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Abstract The main goal of this work is to use the cut
and paste method to match the inner flat and outer acous-
tic Schwarzschild black holes to examine the geometry of a
thin-shell. Moreover, the study uses the Klein–Gordon equa-
tion and the equation of motion to examine the dynamical
evolution of a thin-shell composed of massive as well as
massless scalar field. The results of the study show that the
collapsing behavior is exhibited by the potential function of a
massless scalar shell while the effective potential of a massive
scalar shell first collapses and then progressively increases.
Additionally, the researchers have analyzed the stable config-
uration for the phantom-type equation of state encompassing
dark energy, quintessence and phantom energy by applying
the linearized radial perturbations. As a result, the research
suggests that thin-shell Schwarzschild black holes are less
stable than acoustic Schwarzschild black holes.

1 Introduction

The theory of general relativity (GR) has been proven to be
one of the most spellbinding achievements of the last century.
This theory has explained enormous difficult issues at the
solar system scale as well as cosmological scales with great
observational support. It has portrayed various enchanting
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discoveries incorporating gravity and also manifested differ-
ent challenging revolutions to various astrophysical phenom-
ena in the arena of modern cosmology. Currently, black holes
(BHs) are recognized as the most fascinating astronomical
objects possessing the captivating attributes of strong gravi-
tational fields. The intense gravitational field of the BH pre-
vents anything from escaping, while anything interacting in
its environment is absorbed. Relating the physical proper-
ties of BH geometries, there have always been remarkable
effects of quantum fluctuations. In the structural properties
of BH, the occurrence of singularity is one of the fundamen-
tal issues. The singularity is a central era of spacetime where
the curvature as well as the density diverges and the physical
laws become abolished.

Moreover, despite these remarkable findings, there is still
no proof supporting the existence of quantum gravity or quan-
tum particle interaction in the occurrence of an intense grav-
itational field of astronomical objects. The BH evaporation
via Hawking radiation is one of the key hypotheses of the
quantum field theory in the curved framework [1]. By astro-
nomical criteria, this impact is very weak because the Hawk-
ing temperature of BHs is significantly lower than the Cosmic
Microwave Background at about 10−7 K. Furthermore, the
theory of BH states that it requires around 1067 years to com-
pletely vanish through the Hawking radiation. Later, Unruh
[2] presented a comparison between a light wave passing
through a BH’s event horizon and a sound wave crossing a
supersonic fluid to elaborate the effects of quantum gravity
around the BHs. This acoustic analog is characterized as an
acoustic BH sonic hole or dumb hole.

In the field of astrophysics, the acoustic BH manifests
the notion acquired from the field of acoustics that exhibits
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the alternative to BHs. Acoustic BHs can be compared to
light waves passing through a BH’s event horizon and sound
waves traveling through the supersonic fluid. Analogous to
the astrophysical BH illustration, the event horizon is the
border of an acoustic BH where the flow speed alters from
being more than the speed of sound to less than the speed
of sound. Even though acoustic BHs are not the solutions
of the Einstein field equations, they still retain all the char-
acteristics of the general relativistic BHs. For this reason,
the acoustic BH is a priceless instrument for lab research
on gravitational phenomena. One can learn important details
about the fundamentals of wave propagation, scattering, and
dispersion around astronomical objects by examining how
sound waves propagate in these systems. In turn, this can help
us to comprehend wave physics more accurately providing
new theoretical foundations for a variety of wave phenom-
ena across disciplines and even allowing us to test some rel-
ativistic effects. Because of this, researchers have been more
interested in acoustic BHs and have looked into novel sim-
ilar solutions as well as a variety of phenomena concerning
these objects [3–9]. Inspired by the Navier–Stokes equation
in classical Newtonian fluids, an acoustic BH with a spiral
vortex shape is developed in [10]. An alternative to acoustic
BHs that use the Josephson effect theory is laid out in [11].
The study of thermodynamical properties of d-dimensional
acoustic BH is presented in [12]. Further, the holographic
description of usual acoustic BHs is explained in [13] and the
appearance of analogous Minkowski spacetime and acoustic
BHs in curved spacetime is studied in [14]. The orbits of test
vertices and sound wave of (2+1)-dimensional acoustic BHs
are explained in [15]. As a unique feature of the retarded
Green’s function of BH disturbances, the pole-skipping phe-
nomena may have experimental relevance when applied to
acoustic BHs [16]. By taking into account the relativistic
Gross–Pitaevskii theory in the fixed background spacetime
geometry, Ge et al. [17] developed the Schwarzschild acous-
tic BH solution. Vieira and Kokkotas [18] discussed the mass-
less scalar field corresponding to the Schwarzschild acoustic
BH and analyzed its salient characteristics. Toshmatov et al.
[19] inspected the influences of electromagnetic as well as
the massive scalar oscillations for Schwarzschild acoustic
BH and calculated their quasinormal modes.

The occurrence of timelike thin-shell within static spher-
ical configurations represents a remarkable cosmological
structure that helps to examine many cosmic conjectures. An
extremely slender layer of matter that functions as a connec-
tor between two areas of spacetime is known as a thin-shell.
As thin-shell includes a specific fluid configuration, it must
meet specified energy bounds that confirm the viability of the
corresponding geometry. These bounds can be linked with
the extrinsic curvature of considered geometry via matter-
energy tensor. General relativity makes use of the cut-and-
paste procedure, often called the Israel junction conditions,

to seamlessly link different spacetimes at the boundary [20].
The study of matter and energy behavior at the interface
between two separate areas of spacetime is an area where this
technique shines. Research into the dynamics of complicated
geometries, including wormholes (WHs) and BHs, within the
framework of analog gravity, can be efficiently accomplished
through the use of the cut and paste approach [21,22]. The
layer that connects the Schwarzschild and Minkowski met-
rics as external and internal configurations, respectively, is
the most basic example of a thin-shell structure. Through
the connecting of two distinct manifolds at thin-shell inter-
sections, Israel’s groundbreaking work established a valu-
able framework for the hypothetical building of time-like
thin-shells [20]. A thin-shell can shed light on the physics
of spacetime and the cosmos as a whole by allowing travel
and communication over enormous distances in space [21].
Their importance stems from the fact that they can link dif-
ferent parts of spacetime, which might lead to discoveries in
cosmology and astrophysics as well as a better knowledge
of the complexities of cosmic phenomena. Various applica-
tions have been explored, including BHs matter accretion,
spherical WHs, bubble universes, and cosmic domain walls
[21,22]. Supernova explosions and gravitational collapse are
only two of the astrophysical events that have been studied
using these cosmological structure models [23–25]. After
that, several researchers [26–29] modified this study for the
dynamical portrayal of bubbles within BH, spinning BH as
well as the strings by incorporating the Israel formalism. It is
of huge importance to inspect the stability of such thin-shell
structures both thermodynamically and dynamically.

The idea of hypothetical structures comprising topological
geometries, known as WHs, is illustrated through the study of
various cosmic conjectures. A WH facilitates travel to distant
places by creating a minor bridge across any two points in
the cosmos. This theoretical property was first described as
a non-traversable WH by Flamm [30]. Morris and Thorne
[31] developed the structure of a traversable WH that joins
distant eras with the help of a throat. This substance keeps
the throat open but defies the null energy bound that should
be minimized for the physical occurrence of WHs. To obtain
physically consistent solutions of the WHs, the quantity of
exotic substances must be limited at the throat. This quantity
is minimized by Visser [32] with the help of a feasible WH
structure producing a thin-shell WH. There exists a huge
literature to explore the various structural attributes of WHs
obtained through BH metrics [33–52].

Several investigations include the behavior of thin-shell
and WHs with thin-shell using radial oscillations by consid-
ering the various possibilities of the matter ingredients. The
stability analysis of a thin-shell joining an internal flat metric
to the Schwarzschild BH is examined by Brady et al. [53].
Martinez [54] discussed the stability of such objects on ther-
modynamical grounds. By taking into account the variable

123



Eur. Phys. J. C           (2024) 84:337 Page 3 of 12   337 

equation of state (EoS), the stability of thin-shell is observed
by Mazharimousavi et al. [55]. The thermodynamical as
well as linear stable structure of thin-shell geometries has
also been examined by employing barotropic/non-barotropic
EoSs [56]. To check the stability of WHs via radial oscilla-
tions, Eiroa and Simeone [57] adopted distinct BHs solutions
and found the enhancement in the stable eras for some partic-
ular ranges of physical factors. Halilsoy et al. [58] presented
the behavior of Chaplygin gas, linear as well as logarithmic
configurations as candidates of exotic matter by consider-
ing spherical systems. The stable thin-shell WH geometry
under the influence of barotropic and non-barotropic fluids
has also been determined by Varela [59]. Jusufi and Ovgun
[60] obtained the stable geometry of the canonical acous-
tic thin-shell WHs corresponding to the different physical
parameters. In the realm of neo-Newtonian context, Ovgun
and Salako [61] examined the acoustic thin-shell WH and
inspected its stable structure by changing neo-Newtonian
factors. Ovgun and Jusufi [62] displayed some fascinating
results in examining the stability of thin-shell WHs associ-
ated with the string theory. The geometry of thin-shell WHs
having stable solutions that are obtained from various spher-
ical BHs using variable EoS have also been determined in
literature [63–67].

Mazur and Mottola [68] proposed a novel description of
the compact celestial body, known as gravastars, by modi-
fying the Bose-Einstein concept to the gravitational struc-
tures isolated by a thin surface in which matter is restricted.
Such geometries have crucial significance as they can inter-
pret two basic issues for BHs, i.e., the information loss para-
dox and the singularity issue. In BH geometries, gravastars
forbid the core singularity and event horizon from existing.
Geometrical constructions like these are produced within
the framework of diverse BH spacetimes, and their stabil-
ity can be analyzed through the use of different EoS [69–
75]. The various aspects of prototype gravastar structures
by incorporating the de-Sitter and Schwarzschild BH metric
[76,77] and with phantom energy [78] have been discussed
that provide various interesting facts. Corresponding to var-
ious fluid choices at thin-shell, it is found that the created
structure can be either unstable, stable, or bounded excursion
gravastar [79]. The gravastar structures associated with the
noncommutative impact [80,81], higher-dimensional metric
[82], Kuchowicz type of metric function [83], charged and
quintessence regular BHs using distinct EoS [84–87] have
been studied presenting the outcomes of stable structures.

Recently, Javed [88] obtained the geometry of a thin-
shell by using the flat interior and renormalization group
improved Schwarzschild BH as an outer geometry. He dis-
cussed the dynamics of thin-shell filled with a massive as well
as massless scalar field using the dynamical equation and
Klein–Gordon (KG) equation. He also determined the sta-
ble structure of thin-shell via linearized radial perturbation

for a phantomlike EoS, i.e., the dark energy, quintessence,
and phantom energy. Following the above-mentioned arti-
cles, in this manuscript, our main goal is to explore the thin-
shell configuration with external flat and internal acoustic
Schwarzschild BH. We also analyze the dynamics as well
as the stability of the obtained structures. The paper is orga-
nized as follows. Section 2 deals with the fundamentals thin-
shell for Schwarzschild acoustic BH. In Sect. 3, we discuss
the dynamics of thin-shell with massless and massive scalar
fields. Section 4 is devoted to analyzing the stable/unstable
solutions by employing distinct possibilities of matter con-
tents. Finally, the concluding section provides a summary of
our results.

2 Thin-Shell in Schwarzschild acoustic black hole

This section concentrates on the construction of a (2 + 1)-
dimensional thin-shell (a boundary separating the interior
spacetime from the exterior) specified by � with a radius of
r = y(τ ) with τ being the proper time. As the thin-shell joins
the separate manifolds, we designate the outer domain (r >

y) as the acoustic Schwarzschild metric, and the inner domain
(r < y) is characterized as a flat geometric configuration. The
metric for the interior geometry is specified as follows

ds2− = −H(r)dt2 + dr2

H(r)
+ r2d�2, (1)

with H(r) = 1 and d�2 = dθ2 + sin2 θdφ2. For an outer
manifold, the line element for an acoustic Schwarzschild BH
can be expressed as

ds2+ = −A(r)dt2 + dr2

A(r)
+ r2d�2, (2)

where the metric function A(r) is given as

A(r) =
{

1 − γ
2m

r

(
1 − 2m

r

)} (
1 − 2m

r

)
. (3)

Here, m symbolizes the Schwarzschild BH mass while γ

denotes the real constant. The metric function A(r) reduces
to the Schwarzschild solution in GR for γ =0. Notice that
the place where the event horizon is located and the position
where the metric function reaches zero value coincide. By
adoptingA(r) = 0, the relevant event horizon of the acoustic
Schwarzschild BH is determined as

r = 2m, r = γm ±
√

γ 2m2 − 4γm2. (4)

When γ ≥ 4 ∧ m > 0, we obtain the constraints about
the event horizon as r > 0. We compare the event hori-
zons of Schwarzschild and acoustic Schwarzschild BHs for
different values of the mass of BH as shown in Fig. 1. We
investigate how the metric function (A(r)) behaves for spe-
cific values of physical parameters in Fig. 1. The light blue
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region indicates A(r) > 0 and the pink region demonstrates
that A(r) < 0. The boundary between these regions is rep-
resented by a straight line (r = 2m), i.e., A(r) = 0. It is
noteworthy to emphasize that the location of the event hori-
zon is established as γ ≥ 4. For massive BH, the position of
the event horizon moves away from the center of BH. The
location of an acoustic Schwarzschild BH’s event horizon
must be larger than that of a Schwarzschild BH. The event
horizon of Schwarzschild BH is significantly influenced by
the physical parameters.

Visser [32] proposed a popular method for creating thin-
shell gravastars by combining two spacetimes to remove the
event horizon and singularity. We define a subset (ϒ±) of
the inner and outer manifolds (	±) by using a cut and paste
technique to ensure they do not include any event horizon
or singularity, i.e., ϒ± ⊂ 	±. Here, ϒ± is defined as the
set of points xν where r± ≥ y(τ ) > rh , with xν , τ , and
y(τ ) denoting coordinates on the manifold, proper time on
the shell, and shell radius, respectively. The subsets ϒ± are
connected at their shared timelike hypersurface ∂ϒ , meaning
that ∂ϒ is a subset of both ϒ±. The matching of ϒ+ and ϒ−
at the shell radius establishes a link between the inner and
exterior spacetimes (∂ϒ ≡ ϒ+ ∪ ϒ−) by the radial flare-
out condition. The manifold (∂ϒ) represents a geodesically
complete thin-shell. A timelike 2-sphere characterized by
coordinates zi = (τ, θ, φ) represents the geometry of a thin-
shell, with the line element given as

ds2 = hi j dz
i dz j = −dτ 2 + y2d�2, (5)

Also, the components of unit normals at ϒ± is computed as

nμ
± =

(
ẏ

�±(y)
,

√
�±(y) + ẏ2, 0, 0

)
, (6)

where ẏ = dy/dτ and �± denotes the lapse function of
inner as well as outer manifolds. The components of extrinsic
curvature are defined as

K±
i j = −n±

μ

(



μ
αβ

dxα±
dzi

dxβ
±

dz j
+ d2xμ

±
dzidz j

)
,

α, β = 0, 1, 2, 3, i, j = 0, 2, 3. (7)

By using Eqs. (5), (6) in Eq. (7), we have

K τ±
τ = �′±(y) + 2 ÿ√

�±(y) + ẏ2
, K θ±

θ =
√

�±(y) + ẏ2

y
,

K φ±
φ = sin2 θK θ±

θ , (8)

where �′±(y) = d�±(y)
dy . The discontinuity in extrinsic cur-

vature at a hypersurface is due to the matter present on its
surface, which can be studied using the Israel formalism. If
the difference between the extrinsic curvatures on each side
of the surface is not zero, i.e. (K+

i j − K−
i j �= 0), it can be

mathematically observed. The characteristics of matter sur-
faces on thin-shells are defined by the Lanczos equations,
which serve as the field equations for the hypersurface as

Sij = − 1

8π
{[Ki

j ] − δij K }, (9)

where Sij is used to explain the characteristics of matter

contents located at the shell ∂ϒ , [Ki
j ] = K+i

j − K−i
j and

K = tr [Ki j ] = [Ki
j ]. We get the following form of Sij for

ideal fluid distribution

Sij = (ρ + P) uiu j + Pδij , (10)

here shell’s velocity is denoted with ui , the energy density
is explained by using term ρ and P is used for the pressure.
From Eqs. (8), (9) and (10), we get

Sτ
τ ≡ ρ(y) = −[K θ

θ ]
4π

= − 1

4πy
{χe(y) − χi (y)},

(11)

Sθ
θ = Sφ

φ ≡ P(y) = [K θ
θ ] + [K τ

τ ]
8π

= −χi (y) + χe(y)

8πy

+2 ÿ + A′(y)
16πχe(y)

− 2 ÿ + H′(y)
16πχi (y)

, (12)

where

χi (y) =
√
H(y) + ẏ2, χe(y) =

√
A(y) + ẏ2, (13)

the derivatives concerning the proper time and radial coordi-
nate are denoted by the overdot and dash, respectively. There-
fore, we have

ρ = −
√
A(y) + ẏ2 − √

H(y) + ẏ2

4πy
, (14)

P = 1

8π

(
2 ÿ + A′(y)

2
√
ẏ2 + A(y)

− 2 ÿ + H′(y)
2
√
ẏ2 + H(y)

+
√
ẏ2 + A(y) − √

ẏ2 + H(y)

y

)
, (15)

In a state of equilibrium, ẏ0 = ÿ0 = 0 (where zero in the sub-
index indicates values of the physical quantities at the state of
equilibrium of the shell, i.e., y = y0) and the corresponding
values of surface stresses turn out to be

ρ0 = 1

4πy0
−

√√√√(
1 − 2m

y0

) (
1 − γ (2m)

(
1− 2m

y0

)
y0

)

4πy0
, (16)

P0 = m
(
12γm2 + y0(−8γm + γ y0 + y0)

)

8πy4
0

√
(y0−2m)

(
y2

0−2γm(y0−2m)
)

y3
0

+

√
(y0−2m)

(
y2

0−2γm(y0−2m)
)

y3
0

− 1

8πy0
, (17)
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Fig. 1 The graphical representation of the metric function of acoustic Schwarzschild BH by considering m = 0.1 (1st), m = 0.25 (2nd) and
m = 0.5 (3rd) against r and γ

For Minkowski spacetime, within the shell, there is an
absence of gravity because the matter does not exist in the
internal domain. Likewise, the external segment is consid-
ered a vacuum, yet the gravity effects persist as specified by
the BH. The factor m present in the metric function (4) is
correlated with the shell’s gravitational mass which governs
the kinetic energy, gravitational potential energy along with
the rest-mass energy. The mass of a shell can be defined as
M = 4πk2ρ. Additionally, it is obtained that matter density
and surface pressure adhere to the conservation equation as

P
d

dτ
(y2) + d

dτ
(ρy2) = 0, (18)

yielding

ρ′ = − 2

y
(P(ρ, y) + ρ) . (19)

Equations of motion are crucial for evaluating the dynam-
ics of particles and fields in analog gravity geometries since
they define how physical systems evolve. Researchers can
explore the impact of gravity analogs on the behavior of
matter and energy by examining the equations of motion for
various fields and particles in curved spacetime backdrops.
This research can offer useful insights into the emergence of
gravitational events in systems that simulate features of gen-
eral relativity [89–91]. An equation of motion is explicitly
obtained from the surface energy density given in Eq. (14) as

ẏ2 + �(y, ρ(y)) = 0. (20)

Here, �(y, ρ(y)) stands for the effective potential of the
thin-shell expressed as

�(y, ρ(y))

= 1 − m2

16π2y4ρ2

−γm2(y − 2m)2
{
4γm2 − 4γmy + (γ + 2)y2

}
16π2y8ρ2

−γm(y − 2m)2

y3 − m

y
− 4π2y2ρ2. (21)

The potential function is very useful to explain the dynam-
ical behavior of the shell composed of different types of mat-
ter contents. It is very advantageous to examine the dynamical
configuration of the shell. In the next section, we examine the
dynamical properties of constructed thin-shell.

3 Scalar field and dynamics of thin-shell

At thin-shell, the presence of matter has a significant impact
on both the stability and dynamics of the configuration. At
this point, we are curious to see how the scalar field affects
the thin-shell dynamical evolution. Scalar particles’ behav-
ior can be described by the KG equation, a basic equa-
tion of quantum field theory. The KG equation is frequently
employed to investigate the propagation of scalar fields in
curved spacetime backdrops within the framework of analog
gravity geometries [92–98]. The behavior of quantum fields
in gravitational analogs, including Hawking radiation and
BH thermodynamics, can be better understood by solving
the KG equation in different analog gravity configurations
[99–101]. To this end, we employ the transformation, i.e.,
ua = ϒ,a√

ϒ,bϒ
,b

, where ϒ describes the scalar field [96–98].

This transformation links the surface pressure and energy
density of the ideal fluid to the derivative of the scalar field
and the potential function of the scalar field (	(ϒ)). In
a scalar field, the surface pressure and energy density are
defined to have the following relationships [96–98]

P = 1

2

[
ϒ,bϒ

,b − 2	(ϒ)
]
, ρ = 1

2

[
ϒ,bϒ

,b + 2	(ϒ)
]
. (22)

For such type of scalar field, the stress-energy tensor provides
[96–98]

Si j = ∇iϒ∇ jϒ − ηi j

[
1

2
(∇ϒ)2 − 	(ϒ)

]
.
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The scalar field solely depends on τ since the hypersurface
is a function of τ only. Therefore

P = 1

2

[
ϒ̇2 − 2	(ϒ)

]
, ρ = 1

2

[
ϒ̇2 + 2	(ϒ)

]
. (23)

In the present case, the first and second components of the
aforementioned equation reflect the kinetic and potential
energies of the scalar field, respectively. The mass of the
thin-shell is determined through the scalar field expression
as follows

M = 4πy2ρ = 2πy2(ϒ̇2 + 2	(ϒ)). (24)

By substituting Eqs. (23) and (24) into (19), we obtain

ϔ + 2
ẏϒ̇

y
+ ∂

∂ϒ
	(ϒ) = 0, (25)

which is dubbed as the KG equation. In the vicinity of con-
sidered acoustic Schwarzschild BH having a scalar field, the
corresponding potential function of the constructed thin-shell
is provided as

�(y)=−m2y4+γm2(y − 2m)2
(
γ (y − 2m)2 + 2y2

) +4π4y10
(
2	(ϒ)+ϒ̇2

)4

4π2y8
(
2	(ϒ)+ϒ̇2

)2 −m
(
γ (y − 2m)2 + y2

)
y3 + 1. (26)

The specific matter contents of the scalar field are not
explicitly defined by the EoS. The fact that the energy density
of the scalar field is divided into potential and kinetic ener-
gies, makes it impractical to precisely manifest the energy
density with a single value of p. To establish a relation
amongst the stress-energy tensor’s components, we use a
specialized form of the potential function expressed in terms
of some parameter which may aid in determining the effec-
tive mass and interaction strength of the scalar field. Sub-
sequently, we explore two disparate values of the potential
function described as

• 	(ϒ) = 0, i.e., the massless scalar field
• 	(ϒ) = m2ϒ2, i.e., the massive scalar field:

The conservation equation and the KG equation govern the
dynamical structure of a thin-shell composed of massive and
massless scalar fields. Considering their masses and inter-
actions, the KG equation explains how the scalar fields on

the thin-shell evolve. Constraints on the thin-shell dynam-
ics are provided by the conservation equation, which pro-
vides that momentum and energy are conserved throughout
the system. The propagation and interaction of the scalar
fields inside the thin-shell, which effects its stability and
behaviour as a whole, is defined by the KG equation. In
the KG equation, the mass term dictates how the massive
scalar field behaves, whereas the massless scalar field adds
to the system’s entire energy distribution. For the thin-shell
to remain stable and coherent as a whole, the conservation
equation is of paramount importance. It prevents the system
from behaving in an unphysical or unstable way by limiting
its evolution and configuration options through the applica-
tion of momentum and energy conservation laws. The general
dynamics and evolution of the thin-shell can be better under-
stood with the help of this equation, which directs future
research and interpretation. To sum up, when studying the
dynamical structure of a thin-shell with massive and massless
scalar fields, the KG equation and the conservation equation
are crucial components. By outlining the interplay and devel-

opment of the system’s scalar fields, they clarify the system’s
general behaviour and stability. In the following subsections,
we briefly discuss the dynamical structure for both cases of
scalar field.

3.1 Thin-shell with massless scalar field

In this case, i.e., by considering 	(ϒ) = 0 in Eq. (23),
the energy-momentum tensor components are connected by
the EoS P = ρ. The corresponding KG equation can be
expressed as

yϔ + 2 ẏϒ̇ = 0, (27)

which yields

ξ = y2ϒ̇, (28)

where ξ specifies the integrating constant. By setting	(ϒ) =
0 and incorporating Eq. (28) in (26), we derive the dynamical
equations governing thin-shell’s structure in the realm of a
massless scalar field as

ẏ = ±
√

m2y4

4π2ξ4 + γm2(y − 2m)2
(
4γm2 − 4γmy + (γ + 2)y2

)
4π2ξ4 + γm(y − 2m)2

y3 + m

y
+ π2ξ4

y6 − 1. (29)
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Fig. 2 The graphical representation of the dynamical evolution of shell through effective potential corresponding to the massless scalar field using
γ = 4 (left graph) and ξ = 0.1 (right graph) against y for m = 0.2

The effective potential of scalar shell takes on the follow-
ing form

�(y) = − m2y4

4π2ξ4

−γm2(y − 2m)2
(
4γm2 − 4γmy + (γ + 2)y2

)
4π2ξ4

−γm(y − 2m)2

y3 − m

y
− π2ξ4

y6 + 1, (30)

To get a better understanding of how the thin-shell acts under
the influence of a scalar field, the dynamical characteristics of
a thin-shell are revealed through a graphical representation.
This analysis originates from an advanced adaptation of the
Schwarzschild BH. The progressive behavior of the thin-shell
is best comprehended by exploring the behavior of effective
potential associated with the scalar shell. Figure 2 serves as
a visual representation to illustrate the dynamical evolution
of thin-shell comprised of a massless scalar field through
varying the parameters ξ and γ . We noticed that the thin-
shell tends to collapse, i.e., �(y) < 0 for a specific choice of
physical parameters. Interestingly, when we increase ξ , the
collapse happens more slowly. It is interesting to mention
that the massless scalar shell collapse rate increases as the
shell radius increases. Similarly, we observe the behavior of
the scalar shell for different values of γ as shown in the right
plot of Fig. 2. By increasing the values of γ , the scalar shell
expresses more collapsing behavior for higher values of shell
radius. As shell radius decreases, the collapsing behavior of
the shell also decreases.

3.2 Thin-shell with massive scalar field

In the subsequent analysis, our aim is to comprehend the
dynamics of a scalar shell undergoing evolution in the vicin-
ity of a massive scalar field characterized by the form
	(ϒ) = m2ϒ2. Consequently, the expression in Eq.(23)

for massive scalar field becomes

2m2ϒ2 = ρ − P, ϒ̇2 = ρ + P. (31)

We establish a crucial link between the mass of the surface
matter at thin-shell and the surface energy density to develop
the dynamical equations about the observer in a static posi-
tion. To approach this, we put forward a relationship gov-
erning the surface matter at the shell. This relationship takes
the form of a linear relation between surface energy density
and pressure as P = B0e−γ y , where γ and B0 stand as con-
stants. In essence, this proposed linear relationship provides
a valuable framework for understanding how surface matter
properties (prescribed by energy density and pressure) influ-
ence the overall dynamics of the thin-shell. By incorporating
such considerations, we can gain a comprehensive under-
standing of how these surface properties contribute to the
dynamic evolution of the system especially when observed
from a static viewpoint. Making use of Eq. (19) with the
specific choice of P, we have

ρ = h

y2 + 2B0

(yγ )2 
(2, yγ ), (32)

where 
(2, yγ ) = ∫ ∞
yγ t3e−t dt and h represents the integrat-

ing constant. Using the values of energy density and surface
pressure in Eq. (31), we obtain

ϒ̇2 = h

y2 + B0

{
e−γ y − 2

(yγ )2 
(2, yγ )

}
, (33)

ϒ2 = h

2m2y2 − B0

2m2

{
e−γ y + 2

(yγ )2 
(2, yγ )

}
. (34)

Additionally, we have

M = 4πy2ρ = 4πh − 8πB0

γ 2 
(2, yγ ). (35)

We explore the dynamics of a massive scalar shell by using
the expression 	(ϒ) = m2ϒ2, and substituting Eq. (33) in
(26) while considering specific values for physical parame-
ters as graphically represented in Fig. 3. The analysis of effec-
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Fig. 3 The graphical representation of the dynamical evolution of shell through effective potential corresponding to massive scalar field by
considering p0 = 1 (left plot) and γ = 4 (right plot) against y with B0 = 1,m = 0.2

tive potential unfolds a captivating result, i.e., the massive
scalar shell undergoes an initial phase of collapsing behavior,
transitioning thereafter into an expanding state as illustrated
in the left plot of Fig. 3. Moreover, the expanding behavior
tends to decrease with an increase in the acoustic param-
eter. This signifies a delicate interplay between the shell’s
dynamics and the acoustic parameter adding depth to our
understanding of its behavior. The dynamical evolution is
also affected due to the presence of other parameters. This
comprehensive analysis allows us to appreciate not only the
primary trends but also the subtle dependencies and inter-
actions that characterize the dynamics of the massive scalar
shell. In Fig. 3, it is found that the effective potential of a mas-
sive scalar shell approaches zero as the shell radius increases
which leads to the expansion of the shell. In the left plot of
Fig. 3, it is interesting to mention that the massive scalar
shell expresses less collapsing and more expanding behavior
for the choice of Schwarzschild BH comparatively acoustic
Schwarzschild BH. Also, the parameter p0 greatly effects the
dynamical behavior of the massive scalar shell. For smaller
values of shell radius, we find maximum collapsing behavior
and collapsing rate decreases as shell radius increases.

4 Stability analysis

This section focuses on the stability analysis of thin-shell.
Initially, our approach involves examining the changing pro-
cess of a thin-shell by investigating the equation of motion
which establishes a connection between kinetic energy and
potential energy. Notably, it is difficult to solve Eq. (20) due
to its highly non-linear nature. Consequently, we opt for a lin-
earized representation of the equation after the perturbation.
To do this, we employ a Taylor series expansion for the sec-
ond order to expand the potential function at the equilibrium
radius. This linearization aids in simplifying the analysis and
provides a more tractable framework for examining the sta-

bility of the thin shell. The potential function is then obtained
as

�(ρ, y) = �(y0) + d�

dy
|y=y0(y0 − y)

+d2�

dy2 |y=y0

(y0 − y)2

2
+ O((y0 − y)3).

In this context, a significant observation is made as �(ρ0, y0)

= 0 = d2�
dy2 |y=y0 . By introducing the variable transformation

x = y − y0, we find

ẋ2 + ω2
ts x

2 � 0, (36)

where ω2
ts = 1

2
d2�
db2 |y=y0 . Taking the derivative of Eq. (36)

w.r.t proper time, the following representation is established

ẍ + ω2
ts x � 0. (37)

This equation determines whether the thin-shell is stable or
unstable depending on how ω2

ts behaves. The stability con-

dition can be expressed as d2�
dy2

∣∣∣y = y0 > 0 ⇒ ω2
ts > 0.

If d2�
dy2

∣∣∣y = y0 < 0 indicating ω2
ts < 0, the shell’s radius

exhibits an exponential trend resulting in an unstable config-
uration. Thus, we derive an expression for ω2

ts given by

ω2
ts = − (A(y0) − H(y0))

2 − 256π4y4
0ρ4

0

32π2y3
0ρ3

0

�10

− (P0 + ρ0)
(
256π4y4

0ρ4
0 − (A(y0) − H(y0))

2
)

16π2y4
0ρ3

0

�20

+ 1

64π2y4
0ρ4

0

(
2P0ρ0

(− (A(y0)−H(y0))
(−4y0H′(y0)

− 5H(y0)+4y0A′(y0)+5A(y0)
)−768π4y4

0ρ4
0

)
− 4P2

0

(
3 (A(y0) − H(y0))

2 + 256π4y4
0ρ4

0

)
+ρ2

0

(
y0

(
y0

(
16π2y2

0ρ2
0

(H′′(y0) + A′′(y0)
)

− (A′(y0) − H′(y0)
) 2 − (A(y0) − H(y0))

× (A′′(y0) − H′′(y0)
) − 768π4y2

0ρ4
0

)
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− 4 (A(y0) − H(y0))
(A′(y0) − H′(y0)

))
− (A(y0) − H(y0))

2)) , (38)

where

�10 = dP

dy
|y=y0 , �20 = dP

dρ
|y=y0 .

The stable or unstable thin-shell structures can be
inspected by examining the negative or positive role of ω2

ts .
When ω2

ts = 0, the critical values of �20 can be derived indi-
cating specific parameter values where the system undergoes
a transition between stable and unstable configurations. The
critical values are found to be

�20cts = D1�10c + D2

D3
, (39)

where

D1 = −y0ρ0

(
−m2y4

0 − 2γm2y2
0 (y0 − 2m)2 − γ 2m2

× (y0 − 2m)4 + 64π4y10
0 ρ4

0

)
,

D2 = γ 2m2(y0 − 2m)2
(
P0ρ0

(
−28m2 + 12my0 + y2

0

)

+6P2
0(y0 − 2m)2 + 4mρ2

0 (5m − y0)
)

+2γmy2
0

(
mP0ρ0

(
−12m2 + 4my0 + y2

0

)

+4π2y3
0ρ4

0

(
24m2−12my0+y2

0

)
+2m2ρ2

0 (3m − y0)

+ 6mP2
0(y0 − 2m)2

)
+ y4

0

(
m2P0(6P0 + ρ0)

+8π2my3
0ρ4

0 + 32π4y6
0ρ4

0

(
4P2

0 + 6P0ρ0 + 3ρ2
0

))
,

D3 = 2ρ0(P0 + ρ0)
(
m2y4

0 + 2γm2y2
0 (y0 − 2m)2

+γ 2m2(y0 − 2m)4 − 64π4y10
0 ρ4

0

)
.

The critical value �20c is directly related to the stability of
the shell just like ω2

ts . Also, it depends on �10 which explains
its dependence on the EoS. Different choices of matter con-
tents located in the shell effects the stability as well as the
dynamical configuration of thin-shell. Hence, we observe the
graphical behavior of the�20c to determine the stability of the
developed structure for different values of physical parame-
ters. It is worth noting that the thin-shell structure is stable
when �20cts > 0, i.e., the positive behavior of �20cts . Con-
versely, an unstable configuration arises when �20cts exhibits
negative characteristics.

4.1 Stable/unstable configuration for phantom-like EoS

The stable configuration of a thin shell holds significant
importance in both cosmology and astrophysics, particularly
in the exploration of viable WH solutions. The EoS is a cru-
cial factor in assessing the impact of different types of matter

distributed across the � on the stability of the thin-shell. Var-
ious models for exotic matter exist with one example being
a phantom-like EoS expressed as

P(y) = ωρ(y). (40)

Here, the notation ω < 0 manifests the EoS parameter. This
parameter signifies various types of matter contents for dis-
tinct ranges characterized as

• When ω < −1, it specifies the state of phantom energy.
• When 0 > ω > −1/3, it illustrates quintessence like

matter composition.
• When ω < −1/3, it indicates the state of dark energy.

Presently, our focus lies in investigating the unsta-
ble/stable characteristics of the thin-shell within the con-
text of an acoustic Schwarzschild BH. This exploration uses
�20cts for a phantom-like EoS and is graphically depicted
in Figs. 4, 5, and 6. Notably, the intriguing observation is
that the unstable/stable nature of the thin shell adheres to the
fundamental condition in thin-shell dynamics, i.e., the radius
of the shell must exceed the radius of the event horizon (Fig.
1) for the event horizon and Figs. 4, 5, and 6 for representa-
tions of the thin-shell structure). As a result, our anticipated
findings regarding stability of the thin-shell emerge after the
position of the event horizon. It is observed that the thin-
shell exhibits stable behavior for acoustic Schwarzschild BHs
filled with quintessence-like matter contents near the posi-
tion of the event horizon as depicted in Fig.(4). However,
for γ < 4, the thin-shell becomes unstable regardless of the
chosen matter content. When the parameter m is increased,
the thin-shell demonstrates more stable behavior for smaller
values of γ as illustrated in the right plot of Fig. 4. Addi-
tionally, the stability of the shell rises for higher values of γ

when γ > 4 (as shown in Fig. 5). Notably, the configurations
with dark energy-type matter exhibit a more stable structure
than those with a quintessence-type matter distribution. Con-
versely, for phantom energy-type EoS, the thin-shell displays
unstable behavior for every choice of physical parameters
(Fig. 6). In summary, the thin-shell exhibits a stable configu-
ration when governed by quintessence and the EoS for dark
energy whereas it demonstrates instability under the influ-
ence of phantom energy-type EoS.

5 Final remarks

The presence of a timelike thin-shell within static spheri-
cal systems stands out as a noteworthy cosmic configuration
offering valuable insights into various cosmic hypotheses.
The thin-shell is an extremely thin layer of matter functioning
as a bridge connecting two distinct regions of spacetime and
it holds significance in the exploration of cosmic phenomena.
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Fig. 4 The graphical representation of �20cts by considering ω = −0.1 (left plot) and ω = −0.2 (right plot) and m = 1 against γ and E

Fig. 5 The graphical representation of �20cts by considering ω = −0.4 (left plot) and ω = −0.5 (right plot) and m = 1 against γ and E

Fig. 6 The graphical representation of �20cts by considering ω = −1.5 (left plot) and ω = −2 (right plot) and m = 1 against γ and E
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In the present article, we endeavor to employ a cut-and-paste
approach to elucidate the geometric evolution of a thin-shell
situated between an outer acoustic Schwarzschild BH and an
inner flat spacetime. To govern the dynamic behavior of the
shell and maintain its stability, a minimal layer of matter is
essential within its structure. The dynamical equations dictat-
ing such constructed geometries are derived from a simplified
version of Einstein’s equations at the hypersurface that gives
rise to the stress-energy tensor components. By analyzing the
graphical behavior of the metric potential (provided in Fig.
1), we have determined that the event horizon of the acoustic
Schwarzschild BH is either larger than or equal to that of
the Schwarzschild BH. Next, we have used the KG equation
and conservation equation to investigate the dynamical struc-
ture of the thin-shell comprised of both massive and massless
scalar fields. Additionally, we have studied the stable config-
uration of the thin-shell under linearized radial perturbations
via critical values of �20cts , endorsed with matter compo-
nents according to EoS of dark energy, quintessence, and
phantom energy.

The evolutionary conduct of a thin-shell with a massless
scalar field for a variety of the values of ξ as well as γ

is depicted in Fig. 2. Under appropriately chosen physical
parameters, the results have revealed a collapsing tendency
of the thin-shell (�(y) < 0). It is observed that when the
parameter ξ increases, the rate of collapse diminishes. More-
over, for larger values of γ , we have found that the effective
potential demonstrates a stronger collapsing characteristic.
Nevertheless, the behavior of effective potential has revealed
that the scalar shell initially exhibits a collapsing behavior
before transitioning to an expanding state. With an increase
in the acoustic parameter, the extent of expansion decreases.
It is crucial to note that the dynamic behavior of the shell
is influenced by additional factors (Fig. 3). Interestingly, by
considering Schwarzschild BH over acoustic Schwarzschild
BH, the massive scalar shell exhibited less collapsing and
more expanding behavior. Furthermore, the enormous scalar
shell’s dynamical behavior is significantly influenced by the
parameter p0. We examined the maximal collapsing behavior
for smaller values of shell radius and a reduction in collapsing
rate with increasing shell radius.

In addition to studying the dynamic evolution of the thin-
shell, we have delved into a comprehensive analysis of its sta-
bility. This investigation involves a detailed examination of
the factors that contribute to the stability or instability of the
developed thin-shell configuration. For the thin-shell to main-
tain its stability, its size must surpass that of the event hori-
zon. Consequently, the stability of the thin-shell is directly
influenced by the location of the event horizon providing us
the crucial insights. Our findings have revealed that when
matter is introduced into the acoustic Schwarzschild BH via
quintessence-type EoS, the thin-shell maintains stability, par-
ticularly near the event horizon (Fig. 4). Conversely, the thin-

shell becomes unstable for all possible options of matter con-
tent when γ > 4. This distinction in behavior sheds light on
the intricate relationship between matter composition, the
event horizon, and the stability of the thin-shell.

Through this analysis, we have concluded that the sta-
bility of the thin-shell is enhanced when considering the
acoustic Schwarzschild BH in comparison to the standard
Schwarzschild BH.
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