and real eigenvalues of the ladder operator integral to calculate four-point correla-
tors. In addition, [174] provided nice comparisons with matrix field theory regarding the
propagators’ symmetry group.

Another use of p-adic is to use the Berkovich space to iencode the renormalization group
flow of the energy spectrum of the theory of a particle-in-a-box [175].

Given these progresses, the status quo of p-adic AdS/CFT seems rather one-sided in the
sense that the p-adic CFT is not well-formulated, because a Hilbert space is absent. Melzer
[176], and later Harlow et al. [177] and Gubser-Parikh [178], have shed some light on its OPE
structure, but its partition function and local conformal algebra were not duly explored. As
mentioned earlier, it is very natural to describe global AdS, as a Bruhat-Tits tree. One
well-known phenomenon studied in 3d gravity is the BTZ black hole. Heydeman et al. [168|
formulated a p-adic BTZ black hole, and it serves as one motivation for this chapter in the
hope of extracting meaningful information for p-adic CF'Ts. We calculated the bulk partition
function and showed it has many key features as in [5], such as Bekenstein-Hawking area
law in 3d gravity. We hope this partition function could initiate future works to match the
boundary CFT data.

A meaningful direction to gain more insight on the holographic p-adic CFT’s structure is
to study the constraints on the averaged three-point coefficients for p-adic BTZ black holes
as done in regular BTZ black holes [145]. We found the averaged three-point coefficient
for a p-adic BTZ black hole in the limit of large horizon [ to obey a similar exponentially-
decaying behavior e=2! as for regular BTZ black holes [145], where A is a boundary CFT
data. One would hope to recover this result purely from the Lie algebra representation of the
holographic p-adic CFT. However, we make a strong argument against the existence of a local
algebra, and therefore we turn to the group representations, where a classification theorem
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comes in handy. We analyze each case, and propose a way of checking which representation
of p-adic CFT fits the genus-1 bulk calculation.

The rest of this chapter is organized as follow. In Section[4.2] we review mathematical and
physical concepts relevant to p-adic AdS/CFT. In Section [4.3| we solve Laplace problems on
Bruhat-Tits trees and p-adic BTZ black hole geometries via linear recurrence, and therefore
obtain the partition functions, whose various implications are discussed. In Section [4.4] we
calculate the one-loop Witten diagram describing the 1-to-2 scattering between two types of
bulk scalars dual to light primary fields on the boundary in the background of a p-adic BTZ
black hole, and the result imposes a constraint on potentially precise formulations on p-adic
CFTs. In Section [4.5] we review the representation theory on PGL (2,Q,). Furthermore,
we present an analysis on possible group representations as Hilbert spaces for p-adic CFTs.
Finally, we conclude with a discussion of the results and future directions in Section [4.6]

4.2 Summary of p-adic concepts

p-adic numbers

As mentioned in the introduction, in constructing the p-adic AdS/CFT correspondence, the
non-Archimedean field @, plays an important role. We briefly review Archimedean and non-
Archimedean fields before discussing Q,. Let F be any field with a norm | - |¢ which obeys
the standard axiomsﬂ for any =,y € F [179):

1. |z|p > 0 and is saturated when z = 0;

2. |z -yl = [z]r - |ylr;

3. |z +ylr < |z|r + |y|r (triangle inequality).

When F is Archimedean, its norm obeys sup{|n|p : n € Z} = oo0; whereas when F is
non-Archimedean, its norm obeys sup {|n|r:n € Z} = 1. The major difference between
Archimedean and non-Archimedean fields is that only the latter has ultrametricity [169):

[z + ylp < sup (|z|r, [y|F), (4.3)

implying that all triangles over an non-Archimedean field are isosceles.

Characteristic of IF is defined as the least n such that when one adds up n copies of 1 € F,
one obtains zero. Naturally, Q, R, and C are fields of characteristic zero, while the set of
residue classes modulo a prime p is a field of characteristic p [180]. We are concerned with
Qp, a characteristic zero non-Archimedean field. To obtain degree n unramified extensions
Q,», we adjoin Q, by a primitive (p" — 1)™ root of unity [180].

2Rigorously speaking, in algebraic geometry and algebraic number theory, these axioms define the term
“valuation” or “absolute value”, differing from the “norm” in functional analysis, whose absolute homogeneity
replaces the second axiom here. However, we still abuse the term “norm” throughout this chapter.
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For any prime number p, Q, is a completion of Q with respect to the p-adic norm |- |,
169|. To define | - |,, we note that any x € Q,\{0} has a unique p-adic expansion
P P

00
_ n
T =..03000100. A_10_2...0y, = E app", (4.4)
- VZ \ . - ~ J n:Up
m Zp fractional part of x

where a, € {0,1,---,p — 1}, and v, is the smallest integer index such that a,, # 0 [165].
The p-adic norm of z is then defined as

2l = p. (45)

Notice that although 0 € Q, has no p-adic expansion, we naturally define |0, = 0.

One can ask do other completions of QQ exist? The answer is given by Ostrowski’s theorem
[169]: the only non-trivial norms on Q are those equivalent to the | -|, or the ordinary norm
| - |oo- In other words, Q, and R are the only completions of Q. For unramified extensions
of Ostrowski’s theorem for Q,n, see [179, [181].

We here list notations for subsets of Q, used in later sections. We denote the multiplica-
tive group of the p-adic field as Q¥ = @,\{0}, the ring of integers of Q, as Z, = {z € Q, :
|z|, < 1}, and the set of units in Q, as U, € Z, such that Vx € Uy, |z|, = 1.

Bruhat-Tits tree

The Bruhat-Tits tree is an infinite tree structure built on equivalence classes of the Q%—lattice
L which are spanned by two linearly independent vectors u,v € QZ%:

L= {au+bv€@§|a,b€Zp}. (4.6)

The equivalence relation between the two Qz—lattices L and L' is defined as: £ ~ L' if
L = cL' for some c € Q.

Based on these definitions, a Bruhat-Tits tree is then constructed by assigning each
equivalence class of the @g—lattice to one vertex on the tree. It is straightforward to see that
by applying the PGL (2,Q,) group actions on a lattice equivalence class in the following
fashion

M :l=(u,v) » (Mu,Mv), M eGL(2,Q,), (4.7)

we obtain another new equivalence class. Any subgroup which is conjugate to PGL (2,Z,)
will leave a lattice equivalence class invariant, so the Bruhat-Tits tree T}, is identified with
the coset PGL (2,Q,) /PGL (2,Z,).

On the tree we also need to clarify the meaning of an edge between two vertices. There-
fore, a relation between two lattice equivalence classes £ and £’ is introduced as described
in [166] and reviewed in the Appendix of [182]: they are called incident if p£L C L' C L, and
we connect them by an edge.
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Using this incident relation to define edges on the Bruhat-Tits tree has two advantages.
Firstly, this relation is reflexive, so the Bruhat-Tits tree becomes unoriented, with exactly
one edge between two adjacent vertices. Secondly, PGL (2,Q,) action on the tree preserves
the incident relation between any two lattice classes, leaving the number of edges between
any two vertices invariant. If we use the edge number as a natural metric on the tree, then
we see that PGL (2,Q,) is its isometry group. This fact is significant, because in usual
AdS/CFT, the bulk isometry group is to be identified with the boundary conformal group.
Indeed, the suitable conformal group for the tree boundary P*(Q,) is the same PGL (2,Q,),
acting in a fractional linear fashion. Therefore, we consider the Bruhat-Tits tree as the only
candidate for p-adic AdS bulk[]

Apart from the formal definition, a Bruhat-Tits tree is also visualized as Figure in

. .,

"""""""

Figure 4.1: The Bruhat-Tits tree for the 3-adic numbers. The boundary 973 = P! (Qs)
represents the infinity.

the representation as follows. From [182], we know that incident to any lattice class (u,v),
there are always p + 1 other lattice classes: (pu,v) and (u + nv, pv) where n € I, taking p
possible values, indicating that the Bruhat-Tits tree is homogeneous with valency p + 1.
Given the valency, there is a good way to translate the tree into p-adic numbers. Because
any p-adic number has a unique expansion (4.4)), it is determined by a unique sequence of
(an), an, € F,. We assign coordinates (z, zp) on the Bruhat-Tits tree, where 2, is the prime
number p’s exponent, regarded as a level in the tree, and z is a p-adic number up to O(z)
precision. Therefore, each path on the Bruhat-Tits tree from (29 — o0) to the boundary

3Iterative refinements on vertices of a Bruhat-Tits tree in the context of holography is proposed in Section
5.3 of [167], and is later extended in [183].
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P! (Q,) uniquely represents a p-adic number. This is graphically presented in terms of a
“trunck” and “branches” in [167].

An invitation to p-adic CFTs

The majority of CFTs of our interests are “one-dimensional” ones, however, we will see that
all higher-dimensional p-adic CF'Ts are very similar to ordinary 2d CF'Ts. We review Melzer’s
axioms [176] on p-adic CFTs. They must have operator product expansion algebras (OPA),
just like ordinary CF'Ts. The main difference between ordinary and p-adic CF'Ts is that local
derivatives do not exist in the latter due to Q, being totally disconnectedﬁ More explicitly,
this is seen by applying Leibniz’s rule to C-valued characteristic (or indicator) functions over
Q,, all of which are locally constant [176]. Finally, to make the OPA complete, all fields are

primary :
¢, (') (dz')" = go(w)(dz)?, (4.8)

and the following OPE must exist

Z (,9)¢a(y) (4.9)

with C¢ (z,y) € R.
Here A is the conformal dimension, dz is the Haar measure defined on Q,, and the
transformation x — 2/ € P! (Q,) is a fractional linear one:

, _ar+b a b

so the Haar measure and scalar field transform respectively as:

, | ad—bc
ar +b ad — be |78
=) = | — ) 4.12
Ga(T) = (ba(cx—l—d) (cx + d)? » Pal) ( )

Since the bulk is a Bruhat-Tits tree and the boundary consists of p-adic numbers, evaluating
correlators are more convenient than that in the ordinary case. For instance, the general
two- and three-point functions for local operators O;, Oy, O3, ... with different conformal
dimensions Ay, Ay, Ag, ... respectively are of similar form to real CFTs’ [167]:

C, C
(O1(21)0a(22)) = =205 (O1(21)Oa(22) O5(23)) = O (4.13)
’2’12 ’p ’2'12|p \223|p |231|

4By totally disconnected for the p-adic numbers, we mean that two open sets are totally disjoint. Whereas
the Archimedean field R is a connected metric space.
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up to contact terms. Here z;; = z; — z;, A2 = Ay + Ay — Ay, and the z;-dependence is
completely fixed by the invariance under fractional linear transformations. Ultrametricity
constrains three- and four-point functions to be exact in cross-ratios in the p-adic norm,
unlike the usual ones [167, [176]. The OPE coefficients form an associative algebra and
primary operators can have arbitrary dimensions, but the unit operator must have dimension
0.

Another property worth mentioning about p-adic CFTs is that they are automatically
unitary unlike their Archimedean counterparts. However, as opposed to finite-dimensional
representations of the local si(2,C) in usual 2d CFTs, the p-adic global conformal group
PGL(2,Q,) lacks a Lie algebra, leading to the absence of a central charge or a good notion
of state-operator correspondence.ﬂ Despite lacking both local conformal algebra and descen-
dants, we will discuss in Section on allowed group representations of a p-adic CF'T.

p-adic AdS/CFT and BTZ black hole

In order to construct a p-adic version of the BTZ black hole, we first review the ordinary
BTZ black hole, a classic black hole solution to the 3d Einstein equation [45]. A non-rotating
Euclidean BTZ black hole is described by the following complete Riemannian metric |186]:

ds® = (7°2 — ri) dt* + dr? 4 r’d¢?, (4.14)

2 _ .2
r Ty

where 7, is the outer horizon radiusﬂ related to the ADM energy and central charge of the

boundary 2d CET by [145|
12F
re =14/ — —1. (4.15)
c

Similarly, a p-adic BTZ black hole can also be formulated by solving classical equations of
motion. In [187], Gubser et al. proposed to use edge length dynamics to formulate “gravity”
(beyond linearized regime) on Bruhat-Tits trees, and even though large diffeomorphisms were
seemingly not included there, this “gravity” does result in BTZ black holes with non-uniform
lengths, incorporating topological changes by the 1-cycle. Their idea has been generalized
to weighted graphs [188] 189].

However, to avoid technicalities above, we choose to review the p-adic BTZ black hole
constructed instead by Schottky uniformization as proposed in [168], in which the black hole
is a quotient of the Bruhat-Tits tree (analogue of the zero-temperature AdS;), similar to the
construction of a regular Euclidean BTZ black hole [46].

In Euclidean AdS;/CFT, at zero temperature, the bulk is identified with the hyperbolic
space H? and the boundary is the sphere at infinity S%, on which its conformal group is

oo

SExamples of ordinary 2d CFTs with ¢ = 0 include special classes of logarithmic CFTs, see, e.g., |184,
185).

6This metric is in a compact form, nevertheless agreeing with (2.22)) upon setting J = 0 (non-rotating)
and [ = 1.
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PSL(2,C), same as the isometry group of H®. Schottky uniformization provides us a way
to construct higher genus elliptic curves on the conformal boundary. In this complex case,
a genus-1 closed curve corresponds to 72 torus and the solid torus bulk is topologically
equivalent to the BTZ black hole. Generally for a genus-n curve, Schottky uniformization
starts from picking a PSL(2,C) discrete subgroup called Schottky group T with n generators
{7, "+ ,7}. Each ; has fixed points in S2 , and the genus-n curve is constructed as S2 /T’
after removing those fixed points. The authors in [168, [170] extended this procedure to
construct the p-adic BTZ black hole, which we will review and follow.

For a genus-1 boundary, I' = ¢” is generated by ¢ € C*. Fixed points 0, co of the action
by ¢ need to be removed from P!(C) before taking the quotient. We define the domain of
discontinuity A = P'(C)\ {0, 00} and hence the quotient C' = A/q”. Meanwhile, we also take
the quotient of the bulk H?, and the total quotient space is H?/¢” U C, which is visualized as
a solid torus. We should mention that the generator v can be written in terms of parameter
g = ¥ where 7 € C is the torus’ moduli.

In the BTZ black hole (£.14)), r; is a solution-classifying parameter to be realized in
Schottky uniformization. Note that the Schottky group ¢*’s generator ~ can be written as
[, [168]:

N|=

(qj q? )EPSL(2,C). (4.16)

The Schottky parameter q is written in terms of horizon radius ¢ = €™+ [168, |170], so
ry = % log q, proportional to the Bekenstein-Hawking entropy.

A torus T? is the same as a complex lattice Z + 7Z, 7 € C, while in the p-adic case,
this viewpoint is not true due to p™ — 0 forcing many lattice equivalence classes to be
0. However, we could still select one Schottky group I', a discrete subgroup of PGL (2,Q,)
to form genus-n curves from P! (Q,). The genus-one curve is the Tate uniformized elliptic
curve B, = QX /¢* and genus-n curve is the Mumford curve. We demonstrate the genus-one
example by picking I' generated by ¢ € Q, so that

(o)

Again we remove its fixed points, which are still {0, 0o}, from P* (Q,), then the total space
including bulk and boundary is B = T, U (P* (Q,) \ {0, 00}), where T}, is the Bruhat-Tits
tree from Section . The quotient B/q” is visualized as a graph with one regular polygon
at the center. On each vertex of the polygon, a “Bruhat-Tits” inhomogeneous subtree is
attached as seen in Figure [4.2]

This graph could also be considered as a p-adic BTZ black hole, whose horizon area is
the number of edges [ of the central polygon, with [ related to the Schottky parameter ¢ via
[ = log, \q|pm This also adds a restriction: |g|, > 1. In Sections {4.3| and , we will use the
above graph as the p-adic BTZ black hole and perform calculations on it.

"The log,, denotes the ordinary logarithm with base p, not the p-adic logarithm.
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Figure 4.2: (I = 3, p = 3) BTZ black hole is at the center. The dotted lines represent the
Bruhat-Tits tree structure repeating itself in a fractal fashion.

4.3 Path integrals

In this section, we try to calculate the partition function of the boundary p-adic CF'T directly
from the bulk by resorting to the Gubser-Klebanov-Polyakov-Witten (GKPW) dictionary.
Recall for a boundary CFT local operator O [190] 191]

Zysa[0)(2); 0] = <exp (—Z /| ddw¢g<x>0@'<x>> > BN

CFT on OM

with the boundary condition on bulk scalar field ¢'(z,2) = 2¢2¢}(x) + (subleading) as
z — 0, where z is the radial coordinate.

When we set field values ¢ on the conformal boundary to be zero, it is expected to
calculate the CFT partition function, see e.g., Eq.(72) in [167].

In our case, the bulk path integral on a Bruhat-Tits tree, is

Ztree = /D¢a68tree[¢a]7 (419)

where the action Siee[(] is for massive scalar fields with sources on the tree, and the subscript
“a” labels vertices. Naturally, this action is [167]

Stree[¢a] - Z % (Qba - ¢b)2 + Z (%m§¢2 - Ja¢a> (42())

(ab)
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with a and b labelling the tree’s vertices and » | (ab) refers to summing over adjacent vertices
on the tree, and J, is a source.
As expected, the linearized equations of motion for a scalar field ¢, are

(O+m2) ¢o = Ja, (4.21)

but with a modification to the regular Laplacian. The modification is that the Laplacian
here is the lattice/graph Laplacianﬁ and is defined as a a positive definite operator

D¢a = Z(Qba - ¢b) (422)

(ab)
With this Laplacian to our disposal, the desired partition function is easily calculable via

1

\/(D—f-mg)/’

where the superscript ’ means omitting zero modes, which is absent as we will see later.
Another way to obtain the partition function is through the use of a tensor network
formulation for p-adic AdS/CFT by [171]. These authors put a tensor network on the
Bruhat-Tits tree, similar to [168] but different from the dual graph in [170]. Then by making
analogies with ordinary diagonal CFT&H7 their proposed “torus” partition function iﬂ:

> gl (4.24)

Here a labels all primary fields, and A,’s correspond to arbitrary scaling dimensions accord-
ing to Melzer’s axioms, and are compatible with the associative operator product algebra.
Conspicuously, multiplicities here are all one, which is not the case for ordinary non-diagonal
2d CF'Ts.

A caveat is that our calculations are only for bulk scalar fields and not for the real
gravitational contributions to the presumably full bulk path integral[| In the following
three subsections, we first turn off the mass mg, and then turn it back on near the end of
this section.

Zy = (4.23)

8Connection Laplacian [167] and Hodge Laplacian |168, [187] are proved to be equivalent on Bruhat-Tits
tree.

9“Diagonal” means that torus partition functions are diagonal invariants, such as Liouville theory and
(A, A)-series minimal models, e.g., Ising model. Non-diagonal CFTs are the majority, and include logarithmic
CFTs, su(2) WZW models in D and E series, and (4, D)-, (4, D)-, (4, E)- and (E, A)-seires Virasoro minimal
models, where (A4, Dy), i.e., the 3-state Potts model being the simplest one.

10T be precise, it is a genus-1 Tate curve on the boundary of Bruhat-Tits tree.

H Attempts at formulating gravity on Bruhat-Tits trees include [187], but our techniques do not apply to
calculating gravitational partition functions there.
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Laplace problem on Bruhat-Tits trees

As promised, in this subsection and the next, we study massless scalars, which are dual to
boundary marginal operators in the usual AdS/CFT context [168| 191].

We first define a few concepts on the Bruhat-Tits tree to be used in later sections. On
this homogeneous tree, one can arbitrarily pick the central point and assign any vertex with
“depth n,” the number of edges going outwards from the center to that vertex, and the center
has depth 0.

When we talk about scalar fields on the Bruhat-Tits tree, we refer to a real-valued scalar
function globally defined on each vertex of the tree. The spectrum has been considered in
to some extent, for example in [192], and here we solve the problem in more settings.

We show the isotropy of the spectrum, i.e., the lack of angular modes, as follows: one
starts from the conformal boundary placed at a fictitious finite radial cut-off, which will later
be taken to infinity, with boundary condition ¢|s7, = ¢ = 0, then p of them connect to
one inner point with value ¢_;1. This point connects to a point further inwards with field
value ¢y _s. Following the definition of Laplacian and denoting the eigenvalue of the
function ¢;,7 = 1,..., N as A, there is a local recursion relation around the valency-(p + 1)
vertex:

p(on—1—0) + (¢n_1 — ON_2) = APN_1, (4.25)

implying ¢n_2 = (p+1—A)pny_1. Now at the depth n = N —1, for another point connecting
to the point with value ¢n_1, we suppose it has another value ngN 1 # ngN 1. This value
must satisfy the same relation with a fixed ¢n_o. Thus, we have ng 1= ¢n_1. By
induction on depth n, one can show that all field values of the same depth n on the Bruhat-
Tits tree are equal and we denote them as ¢,,; this is due to the fact that the single central
vertex is reached in the same number of steps starting from any boundary points.

We consider the sourceless case where J = 0 in . The recursion relation starting
from n = 2 for ¢,, now reads

P(bn-1 = 0n) + (Pn-1 — Pn-2) = Apn1, (4.26)

whose characteristic equation has two roots:

l+p—At/(A—p—12—4p

= 4.27
ax o (4.27)

Field value at depth n equals the general solution to the linear recurrence (4.26))
¢n = cra} +c_a”, (4.28)

and we solve for coefficients ¢4 with two initial conditions at depths 1 and 2:

2
¢ = (1 - L) G, ds =" - ¢1 al (1 A + 4 2) o, (4.29)
P+ p p p+p
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where ¢ at the center is not fixed. The coefficients are

1 2 1 dp+A
cp= |-+ P Pt o (4.30)
2 20+ 1)/(p+1 =22 —4p

Now we treat as an degree-n polynomial equation in A. Numerically we see that
somewhat surprisingly, all roots of the equations for any n and p (primes and non-primes
alike) are real. And in particular, when n is odd, there is one universal root A = p+ 1. Also,
the constant term in the polynomial ¢, (p, \, ¢g) is always ¢g, while the coefficient of the
highest-degree term is always (—1)" ¢/ (pN +pN *1). Then by Vieta’s formula, the product
of all roots of the polynomial in A is

pN 4+t (4.31)

which is in fact insensitive to the exact boundary value of ¢y.
Since — log det () is radius-like divergent ~ N, in principle we are supposed to regularize
it by local counterterms. We notice that the number of boundary points is also p™¥ + p¥=1,

which dominates the number of points in the bulk for large /V:

(p+1)pN—2 N—oo P (N_i_pN—l)‘

4.32
= p— (4.32)

Giving this observation, let us first recall that in the usual AdS3/CFTs, there are several
places where various divergences appear. First, in the one-loop determinant of (J + m? for a

massive scalar on H? [54],
1 dt 67(m2+1)t
—Vol (H? — 4.
o VO ( )/ t(4mt)3/2’ (4.33)

there are 1/t UV divergence and Vol(H?) IR divergence, both removable by local countert-
erms. In another context, for the on-shell Einstein-Hilbert action with constant metric:

1 3 Vv
— —2\) = —— 4.34
1%G/ﬁx¢mR )= Tmar (4.34)
where the cosmological constant A = —1/I* with [ being the AdS; radius, and V is the

spacetime volume, one can introduce a height cutoff € in the upper-half space model. Then
the regularized volume becomes [56]:

2
Y S S
V(r) =7l (262 5 In ) : (4.35)

where the first boundary-area divergence can be removed by adding a boundary term lo-
cal in boundary metric, and the second logarithmic divergence can be removed by a local
counterterm as well.
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In our case, the situation is different from these usual cases, since our boundary area
appears in ¢ instead of the action S. The naive speculation is that the volume (i.e., number
of vertices) on a Bruhat-Tits tree grow exponentially instead of power-law. By mimicking
the removal of boundary-area divergence in ordinary AdSs above, we propose the partition

function:
» 1/2
Ztree - (—) . (436)

p—1

We then investigate the behavior of the smallest and the largest eigenvalues of the Lapla-
cian [Jas N — oo at a fixed p. We used Newton’s method to find the upper bound on A\; and
the lower bound on Ay, and they seem to converge numerically; although intermediate eigen-
values do not converge, which is natural since the amount of them increases as N increases.
For example, see Figure 4.3 when p = 5 and N = 3,...,51 blue for their convergence. Via
Newton’s method, we obtain the lower bound ~1.52786 after 8036 iterations, and the upper
bound ~10.4721 after 474 iterations.

Amin Amax

.o
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.o
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I.‘.
.
.

10.3
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10 20 30 40 50 10 20 30 40 50

(a) Convergence of the smallest eigenvalues. (b) Convergence of the largest eigenvalues.

Figure 4.3: Numerical bounds on the smallest and the largest eigenvalues via Mathematica’s
NSolve, as the fictitious boundary cutoff N increases up to 51. They agree with results from
Newton’s method.

Now we pursue in finding the eigenfunctions on Bruhat-Tits trees. Unlike discrete Lapla-
cians on a multidimensional regular rectangular grid with Dirichlet boundary conditions, the
universal solutions to the second-order linear recurrence cannot be expressed in terms of a
linear combination of Chebyshev polynomials of the first and the second kinds due to the
nontrivial topology of Bruhat-Tits trees. The first expression in contains a constant
term ¢, so there is no inner product over a finite real interval [—a, a] which makes ¢; and
¢o orthogonal to each other. Another way to see this impossibility is that there is a linear
term in A\ for the second expression in (4.29)).

Numerically, we observe that the decay is almost exponential, but faster than the asymp-
totically decay ~ 27!/2 of Bessel functions of first and second kinds J,(z) and Y,(z). In
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Figure , we plot the real partlﬂ of log (¢n/b0) ,n =1,...,51, N = 51. The large but finite
negative value is an artifact that we can only compute for finite /V; ideally we should get
log 0. Notice that although their semi-log plots look almost the same, at least to the naked
eye. However, if one plots their face values, they look quite different and consistent with the
approximate orthogonality:.

Amin Amax

(a) Asymptotics at the smallest eigenvalue. (b) Asymptotics at the largest eigenvalue.

A7 A32

10 20 30 40 50 ®ee 10 20 30 40 50

° .
20} . -201
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ce,
60|

-80

(c) Asymptotics at the 7' largest eigenvalue.  (d) Asymptotics at the 32" largest eigenvalue.

Figure 4.4: Asymptotics of Re[log (¢,/¢0)] evaluated at different eigenvalues as the cutoff
N increases, with p = 41.

On the other hand, within the exponentially decaying envelope, ¢,, is discretely oscillating
around zero as n increases. This oscillatory behavior is shown in Figure after stripping
off the exponential envelope.

Based on numerics, for a radial cutoff at depth N, we propose the following ansatz:

1—1

N (4.37)

Oni = p "% cos (kn T+ ¢) ®0,i

12The field value ¢,, can be negative at many different depths n.
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AL T
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th th
n n
(a) Oscillation of ¢n/¢o at the 15 largest (b) Oscillation of ¢,/¢g at the 33" largest
eigenvalue for p = 239. elgenvalue for p = 239.

Figure 4.5: Oscillations of eigenvalues over the cutoff N, where red dots are data points
from Mathematica s NSolve, and blue sinusoidal curves with phase shifts are fittings with
frequencies n /o at the ih largest eigenvalue,n =1,...,N—1,i=1,...,N.

N

where 1 < ¢ < N labels N eigenvalues, n is the depth, and k and v are to be determined.
After plugging this ansatz for ¢,,; into the recurrence relation (4.26)), we obtain:

0=p"/ sm(an 117T+¢>—i—()\i—p—l)sin(k%w—i-w)

+p'/?sin (k%w + @b) (4.38)

—sin (k%w + 1/)) [2191/2 cos (k]if__llw) + (N —p— 1)] .

The eigenvalues are asymptotically

— 1
Ni=p+1—2p"%cos (k;\f— 17r) : (4.39)

Integer k£ in the frequency in can freely vary ab initio, but by simply plotting the
spectrum {\;} agaisnt i at a fixed N, we can see that the profile is monotonically decreasing
as in Figure Hence k is fixed to be 1. The validity of this frequency is numerically
tested up to p = 2477 (larger p’s do not increase computational complexity significantly).
However, the phase shift ¢ in has to be determined numerically and is conveniently
unimportant for us.

The eigenvalues are exact only if they correspond to ¢, ; in at large depth
n [i.e., far away from the initial condition at the center) and N — oo. For p = 5,
we see that the largest and the smallest eigenvalues are asymptotically 6 4= 21/5. These are
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Figure 4.6: The spectrum {\;} of Laplacian [J when the cutoff is N = 51, ordered from the
largest to the smallest, agreeing with (4.39)) with & = 1. The horizontal axis is 1 <i < N,
not cutoff N or depth n.

consistent with results from Newton’s method as well as Vieta’s formula in the sense that
the summation of the eigenvalues is exactly (p+1)N. Additionally, all the eigenvalues
are confined within an interval [—2\/]_7, 2\/5}

Overall, this is a different spectral decomposition of Laplacian on Bruhat-Tits tree than
the plane-wave basis [166, 168, |192], in that eigenfunctions here may oscillate around zero.
Also a key feature of discrete Laplacian here on trees is that solutions to the Laplace’s
equation averaged over the circular boundary P! (Q,) is not equal to the value at the center,
as opposed to the continuous Laplacian.

Finally, it is a trivial exercise to change the valency to p™ 4+ 1 in the recurrence
and repeat everything above if one wants to study the scalar on 7,» which models AdS,, ;.

Laplace problem on BTZ graphs

We now turn to study the Laplace problem for BTZ black holes. Conceptually, to calculate
the determinant of Laplacian [J, we are not able to use its heat kernel as did in [54] for
continuous AdSs, because the BTZ graph is essentially a constant-time slice [168|, and there
is no good notion of “time”.

In terms of recursion relations here, the only modification on the linear recurrence for a
BTZ graph are the initial conditions on ¢, in terms of ¢q as explained below.

The major difference between a p-adic BTZ black hole and Bruhat-Tits tree is that the
field values on the event horizon (depth 0) could be different. Given the horizon’s area I,
the field values are labeled as ¢g o, @01, ..., @0, - .-, ®01—-1, Where a specific s labels a horizon
vertex as well as the entire subtree rooted at that vertex mentioned in Figure 4.2

13Similarly-looking bounds on eigenvalues in the context of principal series representation of GL (2,Q,)
without boundary conditions on a Bruhat-Tits tree were obtained in [192| (Theorem 5.4.2).
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Now, as shown in Figure , we go inwards from the boundary (at depth N) where all
the fields vanish and label the field value on the layer next to the boundary as ¢n_;. All
following discussions are on the subtree rooted at vertex s on the horizon.

Figure 4.7: Going from the boundary towards the center, with the initial condition 1D

The initial condition on the boundary of subtree s is

¢N72,s = (p+1_)\t)¢N71,57 t:O,,l— 15 (440)

where ¢y is a free parameter, and the subscript ¢ in eigenvalue \; will be explained later
below (|4.50)) E The linear recursion relation towards the central horizon is exactly the same

as (14.26)):
¢n—2,s + ()‘t a2 1)¢n—1,5 +p¢n,s = 07 2 S n S N — 17 (441)

in the “reversed” order, and the field values are

Pnys = Cop (Pn-1,5) - 044]\_7;1_” + et (Pn-1s) - o/_V;l‘", (4.42)

where coefficients [cy ¢ (dn_1,5),c—+ (¢n—1)] and solutions (o ¢, a_;) to the characteristic
equation of are both pairs of Galois conjugates as beforeﬁ.

We denote the ratio between field values on the first layer (depth 1) and those on the
horizon as k = ¢ s/¢os. This ratio k is isotropic around the loop, i.e., without a subscript

14 Although ¢ shares the same range as s, it has a different physical meaning, and by definition it is
independent of s, which is obvious because \; is a global quantity.
15 Although they will not enter the rest of our analysis, we have

I+p—2) /A +p—A)2—4p
5 )

a4t =

(4.43)
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s, because it is solely determined by the recursion relation for n = 2. At a fixed depth
n, although ¢, s may vary among subtrees rooted at different horizon vertices s, they remain
homogeneous within the same subtree as explained right below (4.25)).

However, k still depends on o ; and thus \;, so we denote it by k:(\;). We examine the
recursion relation around the event horizon:

Gost2 — [(P— 1)1 —k(Ae)) = M+ 2] o541+ ¢os =0, s=0,...,1—1, (4.44)

with the periodic boundary conditionlﬂ ®0,0 = Po,, as shown in Figure .

¢1,s+1

d)(],s

¢U,s+1
¢1,s+1 =k ¢U,s+1

¢0,5+2

®0,5—1

Figure 4.8: Going around the horizon with recursive relation (4.44]).

On the other hand, the necessary and sufficient condition for the existence of periodicity
in a second-order linear recurrence like (4.44)) is that the two solutions 7, 7_ to its quadratic
characteristic equation are roots of unity (not necessarily primitive). Suppose r, = ™4 is

/
2mi Y-

the ¢'" root of unity and r_ = e« is the ¢*" root of unity, then their period is lem(q, ¢').
In our casem the period is [, the horizon length.
The solutions to the characteristic equation of (4.44) are:

1

o= 3 0= D= k0D - A+ 220 - D0 - KO - A+ 2P -1 (1)

then it is clear from Vieta’s formula that

(p— 1)1 — k(M) — A\ +2 = +2cos (?) (4.46)

16We might consider anti-periodic boundary conditions for fermions as in [172], and intuitively all [ later
on will be replaced by 2.
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and

2mt
\/4 —[(p— 1)(1 = ky(N)) — A +2]° = +2sin (Tﬂ) . (4.47)
If we denote the discriminant in (4.45)) as 6, then we note that it is impossible to have

4—L,g:sin2—7T and —L,g:sinQ—7T

0 <, =1 N> 2 4.48
5 . 5 7 <q#q <1, cm(q,q') > 2,  (4.48)

i.e., different denominators in the exponents of roots of unity r, and r_, because

2 2 / !/
sin &+ Sin—7/T = 2sin (q —l—/q 7T) cos (q /qw) =0 (4.49)
q q aq aq

indicates that (¢ + ¢')/qq = 0,1 or (¢ — q)/qq = 1/2,3/2. The first equation implies that
q = ¢ = 2 and the second equation implies that ¢ = 1,¢' = 2. Hence, r, and r_ are both
I*" roots of unity, and are complex conjugates to each other.

Then we have

1 ot
kt()\t)zl——1<2cos(T7T>+)\t—2>, t=0,...0—1, (4.50)
p_

with double degeneracies k; (A;) = k;—+(\i—¢), and t now labels oscillation modes, answering
Footnote . To avoid overcounting, we observe that pairs — [k (\;), \] and [k;_(A\—¢), N—¢] —
correspond to the same mode along the horizon, because t <= [ —t is equivalent to swapping
solutions r; ; and r_; to , so that upon solving the initial conditions ¢go = A+ B and
¢o1 = Ary+ Br_y, all ¢ ¢’s are invariant under this swapping. Then the maximum value
of ¢t should be [1/2].

Let us take a deeper look into this k;();), by stepping outwards away from the horizon.
Starting from depth 1, we adopt the same recursion as used in the Bruhat-Tits tree case.
Therefore, the recursion relation here stays the same as for any depth n > 2, implying
that solutions a4 to the characteristic equation are unchanged as in . When n = 2,

the field value ¢,,_» in (4.26)) is replaced by ¢ s, s =0,...,l—1, and ¢, in (4.26]) becomes
é1,s = ki(A)pos. Then, the initial condition here gives:

(4.51)

B (1 (p+1)(p+1—X)—4pcos ()
Cti (¢0,s) - (2 + 2(]9— 1)\/(1 +p_ )\t>2 — 4p ) ¢0,s-

Numerically, we observe that the coefficient of the highest degree in \; for the polynomial

Ons = (¢t (o) - o 44 (o) - Oéﬁt) dos is (—1)N¢os/ (pV —pN7'), where ay, and
a_; are the same as in (4.42). Thus, the constant term is

1 N, ,N-1 -— i 21t i
pN——pN’l p +p -i—QZp—QCOS 7 Zp ®0.5- (4.52)

i=0 =0
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The product of all roots is independent of index s:

N-1 1 N_1 2t
PN+ pN T+ ol — 9P cos [ 224 (4.53)
p—1 p—1 [
Note that (4.53)) is the product of eigenvalues for one specific ¢. In order to account for all
modes when computing det [J, we must multiply contributions from all t =0, ..., [l/2], and

for convenience we shift £ by 1 in the product.
To multiply [1/2] terms of (4.53)) together, we recall that roots of T,,(z), the Chebyshev
polynomial of the first kind of degree n, are

2k —1
:Bk:cos< 7T), k=1,...,n, (4.54)

2n
called Chebyshev nodes in interval [—1, 1], and hence (see, e.g., [193])
" 2k — )7
T, =2t — (— . 4.
() kl;[l {m cos ( o )] (4.55)

Then it is not hard to see, using the reflection symmetry 7,,(—xz) = (—1)"T,(z), for coprime
a and 3, we have

B
11 {2:5 + 2 cos (%go‘ + 9)] =2 [Ty(x) + (£1)°(=1)*** cos(80)] | (4.56)

k=1

which leads us to the desired product:

[1/2] N N—1 N

—1 —1 1 27t
| | P 2p —|—pN’1 —|—pN P — 2cos il
pole p—1 p—1 p—1 l

_ L N—1/.2 _ 1
(252)" [or (25%252) - 2| ! even,
— . . 1
N_1)\2 N-1(p241)—2 2 | pNHF pN Tt —242(pN —1) cos(T) |
(25)° |om (252 - 2| { - (l)] I odd.
(4.57)

For large N, we have:
1
va(s) [ () - 1] _—
l 1 1
V2 (}%) 2 [Tl <p2+1> B 1} 2 [pN_l(p2+1+2pcos(7r/z))] 2 L odd.

2p p—1

N[

(4.58)

Since N is really an infinite quantity, we need to fully forget all subleading terms in .
Because of this, there are no descendants and agrees with Melzer’s non-Archimedean CFT ax-
ioms [176], and Chebyshev polynomials do not serve as counterparts of the usual degeneracy-
counting function 1/n(—1/7) in 2d CFTs.
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Furthermore, if [ and p are not small, we use the explicit expression

Ti(z) = cosh (larccoshz) ,x > 1, (4.59)
then we obtain
!
(pNH ) : [ even,
R (4.60)
(25) 7 (221) 1o
p—1 p )

Now we can already see that det (0J) is divergent exponentially as p'¥ when N — oo, which
is very different from the number of boundary points [(p — 2)(p — 1)V =1, or the total number
of points in the BTZ graph Ip". So we cannot directly obtain a finite answer using the
similar argument which leads to , and the unregularized partition function ism

l
21! ven
Zprz = <pN+1>z+1 even (4.61)
(55) " () toda

Apart from the divergence, is very similar to the partition function of a BTZ black
hole in the usual Euclidean AdS; at leading order, as reviewed in Appendix [B.3|

In summary, we have to undergo three recurrences to solve the Laplace problem on a
p-adic BTZ black hole:

1. From the asymptotic boundary to the hom’zo@ using recurrence E

2. Go around the horizon once, using recurrence ;

3. From the horizon to the asymptotic boundary, using recurrence .

Since the recurrence relation for depth n > 2 is the same as the one in Bruhat-Tits
tree , the asymptotic behavior of eigenfunction and eigenvalues stay the same as in
and , respectively. We are still in the “evanescent wave” basis as in Section .

Now we perform the non-Wick-rotated inverse Laplace transform on the partition func-
tion to obtain the density of states. To this end, we need to do two radical things:

e Firstly, we strip off the divergent factor in (4.61]) by hand, since otherwise the density
of states to be obtained would be very negative numbers;

e Secondly, we regard [ as “1/8 ~ i/ > 0” for a non-rotating BTZ. Although in our
p-adic setup, there is no mathematically rigorous 7 € C, in order to do the integral
transform, we need to turn on an auxiliary imaginary part of the inverse temperature
momentarily, so that 3 = 8+ i, € R.

17Since our divergence originates from a divergent number of eigenvalues as N — 0o, one might try zeta
function regularization. However, since eigenvalues here are complicated factors of Chebyshev polynomials,
we do not see an easy way out; we hope to revisit this issue in the future.

18Qkipping Step 1 results in a messy situation, as explained in Appendix

9The sole purpose of recurrence is to show the isotropy of k around the horizon, and the isotropy
of ¢, s within the subtree s.
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Then going from the canonical ensemble to the microcanonical ensemble, we have

1 [B+io ;5 GE 1/48
) 1 " 4BePE (p— 1) [ even
o L 2mi J f—ioco ~ ’
p(E)=L {ZBTZ (ﬁ)} (E) = s [P aBed (p — 1)1/15+1/1 (ﬁ) I odd.

(4.62)
However, the second expression cannot be evaluated explicitly, so we focus on the high-
temperature limit as § — 0 so that 1/45 + 1/4 ~ 1/4/3, and from now on we do not treat
even and odd [ separately, because they only differ by a factor #. Then we get

p@D=Eﬁ%;QJHQZEE¥?19>+ME) (4.63)

for all primes p, where oF} is the confluent hypergeometric limit function, and is related to
the modified Bessel function of the first kind as

22
= a—OFl (; a+1; Z) . (4.64)

In (4.63)), we have < I; ( Eln(p — 1)), and it goes to zero as £ — 0. Its asymptotic

behavior of F; as x — 00 is

2VE da—1)2—1
oF Ga;z) =z V2T(a) : (1 Ut +.. ) (4.65)

Ve 167

so in semi-classical limit, for positive energy, we discard Dirac delta and its derivative in

(4.62). When p > 3, we have

N 1n1/4(p —1) VERD 3/ [ 1 _ 3 .
p(E)N—\/% e E 1 /BTG =) +O(E™)+... || (4.66)

Finally and straightforwardly, the Bekenstein-Hawking-like entropy is

S~+\Ehn(p-1)— zlnE—i- iln(ln(p— 1)) — %1n(27r) — e, (4.67)

where the second term is the famous logarithmic correction terms previously discovered in
[194, [195]. This result is also consistent with the “species problem” [196] because we are
calculating scalar fields all the time. One can also derive the Cardy-like formula [197] |198],
199| via saddle point approximation on (4.62]).

The usual Benkenstein-Hawking entropy of black holes from Cardy-like formula has
47/Ek as the leading term [5|, where & is proportional to the Brown-Henneaux central
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charge 31/2Gy [79]. By comparing this with (4.67)), we see that our In(p — 1) is like k. How-
ever this raises a puzzle, because increasing valency of the tree should increase the curvature,
corresponding to decreasing k£ in the continuous Adsgﬂ We will discuss this near the end.

Another standalone case of is p = 3, since In 2 < 0, and the asymptotic expansion
is only true when |argz| < 7/2. Now o[} is related to the Bessel function of the first

kind as (2/2) )
x/2)¢ T
———oFi | ; 1, —— 4.
F(Ck—l—l)o 1(7Oé—|— ; 4)7 ( 68)

and J, () has the following asymptotics for real x — oo:

2 om0
Ja(@) & [ = cos (a: - - Z> , (4.69)

so the semiclassical limit of density of states is

Jo(z) =

P(E)|pes =~ 2\/_( I\I;E> E—3/* cos <\/ —FEln?2-— ?ZTW) , (4.70)

which is a pathological result due to the oscillatory nature. It seem that a 3-adic BTZ black
hole is unstable.

The continuous integral transform (4.62)) is justified because in high-temperature regime
[ — 0o, the separation between two adjacent discrete inverse temperatures is ~ 1/12. On the
other hand, if we do not perform coarse-graining, we need to do the discrete inverse Laplace
transform. Superficially, the discrete inverse Laplace transform has the same expression
as the one used in going from canonical partition function Zy (/) for N particles to grand
partition function Z(3, u):

=y ()" Zn(8), (4.71)
N=0
but here the temperature is held fixed, and particle number is the analogue of p-adic discrete
temperature’’| Unfortunately in our case, the Z-transform does not yield a closed form so
we stick to the continuous approximation (4.62]).
Let us examine more details on the density of states. At low energy Ej, we integrate the
density of states over the interval [Ey, Ey + €] with a small but finite €

/Eof dEp(E) = woﬂ <; 2 w)

Eo 8

FEo+e
, (4.72)

Ey

20Since the Bruhat-Tits tree has no holonomy, defining a Riemann tensor is arduous. Yau et al. [200] were
able to define a Ricci curvature &, on graphs without a Riemann tensor, but in terms of the edge lengths
gy, from which Gubser et al. [187] found that on-shell the tree has a constant negative Ricci curvature
Ky = —2;% and the edge length fluctuations are massless modes.

21 This transform is also called a unilateral Z-transformation, with the less common but equivalent defi-
nition where powers are positive, same as probability generating functions.
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although there is no particle interpretation in ordinary 2d CFTs (roughly because their
correlators have no simple poles), and we expect so in p-adic CFT, in the bulk we can view
the tree as a lattice, and number of vertices equals the number of degrees of freedom (or
“particles”), which is IpY. The low-energy limit of is

1 | — 1)E, 1 | —1E,
b <; 2 %) In(p — e+ r0F) <; 3; %) In*(p— 1)e® + O(%). (4.73)

Small-argument behavior of ¢F} is just 1, so we have:

€(2—¢)

éln(p et In(p- 1)+ O() < 1—16 In(p—1)) (i+1)e = 16(c — 1)2

128 p hl(p - 1)7

(4.74)
which is a constant polynomial in total number of “particles”, hence satisfying the sparsity
condition on in [201, 202] on the number of low-energy eigenstates in a gapless 1D system
with a local Hamiltonian@, hence in principle one is able to approximate the Hilbert subspace
near the ground state in the supposedly dual p-adic CFT. This may be worth investigating

in the future.

Turning on the scalar mass

Here we again turn off the source J in (4.21)), and now we have a Helmholtz-like wave
equation

(O+m2) ¢o = 0. (4.75)
The on-shell masses squared of a bulk scalar in (4.20)) are real 167, 168]:
1 1
m? = — =—(p+1)+2 pcosh[(A——)lnp}, 4.76
g Cp(A - 1)Cp<_A) ( ) \/_ 2 ( )
where the p-adic or “finite” local zeta function (,(s) is defined as:
1
Gls) =5 = (4.77)

which obtains its name because the real Riemann zeta function (. (s) can be constructed
from Euler’s adelic product:

o)== I oo =TT (1.78)

1 _ S
n=1 primesp p p

Then we have the Breitenlohner-Freedman (BF) bound m¥,, = —1/(,(—n/2)?, and

pe = [ 1) £ O = . (4.79)

22We thank Ning Bao for pointing out these references.
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Due to the inversion symmetry of ,(s), m? in (4.76) is invariant under A — 1 — A,
We adopt the same convention on the solutions to (4.76|) as in [167], i.e., A = Ay > n/2.
Then for massless scalars, A = n, so we are restricted to A = 0,1 when n = 1.

mZ
10
15
101 st
05 . , A
\ 0
. N
06 0.8 0 12 sl

-0.2 0.2 0.4

Figure 4.9: Scalar mass m? as a function of conformal dimension A. m? > 0 when A > n.

Now we hope to calculate partiton function when ¢ is massive, which amounts to calcu-
lating the determinant of +m?1. We relate the field polynomial ¢§*(A) (¢, 1%()) for BTZ
black holes) resulting from the boundary condition ¢|sr = ¢n = 0 with the “monic” (up to
(—=1)N) characteristic polynomial Py()\) = [, (A; — A) = det (0 — A1) of the Laplacian
[J. What we have calculated in the previous two subsections are essentially Py (0), the con-
stant term of Py()), and now we perturbatively investigate Py (—m?), i.e., the determinant
det (O +m?1) = [[X, (\; +m?).

It is important that \;’s are always greater than the BF bound mpp,n = —1/(,(—n/2)?,
which is mpp, = — (\/ﬁ — 1)2 for n = 1, whose absolute value is strictly smaller than all
eigenvalues for both Bruhat-Tits trees and BTZ black holes in (4.39). Hence, we will not
encounter issues of alternating signs upon calculating determinants of [J + m?1.

In principle, one could possibly use minimal polynomials for Gaussian integers to study
powers of Galois conjugates. However, we will proceed in a more combinatorial approach.

On Bruhat-Tits trees

Since the polynomial ¢ () in A always has the constant term 1, we need to rescale it to be
monic up to (—1)V:

N
PRee(N) = o) /ob= T v = (0 + V1) sk () /0= | (4.80)
=1

where Pe°()) is defined in (4.28)), so that PFee(0) = pV + pV L.
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By denoting x = p — A + 1, we can rewrite Pe°()\) as
N—-k—-1
s 2 (1) {2
(4.81)

Repeatedly applying the binomial theorem in a nested fashion gives us the following results:

D=

(14 (-D)¥F) + p-1, [(1+ (=) F ] } .

p+1

e The linear term of Pie(\) is, since p # 1:

N-—1
. N +2p— Np2)pN — 2
(—NpN‘1 —2)° z’p"l) N N p( pl)),f N (4.82)
: p(p -
i=1

which goes to Np+1pN '\ when N is large;

e The quadratic term is

Zp {Hl Z+2)+(i+1)(i+2)(l\f—i—2)} A2

1
=307 =T [(N? = N)p"*? — (N? + 5N — 6)p"+> — (N* — 5N — 6)p™ ™!

(4.83)

+(N? + N)p™ — (4N +6)p® + (4N — 6)p| \%,

which goes to N? Q(ZJF}) N=1)\2 when N is large.

So for small |m?| < 1, we have the unregularized partition function Ze.(m — 0):

N 1/ N 2
det (m*1 +0) = Py (-m?) = (p" +p"~ )<1+Fm +2(Em2) +>

Nm?

= (" +p" ) e |,

(4.84)

where the regularization factor p» + p¥=1 oc (4.32)) is now manifest.
For completeness, we look into the large-mass limit, where only high-degree terms in
Piee(\) matter.

e The \V=! term is —(—1)V N(p+1)A¥~1. So in order to ignore the AV =2 term, we need
m? to be larger than N;
e The \V72 term is
1

5(—1)N [N(N —1)p* +2(N —1)*p+ N(N — 1) — 2] AV 72, (4.85)

which goes to 2(—1)VN?(p + 1)2A"~2 when N is large;
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e The coefficient of AN =3, a degree 3 polynomial in p involves first-order linear recurrence

with variable coefficient for p® coefficients fy, such as
fv=fxna+ NN -1)/2,

but in the end we have

_ (_1>N{N<N+16)(N—4)

N(N —2)(N —3)

2
+2+ 5 P

. [N(N2—5N+8) _2]p2+N(N—1)(N—2) ,

2
which goes to —(—1)YN?*(p + 1)*A"~® when N is large.
Then collectively we have the unregularized partition function:

Ziree(M — 00)

2 2 2

m m 6 m

= (" +p¥ ) m2N <1+N(p+1)+%(]\f(p+1)> _i_l(N(p-I—l

Vo)

N(p+1)
N N—-1 2N ——=—
= (" +pV ) mPNe |

(4.86)

(4.87)

Now we discuss the conditions on A when |m?| is small. In order to have 0 < —m? < 1,

we write A = 1 + € where e < 1. So we have
(1=p" %) (" - 1) <1,
where n denotes the unramified extension Q,», then we get

o [25 (24— V)]

Inp

e K

and similarly, for A =1 — ¢, we need —1 < —m? < 0, and we get

In [5(1—p"/p(p" —4))]

€K
Inp

(4.89)

(4.90)

(4.91)

From this expression we also see that when n = 1, the smallest prime p is 5, consistent with

the result from density of states in Section [4.2]
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On BTZ black holes

The characteristic polynomial for Laplacian on BTZ black hole is different from P§e¢()\). It
is rescaled from the field polynomlalﬁ ¢BTZ (A\¢) at the cutoff depth N to

[ [
PETZ HPBTZ H ¢BTZ )\t /(bBTZ 7 (492)

so that PE%()\,) and PE1%(\) are monic up to (—1)™ and (—1)V, respectively, and P %(0)

agrees with (| -

Let us first consider when the mass |m?| is small. The linear term in ); in Pﬁ?z(/\t) for
one specific t is

e (F) e

_<NpN1+4sm2 (th) NGV +1)(p 23 —1)<3 —1><p+1>)%

which goes to

NpN t
- ((p _]91)2 + ANpNLsin? (%)) by (4.94)

when N is large. )
For small m?, we only calculate Py3}”(—m?) up to the linear term in \;, written in
shorthand:

Acos (?) + B (4.95)
where
_ 2 (DN N - (V1) +p 1) 2(pV 1)
A= Ty p (4.96)
B mQNpN*1+2m2 (—(p+1pY +Np—1)(p¥ +1) +p+1) +pN*1+2 (PNt —1) N
(p—1)° p—1
(4.97)
then [l] terms multiply together to be
prz oy _ [ VR(-A/F (T (-B/A) - 1] L even,
P (o) = {\F( AJ2)5 [T} (—B/JA) — 1]% (Acos (n/1) + B)? 1 odd, (4.98)

[1%2)

Z3Here the subscript is “s” not “t”, because this polynomial depends on the initial field value ¢g s on
horizon, as written above (4.52]).
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where —B/A expanded up to the first order in m? is
pPEapY =2 PPN AT —2Np 2N —p ) o (m?)
2p (PN — 1) 2(pN —1)° . (4.99)
N—oo p2 + 1 p + 1 2
> + m
2p 2p

Because dT}(z)/dx = lU;_1(x), where Uj(z) is the Chebyshev polynomial of the second kind,
when both [ and p are not small, we get the unregularized BTZ partition function:

Zprz(m — 0) = Py (—m?)
1 L i
- <1 n %) (1%) (1 + %) [ even, (4.100)
~ 1 l L
m2)2 [ pN+1) 2 m2 \2 ™
(1+22)" (25)" (1+ 225) " (Acos (5) + B)  odd,

which recovers (4.60) when m? = 0. )
For large mass [m?|, we calculate the A} " term in PE1%(\;) to be

2
(—1)N (2 cos (Tm> — N(p+ 1)) AN (4.101)
and the A2 term is

(—1)N (w(ﬁ +1)+ (N —=1)’p+1—2(N — 1) cos <?>) A2 (4.102)

so we have terms with the three highest degrees added up to

- 2mt
PR (—m?) =m®N 4+ m?N 2 (N(p +1) — 2cos (Tﬁ))

N(N -1 2t
+m2N <(T)(p2 + 1)+ (N=1)%p+1—2(N —1)cos <Tﬂ>)
+...,

(4.103)
and when N is large it is
2mt
C cos (T) + D, (4.104)

where

2
C=—om (Lo MY po ey (4 NeEDEm £ N+ Np)y (4.105)
m 2m?
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then [l] terms multiply together to

2(—C/2)% [T} (~D/C) — 1] z
PpBTZ (_mz) _ \/_( c/ )? 7. (=D/C) ]; L even, (4.106)
V2(—=C/2)z [T} (~D/C) —1]2 (Ccos (r/1) + D)> [ odd,
where —D/C up to the first oreder in m? is
N 2 1 2\, 2 4
T+ (1=p)m+ O () + .. (4.107)
so explicitly the unregularized BTZ partition function for very large m? is
N (1 4 12)% (N(p+1)2 + (1102)7712)é | even,
ZBTz(m—>OO>% m . 2 ) 22 ) %
N (14 25) (M 00 )E (Ceos (3) + D) L odd,

(4.108)

4.4 One-loop Witten diagrams

In the work by Kraus and Maloney [145|, they proposed a duality between higher-energy
states on the conformal boundary and semi-classical gravity in AdSs for the BTZ black hole.
They showed that a bulk Witten diagram with two types of perturbative (i.e., not massive
conical defects) scalar fields in the bulk is equivalent to the average value of the three-point
coefficient (E|O|FE), where |E) is the high-energy state dual to the BTZ black hole, and O
is the operator dual to one type of the light scalars. Here, the average of the three-point
coefficient is taken over all states with energy F

AT - (EIO|E)

(E|O|E) = o(E) (4.109)
where p(F) is the density of states given explicitly by the asymptotic Cardy formula [197,
198, [199]. In Section , we reviewed a way to construct a p-adic version of the BTZ black
hole as the quotient space of the Bruhat-Tits tree by the p-adic Schottky group ¢Z. In
this section, we propose to use Kraus-Maloney’s technique in p-adic BTZ configuration and
calculate the analogous Witten diagram Y] This calculation provides a dual interpretation
for the boundary p-adic CFT averaged three-point coefficient, which in principle could be
independently derived from a pure CFT calculation.

Review on BTZ black hole calculation by Kraus-Maloney

In this section, we provide a brief overview of Kraus and Maloney’s results [145] on the bulk
and boundary sides, as well as list their assumptions.

24 Another name for Witten diagrams in p-adic AdS are called “subway diagrams” [167].
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Cardy formula for three-point coefficients in 2d CFTs

High and low energy spectra of a CFT are related by modular invariance, i.e., Z(8) =
Z ((2m)?/B). Analogously, modular invariance can be used to refer high and low dimen-
sional operators as “heavy” and “light” respectively. This can be used to obtain results
on the asymptotic spectral density weighted by OPE coefficients. Kraus and Maloney used
modular invariance in the torus one-point function to estimate light-heavy-heavy three-point
coefficients (E|O|E) for a BTZ black hole. They proved that the averaged three-point coeffi-
cient from the bulk in the large horizon limit and from the boundary in the high-temperature
limit agree.

The three-point coefficients are easily found by taking the inverse Laplace transform and
using the saddle point approximation in the high-temperature limit for a primary operator

O
(0) = Try,, O e = (i|Oi) e ", (4.110)

(2

where we trace over CF'T states on the thermal circle and these coefficients are constrained
by modular invariance.

The asymptotic behavior of the light-heavy-heavy coefficient is exponentially suppressed.
The suppression depends on the central charge ¢ and conformal dimensions of operators O
and x, which are light primary operators dual to AdS; bulk scalars ¢» and ¢,,, with energy
FEo, B, < {5. To compute the averaged three-point function coefficient, the last ingredient
we need is the density of states which is given by the Cardy formula in the large E limit
[197, 198} 199|. In this limit, the final result of the averaged three-point function coefficient
is

(E|O|E) & Coyy e 2mm (4.111)

which matches precisely in the bulk calculation done in Section

Witten diagram calculation in AdS;

The bulk theory has an interaction term gb@gbi with coupling Cpy,. The cubic vertex inte-
grated over the entire BTZ AdS spacetime in Figure is

<E|O|E> = COXX / detEdgb r be (T’; AX) Gba (T, tE, gb; A@) . (4112)

We want to match the integral in the large 7, limit to the CFT result
for the asymptotic three-point coefficient. The BTZ black hole is obtained from global AdS3
via periodic identifications (i.e., AdS3/Z under ¢ ~ ¢ + 27), which allows us to preform the
method of images to obtain the BTZ black hole propagator from global AdSs;. The BTZ
black hole propagator is

1 & —Aoy, (r,r)

€
CGu(rr) = =50 2. Tty

n=—oo

(4.113)
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Figure 4.10: As illustrated in the Witten diagram for the regular BTZ black hole, a light
scalar field ¢ is emanated from the boundary to the horizon and splits into a pair of light
fields ¢, that wrap around the horizon.

where o, (r,7') is the geodesic distance between 7 and the n'" image of 7/. There is an
apparent UV-divergent tadpole for the n = 0 term; however, this can be easily cancelled by
a local counterterm and other terms n # 0 are finite. As we will see in Section this type
of UV divergence is absent in the case for p-adic BTZ black holes due to the form of the Green
function, but a tadpole term remains present. Additionally, Kraus and Maloney considered
the scalar fields to be massive: Fp ~ mop > 1, £, =~ m, > 1 such that me,m, < c.

In the large r, limit, the averaged three-point coefficient is

(E|O|E) & Coyy e 2mm (4.114)

p-adic version Witten diagram calculation

Previously, we reviewed that the p-adic BTZ black hole is constructed as a quotient space
of the Bruhat-Tits tree and is visualized as a central polygon with a sub-Bruhat-Tits rooted
tree attached to each vertex of the polygon. The central polygon is the horizon of the p-
adic BTZ black hole with area | = —ord,(q) = log,|q|, and ¢ is the generator of Schottky
group ¢Z. Considering the construction of the p-adic BTZ black hole, we choose a new set of
coordinates (n, h) to parametrize bulk points. The label of vertices on the horizon, to which
bulk points attach (directly or indirectly), are represented by n = 0,1,--- ,l — 1. Whereas
h = 0,1,---,00 represents the number of edges between the attached central vertex and
that bulk point.

Under this parametrization, in order to calculate the similar Witten diagram mentioned
in [145], we replace the original integration over AdS space with a summation over all bulk
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points (n, h) on the quotient space of the Bruhat-Tits tree

(E[O|E) = Coxy Y d(n, h)Gus(n, hi Ay)Gio(n, bz, Ao), (4.115)
(n,h)

where z € Q, is the boundary coordinate of the operators O, A, and Ay are scaling
dimensions of operators y and O. d(n,h) counts the number of vertices sharing the same
coordinate (n, h).

There are two different cases that we need to calculate separately. The first case is both
the bulk and boundary points are attached to the same central vertex. The second case is
both the bulk and boundary points are attached to different vertices. We denote the central
vertex attached by the boundary point as vertex 0, such that these two cases are n = 0 and

n # 0.

Propagators revisited in BTZ background

In Section , we introduced the p-adic BTZ black hole as the quotient space T},/¢%, which is
different from the original Bruhat-Tits tree 7},. One obvious distinction is that the quotient
space loses some global symmetries””] Remember that the normal Bruhat Tits tree has a
perfect homogeneity, and in principle, we could choose any local vertex to be a central point.
However, the p-adic BTZ background certainly has some predetermined central vertices,
which has been shown in Figure 4.2] as vertices of the central polygon.

Given the global symmetry breaking, we should question whether the theory defined on
the p-adic BTZ black hole would deviate from the normal Bruhat-Tits tree theory defined
by the action (4.20)), and more importantly, whether the propagators (i.e., Green functions
as the main characters of Witten diagram calculation shown above) would also change.
Fortunately, by observations, we find that even though the global symmetry is broken by a
topological change, the local features of the graph are still preserved. In other words, the
valency of each vertex is still p + 1, same as on the Bruhat-Tits tree. Meanwhile, since the
p-adic BTZ black hole is also an undirected graph with an infinite number of vertices, we
should expect the action to still be valid in the BTZ black hole background. However,
when we compute the propagators, the equations of motion has sources inserted on some
vertices. The symmetry loss of the BTZ black hole will also cause the symmetry loss to the
solutions of these equations of motions. For instance, on the Bruhat-Tits tree, no matter
where we insert the source, due to homogeneity of the tree, the solution will be homogeneous.
However, in the BTZ black hole case, the depth of vertices, where we insert the source, from
the horizon will indeed affect the solutions and subsequently the solutions will be different
from those on a normal Bruhat-Tits tree.

One approach to compute the propagators in the background of an ordinary Euclidean
BTZ black hole is the method of images [54, |145]|, which will be demonstrated in the next

25Global symmetries under action by the isometry group, e.g., PGL (2,Q,) in the context of Bruhat-Tits
trees. When we quotient P! (Qp) by the Schottky group q”%, the isometry group is then broken to a subgroup
of PGL (2,Qp).
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subsection. Instead, we can also straightforwardly start from the solution to the equation
of motion with a source insertion. This provides us a sanity check for the use of method
of images. In general, due to the loss of symmetries, solving the equation of motion with
sources inserted in arbitrary vertices on the p-adic BTZ is arduous, but we can still use the
residual symmetries to evaluate a simple case.

Suppose we use the same action for the p-adic BTZ background. Meanwhile, we
restrict our calculations to the case where only one current source J is coupled to the vertex
0 on the horizon, without other source couplings. The equation of motion is then:

J 1=C)y
O+ m?2) ¢ = , 4.116
O+ my) ¢ {O otherwise ( )
yielding the propagator:
be (C(), CL) = gb—Ja, (4117)

where ¢, is the field value to an arbitrary vertex a and Cj represents the vertex 0 on the
horizon.
We should mention that the solution does depend on the specified boundary condition.
In order to find the same class of solutions as those on the Bruhat-Tits tree, we specify the
boundary condition:
lim ¢; = 0. (4.118)

i—0T)

For simplicity, we set the mass m,, of the scalar field ¢; to be 0.

In Section [4.3] we demonstrated a way to solve Laplace’s equation by using linear recur-
sion in the scalar fields. Here, we follow a similar technique. We denote the vertices on the
horizon as C,, where n =0, --- ,l — 1. Consider one specific vertex C;, the subtree rooted at
C,, is solved by using a recursion relation:

(P + Donn = Phi1n + On-1,n; (4.119)

where the vertices on the subtree are parametrized by h, the depth of a vertex with respect
to C;. From Section [£.3] we know the solution to this recursion relation is:

D = a+bp ", (4.120)

where a, b are two free variables that are fixed by the boundary conditions. We first enforce
the boundary condition (4.118)) to set a = 0, so ¢p., = dc,p "

We also need to determine all field values ¢, on the horizon. This requires us to use the
recursive equations on the horizon for n # 0:

(p+1)¢c, = dc,  + b,y + ]%%n (4.121)
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The equation on vertex 0 is modified by the source:

(p+1)pc, = ¢, + dc, + Z%lcboo + J. (4.122)

These linear equations can solved either numerically or analytically. We demonstrate a
simple example where [ = 3 and obtain the following solutions to (4.121)):

1 2
= 1 J
b p—,%( +p3—1)

1 p2 +p
p— —_ ——_ Jo

(4.123)

In (4.76)), we gave a correspondence between the mass of a bulk scalar field and the scaling
dimension of a boundary operator. For a massless scalar, the corresponding scaling dimension
is A = 1. Then we rewrite the propagators (4.123]) in a convenient way

Cio(Co, Co) = 122 (1+p & )

pA Al _ 1
C2A) g+ p (4.124)
p-Tp
Gup(Co, Cn) = ppA pAl— 1

In the subsequent subsections, we will see directly that these results are consistent with
the results given by method of images in [168| for both bulk-to-bulk and bulk-to-boundary
propagators.

n = (0 case

For the n = 0, the boundary point x and the bulk point b are in the same subtree rooted at,
without loss of generality, the central vertex 0. The Witten diagram in Figure is what
is needed to calculate the averaged three-point coefficient.

To calculate this Witten diagram, we must determine two main factors: the bulk-to-bulk
and bulk-to-boundary propagators. Since both fields y and O are normal perturbative scalar
fields, we directly derive the bulk-to-bulk propagator on the Bruhat-Tits tree by finding the
tree Laplacian’s Green function, which has a simple formm [167, 168]

Gip(z, 20, w, wy) = p~ xHzzowwo), (4.125)

where the function d(-, -) gives the geodesic distance. In the previous subsection, we provide
a way to compute the Green function in p-adic BTZ background by solving the sourced
equation of motion . In general, that approach is doable but complicated. Fortunately,
the p-adic BTZ background is realized as the quotient space of the normal Bruhat-Tits tree,

26Here we omit the normalization factor % in [167].
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Figure 4.11: Witten diagram in the p-adic BTZ black hole (p = 3,1 = 3,n = 0). Red line:
the bulk-to-bulk propagator. Blue line: the bulk-to-boundary propagator.

so we use the method of images to solve the equations given the solutions in the parent
space. Following [145], we use the method of images to derive the bulk-to-bulk propagator
from vertex b to itself. Using the (n, h) parametrization as mentioned before, we obtain

2p—2AXh

be('ﬂ, h) — pfAXd(b,b) + 9 ZpiQAxhpiiAXl -1 4+ pAXl — 1’

i=1

(4.126)

where the summation is over all images of b under the action of the Schottky group, and
the index ¢ is regarded as the winding number around the horizon. Comparing this result
with solution by setting h = 0, we see the two results agree up to a normalization
factor (,(2A)/p® we omitted in ([4.125). Notice that there is a constant 1 appearing in
the bulk-to-bulk propagator. This is the tadpole term which usually causes divergence in
the normal AdS spacetime. Although it does not cause a divergence in our case, it is
still unphysical. Fortunately, we are able to cancel this tadpole term by adding a local
counterterm ) . ¢;¢; into the action, where 7 is the label of bulk vertices. The renormalized

bulk-to-bulk propagator is:
2p—2Axh

The bulk-to-boundary propagator is derived from the bulk-to-bulk propagator by moving
one point to the boundarym Notice that if we were to directly take this limit in (4.125)),

27This limiting process is safe here, but it would be naively wrong when one were to calculate two-point
correlators, as explained in Section 4 of |167].
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it would vanish due to d(z, zo; w, wy) — 0o. Therefore, we need to perform a regularization
prescription provided in Section 3 of [167|. The bulk-to-boundary propagator on the Bruhat-
Tits tree is derived via [167]:

Ga(z, 20; ) = alir_)no \(5I];Abe(z, 20; W, Wo). (4.128)

Given a bulk point (w,wy), we denote any boundary point which is reached by an oriented
path (z,29) — (w,wp) as y. The supremum of |y — x|, is denoted by ¢,. When we move
(w,wp) to the boundary point z, the limit is taken as d§, — 0. Clearly, some prescription
factor |, A — 00 is required so the bulk-to-boundary propagator does not vanish.

In [168, [166|, another regularization procedure is provided. Instead of taking the asymp-
totic limit of the bulk-to-bulk propagator, they regularized the geodesic distance. The main
feature there is that A. V. Zabrodin defined d,.,(C,z) = 0 |166|, where C is a vertex on
the horizon and z is the boundary point in the subtree rooted at C'. By inspection, we
realize that these two regularization methods are equivalent and both are consistent with
the recursive derivation in Section [4.4. We then say these regularizations are anomaly-free
under PGL (Q,). Setting the geodesic distance of d,.,(C,z) = 0 is the same as factoring
pUEm)A out from the non-regularized propagator. p?©#)2 — oo plays the same role as |5, 2.
Therefore, we freely choose one regularization approach and use the method of images to
find the bulk-to-boundary propagator. The bulk-to-boundary propagator is given as [168|:
2p7Ah

G b — —Adreg(b,z) '
bo(b;x) = p g

(4.129)

For the n = 0 case, we combine the two propagators to obtain the averaged three-point
coefficient

- 3 . 2p—th 2p_2AXh
<E|O|E>n:0 ~ COxx Z d(ov h) (p Bodres(b:2) + pAol — 1) pAXl -1’ (4-130)
(0,h)

where d(0,h) denotes the degeneracy of vertices with the coordinate (0,h). Notice that
there is a unique path from the horizon vertex 0 to the boundary point = as well as a unique
intersection point between the path from the bulk point b to the boundary point z and
the path from vertex 0 to x. In order to compute the summation, we introduce one more
parameter ¢ to represent the intersection point between the two paths. Additionally, the
parameter ¢ will parametrize the bulk point b. By using the parameters (n, h,7), we rewrite
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the summation in terms of a nested geometrical series:

—2Ai

(E|O|E), _, ~C i A0i2p—+ i( — Q)phiTlpRoich) 2p—2xh
n=0 ~~Oxx p 1 D p P p—Axl —
h=i+1

A _
i=0 p

—1
2 2 <1 + p(pA@fQ X_1—1)>
+ C(’)XXpAOl ] pAXl ]
—2 —1
> 2<1+m) +4(1+m>
P AT = D1 —pRem2an) T (pRel = 1) (A — 1)

(4.131)

In order to make the geometrical series converge for the above summations, we find
inequalities between the scaling dimensions of operator O and y:

Ao +2A, > 1,Ap < 2A,. (4.132)

The first inequality is automatically satisfied, as mentioned in Section we use the con-
vention in [167] that A = A, > 1/2. The second inequality adds an extra constraint on
the dimension of the operator @. When Ap is small enough, our calculation is well-defined
until Ay saturates the inequality . Further regularization is required for this. How-
ever, the second inequality is only related to coefficients independent of the horizon length
[. Therefore, it will not affect the asymptotic behaviors for large .

n # 0 case

This case is simpler than n = 0. The Witten diagram is now visualized as Figure £.12] The
bulk-to-bulk propagator is the same as (4.126)), while the bulk-to-boundary propagator is
slightly different |168]. We evaluate the summations (4.115)) as follows:

-1 Ao (l—n) Aon —2Axh
— pRoT e phon y o 20
<E|O|E>n7&0 ~ COXX Z Z d(nv h) pAol -1 p ° pAXl —1

n=1 (n,h)
=1 Ao(i—n) Aon 2 (1 + Aof;Alx*l 1 ) 4.133
—C p +p p(p -1) (4.133)
Oxx £ plol — 1 pAxt — 1
Aol _ Ao 1+ A—EAl—T
— 4Coy, p p p(ptoTEexTI-1)

(R0 —D)(pSe 1) pSI—1

In this case, we have no issues for divergences in the geometrical series. The only requirement
Ap + 2A, > 1 has already been shown to be satisfied in previous subsection.
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Figure 4.12: Witten diagram in the p-adic BTZ blac khole (p = 3,1 = 3,n # 0). Red line:
the bulk-to-bulk propagator. Blue line: the bulk-to-boundary propagator.

After having the contributions from both n = 0 and n # 0 cases, we then get the full
expression for the averaged three-point coefficient:

(EIO|E) = (E|O|E),_, + (E|O|E)

n#0
—2 —1
o L e ' R e
= 2boxx (pPxt = 1)(1 — pPro—25y) (P2 — 1) (pho — 1) (4.134)
1 l—o00 —
e ! Ayl

The coefficient C,, | is viewed as the three-point coefficient (x|O|x) and absorbs all factors
independent of the horizon length [. In the last line, we show that as [ — oo, the averaged
three point coefficient (E|O|FE) has an asymptotic behavior with an exponential dependence
on horizon length [.

Physical implications
By comparing (4.114) with our average three-point coefficient (4.134)), we find that [ is a

p-adic counterpart of 27wr, which is the outer horizon area of a normal BTZ black hole. If
we rewrite p~2x! as e mPAX it will become reminiscent to e”2™Ax"+ in . However, in
the p-adic case, we miss a counterpart to rf‘o. This term can be realized as the dominant
normalization factor 'r’ﬁ in the bulk-to-boundary propagator of a normal Euclidean BTZ black

hole [145]. Physically, it can be thought as the horizon radius being probed by the particle
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O entering the bulk from the boundary. In a continuum spacetime, the horizon radius is
well defined by a Riemannian metric. Whereas in the p-adic BTZ graph, the black hole is
represented by a polygon which has no radius measured by the graph’s metric. Therefore,
when the particle ¢ is emanated into the p-adic BTZ background, it cannot measure the
radius of horizon as well as unable to create a term including the horizon radius and its
scaling dimension Agp.

In Section [4.3] we provided calculations on the p-adic CFT partition function and density
of states. However, our knowledge is primitive on the modular transformations for p-adic
genus-1 Tate curves. If we understand the modular transformation, we can obtain the aver-
aged three point coefficient entirely from the CFT side. Our averaged three-point coefficient
displays an unconventional feature compared to the Euclidean BTZ case to then indicate
that the p-adic modular transformation is nontrivial. We will explore this aspect further in
future works.

Last but not the least, our geometries only capture AdS length scale effects, and miss
contributions coming from “small loops” which can be trivial, as stressed in [183]. It would
be nice to see if the bulk calculation can be reproduced from the p-adic CF'T side.

4.5 p-Adic representations

The proposed p-adic AdS/CFT correspondence provides tools to understand some features
of the boundary p-adic CFT. However, for a general (not necessarily holographic) CFT, the
bulk /boundary duality cannot allow us to study the theory comprehensively. In order to
fully solve a general p-adic CF'T, a Hilbert space interpretation is necessary. For example,
independent of the bulk calculations in Section [£.4] if one wants to compute the one-point
function of a primary operator @ of p-adic CFT, analogous to (O), = Try Oglo—2igro—si
with ¢ = 2™ in an ordinary 2d CFT, one would hope to have p-adic exponentials, and
analogues of Virasoro generators Ly and Ly as well as Verma modules.

In a normal quantum field theory, its Hilbert space could be constructed based on repre-
sentations of Lie algebra g associated to the global or internal symmetry group G. In a p-adic
CFT, the global symmetry group is PGL (2,Q,), so analogous to ordinary CFTs, we should
study Lie algebra representations of this group. Typically, a p-adic CFT is a quantum field
theory with complex-valued (or real-valued) fields over Q,, which restricts our interests to a
vector space V over C as the representation space. In [176], Melzer showed the nonexistence
of local derivatives over QQ,. Meanwhile, in the usual context of Lie algebra, we can always
define the exponential map exp : g — G, while in p-adic case, the exponential function of
p-adic numbers does not converge nicely [180]. Moreover, it is a totally disconnected group,
its corresponding would-be Lie algebra “pgl(2,Q,)” does not exist. The Virasoro-like local
conformal algebra never shows up.

Although we cannot find any suitable complex representation of Lie algebra, we still hope
to directly study representations of the global conformal group PGL (2,Q,). Actually, several
recent papers indeed explore the power of group representations in quantizing a theory, such
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as Jackiw-Teitelboim gravity [203| and spinors on AdS, [204], in that their Hilbert spaces

can be partiall defined by group representations of SL(2,R) x U(1)/Z or SL(2,R). There
are numerous types of PGL (2,Q,) representations, so we add some reasonable assumptions
to narrow down our search list. Since all p-adic CFTs are unitary [176], we expect a suitable
representation to also be unitary. Notice that any unitary irreducible representations (irreps)
of PGL (2,Q,) naturally induces a GL (2,Q,) unitary irreps, so that we could study unitary
irreps of GL (2,Q,) and canonically restrict them onto the subgroup PGL (2,Q,). Another
advantage to study GL (2,Q,) comes from the classification theorem on all of its unitary
irreps. In the rest of this section, we will analyze this theorem and evaluate the suitability
of all unitary irreps as physical Hilbert spaces over C of p-adic CFTs. Rather than being
mathematically rigorous, we provide sufficient amount of evidence.

Troubles with Lie algebras

The usual Iwasawa decomposition@ still holds for TDLC groups of our interests, such
as SL(2,Q,) or PGL(2,Q,). Any element of SL(2,Q,), the commutator subgroup of
GL(2,Q,), as presented in [168|, can be decomposed into a product of special conformal
transformation, rotation, dilatation, and translation as shown respectively:

p"a b B 1 0\ (a O P 0 1 bp™a !
( c p‘ma_1(1+bc)) - <cp_ma_1 1) (O a_1> <0 p‘m> (O 1  (4135)

where a,b, c € Q, and |a|, = 1. The decomposition of PGL (2,Q,) is similar, but up to a +
sign on the total determinant ']

One might believe that the exponential map from Lie algebras to the usual matrix group
GL(n,C) works for p-adic groups as well, but this is unfortunately incorrect. Indeed, one
could define a tangent space and Lie algebra functor near the identity of SL (2,Q,) [205],
but the total disconnectedness of the group poses a serious problem. For z € Q,, the p-adic

exponential is defined as
x  _n

z
exp(z) = Z prl (4.136)
n=0
which diverges at the identity since the radius of convergence is |z|, < p /=),
Another fundamental reason is as follows. Having a tangent space T, at the identity
e of the group analytical manifold PGL (2,Q,), it is natural to introduce a one-parameter
subgroup ¢ : F — PGL(2,Q,), where F is a number field, which is R for usual connected
Lie groups. ¢ also defines vector fields on the group manifold. Moreover, one can build an
exponential map to recover local features of the group via Lie algebra. Thus,

exp:F — PGL(2,Q,), t+ ", (4.137)

28Some Lie algbera data such as quadratic Casimir are still required.

29For real semisimple Lie groups, it is defined via their Lie algebras.

30Each sign sector is similar to a connected component of the usual Lorentz group SL(2,C). For the
Iwasawa decomposition of GL (2,Q,), see Proposition 4.2.1 in [169].
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with the Lie algebra element L € T,. Consequently, we must select the correct number field
F for the parameter ¢. R is ruled out due to the disconnectedness of p-adic groups. The only
remaining candidate is Q,. However, another issue arises when we consider the representation
of PGL (2,Q,). With the representation space V over C, we expect for any g € PGL (2,Q,),
its image 7(g) € GL(V) whose entries are all C-valued. From the exponential map, we see
that the image can always be written as

m(g) = M, (4.138)

where M = mw(L) is the image of the Lie algebra element Llﬂ However, ¢ and entries of M
are in different number fields with different norms, so the multiplication tM is forbidden,
and the Lie algebra representation over C cannot exist. Since there is no well-defined Lie
algebra or “infinitesimal generators” for the dilatation operator Ly, it is a little bit dubious
to discuss a “state-operator correspondence” used in [171] and hence radial quantization.

However, we should also mention the possibility to construct a Lie algebra representation
over Q, [206, 207]. In these cases, we need to consider Hilbert spaces over Q, though,
inconsistent with Melzer’s axioms for p-adic CFTs.

Admissible representations of GL (2,Q,) in general

Due to the troubles on the existence of p-adic Lie algebra, we turn our attention to group
representations. The unitarity of p-adic CF'Ts directs us to unitary representations, which
are subspaces of the physical Hilbert spaces as usual.

We start from the representation vector space V over C. Let GL(V') be the space of all
automorphisms of V', and 7 be the following homomorphism

m:GL(2,Q,) — GL(V). (4.139)
Given an inner producﬂg_f] (+,+) on V| a unitary representation (m, V') of G satisfies
(m(g) -v,m(g) - w) = (v,w), VYgeGqG v,welV. (4.140)

Clearly, this definition is relative to the prescribed inner product on V. If V' is not equipped
with an inner product which makes (7, V') unitary, one can ask if (7, V') can be made unitary
by choosing an appropriate inner product [169]. To this end, a representation (7, V') is defined
as unitarizable if there exists{g_g] an inner product (-,-) such that holds. Moreover, it
is straightforward to turn a unitary representation V' into a complete metric space 208,

31The Lie algebra elements are complex-valued matrices.

32Formally speaking, this is a positive-definite Hermitian form, and is equivalent to the usual pairing
between bras and kets.

33Existence of inner products is the first thing to look for in group representations. For example, for
SL(2,R) in JT gravity, among four types of its unitary irreps, trivial and complementary series representa-
tions are not considered [203] due to the lack of inner product. All of its finite-dimensional representations
are non-unitary as well [204].
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209], and therefore a Hilbert space; in fact the space of unitary admissible representations
of GL(2,Q,) is a proper subspace of the space of C-Hilbert representations of GL (2,Q,).
Notice that inner products here do not rely on the dual (or contragredient) representation
of V.

We further assume that we are dealing with irreps. According to the admissibility theo-
reml?], all unitary irreps of a p-adic reductive group such as GL(2,Q,) |213] are admissible,
so we only consider admissible ones. This is also empirically reasonable, because at least for
real and complex Lie groups, their irreps naturally appearing in PDEs, geometry, number
theory and physics are all admissible [214]. The admissibility theorem was originally proved
in [215] and later illustrated in [216[| (Section I1.2.2). These were recently improved upon
to work for more general TDLC groups, see [217] and [218] (Corollary 6.30).

Now to be complete, we present the definition of an admissible representation. An ad-
missible representation (m, V') of G requires that the subspace of V' fixed by any compact
open subgroup of G is finite-dimensional [169, 218, 216|. It also has to be smooth, meaning
that for v € V', the function

(Z Z>Hw<<z Z))U, V(Z Z)eGL(z,@p) (4.141)

is smooth, i.e., locally constantlﬂ [169, [219] 220|. Furthermore, a smooth irrep is admissible
[169] (Theorem 6.1.11 therein). Dual representations of admissible representations are all
admissible |169].

Finally we summarize the relations between various GL (2, Q,) representations in Figure
[4.13] Automorphic representations are not considered at all, because they are adelic over all
prime numbers.

Finite-dimensional admissible representations

We start our discussion on finite-dimensional admissible irreps. These representations appear
reasonable at first sight because they are consistent with the absence of descendants in p-adic
CFTs. This is also reasonable especially when there are only a finite number of primaries.
However, all finite-dimensional smooth irreps of GL (2,Q,) are trivial in the sense that they
are one-dimensional complex vector spaces such that the images of GL (2,Q,) act as scalar
multiplications as stated below [169].

Theorem Let (m, V) be a finite-dimensional smooth irrep of GL(2,Q,), then V = C
and 3 a multiplicative character w: QF — C* such that w(g) -v = w(detg) -v V g €
GL(2,Q,),v €V, where det is the usual determinant.

34The original Harish-Chandra’s admissibility theorem [210, [211, [212] only works for real reductive Lie
groups.

35Tn this set of lecture notes, all adjectives “irreducible” should be interpreted in the category of unitary
representations.

361t is absent on usual Lie groups, such as SU(2).
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Admissible (reducible not included)

Contragredient

Finite-
dimensional

Contragredient

Figure 4.13: Relations between different types of representations for GL (2,Q,).

For the group SL (2,Q,), its linear character is 1. On the other hand, PGL (2,Q,) con-
sists of group elements of GL (2,Q,) identified up to a scalar factor so that the linear charac-
ter w must be constant on the determinant in order to be consistent with this identification.
Since w is trivial, the dilatation transformation cannot be realized in this finite-dimensional
admissible representation. Hence it is not a desirable physical Hilbert space. However, it
would be interesting to see if an ensemble of primaries can be viewed as a tensor product of
one-dimensional representations.

One of the simplest examples is presented in Section 4.1 of [168], the free boson on the
boundary is viewed as a scalar representation of PGL(2,Q,), and conformal dimensions of ¢
and Vladimirov derivative of ¢ are 0 and 1. However, we hope for more. One hint may come
from the recent work on Green’s functions of Vladimirov in the context of p-adic holography
[221).

Infinite-dimensional admissible representations

According to the Langlands-like classification theorem [169], there are three classes of infinite-
dimensional admissible representations for GL (2,Q,): supercuspidal, principal series, and
specialfg_?] Certainly, all of them contain non-unitary cases which do not fall into this clas-
sification, and those non-unitary cases are not of physical interests, because p-adic CFTs

37All of them enjoy so-called Kirillov models and Whittaker models, which we will not explain or pursue
for now. For an accessible exposition on Whittaker models, see these notes [213].
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satisfying Melzer’s axioms are automatically unitary. Nevertheless, we will introduce their

unitarity-independent definitions, and save unitarity-specific definitions to future work. In

order to present the classification, we need to introduce the following object first.
Definition For an infinite-dimensional representation (7,V’) and a unipotent subgroup

)

then the quotient

* € Qp}, consider the subspace

Vn ={r(n)v —v|ln € Nyv e V}, (4.142)

VN =V/Vy (4.143)

is called the Jacquet module of V. The classification of infinite-dimensional admissible repre-
sentations is completely encoded by the dimension of V¥, which is at most two [219]. When
dime VY = 0, 1, 2, the representation is supercuspidal, special or principal series, respectively
[222]. Incidentally, V¥ also vanishes for finite-dimensional admissible representations.

For usual 2d CFTs, states with different Virasoro levels are orthogonal and obviously
span an infinite-dimensional representation of the Virasoro algebra. Then in p-adic CFTs,
one naively would think that different vectors in the representation space V' have different
energy levels. However, since we lack the necessary Casimir operators and algebra structure
to define physical observables and quanta for the states, the realization of energy levels in a
group representation is still mysterious.

Principal series and special representations

Principal series representations arise commonly in physics for non-compact semisimple Lie
groups, and they are also present for GL (2,Q,).

We start by defining the normalized unitary character of GL, (Q,) ~ QJ, a continuous
function w : Q) — C* such that [169)

Low(yy)=wyw), Vyy el

2 lwwlc =1, VyeQ

3. w(p) = 1.

Let s1, s € C. Then continuous characters x1, x2: Q; — C* are given by

s =1,2. (4.144)

P

Xi(7) = wi(z)|z

Consequently, x = (x1, x2) extends to a character of the Borel subgroup B via

4(3 ) (; 1)] = wifa)xa(h) (4.145)
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Then the normalized parabolic induction of x is the vector space:

(50)( i)g] = @

Va,be Q), x€Q,, g € GL(2,Q,), f is locally constant },

1/2

f(9),

a

d b

V(Xl,XQ) = {f :GL (27(@1)) —C

(4.146)

called the principal series representation of GL (2,Q,) induced from (x1, x2), and GL (2,Q,)
acts on V' (x1, x2) by right translation:

g-f(h) = f(hg), Vg,heGL(2,Q), feVxixa) (4.147)

According to Jacquet-Langlands [223], this representation becomes reducible if y;x; ' =
|- |F If xaxat = | - 7Y then V(x1,x2) contains a 1D invariant subspace W such that
V(x1, x2)/W is an irrep called special representation; if x1x5 "' = |- |, then V(x1, x2) contains
a 1D admissible subspace also called special representation.

Supercuspidal representations

If the Jacquet module V¥V vanishes, then (7, V) is called a supercuspidal representation
Although this one-line definition looks innocent, they are in general notoriously difficult to
construct, and we present the simplest case via the so-called “compact induction” in Appendix
B.4 We will use quite qualitative phrases in this short subsection.

However, supercuspidal representations are mathematically desirable due to its handful of
nice properties. They are the “native” representations of GL (2,Q,), because other admissible
representations can all be constructed from them, by inducing a representation p = (p1, p2)
of a parabolic subgroup P = M N, where p; is a supercuspidal representation of GL; (Q,),
i.e., a character of Q, and the Levi subgroup M ~ GL; (Q:) x GL; (Q1) = Q; x Q).

Another feature is that they have nicer inner products than the other two infinite-
dimensional representations [219).

They are also the most well-behaved representations of GL (2,Q,), i.e., that they be-
have much like representations of a compact group [225]. Finally, in familiar terms for
SL(2,R), supercuspidal and special representations are analogues of SL(2,R) “discrete se-
ries” for GL (2,Q,).

Key signature for physical representations

In previous subsections, we enumerated all candidate representations for the p-adic CFT
Hilbert space. Although we made cogent arguments on the nonexistence of conformal algebra

38The adjective “super” stands for the p-adic version of “cuspidal” in the finite field F, case |224], which
is presented in Appendix For an equivalent definition in terms of integrals, see Section 6.13 of [169].
Equivalently, any irrep of GL (2,Q,) which is not a subrepresentation of any representation induced from
the Borel subgroup is supercuspidal.
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and triviality of finite-dimensional admissible representations, there are still three classes
of infinite-dimensional irreps remaining. There is no simple reasoning we could present to
determine which one of them is the most suitable physical representation, and the difficulty of
explicit construction of supercuspidal representations makes the computation over it tough.
Fortunately, we find an important signature which could show clues as to which are true
physical representations.

In the Virasoro character formula for normal chiral CFT on a torus x(¢q) = Trygq 021,
q is related to the modulus of T2 torus via ¢ = €*™7. However in Section [4.2] we saw the
impossibility of defining a p-adic modulus 7 € Q,. Moreover, the dilatation generator Lg
does not exist as discussed in Section [£.5] so the ordinary Virasoro character apparently
makes no sense in p-adic CFTs. Nevertheless, ¢“°~2i viewed as a whole can be interpreted
as the representation of the dilatation transformation:

<q§ q? ) (4.148)

which is exactly the same as the Schottky parameter in . Meanwhile, a genus-1 curve
over Q, was similarly constructed via p-adic Schottky group ¢%, ¢ € Q, - Intuitively, we could
generalize the Virasoro character to p-adic CF'Ts by considering the image of the Schottky
group generator under a GL (2,Q,) representation (7, V'), and using the new character to
write down an analogous partition function for genus-1 p-adic CFT:

1
Zp—adiccrr = Try [( q02 9 >] ) (4.149)
q

N

NI

where the trace function always exists because GL (2,Q,) is a TDLC group [218|. One thing
worth looking at is to define a bounded-from-below V' in terms of the Jacquet module.

In Section we have explicitly calculated p-adic CFT partition functions from bulk
path integral. In principle, we could check results there against for all three classes
of infinite-dimensional admissible representations. This check would yield a key signature
of physical representations H, and may also demystify the connections between GL (2,Q,)
representations and Chebyshev polynomials. Another ambitious thought is to apply group
representations to possibly classify p-adic CFTs, just like ordinary minimal models, etc.

4.6 Summary and Outlook

We end with a summary of our results and several open questions for future exploration.

Discussion

In this chapter, we found the density of states of genus-1 p-adic BTZ black holes. Avoiding
the assumption on the existence of a state-operator correspondence, we provide a new way
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to calculate the genus-1 p-adic BTZ black hole partitions function via linear recurrence in
scalar fields on vertices. Regarding both accounts, we have shown several similarities to their
continuum analogues, but still realized features from Melzer’s axioms for non-Archimedean
CFTs.

Our analytical study on density of states in the high-temperature limit suggest that
scalars in BTZ background obey a Bekenstein-Hawking-like area law and the results are
analogous to the semiclassical genus-one partition function by Maloney and Witten [5].
However, one subtlety with our results are that they are unstable when p = 3. Possibly, this
might be explained from our semi-classical analysis omitting gravitational contributions.
Including gravitational effects for p-adic AdS/CFT was proposed by [187] via edge length
dynamics, however, will be saved to future work,

Additionally, we calculated the averaged three-point coefficient in a p-adic BTZ black
hole background and showed similarity with its ordinary counterpart by Kraus and Maloney,
but notion of p-adic modular transformations remain unknown [145], so that one is unable
to study the thermal p-adic AdS. We hope this calculation could initiate future work on
n-point coefficients of p-adic CFTs on higher-genus Mumford curves, such as heavy-heavy-
heavy three-point functions on regular genus-2 surfaces investigated in [143|. In fact, higher
genus p-adic BTZ black holes were already developed by [168| using higher rank Schottky
groups and Mumford curves.

Finally, we aim to narrow down the list of candidate Hilbert spaces for p-adic CFTs and
provide hints for quantization. From the bulk point of view, the Hilbert space over C seems
to be a very exotic one, due to Chebyshev polynomials showing up in Section [4.3]

Open questions

We provide a few open questions that would be interesting to explore in future work on
p-adic AdS/CFT.

We have only considered the same species of bulk scalar fields but not the possibility
of different species. Extending our bulk techniques to an ensemble of different species of
bulk scalars ¢; would not only be interesting (due to the existence of multi-particle states in
ordinary AdS;/CFTs [54]), but might also shed light on p-adic CFT Hilbert space represen-
tations. A nailve guess for the boundary partition function with an ensemble of primaries y;
dual to ¢; would be similar to that of ordinary 2d CFTs, with multiplicities M;; of highest-
weight states |i, j):

— Z Mixi(1)x;(7), (4.150)

i.e., summation over primaries. While from the bulk point of view, since different scalars in
the action decouple from each other, the total partition function should be a simple
product of individual partition functions like for Bruhat-Tits trees, or for BTZ
black holes. The absence of descendants in p-adic CF'T obscures the connection between
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the summation over primaries on boundary and the product over them in bulk, which are
transparently related in ordinary AdS;/CFTs,.

As we have mentioned earlier, the S-transformation on genus-1 Tate curve is still missing,
so there is no good analogue of thermal p-adic AdS. We would like to study these potential
p-adic modular transformation, and even p-adic MCGs.

Another question is about the role of GL (n,Q,) in “p-adic” holography or in “higher-
dimensional” p-adic CFTs, the latter being somewhat studied in [226]. For ordinary higher-
dimensional CFTs; their fields can organize into Virasoro representations by parabolic (gen-
eralized) Verma modules, as stressed in [227]; they have also been used in ordinary affine
Lie algebras [228]. Although Verma modules are absent in complex representations of p-adic
groups, they have been constructed as representations on p-adic vector spaces instead of
Hilbert spaces [206]. Then maybe it is worthwhile looking into the former vector spaces.

As to the connection between calculations in Section and GL(2,Q,) representations,
unexpected coincidence showed up: the determinant of Laplacian on Bruhat-Tits tree (4.31))
agrees with the volume of the following double coset [169] (Theorem 8.10.19 and Chapter
9.2 therein):

PN 0
GL(2,Z,) - ( 0 1) -GL(2,Zy) (4.151)
with respect to a Haar measure in the context of principal series representations of GL(2,Q,).
We will present one explanation for this seeming coincidence in using the graph Laplacian
on a Bruhat-Tits tree in Appendix [B.1]

There are more ambitious questions. Since our auxiliary cutoff IV is necessary in Section
[4.3] then it is natural to ask what will happen to the boundary p-adic CFT when one
introduce a real cut-off on the Bruhat-Tits tree? Since there is not yet a stress tensor in
p-adic CFT [178], an analogue TT deformation AdS3/CFT, [229] seems to be unrealistic.

Finally, beyond AdS/CFT, is it possible to formulate a p-adic dS/CFT correspondence?
A precursor was given by [177] in the context of eteranal inflation with dS vacua, but not in
the context of string theory.
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Chapter 5

Double-Janus linear o-models and
generalized reciprocity for Gauss sums

5.1 Introduction

In this chapter, we study the torus partition function of a supersymmetric 2d linear o-
model with T? target space (a free theory) whose complex structure varies along one of the
worldsheet directions (parametrized by 0 < oy < 1) and whose Kéhler modulus varies along
the other direction (parametrized by 0 < g5 < 1). The periodic boundary conditions can be
twisted both with an element in the MCG of the target T2 (we choose to do that twist along
the oy direction) and with a T-duality transformation (along o3). The partition function
thus depends on (the conjugacy classes of) M, M e SL(2,7) that respectively describe the
MCG “geometrical” element and the T-duality transformation. We represent the complex
structure of the target space by 7 (taking values in the upper half-plane H), which is allowed
to vary as a function of o7. More concretely, as we complete a loop around the first cycle
of the worldsheet (by varying o; from 0 to 1), the variable 7 may undergo a PSL(2,Z)
transformation 7 — (a7 +b) /(c7 + d), and in order to prevent a discontinuity at o3 = 0
we need to impose boundary conditions (connecting the fields at o; = 0 to the fields at
o1 = 1) that involve an element of the MCG of the target space, encoded by

M = (‘Z‘ 3) € SL(2,7).

Similarly, the Ké&hler structure of the target space is represented by p = p; + ipy on the
upper half-plane (with py proportional to the area of the T? target and p; proportional to
the Kalb-Ramond flux). As g9 varies from 0 to 1, the variable p may undergo a PSL(2,7Z)

transformation p — (ép + B) / <6p + &), and in order to prevent a discontinuity at oo =0

we need to impose boundary conditions (connecting the fields at oo = 0 to the fields at
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o9 = 1) that involve a “T-duality wall” labeled by

~ ab
M = (é &> € SL(2,7Z).

The motivation for considering such a setup is that it arises as a limit of a sort of “double-
Janus” configuration of 4d N' = 4 SYM theory. Janus configurations are 4d SYM theories
with a coupling constant that varies along one direction of space. They were first introduced
by Bak, Gutperle and Hirano [230] in a non-supersymmetric dilatonic deformation of AdSs,
an exact solution to the Type IIB SUGRA equations, as a way to create a discontinuous
jump in the real Yang-Mills coupling constant (which is related to the asymptotic boundary
value of the dilaton according to the standard AdS/CFT dictionary) across a codimension-1
interface. A supersymmetric Janus configuration was introduced in [231], and later, the
jump was “smoothed out” in [232], but still without a f-angle. Subsequently, Gaiotto and
Witten presented [233] the action of a deformation of N =4 SYM that preserves half of the

supersymmetries with a complex coupling constant 7 = % + % that varies as a function

ym

of one spatial direction, say 7(x3). Janus configurations have been further explored in 234,
235| and have been introduced into sphere partition functions in [236, 237]. They can also
be constructed for theories in other dimensions [238]. Configurations for 2d o-models have
been proposed earlier in [239] and sphere partition functions with Janus configurations have
been calculated in [237] 240].

Taking the gauge group to be U(n), the Gaiotto-Witten action allows us to smoothly
introduce an SL(2,Z) duality twist (sometimes referred to as a “duality wall” or “S-fold” and
studied in various string theory and gauge theory contexts, for example, in [241] 242, 243
244, 245| [246]) in an S compactification of 4d SYM. Parameterizing S* by 0 < x3 < 1, the
duality twist is an unconventional boundary condition that sets

_ar(0)+b

T()—m (5.1)

for M € SL(2,7Z), together with the implied electric-magnetic duality action on the fields.
We will refer to this theory as a closed Janus configuration. This setup was studied in [247]
for U(1) gauge group, where the low energy limit is easily shown to be described by a Chern-
Simons action with an abelian gauge group, determined (not uniquely) by a decomposition

of M into
11 0 —1
(1) 5= (0 )

generators. Furthermore, it was shown in [247] that a T-dual string theory background
provides a geometrical interpretation for the quantum algebra of Wilson loops. A similar
setup was also studied in [248], from the perspective of the holographic dual. Duality walls
have also been studied in |249], and recently a gravitational anomaly was discovered [250] in
such compactifications.
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The Gaiotto-Witten Janus configuration can be constructed as a limit of a compactifica-
tion of the 6d (2,0)-theory on a T?-fibration over R when the area of the T* fiber shrinks to
zero. We will review this construction in Section[5.2} To construct the closed Janus configu-
ration requires us to first take the limit where the area of the 72 fiber shrinks to zero, since
otherwise the area will be discontinuous along S! (as we will explain in Section , and so
we are back to A/ = 4 SYM with the S-fold twist M. In the context of 3d-3d correspondence
[251], this configuration is related to the 6d (2,0) theory on an (auxiliary) 3d mapping torus
studied in |39, [252} [253] 254], where a higher-genus fiber is also considered. The setup for
the present chapter is derived from an abelian double-Janus configuration that is a prelude
to the study of a nonabelian theory. It can be obtained as a limit of a Gaiotto-Witten
Janus configuration by compactifying on a small torus and allowing its complex structure
parameter to vary as a function of time. In other words, we compactify the closed 4d Janus
configuration on another (auxiliary) mapping torus labeled by another SL(2,Z) element M.
We are interested in the partition function Z(M, M ) which is a function of the two duality
twists. Here M is the S-duality element that acts on the N' = 4 SYM coupling constant,
while M is the MCG element of the T? in the geometrical mapping torus. To preserve
SUSY, it is again convenient to take the limit where the area of the T fiber shrinks to zero
first. Thus, we first reduce the 4d gauge theory to 2d, which for U(1) gauge group becomes
a o-model with a T2 x R® target space. The R® factor does not play much of a role in
what follows, so we ignore it. We are thus led to study “double-Janus” configurations for a
linear o-model with T2 target space where the complex structure varies in one direction and
the Kéhler structure (i.e., the complexified area) varies in the other direction, with M- and
M-boundary conditions respectively [where M € SL(2,Z.) and M € SL(2,Z,)|. We will

show that Z(M, M) is essentially a finite sum over certain roots of unity, and by calculating
it in two different limits, respectively corresponding to different limits of the shape of the
(physical) T? target, we arrive at a number-theoretic identity known as the Landsberg-Schaar
identity:.

The rest of this chapter is organized as follows. We begin in Section by reviewing
our key motivation, the Gaiotto-Witten Janus configuration of 4d SYM, and its various
connections to the 6d (2,0) theory. Then we deviate a little bit in Section with a brief
review of Quadratic Reciprocity, Gauss sums, and the Landsberg-Schaar identity. We then
construct the double-Janus o-model in the 2d bulk in Section [5.4] where we present the gen-
eral constraints from supersymmetry, and various solutions. In Section we compactify
the double-Janus solution on a torus and introduce the twisted boundary conditions (with
both geometrical and T-duality twists, M and M , respectively). In Section m we calculate
the double-Janus partition function, including both bosonic and fermionic one-loop determi-
nants, which cancel each other out, leaving only a number-theoretic quadratic Gauss sum.
In Section we discuss connections with abelian Chern-Simons theory partition functions
and the dual “strings on mapping tori” introduced in [247] in the context of 4d closed Janus
configurations. We use this dual formulation to determine the precise normalization of the
partition function. In Section we show how the basic Landsberg-Schaar relation follows
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with a Berry phase factor included, and in Section [5.9| we derive its multivariate generaliza-

tions, along with a comparison against known generalizations in the mathematical literature.
Finally we conclude in Section [5.10]

5.2 Janus compactifications and mapping tori

The key motivation of our construction is a supersymmetric configuration of N' =4 SYM
with a complex coupling constant 7 = 7 + i7» that varies along one of the directions, say
x3 = y, which for the time being we take to be R (but we will later compactify it to S'). An
explicit supersymmetric Lagrangian has been constructed by Gaiotto and Witten in [233].

Gaiotto-Witten Janus configuration

Now we review the Gaiotto-Witten construction in [233|. We adopt their notations, so that
the action of the ordinary N/ =4 SYM introduced in ((1.47)) now reads

1 F,F . . 4
Iy = / d'z——Tr ( 32 + F3,F% 4+ D3 X, D*X® + D3Y,D*Y? + D'X"D; X, + D'Y?D,Y,
Iy m

1 1 _
5 X XX X+ SV VYY) + (X, VX0, Y7 - z'\IJFIDI\IJ)
0
—— | FAF
82 ’

(5.2)
where the spacetime indices i = 0, 1,2, and we denote the six scalars as X, for a = 4,5,6
and Y, for p = 7,8,9, and I = (¢,3,a,p) = 0,---,9. The action is invariant under the
supersymmetry transformation

1
§A; = el U, 06U = QFUFI JE, (5.3)

where A; = (A;, X4, Y)).
The Gaiotto-Witten Janus configuration is a deformation of the N' =4 SYM, such that
the coupling 7 = /27 + 4mi/g%,, as in (1.45)) varies continuously over the x3-direction as

1

2
9y M

= Dsin2y, 60 =2na+ 87D cos 24, (5.4)
where 1) is an arbitrary function of x3. This deformation preserves half of the 16 supercharges
of the original theory, that satisfy the equation

(T340 sinap 4+ 3™ cosh)e = ¢, (5.5)

where ¢ is a 10D chiral spinor. The deformed supersymmetry transformation of the gaugino
U is given by (5.3) plus

00 = (~T°TX,¢ tan ) + D*TPY,0 cot ) e. (5.6)
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The deformed action, that is invariant under the deformed supersymmetry transformation,
is
Ligp =TI+ 1"+ 1"+ 1" (5.7)

where
/ /

J — (1 (0 (0
I'= [ d——Te T =¢/Typs — Tysg + ——Trge | @ .
/ r——Ir 2¢ 012~ 5 e 456 T Zsimg. ™ (5.8)

9y m
includes additional fermionic bilinear terms, and

178 2 2/(/}/ aoc
1" = /d4£C Tr |:— 22#6“ ATr (AM&,A)\ + gA“A,,A,\> + mE b TI‘Xa[Xb,XC]

5.9
—Q—WGPqTTrY[Y Y] >
3sin P
includes additional dimension 3 bosonic terms, and
1
"= /d4:vg2 Tr {[(¢' tanv)) + (¢')*] X* + [— (¢ cot ) + (¢')*] Y}
Y M
(5.10)

= / d'x 21 Tr {[—2¢ tan X *X] + (¢')* tan® ¢ X
9y m
+ [2¢/ cot YYPY) + (V')? cot* Y] },

includes additional dimension 2 terms. Notice that for the last equality in (5.10]), we have
used ([5.4]) and integration by parts. I can be absorbed into the kinetic term of X and Y,

~ 1
I= / d'v—— Tr[+D3X,D°X* + DsY,D*Y?] + 1"
I u (5.11)

1 IO S
_ / d'z—— Tr [se(;? D3 X, D*X® + csc? ¢D3YPD3YP},
9y m

where X = X cosv and Y = Y sin ).

We include an attempt to topologically twist the in Appendix [C.1]

To understand the supersymmetric Janus configurations, it is convenient to start in 6d
with the (2,0)-theory. In fact, most of this chapter is about the free U(1) gauge theory, so
we will start with a free tensor multiplet in 6d. This theory has a basis of 16 supersymmetry
charges, but to construct a supersymmetric Janus configuration we need to compactify on a
suitable space and twist the supersymmetry. We can do this in two different ways.

Its connection to 6d (2,0)

Here we show how to get the Gaiotto-Witten Janus configuration [233] from the 6d (2,0)
theory. We begin with the 6d (2,0) theory on a spacetime with metric given by

ds® = —dt* + da] + dx + dy* + Ry(y)*dx] + Ridaz,
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where Rs is a constant and R, varies with periodicities x4 ~ x4 + 27 and x5 ~ x5 + 2,
and noncompact —oo < y < oo. Note that direction x4 forms an S'-fibration over R,
the direction y, whose total space is a noncompact Riemann surface. The 6d (2,0)-theory
compactification therefore falls within the class of theories studied by Gaiotto in [255]. To
preserve 8 supersymmetries we introduce, as in [255], an R-symmetry twist that matches the
holonomy of the Riemann surface. This is done with a background gauge field for an SO(2)
subgroup of the Spin(5) R-symmetry group. Dimensional reduction along directions x4, 5
gives rise to a Janus configuration with 7(y) = iR5/ R, varying with y and taking values
along the imaginary axis. Now, apply an SL(2,R) transformation that acts as

at + a [
h - h = L(2,R 12
P S = (0 ) estem), 5.2
and linearly transforms x4, x5 to obtain the metric
ds® = dt? + da? + da? + dy? + Ry(y)? (0de, — Bdxl)” + R? (adxl, — vdxh)”. (5.13)

We also modify the periodicity condition so that the new coordinates x, zf are periodic with
periodicity 2. The 3-manifold in directions y, 2/, % still has a holonomy group SO(2), and
we can construct a twisted compactification of the 6d (2,0)-theory along z/j, 2% to preserve
supersymmetry by embedding SO(2) C Spin(5). If we view the 6d (2,0)-theory as the
low-energy description of M5-branes, we can let SO(2) correspond to rotations in 2 out of
the 5 transverse directions to the worldvolume. This compactification preserves half of the
supersymmetry. In the limit R — 0 we get the 4d Gaiotto-Witten Janus configuration with
a complex Yang-Mills coupling constant given by 7/ = ‘f‘y::? , varying along a semicircle in
the upper half-plane. The semicircle is the image of the imaginary axis under (5.12). The
R-symmetry twist creates additional mass terms for the R-charged fields, as discovered in
[233].

Dimofte-Gaiotto-Gukov configuration

Define the 3d mapping torus Mg, parametrized by (y, x4, x5) with periodic coordinates
0 < x4, 75 < 1, and unrestricted —oco < y < 0o, and with metric

1
ds® = dy* + pro(y) "2 |dzy + 7(y)das|* . (5.14)

Here p is the constant area of Mrr. Compactifying the 6d (2, 0)-theory on Mg and taking
the limit p — 0 leads to a 4d N' = 4 SYM with a coupling constant 7 that varies with 3.
However, the holonomy group of Mg is the entire SO(3), and Mrr therefore does not have
a nonzero covariantly constant spinor. So, as it stands, compactification of the 6d (2,0)-
theory on Mrp breaks supersymmetry entirely. The solution to this problem is to twist
the supersymmetry in 6d. Consider a subgroup Spin(3) C Spin(5)r of the R-symmetry
group, under which the spinors of Spin(5) decompose as two copies of the fundamental
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representation of Spin(3) ~ SU(2). If the (2,0)-theory is understood as the low-energy
description of an M5-brane in M-theory [36], then such a subgroup can be realized as the
group of rotations in 3 of the 5 directions transverse to the M5-brane. The twisting identifies
this Spin(3) with the (double cover of the) holonomy group of Mg, or more geometrically,
by letting 3 of the 5 transverse directions be fibered over Mrp in a rank-3 vector bundle
whose structure group is the holonomy group. Dimofte, Gaiotto, and Gukov (DGG) studied
this system in 251} |39], as part of a comprehensive theory, 3d-3d correspondence, that they
developed for analyzing the (2,0)-theory on 3-manifolds. After the twisting operation, the
6d supersymmetry generators transform as two copies of 2 ® 2 = 1 @ 3 of the holonomy
group. The singlet survives as a covariantly constant generator, and therefore one quarter of
the supersymmetry is preserved. The DGG theory therefore preserves 4 supercharges, and
7(y) is an arbitrary function.

Now consider the twisting operation applied to the U(1) version of the theory, i.e., a free
tensor multiplet. Denote by Spin(3)y the holonomy group of Mrg. Before the twisting, the
fermions are in the (2,4) of Spin(3)y ® Spin(5)g, and the scalars are in the (1,5) where
5 is the vector representation of Spin(5)g. After the twist, we replace 4 of Spin(5)g with
2@ 2 of Spin(3)y, and 5 of Spin(5)r with 2(1) & 3 (3 singlets and one vector). The spinors
then transform as 2® (2@ 2) = 2(1) ©2(3). At low-energy the mode of the 2-form B that is
proportional to the top form of the fiber dxy Adxs becomes a third scalar, and the low-energy
4d R-symmetry is enhanced to SU(2)g. Under Spin(3)y x SU(2)g the scalars transform as
(1,3) @ (3,1) and the spinors transform as (1,2) @ (3,2). The equations of motion of the
Spin(3)y vector fields are equivalent to those of a U(1) gauge field in Lorenz gauge.

We stress that the above constructions are only a motivation for the o-model that we
will study starting from Section [5.4] which is a supersymmetric 2d o-model with varying
parameters. Now we review a key number-theoretic concept, to which we will connect Janus
configurations.

5.3 Quadratic Reciprocity

Quadratic Reciprocity is a classic duality in elementary number theory. In order to introduce
it, we first set up the context and review a few related concepts. If p is an odd prime number
and ¢ is an integer, then ¢ is called a quadratic residue (mod p) if 22 = ¢ (mod p) has integer
solutions x. The information on solutions to this equation is packaged inside the Legendre

symbol (%) defined as follows:
-1 if \/g (mod p) doesn’t exist;
(g) = 0 if ¢ =0 (mod p);

1 if +,/q (mod p) exist and are distinct.
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The Law of Quadratic Reciprocity states that if p and ¢ are odd primes, then

(g) (%) N CICy) (5.15)

It is a nontrivial statement that connects the existence of solutions to z? = ¢ (mod p) with
the existence of solutions to the dual equation 22 = p (mod ¢). Quadratic Reciprocity was
originally conjectured by Euler and Legendre in the late 18" century, and then proved by
Gauss in 1801. It was a catalyst for subsequent modern developments in Algebraic Number
Theory, such as Artin’s Reciprocity Law [256].

A Quadratic Gauss Sum is the discrete Fourier transform of the Legendre symbol:

p—1 b p—1
I S (O T I
b= n=0
p—1
where the last equality follows from the identity 262”“1’/ P =0 for a20 (mod p). It is
b=0

a
not hard to prove that x,(a) = (—) Xp(1), so the quadratic Gauss sum is proportional
p

to the quadratic residue. It can also be shown that x,(1) = \/p if p = 1 (mod 4) and
Xp(1) =iy/p if p =3 (mod 4) (see [257]). Quadratic Reciprocity is then a statement about
the relation between quadratic Gauss sums. For example, if both p and ¢ are 1 (mod 4) then
Xp(9)/v/P = Xxa(P)/\/T-

A convenient way to prove the Quadratic Reciprocity is via the Landsberg-Schaar
identity [258, 259|

7rz/4 2p—1

1 i
—min2q/2p _ e2min’p/a 1<p,qeZ. (5.17)
Z NG Z -

The identity can easily be proved using the modular transformation properties of the Jacobi
[e.e]

theta function ¥ (0;7) = Z exp <7TiT7l2) evaluated at zerd!| and its asymptotic behavior
as the argument 7 vertically approaches the real axis [260), 261].E| In this chapter, we will
describe a physical system with a finite number of quantum ground states that reproduces
(5.17) directly.

If p and q are both even, say p = 2p’ and ¢ = 2¢’ then it is easy to see that (5.17]) reduces

to
emi/4 2p'—1

§ —7rin2q’/2p/ _ § 27rm '/

Tn Riemann and Mumford’s notatlons, Iz 7) = 1900(2, 7') is denoted as 03(z;q), where g = ™7,
2The Landsberg-Schaar identity was also recently proved using a non-analytical method [262]. For the
history of development of various proofs other than Gauss’s after 1801, see [263].
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(This is seen by first summing the terms with n and n + 2p’ on the LHS and n and n + ¢/
on the RHS.)

Before proceeding to the physical system, we note that for odd primes p and ¢, the
Landsberg-Schaar identity is a slightly modified version of Quadratic Reciprocity. To see
this, define

2p—1
mian?
opla) = > emem /o, (5.18)
n=0
which is periodic in a with period 4p, and satisfies g,(a + 2p) = (—i)®o,(a) (as can easily
be seen by relabeling n — n + p). In fact, it is elementary to check (by splitting the sum
over n into sums over odd and even numbers) that

op(a) = (1 4+i") xp(a). (5.19)

It then follows from Quadratic Reciprocity and the results quoted above for quadratic Gauss
sums that if p # ¢ are odd primes,

1 1

\/2—p9p(Q> = ﬁ

-1
Taking the complex conjugate and noting the known result (—) = (—1)(q_1)/ 2 the
q

Landsberg-Schaar identity (5.17]) follows in the form

\/Lz—pé)p(—cﬁ = %e‘i”xq(p)- (5.21)

ei@q’l)qu(p) . (5.20)

We will now construct a (p, ¢)-dependent quantum field theory whose partition function can
be calculated in two different ways; one gives an expression proportional to x,(p) while the
other gives an expression proportional to g,(—q).

In the next sections we will show how and generalizations of it arise from studying
the partition function on 7T of supersymmetric 2d o-models whose target space is (also) a
T? with complex structure 7 and Kihler modulus p that vary along the T2 worldsheet. We
will include boundary conditions with duality twists along two independent cycles of the
worldsheet, acting as

ar+b ap+b
— and p— =,
ct +d cp+d

So that the partition function Z(M, M) will depend on two SL(2,Z) elements

M= (2 b) € SL(2,7),, M= (‘Z‘ E’) € SL(2,Z),.

d d
The basic Landsberg-Schaar relation ([5.21)) will be recovered in the special case where
0 -1 ~ 0o -1
M= (1 q+2)’ M= (1 2p+2)' (5.22)

We now present the details.
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5.4 Double-Janus o-models

In this section we construct a 2d o-model whose target space is a T2 with complex structure
7 and Kéhler modulus p that vary along the worldsheet so as to preserve some amount of
supersymmetry. We use the terms “worldsheet” and “target-space”, borrowed from string-
theory, but we emphasize that we are dealing only with a 2d CFT. In particular, we will be
working with a fixed metric

ds* = (doy)? + (doy)?* = dzdz,
where we denote the (Euclidean) worldsheet coordinates by (o1, 05), and we set

1 _
Z2=01+109, Z=01— 109, 853——(81—2'82), 0=

0z 2

Dimensional reduction of the Gaiotto-Witten action [233], in the special case of a U(1)
gauge group, is one way to obtain such a double-Janus Lagrangian, with both 7 and p varying
along the worldsheet. Now we present the details of this construction.

Following the compactification of 6d (2,0) theory to 4d in the background , we
further compactify the y direction by identifying y ~ y + 1. This would be possible if we
could find an SL(2,Z) MCG transformation acting on z/j, xy that relates 7(y) to 7(y + 1).
The SL(2,Z) element will then be identified with M, the S-duality twist in (5.1)), and one of
the eigenvalues of M has to be R4(1)/R4(0) |and the other eigenvalue will be R4(0)/R4(1)].
Note, however, that the area of the T? in directions z, zf, which is (2m)?>R4(y)Rs, is not
generally a periodic function of y, and so we can only compactify y after the limit Ry, Rs — 0
has been taken to reach the 4d SYM low-energy limit.

From the 4d SYM theory we can proceed to 2d by compactifying directions x;,zs on
another T2 and taking the low-energy limit. If the gauge group is U(1) then we obtain a
o-model with T? target space from the gauge fields, whose complex structure is 7(y). We
can now proceed in a parallel fashion to and replace the so far untouched 3d part of
the metric with

di? + da? + da? — dt* + Ry(t)? (8'da, — B'dah)” + R2 (o/daly — ~'dx))? (5.23)

(:, ?,) € SL(2,R).

In the low-energy limit, the U(1) gauge field will reduce to a 2d o-model with T2 target
space whose complex structure varies with y and whose Kéhler structure varies with ¢. We
can then compactify ¢ by imposing the periodicity ¢ ~ ¢ + 1 together with an associated
linear transformation on (x7,z5) given by M € SL(2,Z). This is possible in the limit
Ry, Ry — 0 provided that R;(0)/R;(1) is one of the eigenvalues of M [the other eigenvalue
being R1(1)/R1(0)].

where
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In this way we can preserve 4 supersymmetries, but we also get additional massive non-
compact scalar fields. For our purposes of deriving the quadratic reciprocity, it will be suf-
ficient to work with a minimally supersymmetric model which we describe in the following
subsection.

Minimally supersymmetric double-Janus model

Our starting point is a supersymmetric o-model with target-space TV (later we will set
N =2). Welet I,J = 1,..., N label target-space coordinates. The scalar fields will be
denoted by X!, the left-moving fermionic fields will be denoted by ¥!, and the right-moving
fermionic fields will be denoted by U'. We combine them into (2N)-component column
vectors, denoted by X, ¥ and VU, with transposed row-vectors denoted by X* W' and i
We assume that X! ~ X! + 27 is a periodic field. All fields are functions of (o7, 73).

The components of the target-space metric and Kalb-Ramond field will be denoted by
Gry and By, respectively, and combined into the (2N) x (2N) matrices G and B, with
G' = G and B! = —B. We denote

E=G+ B.

This matrix will appear in the kinetic term of the scalar fields X, and we allow E to vary with
(01,02), in a predetermined way, as in a Janus configuration. F is thus a (o1, 02)-dependent
background. To preserve supersymmetry, the action requires additional “mass terms” and
“background gauge field terms” and takes the general form:
1 _ _ e g
== / (aXtEaX iUV + iU S0V + iV + T W + \IftW\If> Lo, (5.24)
T
¥, ¥, K, K, and W are background (2N) x (2N) matrices with, possibly, (o1, 02)-dependent
elements. ¥ = X and & = % are symmetric matrices that define the fermionic kinetic terms,
K=-K!'and K = —K are antisymmetric and enter in effective “background SO(2N) gauge

field terms”, and W is an effective “mass term”.
The supersymmetry transformations take the form

X =n(U-0), SU=i2'GoX, U=—inS GOX, (5.25)
where 7 is an anticommuting parameter. 7 is real, and complex conjugation acts as

=, =T, T =v () =0y =¥, (V) =TT
(5.26)
Note that invariance of the action under the (- - - )* operation requires B = 0, ¥* = 3, K* = K
and W* = W' (but we will not require this except in special cases below). Invariance of the
action under the SUSY transformations requires the following relations among G, E,
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Y and X:

0 = 20% —0EG™ 'S -G 'OF", (5.27)

= 20X - OFE'G™'Y - ©G'OE, (5.28)

YG'OE + 0EGT'Y. (5.29)

Then, K, K, and W are determined in terms of E, ¥, and ¥ by

1 =« = 1 — 1—
K =3 (0L —9EG™'E) = ZEG”&Et - Z—laEG’lz, (5.30)
_ 1, < - 1o 1 -
K = 5(02-0F'GY) = ZEG‘laE - Z(‘)EtG‘lx, (5.31)
W = XSG 'OE' = —i0E'G'Y. (5.32)

For future reference, we list the linear equations of motion that follow from (5.24). The
bosonic equations are

0=0(E'0X) +0(E0X) = 2G00X + (OE') 90X + (OF) 0X, (5.33)
and the fermionic equations of motion are

o = —%G%EE —y! (/c + %52) v, U= —%GlaEt\P —y (K+ %ai) v,

(5.34)
which can be simplified, using (5.30))-(5.32), to
0=2GoV + (OE) U + (OE") ¥,  0=2GOV + (OE")V + (OF) V. (5.35)

The supersymmetry constraint equations (5.27))-(5.29) simplify somewhat when G is ex-
pressed in terms of a “vielbein” V' as

G=V'V. (5.36)

Here V is a (2N) x (2N) matrix, which is not uniquely defined in terms of G, but different
choices differ by V' — QV, where €2 is O(2N)-valued. We also define

S=(vH)'zvt = (vH)T'Tv (5.37)

and
A = % (V) tovt—avv | + % (v aBv, (5.38)
4 = % [(vt)‘lévt —Evv*] - % (v~ aBv 1. (5.39)
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Then, S = gt and S = S are symmetric matrices transforming under V- — QV as 5 — 15 Qf
and S — QSO while A, and Az are antisymmetric and transform like a gauge field:

A, = QAQ" + Qo0 Az — QA + QOO
The constraints — can then be written as
0=0S+[A:S], 0=05+[A.,5]. (5.40)
Next, we define the symmetric matrices

Yy = (vVO)TT@EYV = (V)T V) + @V) V- (V)TN @OB) VT, (5.41)

Y = (VOTT@EY VT = (V)T @V + (@V) V= (V)T (@B) VL. (5.42)

+

Then, can be written as

0=25SY+)S. (5.43)
Thus, given V and B, we can find S and S by solving , and then (5.43)) yields a
constraint on V and B. We do not know the general solution (G, B, S, E) to —5.29,
but below we will discuss a special class of solutions that will suffice for our needs. We
restrict to N = 1 and begin with a simple class of solutions where G is diagonal and B = 0.
We then apply solution generating transformations (i.e., T-duality) to obtain a wider class
of solutions.

o1-independent solutions

A simple way to satisfy (5.40)) is to set

S=5=I,

where I is the identity matrix. Then, (5.43) becomes Y = VY, which by (5.41))-(5.42) requires
0 = 0F 4+ 0F = 0,F. Thus, E, and hence G and B are functions of o5 only. How they

vary with oy is arbitrary, and any pair of G(02) and B(0y) determines a supersymmetric
action (5.24]). The remaining couplings in (5.24]) can then easily be calculated from (}5.37))

and ((5.30)-(5.32)):
_ _ ) 1
N=% =0, K:K:—%Mi W= SoE"

By setting S = —S = il we similarly get a solution with couplings that are functions of
o1 only. In this chapter, however, we are more interested in solutions where G and B vary
nontrivially with both o; and o,.
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Holomorphic solutions

For the T? target space, another class of solutions can be obtained by requiring p to be
constant and allowing 7 to vary holomorphically with z. The setup is then an elliptic
fibration, reminiscent of F-theory [264]. We can takd]

1 _1 /1 —
v = p227-2 : (0 7;—1) )

87'1 — 87'1
.AZ = —2—7_26, .Ag —2—7_26,
where
(0 -1
€= (1 0 ) : (5.44)
Since O = 0, we can substitute dr, = i1, and 1 = —i0m, and write
.87-2 — ,57’2
.AZ = —22—7_2‘5, AZ = 22—7_26.

Then, (5.40) has the general solution
S = e*%(logTz)EF(Z)e%(10g72)€7 S = e%(logm)ﬁf(g)e*%(10g72)67 (5.45)

where F(z) and F(Z) are arbitrary holomoprhic and antiholomorphic (symmetric) matrix-
valued functions on the worldsheet. We also calculate from ({5.41))-(5.42)),

y_l —8’7’2 —87’1 _% -1 — y_l —57'2 —57'1 _@ -1 =1
T \-0n O ) o \—i 1) T \-0n O0n ) mw» \i 1)°

We set 2 = (_1 _Z) , 7 (_1 Z), and noting that e = —exx = i and €3¢ = —22c =14

- 1 11
imply e~20oem)e 0—5008m2)e — 5 and 308 )ezze—5(0s™)e — 32 o find that (5.43) yields

0= (972) Fsc + (072) 3F. (5.46)

Since, for a holomorphic 7 we have 0m, = —%87, which is also holomorphic, while o1, = %5?

is antiholomoprhic, we see that (5.46|) is possible only if

F=(0n)w, F = (0m) @, (5.47)
3The minus sign in front of 7; is in order for equations ((5.62))-(5.63)) to be simpler.
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for some constant symmetric matrices w, @ that satisfy
0="wx+ xw. (5.48)

Since s and 7 are nilpotent (3> = 322 = 0), (5.48) requires 3w» = 3w = 0 which is
equivalent to
Tro=Trw = 0. (5.49)

If we also require @ to be the complex conjugate of w then ([5.48) is satisfied provided
Re Wi = —Im w11- (550)

Once we choose a 2 x 2 matrix w (and its complex conjugate @) that satisfies and
(5.50), we calculate F' and F from , and then we calculate S and S from . We
then find ¥ and X from ([5.37)).

These holomorphic solutions might be interesting to explore, but we will not discuss
them further in the present chapter, since our focus is the closed double-Janus solutions to
be described in Section 5.4} We will construct these solutions by first finding solutions where
FE is diagonal.

Diagonal solutions

We get another simple class of solutions to — [or, equivalently, to and ]
by setting B = 0 and requiring G to be diagonal. We can then choose a diagonal V = G'/2
in and we calculate from — that A, = A; = 0, and from — we
calculate ) = dlog G and ) = dlog G. Then, and require

0=05=0S = (9logG) S+ S (0logG) .

We will make the further assumption that S and S are constant matrices, as is the case if
the worldsheet is v and we require S and S to be bounded, or if the worldsheet is 72 with
periodic boundary conditions. We also assume that S is the complex conjugate of S, and
for simplicity we proceed to analyze the case N = 2, i.e., a T? target space.

If S is also diagonal, we proceed as follows. We first assume without loss of generality that
S11 > 0 (since we can always rotate z by a phase to make it so). Then 0 = (5 log GH) S+
S (Olog Gy1) says that Gy; is a function of o9 only. If Sy is also real then a similar
conclusion about Gae shows that we have a special case of Section [5.4 If Sy is not real,
then G99 is a function of a different linear combination of o; and o5. In any case, this seems
to be a rather restricted system, and we will not pursue this further in this chapter.

If S is not diagonal, we can assume that Sj5 = Sj» > 0 (again achieved by rotating z if
necessary). The off-diagonal components of

0= (dlogG) S+ S (dlog G) (5.51)
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yield B B
810g G11 = —0log G22 and alog Ggg = —810g GH, (552)

from which it follows that 0 log G, = 9 log G1; and similarly for Gg,. Since 02 7 = 10105,
and combined with (5.52)), we find that G takes the form

ez
G = (62 Psz) ; T = Ta(01), p2 = pa(02),

where we have written the metric in terms of the Kédhler modulus p = p; +ipy (with p; =0

since B = 0) and the complex structure 7 = 7 + ity (with 74 = 0 since G is diagonal),

and the analysis above shows that (for Sj3 > 0) 72 = 73(07) is a function of oy only, and

p2 = pa2(02) is a function of o9 only. For the future, we denote

Ty = 717 P2 = dT"Q

Then, since we assume that S and S are constant, the diagonal components of imply
that either S;; = Ssy = 0, or both 7} /7 and py/p, are constant. We will first consider the
more general case that 7, and py are arbitrary functions of o; and o5 and we therefore assume
that Sy = Sye = 0. Although later on we will discuss the case that log and log ps are
linear functions of o; and oy, respectively, we will still keep the assumption S7; = Ss = 0,
since it leads to the simpliest model. We can take Sj2 = 1 without loss of generality (by
rescaling z if necessary). The action then takes the form

1 _ _ _ _ 1 9
[ = = / {@axlaxw pomsdX20X2 4 ipe WOV + iy WOV 4 ipyT OV + ipe W O
T T2

gy PTGy (P 1T Gy (L2 T g 2y (5.5
27 279 2 27 2 27

Note that this action is real, in the sense defined below ([5.26]). The fermionic part of the
action ([5.53) can be simplified with a change of variables, but we will defer that to Section
0.0l

SL(2,R)-generated double-Janus solutions
The action (5.53) describes a special solution to (5.27)-(5.29) [substituted into ([5.24])] where

the complex structure 7 = 7y + iy and Kihler parameter p; + ip, of the T? target space are
each allowed to vary along the imaginary axes of their respective upper half-planes. We will
now apply fractional linear transformations, acting as

T—>&T+ﬁ, p—>0jp+@, for some (a ﬁ),(? @>€SL(2,]R),
YT+ 90 Ap+ 6 v 0 v o0
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to generate new solutions. In general, we expect an O(n,n,R) group of transformations
acting on the parameters (E,Z,Z), and converting a solution of ([5.27)-(5.29) to a new
solution <E’ X ,il). This is an extension of the well-known O(n,n,R) action on o-models

with T™ target space, parametrized by a Narain lattice in the isotropic (i.e., non-Janus)
case. (See [265] for a review.) Such transformations are genererated by linear coordinate
reparameterizations (which modify the boundary conditions since the new coordinates are
still required to obey the same 27 periodicity conditions as the old ones) and T-dualities.
The geometrical transformations act as

X' =PX, WV =PU V¥V =PpP0,
and therefore
E'=FPYeEpP! =(PYH)zspl T=(PYH)TpP (5.54)

where P € GL(n,R) is a constant matrix. (Later, we will restrict to the case n = 2.)
T-duality on all directions acts as

1

EF=E"' Y=©£'%2(E), Y=(E)'SE" (5.55)
The terms in the action (5.53)) can then easily be calculated from (5.30)-(5.32)). For example,

after some algebra, we get

—— 1=

K = () {K+ %8Et (E")  ©-— %EE—laE} E,

-1

ro_ —1 1— —1 _1 t\~L1 gt t
K' = E {IC+2(8E)E X - 35 (E) 8E}(E)

For the case of T? target space, we can define two commuting PSL(2,R) actions. We take
the target space metric to be

GrdXax’ =22 |7ax? — ax' [,
T2

so that the geometrical PSL(2,R), acts as

E = (P EPT, Y= (P TP, ¥ = (PY)EPY o=
YT+ 0
where
pP= (O‘ g) € SL(2,R). (5.56)
The other group, PSL(2,R),, acts as
ap+f
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combined with
- -1 ~
B = (%E + 51[) (&eE + ﬁ]I) , (5.57)
-1 N —17¢
S = (aEe + 51[) > {(we n 6H> } , (5.58)

t

_ N
> <’~yeE v 511) , (5.59)
where € is the antisymmetric matrix defined in ([5.44)), and

(‘;‘ g) € SL(2,R). (5.60)

Applying these transformations to the solution , we get a new solution with 7(oy)
taking values on a semicircle of radius 1/2|yd| in the upper half-plane that intersects the real
axis at the points a/v and /0, and similarly, p(o9) takes values on a semicircle of radius
1/2|76| that intersects the real axis at the points & /5 and 3/6. This behavior of the modular
parameters is similar to that derived by Gaiotto and Witten in [233] for the supersymmetric
Janus configurations of N' =4 SYM.

The solutions discussed above are more suitable for our needs, since for suitably chosen
parameters, the semicircles will be invariant under some SL(2,7Z) duality transformations.
The worldsheet of such models can then be compactified on a torus, thus making o; and o
periodic, and the periodicities 0; — o1 + 1 and 09 — 09 + 1 are accompanied by duality
twists. In the context of 4d NV = 4 SYM, such a setup has been used in [247, [248] to
compactify the Gaiotto-Witten solution to 3d. A generic SL(2,Z) matrix

a b
o)
with |a+d| > 2 (a hyperbolic elemen preserves the semicircle of radius y/(a + d)? — 4/2|c]|
that intersects the real axis at

r=s(a-dxyardr-4).

We will now discuss in detail how to incorporate the duality twists, and the “interaction”
between the 7 and p twists.

40r equivalently, a pseudo-Anosov homeomorphism of T2, the fiber of the non-geometric mapping torus,
which turns out to be hyperbolic.
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5.5 Duality twists

At the end of Section we obtained a model with 7 varying as a function of oy while taking
values on a semicircle that is preserved by

a b
(e a)

and with p varying as a function of o, while taking values on another semicircle that is
preserved by .
~ ab
M = ~ .
(¢ )

We will now compactify the worldsheet. To begin with, we put the theory on a noncompact
rectangular worldsheet with
0< 01,00 < 1.

Geometrical twist

Let us first discuss the boundary conditions relating o; = 0 to 0y = 1. The complex structure
7 of the target space T? depends on 1, and if 7(0) # 7(1), we can insert an MCG element
that acts nontrivially, but geometrically, on X. We then require 7(0) to be related to 7(1)
by the element M € SL(2,7Z) so that

ar(0)+b
)= ————. 5.61
(1) cr(0)+d (5:61)
The boundary conditions on the fermionic fields are
U(1,09) = MU(0,00),  U(1,09) = MU(0,0,). (5.62)

For the bosonic fields, we require X (1, 03) to be related to M X (0, 02), up to a vector whose
components are integer multiples of 27:

X(1,09) — MX(0,0,) € 2077 . (5.63)

Denote |
=5 [X (L, 02) = MX(0,02)] € z?, (5.64)

s

which can be thought of as a vector of “winding numbers”, and being a vector of integers,
it is independent of o,. We can construct a vector with a simpler boundary condition by
removing a constant piece from X,

Z=X-2n(I-M)"'N, (5.65)
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which satisfies the periodicity condition
Z(1,09) = MZ(0,09) . (5.66)

Note that Z is also invariant under the discrete translations that are parametrized by a
vector of integers K as:

X X+2rK, NoN+(I-MK, (K €7?). (5.67)

In Minkowski (worldsheet) signature, the minimum energy configuration would be Z = 0
which corresponds to X = 27(I— M)~ 'N. These are the fixed points of the action X — MX
(acting on the T? target). Moreover, the equivalence

X ~ X + 21K, (K €77,
which is required to describe a T? target space (instead of R?), acts on N as
N~N+I-MK. (5.68)

The lattice Z? subject to the identification ([5.68)) is a finite abelian group with det(I — M) =
la + d — 2| elements. (This abelian group played an important role in [247|, where it was
related to a group of symmetry operators in a related context.) We denote this group by

Eo = {N subject to N ~ N + (I - M)K for all K € Z*} = (Z°)/(1— M)(Z*). (5.69)

The path integral over field configurations X (for any worldsheet signature) subject to the
periodicity condition (5.63) is equivalent to a path integral over Z, subject to the boundary
condition (5.66)), and a sum over the finite group =.

T-duality twist

Now, we introduce an SL(2,7Z) duality twist in the oy direction. This twist acts on the p(o2)

parameter by an element M € SL(2,Z) so that

_ap(0)+b ~_(ab
p(1)_—ép(0)+&, M (é d) , (5.70)

resulting in an asymmetric orbifold [266]. The M-twist induces certain nontrivial boundary
conditions for the fields X, ¥ and W. To describe them, we denote

X1(0'1,0'2) = X(O'l, 1+0’2), \111(0'1,0'2) = \11(0'1, 1+0'2), \111(0'1,0'2> = \I/(O'l, 1+0'2). (571)

These fields will be used to describe the fields in the vicinity of oo = 1. In the same vein, we
also denote -
Xo=X, VYy=V, VYy=V, (5.72)
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when referring to fields in the vicinity of oo = 0. (Note that X, is identical to X, but
the subscript “0” is useful for clarity when we couple Xy to X; and restrict the fields to
oy = 0.) We use a similar subscript notation for the background fields, i.e., Ey = FE,
Ey(01,09) = E(01,1+03), etc. On the level of equations of motion, the boundary conditions
on the bosonic fields are

IX, = (66E0 + &H) 9X,,  0X, = <6Eoe + an)t 9Xo. (5.73)

This is a special case of Bécklund transformation (for Cauchy-Riemann-like equations),
whereby the equations of motion for the fields at oo = 1 get mapped to the integrability
conditions for the fields at o5 = 0:

9 (0X1) —9(0X1) =0 = ce [0 (E{OXo) + 0 (Eo0Xo)]

which vanishes thanks to the equation of motion ({5.33)).
The fermionic boundary conditions can be derived from the SUSY transformations (5.25)),
together with the boundary conditions on the background parameters (5.57))-(5.59)), and they

are

_ ~ . ~ t
T, — (éeEO + dH) T, U, = (éEoe + d]I) U, (5.74)

When applied to (5.74]), the SUSY variation ({5.25)) gives the bosonic boundary conditions
(5.73), and using the fermionic equations of motion (5.35)), one can easily check that the
SUSY variation of ((5.73)) is also satisfied. In deriving (5.74]) we also used the relations

N -1 ~
B, — (eeE0+d]I) (aeE0+bI[), (5.75)
o\l o\ -1
5, = <6Eoe+d]l> o) {(6Ege—|—d]l> } : (5.76)
T = {(éeEoJrchI[)_l]tfo (66E0—|—61]I)_1, (5.77)

which mirror (5.57)-(5.59)), but with integers a, . .. .d instead of real numbers &, ...,d, and
we also used the identity

1

Gy = [(éeEo n aﬂ) t] B Go (éeEo n an) = (E:Eoe n &]1) e [(szoe n an) t} B ,

which easily follows from 2G = E + E.

Quantum mechanically, the boundary conditions are introduced by inserting a
“duality wall” (see for instance |267] and the supersymmetric case discussed in [268]). The
T-duality wall can be thought of as the dimensional reduction of the T'(U(1)) theory[] and

ST(U(1)), or more generally T'(G), is the 3d action introduced in [269] to capture the action of S-duality
in the A = 4 Super-Yang-Mills theory, and see also [270] [271], [272] [273| [274] [249] for related ideas.
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in general, to incorporate the M twist into the action we have to decompose M in terms of

the generators
~ 11 ~ 0 -1
() 500

M = ST ... ST (5.78)

where ki, ..., k, are integers. The decomposition ([5.79) is not unique, but for our purposes
it will be sufficient to consider the case r = 1, so we will just set

M = ST*. (5.79)

as

(We will comment on the general case in Section ) The M-twist can then be inserted by
adding a 1-dimensional term I’ and a O-dimensional term [” to the action as follows. I’ is
defined as the integral over o; at oo = 0, and is a sum

F:Q+ﬁ

of bosonic and fermionic terms. The bosonic term is given by

/ Zk ! t Z ! t
Iy= = | XedXo|  + 50 | XledXo (5.80)

o2=0 o2=0

The first term in 0) implements the Tk component of (|5 - 9) while the second term couples
the fields at g, = 1 to the fields at oo = 0 and implements the S component of M. From
now own, any field with a subscript “0” or “1” will be implicitly understood to be evaluated
at o 9 = 0.

The fermionic 1-dimensional action [ ]’c can be designed so that if we denote by I; the
fermionic part of the bulk action I given in , then the equations of motion derived
from I, + I 7 at og = 0 and oy = 1 will be equlvalent to the boundary conditions . We
take the ansatzﬁ

Iy =5 / ﬁiR@o + UL Ry + Uy JU, + ULTW + U HT, + xpgﬁ%) doy,  (5.81)

where R, R, J, J, H and H are 2 x 2 antisymmetric matrices:
—t

Jt=—J, J =—J, H'=—-H, H =—-H. (5.82)
To be compatible with , the following relations must hold:
2] = —i% —R(—€E,+XkI)", (5.83)
2] = % — R(eEy+kI)™" | (5.84)
0H = iSo+R (—eE+KI), (5.85)
2H = —iX%y+ R'(eFy +KI) . (5.86)
5In I we did not include mixed chirality terms of the form ¥y LWo, W4 LWy, T, QUy, U0y (with 2 x 2

matrices L, L, @ and O) since they are not necessary.
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Requiring H and H to be antisymmetric [as in (5.82)], and using (5.76)-(5.77)] we get two
equations for R and R:

—2i% = (Eoe+ KR+ R (—eE}+KI) , (5.87)
2189 = (—Eje+kI) R+ R'(eEy+KI) . (5.88)
It can easily be checked that if (5.87)-(5.88)) are satisfied, J and J as given by (5.83)-(5.86)

are also antisymmetric.

In order to solve — it is convenient to change variables as follows. Since X
and X are symmetric and G is symmetric and nondegenerate (as we assume), we can find
matrices ) and ) so that

S=9'GY, T=9G9. (5.89)

We can also require the boundary conditions

V1 = (Eoe + K'Yy [(Boe + KD, D, = (eBo + kD)D) (eEoy + KI) ™! (5.90)

which are compatible with (5.76[)-(5.77). Then, it is not hard to check that

R = 9o = i(Eoe + KI) 'Y} (Eoe + k)eQo, (5.91)
R = 9,6, =i [(eEo+KI) ] Dy (eEo + KI)' ), (5.92)

are solutions to ([5.87))-(5.88|).
The meaning of (5.91)-(5.92) becomes clearer if we change field variables to

\/I}EQJ\I/, 652)—\/1;

In terms of the new variables, the kinetic terms iU*~0¥ and iU'SOT of (5.24) become

iUtGOW + (---) and W' GO + (---), where (---) are corrections to the W' W and KT
terms. In terms of the new field variables, (5.81]) can be written as

1 ~t ~ 1=t =~ 1~ ~
[} = 271' (‘P G\IIO + ‘P E\IIO 2\11 Bl\Ijl - 5@331@1
~t ~ 1~ PN

+2\II BQ‘I’O - 2k\110€\110 + 2\I/t Bo‘lf() 21{\1/66\1’0) dO’l. (593)

Thus, the coupling between (I\fl and \/I}O is given by the constant matrix e. However, the
disadvantage of the new variables is that formulae (5.25), (5.27)-(5.29) and (5.30)-(5.32)
become more cumbersome.

We also note that the total action I + Ij + I} is not invariant under the SUSY transfor-
mation (| -, but this is expected with a duahty wall, and a similar problem occurs with
translations. Consider, for example, an S- duality wall with p = ¢ (which does not require a
Janus configuration to match the field values at o5 = 0 to those at o5 = 1). In that case, the
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system is translationally invariant under oy — 09 + €, but not manifestly so, because under
a translation the duality wall is moved from o9 = 0 to 09 = £, and demonstrating invariance
requires an additional duality transformation within the strip 0 < o5 < €.

Finally, to complete the action we need to add a 0-dimensional term that couples the
field X (0,0) to X(1,0). It takes the form

= ﬁ(k —2)X(1,0)'eMX(0,0). (5.94)

This term is necessary to reproduce the correct equations of motion at the intersection (0, 0)

of the two duality walls. Indeed, if we denote by I, the bosonic part of I from , then

Iy + I; + 1" leads to the bosonic boundary conditions . Note that X (1,0) is related

to X (0,0) by (5.64). Without I”, the variation of the action I, + I} will have an unwanted

term %(k —2)0X(0,0)'eM '\, which would be too restrictive (leading to A" = 0). Thanks

to (5.64]) and the identity M'eM = e (which follows from det M = 1), we can rewrite I” as
i

1" = S(k = 2N'eMX(0,0). (5.95)

If k is odd then [; + I” might not be invariant under (5.67)). This is clearer after rewriting
I+ 1" as

.k 1
Brr= - /O ZiedZy

+im(k — 2N e(l — M), (5.96)

i (Y,
—|——/ ZEdZo
0 2m Jo !

where Z and N where defined in and , and subscripts of Z; and Z; are defined
similarly to those of Xy and X; in and . Z is invariant under the discrete shift
(5-67), but the last term on the RHS of changes by im(k — 2) (Nt — K" e(I— M)K
(mod 2miZ), which might be an odd multiple of i7 if k is odd. We therefore require k to be
even.m (We will see another aspect of this requirement in Section )

At this point one may wonder if an additional term quadratic in N/ can be added to the
action. This, however, will violate locality, since A/ can only be calculated by continuously
following the value of X from o7 = 0 to 07 = 1. We will address the issue of locality in
more details in Appendix where we will also argue that I” is necessary to incorporate
the discrete target space periodicity in a local way, at least for even k.

o9= o9=0

The partition function

Thus, we have completed the construction of the action, which is given by the sum of (5.24]),

E0). 351 and (90):

Lot = I+Ié+[}+[”,

"We can, in fact, allow k to be odd if we require M € T'(2), where I'(2) is the principal congruence
subgroup of SL(2,Z) witha=d =1 (mod 2) and b =c =0 (mod 2), and it has index 6 inside SL(2,7Z).
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/N
M
— >
< Bulk: [ = [(---)dodos >
M

T Duality wall:
plo2)| I'=L+1p=[(- )da\’

0/ >01

T(0))—— A4

Figure 5.1: Our field theory is defined on a T? parametrized by 0 < 01,00 < 1, with 7
varying as a function of o1, and p varying as a function of g9. Duality walls connect o1 = 0
to o1 = 1 [with the geometrical M € SL(2,Z)| and o2 = 0 to 05 = 1 [with the T-duality
M € SL(2,7)], and their intersection supports a 0d action I”.

where [ is obtained by SL(2,R), x SL(2,R), transformations on the diagonal model (5.53).
The model we have constructed consists of the bulk 2d action and two duality walls
inserted between o; = 0 and 07 = 1 and between 09 = 0 and o9 = 1. The wall at o7 = 0 is
given by nontrivial boundary conditions (5.62)-(5.63), and the wall at o, = 0 is described by
the 1d action I’ given by (5.80)-(5.81). At the intersection of the walls we have the additional
0d term I” given by (5.94). This is depicted in Figure

The partition function is defined as

/ e =" DX DYDY, (5.97)

1
z_ -
VA=

The prefactor 1/ 1/|Z0| is necessary in order to have a properly normalized T-duality wall
at 0o = 1. This can be argued by considering o, as the time direction and realizing the
T-duality wall at 09 = 1 as a unitary transformation on the Hilbert space. We will outline
this approach in more detail in the Section [5.7], but first we will calculate Z by evaluating
the one-loop determinants in the action.

5.6 Calculating the partition function

We will now calculate the partition function for the model we have constructed in Sections
b.515.5] First, it is convenient to express the bosonic 1d and 0d terms I} 4+ I” in terms of
Z and N as in . The advantage is that Z satisfies linear boundary conditions
at o1, unlike X whose boundary conditions include an affine term (5.64). The discrete A/
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decouples and the partition function now takes the form

1 Af . t -1
Z = — g exp [im(2 — K)N'e(l — M)"'N |, 5.98
V |EO‘ (Ab)NEEO p[ ( ) ( ) ] ( )

where the finite abelian group Z, was defined in (5.69), and where A, ' is the result of
integrating over fluctuations of Z and Ay is the result of integrating over ¥ and W.

The bosonic one-loop determinant

Let us discuss the bosonic part first. To compute A, we need a metric on the space of
fluctuations, which we take to be

16Z|* = / §Z2'GoZd%o . (5.99)

Given a choice of vielbein V' as in ([5.36|), we can change variables to Z7=VZ , which brings
the metric ||§Z]]* into the normal form. We will now show how to calculate A, for the
model whose 2d bulk is obtained by acting with SL(2,R), x SL(2,R), transformations,
defined in Section , on the diagonal model of (5.53). Since Z, ¥ and U are unaware
of the periodicity of the target space T2, their boundary conditions do not require the
transformations to be restricted to SL(2,Z), and so we can return to the diagonal model
and calculate the fluctuations there.

In this way the model constructed at the end of Section [5.4, with 7 and p varying along
semicircles that are invariant under M and M, respectively, gets converted to a model in
which 7 and p vary along the imaginary axis. In this model, whose bulk action is given
by , the boundary conditions along the o, and oy directions are determined by the

eigenvalues of M and M,
a b e 0 ~ a b e 0
(IR O B HH R ()

1 |
§:_ 2 _ §:_
e 2(a+d+\/(a+d) 4), ¢ =3

where

Then, (5.61)) and ([5.70)) become

(1) =e*7(0),  p(1) =e*p(0), (5.100)
and the boundary conditions (5.66)) become

Z'(0,0) = eZ'(1,09), Z%(0,00) = e °Z*(1,09), (5.101)
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where Z' and Z? are the components of Z, while ((5.73) becomes
0Z(01,1) = e0Z(01,0),  0Z(01,1) = e 0Z(04,0), (5.102)

which we can solve simply by requiring
Z(01,1) = e *Z(04,0).
In , we can take theNVielbein to be diagonal as well, so that the change of variables
from Z to the normalized Z is given by
7' — pir i7), 72— pinp7Z?. (5.103)

The boundary conditions ([5.100)), (5.101)) and (5.102]) imply that 7 is periodic in oy and o».
Substituting (5.103)) into the bosonic part of (5.53)), and integrating by parts, we get the
bosonic part of the action in the form

1 _
I, = —/ (02'0Z +1Z'm*2) dPo (5.104)
T
where the effective mass matrix (squared) is defined as
2
o (mp 0
M= = ( 0 m%) (5.105)
with the eigenvalues given in terms of 75(01) and ps(o2) by
= -2 " 12
2 P2 P2 Ty, 37y
R R 5.106
M 200 4p3 27 * 4737 ( )
ﬁQ p2 ! 7_/2
m, = ——-2 42 2 (5.107)

200 4p: 21y 4TI

The contribution of the fluctuations of Z to the partition function are now expressed in
terms of the product of the eigenvalues of the operator —290 + 2. These take the form of
sums of two 1d Schrédinger problems as follows. Define

pa P ™5 31 S
V(oq) = %, 453 Ui(o1) = "o A Us(oy) = o 42 (5.108)

The boundary conditions ([5.100)) ensure that V, U; and U, are periodic. We now need to
solve three separate 1d Schrodinger problems with the following periodic potentials defined
on the circle parametrized by the periodic coordinate 0 < x < 1:

d
—— + V(z) with eigenvalues pq, p1, pto, - . .
X
d
o + Uy (z) with eigenvalues g¢, €1, €9, . .. (5.109)
x
d
—= + Usy(z) with eigenvalues vy, U1, U, . ..
X



CHAPTER 5. DOUBLE-JANUS LINEAR 0-MODELS AND GENERALIZED
RECIPROCITY FOR GAUSS SUMS 160

Then, p; + ¢; are the eigenvalues of the fluctuations of Zl, and p; + 1, are the eigenvalues

of the fluctuations of Z2 (with 0 < i,j < 00). We will see below that the eigenvalues of Uy
and Uy, are the same, €; = 1;, so that, formally, we can write

Ay =TT 0+ )i+ 90372 = T [ (s + 9)- (5.110)
i.j i\j

The eigenvalues pi;, €; = ¥, are all positive. That the eigenvalues are nonnegative is a conse-
quence of supersymmetry, and the fact that the o1-Schrodinger problem and o5-Schrédinger
problem are decoupled. Thus, to show that p; > 0 we can look at the model with constant
79 and M = . This model is translationally invariant in o1, which we can identify as time.
Because of supersymmetry, all energy states are nonnegative, and therefore all single-particle
eigenvalues £; must be nonnegative. Similarly, to argue that €; and 1J; are nonnegative we
take ps to be constant and M =1 and identify o9 as the time direction. We can also argue
more directly that the eigenvalues are positive, by noting that each of the potentials V, U,
and U, can be written in terms of a superpotential W as W? + dW /dx, with

P2 5
W — — —. 5.111
2/)2 ’ 27’2 ( )
The Hamiltonian can then be expressed in terms of the superpotential as [275] 276, [277]
d dW d d
e Wi —— = h =W = — —W(x).
e tWit——=4dq,  where  g¢=—— (x), ¢ o (x)

It is now clear that the eigenvalues are nonnegative, and it is also clear that a zero eigenvalue
would require a nontrivial kernel for either q or ¢f, but for ¢ and < both nonzero, and for W
given in (5.111)), there are no periodic zero eigenvalues for ¢ or ¢f. This 1d supersymmetry
is also the reason why ¢; = 9J;. Setting

W 2
27’2’
we find
T d U [P d U
QQ——@‘F (@), QQ——@‘F 2(),

and since we have established that the kernels of both ¢ and ¢' are trivial, it follows that
the eigenvalues of ¢q' and ¢'q are equal, as is well-known. Thus, the double-Janus o-model
realizes a second quantized version of supersymmetric quantum mechanics.

We note that there is a special case where the three effective Schrédinger potentials are
positive constants. For this we take

7(o1) = e*71, ploy) = %2, (5.112)
which satisfies the boundary conditions (5.100)) and leads to
V = ,627 Ul = U2 = §2’
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and the action ([5.104) becomes that of two free, translationally invariant, massive bosons:

1 1
I, = —/(8Zt3Z+1m2ZtZ) d*c, (5.113)

T

with constant mass squared given in terms of the eigenvalues of the SL(2,7Z) twist matrices
M and M by

m? =32 + 2 (5.114)
Up to an unimportant constant, then
— 1
Ay = det (—88 + Zm?) : (5.115)

The fermionic one-loop determinant

To define the fermionic determinant we again need a metric on the space of fluctuations,
similarly to (5.99). We choose it to be given in terms of ¥ and X, for ¥ and W, respectively.
Then, using (5.89)), and the vielbein, we can redefine

U=vYU, U=V,
for which the kinetic term in the bulk action is normalized. As in Section [5.6] we can then
change variables to the diagonal model (5.53)). It is convenient to use, instead of U which
~ ~

has kinetic term ;0 5@, another set of variables

—~

Ul = p§/27'2_1/2\111, V2 = p§/27'21/2‘112, T = p;/27_2—1/2$17 = p;/2721/2§27 (5.116)

similarly to (5.103]). These new fields are periodic in o; and o, and the fermionic part of

(5.53) is given in terms of them by

T
I = _/ [22'\1/13\112 + 210 0T + (@ + &) T2+ <ZQ - ﬁ) \Iﬂ\IIQ] &0

T 219 2p9 219 2p9
(5.117)
The fermionic determinant is now expressed, formally, as
0 m_ i
Ay =det | ,. A A ) (5.118)
=+ 2 10
4719 4po

To calculate the determinant, we use the well known identity for the determinant of a
(2N) x (2N) matrix given in 4 blocks of N x N matrices A, B, C, D, with C' invertible, as

det (é g) — det (AC™'DC — BC) 22225, det(AD — CB). (5.119)



CHAPTER 5. DOUBLE-JANUS LINEAR 0-MODELS AND GENERALIZED
RECIPROCITY FOR GAUSS SUMS 162

By choosing a different representation of 2d Dirac matricesﬁ we rewrite (5.118)) as

ig 4+ 2 lg _ p2
Af:det<f LA 2 ‘;f;’;). (5.120)
582+4p2 581_@

Applying the identity (5.119) to (5.118) (with commuting C' = 19, + 4% and D = 10, — %),
we get

. " 12
= 1
A = det[—zp—-p+ 222 PN et (—90 + -m3 ) (5.121
! © ( TR, TR Torr 1602) T +qme ) 6:121)
where m2 was defined in (5.107). Following the arguments at the end of Section [5.6, and
using ([5.110)), we find that

Ap =TT i+e) =2

4,3

For example, in the special case ((5.112)), we get constant
7;7_2, pz 1

AT AR

and then )
Aj = det (—58 + Z—lm?> : (5.122)

with m? given by (5.114)). Comparing (5.122)) to (5.115]), we find Ay = A,, as expected.
We conclude that the partition function (5.98)) reduces to

z- 2 > exp [im(2 = K)N'e(I - M)~'N] | (5.123)

\% ’EO, NeEg

This is essentially a quadratic Gauss sum, and we will now see how this double-Janus con-
figuration naturally leads to the Quadratic Reciprocity.

5.7 Connections with abelian Chern-Simons theory and
strings on a mapping torus

We now return to the matter of normalization of the partition function Z. In particular,

we need to explain the prefactor 1/4/|=¢| that appears in (5.97) and (5.123). This factor

will be necessary to reproduce the Landsberg-Schaar identity in Section [5.8] and it can be

8The matrix in (5.118) can be written in terms of Pauli matrices as $10; — £0730> + i0'14% — iang% and
we got (5.120)) by rotating oy — o3 and o3 — —071.
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argued by treating o, and “time” and realizing the T-duality M in (5.78)) as an operator on
a Hilbert space of dimension |=Z|.

We will argue that, up to a known phase, can be recast as the trace of the operators
representing M = ST¥ € SL(2,7) in a certain |=,|-dimensional representation of SL(2,Z).
We will give two equivalent constructions and physical interpretations for this representation,
as a Hilbert space of ground states, one in terms of low-energy strings on a mapping-torus
target space, and another in terms of an effective abelian Chern-Simons theory on 72. The
first construction can be expressed in terms of the element in M explicitly, and it directly
leads to (5.123)), but the construction of matrix elements of 8§ and T, representing S and 7T
in SL(2,7Z) respectively, will only be given up to independent (+) signs — an ambiguity that
has a physical origin. The second construction relies on a particular decomposition of M as

M = ST"ST"™ ... ST". (5.124)

We note that this decomposition is unique if M belongs to the subgroup (S, 7T?) generated
by S and T? [and isomorphic to the Hecke congruence subgroup Tz(2) C SL(2,7)], as we
will assume in Section 5.9l

The SL(2,7Z) representations that we will need belong to the subclass of representations
that appear in the theory of modular tensor categoryﬂ, i.e., the representations one obtains by
studying Chern-Simons theory with a compact abelian gauge group. The physical interpre-
tation presented in this section is partly based on results from [247]. More recently a much
deeper theory related to nonabelian Chern-Simons was developed in 278 279], related to the
study of the 6d (2, 0)-theory on plumbed 3-manifolds, including mapping tori, but our case is
somewhat different. We will begin with a few generalities about such representations, which
are defined through a quadratic form on a finite abelian group. (In general, the classification
of unimodular, symmetric quadratic forms on finite abelian groups [280] is equivalent to a
classification of pointed modular tensor categories, i.e., theories of “abelian anyons” in phys-
ical terminology [281} [282|. For additional recent insight on abelian Chern-Simons theory
and abelian anyons, see [283, 284} 285|.)

Representations of SL(2,Z) from quadratic forms on abelian groups

In this subsection we will denote the standard SL(2,Z) generators by S and T, in order
to distinguish the abstract discussion from the concrete S,T. The construction, known as
the Weil representationjr_gl [286, [287, 279] begins with a finite abelian group A on which a
quadratic form q(-) is defined. In our case the abelian group is A ~ Z; and the complex
vector space of the representation is the group algebra 7[A], which we identify with the
Hilbert space spanned by a basis of states of the form |v), with v € A. The quadratic form
q(+) is required to take values in Q/Z, i.e., q(v) is a rational number up to an undetermined

9Mathematically it is equivalent defined as a ribbon fusion category, or a braided fusion category with a
spherical structure, whose modular & matrix is invertible.
10Most generally it is defined for Mp(2n), a double cover of Sp(2n), over an arbitrary local or finite field.
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integer part. Thus, the phase exp[27miq(v)] is well-defined for every element v € A. From
q(-) we then construct a symmetric bilinear formE-I:

b(u,v) =q(u+v)—q(u) —q(v), u,veA

We assume that the abelian group A is given as a quotient of a lattice by a sublattice
A=A / A’ and q descends from a quadratic form g on A that takes integer values on A [so that
for any basis {V;} of A , the associated bilinear form B is represented by a symmetric matrix
with integer elements and even integers on the diagonal|. Then, the Weil representation
constructed from this data is given by the action of the SL(2,Z) generators S and 7 on the
basis vectors |v) of Hilbert space as follows:

T‘V> _ e—i¢e27riq(v) ‘V) ’ S V> Z —2mib(v,u) |u (5125)

\% ’A ucA

where |A| is the number of elements in A and the phase ¢ is given by {5o(q) [282, [288],
where o(q) is the signature of the quadratic form (i.e., the difference between the number
of positive and negative eigenvalues of the matrix representing the bilinear form B in any
basis {V;} of A’). The phase is also given by the cubic root of the Gauss-Milgram sum [289):
[286, 288
6—37L¢ — 6_%7”0 —2miq(v
-z

In our case, there are two ways to describe q(:) on A. In the first, we decompose M €
SL(2,7Z) into S and T' generators as in (5.124)), and we assume that all the powers are even,
so that [; = 2v; for v; € Z. We then construct the s X s symmetric matrix

L -1 0 1
—1 LT .
K=o . . -  o0ol, (5.126)
1
-1 0 -1 I

with {l;} along the diagonal, and (—1)’s on the (i,i + 1) and (1, s) places. For the special

case s = 2 we take instead
(1l =2
K= (_2 52) , (5.127)

and for s = 1 we take K = (; — 2).

HConversely, given a bilinear form b(-,-) (not necessarily symmetric), if a function q on A satisfies
b(u,v) = qlu+v) — q(u) — q(v) + q(0), Vu,v € A, then q is called a quadratic refinement of b(-,-) [283|
284 285).
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We then define A = Z* and A’ C A to be the sublattice generated by the columns of K,
ie.,

N ={KW:W e 7} = K(Z*).

One can show [247] that A/A’ is isomorphic to Z, and we therefore take A = A/A’, and
define

q(v) = VIK 'V, for any representative V.€ A of v.e A/A'. (5.128)

This quadratic form on A then defines, through (5.125), a |.A|-dimensional Weil representa-
tion of SL(2,Z). We will elaborate on its physical interpretation (related to Chern-Simons
theory with U(1)* gauge group) in Section [5.7]

The expression (5 and the associated Weil representation is not yet satisfac-
tory for us, since it is not yet clear how it is related to . We Would like to argue that,
up to a phase, can be written as Tr(ST¥) (correspondlng to M = ST*) in the Weil
representation, but to see this we will need to recast the expressions for the matrix elements
of § and T directly in terms of M. We will see that this can be achieved only up to + signs
on elements in S and 7. Nevertheless, these signs drop out of the expression for Tr(STX).
This leads us to the second way to describe q(-), which we now present.

First, it is convenient to introduce a new lattice (M — 1)~1(Z?), and for N' € =y =
72 /(M —T)Z? [see (5.69))], we define

v=(M—-1)"'N"(mod Z?), so that v € (M —I)"Y(Z?)/Z>. (5.129)

The quotient (M —1)~'(Z?)/Z? is canonically identified with = in this way. As mentioned
above, there is an isomorphism ¢ : =9 = A/A’ (which we will describe in detail in Section
. Using it, we can define a quadratic form on = simply as

q(v) = q(p(v)), for N € =,. (5.130)

Using q we can then define the action of S and T on the states |[v) in = as

T |v) = e @20 ) - S|y) = Z “2mibn) |y forv €Sy, (5.131)

qu

where B
b(u,v) =q(u+v) —q(u) —qv), u,v € Z.
We claim that (at least for s < 2) the doubled quadratic form 2¢(-) has a simple expression

in terms of M:
2q(v) = vleMu (mod Z), (5.132)

and therefore

T? |v) = e 2o My ) (5.133)
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We will prove ((5.132)) in Appendix for s < 2. It implies that the matrix elements of T
and S can be expressed as follows (with undetermined =+ signs that depend on u,v € =, as
well as other input data):

S 1 gt ¢
(u| T |v) = £6,pe P MY, (u| Sv) = £ e~ miluleMutvieMu) (5.134)

(In Appendix we will show what the + signs are in a particular example.) Fortunately,
for even k = 2u, the trace Tr (S§T72%) is independent of the unknown + signs in (5.134):

—2iup

Tr (ST?) = i/m 3 e

Using (5.129)), we easily chec that (5.135)) reproduces (5.123)), up to the phase =2,
In Section we will also need to calculate Tr(ST**ST?2), and luckily again, this is

independent of the ambiguous + signs in ([5.134)):

u—1)mwivteMv ) (5135>

—2i(u1 “+uso

)¢ ; t t ¢
Tr (ST'Z'MST’ZuQ) — ¢ |: | Z eQﬂ'Z(ug’UtGM’UJr’U,l’U, eMu—uteMv—vteMu) ) (5136)
=0

U,V

We will now offer a physical interpretation for ((5.132]).

Low-energy strings on a mapping torus

There is a simple geometrical interpretation of in terms of the topology of (an aux-
iliary) mapping torus — a manifold formed by fibering T? over S'. Let § € R be a periodic
coordinate on the S* base with periodicity 1, and let x € R? be coordinates that will soon
parametrize a torus, after additional periodicity conditions are imposed. The mapping torus
is defined as the set of points (0, x) with identification,

0.x)~ (O, x+K)~ (0+1,M 'x), VKeZ (5.137)

for a fixed M € SL(2,7Z), which acts as an MCG element on the fiber. In our case, a mapping
torus is formed by fixing oy and considering the configuration space of the fields X (oy, 09)
as o1 (which we identified as 6 above) varies from 0 to 1. A ground state of the string
corresponds to a point on the T2 fiber that is invariant modulo Z? under the geometrical
M-twist. Representing this point by v € R?, we thus require v — Mv € Z2. This has a
discrete set of rational solutions v € Q2, and we formally define a Hilbert space H,; of states
with basis {|v)} comprising of states |v) such that

(M —T)w e Z? (5.138)

12Using N'eN =0 and eM = (M?)"Le.
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in which |v) = |u) if v — u € Z?. Now we define the lattice
A=M-1)""(Z*) ={veQ®: (M -TweZ}D>Z. (5.139)

Then a solution to (5.138]) with the identification “v ~ u whenever v — u € Z*” defines an
element of the coset space A/Z?, which map to a basis of the Hilbert space Hj;. This coset
space is a finite abelian group, i.e., the cokernal of M — I, which can be identified with
isometries of the mapping torus. (See [247] for more details.) It is easy to see that A/Z? is
isomorphic to =y [defined in (5.69)] and that the number of states is

IA/Z%| = |det(M —T)| = [Tt M — 2.

We need to know the action of SL(2,7Z), generated by S and T', on those quantum states.
It can be described as T-duality on the T2 fiber and, as we argued in ([5.132)), (at least for
M = ST or M = ST?*1ST?%2) is given by

3 ”U> —7r7, vteMu+tuteMv) ”LL> , (5140)
T
(IE|U> _ ie—i%gbeEm’vteMv |U> 7 (5.141)

where all the (4) signs in (5.140)) and ((5.141)) are independent of u and v respectively, and
where ¢ in has been defined in Section e.g., ] and is a constant phase
chosen so that (8T)? = 8% equals the charge conjugation operator [which represents the
—I € SL(2,7)], which acts as

8% |v) = |-v).

T* is ill-defined for odd k [unless M is such that v'eMwv is an even integer for all v € Z2, which
is when M € I'(2), as mentioned in Footnote [7], so to avoid extra complications we assume
k € 27Z. Note that the definitions (5.140) and (5.141)) are independent of the representatives
v and u, because for K € Z? we have K'e(M — I)u € Z when (M — I)v € Z? and also
u'e(M —I)K = [(I — M)ul'eMK € Z. Note also that since € is antisymmetric as in (5.44),
we have v'eMv = vle(M —T)v.

The phase exp (—EmthM ’U) has a nice geometrical interpretation (analogous to the one
discussed in §3.7 of [274| for M = S). The expression

—%vtd\/[v = %vteMlv

is the area of a triangle in R? with sides given by the vectors v and M ~1v. To see how this
is related to T, consider a string worldsheet (i.e., an X field configuration) that interpolates
between the states |0) (a string at v = 0 for say o2 = 0) and |v) (for v # 0 and o9 > 0). We
can realize it by constructing a section of the mapping torus with x = (v and then letting
¢ €10,1] and 6 € (0,1) be the coordinates of the worldsheet (i.e., identify § with oy, and ¢
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with ). If we attach to this surface ¥ the triangle with vertices {0,v, M ~1v}, we obtain a
surface whose boundary is the union of three loops: the loop corresponding to string state
|0), the loop corresponding to string state |v), and the loop from (0,v) to (0, M~1v) ~ (1,v)
at constant # = 0, which is a closed loop thanks to (5.137]) and ([5.138)). If we now consider
the scattering amplitude of an inelastic scattering process with two string states |0) going
into two final string states |v) and |—v):

10) ® |0) = |v) ® |—v), (5.142)

then it is calculated in string theory by a path integral over worldsheets ¥ with four boundary
components corresponding to the four string states |v), |—v) and |0)’s (wrapped twice with
opposite orientation). Since the duality operation T* acts on the Kalb-Ramond field B as
B — B + mkdx' A edx, it multiplies the scattering amplitude by the phase

exp (/B)

The construction above shows that this phase is 47k times the area of the triangle with
vertices {0,v, M~'v}, which corresponds to a wavefunction normalization of each of the
|+£v) states by exp (kmiv'eM ~'v), as required by (5.141)). This explains the physical origin
of the £ sign ambiguity in , since the process requires two states for charge

conservation
We can now recover the partition function ([5.123|) by calculating
—iko

Ty, (STE) = (| S$TF |v) = \/ﬁ > e(2-F)mivte(M-Tyv. (5.143)

Up to the phase ¢, this equals ((5.123)) after the substitution
N =(I—- M)w.

Connection with U(1)® Chern-Simons theory

The quadratic Gauss sum can also be expressed as a trace similar to , but
with § and T defined as MCG representation generators acting on the Hilbert space of an
abelian Chern-Simons theory placed on T? [247]. To see this, let us first consider Chern-
Simons theory at level k., € Z with a U(1) gauge group, compactified on T2 x R, where
R is the Euclidean time direction and 72 is a torus parametrized by periodic coordinates

0 < x1,29 < 1. The action is

1:? AN dA,

T

where A is the U(1) gauge field. It is well-known [290] that the Hilbert space Hy1y of
the ground states of the theory has a kg-fold degeneracyEL which we will denote by |a)

13 As explained in [247], the “charges” correspond to the first homology group H;(Z) of the mapping torus,
which is isomorphic to Zg, and |v) has charge v.
11ts ground-state degeneracy is (kes)? on a genus-g Riemann surface instead [291].
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(a=0,...,kes —1). Let a and S be two fundamental 1-cycles of T2, where a corresponds
to a loop at constant xy, with z; varying from 0 to 1, and S corresponds to a similar loop
at constant x; with xs varying from 0 to 1. Consider the Wilson loop operators

W, = exp (@ 7{ A) and Wy = exp (@ i A> | (5.144)

Their action on the ground states is given by the “clock” and “shift” matrices:
Wi |a) = e¥mialke |q) | Wayla) =la+1) . (5.145)

We will need the action of large diffeomorphisms, generated by T and S. ,

1 kes—1

sya>:\/k_mb§_;

e—?m’ab/kcS

b, T la) = emin/izeme s

ay . (5.146)

Up to the constant phase e —im/4 this can be checked by making sure that the commutation
relations S—1W;S and T 1WT are as they should be (for i = 1,2), given the geometrical
interpretation of ’T and S as torus MCG generators. The phase e="/* is determined by
requiring (ST) 82 which is the charge conjugation operator, so that we obtain a linear
instead of a projective SL(2,7Z) representation. It can be derived more systematically by
explicitly writing the ground-state wavefunctions as a function of holonomies of the gauge
fields 292, [293], or by recalling the connection between the U(1) Chern-Simons theory and
the 2d CFT of a free chiral boson [25]. Note that the equation for 7 is ill-defined for odd
ks (because it is inconsistent with |a) = |a + kes)). In that case only even powers of T are
well-defined.

We now set ks = ¢g. Up to an e phase, the (complex conjugate of) quadratic Gauss
sum appearing on the RHS of can then be written as

wi/4

1 ! . - N . IR
- Z 6727rzn2p/q _ e(;lfJJrl)ﬂ’z/lZ Z <n’ 87'2+2p |n> _ €(p+1)m/12TI'7.[U(1> (87-2+2p> . (5147>
n=0

We will see in Section that, up to a phase, is also the partition function Z that
we calculated in , for M = ST2. In Section we will calculate the phase of the
partition function in a T-dual formulation and observe that it receives a contribution from
a Berry phase that depends on the details of how the complex structure varies with time.
We also note that a much deeper analysis of the partition function of Chern-Simons theory
on a mapping torus with SU(2) gauge group has been carried out by Jeffrey (see §4 of [294]
and §4 of [295]), where the resulf”|is similarly given by a trace of the action of M on the
Hilbert space and yields a quadratic Gauss sum.

15With a particular “canonical” choice of 2-framing of the mapping torus Ms, i.e., the choice of a homotopy
equivalence class of trivialization of of T M3 & T M3 |296], so that the theory is free of framing anomaly.
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To move from the special case of (5.17)) to the general case (5.123]), we need U(1)" Chern-
Simons theory on T2. We first recall some basic facts, and then we explain in Section

why it is related to (5.123]). The Chern-Simons coupling constants are given by a symmetric
matrix, which for 7 > 2 takes the tri-diagonal form with Cornerﬂ

k-1 0 ~1
-1 . el T
K=o ~ -~ -~ o, (5.148)
. .. . —1
—1 0 —1 kr
and for 7 = 2 takes the form _
. ki —2
K = ( - ) . (5.149)

(It is conventionally called the K-matriz in condensed matter literaturﬂ, and is used to
describe the 7-component abelian fractional quantum Hall effect [299].) The Hilbert space
of U(1)" Chern-Simons theory on 7% with coupling constant matrix K has a basis of states
|0) parametrized by © € Z such that [0) = |a) if v — u = KN for some N/ € Z”. Define the
lattice

NK(Z)={Ku:weZ}CZ. (5.150)

So A’ is the sublattice of Z" that is generated by the columns of the matrix K. The coset
Z" /N is a finite abelian group. The Hilbert space of U(1)” Chern-Simons theory on T2 with
coupling constant matrix K has a basis of states which can be identified with elements of
Z"/N'. Pick a nontrivial generator of 7;(7T?), and consider the corresponding 7 Wilson loops
acting on the Hilbert space. They form an abelian group which can be identified with Z"/A’.
Next, we define the action of SL(2,Z) on the Hilbert space, as a physical realization
of . From the Chern-Simons perspective, this is the action of the MCG of T?. We
assume that K is even, i.c., all k; € 2Z (i = 1,...,7). The generators act on states as:

S|o) = D e EETTE) OT ) = e e T ) (5.151)

V |Z7./A/ ﬁle/A/

generalizing the previous S and T actions in U (1) Chern-Simons theory, given by .
The phase ¢ equals mi7/12 if all k; > 0, and in general it is 7i /12 times the signature of K.
Note that T is well-defined when K defines an even bilinear form. We will now show how
the Chern-Simons picture is isomorphic to the mapping-torus picture.

1677(1)" Chern-Simons on more general 3-manifolds, such as plumbed 3-manifolds, has been considered
in [207, [208].

HThe ground-state degeneracy of this Chern-Simons theory on a genus-g Riemann surface is | det K19
[299].
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Isomorphism between the Chern-Simons and mapping torus
descriptions

We take the powers &, . .., kr to match the powers in one of the (non-unique) decompositions
of M € SL(2,7Z) into S and T generators:

M = STk ST*> ... STk,

Then, it can be shown, using elementary row and column operations, that there exist P, () €
PSL(7,Z) (unimodular) so that

M -1
PKQ = 1
1

is a unique block-diagonal matrix. In other words, M — I and K have the same Smith
normal form[¥] i.e., according to (5.139) and (5.150), A/Z? is isomorphic to Z/A’. Now let

us construct an explicit isomorphism between them. Define the (27) x 2 matrix

1
0
0

Q
Il
N e )

€ Hom (22, 77).
00
Now, suppose v satisfies (M — I)v € Z* and define

M-I

—
o o

o(v) =KQJv =P 1 =P 'JM-TweZ,

O e

1

implying that @(v) € Z" if (M —T)v € Z?, so ¢ is surjective. Its injectivity is due to both
P and M — 1T being invertible, and J'7 = I. Therefore ¢ is an isomorphism between finite
abelian groups ¢ : A/Z? 2 Z" /A" with ¢(v) = 0 (see Appendix A in [247| for more details).

We take as the definition of the action of SL(2,7Z) on the states. In the basis |v)
of Section we define the SL(2,Z) action using the isomorphism @. We conjecture that

8Here we adopt the uncommon convention that on the diagonal, each lower-right element divides the
element upper-left to it, opposite to that in [247].
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this definition is the same as formulae (5.140)) and (5.141)) for the T and § generators [with
a suitable choice of + signs in the matrix elements of (5.140) and ([5.141))|, and we prove it
explicitly in the case 7 = 2 in Appendix [C.3] with numerical evidence for the 7 = 3 case in

Appendix [C.3|

5.8 Quadratic Reciprocity from double-Janus o-models

The partition function of the double-Janus o-model that we discussed in Section [5.6| reduces
to a sum over the finite abelian group = defined in . We will now show how,
in a special case, Z reduces to the Gauss sum defined in Section and we will follow with
a discussion on the general case. We will give a Hilbert space interpretation of (5.123)), with
o9 identified as “time”, and we will subsequently argue that the Landsberg-Schaar identity
(5.21) can be understood by switching the role of “time” from o5 to o7.

Quadratic Gauss sum as a special case of Z(M, M)

Taking the special case (5.22]):

0 -1 _ 0 -1
— q+2 _ _ 2+2p _
M =S8T —(1 7 2), M = ST —(1 % 2),

we can identify =y with Z, as follows. Setting

X m
=) ()
the identification N~ N + (I — M) K [see (5.68)] becomes

X ~X+m+n, y~y—m-—n-—gqgn.

We define z = x + y, and use the freedom to choose m = —x — n to set x = 0. Then,
z ~ z — ¢gn, and so z can be identified with an element of Z,. Setting k = 2 + 2p, we then
calculate

z 3" exp [im(2 — KNTe(I — M) W] = % iexp (—%ipZ?) L (5.152)

1
\/a NeEg 4
as the standard quadratic Gauss sum.

Berry phase

The Landsberg-Schaar identity (5.17) relates Gauss sum of (4p)™ roots of unity to Gauss
sum of ¢ roots of unity. The partition function Z, derived in (5.123)), reproduces the
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latter sum, as we saw in Section [5.8| and this form is closely associated with a Hilbert space
interpretation whereby time is identified with o,. We will now show that the other side of
the Landsberg-Schaar identity can be interpreted in terms of a different Hilbert space, with
time identified with o7. In such a Hilbert space interpretation the duality wall at o4 = 0
contributes a trace of M, which has to be multiplied by a Berry phase resulting from the
variation of complex structure 7 (which we can take to be adiabatic).H We will see that the
phase of €™/ that appears in ((5.17) can be reproduced by a combination of the representation
of M on the low-energy Hilbert space and the Berry phase. In calculating the Berry phase,
the form of the profile 7(o) is important, and we will see that when 7(07) takes values along
a semi-circle in its upper half-plane, as in Section [5.4] the correct phase is reproduced.

In Section we have chosen the radii of the oy and oy circles to be equal (and given
by 1/2x). This was mostly to avoid a cumbersome notation, and indeed, we can easily allow
the radii to be different. The partition function Z is independent of the radii, thanks to
supersymmetry. We will now take the limit that the oy direction is much smaller than the
oy circle. In this limit, we can study the Hilbert space of the problem at a fixed oy, reduce to
ground states, and then introduce the wall at 0; = 0 by inserting the operator representing
M on the subspace of ground states. For 0 < o; < 1, the most relevant terms in the action
are given by the single-derivative terms , and we can set Xy = X, since the o, circle is
assumed to be small, and momentum modes along it are suppressed. Writing (o) instead
of both Xy and X7, we are therefore left with

Iy = —i(24;k) /ﬁted& (5.153)

where the integral is over o; and & is independent of 5. We set ¢ = k — 2, and as-
sume ¢ > 0. & describes a coordinate on 72, and the Hilbert space of ground states can
be identified with that of geometric quantization at level ¢ (i.e., with a symplectic form

4id§te AdE = Qidgl A de?).
T ™

Quantization on a torus at level ¢ is one of the simplest examples of geometric quantiza-
tion [301} 302, 303]. Our 77 is parametrized by (&1, £2) with 0 < &1, €2 < 27. Tt is convenient
to add the kinetic term to get the Lagrangian of a Landau problem (a particle in a uniform
and constant magnetic field) on T2

1 1 g .
I; = o / (§mGU§I§J — %engng) dt (5.154)

where for G;; we take the metric ds®> = T—12|7'd§'2 — d&'%. The ground states of ([5.154) are

19A similar Berry phase for fermions (either Dirac or Majorana) on a 3d mapping torus under an adiabatic
diffeomorphism appeared in [300].
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normalized Landau Wavefunctionﬂ (independent of m and the area of the T?):

o0 . . ) . 2
\Iqu (51752) = 2i(2q7-2)zlleiqif2 Z e"(n(I-i-J)fl-‘rqu(n_F%_%)

@ n=—oo
2
1 1 iqele?  miT ﬁ 1 2
= - (qm)ie e (5, (52 7) (5.155)
where the ©-function is defined as
@j,q(uaT) = Z em‘q’r(n-‘r%) +27riq<n+%)u (5156)

n=—oo

and is holomorphic in v and 7. In the low-energy limit, the kinetic term in ((5.154]) can be
dropped, and as is well-known, we are left with the Lagrangian that describes a noncommu-

tative T2 with a symplectic form w = Qidfl A dE?.
T
Defining the Berry connection in a standard way as
(A =1 (Wigl O0r [W1g) s (A = i(Vq] 07 [Wrg)
we calculate

1
(A)lj = (Ar)lde + (.A?)ljd? = —4—51de1.
T2

We need to calculate the Berry phase along the path that 7 takes, as oy varies from 0 to 1.
We parametrize the arc of the semicircle described at the end of Section (see [233, 247,
248|) in terms of the variable ¢ and parameters a and D, introduced in [233]:

T =a+4nDe*V,

where

_ 2_ 4

L2 d’ 4D — (a+d) |

2c 2|c|

Defining 1 and v; as the values of the phase v at the start and end of the arc, i.e.,
) 0 b )
7(0) = a + 4w De*o, 7(1) = —i:EO; 1(1 = a + 4w De*¥1
we calculate the phase difference as [247]:
i(¥1—vo) _ q)lc7(0) +d]
e sgn(a+d) cr(0) 1 d

and the total Berry phase is easily calculated to be

lc7(0) +d|]"?

(5.157)

The sign of the square root is determined so that —% < (11 — 1) < 3.

20They are essentially 1/q Laughlin states on a torus as proposed in [301].



CHAPTER 5. DOUBLE-JANUS LINEAR 0-MODELS AND GENERALIZED
RECIPROCITY FOR GAUSS SUMS 175

Modular transformations of the Landau wavefunctions

To introduce the M-duality wall, we need to examine the behavior of the wavefunction under
an SL(2,7) transformation that acts as

ar +b

' — ag! + be?, €2 — gt +de?, T — .
ct+d

The general SL(2,7Z) transformation can be composed from the S and T generators,
which act on wavefunctions as

_mi T % 1 ik _2mi;
St Wy (=€¢5-1) = e ( ) ﬁZe a6 €% 7),  (5.158)
=0

7l

and for even ¢ we have

ij2

T: W, (e +e&r+1)=c U, (e e%57). (5.159)
We note that for any ¢ € Z we have

J

2
inj2 1 igele? > i(qgn+7)E +migr | n+L -5
\Ilj,q (51 + 52752; T+ 1) — eTJ% (2q7_2)i e~ iﬂf Z e (q +.7)€ +miq ( +q 271,) (_1>qn

n=—oo

(5.160)

This is well-defined on the ¢-dimensional Hilbert space for g € 2Z, since the RHS is a linear
combination of the ¥, s, but for odd ¢ € Z only the square 72 is a well-defined operator on
the Hilbert space.

Recovering the Landsberg-Schaar relation

For M = ST%*?2 and ¢ = 2p we combine the two modular transformations (5.158)-(5.159) to
get

L 2p—1
T \2e 4 milat2)” _mig
\11,72 — <_> —e 2p e pJ \11172 . (5161)
J,4p ‘T’ /—2p ;:O: P

In this expression 7 is a shorthand for 7(0) 4+ ¢+ 2 [since this is the value of 7 after 77" acts
on 7(0)], and W, 5, on the RHS is a shorthand for W, 5, (&2 + (¢+2)&*, =& 7(0)). The RHS of
(5.161)) represents the wavefunction at o; = 1 (not including the Berry phase yet) after the
action by M. To complete the calculation of the partition function, we must multiply the
RHS of by e~ [with I” given in (5.95))], take its inner product with ¥;,,, sum over
7, and multiply by the Berry phase (5.157: . Note that the role of I"” is to ensure periodicity
in (¢',€%), since the arguments in ¥, correspond to X at o7 = 1, while those in ¥,
correspond to X at oq = 0, and they can differ by N, as defined in (5.64). Moreover, since
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U, 9, is periodic only up to a gauge transformation (in the language of the Landau problem
of a particle in a uniform magnetic field), periodicity in (£, £2) can only be restored by
including e~!" which plays the role of a gauge factor. The resulting partition function is

_mi 2p—1 s}
4

migi? e~ 4

Z/:e_Ze 2p :_Qp(q)
V2 & V2

Equating Z calculated in (5.123]) with Z’, we recover the (complex conjugate of the) basic
Landsberg-Schaar relation ([5.21)).

5.9 Identities for generalizations of Gauss sums

In previous sections we saw how the Landsberg-Schaar identity is recovered for duality
twists of the form M = ST92 and M = ST?*?, as in Section [5.8, We can get more
complicated identities by looking at SL(2,7Z) elements which are expressed as longer words,
with more S generators in M or S generators in M. In all cases, the identities that we get

are of the schematic form . '
TrH]\/I (M) = ewTrHﬁ(M)>

where Try,, is a trace over the | det(I — M )|-dimensional Hilbert space Hj; of ground states
of the M-twisted circle compactification [whose states correspond to the finite abelian group
Ey defined in (5.69)], and Try, _ is a similar trace over the | det (I — M) |-dimensional Hilbert

space Hq; of ground states of the M-twisted circle compactification, and ¢ is a phase cor-
rection (arising from the Berry phaseEr] as in Section .

In some cases we will be able to rewrite the sum explicitly, which requires identi-
fying the abelian group =, as a direct sum of cyclic groups, and turns out to be of the form
Zg, B Zq,. To achieve this we need to calculate the “Smith normal form” of the matrix I — M,
i.e., to find matrices P,Q € SL(2,Z) and unique integers dy, ds € Z such that

B d; 0
I-M=P ( 0 d2) Q.
We will present a few examples below.

M generated by S and 72 and M = S§T2+a

Let us assume that M can be expanded as the word

M = ST?'ST?...ST?  with vy,...,v, nonzero integers. (5.162)

21 The first place where a Berry phase appears as a multiplicative factor in the partition function is in
|304], where each “hedgehog” defect, a singular configuration, of a spin field in a (2 + 1)d antiferromagnet,
described by an O(3) NLSM, carries a Berry phase. It is also directly related to the Wess-Zumino term [305]
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We will also assume that M = ST, with q even. We recall that in SL(2,Z) there are
no relations among S and T2, other than those that follow from inserting an even number
of S? = —1I in expressions, and therefore if M is of the form , the decomposition is
unique. In fact the subgroup of SL(2,Z) freely generated by S and T2 is isomorphic to the
Hecke congruence subgroup I'y(2). (See Example 3.7 of [30].)

We now get an identity that equates the partition function Z given in the form ((5.123))
(with k = ¢—2), to a partition function calculated by combining the modular transformations
of the ¢ ground-state wavefunctions and the Berry phase, as in Sections [5.8}5.§ The result
of the latter is

s’ q—l S

s . s—1
et 211
(—) E exXp {—— ( E Ujl? + E ljlj—i-l + lll3> } .
\/(_] l1,-.,ls=0 q 7=1 j=1

-----

The generalized identity for Gauss sums then takes the form

1 . ) s . s—1,.7.
—— " exp [—imgN eI - M)TN] = S Y e T S L)
\Y% “0’ N€eE q I1,...,ls=0

For example, we take s = 2 and

(5.163)
—1 —2v
_ 2v1 20y 2
M = STST™ = (2@1 4v1vy — 1) '
For simplicity, we assume that vy, v9 > 1. Then
|Z0| = |det(IT — M)| = 4(v1vy — 1).

The Smith normal form of I — M is given by

o . 1 (%) 2(1 — U1U2> 0 1 0
I M = (—2’01 1 —2U1U2) ( 0 2 V1 1)

[Note that the leftmost matrix on the RHS is in SL(2,Z).] An element of 5y & Z?/(I —
M)(Z?) can then be parametrized as

N = 1 U2 ny n 4+ vsa
o —2U1 1-— 2’01’02 a o (]_ — 2’01’02)8. — 2’011’1 ’

a=01, n=0,...2uvwv—1)—1.

with

And then we calculate

2 2
te(l — M) N = o ted 5.164
N 6( ) N 2(U1U2 — 1) 2 3 ( )
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so the LHS of (5.163]) can be expressed as

1 1 L jave 2(vive—1)—1

= st 2 e (sy)
E()’ = 2 V1V — 1 0 2(1)1’02 — 1)

Setting a = vy, b = vy, and taking the complex conjugate, we find that (5.163|) becomes

exp [—imgN"e(l — M)"'N] =

i EL ami, a2 14 gab 2073 migan®
T (am*+bn*—2mn) __
—— E e = — E exp | —=———~ 5.165
qmn:O 2 (J,b—l n=0 p( Q(Gb—l)) ( )

for a,b € Z, ab > 1, and g € 27, . This is our first concrete generalization of the Landsberg-
Schaar relation, whose proof we include in Appendix . Identity is actually a
special case of a collection of generalizations of the basic Landsberg-Schaar identity derived
by Krazer in the year of 1912 [306] and other authors from then onwards, and the requirement
for even q also appears there. In our case it is a requirement that appeared at the end of
Section B.5l We will discuss Krazer’s and others’ work in Section (5.9 We also note that
double quadratic Gauss sums with denominators [¢ in ] that are powers of a prime
have been evaluated in [307] in terms of the Legendre symbol.

More generalizations

We can obtain more identities by allowing M to take the more general form
M = ST?" §T%2 ... ST (5.166)

with wuy, ..., us nonzero integers.

We recall that S and T? generate the theta subgroup with index-3 in SL(2,Z), as intro-
duced in [L.3P24 -

Inserting the M-twist in the o, direction amounts to inserting r duality walls of the type
(5.80), one for each ST?% factor (j = 1,...,7). The combined phase factor of modular
transformations and the Berry phase, as in Sections now comes out to exp(%rsr).

If we repeat the analysis of Section for the system with r duality walls, we get instead
of , a reduced (0+1)d system that describes geometric quantization of 7% with an

action given by
i —~

17j:1

22However, any subgroup (S, T™) with m > 2 does not have a finite index inside SL(2,Z).
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where K is an r X r integer coupling constant matrix given by an expression similar to

(15.148)-([5.149)), which for r takes the form

2u4 =1 O -1
-1 :
K=| o o l, (5.167)
.. " S |
-1 0 -1 2u,
and & (i=1,...,r) are coordinates on the i'" T? factor. For r = 2, K takes the form
> 2U1 —2
K = (_2 2u2) : (5.168)
For example, for s = r = 2 we obtain the identity
2pq—3 )
mp 2 2
[+ (=1)%) Y emmarnomitnt=2mn) (5.169a)
pq — 1 m,n=0
2st—3 ]
_ 1\t o (pm?4-qn?—2mn)
=———[1+(=1)"] mzn;oe ,  fortq €27 (5.169b)

where we have set p = u1, ¢ = us, s = v1, t = vo. The requirement that t¢ must be even arises
as follows. The abelian group =y defined in turns out to be isomorphic to Zg_; & Z3
in this case, and the sum over the Z3 factor produces a factor of [1+ (—1)4] [1+ (—1)] on
the LHS of (5.169a)), while the RHS receives a factor of [1+ (—1)"][1+ (—1)] instead. We
cancelled the common factor of [1+ (—1)"] by assuming tg € 2Z. For ¢ and ¢ both odd, the
relation in ([5.169al) is not generally correct, for example for s = p =2 and t = ¢ = 1 the two
sides differ by a (—) sign, and for s =1, p =3, t = ¢ = 1, the LHS is 8 while the RHS is 0.

Relation to Krazer’s, Jeffrey’s, Deloup’s, and Turaev’s reciprocity
formulae

Let us now briefly discuss the relationship among the identities we found in Sections [5.9
and a few known results in the mathematical literature spanning centuries. In the late 19*®

century, a univariate formula which slightly generalizes the Landsberg-Schaar identity (5.17))
was discovered independently by Cauchy, Dirichlet, and Kronecker [308]:

_ wia 2 i _ _wib,2_ oo
|b| 1/2 § : e’s (z4w) 26451gn(ab)|a| 1/2 E : e~ ® 2mwac’

x€Z/VZ x€ZL/al

(5.170)
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where a, b are nonzero integers and w € Q such that ab + 2aw € 27Z. Later, a version of
(5.170) for multivariate Gauss sums was obtained around 1912 by A. Krazer [306), [309, [310]:

m izt Ax dmir ﬂU(A) . ’1—
x€(Z/dZ)™ | et ’ 2 yEZJAT™

where d is again a nonzero integer, A is a symmetric m X m matrix with integer entries,
o(A) € Z is the signature of A (i.e., the difference between numbers of positive and negative
eigenvalues), and either d or A is even (i.e., all diagonal entries of A are even). The r x
r symmetric invertible matrix A’ with integer entries is determined from A by finding a
unimodular matrix P such that PPAP = A’ & (0,,_,), where 0,,_, is the zero matrix of
size m — r. Equation generalizes the case w = 0 of by replacing one of the
numbers a and b in the exponents there by an integer-valued quadratic form given by A.
Note that the input to the identity is a single bilinear form A and an integer d, because A’
is determined by A.

In 1992, Jeffrey studied the semiclassical expansion of SU(2) Chern-Simons partition
functions on Lens spaces and torus bundles [294], and discovered a generalization (which
was slightly corrected by Deloup and Turaev [311] in 2005):

Vol (A) 3 B snine) (det B) T ot T emirlern ),
AEA/rA ! pEA*/ BA*

(5.172)
where A is a lattice of finite rank [ with A* being its dual, (-,-) is the inner product on the
real vector space Ag = A ®z R, ¥ € Ag, r € Z~q, and B is a self-adjoint automorphism on
Agr (i.e., a bilinear form). The volume vol(A*) is the absolute value of the determinant of
a matrix obtained by expanding a basis of A* in terms of an orthonormal basis of Ag. The
symmetric bilinear form g : A X A — Z is defined by g(z,y) = (x, B(y)) for all x,y € A, and
o(g) is the signature of a diagonal matrix presenting the bilinear extension Ag X Ag — R of
g. Formula extends Krazer’s formula in that the lattice to be summed over is now
arbitrary, and on both sides there are additional linear terms in ¢ in the exponents, whose
significance will be discussed in the next paragraph. Notice that there is still only one single
bilinear form B.

In 1996, independently of Jeffrey, Deloup [312, 313| geometrically generalized Krazer’s
formula (as well as Jeffrey’s) by essentially replacing both integers a and b in ([5.170)
with bilinear forms, and applied his result to calculate topological invariants of 3-manifolds,
such as Witten-Reshetikhin-Turaev (WRT) invariants (i.e., Chern-Simons partition func-
tions). For integral quadratic forms determined by two invertible, even, symmetric matrices
A and B, Deloup’s reciprocity theorem relates a Gauss sum with bilinear form A ® B™! to
another Gauss sum with bilinear form —A~! ® BE This identity appears as Theorem 3 in

2For an m x m matrix A and n x n matrix B™!, the (mn) x (mn) matrix A ® B~! denotes the tensor
(Kronecker) product.
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[312], and we do not present it here, since it would require quite a few new notations and
definitions. In the context of our Section|5.9, A can be identified with the coupling constant
matrix K (derived from M) of abelian Chern-Simons theory, while B can be identified with
a similar but independent matrix derived from M = ST?%t ... ST?vs:

2y —1 0 ~1
-1 :
K=| o o |- (5.173)
T |
-1 0 —1 2w,

We note that in a Gauss sum with a bilinear form governed by K !, the sum would be over
the finite abelian group Z"/K(Z") [where K(Z") is the sublattice of Z™ generated by the
columns of K|. This abelian group is equivalent to = in , as shown in Appendix A of
[247]. Deloup’s reciprocity relation is actually more general, allowing non-even A and B by
introducing arithmetic “Wu classes”. For a quadratic form x*Ax (with x € Z"), a Wu class
is realized by a constant vector w € Z" such that x'Ax + w'x € 27Z for all x € Z" |312].
By adding such linear terms (also similarly in Jeffrey’s), one overcomes the ambiguity in the
definition of Gauss sums in for a non-even A. In our context, this suggests a possible
extension to twists M and M beyond the SL(2,7Z) form given by , by inserting
operators linear in the bosonic field X introduced in Section [5.4], which would correspond to
“vertex operators”, but we will not explore this possibility in the present chapter.

In 1998, Turaev further generalized [308] Deloup’s formula to capture an arbitrary “ra-
tional Wu class” (which means that the Gauss sums are sums of exponentials in quadratic
forms on a lattice plus linear terms with rational coefficients that ensure that the exponents
are well-defined up to 27i). Overall, the place of our construction and generalization in Sec-
tions is somewhere in between Krazer’s/Jeffrey’s formula and Deloup’s theorem — for
example, if we set the duality twists to be M = ST*1ST??2 and M = §T2“1§f2”2, we get
bivariate quadratic forms on both sides of the identity ; the result is a special case
of Deloup’s formula, but beyond Krazer’s formula. In other words, our physical system is
able to accommodate two independent bilinear forms, and the identities obtained in
and are slightly more general than Jeffrey’s formula .

Recently, the corrected formula has been extensively used in studying the cate-
gorification of WRT invariants [298, 314} [279} 254]. It plays an essential role in the derivation
of Z—invariants, or “homological blocks”, of plumbed 3-manifolds Mj3. The topology of Mj
is encoded in its plumbing graph, hence the linking matrix of the link corresponding to the
graph. The colored Jones polynomials of this link, or equivalently the WRT invariant of

2im
ke + hY
powers dictated by linking matrix elements. Formula then basically converts J[g, ¢ 7]

24hv

M3, is a Laurent polymonial J[g,¢!] in variabl g = exp < , which are raised to

is the dual Coxeter number of the gauge group of the pure Chern-Simons theory defined on Ms.
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into a linear combination of homological blocks, i.e., a summation over the lattice defined
by the linking matrix, whose cokernel determines H*'(M3).

Finally, for a more comprehensive and technical historical account of the long sequence
of Quadratic Reciprocity formulae up to the early 20" century [i.e., just prior to Krazer’s
formula (5.171])], consult Chapter 1 of [315] or Chapter 4 of [316].

5.10 Discussion and outlook

We have constructed a supersymmetric double-Janus configuration for a 2d o-model with
T? target space, where all the moduli are allowed to vary along both coordinates, and we
focused on a particular solution of the SUSY conditions whereby the complex structure
varies along one direction and the Kéhler structure varies along the other. We then placed
the 2d double-Janus configuration on 72 with periodic boundary condition that include
SL(2,7Z)-duality walls. We discovered a nontrivial interaction at the intersection of the du-
ality walls, and we calculated the partition function and showed that it can be expressed as
a quadratic Gauss sum. The fermionic and bosonic modes generally describe what might be
called “a second quantized supersymmetric quantum mechanics”, where the single-particle
energy levels are those of a 0 + 1d supersymmetric system with an arbitrary periodic su-
perpotential. The fermionic and bosonic determinants cancel each other, leaving only a
number-theoretic quadratic Gauss sum, which we could compute in two different ways, ver-
ifying the Landsberg-Schaar relation and obtaining generalizations. Our derivation of the
Landsberg-Schaar relation contains somewhat similar ingredients to a method introduced by
Armitage and Rogers [317], where quantum mechanics with a toroidal phase space was also
considered, although in their approach the physical time was quantized.

Our work here is a prelude to the problem of an N = 4 Super-Yang-Mills theory with
nonabelian U(n) gauge group compactified on a closed double-Janus configuration with an
SL(2,7Z)-duality twist. As suggested in |247|, such a system can be studied by realizing it in
terms of a stack of D3-branes and then mapping it to a system of weakly-coupled strings in
Type-IIA on a mapping torus. That system can be compactified on another mapping torus,
and the work in this chapter provides the partition function of a sector of the weakly-coupled
Type-IIA strings. It suggests interesting connections between number theory and partition
functions with SL(2,Z)-duality walls.
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Appendix A

3d Gravity

A.1 Bipartition for the full partition function

In this appendix we justify that inputting j-invariant into the replica trick formula is a legal
operation. We need to make sure that the horizon in the SL(2,7Z) family of Euclidean BTZ
black holes is still at the central cord of their solid tori, so that we can cut along it. Although
j-function contains contribution from thermal AdS3; which contains no black holes, we will
see later that this configuration contributes nothing at a high enough finite temperature.
For convenience we set | = 1.

To see how Euclidean BTZ Schwarzschild coordinates transform under the SL(2,7Z) ac-
tion on 7, we need an intermediate FRW metric for the unexcited (before being quotiented
by I') AdS3 with cylindrical topology, similar to the one mainly used in [5]:

ds? = cosh? p d¥? + dp?
— —sinh? p (du — da)* 4 cosh? p(du + da)* + dp* (A.1)
= sinh? p d¢? + cosh? p dt’”? + dp?,

where 2u = i¢p — t and 2u = —i¢ — t parametrize the domain of discontinuity >, and p
indicates the radial direction.

To obtain a Euclidean BTZ from this, we demand 2u = (t — i¢)/7’, with 7/ = —1/7 =
® + i the modular parameter for BTZ black hole, and 7 the modular parameter of thermal
AdS3. The identification in the BTZ spatial direction is automatic due to the periodicity in
the H? metric; Im7’ represents the time identification because it is the length of the time
cycle, and Re7’ offers a spatial twist upon that identification, inducing an angular momentum
by “tilting” the meridian[!] Define the Schwarzschild radial coordinate 7:

r? — (Im(1/7"))?
|7./|2 )

!Situation is almost identical in the thermal AdS; (A.1)), where Im7 specifies the time identification,
upon which Rer indicates a spatial twist.

(A.2)

sinh? p =
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we obtain the Euclidean BTZ black hole in Schwarzschild coordinates for » > Im(1/77):

ds® = N*dt* + N(r)2dr® + r*[d¢ + N°(r)dt]?, (A.3)

N%(r) :% [ﬁ — (Im %)2 r? + (Re %)2] . N(r) = 712 (m%)) (Im %) . (A4)

Now the outer horizon is at ry = Im(1/7"). When an SL(2,Z) transformation is applied
7 = 1"=1/(ct' +d) = 7/(dT — ¢), r becomes

RN (C Rer’ + d)2 sinh? p+ (C ImT/)2 cosh? P
lem’ + d|* ’

(A.5)

It is enough to just think of 1/(¢7’ 4 d) because there are only three independent param-
eters in (a, b, ¢, d) due to the constraint ad — bc = 1. One has the freedom to choose a = 0,
which fixes —bc = 1, consequently (a7’ + b)/(ct’ +d) = —1/(c*7' + cd). Redefine —c* = ¢
and —cd = d, then we arrive at 1/(c7’ + d). The minus sign in both ¢ and d is not a problem,
because (c,d) is equivalent to (—c¢, —d).

Since sinh®p = r?4? — 1, we have Im7” = —cf/(c*B% +d?), Rer” = d/(*p*+ d?),
implying a rotating black hole. Now we need to see if the new r” is still at the horizon
in the Schwarzschild coordinates associated to 7/, and it suffices to check that 7’/ = Im7”.
This is indeed true. Hence no matter what (c,d) we change into, as long as 7 and 7" are
SL(2,7Z)—equivalent, r” = 7"/ = Im7 will be mapped to a segment on z-axis of spherical
coordinate system for the upper half H?, so our cut is still valid.

A.2 TEE from the whole J(gq) function

Now we plug the entire J-function as the canonical partition function into (2.29). We start
from the definition of j-invariant j(7) = J(7) — 744 = E3(7)/A(7), where A = ?*(7) is the
normalized modular discriminant. To find the derivative of J(7), we make use of the Jacobi
theta function J(f) = f' — %EQ(T)f [318], where E;(7) is Eisenstein series of weight j and

m is the weight of an arbitrary modular form f. Substituting j(7) for f, we obtain

() = 9G(7) + Ba(r)i(r) (A.6)

We have made use of the fact that the weight of j(7) is three times the weight of Ey(7) by
definition. One easily observes from the right hand side of above equation that the weight of
j(7) becomes 12 + 2 = 14 after differentiation. Since the vector space of SL(2,Z) modular
forms of weight 14 is spanned by E%(7)FEg(7) and has complex dimension 1, we must have
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Lj(7) o gi—gj(T), up to a constant prefactor. This factor can be found by plugging in the

first several terms of the j(7) function and we finally arrive atE]

dilT j(r) = —2mi gig; j(r). (A7)

Plugging into the replica trick equation ([2.29) we obtain for the holomorphic part

J(7) Es(7)
J(7) Ea(7)

Stan(7) =In J(1) + 273 (A.8)

To calculate the ration Fg/E,, we use the asymptotic formula for the holomorphic Ein-
stein series G(7) = 2((s)Es(7), assuming 0 < |arg7| < 7 and Re(s) > —N + 1 for any
positive integer N [319] (Theorem 2):

Go(1) = (1 4+ 775 (1 + e™)((s) + ZSin(sw)%T_l — (1 + cos(sm)) C(s) (A.9)
+ 2_: 2sin(sm) (_I:)C(S +k)C(=k) T +o(r™), |7l <1 (A.10)

k=1,k odd

For both s = 4,6, the second term vanishes at high temperatures |7| — 0, and sin(s7) in
the summation over k vanishes as well. Switching to the real variable 8 = —i7, we have
G4(if) ~ 26*C(4) and Gg(if) ~ —2°C(6) as B — 0. And since in this limit, j(i8) =~ J(if3),
we have for £ =1

Spa(7,7) = 2In J (1) — 4733, (A.11)

where we have taken into account the anti-holomorphic part.

Now we see that if we consider the entire SL(2,Z) family of black holes as well as thermal
AdS; (the later contributes little at small ), the one-loop contribution to TEE is negative,
agreeing with our previous calculations.

A.3 Towards a formulation of Bekenstein-Hawking
entropy in strongly coupled AdS;

In this appendix, we use the proposed duality to compute a gravitational entropy. The
resulting expressions, reported in at the end of this appendix, resemble the form
of the universal subleading correction to the entanglement entropy of the ground states of
long-range entangled topological phases in (2 + 1) dimensions |17, |18].

For this purpose, we consider the genus-one case and use the fact that the gravitational
partition function equals that of the modular invariant 2d Ising CFT at the asymptotic

2It is also a consequence of applying Ramanujan’s identities on Eo, E4 and Eg [66].



APPENDIX A. 3D GRAVITY 186

boundary. We then use Cardy’s method [198, 199, [320] to extract a variant of the familiar
expression for the entropy. Our suggested expressions are listed in below. We first
briefly review familiar manipulations of the modular invariant 2d CFT partition function for
general central charge ¢, and specialize to ¢ = 1/2 at a suitable point below when we exhibit
the new features.

The partition function can be written as

7 (r,7) = Try o 2miT(Lo—c/24) ,—2miT(Lo—c/24) — Z(r, 7—_)e—2m'CT/2462m'Cf/247 (A.12)

where H denotes the Hilbert space of the CFT (i.e., a choice of pairs of holomorphic and
anti-holomorphic primaries), and, when denoting the eigenvalues of Ly and Ly as A and A,
the quantity Z(7,7) is related to the density of states p (A, A) of the CFT by

Z(1,7) =Y p(A,R)ePmiaTe 2mAT, (A.13)
AA

We can extract the density of states p from the partition function by contour integration via
the inverse Laplace transformation going from the canonical to the microcanonical ensemble

p(A4) = ﬁ (/:O dT) (/:O d?> ¢ 2 (g.0) (A.14)

2miT

where ¢ = €™ and ¢ = ¢*™7. Using modular invariance Z(7,7) = Z (=1/7,—1/7), as well
as the definition of Z(7,7) from (A.12]), we obtain

T T

27'ric7_ 2mic 1 _27'ric,7_ _ 2mic 1 1 1
—e 2 "g2aTe 24 g 2a 72| ——. —— ,

TiC TiC = TiC TiC = 1 1
Z(T, 77—) — 6224 7'6—224 TZ(T’ 77_) — 6224 T€_224 ’TZ (__7 __)
(A.15)

and we can rewrite the density of states as

. i€+00 i€+00 ) R omicr  omi omi 1 1
p(AA) = / dT/ dT e 2MAT2MAT T e ot e 2t @ 207 Z (——, ——) . (A.16)
i ie—00 T T

€—00 €

The asymptotic form of the density of states for large A and A, of interest to us here, is
then obtained from by steepest descend: Assuming first that Z(—1/7,—1/7) varies
slowly near the saddle point (a fact that we subsequently check to be correct), one finds the
saddle point 7,, 7. to be located at

./ C _ . C
Ty ~ m, Te 1 m, (Al?)
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where A/c > 1, Afc > 1 was used’} implying |7.|, |7.| < 1. Substituting back into the
integral above yields the “Cardy formula”

— [ A [A A A
logp(A,A) ~ 2Tc ( 6o + &> , (when - > 1, = > 1) . (A.18)

Now we discuss the Ising case with ¢ = 1/2. For convenience we make the identification
{x11s x1.2: X2.1} = {X1: X0, Xu}.- With 7 =i (8/L), the partition function in describes
the quantum partition function of thermal AdS; , where the spatial cycle has circumference
L. In the low-temperature limit (small ¢, 7 — i00), the gravitational system is dominated
by the thermal AdS; solution, i.e., Z(7,7) ~ |x1.1(7)[*>. In the opposite high-temperature
limit, the black hole solutions dominate. Specifically, the BTZ saddle point can be obtained
from the thermal AdS; saddle by an S modular transformation 7 — —1/7. Considering the
high-temperature (5 — 0) limit 7 — 0, where —1/7 = i(L/) — ioco, we obtain

(1 + X (P + Ixu (1 = Zising(7) = Zising(—1/7)
= Da(=1/7)* + o (=1/T)* + o (=1/7)] ~ P (=1/7)%, (=1/7 = i00).(A.19)

Now we re-write the first line using the action of the modular transformation on the charac-
ters

Xa(T) = D Sap xo(—1/7). (A.20)

b=1,0,9
The normalized modular matrices are
e V2 o1 ‘ 1 0 0
S=3 V2 0 V2|, T=e T80 216 o |, (A.21)
1 V2 1 o 0 -1
Collecting the leading terms in the limit —1/7 — ioo,
Xa (T2 ~ [San|” 2 (=1/7)P + ..., (A.22)

the first line of (A.19)) then reads in this limit

X1 ()P + X (T)]? + [xw (1)
d2 d£2r d? . (A.23)
1712 a(=1/7)F + 35 ba(=1/7)P + 27d;|><1(—1/7)|27 (=1/7 — ic0)
where we have made use of the relationship of the quantum dimensions d, = S;,/S1,1, and
the total quantum dimension D? = Y~ _d,*> = 1/(S1.1)? of the Ising TQFT, with the modular
S-matrix (from the Verlinde formula). (A.23]) suggests that the three summands in the

3Thus (—1/7.) — 00 and (—1/7,) — ico, implying that Z(—1/7,—1/7) — 1 varies slowly, in agreement
with the assumption made above.
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second line arise from the corresponding three summands in the first line. Using (A.12)),

(A.13) and (A.18]), we have
2mic _ 2mic=

Z(1,7)=2(1,T) e 2a T e 2"
_ 2mic _ 2mic

= Z(=1)7,=1/7) = Z(=1/1,—1/7) e~ 21 CUT) =S (=1/7)

(A.24)

which, in the limit —1/7 — ioco, yields

Zp (A, A) 627riA‘re27riA7’- -~ e,Q;ri‘c(,l/T) 672;20(,1/‘7-) -~ |X1(_1/T>’27 (_1/7_ N ZOO), <A25)
AA

and we need these expressions here with ¢ = 1/2. Comparison with (A.23)) suggests that we
can identify three different densities of states,

&3 &P o dz
(A A) =50 (A A), pr (AA) =50 (AA), pu (A A) = 50 (A A) (A26)

in the regime of large A/c and A/c. Taking the logarithm of (A.26]), we arrive at
S = {logp (A, A) —log D*} + logdy, where a = ,1. (A.27)

Following the interpretation in [51] that non-trivial primaries in the dual CFT correspond to
black holes, the expression suggests that the different types of black holes labeled by
o and 1 can be distinguished by a subleading constant term in their entropy, apart from the
extensive contribution [the term in curly brackets in ({A.27))] arising from boundary gravitons
dressing the black hole. Here, a black hole dressed by boundary gravitons corresponds to
descendant states in the dual CFT. The term in curly brackets in is independent of
the labels a and, hence, is universal.

We note that, as already mentioned above, these expressions resemble the form of the
universal subleading correction to the entanglement entropy of the ground states of long-
range entangled topological phases of matter in (2+1) dimensions |17, |1§|. Earlier studies of
connections between “topological entanglement entropies” and Bekenstein-Hawking entropy
of BTZ black holes, from different perspectives, include 44}, 321].

A.4 Superselection sectors of angular momenta

In this appendix, we explain the nature of rotation of BTZ black holes at genus one, which
is not usually discussed in the literature. The lesson will be general enough to extend to
higher genus.

It is well-known that given a modular parameter 7 on a torus, which is the asymptotic
boundary of the BTZ black hole, its temperature is Im 7, and the angular potential is Re 7,
and if Re7 = 0, then it is not rotating. Then what if we shift the purely imaginary 7 by an
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integer under T'? Apparently it becomes rotating, but it is not true, because the Einstein-
Hilbert actions of all semiclassical saddles are invariant under 7', and we have excluded them
when summing over I'o,,\SL(2,Z). Then what about more general images in I'.\SL(2,7Z)?
The answer is actually that most of them are rotating due to their real parts

Since the modulus 7 of the boundary torus is only defined up to SL(2,Z) transformations
[5], we say that both 7 and the shifted 7 are in same superselection sector of rotation, which
obtains its name due to the following. Generically, different 7’s on the upper half plane H
are not connected by SL(2,Z) transformations. For example, take 77 =i and 75 = 1/3+1i/2.
For them to be connected, we need some vy € SL(2,7Z), such that

ai+b
ci+d

NT = =1/34+i/2=m
for some v € SL(2,7Z).
However, this is not possible, because this requires

bd+ac_1 ad—bc_l

A+d? 3 A+ 2
The second equation implies that ¢, d = 4+1. Substituting them into the first equation, we
obtain bd + ac = 2/3, which is impossible.

A more obvious example is to consider 7 = ¢ and 73 with an irrational real or imaginary
part. Hence we say that disconnected 7’s belong to different superselection sectors, or math-
ematically speaking, they are in different conformal classes, i.e., they are different points in
the moduli space of the boundary torus.

The above description of BTZ angular momentum is consistent with the phase diagram
for 3d quantum gravity (not necessarily pure or Einstein) shown in Figure 3b in [5]. Based
on the standard tessellation of H by SL(2,7Z) fundamental regions, this phase diagram is
a subtessellation obtained by erasing curves which can be crossed without changing the
dominant geometry M, 4, so all degree 6 vertices become fixed points of SL(2,Z) of order 3.
Rotating and non-rotating BTZ black holes can coexist in the same phase, since dominant
geometries M, 4 for them can have the same 2-tuple (c,d), e.g., all Im7 > 1 saddles belong
to one single phase, where M; o dominates.

For genus two, in a different geometrical limit than the one in Appendix (e.g., when
two regions where three cylinders join each other are folded around the axis perpendicular
to the Zs-symmetry plane in an opposite WayED, the period matrix €2 develops a real part
and the spacetime rotates, but our Z¢ _ will stay the same. Analytic continuation of a

vac
rotating asymptotic AdSs into the Euclidean signature requires a more complicated version

4The angular momenta of the “seed” and its SL(2,7Z) images are denoted by .J and j respectively in [322],
and also implicitly in (3.21) in |5]. Spin j is obtained from Fourier transform on j, defined by d = d’ + jc
where d' € Z/cZ,j € Z, and from (3.19) in [5] it easy to see that j generically exists even if ReT = 0.

5Simply twisting cylinders along the axis perpendicular to the Zo-symmetry plane, or tilting them with
respect to the same plane will not introduce rotation.
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of Schottky double [129], and there is no longer time-reversal symmetry with respect to the
t = 0 slice. However, as long as the doubling remains, one can calculate €2 using the same
replica trick for Z, symmetry as in Appendix

A.5 Partition function of Ising CFT at genus two

The partition function of the 2d Ising CFT can be computed on a Riemann surface X, with
arbitrary genus g as the square root of that of the Zs-orbifold CF'T of a free scalar field
at central charge ¢ = 1 with compactification radius R = 1 [141], |142]. It is given by the
product of Z9" representing the quantum fluctuations of the compactified scalar field, and
a classical part Z°. The latter is the partition sum over the classical solutions in 2¢ winding
or soliton sectors [142] around the a and 3 cycles depicted in Figure in Section above,
and turns out to be given by [141]

ZNQ,Q) =27 Y

a,be(32)

9 [{j (Q)’ . (A.28)

g

The more subtle quantum factor is [142, [323] |324|

—1/4
qu A\ det/(—Ag)
Z (Q,Q)_<fzg \/ﬁdet(lmm) . (A.29)

Here A is defined as

— 1 7%
A = maﬂ@a d, . (A.30)
It is the scalar Laplacian on real functionsff]7 i.e., the Laplace-Beltrami operator, and G is
the metric on 3,. The prime in det’ indicates regularization by omitting zero modes of Ag.
For genus one, with the standard metric |doy + 7dos|?, the entire expression in (A.29) is
simply Z(r,7) = 1/ (V2|n(7)|), as it appears in standard texts, such as e.g., [135]. For
genus g > 1, the determinant alone is evaluated as [325, [326| 327 328|

det’'Ag = ¢5(1) exp {(g — 1) [In 27 — 1/2 + 4¢'(—=1)]} ~ ¢5(1)e"67620—1), (A.31)

SA¢ equals the natural covariant Laplacians A§ on T", the space of all weight (n,0) tensor fields on
g [325]. Generally A} = —2V; VI = 25n+15,t+1 and A, = —2V7~1V? = 200, where the covariant
derivatives are 5
VLT — T V2 (T(d2)") = (Ga:)" o ((G**)" 1) (dz)"*;
z

Vi :T' =T, Vi (T(d2)") = GZE%T(dZ)"—l,

This subtlety is explained here, because in the original papers, the numerator in 1' is det’'(—V?) [142,
324 or det’ AT 326, [327], instead of det’ Ag.
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where (5(s) and ((s) are Selberg and Riemann zeta functions, respectively. The Selberg zeta
function for Y, is defined as

¢s(s)= ]I ﬁ[l—e‘s*’“’l(p)}, (A.32)

p primitive k=1

where the primitive p’s are the simple closed oriented geodesics on 3, annd I(p) is the
hyperbolic length of p.

Since the Ising CFT can also be expressed in terms of the CFT of a single non-interacting
Majorana fermion species, the classical part in is simply proportional to the summa-
tion over the partition function for the free Majorana fermion theory of the corresponding
spin structure. For example in the case of torus, we have [135]

2V xa() =200 ) =0 [o] () 042 ] ),
VR xaar) = VAT xa(r) =0 1] o),
2/A07) xaa() = 200 () = 02 (] (1) = 02 |6, o),

(A.33)

At genus g = 2, there turn out to be ten holomorphic conformal blocks of the Ising theory.
As shown in Figure the three primary fields a, b, ¢ € {1, 0,1} satisfy the following fusion
rules,

axa—b, c¢xé—b, (A.34)

where the overbar denotes the anti-particle (and all particles 1,0,v are their own anti-
particle).

a C

¥ )
= \_-'/
a C

Figure A.1: All possible admissible label sets are {a,b,c} = {1,1,1}, {¥, 1,1}, {1,1,9},
{w’ 17 w}? {0-7 17 1}7 {17 17 U}’ {07 17w}7 {w? 17 0}7 {0-7 17 0}7 {07 w’ U}'

There are sixteen g = 2 Riemann theta functions corresponding to the different possible
choices of characteristic vectors a and b, where a,b € (%ZQ)Q - compare with Section [3.3
above. Only the ten even ones are non-vanishing, which are listed in (A.43]). In Table [A.1]
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we present the matrix of basis changd’| from the “free Majorana fermion basis” of square-roots
of theta functions (right part of Table) to the classical parts of the basis of the genus-two
Ising characters (left part of Table).

R R e P e
R B ol
N PR T R A T TN
Dy | 02 8 :—?91/2 8 192: e :192 8 Hor :1(/)2 1(/)2:
it [ 7 oo ][ [ G T8
P PR B | PR P e
2 | 9L/ [1(/)2 162] Gy | U2 Eg %g]

Table A.1: The correspondence between (the classical parts of) Ising characters (left) and
free fermion characters (right).

The table can be understood intuitively in the pinching limit, where the off-diagonal
entries of the period matrix 2 vanish. When 25 — 0, all of the above characters except
Xyoy factorize into a product of two genus-one characters:

X/uu(Q) — X#(Qll>Xl/<QQ2>7

with p,v € {1,0,¢}. (For simplicity, we use the notations x11 = x1, X12 = Xo, and x21 =
X«-) The factorization is not possible for x4 because when the particle b in Figure is
non-trivial, the character is intrinsically genus-two and cannot be viewed as disjoint union of

(A.35)

"Table is the result of an educated guess based on below, and its content passed all the
consistency checks to our best knowledge. Perhaps it could be derived by considering six-point functions
of twist operators of conformal dimension £ (2 — 1) = £ in the orbifold CFT Ising®?/Zy on the Riemann
sphere in the spirit of |51} |143].
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two genus-one components, even from a topological point of view. For the other nine sectors,
(A.35)) can be traced back to the factorization of Jacobi theta functions in such a limit:

1
1

¥ [Zi Zj Q) = 0 {Z } (Qu) ¥ {Zﬂ (Qa2). (A.36)

A.6 Genus one modular sum revisited

This appendix presents some new results concerning the genus-one case, which aim to explain
the mathematical meaning of the factor of eight in . We will first introduce several
necessary concepts.

As discussed in [122], for any 2d rational CEFT C with a finite set J of primaries, the
field extension F' of Q by adjoining the all matrix elements of the modular & matrix as in
[329, [330] is a subfield of a cyclotomic field Q[(,] for some positive integer n, where
G, = €*™™ is the primitive n*® root of unity, by the Kronecker-Weber theorem in number
theory. Following the terminology in algebraic number theory, the smallest n for which
F C QI¢,] is called the conductor of C (also defined in [331]), and can be shown [122] to be
equal to the order N of modular 7 matrix. For the Ising CFT of interest to us here, the
modular 7" matrix is listed in (A.21)).

Another important player for us is the kernel X of the linear representation of SL(2,7Z),
defined as the set of modular transformations represented by the identity matrix,

K ={y € SL(2,Z)| My;(7) = dij} (A.37)

where 7, j € J, and M;;(7y) is the representation matrix of v transforming between characters:

Xi(y 7)) = Z My (7)x; (7). (A.38)

K can be shown [122, 123] to be a congruence subgroup of level N, whose meaning will be
clear soon.

Now one can consider the index of the principal congruence subgroup I'(N) of SL(2,Z)
of level N, as already defined in ([.34), inside the kernel X, i.e., the quantity |X : T(N)|F]
Bantay then showed [122], using solely the knowledge of the modular & matrix, that the
conductor of the 2d Ising CFT is N = 48, and he further provedﬂ that the index |X :
I'(48)] = 64.

On the other hand, the formula for the index of I'(/V) inside SL(2,Z) is

ISL(2,Z) : T(N)| = N* [ | (1 — ]%) : (A.39)

p|N

8For the principal congruence subgroup of a Siegel modular group Sp(2g,7Z) of level N, the definition is
the group of diagonal matrices with entries being 1 mod N [332} |333].

9Bantay proved that the index |X : T'(N)| equals the order of the image of X under a group homomor-
phism py : SL(2,Z) — SL(2,Z)/T(N).
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where the product is (as indicated) over all prime numbers p that divide the level N. The
above equation gives 73728 for N = 48.
Then by the Lagrange’s theorem in group theory, we have

ISL(2,Z) : T(48)| = |SL(2,Z) : K| - |X : T(48), (A.40)

so one would naively expect that the index |SL(2,Z) : K| for the 2d Ising CFT should be
73728 /64 = 1152.

However, there is a subtlety: There exist three distinct ways of lifting a projective repre-
sentation of SL(2,7Z) to a linear representation (i.e., three distinct “linearizations”), see for
example |31} 334]. Bantay considered a linear representation in [122|, while we are focusing
on projective ones because a TQFT (in our case as discussed in Section , the 3d Ising
TQFT, whose algebraic theory is described by the Ising MTC |31]) gives rise to a projective
representation of the MCG of a Riemann surface [compare with and (A.46)-(A.49)],
partially due to the non-degeneracy axiom for the modular & matrix of the TQFT [162,
335), 1160]. This is also consistent with the (projective) transformations of Jacobi theta func-
tions under SL(2,7Z) mentioned in Appendix below. After linearization of the projective
representation, the order of the image of the SL(2,7Z) generator T' changes from 16 to 48.
Taking into account this factor of three, we finally arrive at the index 384 = 1152/3, which
agrees with the result from our Mathematica code["|

Now we notice that K in [122] is not the enhanced symmetry group =Y for genus 1

discussed in [119], since the latter is defined as in (3.18), in a similar but different way than
in , i.e., only preserving the vacuum Character up to a U(1) phase. T4 turns out to
be an index-24 subgroup of SL(2,7Z), consistent with Footnote |§|, and in [119] Bantay’s X is
merely used as an argument justifying the finiteness of the genus one modular sum.

Up to now, our entire discussion is about genus one. Our final remark is that the math-
ematical meaning of the prefactor 384 in (3.24)) in the genus two case is the analogue of the
prefactor 8 for the genus one partition function in *

The factor 384 arises because the subgroup T4 of the MCG I'y—o is the immediate
counterpart of the subgroup 19~ of the MCG g1 = SL(2,Z), both subgroups being
denoted by I'. in as well as below ((3.21]).

19The indices of the SL(2,Z) subgroups which preserve only one of the three characters x1.1, X1.2, O X2.1
are 384, 384 and 48, respectively. If the characters are required to be preserved only up to a U(1) phase,
then these indices become 24, 24 and 3, respectively.

"The fact that the numerical prefactor “384” in is the same number as the above-mentioned index
“384” = 1152/3 is probably a coincidence.
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A.7 Generators for Sp(4,7) and the algorithm

The group Sp(4,7Z) is minimally generated by K and L with the following representations:

1 0 0 O 00 -1 0
R P ()
0 0 0 -1 01 0 0
They satisfy K? = L'? = 1, and the following six additional relations [147],
(L2x)* = (XL1?)?, L(L°X)* = (L°X)’L, (KL°)° = (L°X)?, (A42)

(KL'KL°K)L=LX, (L°KL')X =X (L’KL"), (L’KL’)X =X(L*KL),

with X = KL’ KL'K = 1, ® 0,, L5 = 1, ® 0., where o; denote the standard three Pauli
matrices. Its generalization to arbitrary genus Sp(2g, Z) with at most 3 generators and 3g+5
relations can be found in [148]. In the following basis of Riemann theta functions

e O L P K O N F R R R )
00 0 0 3 0 3 3 0 0
L 0o 1L 0 0 11 11 (A43)
e R R (R o (R R I )
2 2 2 2 2
the projective representations of K and L are:
100 00O0O0O0O00O o 0 100 O O0O0 O 0
01 000O0O0O0OO0OFO 1 0 000 O OO O 0
000100O0O0O0OO 0 e/ 000 0 00 0 0
001 00O0O0O0TO 0O 0 0 000 O 0 0 em/8 0
K — 000O0O0OO0OOOT1®O r— 0O 0 010 O 0O0 O 0
000O0O0O1O0O0O0O0YJ 0O 0 o001 O 00 O 0 ’
00 00O0OO0O0OO OO 01 0 0 000 € 00 0 0
000O0O0OO0OOT1QO0®O0 0O 0 o000 O 10 0 0
0O00001O0O0O0O0OTO 0 0O 0 000 O 01 O 0
0000001000 00 000 O 00 0 €m8
(A.44)

where £ is of order 24 and K is of order 2. Z¢ _ in is invariant under the action of K,
just like the torus vacuum seed Z, is invariant under T of SL(2,Z). Additionally, Z¢  is
also invariant under £°.

We ignore the factor det(CQ + D)~! in the modular transformation of Riemann theta
functions , because it is expected to be absorbed in the overall quantum factor for the
characters (A.29)), similar to the Dedekind eta function in the torus case [135]. The phase
€(y) in has no effect because it is an overall factor independent of €2, which drops out

when taking the norm in the expression for Z¢

vac*
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Below we present the pseudocode similar to those used in an arbitrary solvable “word
problem” for the MCG [150]. K[-] or £[-] means that K or £ acts on the period matrix
in all seed, seedl and seed?2.

Algorithm 1

1: Inititalize KC, £, seedl := x1.

2: seed = Klseed]]

3: forn=0,n<23, n++ do

4: temp = L[seed)|

5: if temp ¢ seed, then do nothing

6 else seed =Append |[seed, temp|

7: seed2 = seed

8: if Length [Intersection [seedl, seed2||<Length [seed2| then seed]l = seed2, and repeat
from 2 to 8

9: else stop

10: Print Zg,, :=Total [seed2]

Finally, we comment on the “translational” subgroup T2 of Sp(4,7Z). The group gets
its name from its genus-one counterpart, where 1=t is generated by the translation T : 7 —
7 + 1. (The superscripts -9=! and -19=2 specify the corresponding genus.) As in the genus
one case, the group 1% is the “classical analogue” of T¥=? There is no canonical choice
for T~ on genus two surfaces, but one possibility is generated (not necessarily minimally)
by

S = (1°X)°, T =XKIL°X,

T\=XTX, Tp,=L'XL2XL? Ty=L’KL'XS,
with the same X as before. Here T, Ty and T3 respectively shift the entries 1, {22 and
Q42 by 1; each of S and T' acting on € as in (3.30) performs the conjugation @ — MQM !,
where M denotes the generator S or T of SL(2,Z) [52]. In the same basis (A.43), the

10-dimensional projective representations of the generators listed in ((A.45)) are:

(A.45)

0 0 100 O 0O O 0
0 e 000 0 00 O 0
1 0 000 O 0O O 0
0 0 000 O 01 o0 0
- 0O 0 000 O 10 0 0
10 0 000 ¢+ 00 0 0 |’ (A.46)
0 0 001 0O 00 O 0
0 0 010 O 0O O 0
0 0 000 0 00 e 0
0O 0 000 O 0O 0 et
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0000 O O O 1 0 0
0000 O 1 0 0 0 0
0001 0 0 0 0 0 0
0010 0 0 0 0 0 0
- 0000¢e€e€’ 0 0 0 0 0
T2= 0100 0 0 O 0 O 0o | (A.47)
0000 0 0 €0 0 0
1000 O O 0 0 O 0
0000 O O 0 0 e 0
0000 O O O 0 0 e/t
10000000 0 O
00000100TO0 O
00100000 TU0 O
00010000 TU0 O
- 00000010 0 O
75"_0100000000’ (A.48)
0000100O0T0 O
00000O0OO0OT1 0 O
00000000 0 —i
00000000 —i O
100000O0O0TO0DO0 1 00000O0O0TO0DO0
0000100000 00000O0O0OO0T1O0
00000O0O0OT100 00100000O0O0O
0001000000 00000O0O0OT100
. 0100000000 - 0000100000
5_0000001000’7_0000000001 (A.49)
0000010000 0000001000
00100000O0O0 0001000000
00000O0O0OO0T1O0 01 000000O0O
0000O0O0O0O0O01 0000010000

A.8 Genus two long-cylinder limit

In this appendix, we provide some details regarding the low-temperature or the long-cylinder
limit of the Ising and the ¢ = 31/2G = 1/2 gravity partition functions on genus two. As
reviewed in (3.23)), a genus-two Riemann surface with a Z, time-reflection symmetry can
be constructed as a complex curve by the “replica trick” on two copies of real lines with
six branch points, i.e., three finite intervals [144, 336]. For computational convenience, we
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choose an alternative but equivalent expression other than ([3.23):

3 2

y(2) =ul2)v(z), u(z) =[]z =222), v(z)=]](—z2), (A.50)

i=1 =1

where y, z € C?, and we have used a conformal map to fix three of the six branch points as
cross ratios:

2(z) = = A — ) (A51)
(up — u2)(z — u3)
such that z(u;) = 0, z(uz) = 1, and x(ug) +— infinity, which we denote as z,,. For simplicity
we have denoted x(u,) = xon_9, ©(v,) = Top_1, n =1,2,3.
This curve has a non-normalized basis of holomorphic 1-forms:

wi = ——dz, 1=1,2. (A.52)

Given the canonical homology basis {«;, §;} on the Riemann surface as in (3.27)), two 2-by-2
non-symmetric matrices can be defined on the surface

A Ej{ wj, Bji= }{ wj. (A.53)

The corresponding period matrix of the surface can then be expressed as
Q=A"1.B, (A.54)

separating the contributions from integrals along the o and g cycles. (Notice that here we
used a different normalization on w than the one in (3.28)).)
Next, we perform a basis transformation by decomposing {«a;, §;} into auxiliary cycles

{a?ux’ ﬁiaux}’
Z Al B = (A.55)

Correspondingly, one can define followmg the matrices, which are simply integrals of the
one-forms ((A.52)) along the auxiliary cycles

Aji =D (A By = (B (A.56)

k=1

and finally [144} 336],

Aaux Ef )3 7,3~ |£§i .
(A.57)
(B™), z]{ wy = —2i(—1)*7F; 22 i=1,2.
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Here F; | can be expressed in terms of the fourth Lauricella function F |337] a general-
ization of the hypergeometric function o F7,

T lo= /01 dt 7 (b — a)[(b— a)t + a3/

a)t — (var—s — )| TTh_, [(b — a)t — (w251 — a)|V/?

i—3/2
= e Fy (lé Gt dge )) :
H3 k=2 ‘x2k72 - a|1/2 H2 =1 ’SCQI,1 — a\1/2 22 2°2
Togp—27a Top_oFa
(A.58)
where the 3-dimensional vector q'* has components:
(ab) __ b—a
A =, 1012340 nle, £ ab}, (A.59)
and F ,(33 ) has the integral representation:
I'(c i Y1 —t)eet
Ff()g) (CL, blv b2a b3a ¢ 41,42, CIS) = ( ) ( ) (AGO)

[(a)l'(c—a) Jo H] (1 —gjt)*

Taking all (z9;1 — x2;_2) = € to be small for i € {1,2,3}, which is required by the
long-cylinder limit, we obtain

2 (1 0 2t (logere; —logey
A=- o (0 —1) , B= /Zo ( loges —logey )’ (A.61)
and the period matrix is
gt <—log €165 loges ) ' (A.62)
T log €9 —logey

Inserting this into the equations and , we find that they match each other at
leading order, which further justifies our expression for Z¢ . The subleading terms will not
agree, because the contribution of other sectors will enter.

One remark is that, in this appendix we have used a non-rotating, i.e., purely imaginary
period matrix for convenience. Adding an angular potential complicates the calculations but
does not affect the match between the low temperature limits of Z¢ _ and Z¢, which is robust
against arbitrarily large angular momenta due to the cancellation between fast oscillating
phases in Riemann theta functions. For a review of the rotating case in general, see the
following Appendix [A.4]

For genus greater than 2 with Z, symmetry, one can allow for more branch points and

take two copies, and follow the general treatment in [144] to obtain {2 similarly.
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A.9 Extended property F of the Ising theory

Unitary (24 1)d-TQFTs are well-captured, physically, by anyon models, or, mathematically,
by unitary modular tensor categories. The extended property F conjecture asserts that all
representations of MCGs from a TQFT would have finite images if the total quantum di-
mension D* = Y. d? is an integer. For the original non-extended property F conjecture on
braid groups instead of MCGs, see [338] 339]. In this appendix, we prove the Ising TQFT
extended case.

The Ising theory has three labels or anyon types {1,c,%}. The same fusion rule can be
realized by 8 different anyon models [340] with chiral central charges ¢ = §,a = 1,3, ..., 15,
where ¢ = % for Ising TQFT. The results in this appendix apply to all 8 theories.

The Ising TQFT can be constructed explicitly using Temperley-Lieb algebras and Jones-
Wenzl (JW) projectors with A = ietT . The three anyon types {1,0,%} then correspond
to the JW projectors {p;},7 = 0,1,2. For the notations and terminologies, see for example
[161]. The MCG representations are explicitly described in [341].

To understand the representations of MCGs I'y from the Ising TQFT, we will use four
different bases of the Hilbert spaces Virqrr(2,): the defining basis {ef}, the standard basis
{vi}, the geometric basis {ul }, and the spin basis {w™}—the last three bases are defined
and used in |146|, and the defining basis is used in [341]. The defining basis and standard
basis consist of labeled fusion graphs using {1,0,1%}. The defining basis is the one as in
Figure|3.7] while the standard basis can be obtained from Figure by performing F-moves
at all w;-labeled edges. The geometric basis consists of skeins of simple closed curves; the
spin basis consists of even spin structures (those with Arf invariant 0) or even quadratic
enhancements of the intersection forms.

The four bases can be changed to each other through the following explicit formulae
: . —5(in—ip)
[146]. From the geometric to the standard, v, = » ;; ayyy, where ay = (—[Q]A)g CRE

where [k]4 = % is the quantum integer, and A = ie~>™/16 for Ising TQFT. From the
standard to the spin, wf® = >, ook, where i, = myl, + 1, k, =2 if m, =1, k, =1 or 3
if m, =0, and oy = (—1)12%,l = > 034,ln. To go from the defining to the standard,
we first note that the label w; in Figure [3.7 would be either 1 or . Inductively, we obtain
a change of basis by applying F' moves.

Any self-diffeomorphism f of a surface ¥, induces an action on the Zjy-homology group
H\(X,;Zs) of ;. The images of all such {f} form Sp(2¢g,Z>). The kernel consists all
diffeomorphims that fix Hy(X,;Zy), which form a subgroup D, of ¥,. It is proved in [146]
that Dy is generated by all squares of Dehn twists on simple closed curves.

Any simple closed curve s on ¥, defines a function from the set of spin structures w of
¥, to Zy by sending w to w(s). To prove the finiteness of all representations, it is convenient
to use the spin basis. In this basis, the square of Dehn twist on any simple closed curve s is
a diagonal matrix with non-zero entries (—Aﬁ)w(s). Since A® is of order 8, the image of D,
is an abelian group inside ZY for some N.

It follows that we have an exact sequence:
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1 = pirqer(Dy) = pirqer(Ly) = Sp(29,Zs) — 1,

where pirqrr(D,) is a subgroup of ZY for some N.

A.10 Proof of the theorem on page 71

Here we fill out the full details of the proof on page 71 of this thesis.

Theorem Suppose that the group representation py(I'y) of I, is an infinite set of U(1Vy)
matrices, then for any small € > 0, either

(1) 3v,+" € I, such that

0 < [Trpg(y) = Trpg(7)] <e (A.63)

or (2) 3y" €T, such that
Ny —e < |Trp,(v")| < N. (A.64)

Proof The compactness of U(XV,) ensures the existence of v,~" € I'; such thatlﬂ

0 < [|ps(7) = pg(V)]| < €, (A.65)

where € is small. Now we discuss two situations:

(1) If pg(7') = py(7) - € - 1, then (A.65)) implies

0 < {Tr[(pg(7) = po(¥))(ps(7) = po(¥ )} /> < ¢ (A.66)
— 0< {Tr [pg('y)(l — ew)p;(’y)(l — e_w)] }1/2 <€ (A.67)

but pg(7)pg(7)" =1, s0
0<[(2—2cosO)N,]""* < ¢ (A.68)

On the other hand, NOwW Imeans
0< |Tr [pg(7)(1 — €“)1] ‘ <€ (A.69)
= 0<[1—€"| |Trp,(7)] <e (A.70)
But

|1—ei0|-}Trpg('y)’ < NygvV2—2cosf <e, (A.71)

so by comparing with (A.69), we can choose [¢ = ¢€/y/N,|in (A.65)) to achieve (A.63).

(2) I py(v') # py(7) - € - 1.
2Here v # 4/ not necessarily implies that py(vy) # py(7'), because p, may not be faithful.
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Notice that the Frobenius norm || - || is invariant under multiplying - with a unitary
matrix, so we multiply terms inside || - || in (A.65) by p,(7)~* to get

0<|lp,(v") = 1|| <€, (A.72)
where p,(1") = py(7)py(7') . Consequently
0 < {Trllpg(r") = Dlpg(") = P <. (A73)
We use p,(v")pg(7")* =1 to get
0< (2N, —2ReC)"? < ¢, (A.74)
where C' = Tr p,(7”). But ImC' < N and ReC < |C], from we have
0 < N, —Re(c) < €?/2 (A.75)

= N, — || < €?/2 (A.76)
Recall that (A.64)) is equivalent to

0<N,—|C|<e (A.77)

so we pick € = ¢2/2, namely | ¢ = V2e|in (A.65) to achieve (A.64). [ |
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Appendix B
p-Adics

B.1 Laplacian matrix on a multigraph, and its relation
to volume of (4.151

Here we use a graph-theoretic method to obtain the determinant of Laplacian operator on
the Bruhat-Tits tred], which has already been calculated in Section
Let us recall that the result (4.31]) is the product of all nonzero eigenvalues of a directed

multigraph Laplacian [J. This multigraph G contains:
e N + 1 vertices, labelled by 0, ..., N;

e One arrow from the i'" vertex to (i + 1) vertex, where i = 0,..., N — 2;

e p arrows from the j*® vertex to the (j — 1) vertex, where j = NN —1,...,2;

e p+ 1 arrows from the vertex 1 to the vertex 0.

The product of eigenvalues of equals the determinant of the adjacency matrix of G, with
the (N + 1)™ row and the (N + 1)™ column removed, because there is no arrow going from
anywhere else to the vertex N. By Kirchhoff’s theorem, this determinant equals the number
of spanning trees starting from the vertex N, which is

p-p...op(p+1)=p"+p" " (B.1)
N—-1

In fact, G can be obtained by “compressing” the truncated Bruhat-Tits tree in Section
onto one ray using the rotational symmetry, so a spanning tree starting from the vertex N is
equivalent to a path originating from the origin 0 to the cut-off boundary of the Bruhat-Tits
tree, which in turn is equivalent to choosing a point at depth N on the tree.

T thank Yehao Zhou for helpful comments.
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Finally, all points at depth N on the Bruhat-Tits tree form an orbit of the Iwahori
subgroup of GL(2,Z,), called the Iwahori orbit. Under the Haar measure, the orbit has
volume 1, so the volume of the double coset equals the number of elements in the
quotient of by the right action of Iwahori subgroup. This quotient is exactly the
Iwahori orbit representing elements

P 0 B.2

namely, points at depth N. As we discussed on the previous page, there are p" + pV~! of
them.

However, for the BTZ graph, there is no good rotational symmetry which allows for a
“compression”; so a similar analysis obtaining det [J cannot be done.

It would also be interesting to understand this volume purely in terms of p-adic integration
using Haar measure, say, in Appendix A of [168].

B.2 BTZ graphs revisited

In Section , if we do not use the periodic linear recurrence on the horizon (4.44)), without
loss of generality, we start from the initial condition at the ¢ s vertex:

(p - 1)<¢O,s - ¢1,s) + ((b(),s - ¢0,571> + (¢0,s - ¢O,s+1) = >\¢O,s: (B3>

where ¢, ; denotes the field value on the outward vertex one edge away from the horizon
point (0, s), and hence

1 - )\ s s5— s
bro = (p+ )®0,s — (Po,s—1 + o, +1). (B.A)
p—1
Similar to what we have shown in Section , all field values ¢, 5,n > 1, away from the
event horizon only depend on their depths n and hence isotropic in each subtree rooted at
one horizon vertex (0,s). There is no change in the linear recurrence (4.26)) for all n > 2,

and for n = 2 we have

(p +1-— )‘)qus - ¢0,5

p
AA=2p =2) +p(p+ 1) + 2o + (A —p —1)(¢o,s41 + ¢0,5-1) (B:5)

plp—1) ’

then the coefficients get uncontrollably complicated as the depth n increases.

¢2,s =

B.3 Review on the ordinary BTZ parameters

In ordinary Eulcidean AdSs, for a genus-1 gravitational saddle configuration, the modular
parameter is 7 = 0 +if3, defined on the upper-half plane H?, where  is the angular potential
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and (3 is the inverse temperature, then the tree-level partition function is [64]

Z=e"nme, (B.6)

where £ is the inverse 3d Newton’s constant. For a non-rotating black hole, as in our case
=0, so
wk
Z=e8 =™+, (B.7)

If corrected by the one-loop contribution as in [5], we have:
7 = Z(1)Z(7), (B.8)
where the holomorphic piece is

B q:(k—1/24)(1 B
20 =

4-). (B.9)

and ¢_ = e 2™/7. Since the partition function of 3d pure gravity is 1-loop exact [5], the
combined result is
4nImT 1
‘7"2 (k_ﬁ) _ 4nlmTt 2 I _ 2nlm~
Lot = ‘ TR [1 +e I1?7 —2cos (W—I?T) e |Im1? ] (B.10)
n(=1)7(=%) 7]

We will use the g-Pochhammer symbol specified at ¢ itself

o = ﬁ (1—q") (B.11)

g Imr :
as well as the fact that ¢_g_ = e T2 and n(—=1/7) = qi/%(q_; d-)oo, & useful expression

when ¢ € R.
Hence for a non-rotating BTZ black hole, ¢_ = g_, and at large r, = 1/, we have

~ et | (B.12)

Instead when 7, is very small, we use the asymptotics [342]:

2m 4
(¢ @)oo = \/%624 ot forg=re""t =0, (B.13)

+e(4k71/6)ﬂ7‘+ )

Imt
e4ﬂ—k|7’T

(7-34-)00(@- 7)o

so that the partition function is approximately |r
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B.4 An appetizer to compact induction

Compact induction is among the very first constructions of supercuspidal representations.
The standard philosophy is to induce an irrep of the group G from a representation of
a compact subgroup H C G. Avoiding most technicalities, we demonstrate this for the
simplest case, the symmetric group Sz, adopting the approach from [343]. We will not define
terms not shown in our main text.

It is known that for a given p, there are p(p — 1)/2 distinct supercuspidal representations
for SL(2,Q,) [344] (Theorem 2.5), so the supercuspidal representation for SL (2,Qy) is
unique. We start from the cuspidal representation of SL(2,Fy) = Ss, i.e., the character p
with mappings:

GO0 e
! | |

1 -1 -1 -1 1 1
and preform compact induction on S3 to obtain the supercuspidal representation of SL(2, Qs).
We use the fact that there is a unique tamely ramified extension Qg (Cg, \75) /Q2 whose

Galois group is exactly Ss, where (3 is a 3™ root of unity. Then the Langlands parameter
¢: Gal (@ (G, V2) /@) = 8 € PGL(2,C) (B.15)

corresponds to two irreps of SL (2,Qy) given by compact induction from

Ki = SL(2,Z), and Ky = ( (2) (1) ) K, (1(/)2 (1)) - (;2 2**) (B.16)

of the characters K; — S5 —o» {#1}.

More generally and abstractly, compact induction can be performed on Z, /pZ, ~ Z/Z, ~
IF, as well, and supercuspidal representations obtained are called depth-zero [219]. With this,
one can actually enumerate all supercuspidal representations of GL (2,Q,) [345].
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Appendix C

Reciprocity

C.1 Topological twists

In this appendix, we attempt to topologically twist the Gaiotto-Witten Janus confuguration
we introduced in .

Twisting the Gaiotto-Witten Janus configuration

In this subsection, all spinors and vectors are in Euclidean signature. The 10D spinor
decompose into the Spin(4);, x Spin(6) = SU(2)+ x SU(2)_ x Spin(6) representation as

(2,1; 4)® (1,2;4). (C.1)
They decompose into representation of SU(2), x SU(2)_ x Spin(3)x x Spin(3)y as
(2,1;2,2) & (1,2;2,2), (C.2)

where Spin(4)y is generated by I' for i = 0, 1,2, 3, Spin(3) x is generated by I'® for a = 4, 5, 6,
and Spin(3)y is generated by I'? for p = 7,8,9. The spinors further decompose into the
representation of Spin(3)p x Spin(3)y X Zs as

(1,2)" & (3,2)" @ (1,2)” @ (3,2)", (C.3)

where Spin(3)p is the diagonal subgroup of SU(2); x SU(2)_ x Spin(3)x, and the Z, is
generated by I'°'23. There are four spinors invariant under the Spin(3)p. They satisfy three

equations

F0145 F0246

€ =g, =g, QU120 — ¢ (C4)

The four solutions form a pair of doublets under the Spin(3)y, which have +1 eigenvalue
under T2, we denote them by e ,, which satisfy

M8ey  =dera, Pleyy =ie?(0,) cxp, (C.5)
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where (Ur)aﬁ are Pauli matrices A choice of e_ , determines a natural choice of €4 ,,
12
Ea = N5+,a7 Eta = —N{—;f’a’ N=_ ZFZFZ+4- (07)
3 i=0

One can further show that e , satisfy
e, o =T%_,, I ,=-Te, fori=0,1,2 (C.8)

We would like to consider Gaiotto-Witten Janus configuration. The supersymmetry trans-
formation preserved by the Gaiotto-Witten Janus configuration must satisfy the condition

(T340 sinap 4+ 3™ cosh)e = €. (C.9)
We could construct solutions from e , by
Ea = Eq.a +E_qie?. (C.10)
Let us decompose the gaugino field ¥ as
U=+ esa+ (" +T9x e a (C.11)

The Gaiotto-Witten supersymmetry transformation on the gaugino is
N 1 ij 31 1 ab 1 g
(5 + (5)‘11 == §F Fij + F F ng + §F [Xa,Xb] + §F [Y;HY;]
+T'T"D; X, + I°T*D3 X, + ['T? DY, + T°*T?D3Y, + I'T?[X,,Y,]  (C.12)

— TPT X, tan ¢ + T*TPY,9 cot 1/1) E.

Let us denote 04 , being the supersymmetry transformations with the parameters ey ,. We

LOur convention for the SU(2) spinors u,, is such that we raise and lower the index a by the antisymmetric
invariant tensors €, and € as
u® = e*Pug, Uy = ulega. (C.6)

€qp and €8 are normalized by €15 = €'? = 1. When the spinor indices are implicit, they are always contracted
as an upper left index contracting with an lower right index, uwv = u®v,.
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obtain

_ u’t

(uor +u™0-)x;; ZT(FZ‘]‘ + e PP — [ X, Xj) — e[ X5, YP)o,)
+ %(_D[in] — eijeDs X" — € DY P o, + e X tan ),

_ _u

(utoy +u"0-)x5; = (Fij = € " — [Xi, Xj) + e[ X", Y7)0,)
C.13)
N (

+ %(D[zX]} — EijkD3Xk — EijkaYpO'p + Eiijk¢, tan 1/1),
+ - .
(utoy +u o )n* _u2 (i€" 0, [Y,, Yy]) + 2 —(=D'X; + D*Y?0, + Y?0,1 cot 1)),

(utdy +u=d6-)n~ u2 (1’70, [Y,, Yy]) + %(DZXi — D*YPo, — YPo,1 cot ).

Consider the supersymmetry transformation generated by (C.10), i.e. setting
ut =u, u = —ie ", (C.14)

where u® is a fixed two-component spinor, which specified the twisting. The vanishing of
the supersymmetry transformation on ni gives

uo,[Yy, Y " =0, u(D'X; — D*YPa, — YP0,1 cot1p) = 0 (C.15)
The vanishing of the supersymmetry transformation on y* gives
ul — (Fi; — [Xi, X)) sin+ie (F** — [X*, Y?)o,) cos ¢
—€iji (D3X* — X*/ tany + D*Y?0,) | =0, (C.16)
uli(Fyy — [X;, X;)) cos p—eiu(F* — [X*,YP)o,)sinty — D X;] =0,
The BPS equations take the form as
u*A + (uop)*BP = 0. (C.17)
Contracting this equation by u, and (o,u), gives
UyB? =0, U,A+ i€, B°U" =0, (C.18)

where U, = uopu is a null vector, U,UP = 0. The possible choices of twisting is parametrized
by a hyperplane inside CP?, which is parametrized by Uy, Us, Us with U, ~ zU, for z € C,
and the hyperplane is defined by the equation U,U? = 0.

Any choice of the twisting U, breaks the Spin(3)y symmetry. If we required that the
BPS equations are satisfied for all the choice of the u®, we have

DFYP =0, D*YP 4+ VP cotp =0, [Y,,Y,] =0,
D'X;=0, DyX;=0, D3X"— X" tan¢ =0, (C.19)
F;—[Xi,X;] =0, F*=0, [X*Y?]=0.



APPENDIX C. RECIPROCITY 210

This preserves the Spin(3)y symmetry.
Next, we work out the supersymmetry transformation of the bosonic fields. One could

normalize the spinors as
éq:’argaEi”g = :téag,

_ (C.20)
si,angi,@ =0.
The supersymmetry variations of the bosonic fields are
uhop +u 0 ) A = €7 (ut X + U X,
(C.21)

uto, +um 6 )X = R ut —um ),
uto +u )Y, =utomt +uTom.
Deriving the BPS equations

Here we derive the BPS equations for abelian and non-ablelian gauge groups respectively

The abelian case
For simplicity, let us first consider the case that the gauge group is U(1).
u(0'X; — O*YPo, — YPo,0) cot ) = 0,
ul — Fyysing) + i€ jp F*" cos ) — €n, (0sXF — XF¢/ tanyp + 0°Y?a,) | = 0, (C.22)
U [zFZ] cos ) — eiij?’k siny — G[in]] =0.
The last equation implies (setting the real and imaginary part to zero saparately)
F;=0, —epF*sinyg—0;X; =0. (C.23)

Now, we assume that v = (1,0), and we have uo,Y? = (Y2, Y ™), where Y* = Y; +iY®. The
first equation then reads

0'X; — 0°Y? — Y% cotyp =0,

PY ™ +Y 4 cotp = 0. (C.24)
The second equation reads
F¥* =0, oY~ =0, (C.25)
03 X% — X tanyp + 0*Y? = 0.
The BPS equations can be written in terms of X=X cos ) and Y=Y sin as
F;j=0, Fup=0, 9,X;=0, &Y =0, 8Y =0, (©.26)

(0'X;)taney — Y =0, (8;X") tan) + 9,Y° = 0.
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The non-abelian case
Let us consider the BPS equation for non-abelian gauge group. The BPS equations are

uo,[Yy, Yo" =0, u(D'X; — D*Y?0, — YP0,1) cot ) = 0,
ul — (Fij — [Xi, X)) sinp+iej (F?F — [X*,Y?]o,) cos p—

C.27
eiji (D3 X" — X*¢/ tany) + D*Y?0,) | =0, (©.21)
uli(Fyy — [ X4, X;]) cosp—eiu(F* — [X*,YP)o,)siny — D Xj1] = 0.
Also assuming u = (1,0), the equations on the first line of (C.27)) give
Yt y-]=0 [V ,Y=0,
o - _ (C.28)
(D’LXz) tanw - D3Y9 = 0, DgYﬁ = 0.
The equation on the second line of ((C.27)) give
i[X*, Y |cosy + DY~ =0, F¥* —[XF Y9 =0, (€.29)
(Fyj — [ X5, X)) sine + e (D3 X* — X/ tanyp + D'Y?) = 0. '
The equation on the last line of (C.27)) give
X5 YT1=0, F;-[X;,X;]=0,
[ ] [ ] (C.30)

eijn(F?F — [ X", Y")) siny + DX = 0.
In summary, we have the BPS equations,
F;—1X,X;]=0, F*—[X"Y =0, DyX;=0,
(X" Y7]=0, DFY =0, [YT,Y7]=0, [Y,Y°]=0, D3Y™ =0. (C.31)
(DsX*)tane + DFY? =0, (D'X;)tanv — D3Y? = 0.
Some comments are as follows:

e The scalar Yt only shows up in the commutator [Y Y| = 0, otherwise is uncon-
strained by the BPS equations;

e By (IC.21)), the scalar Y~ is invariant under our choice of supercharge, as v = (1,0);

e In deriving (C.26|) and (C.31]), we assume the bosonic fields (A4;, A3, X;,Y),) are all real,
and set the real part and the pure imaginary part of a equation to zero separately.
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Compactifying the Janus configuation

In this appendix, we only consider the twisting that preserve the Spin(3)y. Let us consider
the Janus configuration on an interval [0, 27]. The coupling constant 7 on the two ends of
the interval are related by an S-transformation

7(0) = ———. (C.32)

We can then compatify the z3-direction.

Recall that the Janus configuration is parametrized by a function t(z3) as 7 = a +
41 De?*¥. Now, suppose the angle 1) near z3 = 0 is a constant, and the action reduces to
the N' =4 SYM action. For simplicity, we also assume that the f-angle is zero near x5 = 0.
Consider the kinetic term of the scalar Y, in the zs-direction,

Tr(agYaﬁgYa). (033>

2
9y m

Let us denote Y; = Y|s,—0, Yy = Yl|sse2r, and gy = gym(27), gy = gym(2m). For
(C.33) to be invariant under the S-transformation, we must have

1 1
Yi=—5—Y: gvmy= .
T G T gy

(C.34)

Recall that Y = Y/sint and Y is a constant by the BPS equations (C.19). If Y is nonzero,

then (C.34) gives
1 1
. _9p-— ,
sin 1 sin ¢y cos 1; cos iy’ (C.35)

which implies
1

gym,f =

and the S-transformation acting trivially.

C.2 Locality and action [” at the intersection of the
SL(2,7Z) duality walls

The bosonic part of the duality wall corresponding to M = ST" was given by the sum of [

and I” from (5.80)) and (5.94)):

. 1 .
L+1"= ﬁ /0 (2XTedXo — kX{edXo) + ﬁ (k—2) X(1,0)'eMX(0,0). (C.37)
o2=0
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We mentioned below that I” is necessary to incorporate the periodic identification
in a local way. Let us now explain in what sense is a local action. For one, it
is crucial that the coefficient in is (2 — E) The key point is that X, and X; are only
one set of representative functions on R? that represent a map to the coset 7% ~ R?/Z?. In
order to analyze the locality of the expression, let us divide the range 0 < oy < 1 into n
segments labeled by g = 0,...,n — 1 with endpoints

020'170<0'171<"‘<O'1’n,1<O'17n21.

In each segment [0 4,01 g+1], we define fields X 4(07), with 014 < 01 < 07 g41. Similarly, at
09 = 1 we have another sequence of vector functions {Xl,g}gzl- Thanks to the equivalence
, there is an infinite number of ways to pick X, and X 4 in each segment, but different
choices differ by a constant vector K. To incorporate that ambiguity in a local way, we allow
the boundary conditions at the point were oy g1, where one segment touches the next one,

to include a shift by A, € Z?* |[which plays the role of K in (5.67))[:
Xi,9<‘71,g+1) = M" X g1 (Ul,g+1) + 277-/\/;3 ) 1 =0,1. (C.38)

In (C.38)), we also allow a twist by an integer power v, € Z of M between the g and (g+1)"
segment. In order to comply with (5.63)), we require that the net twist be M, so that:

Our convention is that n ~ 0 so that N, = Ny. We require that the action be a sum of local
expressions, and we start by replacing the first two terms in (C.37)) with

~ . on—1 Olg+l
I=-" > / (k X} jedXog — 2X| jedXoy) - (C.39)

g:D 1,9

Next, we require local gauge invariance. The gauge transformations are labeled by n vectors
K, € Z? and act as

Xig = Xig+27K, (i=0,1), Ny = Ny+K,—M"Kg;y, g=0,...,n—1. (C.40)

Under this gauge transformation the action transforms as

. n—1 n—1
~ ~ /p— v =
I — I — 3 (k—2) § Kle[M"" Xog11(01911) — Xoglong)] —i (k—2) § KieN{C.41)
g=0 g=0

Since we assume that k& € 27, the last term is in 27Z and we can drop it, since the path
integral is over e~!. For the remaining terms, we can rearrange the sum to read

n—1 n

K;E [MVQXO,g-i-l(O-l,g-i-l) — XO,g(Ul,g)] = Z [K;—l (M_Vg—l)

9=0 g=1

t

- Ké:| EXO»Q (0179)7
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where we used the identity (M*e-1)" eM¥e-1 = (det M)"o~1e = e. Thus, (C.41]) can be rewrit-

ten as

I -1 — % (k—2) Z [Ké_l (M_”g—l)t — KS] €X04(014) (mod 277Z) .

g=1

So, fé is not gauge invariant on its own. To fix it, we can add to f{, the term

n—1

(F—2)> N, (M) eXpg(ong). (C.42)

9=0

fr=

N | .

We can now check that I} + I” is invariant, using (C.40) to calculate

Ng = N+ Ky — M™ K, Neoyw = Ny + Ky — K (M¥e-1)"

and thus .

t
~ KL

Nt

g—

() L (M) KL (M)

Now, if we set
Vg = Uy =1, W=vi="-+=V2=0,

and

N—IENH—IZN) ./\/’0:./\/’1:: 11—2207
then we recover the action (5.96)).

C.3 On the equivalence between 2q(-) and v'eMv in
5.132

Proof for M = ST?* and M = ST?ST?v

We now show that holds for the cases M = ST?"* and M = ST?1ST?2. Equation
states that the quadratic form 2q(v) can be written as v'eMv up to an integer.

The case M = ST? is simple. The group =, defined in , is isomorphic to the
cyclic group Zay, -1y, and an element of (M — I)~(Z?)/Z* can be expressed as

U:2U1n—2(—11>’ form=0,...,2(v; — 1) — 1.

Then (half) the RHS of (5.132) is equal to

112

1t
SVEMy = ———.
sveMuv o, —1)
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The coupling constant matrix K is 1 x 1 and given by (2v; — 2) which results in the same
expression. Thus, in this case q(v) equals %vteM v.
For the case M = ST?*1ST?2  (half) the RHS of (5.132]) was calculated in (5.164)) as

v;n? vya?

LpteMy = - A
ZU ¢ v 4(’011)2 — ].) 4 (C 3)

using an identification of Zg with Zy(y,v,—1) ® Zg via

v (2) a=0,1, n=0,...2uvwn—1) -1

[The relation v = (M — T)~' A is needed to relate ((5.164]) to (C.43)).]
To calculate q(-) we note that

e=(2 ) =0 ) (Y Y

Thus, we can define the isomorphism ¢ by

1
) = (@) = vk v =224 " 24 “an. C.44
q(U) q(@(v)) QV v 4 a + 4(,01,02 _ 1)11 + 2an ( )

Comparing ((C.44)) to (C.43) we see that in general

q(v) # 2v'eMv  (mod Z)
but
2q(v) = v'eMv  (mod Z),

as stated.

Example for M with three ST factors

Although we did not prove the equivalence of 2q(v) and v'eMv (mod 1) for the case with
three factors of ST# inside the decomposition of M, we here present a numerical example
to support our conjecture that signs could be added by hand to the nai’v T to satisfy
(87)3 = 82. The naive T is defined as

T o) = e ™ MY ) |y e By,

2In this section, by “naive” we mean that we do not consider any =+ sign shown in ({5.141)), or the phase
¢ predicted by the signature o of the quadratic form vteMwv in (5.132).
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Let us consider

M = ST*ST?*ST* = ( (C.45)

-2 =7
3 10)°

which yields a cyclic group Zy = Zg with an ordered basis

(-G99G om)

Here we do not calculate 8§ according to the definition . The reason is as follows:
without knowing the correct + sign in front of each matrix element beforehand, if one were
to choose all signs to be, say, +, then it is a numerical observation that almost always one
would obtain a singular 8 where at least two rows are identical, and furthermore $2 would not
be the charge conjugation. Hence, we start by using the unsymmetrizedﬂ/ naive definition:

S|v = —— ) M) e € B (C.46)
v HO u€N/7Z?
Then we calculate
5im
e 6
247
e 3
~ -1
J = in )
—e3
_ bim
e 6
-1
and _ . .
i 25T 2im T
es es —1 e 3 e 3 1
62% e_{hTﬂ 1 62% 6_2% 1
~ 1 —1 1 -1 1 -1 1
8= —= _2ir 2ir _ 2in 2ir
\/6 e 3 €3 1 e 3 e 3 1
eF eF 1 eF es 1
1 1 1 1 1 1

We can easily check that $2 is the Sylvester’s “shift” matrix in the canonical basis

O O O OO

SO = O OO

0

O O = OO

0

S OO~ O

0

S OO O =

0

_o O O o o

3The exponent is unsymmetrized, but § is still a symmetric matrix.
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i.e., the charge conjugation sending |v) to |—v), and 8 = L.

We found four solutions to ‘(gT)3| = 52, and below is the list of phase required to
multiply the entire T to possibly become the refined T as in ([5.141)) satistying (5‘.]’)3 = 52,
along with positions on the diagonal of T where signs are flipped in each solution:

e phase: e~ 12, positions: 1, 2, 3, 5, 6;

e phase: e%, positions: 1, 3, 4, 5;

e | phase: e’%, positions:2, 6 |;

e phase: e%r, position: 4.

We see that the third sign configuration yields a phase matching ¢ in 7 in (5.125]), since the
signature of the K-matrix (5.148|) in this example

-1 2 -1 (C.A47)

is 3 [because exponents in ST# factors of M in (5.125) are all positive).

Our final comment is that the naive T and unsymmetrized § matrices here also enable us
to find the correct sign configuration on the refined 7 in (5.141)), with a phase matching the
signature of K-matrix for cases with two ST# factors in M, as expected from Appendix .
We also conjecture that the correct sign configuration on S in and 8 in is

exactly given by S on the face value.

Concrete exercises for M with two ST# factors

The purpose of this subsection is to provide examples for Appendix [C.3] Our first example
is

e [—1 —4
M_STST—(2 7),

27

4Up to multiplications by e 5" and e%, due to the three distinct ways of lifting a projective representation
of SL(2,Z) to a linear representation (i.e., three distinct “linearizations”), see for example |31} 334].
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which generate Zg as Zy @ Zy, the Klein 4-groupP} Since everything is mod 1 here, we choose
the ordered basis {(1/2,1/2),(1/2,0),(0,1/2),(0,0)}. Then its naive T matrix is

- 0 0 O

0 « 0 0
7= 0 0 =1 0|’

0 0 0 1

If we were to following the customs to symmetrize the quadratic form on the exponent in
(5.140) to be a quadratic refinement (a symmetric bilinear form) 283, [281], then we would
get a candidate “S-matrix” with symmetrized exponents e~ (v eMutu’eMv) i jtg symmation:

-1 -1
11-1 -1
21 1 1

1 1

S =

[ G W W R Q) S
—_ = = =

owever, as we have claimed in endix [C.3] it is singular and its square is not a charge
H , h 1 din A d 3l it 1 d it t a ch
conjugation matrix.
On the other hand, another candidate “S-matrix” whose summands are antisymmetrized
iyt _at .
exponents e (v eMu—uteMu) g

1 -1 -1

1{-1 1 =1

no_ -

S T2 l-1 -1 1
1 1 1

(C.48)

— = = =

which now squared to be the identity, but one cannot achieve |(S” ‘5‘)3| = 8" by flipping

signs on elements in ‘}, and the best one could possibly do is to flip the lower right entry in

T so that .

i 0 0 0 10 0 0

|0 i 00 o1 0 o0
00 -1 0 00 -1 0 [
00 0 [—1] 00 0 -1

which is fine because we are working with (mod 1) for MCG actions in and (5.141).
However, in the upcoming example we will not be so lucky with antisymmetrization, which
would fail there.

Now let us consider

- 1o [—1 —6
N

5Incidentally, we note that

ertapsan_ (3 4
M= ST ST ST—(2 3)

also give the same Zy @ Zo with the same basis.
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which generate = with the basis of the following order
(0,0) 7 1 21 1 3 4 2 11 13 9 7
7\10710/) 7\5'5/7\10710) \5'5/)7\272)7\5°5)7\10°10 /"
34 3 9 9 1 3 3 3 2 1 7 3
= = —, — —, = - — —, = = —, = A4
(5’5)’(10’10)’(10’5)’(5710>’(10’5)7(0’2)7(10’5>’ (C.49)
4 9 1 4 1 0 2 7 11
5°10/°\10°5)°\2" " /J’\5710)"\5" 10/ |’

So its nalve J matrix is

s . _3m; Am,  _Tm,  _4m, . _4m, 7w, 4w, 37, @, _3m, @, .
T =diag(l,e 10" e5' e 10" e 5" ¢,e 5" e 10" 5" e 10 e 5" ¢ 10° 5" —i,

(C.50)

Ty 7T s 3m T
es' e’ e 5" —1,e10", eﬁ’) .

The antisymmatrization proposal similar to ((C.48|) will yield a candidate

1111111111 1 1 1 1 1 1 1 1 1 1
1111111111 -1-1-1-1-1-1-1-1-1 -1
1111111111 1 1 1 1 1 1 1 1 1 1
1111111111 -1+-1+-1+-1-1-1-1-1-1 -1
1111111111 1 1 1 1 1 1 1 1 1 1
i 111111111 -1-1-1-1-1-1-1-1-1 -1
1111111111 1 1 1 1 1 1 1 11 1
1111111111 -1-1-1-1-1-1-1-1-1 -1
1111111111 1 1 1 1 1 1 1 1 1 1
S = lrfr1 1111 111 1 -1~-1-1-1-1-1-1-1-1 -1
>5/1-11-11-11-11-11 -1 1 -1 1 -1 1 1 -1 -1}’
1 -11-11-11-11-1-11 -1 1 -1 1 -1 -1 1 1
1 -11-11-11-11-11 -1 1 -1 1 -1 1 1 -1 -1
1 -11-11-11-11-1-11 -1 1 -1 1 -1 -1 1 1
1 -11-117-11-11-11 -1 1 -1 1 -1 1 1 -1 -1
1 -11-11-11-11-1-11 -1 1 -1 1 -1 -1 1 1
1 -11-11-11-11-11 -1 1 -1 1 -1 1 1 -1 -1
1 -1171-11-11-11-11 -1 1 -1 1 -1 1 1 -1 -1
1 -11-11-11-11-1-11 -1 1 -1 1 -1 -1 1 1
1 -11-11-11-11-1-11 -1 1 -1 1 -1 -1 1 1

whose square and the fourth power are nothing close to a charge conjugation operator or the
identity matrix.
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Following the unsymmetrized definition ((C.46)), we have the S matrix

1 1 1 1 1 1 1 1 1 1 1 1 1
1 3im _dim _im 2im 1 _ 2im im dim _ 3im im dim 3im _im 1 _ dim 2im
es e 5 e 35 es -1 e 5 e’ es e s e es e s e’5 —1 e 5 e s
_ din 2im _2im dim ir 2im _2im dim 2im_2im dim _2im 2i _din
1 e 75 5 e 5 es 1 e 5 €35 e 5 e>s es e 5 es e s 1 e5 e
_im _2im _3im_dim dim 3in 2im in 3in 2in in _ in _2in ain
1 e5 e 5 e 5 e 5 —1 es es es es es es es e s —1 e 5 e
1 2in e 2im dim _din_2im din i 2im _am din 2in
es es e 5 e e es e 5 e s es5 e 5 e s e es e
1 -1 1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 1 1
_2im _dim din 2im 2im _dim dim 2in _din dim 2im dim _din _2im
1 e5 e 5 e e’ 1 e 5 e 5 €5 es e 5 €5 e es 1 e 5 e 5
in 2in 3ir din dim  _3im _2im  _im  _3in _2ix  _in 3im 2in _din
1 es es es es —1 e75 e 5 e 5 e 5 e 5 e 5 e 5 es —1 e35 e s
1 dim _ 2im 2im 4im 1 dim _ 2im 2im i _ 2im 2im _ dim 2im 1 _ 2im dim
es e e e € e es e 5 e es e s es e s e
~ _ 3im dirm in 2im 2im _im _ dim 3im _im dirm 3im i dim 2im
S_ 1 1 e 5 es e 5 —1 €7 e’s e 5 e es e e es —1 e> es
— im 2im 3im dim dim 3im 2im im pitid 3im dim 2im 3im im
25 1 es e35 €5 es -1 e 5 e 5 e 5 e 3 eF es e e 5 1 e 5 es ’
din 2in 2im _dim dim _2im 2im ain dim  _ 8in in _ in 3im _in
1 es e 5 e e s 1 es e 5 es e 5 es e s es e s —1 e>s e s
1 _3im dim im _2iw 1 2im _im _ dim Bim dim in _2im _dim 1 _im _ 3im
e es es e -1 €7 e’s e 5 es e e e s e s e”s e s
1 1 1 1 1 1 -1 -1 - -1 -1 -1
3im _ dim _im 2im 2im im dim Bim _dim _im 2im dim im
1 e5 e 5 e35 e5 —1 e 5 e’ es e 5 e 5 e 5 e es 1 e’
2im dim dim _ 2im 2im dim _ dim 2im _im im Bim im _im
1 e es e 5 e s 1 es es e 5 e 5 e s es es es —1 e 5
_in _2im 3in  _din aim 3in 2im in _2im _3im_din 2im 3in
1 e 5 e e e s —1 e es es es e 5 e 5 e 5 e 1 e>
1 - -1 1 -1 1 -1 1 - 1 -1 1 1 1 -1
_ din 2im _2im din in 2ir _2im dim _3in sir _in 3im _3in
1 e5 €35 e 5 €5 1 e5 €5 e 5 es e 5 €5 e’ e es —1 e 5
_ 2im _ dim dim 2im 2im _ dim dim 2im im _im _ Bim Bim _im im Bim
1 e5 e 5 e es 1 e 5 e 5 €5 e’ es e"s e 5 —1 e e s e 5 —1 e>s es

which squared to be the charge conjugation operator — the “shift” matrix in a non-canonical
basis.

It is not hard to use Mathematica to find 8 solutions to ‘(gT)3| = 82, out of 220
1,048,576 possible sign configurations of T’s diagonal elements. Below for each solution, we

hst positions of entries in T whose signs are flipped, as well as the phase needs to be added
by hand to convert the naive T matrix into the refined T so that (ST)? = 8%

Sim

e phase: €% ores ore i?, positions: 1-11, 13, 15, 17, 18;

e phase: 1 or e or e%, positions 1-10, 12, 14, 15, 19, 20;

Tim i

e |phase: e 2 ores or e 6, positions: 1, 3,5, 7,9, 11-20];

U

e phase: 1 or % or 64%, positions: 1, 3, 5,7, 9;
e phase: —1 or es or 6_%, positions: 2, 4, 6, 8, 10-20;
Sim

e phase: e% ores or e_%r, positions: 2, 4, 6, 8, 10;

e phase: —1 or es or e’%ﬂ, positions: 11, 13, 15, 17, 18;

Tim T

e |phase: e or es or e s, positions: 12, 14, 16, 19, 20|

Now in this case, the K-matrix defined as ([5.127)) is

4 =2

o 6 ) (C.51)

whose signature is 2, meaning that the third and the last solutions yield the right phase as

dictated by comments following ([5.125)) and (5.151)).
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A concrete exercise for M with 4 factors of ST#

In fact, our above procedure goes beyond 3 factors of ST# in M. To support this claim, we
finally consider

M = ST?*ST3ST?*ST? = (_85 _912> (C.52)

with four ST# factors.
In the ordered basis of =

(0.()-(42)-(:2)-6)-(3) (9)-(:2)-62)-(6),
(-2

(C.53)
the naive T matrix is
~ . _ 2w s _ 2w i _ 2w s 2im im
T:dlag(l,—l,e s ,e3,e s .,e3,1,—1,e 5 e3¢ 3,e3>. (C.54)
The unsymmetrized 8§ matrix is
1 1 1 1 1 1 1 1 1 1 1 1
1 1 -1 -1 1 1 -1 -1 1 1 -1 -1
_2ix ir 2ir _in _2ix in 2in _in
1 —1 e 73 es e3 e 3 1 -1 e s es es e 3
i 24T 24T i 2im im i 2imw
1 -1 es e 3 e3 e 3 —1 1 e 3 e3 e”3  es
2im 247 247 24T 2im 247 2im 247
1 1 es es3 e 3 e 3 1 1 es3 es3 e 3 e 3
S 1 1 1 e 3% e % % % —1 —1 5 % €% es
S = (C.55)
23 1 —1 1 — 1 — 1 -1 1 -1 1 -1
1 -1 -1 1 1 -1 -1 1 1 -1 -1
24w 24T 24T 2im 2im 24T 24T 2im
1 1 e 3 e 3 e3 e3 1 1 e 3 e 3 e3 es
i T 2im 2i7 2im 24T (s T
1 1 es es es e3 —1 —1 e 3 e 3 e 3 e 3
2im i 2im im 24T i 2im im
1 =1 es e3 e3 e3 1 -1 es e3 e 3 e3
im 247 247 im 2im T i 24T
1 —1 e 3 €3 e 3 e3 —1 1 es3 e 3 e3 e 3

We find 8 solutions to (57)3 = §2 by flipping signs and multiplying phases on the diagonal
of T:

e phase: e%ﬂ, positions: 1, 2, 3,5, 6, 7,9, 10, 11;

e | phase: e%m, positions: 1, 2, 4, 5, 6, 8, 9, 10, 12;

e phase: e%r, positions: 1, 3,4, 5,7, 8,9, 11, 12;

e phase: 5, positions: 2, 3, 4, 6, 7, 8, 10, 11, 12;
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e | phase: e%m, positions: 1, 5, 9|;

e | phase: e%m, positions: 1, 3,4, 5,7, 8,9, 11, 12|,

e phase: e%ﬁ, positions: 1, 2, 4, 5, 6, 8, 9, 10, 12;

e | phase: e%m, positions: 1, 2, 3, 5,6, 7,9, 10, 11|

The K-matrix of M is
2 -1 0 -1
-1 3 -1 0 (C.56)
-1 0 -1 3

2im

with signature 4, and again all phases are up to multiplications by e’s and e~ 3, S0 we see
that the second, the fifth, the sixth and the last solutions yield the correct results.
Finally, we propose the following conjecture:

Conjecture For any M € SL(2,Z) built from a finite number of ST# factors with any
integer power #, we perform the following steps:

e Compute the unsymmetrized § and the naive T & la (5.134]), or a la (5.140) and
(5.141));
2

e Flip signs on T’s diagonal to get T satisfying }(57)3‘ = 82

e Multiply T with a necessary phase ¢ to satisfy (§T)3 = §2.

We claim that the resulting Sand T always exist, and they give the correct sign config-

urations for S and 7T in (5.134)); as well as 8 in ([5.140) and T in (5.141). Moreover, ¢
equals e~?(K)/12 35 mentioned below (5.125) and (5.151]), where K is defined by (5.126))
together with ([5.127]).

C.4 Proof of the bivariate Landsberg-Schaar relation in
5.165

The identity to be proved is:

= 2 (5 2_pn2) 14+ \ migan”
v - mn—am<—bn — e - s C57
q Z € <2\/ab—1> nZ:O Xp( Q(Gb_1>> ( )

for q € 22, a,b € Z, ab > 1.
In the following subsections, we will prove this by discussing two separate situations, in
which ¢ = 4r and g = 4r + 2, respectively, where r is an odd integer.
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Analysis for ¢ = 4r

To prove this identity (C.57) we start with the Poisson resummation in two variables:

Y fmn) =D flwy),

m,nez RISV

where the Fourier transform is defined with normalization as:

/ / e—27ri(mz+ny)f(u, ’U)dUdU

flu,v) = e2mim (au?+bv? ~2uv) , Im7 > 0, a,b>1,

fz,y)

We choose the function to be

then

f(x7y) — / / 27rz aT:v2+bTy2—2Tmy ur— vy>dl’dy
(C.58)

i (bu? + av? + 2uv)
= - e p .
2iv/ab — 2(ab—1)T

So, we have

Z eXp|: ™ (bm + an —|—2mn)] _ Z e27ri7'(am2+bn2—2mn) ) (059)

ab T T m NEL Q(Gb - 1>T m,neL
Now, we set
1
T=—--4 Z'E, q= 47”7 (060)
q
and take the limit € — 0, so thaﬂﬂ
1
— = =—q+i¢*c+ 0O (62) ) (C.61)
-

The expression on the RHS of (C.59) can be expanded by setting
m = myq + mo, n = niq + no, mo,no =0,...,¢—1, my,ny € Z,

so that with (C.60]),
2wq26<am?+bn%—2m1n1>

exp [2miT (am® + bn® — 2mn)| ~ exp % (amg + bng — 2mong) | e~ ,

8This is similar to the standard complex-analytical technique in proving the basic univariate Landsberg-
Schaar relation (5.17)), shown for example in [260].
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where in the exponent of the second factor on the RHS, we have ignored terms 2amgm;q,
bm3, 2bngniq, bnd, —2mingq, —2monyq, and —2mgng, which are proportional to either g or
1, because both my and ny are only comparable to ¢ at most.

Then

qg—1
Z eQm‘r(amQ—i-an—Zmn) _ (Z eT(am2+bn22mn)> Z 6—27rq25<am2+bn2_2mn)‘ (062)
m,n€”Z m,n=0 m,neEL

In the limit € — 0, the leftmost sum on RHS of (C.62)) can be evaluated by converting it
into an integral with a change of variables u = m+/e and v = ny/e:

. 92 2 2_ 1 *° o 92 2 2_ 1
lim e 27q e(am +bn 2mn) ~ du dve 2mq (am +bn an) _
€J-x —0o0

C 2eq?vVab—1
So, we have

1 Uik
) ; 2 pn2_
li § : e27rz7—(am +bn 2mn) ~

0 - 2eq*/ab — 1 mz

6%(am2+bn272mn). (063)
m,nEL ,n=0
Now to approximate the LHS of (C.59)), we need to perform a similar manipulation on

the double sum (b ) 2o )
e, (om* + an® + 2mn

— . .64

Z eXP { 2(ab—1)T } (C.64)

m,nez

It would help to know the Smith Normal Form of the matrix , which is related

a -1
-1 b
to the inverse of the quadratic form in the exponent of (C.64|) by

(4 ) (1Y)

Its decomposition into the Smith Normal Form is:

a -1\ (1 —a\fab—1 0 0 1
-1 b)) \0 1 0 1J\—-1 b)"
We want to convert the sum over (m,n) € Z? in ((C.64)) into a sum over a finite number of
1 '
1 b ) times a sum over
the lattice points generated by these columns. So, we write (m,n) as

mY\  [mg n a —1 my\ (Mo +amg —ny
n)  \no -1 b ni) \ng+bng—my )’

points in the fundamental cell generated by the columns of (_a
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where (mg, ng) take ab — 1 possible integer values.

Replacing .
()= (5 ) ()
(£)- ()6 D)
(Zﬁ’):(é _1“) (g) j=0,....ab—2,
(m ) (j+m1(abn— 0 —n1a> |

So, we set n =ny and m = j + (ab — 1)k — na, where j =0,...,ab — 2. Then,

we can write

Setting

we find

bm® + an® + 2mn = bj* + (ab — 1) [a(bk — n)* — b(k — j)* + 2(k — j)n + bj°] ,

and ((C.64)) becomes

%—2 <€<> S e {_mj [a(bk—n)2—b(k—j)2+2(k—j)”+bj2]D

2T
§=0 n,kE€Z

In the limit 7 = 1/q + ie (C.61)) with € — 0, we can approximate the exponent

—;r—z [a(bk —n)? = b(k — §)? + 2(k — j)n + bj?]
.
~ —%Zq [a(bk — n)* — b(k — 5)% + 2(k — j)n + bj2] — gq% [a(bk — n)? — bk + 2kn] .

(C.65)

Because 4|q, the first term on the last line in (C.65)) is an integer multiple of 27i and can be
dropped, so we are left with

[ mi (bm? + an® + Zmn)}
S e |-

= 2(ab—1)T
ab—2 b2 (C66)
_ e—% lim e—quE[a(bk—n)2—bk2+2kn] ‘
e—0
§=0 n,keZ
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The limit € — 0 can be evaluated by converting (C.66)) into an integral with a change of
variables u = ky/e and v = n /e

lim e—gq2e[a(bk—n)2—bk2+2kn]
e—0
n,k€EZ

_ l/oo du /Oo dvefqu[a(bufv)beu%rqu] _ 2 )
€ J - —o0 q2(ab - 1)6

Finally, we need to show that in ((C.66|),

b—2 2ab—3
¢ migbj? ¢ mwigbj?

e 20b-1) — e 2(ab—1) (C.67)

j=0 j=ab—1

In order to achieve this, we consider the pairings between exponents of forms

qbj® mi qb(ab—1+7)*mi
- — d - — =0,...,ab—2

ab—12 ab—1 20 T TS
then the difference between j2 and (ab— 1+ j)? is a?0* — 2ab+ 1+ 2j(ab—1) = (ab—1)* +
2j(ab—1), so the difference between two exponents is (ab—1+275)gbmri/2, which is an integer
multiple of 27i because 4|g. So the summands in ((C.67)) can be paired using the one-to-one

correspondence between j and ab — 1 + j, and ((C.67)) is true.
At this point, we have results (C.59)), (C.63), and the newly proved:

_ i (bm? 4+ an? 4+ 2mn)
1 E _ C.68
eg%m — eXP { 2(ab—1)T ( )
ab—2 2ab—3
) rigbi 2 mighj2
~ TRy — E T 2(ab-1) C.69
q*(ab — 1)e ; ¢ q*(ab —1)e 4 ‘ ( )

Combining these three equations, by inspection, (C.57)) holds if 4|q.

Analysis for g =4r + 2 = 2s
The case of odd b

In this case, the RHS of (C.57) is obviously zero. Hence we need to show that the LHS of
(C.57) also vanishes, i.e., for fixed ¢ and m,

1

q

_ 27

e (2mn—am2—bn2) -0

I
=)

n

We need to show that with m fixed, for every n, there is always a single n’ = n +t such that
am? + bn? — 2mn and am? + b(n +t)* — 2m(n + t) differ by an odd multiple of s, hence the

s

.. e 2 2_ Juss 2 2 AN
pairing e (am +bn 2mn) +es (am +bn 2mn) is 0.
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We calculate this difference am? + b(n + t)* — 2m(n + t) — (am? + bn? — 2mn) = bt? +
2bnt — 2mt, and set it to be —ds. Then we only need to show that ¢ can be odd for every n.
We start from the quadratic equation in ¢:

bt 4+ 2(bn — m)t + §s = 0, (C.70)
+ +/(bn —m)? — b
with solutions t, = —n + m \/( " 2 m) 8. We set the discriminant A to be x2,
x € 7, then it follows that
(bn —m — z)(bn —m + z) = bs. (C.71)

m:l:\/z

; =y, leading to m = by & x. Then (C.71) becomes

We also denote
(n —y)(bn — by £ 2x) = Js.

In order to establish the pairing between n and n’ for all n and n’, we have to require —n+vy,
a solution to (C.70)), be exactly s = ¢/2 [so that the pairings are all “diagonal” in the irregular

—2mi (2mnfam2 7bn2)

g-sided polygon on the complex plane, whose vertices are e~ « |. So we have

bn — by + 2x = —bs + 2x = —9.
Since both b and s are odd, 0 has to be odd, as expected. Hence, for ¢ = 4r + 2 and odd b,

both sides of ((C.57)) are zero.

The case of even b and odd a

In this case, we do not construct pairings as before, but resort to an analytic method. The

first term in ((C.65)) expands as
smi [ab’k* — 2abnk + an® — bk® + 2bjk + 2(k — j)n] .

Since all terms in the square brackets, except for an?, are even, the overall contributing

exponent provided by (C.65) is
—nge [a(bk —n)? — bk* + 2kn] — asn®Ti.
So the sum concerning n and k following (C.65)) becomes

. _m 2 )2 pk2 o en2o s
lg% e 24 e[a(bk n)?—bk +2kn]€ asn 7rz7 (072)
n,kEZ

where the second factor is just (—1)". We evaluate the first factor again by converting it

into a single integral via a change of variables u = k+/e and v = ny/e:

2

1 & o ™ 2 2 2 1 2 rgZen
1 d dve— 51 [a(buf’u) —bu +2uv]d dy==,/—— T2 C.73
6/OO “/oo ve Y b(ab—l)e%‘9 v (61
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where we only performed the u-integral and have converted v back to n after the equal sign.
Then we consider the remaining infinite sum in (C.72)):

which is zero because this is an alternating Riemann sum, and the decay in the exponent is
~ € — 0, while the denominator of here goes as ~ 1/4/e.

Notice that the result here agrees with the symmetry between a and b which is manifest
on the LHS of , as well as the fact that both sides vanishes for an odd b as shown in
Section [C.4l

If both a and b are even

Then again the first term in (C.65)) is an integer multiple of 27¢, and the remaining argument
conincide with that in the previous subsection Section [C.4] |
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