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INTRODUCTION

A number of relativistic approaches to nuclear physics all suggest
the optical potential or self-energy for a nucleon involves very large
attractive Lorentz scalar and repulsive vector contributions.
Relativistic mean field calculationsl relate these potentials to
large scalar (sigma) and vector (omega) meson couplings and provide a
good description of charge densities for closed shell nuclei. Dirac
optical model fits to elastic proton scattering2 also use strong
potentials to reproduce analyzing power data. Finally, relativistic
impulse approximation (RIA) calculation53 find strong potentials
coming from large scalar and vector pieces of a Lorentz invariant
representation of the NN amplitudes. These RIA calculations provide
an excellent description of elastic scattering at energies of 500 MeV
and above.

In this paper, microscopic relativistic optical potentials are
calculated at energies near 200 MeV for elastic proton scattering from
closed shell nuclei. The 200 Mev energy region is interesting for
several reasons. First, as a bridge between high energies, where a
simple impulse approximation is valid, and relativistic nuclear
structure calculations. 1In this energy range one can examine the
onset of medium modifications to the free NN interaction. Second,
some nonrelativistic optical models show non Wood-Saxon potential
shapes. These interesting shapes can be explained by guadratic
potential terms resulting from a 2nd order reduction of the Dirac
equation. 9Finally, there exists new spin rotatﬁi? f%iftigﬁ)(Q) data
4éfrom IUCF for proton elastic scattering from c, 0, Ca and

Ca at 200 MeV. Thus, with A and do/dQ already measured one can

compare theory to a complete set of scattering observables.
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We begin by identifying the optical potential with the self-energy
calculated in relativistic Brueckner theory. Here the ladder diagrams
of a meson-nucleon field theory are summed self-consistently for two
nucleons in the medium. Although this program has not yet been
carried out completely the present calculations still contain
important physics beyond the original RIA.

First, the original RIA representation of the NN amplitudes
involve ambiguities which become increasingly serious as the energy is
decreased. To resolve these ambiguities, a simple direct plus
exchange model of the NN amplitudes4 is employed which allows the use
of a pseudovector (gi_Y5 rather than simply Ys) TN coupling. Next,
medium modifications from Pauli blocking are included by using nuclear
matter calculations in a local density approximation.

Section II describes the formalism for these calculations while
section III shows results which guantitatively reproduce all measured
spin observables (both Ay and spin rotation function Q) for closed:
shell nuclei. Finally, these calculations are compared to

5 and the nonrelativistic

relativistic results of Tijon and Wallace
calculations of Rikus and von Geramb6 and section IV presents

conclusions.

FORMALISM

Work is underway to develop a relativistic Brueckner formalism to
include NN correlations in a meson-nucleon field theoryls. Here a
reaction matrix T (or G matrix) is introduced which sums the ladder
diagrams between two nucleons in the medium. The reaction matrix
satisfies a relativistic Brueckner Bethe Goldstone (RBBG) equation
which is a generalization of the nonrelativisticresult. This eguation
can be solved in the NN center of velocity frame and the results expressed
as five Lorentz invariants (see below) which are easy to transform to
the nuclear rest frame. Summing this interaction over the occupied
states of the target (in its rest frame) gives the self-~energy or
optical potential (Uont) which contains complex Lorentz scalar and
vector pieces.
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occ
Uopt(l)=§ < 1z|rli2-21 > (1)

Here 1 is the state of the projectile and 2 is an coccupied target
state {]12 - 21> indicates an antisymmeterized matrix element).

There are two effects of the medium on the calculation of T .
First, the Pauli principle limits the scattering to intermediate
states above the Fermi sea. This Pauli blocking effect is included as
described below. Second the nucleons should move in an average
potential (given by the real part of eq. (1)). Such binding energy
corrections change the free relationship between momentum and energy
and enhance the lower components of the nucleon Dirac spinors.

We would like to examine these effects step by step so we include
Pauli blocking but not binding energy corrections in these first
Ccalculations. Binding energy corrections are not expected to be large
near 200 Mev since the real part of the nonrelativistic optical
potential is small at this energy. However, binding E corrections may
be larger at lower energies and will be included in future
calculations.

In general, I' is a complicated 4 x 4 ® 4 x 4 Dirac matrix in the
spinor spaces of the two nucleons. In principle a complete solution
of the RBBG equation would determine this complex 256 component
matrix, {(Tjon and Wallace have calculated this complete matrix but
only in the zero density 1imit5 }. It is much easier to simply solve
the RBBG equation for its positive energy spinor matrix elements and
make a model for the full matrix structure. Furthermore since these
spinor matrix elements should reduce to the experimental NN amplitudes
at zero density we will take these from data and only calculate the
ratio of Pauli blocked to free NN interactions.

To construct an optical potential in a relativistic "tp "
approximation one must make important assumptions regarding the
"off-shell™ behavior of the NN amplitudes. Pirst, Dirac spinor matrix
elements of an operator % are equated to experimental amplitudes. The

standard representation of F is



440

>

F=JF (a0 B) AT . 2
i 1

™
>

(2)
8 (Scalar) 1
v (Vector Yu
r (Pseudoscalar YS
a (Axial Vector) ysyu
t (Tensor) otV

Here Ai is a Dirac operator in the spinor space of particle one and
the Lorentz invariant amplitudes F, are functions of energy E and
momentum transfer g. We emphasizeﬁ only the free spinor matrix
elements of eq. (2) are determined by the NN data while the full
"off-shell" operator is needed to construct an optical potential.

To resolve ambiguities in the operator % a simple model which
includes the direct and exchange first Born contributions from a
number of mesons was developed.4 This model divides the Lorentz
invariant amplitudes into direct tP and exchange ¥¥X contributions

_ D ~X
Fi (g) = ti(q) + ti(o).

Here, the exchange momentum transfer Q is for scattering angle 7-—-6 .
The exchange contributions to the scalar and vector invariants ;s ’ 25
have important contributions from one pion exchange. As discussed in
[4], it is important to evaluate these contributions using a
pseudovector (g Yg ) invariant in place of the~pseudosc31ar g in eq.
(2). This serves to decrease (the effects of t: and ti
substantially, at low energies. Note, the original RIA implicitly

uses a pseudoscalar 7 N coupling.

The scalar i=s and vector i=v optical potentials U, are calculated
by folding t with P and making a local density approximation for the

exchange term.
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Here, p is the projectile momentum, (ps) a local density

3
0
approximation to the projectile wavefunction, the off diagonal density

matrix has been approximated by its nuclear matter value p ff(ks) =(_§?

sk
(sin(sk) - sk cos(sk)) and the local Fermi momentum k deduced from Py
(£ + %% g). 11 The baryon Py and the scalar Py den51t1es are taken from
mean field calculations 1 and have not been varled Finally, & ang £

are fourier transforms of ;X ,;D.

Tt remains to include medium modifications from Pauli blocking.
Nuclear matter calculations of the lowest order relativistic Bruecknexr
optical potentials have been performed both with and without the Pauli
operator. These calculations started with the HEA8 one boson exchange
potential and will be described in a latter work (they do not include
binding E corrections). From the ratio of two nuclear matterxr
calculations we define Pauli blocking correction factors a, which can
be applied to the finite nucleus optical potential in a local density

approximation.

[p (r)]
U (1) &= 31 -2, (B) ?)U (x) (4)

-3

Here, and the ké density dependence is based on simple

90 = .19 fm
phase space arguments. At E = 200 MeV, the nuclear matter

calculations give

Scalar Vector
real imag real imag
a, -.01 .10 .06 .21 (5)

1

The caleculation can be summarized as follows. Ref. [4] is used for
the t matrix which is folded with the mean field densities of [1] ang
then multiplied by the Pauli blocking corrections of eq. (4) and (5).
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RESULTS

Figure (1) shows the scalar and vector optical potentials for 40ca
at 200 MeV. These agree well with phenomenclogical Dirac Wood-Saxon
fits to the elastic data. Figure (2) shows the Schrgdinger—like

equivalent potential, U for 208

Pb. Compared to the nonrelativistic
e
Paris G matrix calculate of [6], we have a non-Wood-Saxon shape for

the central and a much stronger real spin-orbit potential.

Figure (3) shows the cross section for 40ca. The use of
pseudoscalar rather than pseudovector NN amplitudes leads to toc high
a cross section, while omitting -the Pauli blocking corrections also
overestimates 0 and gives too much structure. The original RIA
corresponds to both omitting Pauli blocking and using pseudoscalar
amplitudes and would lead to a curve above all of these shown in
figure (3). A full folding of the density dependence instead of the
simple eq. (4) may improve the structure in the cross section. The
analyzing power Aky (both TRIUMF and IUCF data) and the new
preliminary IUCF spin rotation Q data 9 40Ca, 16 o ana

48Ca in Figures (4 - 6). The calculations agree very well with the data

are shown for
if Pauli blocking is included and pseudovector amplitudes are used.

Our calculations essentially agree with Tjon and Wallace® for the
pseudovector NN amplitudes and for the spin observables in 40 ¢a,
However, these authors don't include Pauli blocking which may explain

their overestimation of the cross section.

The effect of the Lorentz tensor potential is seen in Figure (6)

to be very small. All of the other calculations shown omit this term.

For the heavier nuclei, @ has not yet been measured but A is
shown in Figures (7) and (8) for 90 208Pb. For Pb, the

nonrelativistic calculation of Ref. [6] is seen to underestimate the

Zr and

depth of the minima in A while the relativistic results are very
good for beoth Zr and Pb.

The energy dependence of various corrections is examined with

208

calculations for Pb at 400 MeV. At this energy there is almost no

difference between pseudovector and pseudoscalar NN amplitudes. 1In

addition the effects of Pauli blocking are very small, Figure (9)

208 py,

shows the analyzing power in Calculations including Pauli
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Fig. 1. Relativistic optical poten- Fig. 2. {a&) shows Schrodinger-like
tials for “9Ca (solid). Dot~ e%uivalen'l: centrial pot. for
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Fig. 3. Cross section for 4lcy
(s01id). The dashed curve
uses pseudoscalar rather
than pseudovector NN smpli-
tudes and the dotted curve
omits Pauli-blocking (data
from IUCF and TRIUMFY).
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p+Ca®® 200 MeV

The IUCF data is from Ref.
[12].
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{solid). The nonrelativistic
calculation of [6] is dot-
ted and the TRIUMF data is
from [13].
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Fig. 9. Analyzing power in 208?b at 400 Mev (TRIUMF data).
Curves with Pauli blocking are solid (relativistic)

and dashed (nonrel. from ref [6]). The impulse

approx results are dotted (rel.) and dot dashed
(nonrel. KMT from ref [16]).
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blocking (solid) have only slightly larger maxima then free
calculations (dotted). Thus the effects of Pauli blocking while not
absent are much smaller then in some nonrelativistic calculations. As
the energy increases above 400 MeV the present calculations reduce to
the original RIA (which provides an excellent description of data at

these energies).

CONCLUSIONS

Microscopic relativistic optical potentials have been calculated
for closed shell nuclei at energies near 200 MeV. These calculations
go beyond the simple RIA by resolving ambiguities in the relativistic
NN amplitudes and including Pauli blocking corrections.

The calculations guantitatively reproduce all measured elastic
spin observables (both Ay and Q) for closed shell nuclei at energies
near 200 MeV. It remains to be seen how unigue this good description
is. Further nonrelativistic work to compare with this relativistic

approach would be very useful.
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