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ABSTRACT: String backgrounds with a local torus fibration such as T-folds are naturally
formulated in a doubled formalism in which the torus fibres are doubled to include dual
coordinates conjugate to winding number. Here we formulate and explore a generalisation
of this construction in which all coordinates are doubled, so that the doubled space is a
twisted torus, i.e. a compact space constructed from identifying a group manifold under
a discrete subgroup. This incorporates reductions with duality twists, T-folds and a class
of flux compactifications, together with the non-geometric backgrounds expected to arise
from these through T-duality. It also incorporates backgrounds that are not even locally
geometric, and suggests a generalisation of T-duality to a more general context. We discuss
the effective field theory arising from such an internal sector, give a world-sheet sigma
model formulation of string theory on such backgrounds and illustrate our discussion with
detailed examples.
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1 Introduction

String theory can be formulated on certain non-geometrical spaces [1-6] as well as the
familiar geometric spaces that consist of a manifold equipped with a metric and various
background fields. An important class of these are the T-folds [7, 8], which are spaces
constructed from patches of conventional string backgrounds that have transition func-
tions that include T-dualities. T-folds can arise from taking the T-duals of conventional
backgrounds, but there are also some non-trivial examples that are not related to any
conventional background by dualities [1].

T-duality is a stringy symmetry acting on spaces which have a torus fibration, so T-
folds are constructed from patches that are a product of a torus with a patch of a base space.
The standard rules for T-duality found by Buscher [9] require that the U(1)? torus action on
the fibres be isometric and preserve the background fields. However, there is some evidence
that there should be a generalisation of T-duality that applies to the case of a torus fibration
where the torus action is not isometric [10]. Such a case arises, for example, on trying to
T-dualise a three-dimensional torus with H-flux in all three circles [3]. More generally, it
can take a geometric space or a T-fold to a space with what has been called R-flux [11, 12].

Non-geometric backgrounds cannot be fully understood using supergravity or conven-
tional world-sheet sigma-models, so another approach is needed. One approach has been
through the doubled formalism [7]. Conformal field theory on a d-dimensional torus has
a natural formulation on a doubled space, the doubled torus. States naturally live on
the 2d-dimensional Narain lattice, labeled by integers determining the momentum and the
winding number or string charge. The T-duality group O(d,d;Z) acts naturally on this
lattice. Fourier transforming the d quantized momenta and d winding numbers gives 2d
periodic coordinates of a doubled torus 72¢ which contains the original torus 7¢. Act-
ing with O(d,d;Z) serves to rotate the physical torus into a different T subspace of the
doubled torus, which contains all T-duals of the original torus. In this way, T-duality can
be thought of as changing the choice of T¢ subspace of the doubled space that is to be
regarded as ‘physical’. The name polarisation was suggested in [7] for the choice of such
a T¢ subspace, in analogy with classical mechanics. The group O(d,d;Z) acts geometri-
cally through large diffeomorphisms on the doubled torus, allowing a T-duality covariant
formulation. This is then broken when a polarisation is chosen.

This is the basis for the doubled formalism for T-folds [7, 8]. For a T-fold or geometric
background with a 7% fibration, the T fibres are replaced by the doubled tori 72¢ and,



as the group O(d,d;Z) acts geometrically through large diffeomorphisms on the doubled
fibres, the result is a 72 bundle. If a global polarisation exists, then it leads to a geometric
background by selecting a submanifold with 7% fibres, while a non-trivial T-fold arises
when there is a topological obstruction to choosing a polarisation globally. In such cases, a
polarisation can be chosen locally in each patch, but the patches do not fit together to form
a submanifold and there is no global spacetime. In [7], a world-sheet formulation for strings
in such spaces was given, based on a sigma-model whose target is this geometrical space
with doubled fibres, together with a self-duality constraint to halve the number of degrees of
freedom on the doubled fibres. This formulation has the virtue of being manifestly duality-
covariant, and involves structures that also feature in generalised geometry [13, 14].

In this doubled picture, the extra d coordinates that are conjugate to winding num-
bers are auxiliary and no physical fields depend on them. However, it was suggested in [10]
that generalising T-duality to the case without isometries on the torus would lead to con-
figurations in which the background fields have non-trivial dependence on the extra dual
coordinates in this doubled representation. One of our aims here is to seek a natural dou-
bled geometry for such cases. There is some evidence that such more general non-geometric
backgrounds should arise in string theory. In [15] it was argued that T-dualising the NS
5-brane properly leads to a background with non-trivial dependence on a dual coordinate,
and the physical implications were explored. In [16-18], it was argued that this dependence
reflected world-sheet instanton effects. In [10] it was suggested that backgrounds depending
on both spacetime and dual coordinates would arise natually in string field theory.

Our construction is motivated by the so-called twisted torus. Consider a reduction
with duality twist, i.e. a reduction on a d-torus to give a theory with a duality symmetry,
followed by reduction on a further circle with a duality twist. This can be thought of as a
stringy version [2] of a Scherk-Schwarz reduction [19]. It was shown in [2, 20] that if the
duality twist is geometric, then this is equivalent to a compactification on a space which is
a T% bundle over a circle. Such a torus bundle over a circle is parallelisable and is in fact a
(d+1)-dimensional group manifold G identified under the action of a discrete group I' [21];
such a space G/T" is sometimes referred to as a twisted torus in this context. Moreover,
the group G is precisely the Kaluza-Klein gauge group that arises from compactification
of pure gravity on G/T", as we show in section 2.1.

More generally, one can consider a reduction in which the duality twist is in the T-
duality group O(d,d;Z). Then the doubled formalism is in terms of a 7°? bundle over
a circle [7, 22], which is itself a twisted torus given by the identification of a (2d + 1)-
dimensional group by a discrete subgroup. We will review this construction in detail and
give some illustrative examples. It is natural to also consider adding a coordinate conjugate
to the winding charge on the base circle, giving a (2d + 2)-dimensional space. This gives a
(2d+2)-dimensional twisted torus, but one would expect that the extra doubled coordinate
for the base plays a trivial role, in that nothing depends on it. However, it was argued
in [10] that T-duality on the base circle would lead to configurations with a non-trivial
dependence on this extra coordinate. Moreover, we cannot use standard approaches to
check this and find the dependence on the dual coordinate. We will here construct a
natural (2d + 2)-dimensional geometry and attempt to describe different dual formulations



in terms of polarisations selecting d-+1 of the directions locally. As we will see, this does not
always lead to even local patches that are patches of geometric backgrounds, and moreover
there can be an unexpected dependence on the extra coordinate doubling the base.

The theory that results from such a reduction with duality twist has a gauge group G
which is (2d 4 2)-dimensional, as is familiar from the special cases that have a field theory
truncation in which the dimensional reduction amounts to a Scherk-Schwarz reduction [19].
This suggests considering the (2d + 2)-dimensional group manifold G identified under a
discrete subgroup to give a compact twisted torus G/I". This was first proposed in [22] and
a related proposal was considered in [23]. This gives a natural geometry which includes
a circle that is dual to the base. The idea is that choosing different polarisations of this
completely doubled space should give configurations that are dual to one another. These
include the duals of the original configuration obtained by acting with O(d, d; Z) T-dualities
on the fibres, but also lead to new configurations with non-trivial dependence on the dual
coordinate of the base by acting with what we refer to as generalised T-dualities.

In this way, a doubled space which is a twisted torus G/I" is a natural generalisation
of the bundles with doubled torus fibres. In this paper we systematically investigate the
generalisation of the doubled formalism of [7] to the doubled twisted torus G/I" for general
groups G that have a natural metric of signature (D, D). We discuss the spacetime picture
and give a world-sheet sigma model with such a doubled target space together with a
constraint that halves the doubled degrees of freedom. The group structure plays a vital
role in the construction, and in particular in the elimination of spurious degrees of freedom
using the constraint. This is discussed in detail in section six. We discuss the discrete
symmetries that replace O(D, D;Z) (where 2D is the dimension of G) and the dualisations
that arise from different choices of D-dimensional polarisation. The formalism applies
readily to the case considered above in which G is the gauge group from a reduction with
a duality twist. It can also accommodate the non-abelian T-duality of [24] with G the
cotangent bundle of a group G, or the Poisson-Lie duality of [25] in the case in which
G is a Drinfel’d double. Such non-abelian dualities are believed not to be symmetries
of string theory [24] but instead relate distinct string backgrounds, while the generalised
dualities discussed above are expected to be stringy symmetries [10]. Thus some care is
needed in interpreting the formalism and applying it to the general case. However, it is
possible that the present formalism may provide new insight into non-abelian and Poisson-
Lie dualities. It would be interesting to see whether the constructions considered could
have generalisations to more general geometries, such as Calabi-Yau manifolds.

The plan of the paper is as follows. In the following section we review T-duality twist
compactifications. The (d + 1)-dimensional internal space is described in terms of the
doubled torus formalism and the doubled twisted torus formalism. The existence of global
polarisations and the role of T-duality in relating different polarisations is discussed. In sec-
tion three, we apply the formalism of section two to a particular three-dimensional compact
manifold — the nilfold — and discuss how this background, and the dual configurations,
related to the nilfold by the action of O(2,2;7Z), may be lifted to and recovered from a
five-dimensional doubled torus and a six-dimensional doubled twisted torus. Section four
reviews the doubled torus formalism from the world-sheet perspective, as introduced in [7]



and a detailed account of how the constraint is imposed in the sigma model theory is given.
In section five, this sigma model description is applied to the five-dimensional doubled torus
examples considered, from the target space perspective, in section three. Finally, in sec-
tion six, we introduce a world-sheet description of the doubled twisted torus formalism. It is
shown that the sigma model for the doubled torus introduced in [7] emerges as a particular
special case and the world-sheet description of the R-flux background is discussed.

2 Target spaces and doubled target spaces

Consider the theory in (n + d + 1)-dimensional spacetime with a metric, two-form gauge
field B(y), scalar field ® and the Lagrangian

Lopidr1 = e ® <]?€ %1 —d® A #d® — %@(3) A *@(3)> (2.1)

where @(3) = dé(z). The compactification on T%, using the standard Kaluza-Klein ansatz,
gives [30] a massless field theory with gauge group U(1)?? and a manifestly O(d, d) invariant
Lagrangian in (n + 1) dimensions

1 1
Lpy1=¢e? (R* Lt #dg A dg + o Gy A Ggy + 5+ dMAT A dMap
1
—5Map FAN fB> (2.2)

where F4 = dA4, and A? are 2d abelian gauge fields, with d gauge fields coming from
the off-diagonal parts of the metric and d gauge fields coming from the off-diagonal parts
of the 2-form gauge field. The scalar coset space O(d,d)/O(d) x O(d) is parameterised by
a symmetric 2d X 2d matrix M 4p, satisfying the constraint

Map = Lac(M P Lgp (2.3)

where L4p is the constant O(d, d)-invariant metric, which is used to raise and lower the
indices A, B =1,...,2d.

The generators T4 of the U(1)?? gauge symmetry, consist of Z,, (a,b = 1,2,...d)
which generate the U(1)¢ action on the T fibre, and X%, which generate antisymmetric
tensor transformations for the B-field components with one leg on the 7% and the other in

Ty = ( i) (2.4)

In this basis, the O(d, d) metric is off-diagonal

01
L:<10> (25)

the external spacetime, so that



Next, consider a Scherk-Schwarz reduction on a further circle with periodic coordinate
x ~ x + 1, with an O(d,d) duality twist around the circle [19]. The twist is specified
by N4p, a matrix representation of an element of the Lie algebra of O(d, d), and the z-
dependence is given in terms of an O(d,d) transformation exp(Nz), so that the O(d,d)
monodromy on going around the z circle is exp(N). In string theory, the monodromy
is required to be in the T-duality group O(d,d;Z) [20, 31]. The reduced theory may be
written in a manifestly O(d + 1,d + 1) covariant way [21, 32]

1 1
L,=¢% (R*1+*d(p/\d(p+§*7'f(3) /\H(g) —|—Z*DMMN/\DMMN
1
—§MMN*fM /\.7:N> + V1 (2.6)

The theory has a non-abelian gauge symmetry, for which the field strengths for the gauge
connections AM are FM. The two-form gauge field B(3) has a three-form field strength
H(sy = dB(gy +--- with Chern-Simons terms. The scalar coset space O(d+1,d+1)/O(d+
1) x O(d+ 1) is parameterised by a symmetric 2(d+ 1) x 2(d + 1) matrix My, satisfying
the constraint

Myn = LMP(Mfl)PQLNQ (2.7)

where Ly is the O(d + 1,d + 1)-invariant metric, which is used to raise and lower the
indices M, N = 1,...,2d + 2. It is a constant 2(d + 1) x 2(d + 1) matrix given by (2.5).
The explicit relationship between the fields in the (n + 1)-dimensional abelian theory and
the n-dimensional non-abelian theory, along with the explicit form for the scalar potential
V may be found in appendix A of [22], or in [32].

One effect of the duality twist is to give a non-abelian gauge symmetry. With no twist,
N4 = 0, this would have given a reduction on %! of the same form as (2.2), with abelian
gauge symmetry U(l)Q(dH) and 2(d + 1) abelian gauge fields AM. The generators consist
of the 2d generators T4 together with Z, and X* from the reduction on the x circle. With
a twist, N4p # 0, this algebra is deformed to a non-abelian gauge algebra of the same
dimension, 2(d 4+ 1). The Lagrangian (2.6) has a gauge symmetry with Lie algebra [22]

[Zy,T4] = —NB,Tp [Ta,Tg] = —NapX” (2.8)

where Nag = LacNC g is antisymmetric and all other commutators vanish. Note that the
T4 no longer generate an abelian sub-algebra.

Under the decomposition of Ty into Z, and X¢, the twist matrix may be written as
(using Nap = —Npa)

b ab
NAB — < f:m Q:v > (2.9)

Kxab _fazba
for some antisymmetric Q% = —Q,"* and K4 = —Kape. The gauge algebra can then be
written as
(Z2s Za) = fra"Zp + Kpap X" [Ze, X = = fu" X" + Q2" 2y (2.10)

(Zay Zp) = Koap X® [ X% Zy) = —fu" X" [X% X' = QX"



with all other commutators vanishing. Here K is the H-flux, f is sometimes referred to as
a geometric flux, and @) is sometimes referred to as a non-geometric flux.

The matrices of the form (2.9) are the generators of O(d,d). We will refer to the
subgroup generated by lower triangular matrices of the form (2.9) with Q,% = 0 as the
geometric subgroup A, consisting of GL(d;R) transformations generated by f,” and B-
shifts acting on the fibre components of B, By, — Bap+AKiqp- This has a discrete subgroup
A(Z) = ANO(d,d; Z). If the twist is in A(Z), then it is geometric, consisting of a GL(d;Z)
twist acting as a large diffeomorphism of the 7% fibres together with a discrete B-shift.
This is equivalent to the compactification with H-flux on a 7% torus bundle over a circle
with monodromy exp(f.?) [21, 33-35]. For such a geometric twist, this compactification
space is a group manifold G, identified under a discrete subgroup I' C G. The group G
is usually non-compact, and T" is chosen, if possible, to be such that G/T" is compact. A
subgroup I' which satisfies this criterion is said to be cocompact.

2.1 The pure gravity example

As an illustrative example, consider the pure gravity theory given by setting the B-field
and dilaton ¢ to zero. The monodromy of the reduction is given by (2.9) with Q,% = 0,
Ky = 0 and f,,” = N®,. The n-dimensional action (2.6) reduces to [19]

1 1
L, =Rx1-— ng"gqugmp A *Dgpg — §gmnFm AN*F" +V %1 (2.11)

The gauge group G has Lie algebra (2.8)
(Zy, Za) = =N 2y [Za, Zs] =0 (2.12)

This can be viewed as compactification on a space A that is a T¢ bundle over a circle [21].
This compactifying space looks locally like the (d 4 1)-dimensional group manifold G, and
is in fact the group G identified under the action of a discrete subgroup I' C G which acts
from the left [21].

Dimensional reduction on a group manifold G would give a theory with a gauge sym-
metry G, X G arising from the isometry group G, X G of the group manifold, with G,
acting from the left and G from the right. Identifying under the action of a discrete sub-
group of I' C G, acting from the left breaks the G, symmetry, but the G isometry is left
intact, so that the theory has at least G gauge symmetry. (Generically, G, is completely
broken, but if there is a subgroup commuting with I, it will break to that subgroup.)
Choosing a vacuum configuration will spontaneously break the gauge symmetry further to
the subgroup preserving the vacuum [21]. The Lagrangian (2.11) is a consistent truncation
of that obtained from reduction on a group manifold G, in which only the gauge fields A™
for Gr are kept, while the ones for G, are set to zero. As a result, it is also a consistent
truncation for the reduction on G/T', and contains all the gauge fields for the case in which
identifying under I" breaks all of Gp,.

It is useful to consider a matrix representation of the gauge algebra

[te,ta] = —NPuts, [ta,ty) =0 (2.13)



This algebra can be represented by the (d + 1) x (d + 1) matrices

—N¢@
ty = 6 0 to— O ca (2.14)
0 0 00

where e, is the d-dimensional column vector with a 1 in the a’th position and zeros every-
where else. Coordinates x, z% can be introduced locally for the group manifold G, with the
group element g = g(z,2%) € G given by

9= ( ()% Za) (2.15)

0 1
Then the left-invariant Maurer-Cartan forms, P = P™t,, = g~ 'dg are given by
P* =dx P = (eNx)a pdz’ (2.16)

The P™ are dual to the left-invariant vector fields

_6 o _Naz\b
Ze = 5- Zg = (e7'7)

9
920

which generate the gauge algebra (2.12) and so the gauge algebra is given a geometric in-

(2.17)

terpretation by the lift of the n-dimensional theory to a compactification of an (n+d+1)-
dimensional theory on a (d + 1)-dimensional internal space. Note that the left-invariant
vector fields generate the right-acting group Gr. We may also define the right-invariant
one-forms P = P™t,, = dgg~!

P*=dr  P®=dz*+ N%z dx (2.18)

which are dual to the right-invariant vector fields

o ., .0 =~ 0

Tor T oab “7 9z

which generate the left-acting group G. The full gauge algebra G, x G of the group man-

Zy (2.19)

ifold G is generated by the vector fields (Z,,, Z,,). The left-invariant Z,, remain globally
defined after identifying by the discrete group I' C G, but the Zm generally will not be.

We now turn to the discrete subgroup I'. The torus bundle over a circle is obtained
from the compactification of this non-compact group manifold under the identification by
a discrete subgroup I', acting from the left. The left action of

h(a, B%) = < (6_?) b ﬁ) (2.20)

g9(x,2%) = h(e, 3%) - g(x, 2%) (2.21)

and acts on the coordinates through

r—r+a 2% — (e Neya b4 ge (2.22)



The discrete subgroup is I' = {h(a, %) € G | a, 8% € Z} and we can identify the group
manifold G under I'. This gives a compact space G/I" [21].

In this example we have seen that the lift of the n-dimensional theory to a (n+d+ 1)-
dimensional compactification led to a geometric interpretation of the gauge algebra (2.12).
In the following sections we extend this idea and construct backgrounds on which a part,
or all, of the gauge algebra (2.8) has a natural geometric action. In particular we shall
be interested in generalising the above discussion to compactifications involving a B-field,
and to non-geometric compactifications.

2.2 T-folds and the B-field

Reduction on T followed by reduction on S with a GL(d,Z) twist is, as we have seen,
equivalent to compactification on a 7% bundle over a circle, which is also a twisted torus.
In string theory, however, the twist on the S' can be by any element of O(d,d;Z). For
twists in the geometric subgroup A(Z), this is equivalent to reduction on a twisted torus
with flux. However, for twists involving T-duality the result is not equivalent to reduction
on any geometric space with flux, but can instead be viewed as reduction on a T-fold,
a non-geometric space with transition functions including T-dualities [7]. Locally, these
look like 7% bundles, but the transition functions between the fibres on overlaps of patches
on the base include O(d,d;Z) transformations. These twisted reductions over a circle are
among the simplest examples of T-folds.

2.3 The doubled torus

Conventional reduction on T with coordinates 2% gives a theory with O(d,d) symmetry,
and this symmetry can be made manifest in a doubled formalism in which an extra d
coordinates Z, that are conjugate to the d winding numbers are introduced, to give a
doubled torus 724 [7] with periodic coordinates X4 = (2%, %,). As reviewed above, the
reduction with a twist by a GL(d, Z) torus diffeomorphism is equivalent to compactification
on a space which is a T¢ torus bundle over a circle. More generally, a non-geometric
reduction with twist in O(d, d; Z) can similarly be represented as a reduction in the doubled
formalism on a 72 bundle over S* with monodromy in O(d,d;Z). This representation gives
the monodromy a geometric interpretation as an element of the 72¢ mapping class group, as
O(d,d;Z) C GL(2d;Z). In general, the data specifying a T-fold over a base M also specifies
a doubled torus bundle over M with fibres 724, and the T-fold reduction can be re-expressed
as a compactification in the doubled formalism on the doubled torus bundle over M [7].

For the twisted reduction on a circle, the 72% has coordinates X4 and the base has
coordinate x, while the set of 2d + 1 natural one-forms on the corresponding doubled torus
bundle over the circle are

PA = (N)A LaxB P = dx 2.23
( (2.23)

These generalise the one-forms (2.16). This (2d + 1)-dimensional space Toq.; is a T2¢



bundle over S*:

2d
T°" — T2d+1

l
Sl

The local description of the background in terms of d+ 1 coordinates is recovered from
the duality-covariant doubled torus picture by choosing a polarisation [7], which selects d
coordinates 2z from the 2d coordinates X4 for each point on the base as coordinates on
the physical spacetime.

More generally, consider a 72 bundle over a base M (in the examples considered
above, M is a circle). In a patch U, of the base M (where U, is open and contractible),
the background looks like U, x T??. To recover the theory in the physical (d+41)-dimensional
space, we choose a projection which determines which d of the 2d coordinates X4 will be
treated as spacetime coordinates and which d coordinates will be treated as conjugate to
the winding modes. In the 727 fibre over the patch U,, a polarisation is specified by a
constant projector I, where Il : U, X T2 U, x Td, which selects coordinates z% on a
T% sub-manifold of 72¢:

2% =TI 4 XA (2.24)

The physical space with coordinates z% is required to be maximally isotropic with respect
to the O(d, d) metric Lap
LABTI4T15° = 0 (2.25)

It is useful to define the complement IT which projects onto the auxiliary coordinates
Zg = ﬁa AXA

It is also useful to introduce the polarisation tensor
N Ha

o= =4

I

x4 = e4,x4 .= (’f > (2.26)

so that

Za

For each point on the base, the fibre geometry is encoded in a ‘generalised metric’ M 45,
which is a symmetric 2d x 2d matrix satisfying the constraint (2.3) so that it parameterises
the coset space O(d,d)/O(d) x O(d). Given a polarisation, the metric gq, and B-field By,
on T¢, in each patch U,, are given by

(Mfl)AB _ @AA(Mfl)ABeBB (2.27)
where
. ab _ ac
L (2.28)
_Bacg Jab + g BacBbd



The key point is that backgrounds can be considered in which different polarisations
are used in different patches, although they are constant in each patch. We then consider a
covering by such patches {U, x T??}, each with an associated projector II,. The transition
functions on the overlap between patches U, and Ug are elements of' O(d, d; Z) x U(1)%¢. If
the {U, x T} patch together with transition functions in the geometric subgroup A(Z) x
U(1)? of O(d,d;Z) x U(1)*, then the physical space, given this choice of polarisation, is
geometric. This is sufficient for the projector II onto the physical subspace to be globally
defined, but this is not sufficient for the complement II to be globally defined; this will also
be well-defined if in addition K = 0 so that N is block diagonal. If the transition functions
are not all in the geometric subgroup, then the space is a T-fold.

The transition functions can be viewed in two ways [7]. They can be regarded as
active, with the polarisations defined globally II, = IIg and on the overlap U, N Ug the
coordinates related by X! = (haﬁ)IJXé + aéﬁ where hog € O(d,d;Z) and a,p € U(1)%.
Alternatively, they can be regarded as passive, with the transition function acting on the
polarisation 6, = h;é@Q and the coordinates unchanged, X, = X3. We will mostly use
the passive viewpoint in this paper.

In the examples above with a circle base, the structure is encoded in the monodromy
of the duality twist reduction. First let us consider the active perspective. With the
identification z ~ x + 1, the monodromy in the fibre coordinates is given by

XA ~ (V) x5 (2.29)
In particular, using the global polarisation, this implies
2 (6N 2t () 5, (2.30)

so that, if Q,% # 0 then (eN)ab # 0 and the monodromy will mix z% with the Z,. Then the
physical space will be non-geometric. From the passive perspective, it is the polarisation
which is not globally defined so that if Q,% # 0 no global polarisation will exist.

Next we consider the issue of the geometrisation of the gauge algebra. The vector
fields dual to the one-forms (2.23) are

_9
Oz

0

Ty = (e N*)? (2.31)

These generate, not the gauge algebra (2.8), but a sub-algebra of a contraction of it, given by
[Zy,Ta] = —NP ATy [T4,Tg] =0, (2.32)

so that, even though the generators T4 have a geometric action as generators of transla-
tions along the T%¢ fibres, the gauge algebra (2.8) of the n-dimensional theory does not
have a fully geometric realisation in the doubled torus picture. In particular, the generator
X? does not have a geometric action on the space. This should not come as a surprise.

'0(d, d; Z) is the group of large diffeomorphisms of 7% preserving Lag and U(1)*? is the natural torus
action on 7%,
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The symmetries relating to the components of the B-field along the T directions have
been given a geometric interpretation by doubling the fibres of the torus, but the B-field
transformation along the base (generated by X*) does not have a geometric interpretation
in the doubled torus formalism, as the x coordinate is not doubled here.

The doubled space 7 is in fact a twisted torus of the form 7 = G/I" where the (2d+1)-
dimensional (non-compact) Lie group G is generated by the Lie algebra (2.32) and T is a
discrete subgroup of G acting from the left. The elements of this discrete subgroup are
labeled by integers o, 54 and act on the coordinates as

roazta XA (e Vo)t pxB 4 pA (2.33)
Taking the left quotient by I' fixes the global structure of 7.

2.4 The doubled twisted torus

In the reduction of pure gravity reviewed in section 2.1, the reduction with a twist by a
large diffeomorphism of the torus is equivalent to a reduction on a twisted torus. The
gauge group is (d + 1)-dimensional, and the internal space is the twisted torus given by
identifying the group manifold of the gauge group under a discrete subgroup. The gauge
symmetry then has a manifest geometric origin as the isometry group of the internal space.
For the reduction of string theory with an O(d,d;Z) twist, it was proposed in [22] that
the full 2(d 4 1)-dimensional gauge group be given a geometric representation as trans-
formations on a 2(d 4 1)-dimensional space. This involves doubling the coordinate on the
base circle, introducing a coordinate & conjugate to the winding number on the z-circle,
as well as doubling the d fibre coordinates, as in the doubled formalism reviewed above.
The doubled space is essentially the group manifold of the gauge group, compactified by
identifying under a discrete subgroup, i.e. it is a twisted torus X = G/I" where G is the
(2d + 2)-dimensional group manifold for the group generated by the Lie algebra elements
satisfying (2.8) and T" is a (discrete) cocompact subgroup, acting from the left, which
contains information on the global structure of X.

The idea [22] is, then, to seek a doubled space in which all the gauge symmetries are
realised as geometric symmetries, and then discuss the way the local spacetime picture
emerges from choosing a polarisation. In the doubled torus picture, choosing different
polarisations gives the various T-dual backgrounds. However, in the doubled torus, the
only directions which are doubled are torus fibres, while here the base circle is also doubled.

This gives a general framework in which there is a doubled space that is locally a group
manifold. This has been motivated by the case of reductions with duality twists, in which
different T-dual backgrounds arise from different physical slices or polarisations of this
doubled space. This formalism can be applied more generally to theories in n dimensions
similar to those discussed above with a 2D-dimensional gauge group G with Lie algebra
[Tar, Tn] = tarnt Tp where the structure constants ¢y, n7 generalise those of (2.8). Then a
natural framework [22] is to consider a doubled internal space given by a group manifold G
of dimension 2D, or the ‘twisted torus’ X = G/I" for some discrete I'. When possible, it is
natural to choose I' so that X = G/I" is compact. If the n-dimensional theory arises from a
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compactification, then the compactifying space will arise as a D-dimensional polarisation
of X. We will in addition require that G preserve a metric Ly;y of signature (D, D) so that
tunp = tu NQLQ p is totally antisymmetric. Generally G will be the semi-direct product
of a subgroup of O(D, D) and a group that does not act on the metric Lysy.

In some cases, different polarisations will give T-dual backgrounds, and these cases
will be our main focus here. However, this more general framework encompasses cases
where different polarisations give inequivalent string backgrounds (i.e. the corresponding
sigma-models define distinct conformal field theories). For example, a non-abelian gener-
alisation of T-duality was proposed in [36] and further generalised to Poisson-Lie duality
in [25]. These give transformations between related backgrounds, but which are not equiv-
alent string backgrounds [24]. The doubled twisted torus X in some cases includes different
backgrounds related by Poisson-Lie duality as different polarisations of a doubled twisted
torus, and the framework also proposes a generalisation of Poisson-Lie duality to include
H- and R-fluxes. We will discuss briefly these more general cases here, and further details
will be given in [37].

Let us return to the specific class of examples arising from reduction with a duality
twist, with gauge algebra (2.8). The Lie algebra (2.8) can be represented in terms of
operators acting on the 2(d 4 1) coordinates (z,%,X%) of the doubled twisted torus X,
where X4 are the coordinates on the doubled torus fibre T2¢, as

0 0 0

v = T BY gxa o7

1 d
Ty=04— §NABXB£ (2.34)

Then X7 generates translations along the new coordinate . The left-invariant one-forms
dual to these vector fields satisfy the Maurer-Cartan equations

1
dPA — NAgP* A PE =0 dQ, — 5NABPA APE =0 dP* =0 (2.35)
which are solved by?
1
PA = (N pdxB Qu = di + S NapX*dx” Pr=dz  (2.36)

It is useful to introduce G Lie algebra indices M, N = 1,2,...2d 4+ 2 so that the
generators Th; are

Zy
T = | X* (2.37)
Ta
and the Lie algebra can be written as
[Tar,Tn) = tun"Tp (2.38)

2Note that a coordinate redefinition, as described in [22] has been used to simplify the expressions for
the one-forms.
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For the O(d, d; Z) duality-twist reductions, the only non-vanishing components of the struc-
ture constants £y NP are

to.gd = —N45g, tyap = —Nas (2.39)

and those related to these by symmetry. The dual one-forms (2.36) on X can then be
written as PM = PM ;dX! where I,J = 1,2,...2d + 2 coordinate indices on the group
manifold G and twisted torus X. These one-forms satisfy the Maurer-Cartan equations

1
apM + 5thMPN APP =0 (2.40)

so that the space is parallelisable.

2.4.1 Geometry

To formulate dynamics, we introduce a positive definite ‘generalised metric’ Hy; and three-
form K on the doubled twisted torus X = G/I', in addition to the metric L of signature
(D, D). For cases leading to actions of the form (2.6) in which the scalar fields are given
by the 2D x 2D matrix M,y which is independent of the coordinates on X, one can
naturally define the line element and three-form I on X’ by

1
ds?> = HiydX @ dX/ K= étMNpPM APN A PN
where the metric Hy is given by
Hry = MunPM PV,

As we shall see in section 4, these can be used to define a sigma-model on X with kinetic
term determined by Hy; and a Wess-Zumino term given by K, and the normalisation of
K is fixed by the requirement that there be a self-duality constraint that can be imposed
on the world-sheet fields. The constant matrix Ljsy similarly defines a metric Ly of
signature (D, D) by

Lij=LynPM PV,

Then
Hiy = Lik(H ) Ly, (2.41)

Coordinate systems in which L;; is a constant matrix given by (2.5) are particularly nat-
ural, and in such a coordinate system P is a matrix in O(D, D).

2.4.2 Polarisation

In the doubled torus construction, a polarisation was chosen to specify a physical subspace,
at least locally. Our aim here is to generalise this to the curved case but, as we shall see,
there are new issues that arise. In this subsection, we will consider polarisations for twisted
tori constructed from general 2D-dimensional groups G preserving the metric Lysy. We
will start by considering polarisations on a general, possibly non-compact, group manifold
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G, then discuss the structures they give rise to on factoring by a discrete subgroup to give
a (compact) twisted torus G/T.

A natural extension of the polarisation II* 4 used in the doubled torus formalism is
to introduce a projector II"™,; (with m,n = 1,...., D) mapping onto a D-dimensional
subspace of the 2D dimensional tangent space, which is totally null (maximally isotropic)
with respect to the metric Ly, i.e.

LMNTI™ "y =0 (2.42)

Introducing such a projector at the identity element of the group manifold then defines one
everywhere; in a natural basis, the projector is constant over the manifold. As before, the
complementary projector is denoted by L. We say that a subgroup H of G is isotropic
or null if all of the vector fields on G generating H are null with respect to Lj;n, and if
the dimension of H is D, half that of G, then we say that it is maximally isotropic. The
polarisation splits the tangent space into two halves, and we will consider the case in which
the frame components 11", are locally constant, i.e. there is a constant matrix H( )M in
each patch U, of G, but there can be different polarisation matrices in different patches.
The polarisation projects the left-invariant generators T, of the right action Gg into

Zp = Wppe LMNTY, X7 =7 LYV Ty (2.43)

There is a corresponding split of the dual one-forms into P™ and Q,,. If we denote the
right-invariant generators of the left acting group Gy, by Th, then the polarisation projects

Zm =M LMN Ty, X™ =17 LMNTy (2.44)

and these right-invariant generators play an important role here. (Recall that on the
doubled group manifold G, both sets Tj; and T are globally defined, but on the doubled
twisted torus X = G/T", where I' acts from the left, generally only the left-invariant vector
fields Th; and one-forms PM will be globally defined.) The gauge symmetry acts through
the right action of Gr, so we will focus on the Ggr-invariant generators TVM, which at any
given point glves ag R invariant basis of the tangent space that is split by the polarisation
into the vectors Zm7 X™. The issue is then whether the split of the tangent vectors defined
by the polarisation can be used to define a D-dimensional submanifold (at least locally)
which can be viewed as a patch of spacetime. This will be the case provided the distribution
defined by the set of D vector fields X is integrable, as we shall now discuss.

An important case is that in which the X™ close to form a D-dimensional sub-algebra

(XM X" =", XP (2.45)
which requires that the structure constants and polarisation tensor satisfy
1P pt MY = (2.46)

Then, by Frobenius’ theorem, the distribution defined by the D vector fields X™ is inte-
grable so that the polarisation defines a submanifold locally. For this group manifold case,
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it in fact specifies a submanifold globally. The Xm generate a D-dimensional subgroup G
of G. This acts on G through the left action G . C G, and the submanifold selected by the
polarisation is the D-dimensional left coset G/ G 1. There is a natural action of Gg on this
coset G/ G L, generated by Z,, and X™. An interesting special case is that in which the
Xs generate a subgroup Gy, and the Z’s also generate a subgroup Gy, in which case the
doubled group G is a Drinfel’d double with a Lie algebra which, as a vector space, is g P g,
where g is the Lie algebra of GGy, and g is that for Gp. Note that the sub-algebras g, g will
not commute in general [25].

In general the X’s will not generate a sub-algebra, so that the X distribution will not
be integrable and does not define a submanifold. In this case, the polarisation does not
pick a subspace even locally, so that it does not select a physical subspace in which there
is a conventional formulation. If one then tries to lift the polarisation of the Lie algebra to
a polarisation of the coordinates and define a geometry on a subspace, then the resulting
metric and B-field depend explicitly on the auxiliary coordinates and are not ordinary
fields on the subspace; this will be seen explicitly in examples in the next section. This is
precisely the kind of non-geometric reduction introduced in [10]. In such cases, if consistent,
the theory can only be described in a doubled formalism, and this will be discussed in later
sections. Similarly, the complementary polarisation will only define a submanifold if the
2’s generate a subgroup G, and again this will not be the case in general.

Next we turn to the application of this to the compact twisted torus X = G/I'. Consider
first the case of a choice of constant IT on G in which (2.46) holds so that the X generate
a subgroup Gp. The condition for the action of I on G to induce a well-defined action of
I on g/éL is that I' preserves éL, ie forall y eI and k € éL

TRyt =K

for some k' € G 1. Then taking the quotient of G/ G 1. by I' is well-defined and defines a
subspace of G/I". The choice of polarisation on G is then consistent with the action T, so
that it is globally well-defined both on G and G/T" and selects a geometric subspace of G/T.

The discrete group I' acts on the generators T and will map the X’s to linear com-
binations of X’s and Z’s. In the geometric case just considered, the action of I' preserves
the subalgebra Gy and maps the X’s to linear combinations of X’s . More generally, I will
not preserve the subalgebra G, and the image of the X’s under the action of I' will include
both X’s and Z’s. In this case the polarisation on G is not well-defined on the quotient X,
and this will give a non-geometric background.

In the non-geometric case in which the action of I' does not preserve G 1, taking the
quotient by I' is inconsistent with taking the quotient by Gpr. Then we cannot expect a
global description of the spacetime to exist, and may only recover a conventional spacetime
in local patches. Suppose then that X = G /T is covered by contractible patches U,, each of
which can be viewed as a contractible patch of the group manifold G, and with transition
functions to be discussed below. In the passive formulation, we choose a different constant
polarisation 1, in each patch, related by transitions consistent WNith the action of I
Suppose further that in any given patch, the polarisation selects X’s that close under
commutation to generate a subalgebra (2.45), and so defines an integrable distribution and
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hence a submanifold of the patch. This submanifold has the local structure of a patch
of G/ G - The action of the transition functions on the polarisation will mean that in
different patches, different (conjugate) subgroups will be selected, and the submanifolds of
each patch will not fit together to form a submanifold of X. The result is a non-geometric
space, which is constructed from patches each of which is geometric. That is, in each patch,
the polarisation selects a physical spacetime and there is a conventional local formulation,
but these do not fit together to give a formulation on a spacetime manifold. In general,
there will be no global choice of polarisation. We stress that the condition (2.46) is a
necessary requirement for a conventional spacetime description to exist locally.

Similarly, the condition for the action of G 1, on G to induce a well-defined action of
C~¥L on G/T is that C~¥L preserves I', i.e. for all v € I" and k € éL

k:yk:_l = 7'

for some 7/ € T'. Then taking the quotient of G/T" by Gp is well-defined and defines a
subspace of G/T.

2.4.3 Physical interpretation

We can think of the doubled formalism as describing a ‘universal’ string background which
includes many different string backgrounds, each given by a different choice of polarisation.
In the case in which the different choices of polarisation are related by T-dualities or other
symmetries, they give physically equivalent backgrounds. However, the new formalism
on a doubled twisted torus can also incorporate backgrounds related by the non-abelian
duality of [36] or the Poisson-Lie duality of [25]. These are ‘duality’ transformations that
relate backgrounds that are not equivalent string backgrounds [24] so that they are not
string symmetries, but instead take one string background to another, physically inequiv-
alent background [24].

A simple example of a doubled group is the case in which G = G x G with G generated
by the Z’s and G generated by the X’s. Then one polarisation gives the background
given by the group manifold G, another gives the background given by the group manifold
C~¥, but in general giving distinct string backgrounds. For G/T" with I' = T'; x T’y with
G/T = (G/T'1) x (G/T3), the two polarisations would give backgrounds G/T'; or G/Ts.

Some polarisations might lead to conventional geometric backgrounds, while others
might lead to T-folds. Any of these can give consistent string backgrounds, provided other
sectors are added to ensure conformal and modular invariance, so that a good string back-
ground is rewritten in terms of a polarisation of a doubled twisted torus. However, in
general a doubled twisted torus that has some polarisations that give good string back-
grounds may also have other polarisations whose status is less clear. These will be given by
different polarisation projectors in different patches related in overlaps by discrete trans-
formations, and such a polarisation will lead to a generalisation of a T-fold in which the
transition functions involve these discrete transformations. The key issue is then whether
these discrete transformations are symmetries of the string theory: this is essential for
these to be candidate backgrounds for string theory.
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The natural set of discrete transformations here is the group Aut(G;T", L) of automor-
phisms of G that preserve I' and the metric Lj;n, and this will then have a natural action
on the theory defined on G/I". For example, for G = R?? T' = Z2P so that G/I" = T2,
then Aut(G;T',L) = O(D, D;Z), the T-duality group which is a symmetry of the string
theory. We expect that in general different polarisations will be related by the action of this
group, and that this group will provide the discrete transition functions relating patches
of the twisted torus. The key issue here is whether Aut(G;T",L) is a symmetry of string
theory, or if not, then which subgroup is. Only transition functions that are symmetries
of the physics can lead to good string backgrounds, and only if polarisations are related
by symmetries do they define equivalent backgrounds. Proper T-dualities acting on torus
fibres are symmetries and such transitions give rise to T-folds. Other discrete transforma-
tions arising in this way include non-abelian T-dualities or Poisson-Lie dualities. There
is evidence that such ‘dualities’ are generally not symmetries of string theory [24], so a
background with such transitions would not be a good string background in general.

The issue is then what subgroup of Aut(G; T, L) is a symmetry of string theory and can
be used in transition functions. This will clearly contain proper T-dualities, but there is
evidence that certain generalisations of T-duality should also be allowed, although generic
Poisson-Lie dualities presumably should not. One of our motivations is to consider such
cases, and to investigate the generalisations of the usual T-dualities that are suggested
by the formalism, such as those proposed in [10]; these involve dualising a circle direction
which is not isometric, so that conventional T-duality is not possible.

A related issue is that of whether two polarisations are physically equivalent. In
the case of the doubled torus formalism, all polarisations that are related to each other
by O(d,d;Z) T-duality transformations on the 72 doubled torus fibres are physically
equivalent. In the doubled twisted torus formalism, some polarisations will again be related
to others by T-dualities and will lead to equivalent representations of the physics. However,
others will not be so related, and the question arises as to whether they are then physically
equivalent. They will typically be related by the action of Aut(G;I', L), but only if they
are related by proper string symmetries will they be equivalent.

In summary, there are a number of cases. In each 2D-dimensional patch, there is a
polarisation projecting the tangent space at each point onto a D-dimensional subspace. If
this distribution is integrable (i.e. if (2.46) is satisfied), then this selects a D-dimensional
submanifold of the patch. There is then a description of the spacetime in this patch as
a patch of G/ Gr. If the polarisation is globally defined on X, then it selects a physical
subspace which is a submanifold, given by identifying G/ G, under the action of I', and
this gives a geometric background.

If the distribution in each patch is integrable but the polarisation is not globally de-
fined on G/I" (i.e. not preserved by the action of I'), then the result is a generalisation of
a T-fold, with a good doubled formulation on G/T" but where a D-dimensional spacetime
can only be selected locally in each patch, and these spacetime patches do not fit together
to give a global spacetime.

Finally, if the distribution selected by the polarisation is not integrable, then although
the polarisation splits the tangent space, it does not define a submanifold even locally, so
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that no local spacetime and no local geometric picture can emerge. More will be said about
the interpretation of such cases below.

2.5 T-duality and R-flux

Consider the case of the generic algebra of the form (2.8) arising from a reduction with a
duality twist. The monodromy on going around the x circle reflects the fact that transla-
tions in the z direction are not an isometry — the metric and fields depend non-trivially
on x — so that conventional T-duality in the x direction is not possible. If z-translations
were an isometry, a conventional T-duality [9] would have been possible and naturally
formulated using the coordinate & on a dual circle. It was conjectured in [10] that there
should be a generalised T-duality in the z-dependent case which again involves introducing
a dual coordinate , and which exchanges x and . The result is then a reduction with
duality twist monodromy around the z circle, and the duality exchanges Z, with X*. This
produces a theory with the gauge algebra

[X®,Ty4] = —NBATp [T4,T] = —NapZ, (2.47)

with corresponding one-forms

- 1
PA = (M) pax? P? = do + 5 NapX*dx” Q. =di  (2.48)
Decomposing T4 into Z, and X, the twist matrix may be written as (using Nap = —Np4)
Qabm Rmab
N4p = 2.49
(fabx —Qp™ (2:49)
The gauge algebra is then

[Xx7 Za] _ _Qaa:be + faba:Xb [XJC,XG] _ beaXb + Rxabe

(Za, Z) = fab* Za (X%, Z) = Q" Zy  [X*, X"] = R*™Z, (2.50)

with all other commutators vanishing.
From this, we see in particular that the Z-twist can incorporate an R-flux as well as a
Q-flux. Consider the case where only R*® # 0. The left-invariant algebra is then

[X® X9 = R*Zz,  [X% X" = R*Z, (2.51)

with all other commutators vanishing. The left-invariant one-forms, dual to the vector
fields which generate this algebra, are

1
P* = dx + §Rmbzadzb P% = dz% + R*®3d3z,

(2.52)
Qm =dz Qa = dza
The right-invariant generators of the left action Gy, satisfy the algebra
[X® X9 =—-R*Z, [X%X']=-R*Z, (2.53)
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with all other commutators vanishing. We see that in this case the generators X do not
close to form a subalgebra and therefore a conventional target space description cannot be
recovered as a coset locally, as described above. Attempting to choose a polarisation that
selects the Z’s as the geometric generators does not work, as the corresponding distribution
is not integrable. The only description we have of such backgrounds is through the doubled
formalism. More generally, the structure constant

prtMNPHmMHnN — Rmnp

is an obstruction to the closure of the algebra generated by X™ and means that, even locally,
this polarisation has no conventional spacetime description. R-flux will be discussed further
at the end of the next section in the context of particular examples.

2.6 Drinfel’d doubles and doubled twisted tori

One case of interest is that in which the generators of G consist of Z,, generating a D-
dimensional subgroup G and X" generating a D-dimensional subgroup G. The group will
not in general be a product G x é, but instead the algebra will have ‘cross-terms’ [X™, Z,]
and be of the form

(Zm, Zn)| = frn® Z, (X", Zp) = fnp"" XV — Q,"""Z), (X" X" =Q,""XP (2.54)

Then G and G are both null with respect to the natural metric Lyy (i.e. the generators
of G are all null and mutually orthogonal, and similarly for the generators of C~¥) and we
have a triple of Lie groups (G, G, é) In this context, the triple of Lie groups (G, G, é)
is often referred to as a Manin triple and the doubled group G with metric of signature
(D, D) is said to be a Drinfel’d double [25-29]. The two complementary D-dimensional
group manifolds G and G are recovered as the cosets G / Gp and G /G, respectively.

For a given G, there may be different choices of subgroups G, G C G such that in each
case (G, G, é) is a Manin triple, giving different decompositions of the same Drinfel’d dou-
ble. In this way different Manin triples may correspond to different choices of polarisation,
although not all choices of polarisation will give a Manin triple.

An example of a Drinfel’d double is the cotangent bundle for a D-dimensional group
G, so that G = T*G. In this case G = RP and the doubled group is the semi-direct product
G = G x RP generated by the Lie algebra

(Zm, Zn) = fon® Zp (X", Zp] = fnp" XP (X, X" =0 (2.55)

This is parameterised by g € G and coordinates Z,, on G = RP. A basis of left-invariant
one-forms on G is
P™ = (g7'dg)™  Qum = dEm + frnPipP"

where the one-forms P™ and @),,, are dual to the vector fields Z,,, and X" respectively. The
Lie algebra (2.55) is encoded in the Maurer-Cartan equations for P and @, as described
in previous sections.

Note that the one-forms P™ = P™;dz* and Em = dZ,, are left-invariant one-forms on
G and G = RP respectively and therefore give a globally defined basis of left-invariant
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forms on G x R, but not on G x R”. The action of G = RP on @ is trivial and so the P™
lift to left-invariant forms on G; however, the non-trivial action of G on G means that the
dx are not globally defined on the double G. Instead, the globally defined one-forms on G
are Q,,, which are related to the forms dz,, on G by the ‘twisting’ dZ,, — dZ, +EmnP”

where Emn = fmnPZp. The left-invariant one-forms may be written in a basis independent
way as P = P™T,, and Q = Q,,7™, where

P=gldg Q=di—[%P)

with & = &, 7™ and where T}, and 7™ generate a matrix representation of the alge-
bra (2.55). It is not hard to show that the left action of G on the coordinates ' and ,, is

szt = (P71, 'a™ 6r =g tag

with parameters «, @. The action of G1, on the coordinates z! parameterising G = G/ Gr
is trivial but G has a nontrivial action on the coordinates ,, which parameterise G. It
is then easy to see that the natural left-invariant forms (P, /) on G x G are not invariant
under G but transform as

SP=0 60 =—[P iz (2.56)

The G-invariant forms (P,Q = £+ [P,Z]) can be thought of as a ‘twist’ of (P, £).

A particular feature of the case in which G is a Drinfel’d double is that there are two
natural polarisations, one corresponding to the coset G/ G, and one leading to the dual one
G/G1, and the dual one can be treated in the same way as the one corresponding to Q/éL
was in section 2.4. The doubled twisted torus is given by identifying the Drinfel’d double
by a subgroup I' C Gy, so that X = G/T" is compact. If the action of I' preserves and is
preserved by C:*, then the quotient X'/ G is well-defined and there is a global description of
the spacetime resulting from this polarisation, similarly for X' /G. For the example given
above in which G = T*@G, the action of I' preserves and is preserved by R” and so the
quotient X /RP is always well-defined and corresponds to the D-dimensional twisted torus
N = G/T’, where I" C T acts only on the coordinates of G and leaves R” invariant.
Recovering a conventional spacetime description in this case simply corresponds to the
natural bundle projection on T*N.

In general, the action of I' need not preserve or be preserved by G (or G), in which
cases the quotients X /G, (or X/Gy) will not be well-defined and there will be no global
spacetime from these choices of polarisation. Conventional spacetime patches can be re-
covered locally as patches of G/G (or G/GL), as described in sections 2.4.1 and 2.4.2.
Only in the cases in which the transitions between patches are through true symmetries of
the string theory can such non-geometric backgrounds be string backgrounds.

The addition of structure constants associated with H- and R-fluxes deforms the al-
gebra (2.54) to

[Zma Zn] = fmanp + Kmanp [Xm’ Xn] - menXp + Rmanp
[Xm’ Zn] = fnmep - Qnmpr
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so that neither G nor G are subgroups of the doubled group G. The physics of the doubled
geometry corresponding to such H- or R-twisted Drinfel’d doubles will be explored further
in [37]. In the absence of R-flux, the X close to generate G and this is the case analysed
in detail in section 2.4.

2.6.1 Polarisations and group actions

For a Drinfel’d double, one can define a basis of right- and left-invariant forms on the groups
G and G, which we denote by (r™, ™) and (Fp, ) respectively.® The actions of these
factor groups on each other reflect how the two groups are ‘twisted’ together to form G.

A simple way to characterise the action of the sub-groups on each other is to look at
the adjoint action of G on the (matrix) generators T, € g and ™ € g, selected by a choice
of polarisation, T, = II,,MTy; and ™ = I™MTy. We use g and g to denote the Lie
algebra of G and G respectively and the adjoint action of G on the generators of G defines
matrices A, b and [ by

— Tm A " bmn Tn
’ 1<Tm>9 (W( : m) <T> 297

Similarly, the adjoint action of G on the generators of G defines matrices g, b and E by

it (%) g= <(A5;)nmn %Z) (%) (2.58)

Note that b, 3,b, 3 are antisymmetric. The matrices 4, b and 3 depend on z¢ only and
encode the adjoint action of G and the matrices g, b and E depend on z; only and encode
the adjoint action of G. A" (g) is the adjoint action of G on g so that g~'rg = £ or,
in components, " A, = (™. Similarly, Zlmn(g) is the adjoint action of G on g so that
fng"m = Zm The adjoint action preserves the metric Ly;n so the 2D x 2D matrices whose
block form is given in (2.57) and (2.58) are in O(D, D). The form of the 2D x 2D adjoint
matrices is determined by the polarisation chosen and different choices of polarisation will
give different matrices A, b, 3, ﬁ, b and 5

The non-trivial twisting together of G and G means that the right- and left-invariant
one-forms on G, denoted by PM and PM respectively, are not simply

PM =m0y PM = (™)

but are twisted together in a more complicated way. In the case of a Drinfel’d double,
where the polarisation is such that both 7}, and ™ generate subgroups of G, the adjoint
actions simplify. In particular, the adjoint action of G preserves g so that g 1ng = AT,
and by, = 0. Similarly, the adjoint action of G preserves g so that g —lpmg = Am, T, and
ﬂ = 0. We shall see that more general groups G, which are not Drinfel’d doubles, do
not simplify in this way.

3(r™, Fp) are right-invariant and (£, 0,,) are left-invariant. For ¢ € G and §j € G, we can write
-1

{ = g_ldg, = g—ldg, r= dgg_1 and 7 = dgg
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Let us consider group elements h € G that can be written in the form h = gg, where
g € G and g € . The left-invariant one-form can be written as

P = h~tdh = gm(gileg) + 7:m(gilj:m.g)

or, using the definitions of the adjoint action of G on the Lie algebra of G given above, as

P=(min) <@I€»¢%§%Z> <%ﬁ>

It is useful to write this block decomposition of the one-forms as
P =MWy, N (&) Ty

where &M = (0™, 7p,). The information on the twisting together of the two subgroups is
contained in W which depends only on Z.

We now return to the example given above in which G is abelian (so that U = T =
dZ,,) and suppose that G is a semi-simple group with structure constants f,,” so that
G = G x RP. We choose a matrix representation of the generators

7, = [ 0 T (2.59)
0 tm 0 0

where h,,, = % fmp? fng” is the non-degenerate Cartan-Killing metric of G' which raises and
lowers indices on the structure constants and t,, is a D x D matrix representation of g so
that [tp,, tn] = frmnPtp. A general element h = gg of G may then be written as

e (9 0 1z _ (9 gz
0g 01 0 g
and the one-forms (2.56) may be read off from

p_ g~ tdg di + [P, 7]
N 0 gildg

We then see explicitly that

(A_l)mn = 0" bmn = _fmnpjp

so that the adjoint action of G on g is trivial, as one would expect for an abelian group
G =RP.

Alternatively, we could consider the parameterisation h = gg so that the left-invariant
one-forms are more naturally written as

() ()
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or schematically . .
P =NV M ()T (2.60)

where &M = (rm,gm). The information on the twisting together of the two subgroups is
now contained in VNM (x) which depends only on the z%. For the polarisation choosing the
x' as physical coordinates, it is this parameterisation leading to a twist V depending only
on the ¢ that is the most useful.

For the G = G x RP example, this parametrisation may be written in terms of the

b 1z 90) (g9
o1 0g) \0gyg
In this parameterisation, the left-invariant one-forms are
p_ (9 'dg g dEg
= -1
0 g dg
so that P™ = (g~ 1dg)™ and Q,, = (A™1),,,"dZ,. It is not hard to see why this parameteri-
sation h = gg is most useful; we shall be interested in recovering a conventional description

basis of generators (2.59) as

as the left-acting quotient of the doubled group by G and the left action of G on elements
of G is manifest precisely in the parameterisation h = gg. Similarly, if we were interested
in the quotient G/ G R, the appropriate parameterisation to consider would be the one with
h = gg described above.

2.6.2 Recovering the physical background fields

For a Drinfel’d double, using the parameterisation h = gg giving
P = oMy N (2)Ty
we can define a G-invariant metric which depends on the coordinates 2 only by
Harn(z) = MpoVM pV9y
With a polarisation tensor © MM , we can define
Hy () =0 M Han (2)0 ¢

whose components define a metric ¢,,, and B-field By, by

Byipg® Byn Bupg™"
Hyp (@) = (‘qm" +mp”gg o ) (2.61)
g np g

The metric g, (x) and B-field B,,,(x) depend only on the x! coordinates, are manifestly
G -invariant and therefore

Gij = Gmnt"ir"j  Bij = Bppr™ir"; (2.62)
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give a metric and B-field which are well-defined on the coset G/ Gr. In general, the two-
form B, coming from the G-invariant doubled metric (2.61), is not necessarily the only
contribution to the physical H-field strength. There may also be a contribution coming
from the natural Gy, x Gg-invariant three-form on the doubled group
1
K= ctunpP APYAPE

It will be shown in section 6 that, when the doubled group is a Drinfel’d double, the
physical H-field strength on the coset G/Gy, is given by

1o/ -y 1
H:dB—§d<r Mm)+§lc (2.63)

This expression may seem surprising but, as we shall see in section 6, its form arises
quite naturally from the world-sheet description of the doubled geometry. Moreover, when
the doubled group is a Drinfel’d double, one may use the Maurer-Cartan equations dual
to the algebra (2.54), to show that K = d(+™ A £,,), and so this expression for the H-
field strength simplifies to

H=dB

and so, in the case where the doubled group is given by a Drinfel’d double, the physical
metric and B-field may be read off directly from the G r-invariant metric Hasn ().

As an example, we return to the case in which G is abelian, so that G = T*G. Then
Em = dZ,, and let the structure constants of G be f,,,F as before. If we choose the
parameterisation h = gg € G, then one can show that " = 0 and A,," is the adjoint
action of the group G; i.e. £ = r™A,™. The left-invariant one-form may then be written as

P = () <Agn (A?)mn>

so that the metric is given by
ds? = O A"y A" 1P @ 19 = ™ @ 1"

and B = 0. In this case, it is not hard to show that K = d(+"™ A/,,) and so the H-field van-
ishes.

Conversely, we can consider the polarisation where we take the physical coordinates
2™ to parameterise the abelian group R, and G to have structure constants Q™M) so
that [Tm, f”] = anpfp and G = T*G. Again, the natural parameterisation to choose is

h = gg so that
m A" 0 T,

where " = Q"",2P and A™,, = 0™, since G = R and so /™ = r™ = dz™. The G-
invariant metric Hsn () then gives a metric and B-field specified by (g+B)~! = 1+43. In
the special case where the doubled geometry is six-dimensional and the only non-vanishing
structure constant of G is QY?, = m € Z, then Y = ma and the background is a cover
of the familiar T-fold. Here too, one may show that K = d(r™ A £,,) and so K does not
contribute to the physical H-field.
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2.6.3 General case

Consider now the case of a general doubled group G which is not a Drinfel’d double, so
that there may be H-flux and/or R-flux. In general the vielbein P*; will depend on all
coordinates, both x and Z. Nonetheless, the GGy -invariant generalised metric

Hy () = MPQVPMVQN

can still be used to define a metric and H-field using (2.61) and (2.63), but now these fields
will depend on both x and Z in general, so their interpretation is unclear. In those cases in
which VM and ™ can be chosen to depend only on z, the background will be geometric
locally. There will be local fields g;;(x), B;j(x), although there may be non-trivial patching
as in T-folds. In other cases where dependence on & cannot be avoided, then the resulting
configuration is not even locally geometric, and the z-polarisation will involve background
fields depending on the dual coordinates 7.

For a given polarisation, a natural way of introducing coordinates (in a neighbourhood

of the identity) is through the exponential parameterisation
h = exp(@mT™) exp (2™ Tp,)

In the case in which the X™ generate a subgroup G, then g = exp(imfm) € G. Let
k = exp(2™T,,) so that h = gk. Then defining r = dkk~!, £ =

forms as

g~ 'dg, we can expand the

r=1"Tp 4 rpT™ 0=0,T™

where we note that r is in general a linear combination of all generators, since the k are
not elements of a subgroup, but are elements of the full doubled group G. Since the T,, do
not generate a subgroup, the adjoint action of {k} on g does not preserve g and we have

kAT k= AT A+ by T

P () ()

where ¢, = Zm + 1, and we again have an expression of the form

so that

P =My Ny

As V depends only on x, again a metric and B-field depending only on = are obtained
using (2.61), but now the H-field strength also gets a contribution from the three form X
and the expression (2.63) generalises to

1 1
As an example, consider the group generated by the algebra

(Zm, Zn] = KpnpXP [Zm, X" =0 (X" X" =0
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The Gy -invariant one-forms are

1
P = dx™ Qm = dT,, — 3 mnprlda”
It is not hard to show that
1
™ = dg™ =g mnpZPr’ Gm = Qm + KpnprPr"

Also, A, = 0", /™" = 0 and by, = Kppyppa?. This gives P = MY N ()T, where

q " Kpnp?
- (5 )
0o oy,
and ®M = (d2™, G,,). The metric is given by

ds® = §ppdz™ @ dz"

so that the spacetime is locally RP. The global structure of the spacetime is determined
by I' and in the discussions which follow we shall usually choose I' so that the spacetime
is compact which, in this case, gives a D-dimensional torus. The physical H-field strength
on TP is given by (2.64) where

K= —%Kmnpdxm Adx™ N dx? (2.65)
We also have the contributions
db = %Kmnpdmm Adz™ A dx? %d (r"™ A gm) = iKmnpdmm Adz™ A dx? (2.66)
Substituting (2.65) and (2.66) into (2.64), we find that the physical H-field strength is

1
H = EKmnpdacm Adx™ A da?

More generally, there may be non-trivial R-flux. Then the T™ do not close to give a
subalgebra and the expansion of the forms / is in general a linear combination of all genera-
tors, so that £ = £, T™ +{™T,,. The left-invariant one-forms on G can be expanded to give

’ An" b
M _ ~ m mn
P = <pm Qm> (ﬂmn (A_l)mn>
where p'"* = r™ 4+ /™ and Gm = U + T, and we again have an expression of the form
P = &MV N ()T
As before, we extract x-dependent fields g, and By, from Hy;n(z). The main difference
in the R-flux case, where £ = 0, is that the physical metric
d52 = gmn(x)pm ® pn
now depends explicitly on #; through the one-forms p™ = 7™ + ¢ and so it is not possible
to eliminate the Z;-dependence completely if the T do not generate a subgroup of G.

Similarly, it is not possible to remove all Z;-dependence from the H-field which is given by
the expression

1 1
H:dB—id(pm/\(jm)—l-ilC

The issues discussed here will be illustrated by further examples in the next section.
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3 Examples

We shall now apply the formalism developed in the previous section to a specific example.
Starting with the three-dimensional nilfold N, we explicitly construct the associated five-
dimensional doubled torus bundle 7 and the six-dimensional twisted torus X. The recovery
of a conventional description of the nilfold and its T-duals from these doubled geometries
will be explicitly demonstrated in each case.

The nilfold is a compact three-dimensional manifold. It may be constructed as a T
bundle over a circle S., where the fibration has monodromy in the mapping class group,
SL(2;7Z), of the torus fibres. Let 2% = (y, z) be the coordinates on the T? fibre and z the
base circle coordinate with z ~ = + 1. The twist of the bundle is given by the s[(2) Lie

algebra element f%, which gives a monodromy e/ € SL(2;Z), where

o (00 ;[ 10
fb—<_m0> e —(_m1> m e 7 (3.1)

A globally defined basis of one-forms on the nilfold is
P* =dx PY = dy — mxdz P?=dz (3.2)

The global structure of the nilfold requires the following identification of the local coordi-
nates

(x,y,z) ~ (.%' +1,y —l—mZ,Z) (xvyvz) ~ (x,y + 172) (x,y, Z) ~ (xvyvz + 1) (3'3)

which leaves the one-forms P™ = (P*, PY, P?) invariant. A metric g = ) P™P™ may

be constructed from these one-forms, giving

gi; =10 1 —mx (3.4)
0 —max 1+ m2z2

and it is this metric that is used in the dimensional reduction ansatz discussed in the
previous section.

Alternatively, the nilfold may be constructed as a twisted torus N' = G/T" where G is
the noncompact Heisenberg group manifold and I' is a discrete subgroup chosen so that
G/T' is compact, i.e. ' is cocompact. The generators of the Heisenberg group G satisfy
commutation relations

(Lo t.] =mty, [ty t:]=0 [tz t,] =0

and a useful matrix representation is

0mo0 001 000
te=1000 ty,=1000 t.=|001 (3.5)
000 000 000
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Using the local coordinates (x,y,z) on the group manifold G, a general element of the
group may be written as

g=101 2 (3.6)
00

The one-forms (3.2) are given by P = g~'dg and are invariant under the left-action of the
group G. The discrete group I' has general element h given by

1 ma B
h=10 1 ~ (3.7)
0 01

where «, 0 and y are arbitrary integers. The nilfold is given by the identification of G under
the left action of I'. Then the identification g ~ h-g, with («, 3,7) given by (1,0,0), (0, 1,0)
or (0,0,1), reproduces the identifications of the coordinates (3.3). As the identification is
through the left action, the left-invariant one-forms (3.2) are well-defined on G/T.

The noncompact group manifold G admits a natural action of the group from the
left G, and from the right Gr. The right action, Gg, is generated by the left-invariant
vector fields

0 0 0

0
Ty=—  Jy=—  Z o= =
oz dy Bz+mx8y

and Z, and Z, are Killing vectors of the metric (3.4), whilst Z, is not. Note that the Cartan-
Killing metric for the Heisenberg group, which would automatically be invariant under
G, x GR, is identically zero, and we are using a non-degenerate metric (3.4) which is only
invariant under a subgroup of G, x Gg. Furthermore, the vector fields Z,, = (Z;, Z,, Z.)
are invariant under the action of I' C G, and so are well-defined on the quotient N' = G/T".
The one-forms (3.2), dual to these vectors, are also well defined on N.

The right-invariant vector fields Zn = (ZC, Zy, Zz) on the group manifold G generate
the left action G, and are given by

-~ 0
Z.= 5

Zm:——i—mz— Zy:

o 3y (3.8)

Note that Zvy and Z, are Killing vectors of the metric (3.4), whilst Z, is not. These vector
fields are not invariant under the action of I' and transform as

Ty — Zp+mZy Zy— Zy Z.— Z.—mal, (3.9)

Then although the three right-invariant vector fields Z, are globally defined on G, only
Zy is well-defined on the quotient A= G/I". Of particular importance is the fact that the
generator Z, is not preserved by I'. The fact that Z, is locally defined (on each T2 fibre)
but not globally defined on N leads to a T-dual description of the background, given by
dualising along the z direction (i.e. with respect to the generator Zz), which is a T-fold.
Of particular interest is the use of twisted tori, such as the nilfold, as internal manifolds

in conventional compactifications of string theory and supergravity. Compactification of a

,28,



supergravity theory with metric, B-field and dilaton, with action of the form (2.1) (plus
terms involving other fields), on the nilfold gives a massive supergravity of the form (2.6)
with a non-abelian gauge algebra given by

(Z0, Z.) =mZ,  [Ze, XY]=mX®  [Z.,XY] = —mX"® (3.10)

where all other commutators vanish. The symmetries generated by 7, = (Z;, Z,, Z.) arise
from the action of the left-invariant vector fields Z,,, on the nilfold given above, while the
symmetries generated by X' arise from B-field antisymmetric tensor transformations. The
gauge algebra is that of the six-dimensional group G x R? where G is the Heisenberg group.
This compactification can be equivalently constructed as a duality twist reduction of the
supergravity, as described in the previous section, where the twist matrix (2.9) is given by

@ 0
NAp = <f0b —fa”> (3.11)

with f%, given in (3.1).

3.1 T-duality

With the choice of metric (3.4), the Heisenberg group manifold has the geometry
dsi; = da® + (dy — madz)* + dz* B=0 (3.12)

and has Killing vectors Z, = Zvy, Z,, Z.. On taking the quotient by I' to obtain the nilfold
background, Z, = Zy and Z, are left-invariant and so are Killing vector fields of the
nilfold, while Z, remains as a local solution to Killing’s equation, but does not extend to
a globally-defined vector field on the nilfold.

In Buscher’s formulation of T-duality [9], the starting point is a sigma-model whose
target is a torus bundle with a compact abelian isometry group, preserving the H-field
and dilaton as well as the metric. The isometry is then gauged, and the gauge connection
constrained to be trivial. Eliminating the gauge field recovers the original theory, while
integrating out the torus fibres gives the T-dual target. Buscher T-duality then requires a
compact abelian isometry which leaves the background invariant.

The sigma model with the nilfold as target space is constructed from the pull-back of
the left-invariant one-forms (3.2) to the world-sheet and as such there is a manifest rigid
G, symmetry in the world-sheet theory. The application of Buscher’s construction then
requires that there is an abelian subgroup of this rigid Gy, symmetry which generates an
invariance of the full background. There is such an invariance of the nilfold background
given by the U(1) isometry y — y-+e€ generated by Zy = 0y. The vector field Zvy is preserved
by I' and therefore is well-defined on the nilfold. Applying the Buscher construction it was
shown in [3, 38| that the T-dual of the nilfold background (3.12) is given by a three-
dimensional torus with non-trivial B-field

ds2g = do* + dy? + d2* B =mady N dz (3.13)
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The B-field gives a constant H-flux, with H = mdxz A dy A dz. The global structure of the
torus is read off from the identifications of the coordinates

(x7y7z)N(x+17y7z) (x7y7Z)N(x7y+]‘7z) (x7y7z)N(x7y7z+]‘)

A second invariance of the Heisenberg group manifold G is the abelian isometry z —
z 4+ €. The generator Z, =0, is globally defined on the Heisenberg group manifold G' but
is not globally defined on the nilfold A. Under the shift of the coordinate z — x + 1, the
vector field is not invariant but transforms as

7, — Zz —mZy

and so EZ is not periodic on N. Strictly speaking, the Buscher rules cannot be applied to
this case, as the Killing vector is not globally well-defined on the nilfold and is, at best,
multi-valued. This problem can be avoided by going to a covering space in which the
periodicity of z is dropped. This covering space is C\y = G /T where I is the subgroup of
I' given by elements of the form (3.7) with a = 0. This gives the periodic identifications
y ~y+1and z ~ z + 1 while leaving = non-compact, so that C has topology R x T2

On the covering space Cyy, Z, is globally defined and we can consider T-duality along
the z direction using the Buscher rules. Performing the T-duality gives a smooth manifold
C7 which again has topology T2 x R with metric and B-field given by

dSCQZ“—Fold = d‘rz + 2 (dy2 + dZQ) B

mx
— dy Nd 14
1+ (mz) 20y /a2 (3.14)

T 1+ (mzx)
This background is a conventional geometry, with a non-trivial B-field. However, we are
interested in the background T-dual to the nilfold, with periodic x, suggesting that we now
try to make x periodic. The metric and B field (3.14) are clearly not periodic in z, so this
could not lead to a smooth geometry.

To better understand this background, consider first the T-dual of C given by the
covering space Cqps of the T3 with H-flux m, which is R x 72 with 2 the non-compact
coordinate with metric and B-field (3.13). Consider a particular T2 fibre at some fixed =,
with metric § and B-field B, so that E = §+ B is a 2 x 2 matrix given by

E:( 1 mx)zl—i—xQ
—mx 1

=(55)

T-dualising along the y and z directions of the T2 leads to a dual torus background with
metric g and B-field B with E = g + B given by E = E~!, so that

1 1 max
E=—
14+ (mz)?2 \ —mz 1

where
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This is the same result as is obtained by T-dualising C)ys in the z direction.

Under the shift + — x+1, the B-field of the dual background is shifted Byz — Byz +m
and so we see that periodically identifying the x coordinate of Cps gives a space with an
r-monodromy that is a shift of the B-field, B’yz — B’yz +m. This of course gives a T2 with
H-flux m. Now for the dual space (3.14), under the shift z — x 4 1,

E:E_l — (E+Q)_1

which is a T-duality transformation of E, in O(2,2;Z). Then the monodromy is a non-
geometric T-duality transformation, resulting in a T-fold. This amounts to what is some-
times described as applying the duality fibrewise.

Locally, the T-fold is a conventional geometry, but the global structure cannot be
understood as a manifold since the monodromy is not in the SL(2;Z) mapping class group
of the T? fibres. The non-geometric monodromy of the T2 fibres of the T-fold background
can be recast as a geometric monodromy of the T fibres of a doubled torus bundle 7, in
which auxiliary coordinates are introduced as described in the previous section. We now
turn to this doubled formulation of our example.

3.2 The doubled torus fibration 7

As discussed in section 2, a string background which is a torus bundle or T-fold also admits
a description as a doubled torus bundle 7. For the current example with 72 fibres, this
doubled torus bundle with T* fibres is constructed by introducing auxiliary coordinates
Zo = (9, 2) for the torus T-dual to the physical torus, so that

2= (y,2) = X4 = (y,2,7,2)

Then 2% = (y,z) are coordinates for the physical fibre T2 C T% and 2z, = (,2) are
coordinates on the T-dual torus 72 c T4.

In this description, all monodromies have a geometric action on the doubled fibres as a
large diffeomorphism since O(2,2;7Z) C GL(4;Z). The monodromy of the doubled torus fi-
bres is

r—x+1 x4 - (e_N)ABXB

which in the case of the nilfold is given by (2.49) where K,q, and Q,% are both zero and
fz¥ = m € Z, so that on taking x — z + 1,

Y 1m 0 0O Y
1
o N I N (3.15)
Y 00 1 0O Y
z 00 —-m1 Z

The metric g and B-field of the T? fibres specify a generalised metric H on the doubled
T* fibres of T, a 4 x 4 matrix with components in the y, z, 7, Z basis given by

— B¢ B Bg~!
H=|9"2 7 (3.16)
-9 B g
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For the nilfold with metric (3.4) and B = 0, the generalised metric on the 7* fibres of 7 is

1 —mx 0 0
—mz 1+ m?z? 0 0
Hy = 2.2
0 0 1+ m°x® mx
0 0 mx 1

This z-dependent metric H is related to the z-independent metric M appearing in (2.2)
by Hap(z) = (eN*) 4 Mcp(eN®)P  where, in this case, Map = d4p. As for the nilfold,
the doubled torus bundle 7 can be thought of either as a 7% bundle over S} or as a twisted
torus 7 = G/I', given by identifying a certain group manifold G under the action of a
discrete subgroup I'. The five-dimensional group G is that generated by (2.32). Using the
same coordinates (z,y, 2,9, Z) as above, the general element g € G is

Imae 0 Oy
01 0 0z
9(x,y,2,9,2)= [0 0 1 0 (3.17)
00 —mxlz
00 0 01

The global structure of 7 is given by taking the quotient by a discrete subgroup. The
relevant discrete subgroup I' consists of elements of the form

1lma 0 00
01 0 0v
h=(00 1 08 (3.18)
0 0 —maly
00 0 01

where «, 3,7, 3 and 7 are arbitrary integers. The left action of h is ¢ — h - ¢ and acts on
the coordinates through

r—c+a y—yt+maz+p z—z2+7y

T o o (3.19)
y—y+po Z—z—may+7y
We identify G under the left action of I' so that the coordinates are subject to the identi-
fications
(x’y’z’g?é)N(x+1’y+mz’z’g?é_mg)
(x7 y7 Z? g? 2) ~ (x7y+ 1727 :[ja 2)
(x’y’z’g72) ~ (x’y’z+1’g’2)
(x7 y7 Z’ g? 2) ~ (x7 y7 Z’g—"_ 172)
(x’ y’ Z’ g’ 2) ~ (x’ y’ Z’ g72 + 1) (3'20)

There is a natural action of Gy, X Gr on the group manifold G, generated by associated
right- and left-invariant vector fields. The right action Gg is generated by the left-invariant
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vector fields (i.e. invariant under Gr)

P ) B
- z, = < - 7
Sl v = gy =g, Ty
) ) )
XY — _ X7 = — 21
a5 "oz BE (3:21)

which satisfy the commutation relations
(2, Z.] = mZ, [Zy, XY] = mX~ (3.22)

where all other commutators vanish. Note that this is not the gauge algebra of the field
theory (2.8) obtained by compactification on the nilfold, but is a subgroup of a contraction
of the gauge algebra (2.32). The fact that the vector field is left-invariant means that it
is invariant under the action of the discrete group I' and so well-defined on the quotient
7T = G/T. Indeed, the left-invariant vector fields are dual to the left-invariant one-forms

P*=dx PY=dy—maxdz P?=dz

(3.23)
Qy = dy Q. = dz + mazdy
which are also well-defined on the quotient G/T".
By contrast, the generators of the left action Gy,
= 0 0 = 0 = 0
Z:v - A o y—— Ly = — Zz = —
oz ey T ™y ¥ = 5y 0z
> 0 = 0
oy 0z ( )

are globally defined on the group G, but are not invariant under the action of I', which acts
as

Ly — ZE + myzy — mB)Z'Z Zvy — Zy Z, — Zz - maZvy
XY = XY+ maX® X*— X?
These vector fields are therefore not globally defined on the twisted torus 7 ~ G/I". The

discrete group I' does however preserve the subgroup G L ~ R? C Gy, generated by X =
(X, X)

(3.25)

I: C~¥L — C~3L
(It also preserves Z,.) The subgroup G consists of matrices f of the form (3.17) with
r=y=2=0,
10000
01000
f(3,2)=100107
0001z
00001

Taking the quotient of the group G by the left action of Gr gives the coset G/ G, which
is just the Heisenberg group G, represented by group elements of the form (3.17) with
y = Z = 0. The subgroup G, has the property that, for all h € I" and all f € G,

fhf~term
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i.e. there is an A’ € I so that
hf = fh

This implies that G L has a well-defined action on the coset 7 = G/I" so that 1dent1fy1ng T
under the action of G, is well-defined. This quotient gives the nilfold, N' = 7 /Gp. It can
also be viewed as the quotient of G by the left action of the subgroup of elements of the
form (3.18) with «, (3,7 arbitrary integers and 3,7 arbitrary real numbers.

3.2.1 Polarisations

We have seen that the data given by the nilfold background specifies a doubled torus bundle
7 and that the nilfold geometry can be recovered as the quotient N' = 7/ Gr. The T-
duals of the nilfold are the 7 with H-flux and the T-fold, and these can also be recovered
from the same doubled geometry 7 through different choices of polarisation. Then 7 is a
universal geometry containing the original space and its T-duals, as discussed in section 2.
Using the notation X4 (A = 1,2,3,4) for the four coordinates of 7, each polarisation
selects two of the four coordinates X4 to be the ‘physical’ coordinates 2% = (y, z) and the
other two to be the ‘auxiliary’ Z, = (7, Z). In section 2, polarisations were defined in open,
contractible patches of the base, which here is the circle S1. We will consider polarisations
defined on the interval I with 0 < 2 < 1, so that the polarisation defines a 3-dimensional
subspace, topologically I x T2, of the doubled space that has topology I x T%.

A polarisation selects a maximally isotropic choice of T? C T* as the physical space,
defined by a constant projector II* 4 so that 2% = (y, z) = II*4X4 are the coordinates of the
physical T2. The complementary projector I, 4 defines the auxiliary T? with coordinates
Zo = (7,2) = HaAX It is useful to define the polarisation tensor @AA so that

CRVE <H“A ﬁaA> XA = of,x4 =

m e N

The polarisation is constant over I, so that it selects a subspace I x T? of I x T*. This
then can be continued in z so that it selects a subspace R x T? of R x T*. We will see that
the various choices of subspace R x T? will give the covering spaces Cyr, Cr, Cps. The
0(2,2;Z) transition functions of section 2 are now seen, after the identification = ~ x + 1,
as an O(2,2;7Z) monodromy round the x circle.

The effect of a T-duality was analysed in [7]. Acting with the O(2,2;Z) element O“p
changes the polarisation A A A

04, o4, —ei,08,

and the new physical coordinates are 3/, 2/, where

XIA — @,AAXA —

,34,



The generalised metric transforms as
Hap — H ap = (0")A“HcpOP 5
and the new metric ¢’ and B-field B’ of the T? fibres can be read off from
/ 1 . 1—1 1/ /-1
g —Byg B By
H = ( B e ) (3.26)
We shall now consider how this works in the example of the doubled space 7 con-
structed above. For the nilfold, the polarisation is
y=TXA =X g =Xt =X° (3.27)
2 =T ,XA = X2 2 =T, ,X* = x* '

and the polarisation tensor is just the identity matrix

1000
0100
0010
0001

04, =

The polarisation selects the subspace with coordinates x,y, z, and this gives the nilfold on
identifying the x coordinate.

T3 with H-flux. Acting with the O(2,2;Z) element

0010
0100
1000
0001

04 =

which corresponds to a T-duality in the y direction, the polarisation becomes (dropping
primes)

0010

0100

1000

0001

The polarisation in the T? fibres of 7 is then
y=TY,XA =X §j=T,.X*=X!
=1 XA = X2 2 =10,X" =x!

o, =

(3.28)

Note that, compared with (3.27), the duality interchanges IIY4 and ﬁy 4 in the passive
perspective or equivalently, X! and X? in the active perspective. The generalised metric,
in this polarisation, may be written as

1+ m2z? 0 0 mx
Hops = 0 1+ m2z? —maz 0
0 —mx 1 0
mx 0 0 1
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The metric and B-field in the 72 C T fibre can then be read off by comparison with (3.26)
and we recover the expected background

(10 5. 0 mx
Gab = 01 ab — “mz 0

The global structure is given by the identifications of the coordinates

(,y,2,9,2) ~ (x+ 1,y,2,0 + mz,Z — my)

(2,y,2,9,2) ~ (x,y+1,2,9,2)

(@,y,2,9,2) ~ (z,y,2+ 1,4, 2)

(2,y,2,9,2) ~ (x,9,2,9+1,%)

(x,y,2,9,2) ~ (x,y,2,5,2 + 1) (3.29)

so that the physical coordinates (x,v,2) are periodic and parameterise a T3, as expected.
The structure is encoded in the monodromy matrix e’ which in this polarisation is given

by (2.9) where f.." = Q. =0 and

Kyap = <—OTn 73) (330)

The twist matrix N is upper triangular and the monodromy is just a shift of the B-field,
corresponding to non-trivial H-flux. It is a geometric transformation in A(Z) and the
discrete subgroup preserves the polarisation.

In this polarisation, the generators of the left action, Gy, are

= 0 0 0 ~ 0 ~ 0
Zm:_ as = Ly, = — Zz:_
Oz +mzay ™z Y oy 0z
= 0 > 0

Xy: —_— XZ: - . 1

95 BE (3:31)

These are not preserved by the action of I' and transform as

Zm—>Zm+m7)Zy—mﬂ)~(Z vay—>Zy+moz)Z'Z 7. — 7. —maXV¥ (3.32)

XV — XV X% — X* '
We see that T' preserves the subgroup G, ~R? C G, generated by ()?y,)?Z) and the
physical space is therefore be recovered as the quotient 7% = 7 /G

T-fold. We have seen that a T-duality along the y-direction relates the nilfold and the
T3 with H-flux. If instead we act on the nilfold polarisation with the element of O(2,2;7Z)

1000
0001
0010
0100

O4p =
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which corresponds to T-duality along the z direction, we find the polarisation tensor is now

1000
0001
0010
0100

o, =

In this polarisation, the coordinates are

y=TY,XA =X' §=T,.X = X3
P (33
2 =1F X" =X Z=1[xX* =X
and the generalised metric on the T* fibres is
1 0 0 —mx
0 1 mx 0
Hr_ = 3.34
T=Fold 0 mx 1+ m2az? 0 ( )
—max 0 0 14+ m?a?
from which the metric and B-field on the physical 72 fibres may be read off
B 1 10 B me 01
Jab =T m22 \ 01 b T m2z \ —10
The monodromy matrix eV in this polarisation is given by (2.9) where fo° = Kyqp =

0 and
Q™ = (_Om :’;) (3.35)

which is not in the geometric group A(Z). The monodromy then includes a T-duality
acting on the physical T2 fibres and so the global structure, which is determined by T,
requires the following identifications of the coordinates

(x,y,2,9,2) ~ (x+ 1,y +mz,z —my,y, 2)

(@,y,2,9,2) ~ (z,y +1,2,9,2)

(2,y,2,9,2) ~ (x,y,2+ 1,9, %)

(@,y,2,9,2) ~ (z,9,2,9 +1,%)

(x,y,2,9,2) ~ (x,y,2,7,Z+ 1) (3.36)

Here it is clear from the identifications
r~x+1 Yy~y+mz zZn~zZ—my

that one cannot distinguish globally between the coordinates (y,z) on T2 and the coordi-
nates (7, Z) on the dual torus T2, as they get mixed by the monodromy.

,37,



The generators of the left action, Gy, are

~ 0 ~ 0 ~ 0
Ly =— Z— —my— Ly = — Z, ==
T oy ™a: Ty T
> 0 > 0
XY= — X =— 3.37
0y 0z ( )
These are not invariant under I', but transform as
7 ZvmiZ,—mis. 7, -7, 7. 7.

XV — XV —i—maZZ X7 X7 — maZy

We see that I'" does not preserve the subgroup GL~R2cCg, generated by ()? Y, X ).
The metric and B-field (3.14) on I x T* can be extended to R x 7% by continuing in
x. This gives a covering space C of 7 in which the first identification in (3.36) is dropped.
It is obtained by identifying G under I'¢c where I'¢ is the subgroup of I' with @ = 0. The
subgroup G, ~R2cCgy generated by ()? Y, X ) is preserved by I'¢, so that the coset C/ GL
is well-defined, and gives the covering space Cr of the T-fold considered previously.
Finally, consider the identification x ~ x + 1, so that the fibres at + = 0 and z = 1
are glued together with an O(2,2;7Z) transformation. For the doubled space I x T*, the
0(2,2;7) gluing is a diffeomorphism of the T, giving a 7% bundle over S, which is precisely
T with the coordinate identification given in (3.36). For I x T2, the O(2,2;Z) gluing is a
T-duality giving a T-fold. The local structure of the T-fold is that of the coset C/ Gr.

3.3 The doubled twisted torus X

The doubled torus geometry 7 gives a geometric interpretation to the action of the twist
matrix N4 g but does not give a geometric interpretation for the full gauge algebra (3.10).
In the nilfold polarisation, the natural left-invariant vector fields (3.21) on 7 satisfy the al-
gebra

(Z, Z.] = mZ, [Zy, XY] = mX~

where all other commutators vanish. This algebra is a subgroup of a contraction of the full
gauge algebra of the theory (2.6), which is

(Ze, Z.) =mZ,  [Ze,XY)=mX*  [Z.,XY] = —mX" (3.38)

where all other commutators vanish. This highlights the fact that the doubled torus for-
mulation does not encode all of the information of the field theory (2.6) in its geometry.

This is not surprising since, as discussed in [22] and reviewed in section 2, the generator
X% of B-shifts with one leg along S. does not have a geometric interpretation in the 7°
construction. It can be geometrised by introducing an auxiliary coordinate for the base
coordinate x so that (z,X4) — (z,%,X4). Indeed, it is natural to introduce a variable
T conjugate to winding modes on the z circle. The natural doubled geometry, encoding
the full gauge group, is given by the six-dimensional noncompact group manifold G with
Lie algebra (3.38) and then taking the quotient by some discrete subgroup I' to obtain a
compact six-dimensional doubled twisted torus X = G/T".
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The six-dimensional doubled group is G = G x R? where G is the three-dimensional
Heisenberg group, so that G is the cotangent bundle G = T*G of the Heisenberg group. A
matrix representation for the Lie algebra (3.38) can be given in terms of the ¢, (3.5) as

o [t 0 7= (10 o
t, 0 —t, 0 00

and so a general element of the doubled group may be written as

1 mzx Y 00 z
0 1 z 0 0 -7
Il U S (3.39)
—my £ —mzy 1 mx y+ 5my
0 O 0 01 z
0 O 0 0 0 1

showing the dependence on the coordinates (x,y, 2z, Z, 9, 2).

Taking the quotient of G by the action of X* eliminates z and gives the five-dimensional
group manifold used in the doubled torus construction considered in the previous subsec-
tion. The choice of discrete cocompact subgroup I' of the six-dimensional group G is largely
dictated by requiring that it be compatible with the five-dimensional quotient used in the
doubled torus construction. The global structure of the twisted torus G/I" is then given by
the identification g ~ h - g, where a generic element h € I' is given by

1 ma I} 00 3
0 1 N~ 00 A
oo 1 00 0
N 0—mﬂo?—mﬂ’y1maﬁ—i—%mﬁ2
0 0 0 01 ~
0 O 0 0 0 1

where (a, 8,7, &, B,ﬁ) are arbitrary integers. The left action of h is g — h - g and acts on
the coordinates through

rT—r+a y—y+maz+ z—z+7y
F—E+myj+a §—7+7 o i—maj+7 (3.40)

Identifying G under the action of I' implies that the coordinates are subject to the identi-
fications

(xayazaj’g’é) ~ (:C—{—l,y—kmz,z,j,gj,é—mgj)
(357%2757@5) ~ (xay—i_lazai:agvg)
(x,y,2,2,9,2) ~ (x,y,2+ 1, +my,y,z)
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('Iayazaj?g72) ~ (x’y’z’j+ 1?@’2)

(x7y7 Z7i.7g7 2) ~ (x7y7 Z7i.7g + ]‘72)

(xayazajag, 2) ~ (xayazajag’é + 1) (341)
The doubled group G has a natural action of Gy, x Gr which is generated by right-

and left-invariant vector fields. The right action Gr is generated by the left-invariant
vector fields

0 0 0 0
Z:L' = — Z = — Zz = 5 a
o Y 8y Ep + m:cay
0 0 0 0 0
EF: Bg] + mz[“)j mx BE 92 (3 )

which satisfy the commutation relations of the full gauge algebra of the supergravity (3.38).
Since the cocompact subgroup I' acts from the left, the left-invariant (Z,,, X™) are globally
defined on X. The left-invariant one-forms (P™, Q,,), dual to the vector fields (Z,,, X™),
are

P* =dx PY =dy —maxdz P?=dz

Qr =dz —mzdy Q,=dy Q. =dz + mzxdy
These one-forms generalise those of the nilfold (3.2) and the doubled torus (3.23). The
generators of the left action, Gy, are

(3.43)

~ 0 0 0 ~ 0 ~ 0 0
Ly = — — — M= Ly = — Z, = — J—
* = 0n Ty T ™z V= 9y * =9 Tz
~ 0 ~ 0 ~ 0
X* = — XY =— X = — 3.44
0T Yy 0z ( )
These are not invariant under I' and transform as
Emazv%—mwgy—mﬁ)?z vay—>Zy ZzHZZ—mQFZVy%—mB)N(”C (3.45)
X*—X* )?y—>)?y+ma)~(tm7)?f X* - X? .

We see that the X™ close to generate an abelian sub-group Gp ~ R3 C G;. Since I
preserves G, the nilfold geometry is in fact recovered globally as the quotient

N~ X/Gp
To see this, the group element (3.39) can be decomposed as
g=9-k

where g € G, and the coset representative k

/0 -
k= (% g,) € G/Gy

where ¢’ is an element of the Heisenberg group G as given by (3.6). Since I' preserves Gr
we can recover the global structure of the nilfold by the action of T" on (z,y, 2).
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3.3.1 Polarisations

Following section 2, it is useful to introduce a polarisation of the Lie algebra, with a
projector II,,a; projecting the generators T™ onto Z,,, associated with an action on the

coordinates x,v, z, and the complementary projector I1";; onto the X™. These combine

~ Hm
v (M

Xl‘

into a polarisation tensor

so that

TV = oM\ TM =

The left-invariant forms PM on G are similarly projected onto P™ and @,

N N Pm

Similarly, the same projectors split the right-invariant T™ into Zm and X™. As in section 2,
if the X™ generate a closed algebra then they constitute an integrable distribution and
define a submanifold, at least locally.

We can also define a polarisation of the coordinates. Let the coordinates of X be X!,
I =1,2,..,6. A polarisation 2' = (x,y,2) = II';X! then locally selects which three of the
six X! are to be treated as the physical coordinates (z,y, z), and which three are to be
treated as auxiliary, #; = (Z,7,2) = IL;X!. As we shall see, for a geometric background
or for one that is locally geometric (e.g. a T-fold) the background configuration is given
in terms of fields that depend on (z,y,z) but not (z,7,2). It is useful to introduce a
polarisation tensor for the coordinates

T
Y

. Hz
911:<~I> xl=elxI=| %
Hi[ xT
Yy
z

The different polarisations we shall consider will just correspond to a relabeling of the

coordinates, choosing different subsets of three of the six coordinates to be physical.
Nilfold. The nilfold is recovered by the polarisation choice

=117 x = x! y =Y x! = x2 2 =1 X = X3 (3.46)
i=T,X =x* g =TM,X =x° Z=TI,X =X6 (3.47)
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which corresponds to the polarisation tensor

100000
010000
001000
000100
000010
000001

This selects the submanifold with coordinates x,y, z, which is of course the nilfold. The
doubled twisted torus is the cotangent bundle for the Heisenberg group, G = T*G = G xR3,
modded out by I'. The polarisation projection II can then be identified as the natural
bundle projection of the cotangent bundle to the base Il : T*G' — G. As in the doubled
torus construction, we can recover the dual formulation as a 72 with H-flux or as a T-fold
as different polarisations of the same doubled background.

As before, acting with a linear transformation O changes the polarisation

0 -0 =00

and any two polarisations are related in this way. This changes the polarisation of the
Lie algebra in the way described above, and we shall accompany this with the relabeling
of the coordinates associated with the change of coordinate polarisation, using the same
linear transformation O. If O € 0(2,2;7Z), the T-duality group acting on the coordinates
Y, 2,7, 2, then the two polarisations give two backgrounds related by a T-duality, as we
shall review below, and these give two physically equivalent string backgrounds. However,
other polarisations seem possible, with O not in O(2,2;7Z), and the question arises as to
whether they give physically equivalent backgrounds. In [10], it was conjectured that there
are generalised T-dualities acting in precisely this way, and we will see below that the
doubled twisted torus formalism suggests a natural form for these.

The one-forms in this polarisation are

P? =dx PY =dy — mzxdz P?=dz
Qz = dT — mzdy Qy = dy Q. =dzZ+ maxdy

Here, the left-invariant one-forms on the Heisenberg group G and on G = R3 are P™ and
dZ,, respectively. This case is a special example of the twisted torus case considered in
section 2. Note that we can work in terms of the derivatives of the coordinates dz?, instead
of the frame forms P and obtain the coordinate metric directly.

The algebra (3.38) is a Drinfel’d double and we can follow the general procedure
outlined in section 2.6 to recover a conventional description of the background. The natural

G r- and Gp-invariant forms in this polarisation are

ﬁ
Il
S
&

r® = dx rY = dy — mzdx

. = di 0, = dj . =d

i

IS
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(Note that Py ry;) The Gp-invariant one-form pM , in the nilfold polarisation, may be
written as PM = @NV M (z), where @M = (™, (,,) and

J A" 0
N N — m
VM ( 0 (A—l)mn>

The adjoint action of the Heisenberg group on itself, which appears in V, is given by

1 mz O
A=10 1 0
0 —mx1

The construction of section 2.6 gives the G r-invariant metric
ds* = 6 A" A" P @ 11 = gijda’ © da?
where

gi; =10 1 —mx

0 —max 1+ m2z?

and the contribution from the generalised metric Hysn(z) to the B-field is zero. In fact,
by substituting

1 ~ 1
§d (rm/\ﬁm) :—imdﬂv/\dg]/\dz K =—mdxANdyNdz

into (2.63), we see that H = 0 in this polarisation. The 3-dimensional nilfold geometry is
thus recovered.

T3 with H-flux. We now consider acting with O € O(2,2;7Z) to change the polarisation
to that corresponding to the 7% with constant H-flux. The element O and polarisation
tensor are given by

100000

000010

001000

000100

010000

000001

As in the doubled torus bundle 7', the action of a T-duality along the y-direction has the
effect of exchanging
Zy — XY Y7 PY - Q,

relative to the nilfold polarisation. The gauge algebra of the resulting supergravity is, by
construction, identical to that from the nilfold. However, we now label the generators
acting geometrically on the T3 as Z,, (Z, is the U(1) acting on the x-circle etc) and the
ones from B-field transformations as X™, so that the algebra is now

[Z;):, Zz] =mXVY [Zl'a Zy] =mX~* [Zz; Zy] = —mX?*
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where all other commutators vanish. This is of course the same algebra as in (3.38), after
relabeling the generators.
This Lie algebra fixes the local structure of the doubled twisted torus and it is partic-

ularly useful to consider the left-invariant one-forms on X, which may be written as
T =dx PY =dy P? =dz
(3.48)
Qr =dz —mzdy Q,=dy—madz Q.= dzZ+ mady

The one-forms P™ tell us that the spacetime is locally R3. The action of I" on the coordi-

nates is
r—r+a y—y+p ] z—z+7y (3.49)
T—=T+my+a g—y+maz+p0 zZ—Z—may+7y
The identification g ~ h - g imposes the following identifications on the coordinates
(,y,2,2,9,2) ~ (x+ L,y,2,Z,5 + mz,Z — my)
(x,y,2,2,9,2) ~ (x,y +1,2,2,7, 2)
(x,y,2,2,9,2) ~ (z,y,z+ 1, & + my, 7, 2)
(x,y,2,2,9,2) ~ (x,y,2z,Z+ 1,7, 2)
(x,y,2,2,7,2) ~ (x,y,2,2,§+ 1, 2)
(x,y,2,2,9,2) ~ (x,y,2,%,7,2 + 1) (3.50)

We see from the identifications of the spacetime coordinates (x,y,z) that the spacetime
globally is a T3.
The generators of the left action, Gy, are

_ 9 ) o ~ 9 ~ 0 P
o= L il oy 7 29 g
o T ™oz T oy T 9. T
X$:_~ Xy:—~ XZ:—~
oz o 0z

These are not invariant under the action of I' and transform as

Zx — Zx —i—mfy)?y — mﬁ)?z X7 X"
Zy — Zy +maX® —myX® XY XY
ZZ — ZZ — maX? —i—mﬁ)zx X% — X*
The X™ generate an abelian group G 1 ~ R3 C G;. We see that I' preserves G 1, and we
can recover the spacetime as the quotient 7% ~ X' /G

We now recover the conventional background from the doubled geometry following
section 2.6. As discussed in section 2.6, we use the parameterisation in which an element

of G is written as h = gk. Using the generators
T = t, 0 T, — 0 —t, T = t. 0
0 t, —t, O 0t,
T _ 00 T _ ty 0 T _ 0t
ty 0 0t 00
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where the matrices t,, are given in (3.5) and writing a general element of G as

h = gk = exp(z,, T™) exp(z™T},)

we find that

1 me g0 O z
0 1 200 —y
0 0 100 0

h = B N _ 19
0 —my z1mzy+smy
0 0 001 z
0 0 000 1

Then the left-invariant forms P™ and @Q,, in this parameterisation are

P* =dx PY =dy P? =dz

(3.52)
Qr =dT +mydz Qu=dy—madz Q.= dzZ+ mady

It is useful to have k and g explicitly

1 mz 00 0 0 105003
0 1 200 ~—y 010000
o0 100 0 ~|oo1000
| 0 —my 01 ma Lmy? I 100&104
00 001 = 000010
00 000 1 000001

so that we can determine §1dg = ¢ = 0 T™ and dkk=! = r = r™T, + rpT™ explicitly

r* =dx rY =dy r* =dz
Ty =mzdy T, =-—mxdz T,=mzdy (3.53)
ly=dz  ,=dj (, =d?

We note that
Qr = Gu + mydz — mzdy Qy = Gy + mzdr — mxdz Q. = ¢, + mxdy — mydx

where Qm Is given in (3.52) and gm = Oy + 7. We write the left-invariant one-form on G
as PM = Ny M where @M = (r™, G,,) and

where
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The metric for this background is flat
ds® = §ppdz™ @ dz"

and from the identifications (3.50) we see that globally the compact space is T3. We now
consider the H-field. The antisymmetric matrix by, in VNM defines a two-form

b = mzdx N dy + mydz A de + mzdy A dz

so that
db = 3mdx Ndy A dz

It is not hard to show that
%d(rm/\qm):—gmdx/\dy/\dz K=—-mdxNdyNdz
so that the physical H-field given by (2.64) is
H =mdx Ndy \Ndz

and we recover the T2 with constant H-flux background as expected.

T-fold. We now consider acting on the nilfold polarisation with a different O € 0(2,2;7)
to change the polarisation to that of the T-fold. The element O and polarisation tensor
are given by

100000

010000

000001

000100

000010

001000

Acting with this O, which corresponds to performing a T-duality along the z-direction, has
the effect of exchanging
ZZ — X~ Z e Z P? QZ
relative to the nilfold polarisation. The gauge algebra of the corresponding field theory
(2.6) is
(Z2, X*] = mZ, [(Zy, XY] =mZ, [X*, XY] = —mX*
where all other commutators vanish. The left-invariant one-forms corresponding to this

algebra are
P* =dx PY =dy —mxdz P?=dz+ mady

Qo = d —mzdy Qy=dy Q:=dz
The global structure I' of the doubled twisted torus X" is determined by the rigid left action
on the coordinates

(3.54)

Tr— T+ y—yt+maz+p z—z—may+y (3.55)
FoFtmAjta §o g+ F i 47 '
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and we can identify G under the action of I' so that the coordinates on X are subject to
the identifications

CC,y,Z,CE,g,Z :c—{—l,y—kmé,z—mg],i‘,g],é)

x?y7z7x7y7z x?y—"_]‘?Z?x?y?Z

x?y? Z7x7y7z

(
(
(9,2 +1,2,9,2
(xayazai.+17gag
(

)
)
)
)

x’y’z’x7y?z a:’y’z’a:?y_{_]"z

(
(
(
(
(
(

)N
)N
T, Y, 2, 8,7, 2) ~
)N
)N
)N

x? y7 Z? i’? 572 (x7 y7 Z7i.+mg7 g7§+ 1) (3'56)

We see that, under the identification, the physical coordinates (y, z) mix with the auxiliary
coordinates (7, 2) so that, whilst the polarisation of PM into one-forms corresponding to
differing maximally isotropic subgroups of G is globally defined, the polarisation of the
coordinates X! is not and so the distinction between spacetime coordinates 2 = (x,, 2)
and auxiliary coordinates Z; = (&,7, 2) can not be made globally. The generators of the
left action Gy, in this polarisation, are

Zm:%+m2§y—mg£ Zy:(% 7=
X* = % XV = (% X = % + mg% (3.57)
These are not invariant under I' and transform as
7y ZtmAZ, - miZ, X — X
Zy—>Zy XY — XY+ maZ, — my X"
7. — 7, )NCZH)Z'Z—mafZVy—l—mB)NCm

The X™ generate the Heisenberg group Gr C Gr. We can identify the cover of the T-fold

as the coset Cp ~ G/ G 1, but since I' does not preserve G L, the quotient X'/ G 1, is not well-

defined in a conventional sense. Instead, a patch of the spacetime is recovered as a patch of

the coset G/ Gp. As remarked above, there is no global spacetime description of the T-fold

and we must glue these local spacetime descriptions together with the identifications (3.56).
The action of G 1, on the coordinates is

T — T y—y z— 2
T—T+myg+a g—oyg+08 Z—Z+75

The natural left-invariant one-forms on G (the three-dimensional Heisenberg group) are

f:v:Qm Ey:Qy gz:Qz

Since the group G = R? is abelian, the right- and left-invariant forms on G coincide

r’™ = (™ = dx™. The Gp-invariant one-forms may then be written, as in section 2.6, as

PM = @NVNM where ®M = (dx™, (,,) and

N 5™ 0
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where

0 0 0
"M =10 0 mx
0—mz 0O
The G r-invariant metric is then
1 0 00 0 0
0 1 0 0 0 —mx
oo 0 0 10 me 0
MN 0 0 01 0 0
0 0 mx01l+(me)? 0
0—-mz 0 0 0 1+ (mx)?

from which we read off

1+ (mz)200 00 0
! 0 10 b e 00 -1 (3.58)
9ij = T3 i = T3 - .
1 1
+ (ma) 0 01 ma)®\ gy g

Using
1 ~ 1
5d (rm Mm) = —gmdr NdjAdz K = —mdz Adj A\ dZ
in the expression (2.63), we find that the H-field strength is simply given by H = db with
b given in (3.58).
3.3.2 R-flux
The doubled twisted torus construction allows us to consider acting with an element O of

0(3,3;Z) to give a new polarisation ©

000100
010000
001000
100000
000010
000001

This change of polarisation exchanges
Zy — X°© T T P? — Q, (3.59)
relative to the T-fold polarisation above. The left-invariant one-forms on X are

P* =dx —mzdy PY=dy—midz P?=dz+ midy
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which describes the local structure of the doubled twisted torus. The global structure of
X is determined by the rigid left action of the cocompact group I' C Gy, which acts on the
coordinates as

T—r+myg+a y—y+maz+pf z—z—may+y (3.61)
F—i+a §—g+p E i 47 '
Identification of G under I' requires that the coordinates are subject to the identifications

x?y7z7i.7g7§ x—"_l?y?Z?j?g?g)

x?y7z7i.7g7§ x7y+]‘7z7i:7g72)

x’y’z’j7g?z x’y’Z_Fl?j’g’g)

xayazai.7g7z xay+m27z_mg7'%+17gag)

N

r,y,2,4,9+1,%)
T+ my,y, 2, 2,9, 2+ 1) (3.62)

Z,Y,z, L, Y,

x?y? Z7x7y7z

( ) ~(
( ) ~(
( )~ (
( ) ~(
( )~ (
( ) ~(

The left-acting group Gy, is generated by

~ 0 ~ 0 ~ 0
Zo =5 Zy=75 Z. =+
> 0 0 0 > 0 d
r _ 2 s Y ~ Y y 2 z_ Y ~ Y
X EF +mz 2y my X 5 X 52 + my (3.63)

which satisfy the commutation relation
(X* X*) = -mZ, [X"XY|=-mZ. [X* XY]=mZ,

where all other commutators vanish. The X’s do not close to form a sub-algebra and so
there is no subgroup G C Gr, generated by X ™ with which we can form a quotient
G/ Gp or X / Gpr. In contrast to the previous polarisations, there is no way to recover a
conventional description of spacetime, even locally. This may be seen in the action of Gr
on the coordinates

T—=xT+myy y—y+maz z— z-—may
F—i+a g—G+03 s i4+7

where we see that G, acts on all of the coordinates, not just those we identify as auxiliary
coordinates. As described in section 2.6, it is still possible to write the left-invariant one-
forms in the form PM = @V VNM , where VNM is independent of the Z; and may be used
to define a G r-invariant metric H ;i ; however, this does not give rise to a Z;-independent
metric and H-field strength.

We wish to interpret the coordinates z,y, z as spacetime coordinates and Z,y,Z as
dual coordinates conjugate to winding numbers. The background fields, in this polarisa-
tion, depend explicitly on the dual coordinate Z and so the background is not a conventional
geometry on the three-dimensional space with coordinates x,y, z, and can not be under-
stood as a conventional spacetime, even locally. However, a dependence of the background
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fields on the auxiliary coordinates is quite natural in the doubled twisted torus description,
and might be expected for general string solutions.

This example with R-flux arose from the replacement (3.59) of z with Z in the T-
fold generalised metric (3.34), so that it may be viewed as a T2 fibration over the dual
coordinate Z ~ X! [10]. On doubling the fibres, the T-fold is represented by a 7% bundle
T over the z-circle, while the dual space is a 5-dimensional space T which is a T* fibration
over the dual circle S*

T < T
!
gl

The coordinates x and T appear together in the fully doubled six-dimensional geometry X
and X provides a universal description including both 7" and T.

In general, the metric and flux, H and K on X, might depend on the dual coordinates
#; as well as the spacetime coordinates . When R** = 0, and a description of the physics
is locally possible in terms of a conventional spacetime, we do not expect the metric and
H-field strength on the physical background to depend explicitly on the auxiliary coor-
dinates. The fact that the physical background fields are invariant under the action of a
group G, when R*® = ( allows for the Zi-dependence in ‘Hr; and K to be consistently
removed and the Z;-independent metric and H-field strength on the physical spacetime to
be recovered for a given polarisation as discussed in section 2.6. In general, both the gen-
eralised metric H;; and the generalised flux K will contribute to the physical background
and the fields g;;(z) and H(x) emerge as a Gr-invariant combination of the components
of H[J(X) and IC(X)

For R-flux examples such as that considered here, the generators X™ do not form a
closed subalgebra so that there is no invariance of the physical background fields under
a subgroup that can be used to recover a conventional metric and H-field strength, in
keeping with the conclusion that such cases do not admit a conventional description as a
three-dimensional Riemannian geometry, even locally.

4 Sigma model for the doubled torus fibration

Here, and in the following sections, we shall be interested in studying the doubled torus
bundle 7 and the doubled twisted torus X as target spaces for two-dimensional sigma
models. Doubling some or all of the target space dimensions leads to extra degrees of
freedom, but a constraint reduces the degrees of freedom again to give the right content
of the theory. Of particular interest, will be the recovery of a conventional world-sheet
description of the sigma-model with target the (undoubled) spacetime. We will examine
in detail the recovery of the sigma-models for the nilfold, T-fold, and the T2 with constant
H-flux backgrounds from these doubled descriptions. In the next section, we shall see
how these backgrounds are recovered from the doubled sigma model introduced in [7] by
an appropriate choice of polarisation of the five-dimensional doubled torus bundle 7. In
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section 6 this construction will be generalised and we shall introduce a sigma model which
describes the embedding of ¥ into the six-dimensional doubled twisted torus X. This
new sigma model allows for a description of compactifications with R-flux, for which no
conventional spacetime description exists.

In this section, the sigma model for the doubled torus fibration is reviewed. We shall
assume that the doubled torus fibres are 2d-dimensional, for general d, and only restrict to
the case d = 2 in the next section where the nilfold, T-fold and 7% with constant H-flux
examples are considered explicitly.

4.1 Non-linear sigma model for a conventional torus bundle

Before proceeding to the doubled cases, we first review the conventional sigma model with
world-sheet, 3 and a (d + k)-dimensional target space A which is a d-dimensional torus
fibration over a k-dimensional base manifold M.

T N
!
M

We introduce local coordinates z* on the base M (u,v = 1,2,...k ) and periodic coordi-
nates z% on the torus fibres (a,b =k + 1,k +2,...,k + d). The metric g, on the T? fibre
is taken to be independent of the fibre coordinates z® but in general depends on the base
coordinates x%. It is convenient to write the metric on N as

G.: = Juv T+ gabAauAbU gacAcv (4 1)
v gbcAcu Yab

where the one-forms A? = A%,dz" are the U(1)? connections of the T fibration and gy,
is a metric on M.

The sigma model is given by the action

1 1
Sy = 3 }{ Juodz™ N xdz® + 5 }{ Gap(dz® + A%) A x(dz® + A?) (4.2)
b b
where A% = A%, 0,x"do® now denotes the pull-back of the connection one-form to the
world-sheet ¥ and ¢® = (7,0) are coordinates on the world-sheet. The exterior derivative
is pulled back to the world-sheet, so that d = do“d,,, and we take the world-sheet metric

to be Lorentzian so that 2 = 1. Tt is useful to write this action as

Sy = ! jé Gupdz® A xdz” + 1 7{ Japdz® A xdz? + 7{ dz% N\ xJ, (4.3)
2 s 2 Js by
where Gy = Guo + gabAauAbv and J, = gabAbudxu-

Here, we shall be particularly interested in the case where the base M is a circle S} with
coordinate  ~  + 1 as considered in section 2. The monodromy of the fibration is (ef)%,
where, in order for the geometry to be smooth, we require that this monodromy is an ele-
ment of SL(d; Z) - the mapping class group of the T? fibres. The (d+ 1)-dimensional target
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space is then N' = G//T', as described in section 2.1. The effect of this SL(d; Z)-twist can be
captured in the sigma model (4.3) by introducing the Gp-invariant world-sheet one-forms

P = (e/%)%do%0,2"  P* = do®0au

The forms P™ = (P*, P®) are pull-backs of the one-forms (2.16) and satisfy the Maurer-
Cartan equations
dP* =0  dP%— f%P* AP’ =0

where d = do®0,, is a world-sheet derivative. The metric g, is given in terms of a constant
metric hgy, on T by gay(2) = (/%) Cheq(ef®)%,. The sigma model action is then

Sy = lj{ GP* N xP* + lj{ hap P A #P° —i—j{ P A xJ, (4.4)

2 Js 2 Js >
where G = 14+hg, A%, A%, and J, = hap A% Note that G and A%, here are both independent
of the base coordinate and the only explicit z-dependence is contained in P®. The left ac-
tion of G is a rigid symmetry of the sigma model. If the background has an H-flux then we
there is also a Wess-Zumino term. We now consider how the physics of this sigma model,
and those for more general monodromies, can be described in the doubled torus formalism.

4.2 Sigma model for the doubled torus bundle

As discussed in section 2, the T¢ fibration with B-field over M defines a T%¢ fibration over
the base M. The metric g and B-field By, of the T? fibres specifies a generalised, z%-
dependent, metric Hap on the T2¢ fibres of a doubled torus fibration over M. In addition,
the connection one-form of the T¢ fibration A% = A%,dz" and the B-field components
By = Bgudz" determine a connection A4 = A4, dz* for the doubled torus fibration with
field strength F4 = d.A4. The sigma model for the doubled torus fibration is the analogue
of (4.3) for the conventional geometry where instead of the (d + k) x (d + k) metric Gj;
given in (3.6) we have the (2d 4+ k) x (2d + k) metric

G = Guov + %HCDACU-ADU %HAC-ACU
sHBo A%, sHan

The sigma model contains, in addition to a term Sg given by integrating the world-sheet
metric induced by G over 3, a Wess-Zumino term

1 1
Soy = ——/ LagdXA A FB = ——%LABdXA/\AB
2 Jv 2 Js

where V is a three-dimensional extension of the world-sheet such that OV = X and Lp is
the invariant of O(d,d). It is also necessary to include a topological term [8]

1
S = —% QABdXA/\dXB
4 /s

0 0 —14
1, O
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The topological Sq term does not contribute to the equations of motion but it does play
an important role in the quantum theory [8]. There may also be terms in the world-sheet
action corresponding to other target space dimensions and the target space fields in general
may depend on the corresponding coordinates. Such terms and dependencies will play no
role in our analysis and will be suppressed here, although these terms are important in
constructing conformally-invariant backgrounds.

The action, S = Sg + Sy, + Sq, for the sigma model on 7 is [§]

1 1 1
St = —}{ Guodz® N xdx’ + —7{ HapdXA A xdXB — = 7{ dXA N %
2 ) 4 » 2 X
1
4= ]é QupdX? A dXB (4.5)
4 Js
where

Ja = HapAP — Lap x AP (4.6)

The correct number of physical degrees of freedom is ensured by the imposition of the
self-duality constraint [7]

dX* = L4 (Hpc * dX© + *Jp) (4.7)

where H4p and J4 may depend on the base coordinate z*. This constraint is consistent
with the equations of motion of the sigma model (4.5). The constraint can be thought of
as imposing that half of the X4 are right-moving and half left-moving, with the split into
these two sectors varying over the base.

When the base M is a circle S.

+» with coordinate z ~ x + 1, then the doubled torus

bundle is the odd-dimensional twisted torus 7 ~ G/I" discussed in section 2.3. On X one
can then define the Gy-invariant one-forms

P* = do®0ar P = (") pdo9,XP (4.8)

which are the pull-backs of the Gp-invariant target space one-forms (2.23) to the world-
sheet. These one-forms satisfy the pull-backs of the Maurer-Cartan equations

dP* =0  dPA* -~ N4zP*APB =0

where, in contrast to (2.23), the exterior derivative here is that of the world-sheet d =
do®*0,. The x-dependent doubled metric H 4p can be written in terms of the z-independent
doubled metric M 4p appearing in the Lagrangian (2.2) as

HAB(CU) — (eN:v)ACMCD(eN:v)DB
The sigma model describing the embedding of ¥ into 7 may then be written as
1 x x 1 A B 1 A
ST ==¢ GP* AN*xP* 4+ — ¢ MapP"  AN«P” 4+ = ¢ LapP" Nx*Jy
2 s 4 Js 2 Js

1
+5 72 QapdX? A dXB (4.9)
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where G = 1 + %MABAA;,;AB:E. Written in this way, the rigid invariance of the sigma
model action under G, is manifest (note that the variation of the topological term under
Gr, gives a total derivative). We shall see that the invariance of the action under subgroups
GL C GL plays a crucial role in imposing the self-duality constraint (4.7) in the quan-
tum theory. Indeed, the self-duality constraint (4.7) may also be written in a manifestly
Gr-covariant form [§]

(PA + A% = LAB Mpe * (PY + A°) (4.10)

4.3 Polarisations and constraints

One may think of the sigma model (4.5) as a universal sigma model from which different
dual sigma models on (d + k)-dimensional target spaces, all described as T¢ fibrations over
M, can be recovered. A conventional sigma model is recovered by specifying a choice of
polarisation, z% = II%,4X4, in the target space, as discussed in section 2.3. For locally
geometric backgrounds, only d of the 2d X4 fields correspond to independent physical
degrees of freedom and, once a polarisation is specified, those coordinates that are chosen
to play the role of the auxiliary Z, may be written in terms of the physical (x, z%), provided
the Z, only appear through their derivative dz,. The precise relationship between the
(derivative of the) auxiliary Z, and the physical coordinates (x,z%) is given by the self-
duality constraint (4.7). It is this constraint (4.7) which ensures that, when a global
polarisation can be found, the physical sigma model can be described purely in terms of
the local physical space-time coordinates ' = (z,2%) selected by this polarisation.

As explained in section 2.3, the polarisation II may not be globally defined and it may
not always be possible to globally choose which d of the 2d fibre coordinates X4 will be iden-
tified as the physical coordinates z%. Over a contractible patch of the base M, we can define
a polarisation which selects coordinates z® from the doubled X4. This then gives a patch
of spacetime with coordinates (z",2%). As explained in section 2.3 and also in 2.4, these
patches must be carefully glued together to obtain a global description of the target space.

Of particular interest is the case where M = S} and 7 = G/T', as described in section 2.
In this case it is possible to define a constant polarisation on the interval I, given by
0 < z < 1, of the base. The metric and B-field on I, x T2? can be extended to R, x T%¢ by
continuing in z, as was done for the five-dimensional doubled torus bundle in section 3.2.1.
This gives a covering space C7 of T in which the identification (z,X4) ~ (z+1, (e=V)4pXPB)
is dropped and the cover may be thought of as the coset Cr ~ G/I'c, where I'¢ is the
subgroup of T" which gives the identifications of the T?? coordinates only. The subgroup
G 1 ~RIcC Gy generated by X is preserved by I'¢, so that the coset Cr/ G 1, 1s well-defined.
The self-duality constraint (4.10) may be consistently imposed on the coordinates of this
cover, eliminating all Z, dependence so that the sigma model is written solely in terms of
the embedding into the target space directions with coordinates x and z%. The doubled
sigma model (4.9) then reduces to a sigma model with target space given by CT/éL - a
T fibration over R,. As described in section 2.3, one may then replace R, with SL by
identifying the remaining target space coordinates under the full action of I'.
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We now turn to consider in more detail how the constraint (4.10) is imposed on the
doubled torus sigma model (4.9). In section 5 we shall consider several explicit applications
of this formalism.

4.4 The classical theory

In this section and the next we concentrate on the (2d + 1)-dimensional doubled torus
bundle 7 = G/T' for which the base of the 7% bundle is M = S.. We first consider
the cover Cr given by replacing S} with R,. A polarisation II can be globally defined
on this cover. Once a polarisation is specified, the metric g, and B-field By, on the
physical T% can be extracted from the generalised metric Mg (2.28). It is also useful to
define the polarisation of the corresponding G -invariant one-forms (4.8) P* = I1¢ APA and
Qo = ﬁaAPA where

P = (eMN®)dz + (eV*)az, Qo = (™) bdz + (N%) pd2” (4.11)
The self-duality constraint (4.10) may then be written as
Qu = gap * (P* + A®) + By P’ + By, P* (4.12)

where P® and @), are given by (4.11). Note that Z, only appears as the derivative dz,
in (4.11) and (4.12). In the classical theory, one considers the Z, to be auxiliary fields and
eliminates all dZ,-dependence in the equations of motion using (4.12), leaving the equations
of motion written in terms of x, dr and dz® only. The requirement that the polarisation
selects a null space with respect to L 4 ensures that the Z, dependence may be completely
eliminated from the equations of motion using the self-duality constraint. If we now impose
the identification z ~ x+ 1, in effect replacing R, with S. again, we must consider how the
theory in the physical T? fibres is patched together. As explained in section 2.3, if the po-
larisation is not globally defined, i.e. if G 1, does not preserve and is not preserved by I', then
this local description in terms of the coordinates x and z% does not extend globally. Impos-
ing the constraint (4.10) in the quantum theory is more involved, as we shall now discuss.

4.5 The quantum theory

Let us consider first the (2d + 1)-dimensional doubled target space Cr, which may be
thought of as a cover of the doubled torus bundle 7 ~ G/T". As seen in section 2, for
a given polarisation, a cover of the (d + 1)-dimensional physical target space is given by
the coset Cr/ G L, Where G 1, C Gy, is the subgroup selected by the polarisation II. More
generally, a sigma model on the coset H/K is obtained by gauging a K C H symmetry
of the sigma model on H. Applying this to the case here, a conventional sigma model
description of the background is then recovered locally by gauging the left-acting abelian
isometry group G ~ R? C G, (generated by X = HGATVA) of the doubled formalism
sigma model (4.9) with target space G [8].

Now let us consider the case where the doubled target space is the compact twisted
torus 7 = G/I'. As discussed in section 2, if " preserves and is preserved by G L, then
the action of Gy, is well-defined on 7 and the sigma model on the physical T% bundle is
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recovered globally as the sigma model on the quotient 7/ Gp. This sigma model is given
by gauging the G ~ R4 subgroup of G for the sigma model on 7. If G is not preserved
by I, then the physical background is not a 7% bundle, but a T-fold. In this case the sigma
model in the patch over 0 < z < 1 may be given again by gauging the sigma model as
described above. A global description of the target space is given by identifying « ~ x + 1
as discussed in sub-section 2.3.

We now review how the gauging imposes the constraint (4.10) and selects a polarisa-
tion, following [8]. We first consider a sigma model with target space Cr, the cover of 7,
upon which a global polarisation may be defined. The polarisation selects a subset of the
coordinates Z, which are the auxiliary ones to be eliminated, and a subgroup GL C Gr.
The generators X of G 1 act as shifts on the auxiliary coordinates Z,, 0z, = €,, which are
isometries of the doubled metric H. The vector fields X@ will be well-defined on a cover Cr
in general. Gauging this isometry requires the introduction of the world-sheet gauge fields,
which are one-forms C, = Cyo(7,0)do®, and allowing the parameters to depend on the
world-sheet coordinates €, = €,(7,0). The one-forms transform under the local symmetry
as 0C, = —de, so that the derivatives

DXA = dx* + 11 C,
are gauge-invariant. The minimal coupling dX? — DX4 is equivalent to the minimal
coupling of the auxiliary fields dz, — Dz, = dz, + C,, and this allows dZ, to be absorbed
into a shift of C,,.

For the example considered here, where the bundle 7 is given by a duality-twist (2.9),
it is useful to consider C4, related to the one-form C, by the action of the twist matrix on
the projection with the polarisation tensor:

cA = (NAgiPec, (4.13)
If we then define C* = I1® ,C# and C, = ﬁa AC# we may write
ce — (eN:v)abe Ca — (eN:v)abe

For the choice of polarisation in which Q% = I1% , N4 5I1°® is zero, Q® = 0, we have C* = 0
and P® is left unaltered by the minimal coupling. If Q% # 0, then C* # 0 and both P®
and @, receive minimal coupling corrections.

The gauged sigma model is obtained by first introducing the minimal coupling

PA — P4t = (N DX
of the one-forms in the kinetic term of (4.9) and then adding the term

1

—j{ LagPAnCP (4.14)
2 /s

to (4.9), as shown in [8]. The resulting gauged sigma model is
PO 1 T T 1 A B 1 A 1 A
SCT/GL_if;:GP A xP +Z£:MABP N *P +§ ZC /\*jA+§ ZP A xJ 4

1 1
+Z% QapdXA A dXE + 1 j{ MapCh A xCP (4.15)
by by
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where

Ta = MapPP? — Lap PP+ Ja (4.16)

The self-duality constraint (4.10) may be written as
Ja=0

The gauging consists of adding the linear term

lfCAA*jA
2)s

which, because of the polarisation projector in the definition (4.13) of C4, is a coupling to
half of the components of J4. Then further terms, including ones quadratic in the gauge
field, are added to obtain gauge invariance. The coupling C4 A 74 leads in the quantum
theory to a BRST charge that imposes the constraint J4 = 0 on physical states, as will be
shown in section 4.6.

The action (4.15) can be expanded out by substituting in the expressions (2.28), (4.11)
and (4.13) for the chosen polarisation. By completing the square in the one-forms Cy, one
can show that the gauged action splits into two parts

SCT/G'L [x’ XAa Ca] = Sl [CC, Za] + 52[)‘0,]
where A, = (eV*),%(Cy + dZ) + ---. If the polarisation selects a subgroup Gy, that is

null with respect to Lap, then the Lagrangian for S[\,] is quadratic in A, and we may
perform the integration over the gauge fields C, = (e7N%),%A, + --- to leave the action
Si[z, 2%]. This action is that of the conventional sigma model embedding into the physical
(d + 1)-dimensional target space C7/G, with coordinates z! = (z, 2%). Integrating out C,
gives a determinant which contributes to the dilaton term in the action so that the dilaton
of the conventional sigma model ¢ is related to that of the doubled sigma model ® by

2=~ 2 In(g(x))

where g(z) = det(gqp(x)).

Here we have worked with the covering space, in which the vector fields X which
generate Gy, are well-defined. If they are well-defined in the quotient, then we can make
the identification = ~ x 4+ 1 to obtain the theory on the quotient. If this is not the case,
there is no global description, and one is led to working with different polarisations in
different patches, as discussed in [7].

Different choices of polarisation select different sets of generators T4 to be identified as
the X® and therefore a different embedding éL, é’L, ... of the abelian subgroup R?  G;. In
this way, different choices of polarisation lead to different gaugings and results in recovering
sigma models for different backgrounds from the doubled sigma model (4.9).

Tt is this, T-duality-invariant, dilaton ® which plays the role of the string coupling in String Field
Theory [39, 40].
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4.5.1 Example: recovering N from 7

To see how this works in practice, we consider how the sigma model for a conventional
T bundle background given by the action (4.4) is recovered from (4.9) given a choice of
polarisation. Consider the case discussed in section 2.1 in which the only non-trivial element
of the twist matrix is f%, = II%4N4 BIL,B , and the B-field is zero. In this example, general
elements g € G and h € ' may be written as

(efaz)ab 0 P (efoz)ab 0 a®
g= 0 (e )b % h = 0 (7).’ aq
0 0 1 0 0 1

This polarisation selects a subgroup G, ~RecCgp generated by X where

~ 0
Za::_+fabzb

0 = 0 > 0
e Z, X

0 fabgb— “

920 0%, = faa - 0z,

These vector fields are not invariant under I', but transform as

Ty — Zy  Zg— (T2,  X*— (f),2X?

and we see that, as expected, G 1, is preserved by I'. The quotient N~ 7/ G 1, is therefore
well-defined.

We introduce the one-forms C, and their SL(d;Z)-twisted counterparts C* = 0 and
Co = (e777),2Cy and the background fields

hap O A A%y
MAB:<0hab> AA:)::<O>

In this polarisation the currents (4.6) and (4.16) are given by
JO =TT = — % A® Jo =44 = hap A
ja _ HaAjA _ habe _ >k(Pa + Aa) ja _ ﬁaAjA _ hab(Pb + Ab) _ *Qa

where P* = (e/*)%,dz? and Q, = (e=77),bd5,.
Using these expressions for M ; 5, AL PA T i and J; in (4.15) gives the Lagrangian

1 1 1 1
’CT/G'L - 5 <1 + §habAamAb:v> P* A\ xP" + Zhabpa A *Pb + Zhaan A *Qp
1 a 1 a 1 a 1 a 1 ab
—|—§Ca/\*j —|—§P A*Ja+§Qa/\*J +§P /\Qa—{—zh Ca/\*Cb

where we have used the fact that QABdXA AdXA = 2dz0 A dzg, = 2P% A @Q,. Completing
the square in C, gives the action S, & [z, X4, C,] = Si[z, 2%] + S2[\s] where

1 1
Silz, 2] = 5 f{ (1 + hap A% A%, P A % P* + 3 j{ hay PO A PP + f{ P A *J,
% % %
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is the standard sigma model (4.4) on the torus bundle N given by a T¢ fibration over
Sl with metric in the torus fibres given by gap(z) = (e/%)4 heq(ef®)%, and connections
(e=1%)2, AY. The action So[\,] is

1

&DJz;ﬁWUMMM

where Ay = Qq + Cy — hap * (P? + A?) appears quadratically. The fields C,, not \,, appear
in the measure of the path integral and integrating out C, gives a shift to the dilaton

6~ 6~ 5 ng(x)) (117
where g(z) = det(gqp(x)).

4.6 Gauging, quotient spaces and the self-duality constraint

Gauging reduces the sigma model on 7 (or C7) to that on the quotient 7 /Gy, (or C7/Gr).
We now review how this gauging imposes the constraint (4.10), using BRST arguments.
For simplicity, consider the case of a trivial bundle where A% = 0. The gauged action may
be written as

_1 A B 1 A B 1
SCT/éL_Zj{ZHABdX A xdX —i—ZéQABdX A *dX —|—§ Edac/\>x<dx

1 1
+- j{ Co AT+ = j{ g C, A %Cyy (4.18)
2 Js 4 /s

where the current J¢ = I1%4(e~V®) 4B 75 and we have written g% (z) = Hp(z)ITAII5.
The self-duality constraint (4.10) is J4 = 0 and it was shown in [8] that this is implied
by the apparently weaker constraint J¢ = 0. We now review how the gauging correspond-
ing to a polarisation Il constrains the current J¢ to vanish in the quantum theory.
It is useful to write the action in world-sheet light-cone coordinates ¢+ = 7 + o where
0+ = (0r £ 9,)/2. The gauged action may then be written as

1 1
Ser/GL = 73 742 d?¢ Hap(x)d, X 0_XB — 3 742 d?¢ Qup0,XA0_XB — 742 d?¢ O x0_x
1 1
—§j{ ¢ (CoT1" + CaT-") — 5% d*¢ g (x)C_aClp (4.19)
b b

For simplicity, we neglect global issues due to the action of I' and consider the doubled
target space of the ungauged sigma model to be the cover, Cr.
The action (4.19) is invariant under the infinitesimal G, gauge transformations

5.XA =%,  6.Cpp = —0i¢, OSx=0

We will fix this with the gauge choice C_, = 0 (strictly speaking, in general one would need
to set C_, to a constant modulus and integrate over that modulus). We introduce a ghost
field ¢, for these transformations, and an anti-ghost field 1% and Lagrange multiplier field
m4+%. The BRST transformations with Grassmann-odd constant parameter A are then

5QXA = AHAaca 5chia = —A0ic, 5Qca =0

(4.20)
(5@.%' =0 (5Qb+a = A7T+a 5Q7T+a =0
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We gauge fix by adding the BRST exact term Sg to the action given by

ASg =g 7{ d*¢ b C,
%
so that
Sg = }[ d?¢ m,°C_, +]{ d?€ b, %0 _c, (4.21)
Y P

The Lagrange multiplier field 7% imposes the gauge condition C_, = 0. The equation
of motion for C_, gives the on-shell value of 7% as

1 1
Tt =g J §9ab(90)c+b
Integrating out 7%, the action is now
1 1
Ser/E, = —5 7{ d?¢ Hapd, XA0_XB — - 7{ d?¢ Qup0, XA0_XB — jé d?¢ 0, x0_x
T 2J)s 2 Js b
1
—= 7{ d?€ C T % + f{ d?€ b, %0 _c, (4.22)
2Js b
which has the BRST symmetry
50X = AT,  dgc, =0 6gCha =0
. 1 . b (4.23)
Soz =0 bgbs” = A (747 +g"C)

where 7% has been replaced by its on-shell value. We see, from (4.22), that Cy, is a
Lagrange multiplier field which enforces the constraint J_¢ = 0. Integrating out C.,
in (4.22) gives the action

1 2 A B 1 2 A B
SCT/éL - —§f;d 5 HAB(?JFX O,X - §£:d 5 QABa+X O,X
- f{ d*¢€ 0, x0_x + 7{ d?€ b, "0 _c, (4.24)
% %

which has BRST symmetry
X = ATT4%¢, 0gc, =0
1 (4.25)
dgr =0 dob = §Aj+a

generated by the BRST charge

Q= }{JQ = %fdﬁcmﬁ“ (4.26)

The physical states are the () cohomology classes with ghost number zero. A state of ghost
number zero is annihilated by 4%, so that the physical state condition Q|¥) = 0 implies

T ) =0

We see then that the BRST constraints imply the J.% = 0 on physical states, while
J-% = 0 is imposed by a Lagrange multiplier. This completes the argument that the
gauging imposes the constraint J+* = 0, and this then implies (4.10), as shown in [§].

,60,



5 Non-linear sigma model examples

In this section we revisit the three locally geometric, three-dimensional, examples discussed
in section 3 from the point of view of the world-sheet theory described in the previous
section. Recall that each of the examples considered in section 3 could be thought of as
a T? fibration over S.. The base has coordinate # ~ = + 1 and the coordinates on the
T? fibres are 2* = (y,z). These backgrounds can be equivalently written in terms of the
five-dimensional 7 bundle 7. The non-linear sigma model, describing the embedding of
the world-sheet ¥ into the doubled torus bundle 7', is then given by the action (4.9). In
this section we shall only consider backgrounds in which A%, and B,, are zero so that
Ja = 0. This is done for convenience and the generalisation to more general backgrounds
is straightforward. We shall also choose the xz-independent doubled metric to be M = 14.
The z-dependent doubled metric and connection are then

HAB — (eNx)AC(;CD(eNJ:)DB AA -0

The gauged sigma model (4.15) is

1 1 1
S:—]éPx/\*P”C+—j{5ABPAA*PB+—7{CAA*jA
2 /s 4 Jx 2 /s

1 1
+—7{ QapdXA A dXB + —7{ 845CA A «CP (5.1)
4 Js 4 Js

where
jA _ 5AB7)B _ LAB * PB CA _ (eNa:)ABHBaCa

where the two gauge fields C, are selected by the choice of polarisation. We choose co-
ordinates X4 = (X', X2,X3,X%) on the torus fibres so that the twist matrix N4p and

monodromy matrix eV can be written as
0 000 1 000
—-m 00 0 -m 100
NA, — NYA
b 0 00m ()"a 0 01m
0 000 0 001

where m € Z. From (2.9), the twist matrix N determines the structure constants of the
algebra (2.8). The left-invariant world-sheet one-forms P* and P4 are

P* =dz P'=dX' —maX? P? = qx?

5.2
P3 = dx3 P = dX* + maX3 (5:2)

where P4 = (P, P2, P3,P*) are left-invariant one-forms on G. The generators of the left

action Gy, also play an important role and, with this coordinate choice, may be written as

P = r T gk T g 1A= gxa
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5.1 Recovering the Nilfold from 7

Given the coordinate choice on the 7% fibres above, we recover the Nilfold by the choice of
polarisation projector IT and corresponding polarisation tensor © = (II,II) where

10 00
01 . 00

]._.[a == ]___[ =
A 00 ad 10
00 01

This means that (X!, X2) are selected as the physical coordinates y,z and (X3,X*) are
selected as the auxiliary coordinates g, Z, which we write as XA = (y,2,9,2). From (2.8)
and (2.9), this polarisation leads to the only non-vanishing structure constants of the gauge
algebra (2.8) being f,.Y = ﬁzANABHyB =m € Z. The left-invariant one-forms are then

PA = (PY, P*,Q,,Q.) (5.3)

where
P* =dr PY=dy—mxdz Q,=dy

(5.4)
P?=dz Q. = dz + mady

The polarisation projector which acts as Xo = H“ATVA, where I1%4 = TI°5LAP can be
written in this basis as

qaa _ (0010 ga_ (1000
0001 0100

where II,4 = 1,5 LB has been included for completeness. The projector I1%4 selects out
the abelian subgroup G, ~ R? C G, generated by the vector fields X¥ and X?, so that
the generators of the left action Ty = (11,7T%,T3,Ty4) are, in this polarisation, given by
Ti = (Zy,Z.,XY,X?). The vector fields generating G, are not globally defined on 7" and
under the shift + — x + « they transform as

XY 5 XY+ maX? X* o X*?

however, we see that I" preserves the subgroup G 1 ~ R? C G, generated by ()Z' Y, Xz ). The
quotient 7/ Gy is therefore a well-defined submanifold of 7.

As described in the previous section, the sigma model on 7/ Gp is given by gauging
the G C Gr, rigid symmetry of the sigma model (5.1). We introduce the world-sheet
one-forms Cy and C; and, as described in section 4.5, the duality-twisted gauge fields cA =
(eN*)ApIIB2C,. Using the polarisation projectors and the expression for the monodromy
matrix in (3.1) and (3.11), it is not hard to show that the twisted gauge fields C* and the
constraint current [J4 are written in this polarisation as

PY —xQ),

A PZ_*QZ
¢t =(0,0,0,, C, + mzC,) Ji= Qy — +PY (5.5)

Q. — xP*
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from which it is clear that the vanishing of the current J; implies PY = xQ, and P* = ().
As argued in the previous section, it is enough to show that if 7 = I1%4 7, is constrained
to vanish then 74 must also vanish. The minimal coupling P4 — P4 +C4 = (V)4 pDXEB
introduces gauge-invariant derivatives for the dual fibre coordinates;

dy — dy + C, dz — dz + C,

Substituting (5.3) and (5.5) into the gauged doubled torus sigma model (4.15) and noting
that the topological term may be written as

1 i 51 1
ZQABdXA NAXE = SPYAQy+ S PP AQ:
the Lagrangian of the gauged action can be expanded out to give

_ 1 T T 1 Y Y 1 z z
ﬁT/Gf —§P A xP +ZP A xP +ZP A xP
1 1 1 1 1 1
—i—ZQy A *Qy+ZQz A *Qz+§Cy A *Qy+§CZ A *Qﬁ—zcy A *Cy+ZCZ A xC,
1 1 1 1
—5Cy NP = SC NPP 4 S PYAQy + 5P A Qs

After a little rearrangement, this can be written as

1 1 1
LriG, = 5P N*P+ 7PV A*PY 4 2P* A xP?

1 1
+Z(Qy + Cy) N *(Qy + Cy) + Z(Qz + Cz) N *(Qz + Cz)
1 1
Completing the square in @, + C, and Q. + C. gives the action

S

T)G; = Stlx, 2] 4 Sa[Ad]

where

1 1 1
Sl[x,z“]:5}{PxA*P$+§}{PyA*Py+§}{PzA*PZ
% ) %

is the action for the sigma model with the nilfold as target space and

1 1
SQ[AG]:ZfZAyA*)\ijZfEAZA*AZ

where
Ay = Cy +dy — xdy Ar = C, 4+ dZ + maCy + mady — xdz

The topological term Sq does not contribute to the equations of motion but plays an
important role in the quantum theory as it allowed us to complete the square and separate
the action into two distinct parts without dropping surface terms. Eliminating the auxiliary

fields C, leaves the action Sy for the nilfold sigma model, as required.
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5.2 Recovering the 7° with H-flux background from 7

Given the coordinate choice on the T* fibres above, we recover the T background with
constant H-flux by the choice of polarisation projector II and corresponding polarisation
tensor © = (II,II), where

00 10
01 . 00

M, = M, = 5.6

A 10 ad 00 (56)
00 01

This means that (X3, X?) are selected as the physical coordinates (y,2) and (X!, X%) are
selected as the auxiliary coordinates (7, 2), so that XA = (9,2,y,2) and the corresponding
one-forms are P4 = (Qy, P*, PY,Q;) respectively. From (2.9) and (5.6), this polarisation
leads to the only non-vanishing structure constants of the gauge algebra (2.8) being K, =
ﬁy AN4 BﬁzB =m € Z, and the left-invariant one-forms may be written

P*=dz PY=dy P*=dz

(5.7)
Qy = dy —mxdz Q.= dz+ mady

The generators of the left action Ty = (ﬁ, fg, T 3, ﬂ) are, in this polarisation, given by T; =
(XY,Z,,Z,,X?). The polarisation projectors 11%4 and II,” can be written in this basis as

qea_ (1000 ga_ (0010
0001 0100

The projector 1% selects out the abelian subgroup GL~R2cCgG generated by the vector
fields X¥ and X*. These vector fields are globally defined on 7 and so the quotient 7 /G,
is therefore a well-defined sub-manifold of 7.

The sigma model on 7 /Gy, is given by gauging the G, C Gy, rigid symmetry of the
sigma model (5.1). We introduce the world-sheet one-forms Cy and C, and, as described in
section 4.5, the duality-twisted gauge fields C4 = (eN*)45IIB?C,. The minimal coupling
introduces gauge-invariant derivatives for the dual fibre coordinates;

dy — dy + C, dz — dz + C,
The twisted gauge fields are written in this polarisation as
¢t =(0,0,C,,C.) (5.8)
Substituting (5.7) and (5.8) into the gauged doubled torus sigma model (4.15) and noting
that the topological term may be written as
1 A s 1 1
ZQMﬂXAAdXB:§PyAQy+§PZAQf+mMMAdz

the Lagrangian of the gauged action can be expanded out to give

1 1 1 1 1
E:r/éK = §P$/\*Px+ZPy/\*Py—i—ZPZ/\*PZ—{—§Py/\(Qy—|—Cy)+§PZ/\(Qz+CZ)

F2(Qy +C) A #(Qy +C) + (Qs+C) A=(Qs +C2) + mady A d
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If we now complete the square in Q, + Cy and @, + C. the action splits in two S, G =
Silx, 2] + S2[Aa] where

1 1 1
Sl[m,z“]:—%dx/\*dx—i-—jédy/\*dy—i——j{dz/\*dz—i-/mdw/\dy/\dz
2 Js 2Js 2 Js 1%

The term involving the B-field B = maxdy A dz has been written as a three-dimensional
integral of the H-field strength H = mdx A dy A dz, pulled back to a three-dimensional
extension of the world-sheet V' where 0V = X. Sa[\,] is given by

1 1
SQ[AG]:—j{AyA*Aer—j{AZ/\*AZ
4 Js 4 Js
where
Ay =Qy+ Cy —xPY A =Q,+C, —xP?

Eliminating the auxiliary fields C' leaves the action S; for the sigma model whose target
space is a T with constant flux H = mdz A dy A dz, as required.

5.3 Recovering the T-fold from 7

We recover the T-fold background by the choice of polarisation projector II and corre-

sponding polarisation tensor © = (II, ﬁ)

10 00
00 . 01

M, = M, = 5.9

A 00 ad 10 (5.9)
01 00

We will work with the covering space of the T-fold, so that x is for the moment regarded
as non-compact. This means that (X!, X%) are selected as the physical coordinates (y, z),
so X4 = (y, 2,7, 2) while P4 = (PY,Q:,Qy, P?). From (2.9) and (5.9), this polarisation
leads to the only non-vanishing structure constants of the gauge algebra (2.8) being Q,%* =
Y N4 gII*B = m € Z. The left-invariant one-forms may be written as

P?=dx PY=dy—mzxdz P?=dz+ maxdy

Q, = dj 0. — d (5.10)

The generators of the left action Ty = (T 1,%4,? 3,%4) are, in this polarisation, given by
Ty = (Zy,X? XY, 7Z,). The polarisation projectors can be written in this basis as

qea_ (1000 zaa_ (0010
0001 0100

The projector 1% selects out the abelian subgroup GL~R2CgG generated by the vector
fields X¥ and XZ?. These vector fields are not well-defined under the shift + — = + a and
transform as

XY — XY + maZ? X* — X% —maZ¥
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and I" does not preserve the subgroup Gr generated by ()Z' Yy, Xz ). These generators are well-
defined on the cover Cr ~ G/I'¢, where I'¢ is the subgroup of I" which leaves x invariant, and
so we consider the sigma model with target space C initially here. As before, it is useful
Nz
e™’)

to introduce the left-invariant gauge one-forms C4 = ( ApIIBeC,, where here we have

cA = (—maC,, mzCy, Cy, C)

Introducing the gauge-invariant derivatives Dy = dy + Cy and Dz = dz + C., the minimal
coupling P4 — P4 4+ C4 may then be written as
PY — dy —maDz Q, — Dy

i g (5.11)
P? —dz+mxDy Q,— Dz

The Lagrangian for the G r-gauging of the sigma model on the cover Cr is given by the

Lagrangian

1 1 1
L = —dx N *dx + Zdy/\*dy—l-zdz/\*dz

Cr/Gq 2

1 . 1 - -
+Z (1+ (mx)Q) Dy A «Dy + ) (1+ (mx)Q) Dz N «DZ

1 1
—§ng/\ (dy — mx xdz) — 51)2/\ (dz + mz * dy) (5.12)

Completing the square in €y and C, as before, the gauged theory may be written as

1 1
ECT/éQ = ng A xdx + m (dy A *dy +dz A *dz)
m 1 )
T W N4 T (L (ma)?) (g Asdy +A: AxXs) - (5.13)
where
Ay =Cy +Qy — (xdy — mzdz) N=C,+Q, — (+dz + mady)

14 (mx)? 1+ (mx)?

so we see that the action splits into two parts Sc, = Si[z, 2%] + S2[\s] where
a 1 1 a b 1 5 a b
Sz, 2% == ¢ de Axdx + = ¢ gupdz® A*xdz” + = ¢ Bgpdz® N dz
2 s 2 s 2 Js

The metric and B-field on the T2 fibres are

B 1 10 5. mx 01
Jab =1 a2 \ 01 T (ma)? \ —10

which is the background (3.14), and

1
Sa[Aa] = 1 j{z(l + (ma)?)6%® Xy A %Ny

The C, are again auxiliary fields that can be eliminated in the classical theory. In the quan-
tum theory, the Jacobean between the A\, and the C, is trivial but the integration over the
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Mg gives a non-trivial z-dependent shift of the dilaton due to the factor of (1 + (mx)?)/4
in front of the A\, terms. The correction to the dilaton is

¢ — & =¢—1In(1+ (mz)?)

The result is the sigma model with action S plus a dilaton term, so that the target space is
a T? fibration over the line R, - a cover of the T-fold. The conventional T-fold background
is recovered by the identification z ~ x + 1 so that R, — S! as described in section 3.

6 Worldsheet theory for the doubled twisted torus

As discussed in sections 2.4, 3.3 and [22], we propose to extend the doubled torus con-
struction for the models of sections 2.4 and 3.3 by introducing an additional direction with
coordinate T that is conjugate to the winding number on the x-circle. This then gives a
full geometric interpretation to the gauge algebra (2.8) as the generators then all act geo-
metrically on the enlarged space. From the group-theoretic point of view, this extension is
natural and we shall see that the models of section 3.1 and section 5 are recovered. However,
this extended formalism also suggests a formulation of models that have non-trivial R-flux
that might arise from the action of a generalised T-duality of the kind proposed in [10].
In this section, we discuss the world-sheet theory for the sigma-model whose target is this
doubled space, and the constraint that halves the doubled degrees of freedom and allows the
conventional formulation to be recovered, at least for the locally geometric backgrounds.
However, it also leads to a formulation on backgrounds that are not even locally geometric.

We represent the Lie algebra (2.8) as acting on the 2(d + 1) coordinates (z,Z,X4) of
X, where X4 are the coordinates on the doubled torus fibre 72¢, as

) ) d o 1 d
Zy=—+NAgxP—_  x* Ty=——— —NagXP

= — = — 1
o XA o AT XA T 9 o (6.1)

The one-forms dual to these left-invariant vector fields satisfy the Maurer-Cartan equations
dPA — NAgP* A PE =0 dQ, — %NABPA APB =0 dP* =0 (6.2)

which are solved by
PA = (M) pdxB Q= di + %NABXAdXB P* =dz (6.3)

It is useful to define PM = PM ;4X! as the one-forms on X satisfying the Maurer-Cartan

equations
1
dpM 4 §tNPM7DN APP =0 (6.4)

where t, 54 = —N45 and toiaB) = —Nas.

The global identifications of the z%, Z, and x coordinates are fixed by identification
with the doubled torus formalism. The global identification of the & coordinate remains to
be determined. From a comparison with the case ty;n = 0, where X = T2+ " in which
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we know that the radius of Z is the inverse to that of x (in appropriate units), we expect
the entire space X to be compact.
More generally we consider a general 2D-dimensional twisted torus X = G/T" for a
group with Lie algebra
(Tar, Tn) = tyn Tp (6.5)

which are not necessarily of the form t,5* = —N4p and tyap) = —Nap. For example, a
conventional compactification on the D-dimensional twisted torus N' = G/I", where I is
a cocompact subgroup of G and G has Lie algebra

[Zma Zn] = _fmanp

gives rise to a doubled group G = G x R? where t,,? = —fmnP. Unless the twisted
torus N is a torus bundle the algebra of the doubled group will not be of the form (2.12).
Furthermore, if a left-invariant H-flux, K, is also included in the reduction then the
algebra is deformed further and the structure constants for the algebra are t,,,F = — finn?
and tpnp = Ky so that [21]

(Zm, Zn] = — fon® Zp + Knp XP (Zm, X" = — frp" XP (X", X" =0 (6.6)

Backgrounds that are not torus bundles cannot be described by the doubled torus bundle
7. However, they can be incorporated into a doubled twisted torus X.

6.1 Non-linear sigma-model for the doubled twisted torus
The Action describing the embedding of a closed string world-sheet Y into the target

space X is

1 1 13
SX = Z % dQU\/EhaﬁHIJaaxlaﬁxJ 4 E / d30'/€a By ,CIJKaa/XIaI@/XJafy/XK
> 1%

o 742 oV R(h) (6.7)

where V is an extension of the world-sheet, with coordinates ¢, such that 9V = ©. We
shall choose a gauge in which the world-sheet metric h,g is flat and Lorentzian and so the
world-sheet Ricci scalar R(h) is zero and the world-sheet Hodge star is an almost product
structure *? = +1. The metric H;; = H;;(X) and Wess-Zumino field strength are given by

Hig = MunPM PN, Krix = tunpPM PN ;PP

so that the line element and three-form on the twisted torus X may be written as

1
ds% = MynPM PV K= EtMNpPM APN APF

where P = G 1dG are the left-invariant one-forms, M sy takes values in the coset
O(D,D)/O(D) x O(D) and is taken to be independent of X! and tynp = Lygtnp®
are the structure constants for the Lie algebra (6.5). We can write the Wess-Zumino field
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strength as Kryx = taunpPM PN ;PP = tynpPM PN ;PP g, where P = dGG! is
the right-invariant one-form for the group G. We see then that the sigma model has a
manifest, left-acting G, symmetry. The Wess-Zumino term is invariant under Gy x Gp,
but the kinetic term which includes the metric Hy;(X) is only invariant under G;. We
recall that, on the twisted torus X = G/I", only that subgroup of G;, which is preserved by
I" will have a well-defined action. Note also that the Wess-Zumino three-form IC satisfies
dK = 0 by virtue of the Jacobi identity ¢y, NOt P]QT = 0. An open string version of this
theory is considered in [41].

6.1.1 The constraint

The model has double the required degrees of freedom, so we seek a generalisation of the
constraint (4.10) to halve these degrees of freedom to leave the correct number. Under
infinitesimal variations in X!, the left-invariant one-forms change as

SPM = PM 1 d(sXT) + (0, PM )ox ax! (6.8)
The equations of motion of the action (6.7) are then given by
d*MMNPN +MNPtMQP7DQ A *PN —i—LMNd'PN =0 (6.9)

The equations of motion (6.9) and Maurer-Cartan equations (6.4) are consistent with
d(PM — LMN My p + PF) = 0. We shall then impose the constraint

PM = LMN My p « PP (6.10)
generalising (4.10).

6.1.2 The constraint from gauging

From section 2.4, the conventional spacetime is recovered locally from the doubled twisted
torus as a patch of the coset G/ G 1, where G C G, is a left acting subgroup that is also
maximally isotropic (i.e. the Lie-subalgebra is a maximally null subspace of the Lie algebra
of G with respect to the metric Ly y of signature (D, D)). A non-linear sigma model with
target space g/éL is obtained by gauging the left-acting GL C Gy, isometry subgroup of a
non-linear sigma model for the target space G. The sigma model

1 1
Sg = _7{ HyydXE A xdXT + —/ KrrgdXE A dX? A dxE (6.11)
4 n 12 Vv

has rigid G;, symmetry, generated by the vector field

1 9

TVM = (ﬁ_l)M oxI

We shall be interested in gauging the null subgroup C~¥, which acts as G — gG for g € G.
G, is generated by the vector field X™ = II"™M Ty, so that
1 9

vm _ yymM -1
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Suppose for now that R™"” = II™MII"N11PPty,np = 0 so that the Xm generate a group
G, with Lie algebra

We will return to the case when R # 0 later. Under the action of the isometry the
embedding fields transform infinitesimally as

oX! = e, XX = ™M (P Y 16

where the parameter is now local, ¢ — €(7,0). We introduce Lie algebra valued one-forms
Cy, which transform as connections under the gauge symmetry

0Cy, = depy, — [P mepCh (6.12)
and the covariant derivatives
DX! = dx! + X"Cp, X! = ax! + (P~ 1), /uM™c,,

The kinetic term in (6.11) can be made gauge invariant simply by minimal coupling giving

the gauge-invariant kinetic term
1 I J
Sin = 7 ¢ HiDX' A +DX
b

The gauging of the Wess-Zumino term is not simply a minimal coupling as the B
field is only invariant under the isometry action up to a gauge transformation. The gaug-
ing is achieved following the general prescription of [42]. Under an infinitesimal gauge
transformation, the Wess-Zumino term changes by

1 1 [
6ESWZ—§/V(5JC—§£Z€IC

where 7. is the contraction with the vector field € = em)z ™ and can be written as i, =
enII™M (P~1) 337, We have used the fact that diC = 0 so that §.K = (icd + di.)K = di K.

It is useful to define a one-form v™ = v ;dX! on G by
o™ = TI™M [y PN

which satisfies
emdv™ = 1 K

Then the variation of the Wess-Zumino term can be written

1
O0cSwy = ——7{ dey, ANV
2 /s

This variation can be canceled by adding the term

1
S, = —y{ Co A V™ (6.13)
2 Js
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where C), is the gauge field transforming as (6.12). It is not difficult to show that
5™ = L™ = —en f 0P + Ly nIT™M TV de,,

so that 1
0cSe =5 jf (dem A V™ + Ly NTI™MIIN G, A dey,)
by

The first term cancels the variation of the Wess-Zumino term so that
1
8e(Syy + Se) = 5" f{ Co Ndey ™ = Ly yIImMIN
)

HmM

Since we require that the polarisation is null with respect to Lysn, the coefficient

™" vanishes and Sy, + S. is gauge invariant. The full gauged non-linear sigma model on
G is then

1 1 1
e DX! A «DXY —7{0 A ™ —//c dXI A dxX? A daxE
G/G 4£]HIJ * +2 - m (Y +12 . IJK

We stress the fact that the gauging requires that v™ is globally defined and the gauge
group G 1 C G, is maximally isotropic, i.e. the polarisation is null.

We define the one-forms C = G~1CG so that C,, Av™ = LynCM APYN and the gauged
theory can be written as

1 1 1 1

Sga== f{ MunPY NP4 7{ CM ATt f{ M nCM ACN4— / tan PP APN APF
9/G 4 [, 2 /s, 4 Js, 12 )y

where

I = MunPY — Lyn + PN

We note that the constraint (6.10) may be written as Jys = 0.

As in the doubled torus construction, the conventional undoubled theory is recovered
by eliminating the gauge fields C,,, which again appear quadratically as auxiliary fields. In
the quantum theory, integrating out C,, generates a shift in the dilaton.

As an example, let us consider a general twisted torus with H-flux as discussed at the
beginning of this section and in [21, 32]. The doubled group G in this case is generated by
the Lie algebra (6.6) where the non-zero structure constants of the algebra (6.5) are

1fimjwIinNIIthMNP = fmnp 1lv[m]\4i:[nNlf:[thMNP = Kmnp
The Maurer-Cartan equations for the left-invariant one-forms on G are
1 1
dP™ + §fnme" AN PP =0 dQm — frn?@p N P" — §Kmin” ANPP =0 (6.14)

These one-forms are dual to the vector fields generating the right-acting gauge alge-
bra (6.6). The right-invariant left action, Gy, is generated by T; = (Z,,, X™) which satisfy
the Lie algebra

Zons Zn) = fon? Zp — Kpurip XP [Zny, X = frp"XP [X™, X" =0
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Gauging the left acting subgroup Gr generated by Xm requires the introduction of the

one-form fields C,,, by minimal coupling

P=G1dG -G 'DG=G"1(d+C)g (6.15)
It is useful to define C = G~1CG, so that

pM L pM M oM = (glog) (6.16)

In the current example (6.14) one can show that I1;;C™ = 0 and we may write

PM o PM = pM miMme, & Qum— Qu+Cn (6.17)
where C,,, = ﬁmMCM.

The gauged action is then

1 ~ ~ 1 1
S == 7{ MuyunPM A PN + —j{ LyunPM aTIN™C,, + —/ tunpPM APN A PP
4 Js, 2 Js 12 Jy

where, for this example, the Wess-Zumino term is
1 1
Swz = = / fop" Qm N P" N PP — — / KpnpP™ N P" N PP
4 Jy 12 Jy
1 1
= —j{Pm/\Qm%——/ KpnpP™ N P" N PP (6.18)
2 Js 6.Jv

Note that we have used the fact that P™ A @), is globally defined to write the two-
dimensional term. Expanding the gauged action using (6.18) and then completing the

square in Cp,, the doubled action may be written
1 m n 1 m n 1 mn 1 m n D
x v
where

The A, can then be integrated out to give a theory whose target space is a twisted torus
with H-flux. As in the doubled torus construction of section 5, the change in variables from
Cin to Ay, introduces a determinant in the path integral which gives a shift to the dilaton.

Recovering the doubled torus. Upon gauging the left action £ — T + € generated
by X* and integrating out the corresponding gauge field C,, the doubled twisted torus
formalism for the duality twist construction reduces to the doubled torus formalism
of section 2 as we now show. The z-independent tensor My n for an O(d,d)-twisted
reduction is given by [22]

1+ MuapA4, AP, +02 b bLacACy + MacAC,
Myn = b 1 Lac A%,
bLBC-ACm + MBC-ACm LAC-ACm MAB + LACLBD-AC:B-AD:B
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where b = %LABAA;EAB;B. The WZW term for the doubled group sigma model (6.11)
with t,4P% = —NB 4 and t,up = —Nap is

1 1
Sy = ——/ NapP® APAAPE = —]é P*AQ, (6.20)
4 Jy 2 )y

and the action for the doubled group sigma model may then be written as the integral
over the two-dimensional Lagrangian

1 1 1
L= ZMMN(PM +CMYAR(PN 10N + SPTNCet S PTA Qs (6.21)
where ) )
PM 4 CM = (P4, P7,Qu + Cy)

FExpanding this out and completing the square in C,, the expression may be simplified
considerably

1 1 1 1
L= ZMABPA A xPB — 5PA Nxda+ 5GP NPT 4 g Axds (6.22)
where J4 = MagAB — Lap * AB, we have defined A4 = A4, dz, and

Ao = Qp + Cyp — *P® + bP* + Lo A, PP
1
g =1+5MapA" A", (6.23)

Integrating out A, gives the doubled torus sigma model (4.9) of [7].

6.2 Recovering the conventional background

In this section we derive the prescription for constructing the physical metric and H-field
strength from the doubled geometry that was presented in section 2.6. In particular, the
strange expression for the H-field strength (2.63) arises quite naturally from the world-
sheet point of view. We shall assume here that the generators X™ close to generate a
subgroup G and so a conventional description does exist, i.e. we take R™"P = (0. We shall
generalise to the R™"P =£ () case in the following section.

We recall from (2.60) that the left-invariant one-forms on X may be written as
PM = Ny M(z) (6.24)
where
oM = ("™, Gm)
where 7 and ¢, are defined in section 2.6. The VNM (z) may then be used to define

the metric H ;¢ (7) = MPQVMPVQN whose components define a metric g, and B-field
Binn by
gmn + Bimpg™ Byn Bmpgpn> (6.25)

Hyr(x) = ( G B, s
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The gauging of the Gr subgroup may then be achieved by the minimal coupling
Gm — Gm + Cp, and the addition of the term S, given in (6.13). Expanding the gauged
sigma model action using (6.24) and (6.25) gives

1 1
S = 1 jé (Gmn + BmpgP Bgn) ™ A sr™ + 3 jé Bppd®"'r™ A *(G + C)p,
¥ ¥
1

1 1
+—7{gm"((]+C)mA*((j+C)n+—7{Tm/\Cm+—/IC
4 Js 2 /s 2 Jy

Completing the square in C,,, this action may be written as

where

)\m = (jm +Cm — Imn * r" — anrn

Integrating over A, gives a shift in the dilaton as in (4.17) and we recover a conventional
world-sheet description of the theory

1 . .
S = —%gijdml/\*dxj—i—/ H
2 Js v
where 1 1
Gij = Gmnr"ir" H=dB - §d(rm A Gm) + §IC

as claimed in section 2.6.

6.3 Compactifications with R-flux

In section 2 we discussed the doubled torus description of target spaces that could be
constructed as T¢ fibrations over S} with monodromy in O(d,d;Z). The natural action of
O(d,d;Z) on the theory in the fibres related different polarisations by T-duality. There is
some evidence that there should still be a T-duality on the base circle [10] that exchanges
Z, with X* and would act on the structure constants in the gauge algebra (2.10) as

Kyap — fabw fxab - anb Qxab - Rmab (626)
to give the algebra

[X$, Za] _ Qaa:be + faba:Xb [Xx’Xa] _ _QxabXb + Rxabe
(Za, Zb) = far® Zo (X% Zy] = —Q%% Z, (X, X% = R*Z, (6.27)

As discussed in section 3.3.2, it was conjectured in [10] that the structure constant R¥
(‘R-flux’) corresponds to a background constructed with a twist over a dual circle S (with
coordinate Z conjugate to the winding number). An example of such a background is
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that which arises from the conjectured T-duality of the T-fold in section 3 along the x
direction [10]. The algebra (6.27) in this case is

X% XY =mZ,  [XY,X?|=mZ, [X*,X"]=mZ, (6.28)

All other commutators vanish. The generators xm (the right-invariant counterparts to
X™ above) do not close to form a subalgebra. As such, we cannot integrate out the Z,,
completely to get a target space described solely in terms of the 2. In the classical theory
however, we can use the self-duality constraint (6.10) to remove the dz,, dependence and
write the doubled theory in terms of the Lagrangian £(Z,dx).

We choose to write the one-forms on & in a way that makes manifest the cyclic
symmetry of the coordinates

P =dx —ngdzZ +nzdy Qp = dx
PY =dy —nZdzt +nzdz Qy =dy (6.29)
P* =dz —nzdy+ngdz Q, =dz
where
R =m=2neZ

With a little work, the self-duality constraints (Q,, = #0,,P™), given by (6.10) with
Muyny = 0pn, can be written in terms of Z,, and dx™ only

1
Q= 7 (Cox dw + 0?2 * dy + 0?23 * dz + nZdy — njjdz)
1
Q, = 7 (gy s« dy + nyz % dz + n’&y * de + nidz — nédx)
1
Q. = T (Cz xdz +n’z7 * dr + anjé * dy + nydx — nidy) (6.30)
where
T=1+n*+7*+ 2% (6.31)
and
=1+ i)  ¢=1+0n)?> =1+ (n2)? (6.32)

Note that using the constraints Q,, = *0,,, P", one can show
Tdr + ydy + Zdz = x (2Q, + §Qy + 2Q)) (6.33)

This result is useful in determining the expressions (6.30). The classical equation of motion
for the x-coordinate is then given by the Maurer-Cartan equation d@, = 0 and (6.30) so
that, for example, the z equation of motion is

1
d (? (Co * dzx + n2ig « dy + n22%  dz + nzdy — nﬂdz)) =0 (6.34)

The y and z equations of motion are given by cyclic permutations of this. These equations

of motion may be recovered from the action
1

1
S == 7{ Imndx™ A xdx™ + —j{ Bndx™ A dz" (6.35)
2 /s 2 Jx
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where the metric and B-field are

2

) (e NP3y n’ii 0 %z —j
n
9= 7 n?zy ¢, nPyz B:E -2 0 z (6.36)
n?zZz n*gz ( g —% 0

We see that it is possible to remove the dz™ dependence and give a Lagrangian which
depends explicitly on the ‘winding’ coordinates Z,, and dz". This is reminiscent of the
results found in [15-17].
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