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We discuss the necessary conditions for expaining the matter-antimatter asymmetry in our uni-
verse and show how it can be realized by baryogenesis via leptogenesis. We study how the lepton
number asymmery can occur in standard leptogenesis and introduce the process of conversion of
the lepton number asymmetry into the baryon asymmetry through a sphaleron effective at finite
temperature. The method to calculate the lepton number asymmetry generated from the decay
of the heavy Majorana neutrino is presented. We derive the Boltzmann equation for the heavy
Majorana neutrino, as well as the B − L to see how the lepton number asymmetry can survive
without being completely washed out, and we discuss the physical implications of the contributions
to the Boltzmann equation. By numerically solving the Boltzmann equation, we see how the lepton
number asymmetry depends on the model parameters that reflect wash-out of the lepton number,
and we find numerical results for the model parameters and the input variables, leading to the
observed value of the bayron asymmetry in our universe.
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우주의 물질-반물질 비대칭을 설명하기 위해 필요한 조건들을 알아보고, 이 조건들을 만족하는 시나리

오인 중입자 기원 (baryogenesis)이 경입자 기원 (leptogenesis)을 통해 구현될 수 있음을 알아본다. 표준

경입자 기원을 구현하는 모형에서 경입자수 비대칭이 어떻게 발생하는지 자세히 알아보고, 유한 온도에서

유효한 스파렐론을 통하여 경입자수 비대칭이 중입자수 비대칭으로 전환되는 과정에 대해 소개한다.
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무거운 마조라나 중성미자의 붕괴 과정을 통해 경입자수 비대칭을 이론적으로 계산하는 방법에 대해

자세히 소개한다. 무거운 마조라나 중성미자의 붕괴로 생성되는 경입자수 비대칭이 어떻게 제거되지 않고

현재 우주에 살아남을 수 있었는지 알아보기 위해 볼츠만 방정식을 유도하고, 볼츠만 방정식을 구성하는

요소들의 물리적인 의미를 논의한다. 또한, 볼츠만 방정식에 대한 수치 분석을 통해 중성미자수의 소멸과

연관된 변수값에 따라 경입자수 비대칭이 우주 진화 과정을 통해 어떻게 변하는지 알아보고, 관측된 중입자

비대칭값을 맞추는 변수값들과 초기 조건들을 구해본다.
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I. 서론

현재 우리 우주에서는 양성자, 전자 등과 같은 입자로 구
성되어 있는 물질만 관측되고, 반양성자, 양전자등과 같은
반입자로 구성된 반물질은 찾아보기 힘들다. 빅뱅 이론에
근거한 우주론에서는, 우주 탄생 직후에 우주에 존재하는
막대한 에너지로부터 소립자들이 생겨난 것으로 추정하고
있다. 디랙 이론에 따라 입자들이 에너지로부터 생성될
때에는 반드시 반입자의 탄생을 동반한다. 그러므로 어떤
특별한 이유가 있지 않는 한 우주 탄생 초기에는 입자와
반입자가 같은 양으로 생성되었을 것으로 추정된다. 결국
현재 관측된 반물질에 대한 물질의 우세성은 입자와 반입자
사이에 본질적인 비대칭이 존재함을 강하게 암시한다. 물
질과 반물질 사이의 비대칭 크기는 중입자 수 밀도 (baryon
number density) nB 와 반중입자(antibaryon) 수 밀도 nB̄

의 차이를 우주에 존재하는 광자의 수 밀도 nγ 로 나눈 양
으로 나타낼 수 있고, WMAP 인공 위성 등을 이용한 우주
관측을 통해 측정된 이 양의 값은 대략 다음과 같이 주어진
다 [1],

ηB =
nB − nB̄

nγ
= 6.160+0.153

−0.156 × 10−10 (1)

이 결과는 중입자와 반중입자가 서로 만났을 때 약 10억
개의 중입자 당 6개의 중입자가 살아남아 오늘날의 우주가
만들어졌다는 것을 의미한다. 따라서 아주 작은 차이가 현재
의 우리를 낳았다고 볼 수 있다. 현재 우리 우주를 구성하는
물질의 대부분이 중입자를 포함하고 있다는 점에서 물질과
반물질의 비대칭을 중입자 비대칭 (baryon asymmetry)이
라고도 부른다. 중입자 비대칭 현상을 설명하기 위해서는
초기의 대칭적 우주에서 현재의 비대칭적 우주에 이르는
우주 진화의 중간 단계에 적절한 메카니즘 (mechanism)이
있어야 한다. 이 메카니즘을 중입자 기원 (baryogenesis)
이라 부른다 [2]. 그러한 중입자 비대칭이 우주 초기에 어떻
게 생겨났는지를 규명하는 것은 입자물리학과 우주론에서
해결해야 할 중요한 난제들 중 하나로 손꼽힌다.
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1967년 Sakharov는 이 문제를 동력학적으로 해결하기
위해서 중입자 수와 관련된 상호작용이 만족해야 할 세 가지
조건을 제시하였다 [3–5]:

• 중입자수 깨짐 (Baryon number violation)

• 전하 켤레짓기 (Chareg congujation) 변환 (C)에 대
한 비보존과 CP 대칭성 깨짐

• 상호작용이 열적인 평형에서 벗어남 (departure from
thermal equilibrum)

위 세 조건들은 표준 모형내에서 만족된다. 그러나 중입
자 수 비대칭에 대한 관측 결과를 설명하기에는 충분하지
않음이 잘 알려져 있다 [6]. 따라서 이 문제를 해결하기
위해서는 표준 모형을 넘어서는 새로운 물리 이론이 반드시
필요하다. 물질과 반물질 비대칭을 해결하기 위해 약전
중입자 기원(electroweak baryogenesis), 대통일 중입자 기
원, Affleck-Dine 중입자 기원, 경입자 기원 (leptogenesis)
등 Sakharov 조건을 만족하는 많은 시나리오들이 제시되어
왔지만, 아직까지 정설은 없는 상태이다.

최근, 중성미자 진동의 관측으로 중성미자의 질량이 0
이 아닌 것이 확실시 되었고, 그 질량값들은 다른 페르미온
들에 비해 매우 작은 것으로 추정하고 있다 [7]. 중성미자
질량값이 아주 작아야 하는 이유를 설명하는 메카니즘으로
널리 알려진 것으로 소위 시소 (seesaw)메카니즘이란 것이
있다 [8, 9]. 시소메카니즘을 구현하는 모형은 아직 존재
여부를 알 수 없는 매우 무거운 질량값을 갖는 우편향성
(right-handed) 마조라나 (Majorana) 중성미자들을 도입
하여 표준 모형을 확장한 모형이다 [8–10]. 시소메카니즘을
처음 고안한 사람들 중 한 사람인 Yanagida는 그의 동료
Fukugida와 공동으로 시소메카니즘을 위해 도입된 무거운
우편향성 마조라나 중성미자의 붕괴 과정을 통하여 물질과
반물질 사이의 비대칭이 발생할 수 있는 가능성을 제시하
였다 [11]. 이 가능성을 ‘경입자 기원’ 이라 부른다. 본 총설
논문에서는 경입자 기원을 통하여 물질과 반물질 사이의
비대칭이 어떻게 구현되는지를 상세히 설명하고자 한다.
아울러 식 (1)에서 주어진 관측 결과가 경입자 기원 시나리
오에서 어떻게 계산되는지 상세히 소개하고자 한다.
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II. 경입자기원을통한중입자기원

1. Sakharov의조건이필요한이유

서론에서 언급하였듯이, Sakharov는 우리 우주에서의

물질과 반물질 비대칭을 설명하기 위해서 세 가지 조건을

만족하는 소립자들의 상호작용이 필요하다고 주장하였다

[3–5]. 물질과 반물질의 비대칭을 구현하기 위해서 위 세

가지 조건이 필요한 이유를 알아보자. 첫번째 조건인 중

입자수 깨짐이 필요한 근거는 초기 우주에서 중입자수와

반중입자수가 동일했을 거라는 믿음에서부터 비롯된다. 두

번째 조건은 입자와 반입자의 반응속도 차이를 만들어주기

위한 조건이다. 입자 X 가 다른 입자 fi 들로 붕괴되는 과

정을 생각해보자. 이 과정에 대해 C와 CP가 보존된다면

다음 관계식이 성립한다.

M(X → fi) = M(X̄ → f̄i) = M(f̄i → X̄) (2)

여기서, M은 각 붕괴 과정에서의 붕괴진폭 (decay am-
plitude)들이고, CPT 보존을 적용하였다. M의 유니테리

(unitarity) 성질 때문에 모든 붕괴 과정에 대해서 합을 구

하면 그 절대값이 입자와 반입자에 대해서 같아지는 결과가

나와 중입자수 비대칭을 만들지 못한다 [2]. 따라서, C와

CP는 붕괴 과정에서 보존되어서는 안된다. 세 번째 조건이

만족되어져야 할 이유는 중입자수 B가 CPT변환에 대해

서 홀수 (odd) 성질을 가지므로 만약 열평형을 가정한다면

아래 식 (3)와 같은 결과를 얻게되고, 결국 중입자수는 0이

되어 역시 중입자수 비대칭을 만들지 못한다 [12].

< B >T=Tr(e−βHB) = Tr((CPT)(CPT)−1e−βHB)

=Tr(e−βHCPT)−1B(CPT)) = − < B >T (3)

여기서, CPT연산자는 해밀토니안 H와 교환이 가능하다는

조건을 적용하였다. 따라서, 중입자수 생성에 대한 상호작

용은 열적인 평형 상태에서 일어나서는 안된다.

위에서 보았듯이 중입자수 비대칭이 생성되기 위해서는

중입자수가 보존되지 않는 상호작용이 필요하다. 그러나,

어떤 상호작용에서 중입자수와 경입자수가 서로 연관되어

있다면, 중입자수가 보존되지 않는 상호작용 대신 경입자

수가 보존되지 않는 상호작용을 통해 중입자수 비대칭을

만들어 낼 수 있다. 이 가능성이 바로 경입자 기원의 기본

아이디어이다. 경입자 기원에서는 Sakharov의 세 가지 조

건 중 두번째와 세번째는 그대로 유지한 채, 첫번째 조건인

중입자수 깨짐을 경입자수 깨짐으로 바꾸어 적용한다. 그런

다음 경입자수 깨짐이 중입자수 깨짐으로 바뀌도록 하는 메

카니즘을 이용하게 된다. 경입자 기원에서는 소위 스파렐론

(sphaleron) 과정 [13]을 통해 경입자수의 비대칭이 중입자

수의 비대칭으로 바뀌게 된다. 따라서 스파렐론 과정이란

것이 무엇인지를 이해하는 것이 경입자 기원을 이해하는 데

있어서 중요하다. 먼저 중입자수 B와 경입자수 L에 대해

자세히 알아본 다음, 스파렐론 과정에 대해 알아보자.

2. 중입자수 B와경입자수 L의관계

논의에 앞서서 입자물리학에서 중입자수와 경입자수가

어떻게 정의되는지 살펴보자. 중입자수 B는 다음과 같이

정의한다 [14].

B = −
∫

d3xJ0
B (4)

Jµ
B =

1

3

∑
i

(q̄Liγ
µqLi − ūRiγ

µuRi − d̄Riγ
µdRi) (5)

여기서, Jµ
B 는 비국소 U(1)B 대칭성에 대해 불변인 current

이고, 각 장 (field)들은 다음과 같이 표현된다.

qL =

(
u c t
d s b

)
L

, uR =
(
u c t

)
R
, dR =

(
d s b

)
R

(6)

표준 모형은 SU(3)×SU(2)×U(1)Y 표현을 가지기 때문에

좌편향성 (left-handed) 두겹 (doublet)상태나 우편향성 홑

겹 (singlet) 상태의 켤레들로 표준 모형을 표현할 수 있다.

마찬가지로, 경입자수 L은 다음과 같이 정의된다 [14].

L = −
∫

d3xJ0
L, Jµ

L =
∑
i

(l̄Liγ
µlLi − ēRiγ

µeRi) (7)

lL =

(
e µ τ
νe νµ ντ

)
L

, eR =
(
e µ τ

)
R

(8)

약하게 결합된 플라즈마에서는 퀴크와 렙톤 그리고 힉스

입자에 화학적 포텐셜 (chemical potential) µi(i = q, l, ϕ)

를 지정할 수 있다. 표준 모형에서 B와 L 양자수는 다음과

같이 화학적 포텐셜 (chemical potential) µi 와 관련있다

[12].

B =
∑
i

(2µqi + µui + µdi)

Li = 2µi + µei , L =
∑
i

Li (9)

여기서, i는 세대수를 의미한다. SU(2) 인스탄톤 (instan-
ton)에 의한 12개 페르미온들의 효과적인 상호작용에서와

SU(3) QCD 인스탄톤 과정에서 화학적 포텐셜의 총합은
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각각 0이어야 한다는 조건, 그리고 모든 온도에서 플라즈

마의 총 초월전하 (hypercharge)는 0이어야 한다는 조건을

적용하면, B와 L을 µi 대신에 B−L 양자수로 다음과 같이

표현할 수 있다 [15].

B =
8Nf + 4

22Nf + 13
(B − L), L = − 14Nf + 9

22Nf + 13
(B − L)

(10)

여기서, Nf 는 페르미온들의 맛깔 수 (=3)이다. 위 관계식

들은 중입자수 비대칭이 생성되기 위해서는 B−L 비보존이

필요함을 암시한다.

식 (5)과 식 (7)에서 정의된 Jµ
B 와 Jµ

L 에 대해서 삼각 변

칙 (triangluar anomaly)이 발생됨은 잘 알려져 있다 [14].
삼각 변칙의 결과로 중입자수 변화는 아래와 같이 게이지장

의 위상수학적인 전하 (topological charge)에서의 변화와

관련된다.

B(tf )−B(ti) =

∫ tf

ti

dt

∫
d3x∂µJ

µ
B

= Nf [NCS(tf )−NCS(ti)] (11)

여기서, NCS(t)는 천-사이몬 수 (Chern-Simons number)
이다 [16, 17]. 경입자수 변화에 대해서도 마찬가지 관계

식을 얻을 수 있다. 비가환 게이지장 이론에서는 무수히

많은 축퇴된 (degenerate) 진공상태 (vacuum states)들이

존재하며, 이 진공상태들은 천-사이몬 수에서 차이가 난다.

따라서, 한 진공에서 다른 진공으로의 전이과정에서 NCS

의 변화가 생기고, 이 변화는 중입자수와 경입자수의 변화

(B + L의 변화)를 유도한다. 그러나, 진공 전이에서 B와

L은 변할 수 있겠지만, B −L은 변하지 않는다 [18]. 이제,

경입자수 비대칭이 어떻게 중입자수 비대칭으로 옮겨갈 수

있는지 알아보자 [11,13].

3. 스파렐론(sphaleron)

유한 온도에서 비가환 게이지 이론에서의 진공 구조를

연구하던 Kuzmin, Rubakov 그리고 Shaposhnikov는 일반

적인 대통일 이론에서 얻을 수 있는 중입자수 비대칭은 소위

스파렐론에 의해 사라질 수 있음을 발견했다 [19]. 유한 온

도에서 한 진공상태로부터 다른 진공상태로의 전이과정은

스파렐론으로 기술되며, 이 전이과정은 Fig. 1에서 보듯이

인접한 진공상태로의 전이가 터널 효과가 아닌 열적인 요동

(fluctuation)으로 포텐셜 장벽을 직접 넘어가는 과정으로

설명된다. 이 전이과정에서도 중입자수는 보존되지 않으며,

전이과정의 확률 크기는 온도가 0인 경우에 비해 매우 크고,

Fig. 1. Potential energy as a function of NCS and
Sphaleron energy. Sphaleron process is the one that tran-
sits one vacuum to another over the energy barrier [21].

근사적으로 전이율은 Γsph ≃ 10−6T 4 이다 [20]. 실제 스파
렐론 과정은 온도가 1012 GeV와 100 GeV사이에서 유효하
다 [20]. 또한 이 과정에서 중입자수 변화율은 게이지 대칭
성이 유지되는 높은 온도에서 매우 크다는 것이 알려져있다
[20]. 이 스파렐론 전이로 인하여 어떤 입자의 붕괴로부터
생성된 중입자수는 열적 평형에서 벗어나더라도 빠르게
감소하게 된다. 실제로는 스파렐론 과정을 통해 초기에
얻어졌던 B + L값이 제거된다. 즉, 스파렐론 과정을 통해
서 B + L = 0인 조건을 적용할 수 있다. 한편, 스파렐론
과정에서는 B−L값이 항상 보존된다. 그러므로, 경입자수
차이(∆L)를 생성시키는 상호작용은 B −L이 보존되어서
는 안된다. B − L이 보존되는 상호작용에서는 경입자수
차이가 생성됨과 동시에 중입자수 차이 (∆B = ∆L) 가
만들어지기 때문이다. 그런데, 스파렐론 과정은 B − L이
유지된 채 B + L이 제거되는 과정이어서 결국 B − L이
보존되는 모형에서는 스파렐론 과정을 거치면서 생성된
경입자수 차이와 중입자수 차이가 모두 제거된다. 따라서
경입자 기원은 B−L이 보존되지 않는 상호작용을 포함하는
이론에서 유효하다.

4. 경입자기원에대한모형

이제 경입자 기원을 구현하는 모델에 대해서 알아보자.
일반적인 표준 경입자 기원은 소위 시소 모형에서 구현된다.
시소 모형은 표준 모형에 새로운 소립자인 무거운 우편향
성 마조라나 중성미자를 도입한 모형이다. 이 마조라나
중성미자는 표준 모형 대칭성에 대해 홑겹이다. 시소 모형
라그랑지안은 다음과 같이 간단히 쓸 수 있다 [10].

L = LSM + iN̄Rγ
µ∂µNR + hl̄LϕNR +MN N̄ c

RNR + h.c.

(12)
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여기서, LSM 은 표준 모형의 라그랑지안에 해당하고, ϕ는

표준 모형에서의 힉스 스칼라장이며, NR 은 무거운 우편향

성 마조라나 중성미자이다. 일반적으로 NR 도 lL과 마찬가

지로 3 종류가 있다고 가정할 수 있으며, 그런 경우에 유카와

결합상수 h는 3× 3 복소 행렬로 표현할 수 있고, MN 은 마

조라나 중성미자의 질량 행렬로 실수값을 가진 대각행렬로

표현할 수 있다. 위 라그랑지안에서 새로운 유카와 상호작

용항 (hl̄LϕNR)은 B − L이 보존되지 않는다. 따라서 이

새로운 유카와 상호작용항을 이용하면 Sakharov위 첫번째

조건인 경입자수 깨짐을 만족시킬 수 있다. Sakharov의

두번째 조건은 이 유카와 상호작용항의 결합상수인 hij 가

복소수이면 만족된다. 즉, hij 가 복소수이면 이 상호작용은

CP가 보존되지 않는다. 또한, 이 유카와 상호작용항은 C
변환에 대해서도 불변성이 깨진다. 이 유카와 상호작용으로

초기 우주에서 마조라나 중성미자 NR 이 힉스 입자 ϕ와

표준 모형의 경입자 lL 로 붕괴되는 과정은 경입자수와 CP
가 보존되지 않으므로 경입자수 비대칭을 생성시킬 수가

있다. Sakharov의 세번째 조건 만족 여부에 대해서는 추후

논의하기로 하고, 먼저 시소 모형에서 무거운 마조라나 중

성미자의 붕괴 과정에서 경입자수 비대칭이 어떻게 생성되

는지 그리고 그 크기는 어떻게 결정되는지 상세히 알아보자.

5. 경입자수비대칭의계산

표준 경입자 기원은 3개의 마조라나 중성미자의 질량

스펙트럼이 뚜렷한 계층 (hierarchy) 을 보이는 경우를 가

정하고, 그 중 가장 가벼운 중성미자의 붕괴 과정만 고려

한다. 다른 두 중성미자의 질량이 매우 무거우면 충분한

양의 경입자수 비대칭을 만들기 어렵거나, 스파렐론 과정을

적용하기가 어렵게 된다. 따라서, 본 총설 논문에서는 가장

가벼운 마조라나 중성미자가 붕괴되는 과정을 통하여 물질

과 반물질 비대칭이 구현되는 경우만 고려하기로 한다.

위 라그랑지안 (12)로부터 가장 가벼운 마조라나 중성미

자 NR1 과 관련된 산란 진폭 (scattering amplitude) Sfi 는

다음과 같이 나타낼 수 있다 [14].

Sfi = 1 + iT (2π)4δ4(
∑
out

p−
∑
in

q) (13)

T = ūlLPR (iM)uNR1
(14)

PR(L) 은 투영 연산자로, PR(L) =
1
2 (1 + (−)γ5)로 정의되

며, γ5 는 iγ0γ1γ2γ3 이다. ulL 과 uNR1
은 각각 좌편향성

경입자와 마조라나 중성미자에 대한 스피너 (spinor)이다.

메트릭 텐서 (metric tensor)의 부호를 정하는 것이 파인먼

규칙을 정의할 때 필요하기 때문에 η = diag(1,−1,−1,−1)

를 쓰는 것으로 정의하겠다. N1 → l̄iϕ 붕괴에 대하여 불변
행렬 진폭M은 다음과 같이 표현할 수 있다.

iM = h1i + h∗
ijhkjhkiFN (15)

여기서, 우변의 첫째항은 나뭇가지 수준 (tree level)이고,
둘째항은 한고리 (1-loop) 보정항이다. 두고리 (2-loop) 이
상의 보정항은 무시하기로 한다. FN 은 한고리 보정항의 적
분식으로 아래에서 자세히 논의할 것이다. 먼저 N1 → l̄iϕ

과정에 대한 붕괴율을 계산하자. 붕괴율은 다음과 같이
주어진다.

Γ(NR1 → l̄Lϕ) ≡ ΓNR1
=

1

8πMN1

|T |2 (16)

여기서, MN1 은 NR1 의 질량이다. 일반적으로 나뭇가지 수
준이 고리 수준보다 매우 크므로, 붕괴율 계산에서는 나뭇
가지 수준에서만 계산하여도 충분하다. 나뭇가지 수준에서
iM이 h1i 이므로, |T |2 은 다음과 같이 계산되어진다.

|T |2 = |ūlPRh1iuNR1
|2

= h1ih
∗
1itr[PR(/pN1

+mN1)PL( /pl +ml)]

= (hh†)11(M
2
N1

−M2
ϕ +M2

l ) (17)

여기서, M 은 각각의 입자들의 질량을 의미한다. 만약 M2
l

와 M2
ϕ 이 M2

N1
에 비해 매우 작다면, |T |2 은 (hh†)11M

2
N1

로 근사된다. 이 결과를 적용하면 붕괴율은 다음과 같이
주어진다 [22].

ΓNR1
=

(h†h)11MN1

8π
(18)

나뭇가지 수준에서는 Γ(N1 → l̄Lϕ) = Γ(N1 → lLϕ
∗)이다.

이제 경입자수 비대칭을 구하자. 경입자수 비대칭은 아
래와 같이 정의된 CP 비대칭양 ε1 에 비례한다 [22–24].

ε1 =
Γ(N1 → l̄Lϕ)− Γ(N1 → lLϕ

∗)

Γ(N1 → l̄Lϕ) + Γ(N1 → lLϕ∗)
(19)

위 식에서 ε1이 0이 아닌 값을 가지기 위해서는 CP 대칭성
이 깨져야하며, 이 경우에는 나뭇가지 수준뿐만 아니라 고리
보정항의 기여가 반드시 필요하다. 따라서, ε1 을 계산하는
데에는 고리 보정항을 계산하는 것이 중요하다. 식 (15)를
적용하면 다음과 같은 결과를 쉽게 얻을 수 있다.

Γ(N1 → l̄Lϕ)− Γ(N1 → lLϕ
∗)

∝ |(h1i + h∗
ijhkjhkiFN )|2 − |(h∗

1i + hijh
∗
kjh

∗
kiF

∗
N )|2

= 4Im(h1ih1jh
∗
kjh

∗
ki)Im(FN ) (20)

식 (20) 에 기여하는 파인먼 도형들 (Feynman diagram)
은 Fig. 2에 나타냈다. Fig. 2에서 왼쪽부터 각각 나뭇가지
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Fig. 2. Feynman diagrams contributing to Eq. (20).

(tree) 도형, 꼭지점(vertex) 도형, 자체 에너지(self-energy)
도형을 나타낸다. 위 식 (20)에서 볼 수 있듯이, 경입자수

비대칭을 계산하는데에는 Im(FN )의 결과가 중요하다. 이

제 Im(FN )가 어떻게 표현되는지 자세히 알아보자.

먼저, 꼭지점 함수부터 계산하자. 우편향성 중성미자가

마조라나 중성미자이기 때문에 다양한 조합이 가능하다.

하지만, 계수의 허수부에 대해서는 다음 기여만 가능하다.

FN = i

∫
d4k

(2π)4
PR

1

k2 −M2
ϕ

PR ×
/k + /p+MNk

(k + p)2 −M2
Nk

PR
/q − /k +Ml

(k − pN1)2 −M2
l

= iMNk
PR

∫
d4k

(2π)4
1

k2 −M2
ϕ

× 1

(k + p)2 −M2
Nk

/q − /k

(k − pN1)
2 −M2

l

(21)

힉스 보손 ϕ의 운동량 k로 고리의 운동량을 표현하고 외

부의 운동량은 경입자에 대해서는 p를, 힉스 스칼라에 대

해서는 p′ 를 배정하였다. 자명하게도, NR1 의 운동량은

pN1 = p− p′이다. 분자의 선행항은 MN1 이 다른 질량들에

비해 매우 무겁기 때문에 MN1 에 비례해야 한다. 따라서,

최종 결과는 껍질 위 (on shell) 조건에서 질량이 없는 극한

(Mϕ, Ml → 0)을 취해서 구한다. 계산을 편하게 하기 위해

서, k를 p만큼 평행이동하여 [25]에서처럼 p1 = −p− pN1

과 p2 = −pN1 을 정의하면 적분은 다음과 같다.

FN = iMNk
PRγµC

µ (22)

여기서,

Cµ =

∫
d4k

(2π)4
kµ + pµ1

(k2 −M2
Nk

)(k + p1)2(k + p1 + p2)2
(23)

부록에 소개된 식 (A18, A19, A25)를 이용하여 적분식 Cµ

에 대한 실수부만 계산하면 다음과 같은 결과를 얻게 된다.

Im(FN ) = PR
/pN1

16πMN1

f

(
M2

Nk

M2
N1

)
(24)

여기서, 함수 f(x)는 다음과 같이 주어진다.

f(x) =
√
x

[
1 + (1 + x) ln(1 + 1

x
)

]
(25)

다음으로 iM에 기여하는 자체 에너지 양자 보정을 계산

하자. NR1 이 마조라나 중성미자이기 때문에 자체 에너지

보정에 기여하는 항은 두 가지이며, iM의 허수부에 해당

하는 표현식은 다음과 같다.

Im(iM) = (h∗
1jhkjhki + h1jh

∗
kjhki)PR ×

∫
d4k

(2π)4
1

k2
PR

/p+MNk

q2 −M2
Nk

PR
/k + /pN1

(k + pN1)
2

= 2h∗
1jhkjhkiMNk

PR

∫
d4k

(2π)4

/k + /pN1

k2(k + pN1)
2

1

p2N1
−M2

Nk

(26)

꼭지점 보정의 경우에서와 유사한 유도 과정과 새로운

고리 함수식들 (A26, A27)을 적용하면, Im(iM)에 기여하

는 자체 에너지 보정항에 대해 다음과 같은 결과를 얻을 수

있다.
Im(iM) = h∗

1jhkjhkiPR
/pN1

16πMN1

g

(
M2

Nk

M2
N1

)
(27)
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여기서, 함수 g(x)는 다음과 같이 정의된다.

g(x) =
√
x

1−x (28)

꼭지점 보정과 자체 에너지 보정 결과를 적용하면, ε1 의

분자와 분모는 다음과 같이 주어진다.

Γ(N1 → l̄Lϕ)− Γ(N1 → lLϕ
∗) =

MN1

32π2

∑
j=2,3

Im[(hh†)21j ]

[
f

(
M2

Nj

M2
N1

)
+ g

(
M2

Nj

M2
N1

)]
(29)

Γ(N1 → l̄Lϕ) + Γ(N1 → lLϕ
∗) =

(hh†)11MN1

4π
(30)

j = 1의 경우에는 (hh†)11 이 실수이기 때문에, j를 2부터 세는 것이 옳다. 최종적으로 위 결과들로부터 ε1 은 다음과 같이
표현된다.

ε1 =
1

8π

1

(hh†)11

∑
j=2,3

Im[(hh†)21j ]

[
f

(
M2

Nj

M2
N1

)
+ g

(
M2

Nj

M2
N1

)]

≃ − 3

16π

1

(hh†)11

∑
j=2,3

Im[(hh†)21j ]
MN1

MNj

(31)

위 식 두번째 줄에서는 M2
N2,3

≫ M2
N1

, (x ≫ 1)인 경우에

대해 다음의 근사식을 적용하였다.

f(x) ≃ −1

2

1√
x
, g(x) ≃ − 1√

x
(32)

위에서 구한 ε1 으로부터 경입자수 비대칭은 다음과 같이

구할 수 있다 [11,23].

nL − nL̄

s
= κ

ε1
g∗

(33)

여기서, s는 엔트로피 밀도이며, 현재 우주에 대해서 s =

7.04nγ 이고, g∗ 는 우주 에너지 밀도에 기여하는 상대론적

인 입자들의 총수로 표준 모형에 대해서는 g∗값이 106.76이

다. 변수 κ는 1보다 작은 값으로 경입자수 유실 (washout)
과정에 의한 효과를 나타내며 [23], 효율 인자 (efficiency
factor)라고도 불리운다 [26].

6. 평형으로부터의탈출

위에서 경입자수 비대칭을 구하는 방법을 알아보았다.

이제 Sakharov의 세번째 조건인 상호 작용의 열적인 비평

형이 성립하는 조건을 알아보자. 무거운 마조라나 중성미

자 (NR1)가 힉스 입자와 표준 모형의 경입자로 붕괴되는

과정에서의 붕괴율은 식 (18)에 주어진 ΓNR1
이다. 온도 T

에서 허블 팽창률 (Hubble expansion rate)은 다음과 같이
주어진다.

H(T ) =
2

3

√
g∗π3

5

T 2

Mpl
(34)

여기서, Mpl = 1.22×1019 GeV 는 플랑크 질량이다. ΓNR1

와 H(T )에 대해서 열적인 비평형 조건은 다음과 같이 주
어진다.

ΓNR1
≤ H(T )|T≤MN1

(35)

즉, 온도가 MN1 값보다 작을 때 마조라나 중성미자의 붕괴
속도가 우주의 팽창 속도보다 느려지면 붕괴 과정은 열적인
비평형 상태가 된다.

열적인 평형 상태로부터 어느 정도 벗어나는지를 계량
화하기 위해, 다음과 같은 붕괴변수 (decay parameter)를
정의한다 [27].

KN1 =
ΓNR1

H(MN1)
=

m̃1

m∗
(36)

여기서, m̃1 ≡ (h†h)11v
2

M1
은 효과적인 중성미자 질

량 (effective neutrino mass) 이 라 고 하 며, m∗ ≡
(16π2v2/3Mpl)

√
g∗π/5 ≃ 1× 10−3 eV.

위에서 정의된 KN1 에 대해 열적인 평형상태로부터 벗
어나기 위한 조건은 KN1

< 1이다. 그러나 이 조건은 매우
강한 조건이며 정확한 것은 아니다. 실제로 우주 추기에
생성된 경입자수 비대칭이 온도에 따라 어떻게 변하는지는
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경입자수에 대한 볼츠만 방정식을 풀어야 한다. 볼츠만

방정식의 해는 경입자수 비대칭이 온도에 따라 어떻게 변

하는지를 보여주며, 현재 우주 온도를 적용하였을 때 우주

관측에서 얻은 중입자수 비대칭 값을 만족하기 위해서 모델

변수들이 어떤 값들을 가져야 하는지를 결정할 수 있게 한다.

온도에 따른 경입자수 비대칭은 붕괴변수 KN1 의 값에 따라

변화 정도가 달라지며, 반드시 KN1 < 1이어야 현재의 관측

결과를 만족하는 것은 아니다. KN1 의 값에 따라 중입자수

비대칭이 어떻게 달라지는지 대략적인 특성을 알아보기 위

해 두가지 경우로 구분하여 알아보기로 한다. KN1 ≪ 1인

영역은 약한 유실 영역 (weak washout regime), KN1 ≫ 1

인 영역은 강한 유실 영역 (strong washout regime)이라고

한다. 다음 절에서 중입자수 비대칭에 대한 볼츠만 방정식이

어떻게 주어지고, 그 해는 위 두 영역에 대해 어떻게 되는지

자세히 알아보기로 한다.

7. 볼츠만방정식

볼츠만 방정식은 한 입자의 위상 공간 확률 밀도 함수

f(r⃗, v⃗)가 어떻게 전개 (evolution) 되는지를 기술하는 방

정식이다. 즉, f(r⃗, v⃗)d3r⃗d3v⃗는 체적 d3r⃗d3v⃗내에서 입자를

발견할 확률로 해석된다. 따라서,
∫
f(r⃗, v⃗)d3r⃗d3v⃗ = 1이

만족되도록 f(r⃗, v⃗)가 결정된다. f(r⃗, v⃗)에 대한 볼츠만 방

정식은 다음과 같이 주어진다.

L[f ] = C[f ] (37)

여기서, L과 C는 각각 리우빌(Liouville)과 충돌(collision)
연산자이다. 가장 일반적인 (상대론적인) 리우빌 연산자는

어파인 연결 (affine connection) Γα
βγ 를 이용하여 다음과

같이 표현할 수 있다.

L[f ] = pα
∂f

∂xα
− Γα

βγp
βpγ

∂f

∂pα
(38)

비상대론적인 경우에 대해서, 식(38)은 다음과 같이 간단히

표현된다.

L[f ] = ∂f

∂t
+ ˙⃗r

∂f

∂r⃗
+ ˙⃗v

∂f

∂v⃗
(39)

충돌 연산자 C는 해당 입자와 다른 입자들 사이의 상호작

용항들로 구성된다. 만약 입자수를 변화시키는 상호작용이

없거나 무시할 수 있으면 L[f ] = 0을 만족한다. 프레데릭-
로버트슨-워커 (FRW) 메트릭에서, 밀도 함수는 에너지와

시간의 함수로 표현 가능하며, f(rµ, pν , t) = f(E, t)이다.

그러면, 주어진 입자의 수밀도 (number density) n은 다음

과 같이 주어진다.

n = g

∫
d3pi
(2π)3

f (40)

여기서, g는 주어진 입자의 스핀 자유도이다. FRW 메트릭

에서, Γ0
11 = da

dt /a를 이용하면, 리우빌 연산자의 공변적인

(covariant) 형태는 다음과 같다.

L[f ] = E
∂f

∂t
− ȧ

a
|p⃗|2 ∂f

∂E
(41)

여기서 a는 축적인자 (scale factor) 이며, ȧ/a ≡ H 는 우

주의 허블 팽창률에 해당한다. 식 (41) 의 양변에 운동량

공간에서의 적분을 취하면, 다음의 결과를 얻는다.

g

∫
L[f ] d

3pi
(2π)3

=
1

a3
d

dt
(na3) =

dn

dt
+ 3Hn (42)

C[f ]에 대해서도 마찬가지로 적분형태를 취하고 식 (42)과

결합하면, 다음과 같은 우주론적 볼츠만 방정식을 얻을 수

있다 [2].

dnN

dt
+ 3

da

dt

1

a
nN = −

∫ [∏
∀i

gi
d3pi

(2π)32Ei

]
(2π)4δ4

∑
j∈
out

pj −
∑
k∈
in

pk

 |T |2
∏
j∈
out

∏
k∈
in

fj(1± fk) (43)

합 기호 아래의 ‘in’과 ‘out’는 들어오는(생성되는) 입자와
나가는 (소멸되는) 입자를 나타낸다. 예를 들면 NR → l̄Lϕ

붕괴에서는, NR 이 나가는 (소멸되는) 입자이고, 역붕괴에
서는 NR이 들어오는 (생성되는) 입자이다. fi는 입자(i)의

위상 공간 확률 밀도 함수이다. 평형상태에서는 간단하게
fi 가 페르미-디랙 분포나 보즈-아인슈타인 분포를 따른다.
마지막으로 (1± f)는 보즈 강화 효과나 파울리 방해 효과
에서 오는데 실제 계산에서는 단순화하기 위해 무시된다.
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평형상태에서의 수밀도와 확률밀도 함수를 각각 neq, f eq

라 표시하고, 중성미자는 NR → l̄Lϕ와 NR → lLϕ
∗ 두

붕괴 과정을 주로 겪는다고 가정할 때, 위 볼츠만 방정식의

우변은 다음과 같이 표현될 수 있다 [28].

−

[
nNR

neq
NR

γeq(NR → l̄Lϕ)−
nlnϕ

neq
l neq

ϕ

γeq(lLϕ
∗ → NR)

]
(44)

여기서, γeq 는 NR 이 포함된 열적 평형상태에서의 붕괴율 밀도이며, 다음과 같이 표현된다.

γeq(NR → l̄Lϕ) =

∫
d3pN

(2π)32ENR

f eq
NR

∫
d3pld

3pϕ
(2π)62El2Eϕ

(2π)4δ4(pN − pl + pϕ)|T |2 (45)

마조라나 중성미자는 매우 무거우며, 비상대론적으로 취

급할 수 있고, 평형 상태에서 맥스웰-볼츠만 분포, f eq =

e−E/T , 를 따른다고 가정하면, NR 에 대한 평형상태에서의

수밀도는 식 (40)에 따라 다음과 같이 주어진다.

neq
NR

=
gNN1

2π2
T 3

(
MN

T

)2

K2

(
T

MN

)
(46)

MN 은 NR 입자의 질량이고 K2는 부록에서 정의되는 제 2
종 변형 베셀 함수 (B4)이다. 한편, 붕괴 과정에 대해서는

다음과 같은 식이 성립한다.

γeq(NR → l̄Lϕ) = γeq(lLϕ
∗ → NR)

=
neq
NR

2

K1(z)

K2(z)
(1 + ε1)ΓNR

(47)

γeq(NR → lLϕ
∗) = γeq(l̄Lϕ → NR)

=
neq
NR

2

K1(z)

K2(z)
(1− ε1)ΓNR

(48)

여기서, 경입자수 비대칭 효과를 고려하였으며, 평형상태의

표준 모형 입자들은 맥스웰-볼츠만 분포를 따른다고 가정하

였고, z = MN/T 이고 ΓNR
은 식 (18)에 주어져 있다. K1

은 부록에서 정의되는 제 2종 변형 베셀 함수 (B3)이다.

열평형 상태에서 엔트로피 밀도 s와 광자의 수 밀도 nγ

는 다음과 같이 주어진다 [2].

s =
ρ+ p

T
=

2π2

45
g∗sT

3 =
π4

45ζ(3)
g∗snγ (49)

nγ =
2T 3

γ

π2
ζ(3) (50)

g∗s =
∑

bosons

gi

(
Ti

Tγ

)3

+
7

8

∑
fermions

gi

(
Ti

Tγ

)3

(51)

Ti 는 입자 i의 온도를 뜻하고, gi 는 그 입자의 자유도인데

스핀이 1이면 3이고, 1
2 이면 2를 대입하면 된다.

이제 위 볼츠만 방정식 (43)의 수밀도 n을 식 (49)에서

주어진 엔트로피 s로 나눈 양인 Y (= n/s)로 변환하고,

볼츠만 방정식을 Y 에 관해 다시 표현하자. 방정식 (43)의

좌변은 단순하게 1
a3

d
dt (na

3)로 나타낼 수 있는데 이 항은

s d
dtY 와 같다. 중입자수 비대칭의 관측 결과는 중입자 수밀

도를 광자 수밀도로 나눈 양으로 주어진다. 엔트로피 밀도 s

가 광자의 수밀도 nγ 와 s = 1.8g∗nγ 의 관계가 있기 때문에,

종종 NB ≡ nB

nγ
를 이용할 수도 있다. 따라서 상대론적인

페르미온의 열평형 상태에서 엔트로피당 수밀도 및 상대

수밀도는 각각 다음과 같이 주어진다 [23].

Y eq
i =

3

4

45ζ(3)

2π4

gi
g∗s

, Neq
i =

3

4
(52)

여기서, ζ(3)은 약 1.202이고 π4

45ζ(3) 은 약 1.80이다. 방정식

(43)에서 표준 모형의 경입자 l̄L과 힉스 보손 ϕ는 들어오는

입자이므로 볼츠만 통계에 의해 fl̄fϕ 를 f eq
NR1

으로 대체할

수 있다. 그 이유는 평형 상태에서는 에너지가 보존되어

exp (−ENR
/T ) = exp (−(El + Eϕ)/T )의 관계가 성립하

기 때문이다.

따라서 nNR 에 관한 볼츠만 방정식을 Yi에 관한 방정식으

로 바꿀 수 있으며 [29], 식(48)을 고려하여 엔트로피당 수밀

도 YNR1
와 엔트로피당 B−L 비대칭 YB−L(≡ Y∆(B−L) =

YB−L − YB̄−L̄)에 관한 방정식으로 표현하면 다음과 같다.

dYNR1

dt
= −γD(YNR1

− Y eq
NR1

) (53)

dYB−L

dt
= −ε1γD(YNR1

− Y eq
NR1

)− γWYB−L (54)

여기서, γD = K1(z)/K2(z)ΓNR1
, γW = K1(z)/K2(z)ΓW

이다. ΓW 는 B −L을 제거하는 과정에 기여하는 역붕괴율

및 산란 단면적에 해당하는 양이다 [29].
방정식을 t에 대해 표현하기 보다 위에서 정의한 변수 z에

관하여 표현할 수 있으며, Y 에 관한 방정식을 Ni(= ni/nγ)



276 New Physics: Sae Mulli, Vol. 67, No. 3, March 2017

에 관한 방정식으로 변형하는 것이 용이할 수도 있다. 중

성미자의 상대 수밀도 NNR1
과 B − L 비대칭 NB−L(≡

N∆(B−L) = NB−L − NB̄−L̄) 에 대한 방정식을 변수 z에

관하여 표현하면 다음과 같다.

dNNR1

dz
= −KN1z

K1(z)

K2(z)
(NNR1

−N eq
NR1

) (55)

dNB−L

dt
= −ε1KN1z

K1(z)

K2(z)
(NNR1

−N eq
NR1

)

−1

4
KN1z

3K1(z)NB−L (56)

NB−L 에 대한 방정식의 우변 첫째항은 NR1 의 붕괴로 인

하여 B − L 비대칭이 생성되는 것을 나타내며, 둘째항은

역붕괴 과정으로 B − L 비대칭이 유실되는 정도를 나타

낸다. 둘째항에 산란과 관련된 양을 포함시킬 수 있으나

여기서는 무시하기로 한다. 다음 장에서는 유실 효과에

대해 좀 더 자세히 살펴보고, 방정식(55, 56)를 수치적으로

풀어서 얻은 해들의 특성에 대해 알아보기로 한다.

III. 유실(washout)과수치분석의결과

이 장에서는 이전 장에서 소개한 결과들을 바탕으로 중

입자수 비대칭 ηB 에 대한 수치 분석을 논의한다. 식(10)으

로부터 중입자수와 경입자수 비대칭들은 NB−L 와 다음과

같이 관련된다 [13,29].

ηB =
28

79
NB−L, ηL = −51

79
NB−L (57)

중입자수 비대칭 ηB 는 마조라나 중성미자 NR1 이 븡괴할

때부터 현재 우주에 이르는 동안 엔트로피의 변화로 인하여

값이 달라진다. 이 변화 효과는 유효 자유도값의 변화를

반영하는 것으로 표현할 수 있다. 마조라나 중성미자 NR1

이 붕괴될 때와 현재의 유효 자유도는 각각 다음과 같이

주어진다.

g0∗S = 2 + 6× 7

8
(
4

11
) =

43

11
(58)

gN∗S = 106.75 + 2× 7

8
= 108.25 =

217

2
(59)

g0∗S 는 현재의 유효 자유도이고 gN∗S 는 NR1 이 붕괴할 때의

유효 자유도이다. 유효 자유도의 변화를 고려하여 현재

우리 우주에서의 ηB 는 근사적으로 다음과 같이 주어진다.

ηB =
g0∗S
gN∗S

28

79
NB−L (60)

NB−L에 대한 볼츠만 방정식의 해는 다음과 같이 표현된다

[2].

NB−L(z) = N i
B−L exp

[
−
∫

dz′γW (z′)

]
−3

4
ε1κ(z; m̃1,MN1 , m̄

2) (61)

여기서, N i
B−L은 B−L 비대칭의 초기값이고, m̄2 = m2

1+

m2
2 +m2

3이며, κ는 효율인자로 역붕괴나 산란 등으로 인한

유실 정도를 나타낸다. 유실 정도는 붕괴 변수 KN1 의 크

기에 의존한다. 앞서 언급한대로 유실 정도에 대해 두가지

경우, 약한 유실과 강한 유실로 나누어 각 유실 과정이 경

입자수 비대칭에 미치는 영향이 어떠한지 논의하고, 수치

분석을 통해 경입자수 비대칭 값이 변수들의 초기값에 따라

어떻게 되는지 알아보기로 하자. 수치 분석에서의 독립 변수

는 ε1,KN1 , NNR1
(0)의 세가지로, 이 변수들에 대한 조건은

−1 ≪ ε1 < −10−8, K > 0, NNR1
(0) ≥ 0, NB−L(0) = 0

[29]이다. 이들 조건중 마지막 조건은 초기 우주의 중입

자수와 경입자수의 비대칭이 없음을 적용한 것이고, 실제

수치 계산에서는 N i
B−L = NB−L(z = 10−3) = 10−10 을

적용하였다. 또한 z = 0대신에 z의 값은 10−3 부터 고려

하였고, 4× 102 까지로 제한하였다. 그래프는 변화의 폭이

너무 크기때문에 로그-로그 그래프로 나타냈는데, 이 경우

음수 값은 그래프에 그려지지 않는다는 문제가 있다. 만약,

그래프에서 불연속한 부분이 있다면, 비대칭이 음수라는

의미이다. NR1 의 상대밀도 초기값 N i
NR1

≡ NNR1
(10−2)

도 통제할 수 있는 중요한 변인 중 하나이다. z = 0일 때,

평형상태에서 입자의 상대밀도N 을 구하면 3
4 을 얻을 수

있다. 따라서, 3
4 은 NNR1

(10−2)이 평형상태의 값보다 크고

작음을 판단하는 중요한 기준으로 작용한다.

한편 식(60)에 관측 결과인 식(1)에서의 중심값(central
value)을 적용하면, 비대칭 NB−L은 다음과 같이 주어진다.

NB−L

(
z → MN1

2.7 (K)

)
= 4.8× 10−8 ≡ X (62)

따라서, 수치 분석을 통해 얻어야 하는 해는 NB−L 이

z =
MN1

2.7 (K) ≫ 1에서 점근 값 4.8 × 10−8 를 가져야 하는

경우이다.

1. 강한유실

강한 유실은 KN1 ≫ 1인 경우로, Fig. 3에서 볼 수 있듯

이 NB−L 는 N i
NR1

의 초기값에 상관없이 z가 커짐에 따라

같은 점근값을 갖는다. 즉, 강한 유실의 경우에는 NNR1
의

변화가 최종 비대칭Nf
B−L 에 영향을 주지 못한다. Fig. 3의
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Fig. 3. (Color online) logNNR1
vs. log z (upper)

and logNB−L vs. log z (lower) for KN1 = 102, and
ε1 = −10−5. Blue, green and red curves correspond to
N i

NR1
= 3

4 , 10
3 and 10−3, respectively.

Fig. 4. (Color online) logNB−L vs. log z for KN1 = 10,
and ε1 = −2.6× 10−6.

결과는 KN1 = 102, ε1 = −10−5인 경우이며, 파란색, 녹색,

붉은색 곡선들은 각각 N i
NR1

값이 3
4 , 10

3, 10−3에 해당한다.

Fig. 3에서, 모든 곡선이 평형상태의 곡선으로 수렴하기

때문에 선의 굵기를 과장하고 맵시를 바꿔가면서 나타냈다.

NNR1
vs. z 그래프에서는 보라색 점선을 볼 수 있는데, 이는

식 (46)의 N eq
NR1

을 그려낸 것이다. NB−L vs. z 그래프에

서는 보라색 점선이 NB−L = X에 해당한다.

Fig. 4의 결과는 KN1 = 10, ε1 = −2.6 × 10−6 인 경우

로, Fig. 3(아래)와 비슷한 특성을 보인다. 곡선들의 의미는

Fig. 3과 같으며, Fig. 3(아래) 와의 차이점은 NB−L 들의

점근값이 X 와 정확히 일치한다는 점이다. 수치 분석으로

Fig. 5. (Color online) logNB−L vs. log z for KN1
= 10−2,

ε1 = −10−5. The meaning of colors are the same as in
Fig. 3.

Table 1. KN1 and ε1 leading to Nf
B−L in the case of

strong washout with N i
NR1

= 3
4 . N fit

B−L is obtained from
Eq. (63).

KN1 10 100 1000
ε1 −2.6× 10−6 −3.7× 10−5 −4.6× 10−4

N fit
B−L (×10−8) 4.1 3.82 3.72

부터 Nf
B−L ≡ NB−L(z ≫ 1) = X 를 만족하는 변수 영역

은 비교적 넓다는 것을 알 수 있다. Nf
B−L 는 KN1 와 ε1 에

대해 다음과 같이 근사적인 관계를 보인다는 것이 알려져
있다 [2].

Nf
B−L ≃ N fit

B−L = −79

51
× 0.30

1.80
× ε1

KN1(lnKN1)
0.6

(63)

Table 1은 N i
NR1

= 3
4 인 경우, NB−L = X 를 만족하는

KN1 와 ε1 값들과 그 값들로 계산된 N fit
B−L 값의 결과를 보

여준다. Table 1에서 볼 수 있듯이, KN1 이 클수록 ε1 의
절대값이 작아야지 관측 결과인 Nf

B−L 에 근접함을 알 수
있다.

2. 약한유실

KN1 가 1보다 매우 작으면, NNR1
의 변화가 NB−L 에

영향을 미치기 때문에 더 예측하기 어렵다. 초기에 평형상
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Fig. 6. (Color online) Same as Fig. 5, but for ε1 = −6.4×
10−8 (up) and ε1 = −4.2× 10−5 (down).

태를 가정했을 때에는 N fit
B−L가 다음과 같은 관계에 있음이

잘 알려져 있다 [2].

N fit
B−L = −79

51
× 0.30

1.80
× ε1 (64)

이 결과는 N i
NR1

= Neq
NR1

= 3
4 일 때에 해당한다. Fig. 5는

약한 유실의 한 예로서, z에 따라 비대칭 NB−L 이 어떻게
변하는지를 보여준다. 곡선들은 KN1 = 10−2, ε1 = −10−5

에 해당하며, 곡선들의 색깔에 대한 조건은 Fig. 3과 같다.
Fig. 5에서 볼 수 있듯이, NB−L 는 N i

NR1
마다 다른 점근

값을 갖는다. 이러한 결과는 [30]에서 예측하고 있는 것
과 일치한다. Fig. 5(위)에서는 각 곡선들이 보라색 점선
(NB−L = X) 근처로 어떻게 수렴하는지를 보여준다.

Fig. 6에서는 Fig. 5에서와 동일한 KN1 값에 대해서 ε1

값을 다르게 하였을 때, logNB−L 값이 z 에 대해 어떻게
변하는지를 보여준다. Fig. 6(위) 는 ε1 = −6.4 × 10−8

에 해당하며, Fig. 6(아래) 는 ε1 = −4.2 × 10−8 에 해당
한다. Fig. 6(위)의경우에는 N i

NR1
가 103 에 해당하는 곡

선 NB−L(z)가 관측 결과인 Nf
B−L 로 수렴함을 볼 수 있

고, Fig. 6(아래) 의경우에는 N i
NR1

가 10−3 일 때의 곡선
NB−L(z)가 관측 결과인 Nf

B−L 로 수렴한다.
N i

NR1
= 3

4 조건을 적용한 경우에 대해서, Table 1에서
처럼 점근값 Nf

B−L = X 를 만족하는 KN1 와 ε1 를 Table
2에 기록하였다. N fit

B−L 값들은 KN1 와 ε1 값들을 식 (64)
에 대입하여 얻은 결과들이다. Table 2에서 볼 수 있듯이,

Table 2. KN1 and ε1 leading to Nf
B−L in the case of

weak washout with N i
NR1

= 3
4 . N fit

B−L is obtained from
Eq. (64).

KN1 10−1 10−2 10−3

ε1 −6.6× 10−8 −6.4× 10−8 −6.7× 10−8

N fit
B−L (×10−8) 5.7 5.5 5.8

Table 3. KN1 and ε1 leading to Nf
B−L for N i

NR1
= 10−3.

KN1 10−1 10−2 10−3

ε1 −4.5× 10−6 −4.2× 10−5 −4.8× 10−5

N i
NR1

= 3
4 인 약한 유실의 경우에는 Nf

B−L 는 KN1 값에

크게 의존하지 않음을 알 수 있다. 그러나, N i
NR1

= 10−3인

경우에는, Table 3에서 볼 수 있듯이 KN1 이 10−2 까지는

Nf
B−L 는 ε1 값과 KN1 모두에 의존하는 데 반해서, KN1 이

10−2보다 작은 경우에는 Nf
B−L가 ε1에 의해서만 결정된다.

즉 KN1 의 크기에는 영향을 받지 않는다.

IV. 결론및전망

본 총설 논문에서는 우주의 물질-반물질 비대칭을 설명하

기 위해 필요한 조건들을 알아보고, 이 조건들을 만족하는

시나리오인 중입자 기원이 경입자 기원을 통해 구현될 수

있음을 보였다. 표준 경입자 기원은 시소메카니즘이 작동

하는 모형에서 도입된 무거운 우편향성 마조라나 중성미

자가 경입자와 힉스 스칼라 입자로 붕괴되는 과정을 통해

경입자수 비대칭을 만들고 유한 온도에서 발생할 수 있는

스파렐론 과정을 통하여 중입자수 비대칭으로 전환되는

시나리오이다. 스파렐론 과정에서 어떻게 경입자수 비대칭

이 중입자수 비대칭으로 전환되는지를 설명하였고, 무거운

마조라나 중성미자의 붕괴 과정을 통해 경입자수 비대칭이

어떻게 발생되는지 자세하게 논의하였으며, 중입자수 비대

칭의 관측 결과를 이론적으로 계산하는 방법에 대해 자세히

설명하였다.

본 총설 논문에 소개된 수식들과 유도 과정은 다른 논문

들에서는 잘 소개되지 않는 것들로 경입자 기원을 이해하고

후속 연구를 진행하는 데 많은 도움을 줄 것이라 기대한다.

무거운 마조라나 중성미자의 붕괴로 생성된 경입자수 비

대칭이 현재 우주에서 살아남는지에 대해 알아보기 위해

마조라나 중성미자에 대한 볼츠만 방정식을 구하고, 볼츠만

방정식을 구성하는 요소들의 물리학적인 의미를 논의하

였다. 볼츠만 방정식은 무거운 마조라나 중성미자의 수에
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대한 비대칭을 만들어내는 과정뿐만아니라 생성된 중성미

자 수를 제거하는 과정들을 포함하고 있으며, 수치 분석을

통해 중성미자수의 제거와 관련된 변수 크기에 따라 경입자

수 비대칭이 우주 진화 과정을 통해 어떻게 변화하며 현재

우주에서 그 양이 열적인 평형 상태로부터 얼마나 벗어날

수 있는지를 자세히 논의하였다.

경입자 기원을 통한 중입자 기원 시나리오는 중성미자의

진동이 발견된 이후에 많은 연구가 진행되었다. 경입자

기원은 중성미자의 특성과 밀접하게 연관이 되어 있으며,

특히 중성미자의 질량 크기를 설명하는 시나리오에서 도입

된 모델 변수가 경입자 기원에 중요한 역할을 한다. 경입자

기원이 우주의 물질-반물질 비대칭에 대한 이유라면 경입자

기원 시나리오를 실험적으로 검증할 수 있어야 한다. 이론

연구에 의하면 표준 경입자 기원은 붕괴되는 마조라나 중성

미자의 질량이 108−9 GeV 이상이어야 한다고 알려져 있다

[32]. 이정도로 무거운 중성미자를 고에너지 가속기에서

직접 관측한다는 것은 거의 불가능하다. 따라서, 무거운

중성미자와 연관된 과정들의 탐색을 통해 경입자 기원에

대한 간접적인 확인 및 테스트를 해보는 것이 현재로서는

경입자 기원을 검증해보는 최선의 방법이다. 이 방법은

경입자 기원의 진위 여부뿐 이니라 마조라나 중성미자의

존재 여부를 가늠해볼 수 있는 매우 중요한 실험이 될 수도

있다.

가속기에서 마조라나 중성미자의 존재 여부를 직접적으

로 관측하기 힘들 정도의 무거운 질량값을 요구하는 표준

경입자 기원의 단점을 극복하여, 상당히 작은 질량값 (TeV
스케일)을 가진 마조라나 중성미자의 붕괴로 경입자 기원이

가능하도록 변형한 모형들이 제시되었다. 소위 공명 경입

자 기원(resonant leptogenesis)이 대표적인 예에 해당하며

[33], 시소모형에 새로운 홑겹 입자들을 도입하여 낮은 질

량값을 가진 마조라나 중성미자의 붕괴 과정을 통해 경입

자수 비대칭이 구현될 수 있는 모형들도 제시되었다 [34].
이들 모형들을 고에너지 가속기 실험에서 어떻게 검증할 수

있는지 연구하는 것은 입자물리학과 우주론의 미해결 문제

중 하나인 중입자 기원의 해답이 무엇인지를 찾는데 있어서

중요한 연구가 될 것으로 기대한다.
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Appendix A: 꼭지점과자체에너지의실수부계산

식 (23)에 주어진 Cµ 의 실수부는 다음과 같이 계산된다. 외부 입자들의 자유도는 2이기 때문에, Cµ 는 p1 과 p2 의 선형

결합으로 표현할 수 있으며, 다음 관계를 이용하면 편리하다.

k · p1 =
1

2
(k + p1)

2 − 1

2
(k2 −M2

Nk
)− 1

2
M2

Nk
(A1)

k · p2 =
1

2
(k + p1 + p2)

2 − 1

2
(k + p1)

2 (A2)

(p1 + p2)
2 = M2

l = 0, p21 = M2
ϕ = 0, p22 = M2

Nk
(A3)

Cµ 표현식은 다음과 같이 다시 쓸 수 있으며,

Cµ = Cµ
1 (p1, p2,MNk

, 0, 0) + pµ1C0(p1, p2,MNk
, 0, 0), (A4)

적분 함수 Cµ
1 과 C0 는 다음과 같이 정의된다.

Cµ
1 (p1, p2,MNk

, 0, 0) = pµ1C11 + pµ2C12 =

∫
d4k

(2π)4
kµ

(k2 −M2
Nk

)(k + p1)2(k + p1 + p2)2
, (A5)

C0(p1, p2,MNk
, 0, 0) =

∫
d4k

(2π)4
1

(k2 −M2
Nk

)(k + p1)2(k + p1 + p2)2
. (A6)

식 (A5)에 p1µ 를 곱하면 다음 결과를 얻는다.

p1µC
µ
1 =

∫
d4k

(2π)4
p1µ · kµ

(k2 −M2
Nk

)(k + p1)2(k + p1 + p2)2
=

1

2

∫
d4k

(2π)4
(k + p1)

2 − (k2 −M2
Nk

)−M2
Nk

(k2 −M2
Nk

)(k + p1)2(k + p1 + p2)2

=
1

2
[B0(0,MNk

, 0)−B0(p
2
2, 0, 0)−M2

Nk
C2

0 ] = −1

2
M2

Nk
C12.
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마찬가지로 식 (A5)에 p2µ 를 곱하면,

p2µC
µ
1 =

1

2
[B0((p1 + p2)

2, 0,MNk
)−B0(p

2
1, 0,MNk

)] =
−M2

Nk

2
(C11 − 2C12), (A7)

여기서, B0(p,m1,m2)는 다음과 같이 정의된다.

B0(p,m1,m2) ≡
∫

d4k

(2π)4
1

[(k + p)2 −m2
1](k

2 −m2
2)
. (A8)

질량이 없는 바깥 입자들에 대해서는 B0[(p1 + p2)
2, 0,MNk

] = B0(p
2
1, 0,MNk

)가 성립한다. 따라서, 위 결과와 p1 =

−p− pN , p2 = pN 을 이용하면 다음과 같은 결과를 얻을 수 있다.

C11 = 2 C12, (A9)

Cµ = pµ1 (C0 + C11) + pµ2C11 = −pµN (C0 + C11 − C12)− pµ(C0 + C12). (A10)

경입자 l은 질량이 없다고 가정했기 때문에 디랙 방정식에서,

ūl(p)p = pul(p) = 0, (A11)

이 성립하므로 pµ 는 ε1 에 관여하지 않는다. 그러므로, iM에서 Cµ 의 의미 있는 부분은 다음과 같다.

Cµ =− pµN (C0 + C12). (A12)

한편, 식 (A7)로부터 다음을 얻을 수 있다.

C12 =− 1

M2
N1

[B0(0,MNk
, 0)−B0(p

2
2, 0, 0)−M2

Nk
C0]. (A13)

식 (A8) 의 고리 함수 B0 는 자외선 발산한다는 것을 쉽게 알 수 있다. 이것을 해결하기 위해서 차원 조절 (dimensional
regularization)을 하면, B0 는 다음과 같이 표현할 수 있다 [14],

B0(p,m1,m2) ≡
∫

dnk

(2π)n
µ4−n

[(k + p)2 −m2](k2 −m2
2)

=
i

(4π)2

∫ 1

0

dαΓ
(
2− n

2

)(αm2
1 + βm2

2 + p22(α− α2)

4πµ2

)n
2 −2

.(A14)

다음 공식을 이용하여 적분식 (A14)를 간단히 하자,

A
n
2 −2 = 1 +

(n
2
− 2
)
A+O((n− 4)2), (A15)

Γ(2− n

2
) =

Γ(3− n
2 )

2− n
2

= −γ − 2

n− 4
. (A16)

γ는 Euler-Mascheroni 상수이다. 즉, n → 4 극한에서는 적분식 (A14)는 다음과 같이 표현된다.

B0(p,m1,m2) =
i

(4π)2

[
−γ − 2

n− 4
−
∫ 1

0

dα
αm2

1 + βm2
2 + p22(α− α2)

4πµ2

]
. (A17)

iM의 허수부만 중요하기 때문에, 적분함수에서는 실수부만이 의미가 있다. 적분함수들의 실수부는 복소 로그함수의 편각

iπ에서 온다. 다시 적분식을 민코프스키 공간으로 돌아오면 식 (A13)의 B0 들의 실수부는 다음과 같이 표현할 수 있다.

Re[B0(0,m, 0)] = 0, (A18)

Re[B0(p
2
2, 0, 0)] =

π

(4π)2
θ(p22). (A19)
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C0는 자외선 발산하지는 않지만 적외선 발산 항을 포함한다. 따라서 차원 조절을 할 필요는 없지만 이를 고려해야 한다. 본

총설 논문에서는 적외선 발산이 적분의 실수부에는 영향을 안 미치기 때문에 고려하지 않았다. 이제 다음 파인먼 적분식을

이용하면,

1

abc
= 2

∫ 1

0

dx

∫ x

0

dy
1

[a(1− x) + by + c(x− y)]3
, (A20)

고리함수 C0 는 다음과 같이 표현된다.

C0 = 2

∫
d4k

(2π)4

∫ 1

0

dx

∫ x

0

dy
1

[(k2 −M2
Nk

)y + (k + p1)2(x− y) + (k + p1 + p2)2(1− x)]3
. (A21)

Ref. [14]에 소개된 내용을 따라서 윅 (Wick) 회전을 하면 다음과 같이 k에 관한 적분을 간단히 표현할 수 있다.∫
d4k

(2π)4
1

[(k +A)2 −B]3
= − i

2

(
∂

∂B

)2
d4k

(2π)4
1

(k +A)2 +B
= −i

Γ
(
3− n

2

)
2(4π)

n
2

B
n
2 −3. (A22)

식 (A22)를 이용하면, C0 는 다음과 같이 주어진다.

C0 = − i

(4π)2

∫ 1

0

dx

∫ x

0

dy
1

M2
Nk

y − p22(x− y)(1− y)
. (A23)

이 적분은 어렵지만 [25]에 자세하게 나와있다. y를 y′ + x로 치환하면 다음과 같이 나타낼 수 있다.

C0 =− i

(4π)2

∫ 1

0

dx
1

−p22x+M2
Nk

ln
[
−
M2

Nk

p22
(y − p22)

]
. (A24)

다시, 복소 로그함수의 편각 부분이 실수부를 만들고, 마지막 결과를 민코프스키 공간에서 정리하면 다음과 같다.

Re(C0) =
π

(4π)2
1

p22
θ(p22) ln

(
1 +

p22
MNk

)
. (A25)

iM의 허수부에 기여하는 자체 에너지 보정항을 구하는데에는 위에서 얻은 결과에다 다음 적분 함수를 이용한다.

Bµ(p
2, 0, 0) ≡

∫
dnk

(2π)n
kµ

k2(k + p)2
= pµB1, (A26)

B1 =
1

2
B0(p

2, 0, 0), (A27)

여기서 외부 운동량의 자유도는 p 뿐이고, B0 는 꼭지점 함수에서 이미 계산하였다.

Appendix B: 제 2종변형베셀함수
Ref. [31]에 따르면 제2종 변형 베셀 함수 Kν 의 적분형

은 다음과 같다.

Kν(z) =
π0.5( 12z)

ν

Γ(ν + 1
2 )

∫ ∞

1

dt e−zt(t2 − 1)

=
π0.5

(2z)νΓ(ν + 1
2 )

∫ ∞

z

dx e−x(x2 − z2)ν(B1)

ν = 1일 때에는 다음 공식을 곧바로 이용하면 편리하다.
ν = 2일 때에는 다음 점화식을 사용할 수 있다.

z
d

dz
Kν(z)− νKν(z) = −zKν+1(z). (B2)

따라서, 다음 적분형을 이용하여 밀도와 붕괴율을 본문에서
표현할 수 있다.

K1(z) =
1

z

∫ ∞

z

dx e−x(x2 − z2)
1
2 , (B3)

K2(z) =
1

z2

∫ ∞

z

dx xe−x(x2 − z2)
1
2 . (B4)

다음과 같은 점근공식을 이용하면 전체 방정식을 이해하는
데 도움이 된다.

lim
z→∞

K1(z)

K2(z)
= 1, (B5)

lim
z→0

z2K2(z) = 2. (B6)


