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Abstract: This paper uses the Noether symmetry approach to examine the viable and stable traversable
wormhole solutions in the framework of the f (R,T 2) theory, where R is the Ricci scalar and
T 2 = TµνT µν is the self-contraction of the stress–energy tensor. For this purpose, we consider
a specific model of this modified theory to obtain the exact solutions of the Noether equations.
Further, we formulate the generators of the Noether symmetry and first integrals of motion. We
analyze the presence of viable and stable traversable wormhole solutions corresponding to different
redshift functions. In order to determine whether this theory provides physically viable and stable
wormhole geometry or not, we check the graphical behavior of the null energy constraint, causality
condition and adiabatic index for an effective stress–energy tensor. It is found that viable and stable
traversable wormhole solutions exist in this modified theory.

Keywords: Noether symmetry; modified theory; wormhole solutions
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1. Introduction

The general theory of relativity (GR) is the most effective theory of gravity which
describes a wide range of gravitational effects from small to large structures in the cosmos.
This theory passes the solar system tests successfully. Recent observations confirmed the
existence of gravitational waves and showed that their power spectrum and attributes are
consistent with those predicted by GR. The most comprehensive model for explaining the
dynamics of the cosmos is the CDM model. However, the cosmological constant in the
action of GR leads to the cosmological constant problem. However, there are many other
unresolved issues such as the dark energy paradox and the existence of singularities which
keep open the way to extend GR. It is fascinating that modifying GR can help in finding
solutions for all these issues. f (R) gravity is the simplest modified theory whose useful
literature has been made available to comprehend the realistic aspects of this theory [1,2].
There are various modified gravitational theories that successfully describe the mysterious
universe [3–7].

The prediction of singularities at a high energy level where GR is not applicable
because of possible quantum effects is considered a significant issue in GR. However, quan-
tum gravity does not have a specific formalism. Accordingly, a new gravitational theory
has been established by adding the non-linear term T µνTµν in the integral action, named
f (R, T 2) gravity [8]. This theory is also equivalent to GR in a vacuum. This modified
theory is assumed to be the most successful approach to resolve the spacetime singularity
in the non-quantum description. This theory is also known as energy–momentum squared
gravity (EMSG). Thus, the field equations of EMSG deviate from GR in the presence of
a matter source. This theory includes higher-order matter and curvature terms in the
field equations which are used to examine several interesting cosmic consequences. It
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is noteworthy that this modified proposal resolves the spacetime singularity, but cosmic
evolution remains unaffected.

This mathematical model does not support the big-bang theory as the scale factor
is minimum and the maximum energy density is finite in the early times. However, the
density profile in the radiation-dominated era manifests that EMSG favors the inflationary
cosmic models. These models resolve the main cosmic problems such as flatness and
horizon issues, but no model of inflation has been confirmed by observations. A class of
cosmic models (varying the speed of light theories) has been developed in this perspective
which does not support the inflation. This suggested an alternative way to solve these
cosmic problems by varying the speed of light and Newton’s constant of gravitation.
Theories about varying the speed of light were motivated to resolve the inflation problems
but did not resolve the big-bang singularity. To address this problem, Bhattacharjee and
Sahoo [9] proposed a novel cosmic model which is free from inflation as well as the big-bang
singularity by including Newton’s constant of gravitation and varying the speed of light
in the context of EMSG. Singh et al. [10] studied the viability and stability of color-flavor
locked quark stars in this framework. Nazari [11] examined that this theory passes the
solar system tests successfully and found that, except for a small deviation, the behavior of
light curves in EMSG is similar to GR.

The presence of the T 2 term yields some quadratic corrections to the Friedman equa-
tions which are similar to those reported in the framework of loop quantum gravity [12].
Board and Barrow [13] analyzed a range of exact solutions for the isotropic universe
and examined their behavior through accelerated expansion and the presence or ab-
sence of singularities. Akarsu et al. [14] proposed energy–momentum-powered grav-
ity by adding the term f (TµνT µν) in the functional action and discussed a specific case
f (TµνT µν) = α(TµνT µν)η , where α and η are real constants. They analyzed that this theory
can be unified with Starobinsky gravity to explain the complete cosmic history, including
the inflationary era. Akarsu et al. [15] established a scale-independent EMSG that leads to
scenarios with many interesting applications in cosmology. Ranjit et al. [16] investigated
solutions for matter density and studied their cosmic consequences in EMSG. Sharif and
Naz [17] investigated viable features of a gravastar in this framework.

Chen and Chen [18] investigated the axial perturbations of the charged black holes
in the EMSG theory. It is worthwhile to mention here that this theory is not limited to
bouncing solutions and the early universe. However, this can be used to manipulate the
CMB temperature fluctuation [19]. Kazemi et al. [20] analyzed the gravitational stability
of an infinite fluid as well as the differentially rotating fluid in this framework. Rudra
and Pourhassan [21] explored the thermodynamic properties of a black hole in EMSG.
Nazari et al. [22] examined the Palatini formulation of EMSG and studied their conse-
quences in various contexts. We have studied the stability of the Einstein universe [23,24]
and dynamics of relativistic objects [25–29] in this framework. Yousaf et al. [30] analyzed
the effects of EMSG on the dynamics of axially symmetric anisotropic and dissipative fluid.
Khodadi and Firouzjaee [31] used the linear perturbations on the Reissner–Nordstrom–de
Sitter solutions in this framework and developed the valid study of cosmic censorship
conjecture beyond Einstein’s gravity.

The surprising and ambiguous characteristics of our cosmos put forward stunning
questions for the scientific community. The existence of hypothetical structures is consid-
ered the most significant issue that gives the wormhole (WH) structure. It is described as a
hypothetical bridge that connects two distinct parts of the universe due to the presence of
exotic matter (which violates energy conditions). The intra-universe WH connects different
regions of the same cosmos while the inter-universe WH joins two distinct parts of a differ-
ent cosmos. Flamm [32] developed a WH structure through the Schwarzschild solution.
Later, Einstein and Rosen [33] found that a curved space structure can join two different
spacetimes through a bridge named the Einstein–Rosen bridge. Wheeler [34] explained
the Schwarzschild WH is non-traversable because two-way traveling is not possible in it,
and anything attempting to pass through would be destroyed by the tremendous tidal
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forces present at the WH throat. Moreover, the WH throat rapidly expands from zero to
a finite circumference and compresses to zero with time, preventing access to anything.
However, Fuller and Wheeler [35] investigated that WHs would collapse instantly after
the formation.

The maximum amount of exotic matter in the bridge raises questions about the exis-
tence of a viable WH structure. Thus, there should not be an excessive amount of exotic
matter in the bridge for viable WH geometry. The first traversable WH was proposed
by Morris and Thorne [36]. In addition to the existence of such hypothetical structures,
stability is the most significant issue that describes how these cosmic structures respond to
perturbations and enhances their physical features. However, a stable state is obtained due
to the non-singular configuration which prevents the WH from collapsing in contrast to an
unstable WH, which can also exist because of very slow decay. Several methods were estab-
lished to investigate the viable and stable WH structures [37,38]. Dzhunushaliev et al. [39]
investigated the stability of a WH configuration with and without an electromagnetic field.
Oliveira et al. [40] examined physically viable and stable traversable Yukawa–Casimir WHs.

Symmetry describes the properties of mathematical and physical systems that remain
invariant due to perturbation. The uses of symmetry techniques are significant for obtain-
ing viable solutions to differential systems. The continuous symmetry (which occurs due to
constant change in a system) corresponding to the Lagrangian is known as Noether symme-
try (NS). The associated Lagrangian is useful to identify the realistic aspects of a physical
system by providing information about various symmetries of the system. However, the NS
technique is the most elegant approach that describes a connection between NS generators
and the conserved quantities of the system [41]. The complexity of the system is reduced
by this method and viable solutions are obtained that can be used to study the dark cosmos.
The literature provides several ways to explain the NS methodology [42–44]. For example,
one way to identify the symmetry generators is with Noether gauge symmetry in which
the gauge term is added to the invariance condition, while another method is to set the Lie
derivative of the Lagrangian to zero. This technique also produces some useful restrictions
that allow one to select cosmological models according to the recent observations [45–47].

Noether charges play a significant role as they are used to investigate several cosmic
issues in various backgrounds. Motavali and Golshani [48] used the NS method to obtain
the exact cosmological solutions of FRW spacetime. Vakili [49] used this approach to
analyze dark components of the universe. Capozziello et al [50] analyzed this strategy in
the quintessence and phantom cosmic models. Capozziello et al. [51,52] obtained viable
solutions of static spherical spacetime through the NS method in f (R) theory. Shamir
et al. [53] obtained the exact solutions of the FRW universe model in the same theory.
Jamil et al. [54] investigated scalar field cosmology through the NS approach in teleparallel
theory. Momeni et al. [55] studied the exact cosmological solutions through NS in f (R, T )
theory. Shamir and Ahmad [56,57] examined isotropic and anisotropic solutions via the NS
technique in f (G, T ) theory. We have found exact solutions through the NS technique in
f (R, T 2) theory [58–62].

Cosmologists have been quite passionate about studying WH geometry in modified
theories. Lobo et al. [63] examined a traversable WH structure through distinct types of
WH shape functions (WSFs) and equations of state in f (R) theory. Mazharimousavi and
Halilsoy [64] found that WH solutions satisfy all the necessary requirements near the WH
throat in this theory. In the framework of the scalar–tensor theory, the traversable WH ge-
ometry through the NS was examined in [65]. The static WH solutions with different matter
contents in f (R, T ) theory were analyzed in [66]. The viable WH solutions admitting the
NS in f (R) theory were studied in [67]. Sharif et al. [68,69] studied a new holographic
dark energy model and the Tsallis holographic dark energy model in the context of the
modified theories of gravity. Mustafa et al. [70] analyzed viable WH geometry through the
Karmarkar condition in f (Q) theory. Shamir and Fayyaz [71] developed a WSF through
the embedding class-I technique in f (R) theory and explained that a WH structure can
be obtained with a negligible amount of exotic matter. Hassan et al. [72] found that WH
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solutions corresponding to a linear and exponential model of f (Q) gravity models are
physically viable and stable. Malik et al. [73] used the Karmarkar condition to study a
traversable WH structure in f (R) theory.

The above literature motivates us to examine WH geometry through the NS approach
in f (R, T 2) theory. This paper is designed in the following way. In Section 2, we develop
the field equations of the static spherical spacetime in f (R, T 2) theory. Section 3 gives
a brief discussion of WH solutions via the NS technique. In Section 4, we analyze the
stability of the WH solutions by the causality condition and adiabatic index. The last section
summarizes our results.

2. Basic Formalism of f (R,T 2) Theory

This modified theory is defined by the following action [8]

A =
∫
(

f (R, T 2)

2κ
+ Lm)

√
−gd4x, (1)

where Lm, κ and g represent the matter-Lagrangian, coupling constant and determinant of
the line element, respectively. The corresponding field equations are

(gµν∇µ∇µ +Rµν −∇µ∇µ) fR −
1
2

gµν f = Tµν −Θµν fT 2 , (2)

where f ≡ f (R, T 2), fT 2 = ∂ f
∂T 2 , fR = ∂ f

∂R , and

Θµν = 2T ξ
µ Tνξ − T Tµν − 2LmTµν + LmgµνT −

4∂2Lm

∂gµν∂gξη
T ξη . (3)

We assume isotropic fluid configuration as

Tµν = UµUνρ + p(UµUν + gµν). (4)

Using this value in Equation (3), we have

Θµν = −(4pρ + ρ2 + 3p2)UµUν. (5)

Re-arranging Equation (2), we obtain

Gµν =
1
fR

(T c
µν + Tµν) = T e f f

µν , (6)

where T c
µν are the additional impacts of EMSG, defined as

T c
µν =

1
2

gµν( f −R fR) + (∇µ∇ν − gµν∇µ∇µ) fR −Θµν fT 2 . (7)

We consider static spherical spacetime to study the WH geometry as [36]

ds2 = −dt2eα(r) + dr2eβ(r) + (dθ2 + dφ2 sin2 θ)η(r), (8)

where η(r) = sinh r, r2, sin r for K = −1, 0, 1 (K defines the curvature parameter) [74]. We
assume eβ(r) = (1− h(r)

r )−1 and η(r) = r2 to examine the WH structure. Here, α(r) and
h(r) define the redshift and WSF, respectively. Morris and Thorne [36] stated that the WSF
must satisfy the following constraints in order to produce a traversable WH solution

h(r)− r = 0 at r = r0, (9)

h′(r) < 1, (10)
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h(r)
r
→ 0 as r → ∞, (11)

h(r)− rh(r)′

h(r)2 > 0 at r = r0. (12)

Here, r0 is the radius of WH throat such that r0 < r < ∞. The resulting field equations are

ρe f f =
1
fR

[
ρ +

1
2
(R fR − f ) + (3p2 + ρ2 + 4pρ) fT 2 + e−β(

η′

η
− β′

2
) f ′R

+ e−β f ′′R

]
, (13)

pe f f =
1
fR

[
p +

1
2
( f −R fR)− e−β(

η′

η
+

α′

2
) f ′R

]
. (14)

In order to analyze the existence of some viable cosmic structures, some constraints must
be imposed on the matter, named energy conditions. These energy bounds are classified
as follows:

• Null energy constraint
pe f f + ρe f f ≥ 0. (15)

• Strong energy constraint

pe f f + ρe f f ≥ 0, 3pe f f + ρe f f ≥ 0. (16)

• Dominant energy constraint
ρe f f ± pe f f ≥ 0. (17)

• Weak energy constraint

pe f f + ρe f f ≥ 0, ρe f f ≥ 0. (18)

These conditions must be violated for viable WH geometry. In alternative theories of
gravity, the violation of pe f f + ρe f f ≥ 0 demonstrates the presence of a physically viable
WH structure.

3. Noether Symmetry Approach

Noether symmetry offers an intriguing method for creating new cosmic models and
associated structures in alternative gravitational theories. This method provides the first
integrals of motion which are helpful to obtain exact solutions. We use Lagrange multiplier
method as

S = 2π2
∫ √

−g
[

f − (R− R̃)v1 − (T 2 − T̃ 2)v2 + p
]
dr, (19)

where √
−g = e

α+β
2 η, T̃ 2 = 3p2 + ρ2, v1 = fR, v2 = fT 2 ,

R̃ = − 1
eβ

(
α′′ +

α′2

2
+

2η′′

η
+

α′η′

η
− η′2

2η2 −
β′η′

η
− α′β′

2
− 2eβ

η

)
. (20)

Using Equation (20) in (19), we obtain

L
(

α, β, η,R, T 2, α′, β′, η′,R′, (T 2)′
)
= ηe

α+β
2

[
f + p− fR(R− 2η−1)

+ fT 2(3p2 + ρ2 − T 2)

]
+ ηe

α−β
2

[
(

α′η′

η
+

η′2

2η2 ) fR + (
2η′R′

η
+ α′R′) fRR
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+(
2η′(T 2)′

η
+ α′(T 2)′) fRT 2

]
. (21)

The Euler equations of motion and Hamiltonian of the system are expressed as

∂L
∂qi −

d
dr

(
∂L
∂qi′

)
= 0, i = 1, 2, 3..., n (22)

H = qi′
(

∂L
∂qi′

)
−L, (23)

where generalized coordinates are denoted by qi.
We use Lagrangian (21) in Equation (22) and obtain

f −R fR + p + fT 2(3p2 + ρ2 + 12pp,α + 4ρρ,α − T 2) + 2p,α −
1
eβ

×
[(

2η′′

η
− η′2

2η2 −
β′η′

η
− 2eβ

η

)
fR +

(
2R′′ − β′R′ + 2η′R′

η

)
fRR

+

(
2(T 2)′′ − β′(T 2)′ +

2η′(T 2)′

η

)
fRT 2 + 2R′2 fRRR + 4R′(T 2)′ fRRT 2

+2((T 2)′)2 fRT 2T 2

]
= 0, (24)

f −R fR + p + fT 2(3p2 + ρ2 + 12pp,β + 4ρρ,β − T 2) + 2p,β +
1
eβ

×
[(

2eβ

η
− η′2

2η2 −
α′η′

η

)
fR −

(
α′R′ + 2η′R′

η

)
fRR − α′(T 2)′ fRT 2

−2η′(T 2)′

η
fRT 2

]
= 0, (25)

f −R fR + fT 2(3p2 + ρ2 + 6ηpp,η + 2ηρρ,η − T 2)− 1
eβ

[(
α′′ +

α′2

2

+
η′′

η
+

α′η′

2η
− β′η′

2η
− α′β′

2
− η′2

2η2

)
fR + 2R′2 fRRR + 4R′(T 2)′ fRRT 2

+

(
α′R′ − β′R′ + 2R′′ + η′R′

η

)
fRR +

(
α′(T 2)′ − β′(T 2) + 2(T 2)′′

+
η′(T 2)′

η

)
fRT 2 + 2((T 2)′)2 fRT 2T 2 − peβ − ηp,ηeβ

]
= 0, (26)

+eβ(R− 2η−1) fRR − eβ(3p2 + ρ2 − T 2) fRT 2 +

[
α′′ +

α′2

2
+

2η′′

η

+
α′η′

η
− β′η′

η
− α′β′

2
− η′2

2η2

]
fRR = 0, (27)

eβ(R− 2η−1) fRT 2 − eβ(3p2 + ρ2 − T 2) fT 2T 2 +

[
α′′ +

α′2

2
+

2η′′

η

+
α′η′

η
− β′η′

η
− α′β′

2
− η′2

2η2

]
fRT 2 = 0. (28)

Using Equation (21) in (23), it follows

eβ(r) =

(
η′2

2η2 +
α′η′

η

)
fR +

(
α′ + 2η′

η

)(
R′ fRR + (T 2)′ fT 2T 2

)
(

f −R fR + (3p2 + ρ2 − T 2) fT 2 + p + 2 fR
η

) . (29)
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The symmetry generators are considered as

K = λ
∂

∂r
+ γi ∂

∂qi , i = 1, 2, 3, 4, 5. (30)

where λ = λ(α, β, η,R, T 2) and γ = γ(α, β, η,R, T 2) are unknown coefficients of the
vector field. For the existence of NS, the Lagrangian must satisfy the following invari-
ance constraint

K[1]L+ (Dλ)L = DΨ, (31)

where total derivative, prolongation of first order and boundary term are represented by D,
K[1] and Ψ, respectively. Further, it is determined as

K[1] = K+ γi ′ ∂

∂qi ′
, D =

∂

∂r
+ qi ′ ∂

∂qi . (32)

Here, γi ′ = Dγi ′ − qi ′Dλ. The conserved quantities are expressed as

I = −λH + γi ∂L
∂qi −Ψ, (33)

which play an important role for developing the viable solutions. The coefficients of
Equation (31) are given in Appendix A.

4. Exact Solutions

This section formulates the symmetry generators, conserved quantities and corre-
sponding viable solutions using the above system of PDEs. The system’s complexity
decreases via the NS technique, which also helps to find the exact solutions. Thus, it would
be interesting to study viable and traversable WH solutions using this approach. However,
the aforementioned system is more complex, so it is very difficult to find exact solutions
without taking the EMSG model. We assume the EMSG model as [12]

R+ χT 2 = f (R, T 2). (34)

where we take constant χ = 1 for our convenience. We include cosmological constant in
this model to make the resemblance with the standard ΛCDM model as

R+ Λ(T 2) + T 2 = f (R, T 2). (35)

The exact solutions of the system of Equations (A1)–(A19) are

γ2 = −2ξ2ξ5

r2 , λ = ξ1 −
ξ2ξ5

r
, γ1 = γ3 = γ4 = γ5 = 0,

Λ(T 2) = −T 2 + ξ3T 2 + ξ4, Ψ = ξ5r, (36)

where arbitrary constants are denoted by ξi. It is important to consider isotropic matter
because it accurately explains the composition of matter in various celestial objects. Dust
fluid can also analyze the configuration of matter only in the presence of negligible amount
of radiation. Here, we examine the existence of viable traversable WH structures for dust
and non-dust fluid configurations.

4.1. Dust Case

Equation (4) becomes
Tµν = ρUµUν. (37)
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Using Equation (37) in (A20), we have

ρ =

√
e
−α−β

2

2ξ2ξ3
, R+ 2ξ3T 2 + ξ4 = f (R, T 2). (38)

The NS generators and corresponding first integrals of motion become

K1 =
∂

∂r
, K2 = −2ξ2

r
∂

∂r
− 2ξ2

r2
∂

∂β
, (39)

I1 = 2e
α−β

2

[
1 + α′r−

(
1 +

ξ4r2

2
+

r2e
−α−β

2

2ξ2

)
eβ

]
, (40)

I2 = r− 2ξ2e
α−β

2

r

[
1 + α′r−

(
1 +

ξ4r2

2
+

r2e
−α−β

2

2ξ2

)
eβ

]
. (41)

Substituting Equation (38) in (29), we obtain

eβ(r) =
1 + α′r

1 + r2ξ4
2 + r2e

−α−β
2

2ξ2

. (42)

We consider different redshift functions as [75,76]

α(r) = j ln(
r
r0
) , α(r) = e−

r0
r , (43)

to examine the viable WH geometry through null energy condition and WSF. Here, j is an
arbitrary constant. We manipulate Equation (42) for the considered redshift functions in
the following cases.

Case I: α(r) = j ln( r
r0
)

Substituting this value in (42), it follows

β(r) = 4 ln(2)− 2 ln
[

1
ξ2(r + j)

{
r2 +

{
8(

r
r0
)jξ2

2ξ4 jr2 + 8(
r
r0
)jξ2

2ξ4r3

+ 16(
r
r0
)jξ2

2 j + 16(
r
r0
)jξ2

2r + r4
} 1

2
}
(

r
r0
)−j/2

]
. (44)

The corresponding WSF is

h(r) = − r
8ξ2

2(r + j)2

[
4ξ2

2ξ4 jr2 + 4ξ2
2ξ4r3 + (

r
r0
)−jr4 + (

r
r0
)−j
{

8jr2ξ2
2

× (
r
r0
)jξ4 + 8(

r
r0
)jξ2

2ξ4r3 + 16(
r
r0
)jξ2

2 j + 16(
r
r0
)jξ2

2r + r4r2
} 1

2

− 8ξ2
2 j2 − 16ξ2

2 jr− 8ξ2
2r2 + 8ξ2

2 j + 8ξ2
2r
]

. (45)

The energy density becomes

ρ =

√
2

4

[
1

ξ2
2(r + j)ξ3

{
r2 +

{
8(

r
r0
)jξ2

2ξ4 jr2 + 8(
r
r0
)jξ2

2ξ4r3 + 16(
r
r0
)jξ2

2 j

+ 16(
r
r0
)jξ2

2r + r4
} 1

2
}
(

r
r0
)−j
] 1

2

. (46)
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The null energy condition turns out to be

ρe f f + pe f f =

√
2

4

[
1

ξ2
2(r + j)ξ3

{
r2 +

{
8(

r
r0
)jξ2

2ξ4 jr2 + 8(
r
r0
)jξ2

2ξ4r3 + 16j

× (
r
r0
)jξ2

2 + 16(
r
r0
)jξ2

2r + r4
} 1

2
}
(

r
r0
)−j
] 1

2

+
1
4

[
1

ξ2
2(r + j)

{
r2

+

{
8(

r
r0
)jξ2

2ξ4 jr2 + 8(
r
r0
)jξ2

2ξ4r3 + 16(
r
r0
)jξ2

2 j + 16(
r
r0
)jξ2

2r

+ r4
} 1

2
}
(

r
r0
)−j
]

. (47)

We investigate the graphical behavior of WSF in Figure 1. In the upper panel, the left
graph shows that the behavior of WSF is positive with h(r) < r, whereas the right graph
represents asymptotically flat behavior, i.e., h(r)→ 0 when r → ∞. The WH throat exists at
r0 = 0.001 and dh(r0)

dr < 1 as shown in the below panel of left and right graphs, respectively.
The last plot shows that flaring-out condition is satisfied at wormhole throat. The graphical
behavior of the null energy condition is given in Figure 2, which shows that the effective
fluid variables violate null energy condition (ρe f f + pe f f ≤ 0), hence ensuring the presence
of traversable WH geometry.
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Figure 1. Graphs of WSF versus r.
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Figure 2. Behavior of null energy condition versus r.

Case II: α(r) = e
r0
r

Here, Equation (42) gives

β(r) = 2 ln
[

1
4ξ2

{
r3 +

{
8(e

1
2 (e

r0
r )−1

)2ξ2
2ξ4r5 + 8e−

1
2

1
r (2r0e

r0
r −r)(e

r0
r )−1

e
1
2 (e

r0
r )−1

× ξ2
2ξ4r0r3 + 16(e

1
2 (e

r0
r )−1

)2ξ2
2r3 + 16e−

1
2

1
r (2r0e

r0
r −r)(e

r0
r )−1

e
1
2 (e

r0
r )−1

ξ2
2r0r

+ r6
} 1

2
}{

e
1
2 (e

r0
r )−1

r2 + e−
1
2

1
r (2r0e

r0
r −r)(e

r0
r )−1

r0

}−1]
. (48)

The corresponding WSF becomes

b(r) =

[
1− 16ξ2

2

{
e

1
2 (e

r0
r )−1

r2 + e−
1
2

1
r (2r0e

r0
r −r)(e

r0
r )−1

r0

}2[
r3 +

{
(e

1
2 (e

r0
r )−1

)2

× 8ξ2
2ξ4r5 + 8e−

1
2

1
r (2r0e

r0
r −r)(e

r0
r )−1

e
1
2 (e

r0
r )−1

ξ2
2ξ4r0r3 + 16(e

1
2 (e

r0
r )−1

)2ξ2
2r3

+ 16e−
1
2

1
r (2r0e

r0
r −r)(e

r0
r )−1

e
1
2 (e

r0
r )−1

ξ2
2r0r + r6

} 1
2
]−2]

r. (49)

The energy density in this case is given as

ρ =
√

2
[

e−
1
2 e−

r0
r

ξ3

{
e1/2e−

r0
r r2 + e−1/2 1

r (2r0e
r0
r −r)e−

r0
r r0

}[
r3 +

{
r
(

8ee−
r0
r ξ2

2ξ4r4

+ 8e−
1
r e−

r0
r (r0e

r0
r −r)ξ2

2ξ4r0r2 + 16ee−
r0
r ξ2

2r2 + r5 + e−
1
r e−

r0
r (r0e

r0
r − r)

× 16ξ2
2r0

)} 1
2
]−1] 1

2

. (50)

Substituting the value of redshift function and β(r) in Equations (13) and (14), we have

ρe f f + pe f f =
√

2
[

e−
1
2 e−

r0
r

ξ3

{
e

1
2 e−

r0
r r2 + e−

1
2

1
r (2r0e

r0
r −r)e−

r0
r r0

}[
r3 +

{
r
(

8r4

× ee−
r0
r ξ2

2ξ4 + 8e−
1
r e−

r0
r (r0e

r0
r −r)ξ2

2ξ4r0r2 + 16ee−
r0
r ξ2

2r2 + r5 + ξ2
2r0

× 16e−
1
r e−

r0
r (r0e

r0
r − r)

)} 1
2
]−1] 1

2

+ ξ3

[
e−1/2e−

r0
r

ξ3

{
e

1
2 e−

r0
r r2

+ e−1/2 1
r (2r0e

r0
r −r)e−

r0
r r0

}[
r3 +

{
r
(

8ee−
r0
r ξ2

2ξ4r4 + e−
1
r e−

r0
r (r0e

r0
r −r)

× 8ξ2
2ξ4r0r2 + 16ee−

r0
r ξ2

2r2 + r5 + e−
1
r e−

r0
r (r0e

r0
r − r)
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× 16ξ2
2r0

)} 1
2
]−1]

. (51)

In Figure 3, the upper right plot determines that the behavior of shape function is not
asymptotically flat while left plot implies that h(r) < r. The right plot in the below panel
shows dh(r0)

dr < 1 and the left plot determines that WH throat exists at r0 = 0.01. Moreover,
the flaring-out condition satisfies at wormhole throat. Figure 4 violates the null energy
condition which manifests the existence of viable traversable WH geometry.
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4.2. Non-Dust Case

Here, we assume a specific relation between fluid parameters as p = ωρ (ω is EoS
parameter) and manipulate Equation (A20) which gives

ρ =
−ξ2ω +

√
ξ2

2ω2 + 4ξ2ξ3e
−α−β

2 + 12ξ2ξ3ω2e
−α−β

2

2ξ2ξ3(3ω2 + 1)
. (52)

The NS generators and the corresponding integral of motion yield

K1 =
∂

∂r
, K2 = −2ξ2

r
∂

∂r
− 2ξ2

r2
∂

∂β
, (53)

I1 = e
α−β

2 r2
[

2(
1 + α′r

r2 )− eβ

(
ξ4 +

2
r2 +

(
ξ3

(
3ω2 + 1

))

×

−ξ2ω +

√
ξ2

2ω2 + 4ξ2ξ3e
−α−β

2 + 12ξ2ξ3ω2e
−α−β

2

2ξ2ξ3(3ω2 + 1)

2

+ ω
−ξ2ω +

√
ξ2

2ω2 + 4ξ2ξ3e
−α−β

2 + 12ξ2ξ3ω2e
−α−β

2

2ξ2ξ3(3ω2 + 1)

], (54)

I2 = r− ξ2re
α−β

2

[
2α′

r
+

2
r2 − eβ

(
ξ4 +

2
r2 +

(
ξ3

(
3ω2 + 1

))

×

−ξ2ω +

√
ξ2

2ω2 + 4ξ2ξ3e
−α−β

2 + 12ξ2ξ3ω2e
−α−β

2

2ξ2ξ3(3ω2 + 1)

2

+ ω
−ξ2ω +

√
ξ2

2ω2 + 4ξ2ξ3e
−α−β

2 + 12ξ2ξ3ω2e
−α−β

2

2ξ2ξ3(3ω2 + 1)

]. (55)

Using Equation (52) in (29), we have

eβ(r) =
2 + 2α′r

r2
(

ξ4 +
2
r2 +

e
−α−β

2
ξ2

) . (56)

Now, we examine the presence of viable WH geometry for the identical redshift functions
that were studied in the dust case.

Case I: α(r) = j ln( r
r0
)

Equation (56) in this case turns out to be

β(r) = 4 ln(2)− 2 ln
[

1
ξ2(r + j)

{
r2 +

{
8(

r
r0
)jξ2

2ξ4 jr2 + 8(
r
r0
)jξ2

2ξ4r3

+ 16j(
r
r0
)jξ2

2 + 16(
r
r0
)jξ2

2r + r4
} 1

2
}
(

r
r0
)−

j
2

]
. (57)

The WSF becomes

b(r) = − r
8ξ2

2(r + j)2

[
4ξ2

2ξ4 jr2 + 4ξ2
2ξ4r3 + (

r
r0
)−jr4 + (

r
r0
)−j
{

8(
r
r0
)j

× ξ2
2ξ4 jr2 + 8(

r
r0
)jξ2

2ξ4r3 + 16(
r
r0
)jξ2

2 j + 16(
r
r0
)jξ2

2r + r4r2
} 1

2
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− 8ξ2
2 j2 − 16ξ2

2 jr− 8ξ2
2r2 + 8ξ2

2 j + 8ξ2
2r
]

. (58)

Substituting Equation (57) in (52), we obtain

ρ =
1

2ξ2ξ3(3ω2 + 1)

[
− ξ2ω +

{
1

r + j

(
3ω2ξ3(

r
r0
)−jr2 + 3(

r
r0
)−j
(

8(
r
r0
)j

× ξ2
2c4 jr2 + 8(

r
r0
)jξ2

2c4r3 + 16(
r
r0
)jξ2

2 j + 16(
r
r0
)jξ2

2r + r4
) 1

2

ξ3ω2

+ ξ3(
r
r0
)−jr2 + ξ2

2ω2 j + ξ2
2ω2r + (

r
r0
)−j
(

8(
r
r0
)jξ2

2c4 jr2 + 8(
r
r0
)jξ2

2c4r3

+ 16(
r
r0
)jξ2

2 j + 16(
r
r0
)jξ2

2r + r4
) 1

2

ξ3

)} 1
2
]

. (59)

Figure 5 manifests that WH geometry is asymptotically flat and shape function maintains
its positivity. The right graph in the lower panel indicates that dh(r0)

dr < 1, and the associated
left graph shows that WH throat exists at r0 = 0.01. The last plot shows that flaring-out
condition satisfied at wormhole throat in this case. The corresponding null energy condition
turns out to be

ρe f f + pe f f = (1 + ω)

[
1

2ξ2ξ3(3ω2 + 1)

[
− ξ2ω +

{
1

r + j

(
3ω2ξ3(

r
r0
)−jr2

+ 3(
r
r0
)−j
(

8(
r
r0
)jξ2

2c4 jr2 + 8(
r
r0
)jξ2

2c4r3 + 16(
r
r0
)jξ2

2 j + 16r

× (
r
r0
)jξ2

2 + r4
) 1

2

ξ3ω2 + ξ3(
r
r0
)−jr2 + ξ2

2ω2 j + ξ2
2ω2r + (

r
r0
)−j

×
(

8(
r
r0
)jξ2

2c4 jr2 + 8(
r
r0
)jξ2

2c4r3 + 16(
r
r0
)jξ2

2 j + 16(
r
r0
)jξ2

2r

+ r4
) 1

2

ξ3

)} 1
2
]]

+ 2ξ3(ω
2 + 4ω + 1)

[
1

2ξ2ξ3(3ω2 + 1)

[
− ξ2ω

+

{
1

r + j

(
3ω2ξ3(

r
r0
)−jr2 + 3(

r
r0
)−j
(

8(
r
r0
)jξ2

2c4 jr2 + 8(
r
r0
)j

× ξ2
2c4r3 + 16(

r
r0
)jξ2

2 j + 16(
r
r0
)jξ2

2r + r4
) 1

2

ξ3ω2 + ξ3(
r
r0
)−jr2

+ ξ2
2ω2 j + ξ2

2ω2r + (
r
r0
)−j
(

8(
r
r0
)jξ2

2c4 jr2 + 8(
r
r0
)jξ2

2c4r3

+ 16(
r
r0
)jξ2

2 j + 16(
r
r0
)jξ2

2r + r4
) 1

2

ξ3

)} 1
2
]]2

. (60)

Figure 6 shows that viable traversable WH exists in the specific range of EoS parameter.
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Figure 5. Graphs of WSF versus r.
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Figure 6. Graph of ρe f f + pe f f versus r.

Case II: α(r) = e−
r0
r

Here, Equation (59) leads to

β(r) = 2 ln
[

1
4ξ2

{
r3 +

{
8(e1/2(e

r0
r )−1

)2ξ2
2ξ4r5 + 8e−1/2 1

r (2r0e
r0
r −r)(e

r0
r )−1

e1/2(e
r0
r )−1

× ξ2
2ξ4r0r3 + 16(e1/2(e

r0
r )−1

)2ξ2
2r3 + 16e−1/2 1

r (2r0e
r0
r −r)(e

r0
r )−1

e1/2(e
r0
r )−1

ξ2
2r0r



Symmetry 2023, 15, 684 15 of 23

+ r6
} 1

2
}{

e1/2(e
r0
r )−1

r2 + e−1/2 1
r (2r0e

r0
r −r)(e

r0
r )−1

r0

}−1]
. (61)

The corresponding WSF is

h(r) =

[
1− 16ξ2

2

{
e1/2(e

r0
r )−1

r2 + e−1/2 1
r (2r0e

r0
r −r)(e

r0
r )−1

r0

}2[
r3 +

{
8ξ2

2ξ4r5

× (e1/2(e
r0
r )−1

)2 + 8e−1/2 1
r (2r0e

r0
r −r)(e

r0
r )−1

e1/2(e
r0
r )−1

ξ2
2ξ4r0r3 + 16ξ2

2r3

× (e1/2(e
r0
r )−1

)2 + 16e−1/2 1
r (2r0e

r0
r −r)(e

r0
r )−1

e1/2(e
r0
r )−1

ξ2
2r0r

+ r6
} 1

2
]−2]

r. (62)

Figure 7 determines that WSF is positive with h(r) < r, but the behavior of wormhole is not
asymptotically flat. The WH throat is located at r0 = 0.001 with dh(r0)

dr < 1. The flaring-out
condition is fulfilled at wormhole throat. The energy density turns out to be
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Figure 7. Graphs of WSF versus r.

ρ =
1

2ξ2ξ3(3ω2 + 1)

[
− ξ2ω +

[
ξ2

2

{
48ξ3ω2r2 + 48ξ3r0ω2e−

r0
r + 16ξ3r2
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+ ω2r3 + 16ξ3r0e−
r0
r +

{
r
(

8ee−
r0
r ξ2

2ξ4r4 + 8e−
1
r e−

r0
r (r0e

r0
r −r)ξ2

2ξ4r0r2

+ 16ee−
r0
r ξ2

2r2 + r5 + 16e−
1
r e−

r0
r (r0e

r0
r −r)ξ2

2r0

)} 1
2

ω2
}{

r3 +

{
r
(

8r4

× ee−
r0
r ξ2

2ξ4 + 8ξ2
2ξ4r0r2e−

1
r e−

r0
r (r0e

r0
r −r) + 16ee−

r0
r ξ2

2r2 + r5 + 16ξ2
2r0

× e−
1
r e−

r0
r (r0e

r0
r −r)

)} 1
2
}−1] 1

2
]

. (63)

The null energy condition yields

ρe f f + pe f f = (1 + ω)

[
1

2ξ2ξ3(3ω2 + 1)

[
− ξ2ω +

[
ξ2

2

{
48ξ3ω2r2 + 48ξ3r0ω2e−

r0
r

+ 16ξ3r2 + ω2r3 + 16ξ3r0e−
r0
r +

{
r
(

8ee−
r0
r ξ2

2ξ4r4 + 8e−
1
r e−

r0
r (r0e

r0
r −r)

× ξ2
2ξ4r0r2 + 16ee−

r0
r ξ2

2r2 + r5 + 16e−
1
r e−

r0
r (r0e

r0
r −r)ξ2

2r0

)} 1
2

ω2
}{

r3

+

{
r
(

8ee−
r0
r ξ2

2ξ4r4 + 8ξ2
2ξ4r0r2e−

1
r e−

r0
r (r0e

r0
r −r) + 16ee−

r0
r ξ2

2r2 + r5

+ 16e−
1
r e−

r0
r (r0e

r0
r −r)ξ2

2r0

)} 1
2
}−1] 1

2
]]

+ 2ξ3(3ω2 + 4ω + 1)

×
[

1
2ξ2ξ3(3ω2 + 1)

[
− ξ2ω +

[
ξ2

2

{
48ξ3ω2r2 + 48ξ3r0ω2e−

r0
r + 16ξ3r2

+ ω2r3 + 16ξ3r0e−
r0
r +

{
r
(

8ee−
r0
r ξ2

2ξ4r4 + 8e−
1
r e−

r0
r (r0e

r0
r −r)ξ2

2ξ4r0r2

+ 16ee−
r0
r ξ2

2r2 + r5 + 16e−
1
r e−

r0
r (r0e

r0
r −r)ξ2

2r0

)} 1
2

ω2
}{

r3 +

{
r
(

8r4

× ee−
r0
r ξ2

2ξ4 + 8ξ2
2ξ4r0r2e−

1
r e−

r0
r (r0e

r0
r −r) + 16ee−

r0
r ξ2

2r2 + r5 + 16ξ2
2r0

× e−
1
r e−

r0
r (r0e

r0
r −r)

)} 1
2
}−1] 1

2
]]2

. (64)

The graphical behavior of effective matter variables is given in Figure 8 which shows that
traversable WH exists in this modified theory for −1 ≤ ω ≤ 0.
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Figure 8. Graph of ρe f f + pe f f versus r.
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5. Stability Analysis

In order to analyze the valid and consistent cosmic structures, stability is significant.
It is more interesting to examine cosmic objects that display stable behavior under the
external perturbations. In the following, we investigate the stable WH solutions via the
causality condition and adiabatic index.

5.1. Causality Condition

A stable stellar system is considered more viable in the realm of gravitational physics.
When the system experiences non-disappearing forces, it is important to observe how the
matter variables behave after disruption from the equilibrium condition. The causality
condition is a mathematical requirement that imposes constraints on the system. In the
context of a stability analysis, the causality condition is used to check whether a system is
stable or not. If the system satisfies the causality condition, it means that the corresponding
system is stable and that the output will not exhibit any oscillations or instability. Here,
we use the causality condition to check the stable state of WH solutions. According to this

condition, the square speed of sound (u2
s = dpe f f

dρe f f ) should satisfy the limit, 0 ≤ u2
s < 1 [77].

However, outside this region of stability, the output of the system may exhibit different
forms of instability. For example, if the function violates the causality condition, it may
give rise to an unstable system, and that exhibits oscillations or even divergent behavior.
In some cases, the instability may be in the form of noise or other unwanted behavior
that can make the system unusable for its intended purpose. Another form of instability
that can occur outside the region of stability is related to the Nyquist stability criterion.
This criterion is based on the mapping of the frequency response of the function onto
the complex plane. If the Nyquist plot encircles the point (–1, 0) in a clockwise direction,
the system is unstable. This instability can manifest itself as oscillations or other types of
unwanted behavior. Hence, while the causality condition is an important requirement for
stability, it is not the only factor that determines whether a system is stable or not. Other
forms of instability can occur outside the region of stability, and these may require different
methods for analysis and control. Figures 9 and 10 show that WH solutions satisfy the
required causality condition in the presence of modified terms.
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Figure 9. Graphs of sound speed versus r for dust case.



Symmetry 2023, 15, 684 18 of 23

2 4 6 8 10

0.986

0.988

0.990

0.992

0.994

0.996

0.998

r

u
2

s

Case I

0 2 4 6 8 10

0.24

0.25

0.26

0.27

0.28

0.29

0.30

r

u
2

s

Case II

Figure 10. Graphs of sound speed versus r for non-dust case.

5.2. Adiabatic Index

This is an alternative technique to explore the stability of celestial objects. The adiabatic
index, also known as the gamma factor, is a measure of the thermodynamic properties of a
gas and is defined as the ratio of the specific heat at constant pressure to the specific heat at
constant volume. In the context of astrophysics, the adiabatic index is used to determine
the stability of a star against the radial perturbation. A star is said to be stable if it can
resist small radial oscillations without undergoing a collapse or explosion. The adiabatic
index is related to the speed of sound in the stellar material, and a lower value of the
adiabatic index indicates a softer material and a higher value indicates a stiffer material.
For a stable star, the adiabatic index must be greater than a critical value, typically around
4/3 [78]. The adiabatic index depends on the composition of the stellar material, which in
turn affects the nuclear reactions that take place in the star’s core. As a star burns through
its fuel, the composition of its material changes, and this can affect the star’s adiabatic
index and stability. Therefore, the adiabatic index is an important parameter in the study of
stellar structure and evolution, and it is used to understand the behavior of stars and their
compositions. Many researchers used this condition in the literature [79–85].

The adiabatic index is expressed as

Γe f f =
pe f f + ρe f f

pe f f u2
s . (65)

According to Heintzmann and Hillebrandt [78], a system is stable if Γ > 4/3, otherwise it
is unstable. Figures 11 and 12 show that WH solutions satisfy the required limits in both
(dust and non-dust) cases, indicating that our system is in a stable state.
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Figure 11. Graphs of adiabatic index versus r for dust case.
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Figure 12. Plots of adiabatic index versus r for non-dust case.

6. Final Remarks

The existence of a WH structure is a crucial issue in the field of astrophysics. In GR, the
existence of exotic matter is significant for the presence of physically realistic WH geometry.
In the last few decades, the scientific community has paid a lot of attention to modified
theories of gravity as a possible alternative to GR. Many scientists found these modified
theories interesting when used to analyze the viable traversable WH geometry due to the
violation of energy bounds by the effective stress-energy tensor which ensures the presence
of a viable WH structure.

In this manuscript, we have used the NS approach to find some exact solutions that
help to formulate static WH solutions in f (R, T 2) theory. We have examined the existence
of exotic matter in WHs via the violation of the null energy condition. For different matter
configurations, we have investigated the viable WH geometry corresponding to different
redshift functions, i.e., α(r) = j ln( r

r0
) and α(r) = e−

r0
r . Finally, we have investigated the

stability of the obtained WH solutions through the causality condition and adiabatic index.
We have examined NS generators and conserved quantities corresponding to both dust
and non-dust cases. The summary of the obtained results is given as follows.

• For α(r) = j ln( r
r0
), it is found that the WSF satisfies all the required conditions

and preserves the asymptotically flat behavior for both the dust and dust matter
configurations (Figures 1 and 5).

• The wormhole shape function does not preserve the asymptotically flat behavior for

α(r) = e−
r0
r (Figures 3 and 7).

• For the dust matter configuration, the effective energy–momentum tensor violates the
null energy condition for both choices of redshift functions that show the existence of
traversable WH geometry in f (R, T 2) theory (Figures 2 and 4).

• In the non-dust case, we have found that ρe f f + pe f f ≤ 0 for a specific range of
the EoS parameter which indicates the existence of a viable and traversable WH
(Figures 6 and 8).

• It is found that traversable WHs are stable for both types of the redshift function in
the presence of modified terms (Figures 9–12).

In the framework of GR, Fayyaz and Shamir [85] studied physically realistic and
stable WH solutions in the presence of exotic matter. The same authors [71] found that the
considered WSF satisfies the null energy condition and hence shows the absence of exotic
matter which yields non-traversable WH geometry in f (R) theory. We have found that the
null energy condition is violated in the context of the f (R, T 2) theory, which shows that
viable and stable traversable WH solutions exist in this modified theory.
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Appendix A

The coefficients of Equation (31) are

Ψ,β = 0, λ,α = 0, λ,β = 0, λ,η = 0, λ,R = 0, λ,T 2 = 0, (A1)

ηγ1
,β fRR + 2γ3

,β fRR = 0, (A2)

ηγ1
,R fRR + 2γ3

,R fRR = 0, (A3)

ηγ1
,β fRT 2 + 2γ3

,β fRT 2 = 0, (A4)

ηγ1
,T 2 fRT 2 + 2γ3

,T 2 fRT 2 = 0, (A5)

γ3
,β fR + ηγ4

,β fRR + ηγ5
,β fRT 2 = 0, (A6)

ηγ1
,r fRR + 2γ3

,r fRR − e
β−α

2 Ψ,R = 0, (A7)

γ3
,α fR + ηγ4

,α fRR + ηγ5
,α fRT 2 = 0, (A8)

ηγ1
,r fRT 2 + 2γ3

,r fRT 2 − e
β−α

2 Ψ,T 2 = 0, (A9)

γ1
,β fR + γ3

,βη−1 fR + 2γ4
,β fRR + 2γ5

,β fRT 2 = 0, (A10)

γ3
,r fR + ηγ5

,r fRR + ηγ5
,r fRT 2 − e

β−α
2 Ψ,α = 0, (A11)

ηγ1
,T 2 fRR + 2γ3

,T 2 fRR + ηγ1
,R fRT 2 + 2γ3

,R fRT 2 = 0, (A12)

γ1
,r fR + γ3

,rη−1 fR + 2γ4
,r fRR + 2γ5

,r fRT 2 − e
β−α

2 Ψ,η = 0, (A13)

(γ1 − γ2 − 2η−1γ3 + 4ηγ1
,η + 4γ3

,η − 2λ,r) fR

+(2γ4 + 8ηγ4
,η) fRR + (2γ5 + 8ηγ5

,η) fRT 2 = 0, (A14)

(2γ4 + 2ηγ4
,η + 4γ4

,α) fRR + (2γ5 + 2ηγ5
,η + 4γ5

,α) fRT 2

+(γ1 − γ2 + 2γ1
,α + 2η−1γ3

,α + 2γ3
,η − 2λ,r) fR = 0, (A15)

(γ1 − γ2 + ηγ1
,η + 2γ3

,η + 2γ4
,R − 2λ,r) fRR + 2γ4 fRRR

+(γ1
,R + η−1γ3

,R) fR + 2γ5 fRRT 2 + 2γ5
,R fRT 2 = 0, (A16)

(γ1 − γ2 + ηγ1
,η + 2γ3

,η + 2γ5
,T 2 − 2λ,r) fRT 2 + 2γ4 fRRT 2

+(γ1
,T 2 + η−1γ3

,T 2) fR + 2γ5 fRT 2T 2 + 2γ4
,T 2 fRR = 0, (A17)

(ηγ1 − ηγ2 + 2γ3 + 2ηγ1
,α + 4γ3

,α + 2ηγ4
,R − 2ηλ,r) fRR

+2γ3
,R fR + 2ηγ4 fRRR + 2ηγ5 fRRT 2 + 2γ5

,R fRT 2 = 0, (A18)

(ηγ1 − ηγ2 + 2γ3 + 2ηγ1
,α + 4γ3

,α + 2ηγ4
,R − 2ηλ,r) fRT 2

+2γ3
,T 2 fR + 2ηγ4 fRRT 2 + 2ηγ5 fRT 2T 2 + 2γ5

,T 2 fRR = 0, (A19)

e
α+β

2 η

[
( f −R fR + p + fT 2(3p2 + ρ2 − T 2) + 2η−1 fR)

×(γ1 + γ2

2
+ λ,r) + γ1( fT 2(6pp,α + 2ρρ,α) + p,α)

+γ2( fT 2(6pp,β + 2ρρ,β) + p,β) + γ3( fT 2(6pp,η + 2ρ

×ρ,η) + p,η) +
γ3

η
( f −R fR + p + fT 2(3(p)2 + (ρ)2 − T 2))
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−γ4( fRR(R− 2η−1) + fRT 2(3p2 + ρ2 − T 2))− γ5( fRT 2(R

−2η−1) + fT 2T 2(3p2 + ρ2 − T 2))

]
−Ψ,r = 0. (A20)
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