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INTRODUCTION 

A number of relativistic approaches to nuclear physics all suggest 

the optical potential or self-energy for a nucleon involves very large 

attractive Lorentz scalar and repulsive vector contributions. 

Relativistic mean field calculations ! relate these potentials to 

large scalar (sigma) and vector (omega) meson couplings and provide a 

good description of charge densities for closed shell nuclei. Dirac 

optical model fits to elastic proton scattering 2 also use strong 

potentials to reproduce analyzing power data. Finally, relativistic 

impulse approximation (RIA) calculations 3 find strong potentials 

coming from large scalar and vector pieces of a Lorentz invariant 

representation of the NN amplitudes. These RIA calculations provide 

an excellent description of elastic scattering at energies of 500 MeV 

and above. 

In this paper, microscopic relativistic optical potentials are 

calculated at energies near 200 MeV for elastic proton scattering from 

closed shell nuclei. The 200 Mev energy region is interesting for 

several reasons. First, as a bridge between high energies, where a 

simple impulse approximation is valid, and relativistic nuclear 

structure calculations. In this energy range one can examine the 

onset of medium modifications to the free NN interaction. Second, 

some nonrelativistic optical models show non Wood-Saxon potential 

shapes. These interesting shapes can be explained by quadratic 

potential terms resulting from a 2nd order reduction of the Dirac 

equation. Finally, there exists new spin rotation function (Q) data 
9 12 16 40 

from IUCF for proton elastic scattering from C, 0, Ca and 
48 
Ca at 200 MeV. Thus, with Ay and do/d~ already measured one can 

compare theory to a complete set of scattering observables. 
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We begin by identifying the optical potential with the self-energy 

calculated in relativistic Brueckner theory. Here the ladder diagrams 

of a meson-nucleon field theory are summed self-consistently for two 

nucleons in the medium. Although this program has not yet been 

carried out completely the present calculations still contain 

important physics beyond the original RIA. 

First, the original RIA representation of the NN amplitudes 

involve ambiguities which become increasingly serious as the energy is 

decreased. To resolve these ambiguities, a simple direct plus 
4. exchange model of the NN amplitudes is employed which allows the use 

of a pseudovector (~5 rather than simply y5 ) ~N coupling. Next, 

medium modifications from Pauli blocking are included by using nuclear 

matter calculations in a local density approximation. 

Section II describes the formalism for these calculations while 

section III shows results which quantitatively reproduce all measured 

spin observables (both A and spin rotation function Q) for closed 
Y 

shell nuclei. Finally, these calculations are compared to 

relativistic results of Tjon and Wallace5 and the nonrelativistic 

calculations of Rikus and yon Geramb6 and section IV presents 

conclusions. 

FORMALISM 

Work is underway to develop a relativistic Brueckner formalism to 

include NN correlations in a meson-nucleon field theory i5. Here a 

reaction matrix F (or G matrix) is introduced which sums the ladder 

diagrams between two nucleons in the medium. The reaction matrix 

satisfies a relativistic Brueckner Bethe Goldstone (RBBG) equation 

which is a generalization of the nonrelativisticresult. This equation 

can be solved in the NN center of velocity frame and the results expressed 

as five Lorentz invariants (see below) which are easy to transform to 

the nuclear rest frame. Summing this interaction over the occupied 

states of the target (in its rest frame) gives the self-energy or 

optical potential (Uop t) which contains complex Lorentz scalar and 

vector pieces. 
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occ 
Uopt(l> = [ < 121ri12 21 > 

• 2 

(1) 

Here 1 is the state of the projectile and 2 is an occupied target 

state (I12 - 21> indicates an antisymmeterized matrix element). 

There are two effects of the medium on the calculation of F • 

First, the Pauli principle limits the scattering to intermediate 

states above the Fermi sea. This Pauli blocking effect is included as 

described below. Second the nucleons should move in an average 

potential (given by the real part of eq. (i)). Such binding energy 

corrections change the free relationship between momentum and energy 

an__dd enhance the lower components of the nucleon Dirac spinors. 

We would like to examine these effects step by step so we include 

Pauli blocking but not binding energy corrections in these first 

calculations. Binding energy corrections are not expected to be large 

near 200 Mev since the real part of the nonrelativistic optical 

potential is small at this energy. However, binding E corrections may 

be larger at lower energies and will be included in future 

calculations. 

In general, F is a complicated 4 x 4 ~ 4 x 4 Dirac matrix in the 

spinor spaces of the two nucleons. In principle a complete solution 

of the RBBG equation would determine this complex 256 component 

matrix, (Tjon and Wallace have calculated this complete matrix but 

only in the zero density limit 5 ). It is much easier to simply solve 

the RBBG equation for its positive energy spinor matrix elements and 

make a model for the full matrix structure. Furthermore since these 

spinor matrix elements should reduce to the experimental NN amplitudes 

at zero density we will take these from data and only calculate the 

ratio of Pauli blocked to free NN interactions. 

TO construct an optical potential in a relativistic "tp " 

approximation one must make important assumptions regarding the 

"off-shell" behavior of the NN amplitudes. First, Dirac spinor matrix 

elements of an operator F are equated to experimental amplitudes. The 

standard representation of F is 
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i • )ti 
F = [ F~ (67, E) 

i 1 2 

i I i 
(2) 

s (Scalar) i 

v (Vector yP 
5 

p (Pseudoscalar T 

a (Axial Vector) y5yU 

t (Tensor) o ~ 
i is a Dirac operator in the spinor space of particle one and Here %1 

the Lorentz invariant amplitudes F are functions of energy E and 
l 

momentum transfer q. We emphasize, only the free spinor matrix 

elements of eq. (2) are determined by the NN data while the full 

"off-shell" operator is needed to construct an optical potential. 

To resolve ambiguities in the operator F a simple model which 

includes the direct and exchange first Born contributions from a 

number of mesons was developed.4 This model divides the Lorentz 

invariant amplitudes into direct ~D and exchange ~X contributions 

F.  (Q) -- t O ( o )  + t !~(O).  
i i • i 

Here, the exchange momentum transfer Q is for scattering angle z- 8 
~x "~x 

The exchange contributions to the scalar and vector invariants t s , t v 

have important contributions from one pion exchange. As discussed in 

[4], it is important to evaluate these contributions using a 

pseudovector (~ Y5 ) invariant in place of the pseudoscalar Y5 in eq. 

(2). This serves to decrease (the effects of ~X and ~X 
s v 

substantially, at low energies. Note, the original RIA implicitly 

uses a pseudoscalar ~ N coupling. 

The scalar i=s and vector i=v optical potentials U i are calculated 

by folding t with 0 and making a local density approximation for the 

exchange term. 

Ui (r) = -4 ~i~ I d3 s 

+ J0 (ns) t X (s) 0 i i 

I t D (s) 0 i(5 +~) 

1 ~) (kFS)~ (~ + -~- 0of f 

(3) 
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Here, p is the projectile momentum, J0 (ps) a local density 

approximation to the projectile wavefunction, the off diagonal density 
3 

matrix has been approximated by its nuclear matter value p off(ks) = ~  

(sin(sk) - sk cos(sk)) and the local Fermi momentum k F deduced from Pv 
i ~) li (~ +-~- . The baryon Pvand the scalar Psdensities are taken from 

mean field calculations i and have not been varied. Finally, ~ and 

are fourier transforms of tX , tD. 

It remains to include medium modifications from Pauli blocking. 

Nuclear matter calculations of the lowest order relativistic Brueckner 

optical potentials have been performed both with and without the Pauli 

operator. These calculations started with the HEA 8 one boson exchange 

potential and will be described in a latter work (they do not include 

binding E corrections). From the ratio of two nuclear matter 

calculations we define Pauli blocking correction factors a i which can 

be applied to the finite nucleus optical potential in a local density 

approximation. 

2 
F Pv (r) 

Ui (r) ~ [ I- ai(E) ~ 0  ] -3- ~Ui(r) (4) 

Here, P0 = .19 fm -3 and the k2F density dependence is based on simple 

phase space arguments. At E = 200 MeV, the nuclear matter 

calculations give 

a, 
l 

Scalar Vector 

real imag real imag 

-.01 .10 .06 .21 
(5) 

The calculation can be summarized as follows. Ref. [4] is used for 

the t matrix which is folded with the mean field densities of [i] and 

then multiplied by the Pauli blocking corrections of eq. (4) and (5). 
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RESULTS 

Figure (!) shows the scalar and vector optical potentials for 40Ca 

at 200 MeV. These agree well with phenomenological Dirac Wood-Saxon 

fits to the elastic data. Figure (2) shows the Schrodinger-like 

equivalent potential, U for 208pb. Compared to the nonrelativistic 
eff 

Paris G matrix calculate of [6], we have a non-Wood-Saxon shape for 

the central and a much stronger real spin-orbit potential. 

Figure (3) shows the cross section for 40Ca. The use of 

pseudoscalar rather than pseudovector NN amplitudes leads to too high 

a cross section, while omitting~the Pauli blocking corrections also 

overestimates ~ and gives too much structure. The original RIA 

corresponds to both omitting Pauli blocking and using pseudoscalar 

amplitudes and would lead to a curve above all of these shown in 

figure (3). A full folding of the density dependence instead of the 

simple eq. (4) may improve the structure in the cross section. The 

analyzing power A (both TRIUMF and IUCF data) and the new 
Y 

preliminary IUCF spin rotation Q data 9 are shown for 40 Ca, 16 0 and 

48Ca in Figures (4 - 6). The calculations agree very well with the data 

if Pauli blocking is included and pseudovector amplitudes are used. 

Our calculations essentially agree with Tjon and Wallace 5 for the 

pseudovector NN amplitudes and for the spin observables in 40 Ca. 

However, these authors don't include Pauli blocking which may explain 

their overestimation of the cross section. 

The effect of the Lorentz tensor potential is seen in Figure (6) 

to be very small. All of the other calculations shown omit this term. 

For the heavier nuclei, Q has not yet been measured but A is 
Y 

shown in Figures (7) and (8) for 90Zr and 208pb. For Pb, the 

nonrelativistic calculation of Ref. [6] is seen to underestimate the 

depth of the minima in A while the relativistic results are very 

good for both Zr and Pb. 

The energy dependence of various corrections is examined with 

calculations for 208pb at 400 MeV. At this energy there is almost no 

difference between pseudovector and pseudoscalar NN amplitudes. In 

addition the effects of Pauli blocking are very small. Figure (9) 

shows the analyzing power in 208 Pb. Calculations including Pauli 
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blocking (solid) have only slightly larger maxima then free 

calculations (dotted). Thus the effects of Pauli blocking while not 

absent are much smaller then in some nonrelativistic calculations. As 

the energy increases above 400 MeV the present calculations reduce to 

the original RIA (which provides an excellent description of data at 

these energies). 

CONCLUSIONS 

Microscopic relativistic optical potentials have been calculated 

for closed shell nuclei at energies near 200 MeV. These calculations 

go beyond the simple RIA by resolving ambiguities in the relativistic 

NN amplitudes and including Pauli blocking corrections. 

The calculations quantitatively reproduce all measured elastic 

spin observables (both Ay and Q) for closed shell nuclei at energies 

near 200 MeV. It remains to be seen how unique this good description 

is. Further nonrelativistic work to compare with this relativistic 

approach would be very useful. 
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