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ABSTRACT

This dissertation studies a Graphics Processing Unit (GPU) construction of Bayesian neural net-

works (BNNs) using large training data sets. The goal is to create a program for mapping the

parameters of theories of new physics to their predictions. As a target problem, we consider the

phenomenological Minimal Supersymmetric Standard Model (pMSSM). The ability to create ac-

curate and smooth mappings would allow for a more robust method of studying the Minimal

Supersymmetric Standard Model, which is of great interest at the Large Hadron Collider (LHC)

experiments at CERN. A systematic study of the speedup achieved in the GPU application com-

pared to a Central Processing Unit (CPU) implementation is presented. We find a significant

speedup and conclude that GPUs are a promising platform for the construction of BNNs.

xii



CHAPTER 1

INTRODUCTION

The field of high energy physics has been pushing the bounds of computational science for decades.

The work at the European Organization for Nuclear Research (CERN), which operates the world’s

largest scientific facility ever created, the Large Hadron Collider (LHC), has necessitated many

computational advances. These range from the birth of the World Wide Web to building the

world’s largest computing grid. The experiments at the LHC generate 15 petabytes of data per

year, and storage and analysis of these data is a huge computational endeavor. The purpose of the

four experiments at the LHC is to test fundamental theories of matter and their interactions. The

work in this dissertation focuses on a computational method to study one class of these theories:

supersymmetry. There are many such theories; this work focuses on one, the phenomenological

Minimal Supersymmetric Standard Model (pMSSM). I will first motivate the study of the theory

itself, followed by a motivation for the computational methods used in this work. The computational

work is a graphical processing unit (GPU) construction of Bayesian neural networks (BNNs) using

large training data sets. These topics will be discussed in detail in Chapters 2 and 3 of this

dissertation.

1.1 High Energy Physics Overview

By the mid-1960’s, experimental observations provided evidence that matter was not solely

composed of indivisible protons, neutrons, and electrons. In 1964, the theory that protons and

neutrons, as well as other particles that were being observed in experiments, were themselves

composed of indivisible particles, now known as “quarks”, was introduced by Gell-Mann and Zweig

independently [5][6]. Within a decade, evidence of the proposed particles was obtained at the SLAC

National Accelerator Laboratory [7] at Stanford University. The quark model then evolved over

the following ten years and became part of the Standard Model of particle physics.

The Standard Model is a theory of quantum fields and their interactions. Specifically, the

electromagnetic, weak and strong nuclear fields and their interactions. In quantum field theory,
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particles are excited states of fields. Therefore, the fundamental fields of the model yield particles

which can, in principle, be observed to confirm or refute the theory. It was not until the mid-1970’s

that the physics community began accepting the existence of quarks and the Standard Model. This

came about when experimental observations of a new particle, the J/Ψ, at Brookhaven National

Laboratory and at SLAC could be readily explained by adding a fourth quark to the Standard

Model [7]. Since the debut of the Standard Model, experiments have now confirmed all predicted

particles. The last of these, the Higgs boson, discovered in 2012, was finally confirmed in 2013 at

the LHC. This was a monumental discovery, not only because the existence of the Higgs boson

completes the Standard Model, but also because the Higgs field was the ingredient in the Standard

Model that explained why the fundamental particles have mass.

The goal of this dissertation is the development of a computational method not for the study of

the Standard Model, but for a theory that goes beyond it. In the next section, I briefly explain why

physicists are motivated to go beyond the Standard Model, which is, after all, the most successful

theory ever created.

1.1.1 Drawbacks of the Standard Model

The Standard Model is not a fundamental theory, as it does not unify all of the fundamental

forces. The list of fields incorporated in the Standard Model include all fields except for gravity.

Physicists have long believed that the universe operates on a single set of rules, or a fundamental

theory. The success of the Standard Model indicates that it is perhaps a subset of a larger theory,

or the low-energy limit of a more inclusive theory. Moreover, there are observations that the

theory does not predict. For example, astrophysical observations indicate that “visible” matter,

i.e. the matter described by the Standard Model, makes up only 20% of the matter in the universe.

The other 80% of matter is labelled “dark matter” by physicists and is just a term to describe

the unknown. In addition, there is an extreme imbalance between matter and anti-matter in

the universe, favoring matter, and there is no explanation for this. Lastly, one class of particles,

neutrinos, are assumed by the Standard Model to be massless. Neutrinos do, in fact, have a

small mass, as discovered by the Super-Kamiokande experiment in Japan [8]. The discovery of

neutrino mass solved the issue of solar neutrinos [9]. The solar neutrino problem was a major

discrepancy between the observed rate of neutrinos hitting the Earth and the rate predicted. In

fact, only about one-third of the expected number appeared to be passing through the Earth.
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With massive neutrinos, neutrino oscillations are possible and would account for this discrepancy.

The Standard Model, while very accurate at predicting many features of the universe, does not

describe all observations and leaves many questions unanswered. Therefore, physicists are searching

for theories that describe the features of the Standard Model while also answering many of the

questions that the Standard Model can not answer. In fact, the LHC was designed not only to

search for the Higgs boson, but also to look for evidence of any signs of new physics not predicted

by the Standard Model.

1.2 Supersymmetry

There exist many theories of physics beyond the Standard Model. This dissertation focuses on

one class of these theories: supersymmetry [1]. Supersymmetry is by far the most studied of the

theories for physics beyond the Standard Model because it arises from a basic set of principles, solv-

ing many of the questions of why certain features of the Standard Model exist. Another appealing

feature of supersymmetry came about with the discovery of the Higgs boson. While the Standard

Model predicts the existence of the Higgs boson, it does not predict the mass of the Higgs boson.

Supersymmetry, on the other hand, favors a Higgs boson with a mass on the order of the measured

mass. Another theory of physics beyond the Standard Model, string theory, actually requires the

existence of supersymmetry as well as extra dimensions [10]. In supersymmetry, each fundamental

particle in the Standard Model also has a corresponding supersymmetric particle. See Table 1.1

for a list of the Standard Model particles and their supersymmetric partners. The Standard Model

particles are divided into two classes: fermions and bosons. The two types of particles act very dif-

ferently: at most one fermion can be in a given state, while bosons can bunch together in the same

state. This fundamental property is intimately connected with a property called “spin”. Fermions

have half unit spins and bosons have integer spins. Supersymmetry links together these two very

different types of particle in that the spin of the corresponding supersymmetric particles differ by

a half unit.

There has been a considerable effort to search for evidence of supersymmetry at the LHC, so

far without success. To understand the recent findings, I will outline the specific supersymmetric

theory of interest in this work and how it is currently being studied at the LHC. This theory is the

Minimal Supersymmetric Standard Model (MSSM) and evidence is being sought in the Compact

3



Table 1.1: A list of Standard Model particles and their associated supersymmetric particles. This
table serves as a reference for particles used in this work, please see [1] for a more in-depth look at
the Standard Model and SUSY particles.

Standard Model Supersymmetry

γ, Z0, h0, H0 χ̃0
1, χ̃

0
2, χ̃

0
3, χ̃

0
4

W+, H+ χ̃+
1 , χ̃

+
2

e−, νe, µ
−, νµ, ντ ẽR̄, ẽL̄, ν̃e, µ̃L̄, ν̃µ, ν̃τ

τ− τ̃1, τ̃2
u, d, s, c ũR , ũL, d̃R, d̃L, s̃R, s̃L, c̃R, c̃L

b b̃1, b̃2
t t̃1, t̃2

Muon Solenoid (CMS) and ATLAS collaborations at CERN [11][12]. The appealing feature of this

theory is that it is a minimal extension of the Standard Model while still explaining some otherwise

mysterious features of nature. The MSSM provides solutions to many problems, including dark

matter, grand unification of three of the four fundamental forces, and the Higgs mass issue outlined

above. To produce evidence of the MSSM, observations of the supersymmetric particles are sought.

However, the masses of the supersymmetric particles (“sparticles”) are free parameters in the

theory, that is, they are unknown values. The masses of the particles dictate in which reactions

they will be produced, as well as at what energies they will be produced. Not knowing the masses

make the particles very difficult to search for. In fact, there are 120 free parameters in the MSSM,

making the search extremely difficult, if not impossible at an all-encompassing level. The absence

of sparticle discovery thus far indicates that, if they exist, they must be 100 to 1000 times heavier

than the proton, and therefore a lot of energy will be needed to produce them experimentally.

In order to search for evidence of the MSSM at the LHC, physicists have looked at highly

constrained versions of the MSSM. This means that most of the free parameters in the model are

set to an assumed value, and the rest are allowed to vary. One such model is the Constrained

Minimal Supersymmetric Standard Model (CMSSM) [13]. The CMSSM reduces the number of

parameters by making assumptions about the parameters at the Grand Unification (GUT) scale

(1016 GeV) [14]. At this scale, many masses are assumed to be the same. This reduces the 120

free parameters to just four, plus an additional sign (+/−) term. With these four parameters,

physicists have been able to look for evidence in support of the CMSSM using direct methods.
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Experiments at the LHC have almost definitively ruled out the CMSSM [11]. The question, then,

is what this says about the MSSM. It turns out that refuting the CMSSM says very little about

the validity of the MSSM, and that the assumptions made in the CMSSM eliminate very little of

the feasible parameter space. Even supposing the MSSM to be a good approximation to the new

Standard Model, the assumptions made about the particles at the GUT scale may be invalid; in

reality nothing is known about the GUT scale, including the hierarchy of particle masses.

1.2.1 The Phenomenological Minimal Supersymmetric Standard Model

While studying the entire parameter space remains computationally infeasible, a less-constrained

model whose assumptions are founded more upon known knowledge can be used. This is the phe-

nomenological Minimal Supersymmetric Standard Model (pMSSM) [15]. The pMSSM defines the

variables at the much lower SUSY scale (103 - 104 GeV) as opposed to the GUT scale. The major

benefit of this is that assumptions are more securely based on observations. The pMSSM is a

19-dimensional proxy for the MSSM. In fact, the pMSSM encapsulates most of the physics of the

MSSM. This means that a study of the pMSSM can say much more about the MSSM than any of

the more highly-constrained models. The drawback is that 19 free parameters are still very difficult

to navigate in searching for evidence of supersymmetry.

Computational Tasks. In order to study the pMSSM parameter space and compare pre-

dictions of the theory to experiment, the current approach is to sample points in the space using

Markov Chain Monte Carlo [11]. In the CMS collaboration’s most recent study of the theory, 20

million points were sampled from the parameter space, of which 7205 were randomly taken from

the 20 million points for comparing the theory to predictions [11]. The theory’s experimental pre-

dictions must be computed for each of the 7205 points in the subspace. This is a computational

burden for each desired prediction of the theory.

A better approach would be to construct a function that maps the pMSSM parameters to the

predictions. This would require a single difficult computation to construct the function, then the

function could be used to represent the space in future studies. This is the goal of this dissertation.

The function can be represented by a neural network : a function that can approximate any smooth

mapping. The parameters of the neural network are found using a Markov Chain Monte Carlo

method. This work explores a Bayesian implementation of neural networks, called Bayesian neural
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networks. The computational challenges of constructing the neural network function with a large

amount of data in a high dimensional space are discussed in Chapter 2.

1.3 Bayesian Neural Networks in High Energy Physics

Bayesian neural networks have been successfully used in the field of high energy physics. The

first use was in the discovery of particles collisions in which top quarks are produced without their

associated antiparticle, the so-called single top quark production, at Fermilab, which was announced

in 2009 [16] [17]. Bayesian neural networks, along with other machine learning methods, such as

decision trees, were instrumental in the single top quark discovery. It took a large team of physicists

thirteen years to find conclusive evidence of the single top quark production at the D0 experiment

at Fermilab. The group estimates that the discovery would have taken approximately twice as long

using solely traditional methods of searching for a conclusive signal in the data. This means they

could still be searching today!

1.3.1 Current Work

There is no doubt that Bayesian neural networks have proven to be useful in the field of high

energy physics. The issue is the massive amounts of data necessary for almost all studies, causing the

construction of these neural network functions to be incredibly time consuming. The construction

of the functions involves many iterations of computations over all the points in the space. The use

of BNNs would surely become more routine if the training process was quicker. As we shall show,

the training of BNNs in data-intensive cases such as this lends itself very well to general purpose

graphical processing unit (GPGPU) programming. This dissertation reports work to implement

and study a GPGPU version of BNN training for use in data-intensive applications.
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CHAPTER 2

BAYESIAN NEURAL NETWORKS

For the high energy physics applications of interest, there exist training data that provide the inputs

with their target values. This indicates the use of supervised learning methods in order to generate

a functional mapping from the inputs to the continuous-valued outputs (i.e. regression) and for

classification. The most straightforward models for regression and classification for supervised

learning utilize a linear combination of non-linear, fixed basis functions,

f(x,ω) = h(
M∑
j=1

ωjφj(x)), (2.1)

whereM is the total number of model parameters, w, and φ(x) are the basis functions. The quantity

h is a non-linear activation function. Basis functions can take many forms. Some examples are

polynomials, Gaussians and sigmoid functions. The maximum likelihood method can be applied to

determine the model parameters, however, these models are limited by the dimensionality of the

application’s training data [18]. In our applications of interest, we typically have a large amount

of training data and many inputs, preventing the use of this method. One solution to the “curse of

dimensionality” is to allow the basis functions to be adaptive, altering the parameters of the basis

functions during the supervised learning, or training.

The feed-forward neural network has been shown to be a successful model of supervised learning

using adaptive basis functions.[18]. The result is a non-convex function for the model parameters,

which is computationally more intensive during training, but results in quick evaluation for new data

once training is complete. The work in this dissertation utilizes neural networks for regression due

to the high dimensionality present in the high energy physics applications of interest, as discussed

in Chapter 1.

2.1 Neural Networks

Extending from the linear model, the basis functions in a neural network (NN) model take

the form of Eq. 2.1, i.e., each basis function is a non-linear function of a linear combination of the
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inputs. The coefficients in the linear combination are adaptive. To keep track of all the parameters,

I will divide them up into classes, ω = {a, b, c, d}. Consider, first, the linear combination of inputs,

y(x, d)j = cj

I∑
i=1

djixi. (2.2)

Then, an activation function is applied to yj :

z(x, c, d)j = h(yj) = h(cj

I∑
i=1

djixi). (2.3)

Lastly, the linear combination of the new variable, zj :

f(x,ω)k = a+

H∑
j=1

bjzj = a+

H∑
j=1

bjh(cj

I∑
i=1

djixi). (2.4)

Choosing tanh as the activation function gives the standard form of a neural network,

f(x,ω) = a+
H∑
j=1

bj tanh(cj +
I∑

i=1

dji xi), (2.5)

where ω are the neural network parameters {a, b, c, d}, H is the number of hidden nodes in the

network, and I is the number of inputs. This is a “feed-forward” neural network, that is, the output

is a deterministic function of the inputs. This is best understood visually, as in Figure 2.1.

Feed-forward neural networks have been shown to be “universal approximators” that can model

any smooth mapping of the form f : Rn → R
m, with m < n provided there are enough hidden

nodes in the network [19]. In this work, we focus on approximations to functions with m = 1,

based on the single hidden layer NN model. The traditional method of training neural networks is

to find the optimum set of parameters, ω∗, that map the input variables to the output. Test data

are used to evaluate the success of a mapping. Given a training set of N input vectors {xn} and

corresponding targets {tn}, the goal is to find the maximum likelihood values of the parameters

given the training data. The likelihood function is given by

L(ω|x, t) = p(x, t|ω) =
N∏
i=1

p(xi, ti|ω), (2.6)

in which one typically assumes a Gaussian model

p(xi, ti|ω) = e−
1

2σ2 (ti−f(xi,ω))
2

. (2.7)
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Figure 2.1: Graphical representation of a neural network with two inputs, depicted by the blue
circles, four hidden nodes, which are the red circles, which map to one output, given by the green
circle. Each arrow represents the connection of the output of one node to the input of another.
The connections represent the neural network weights, plus a “bias” for the output.

In practice, it is common to deal with the negative log-likelihood, or

− lnL(ω|x, t) = 1

2σ2

N∑
n=1

(f(xn, ω)− tn)
2. (2.8)

Finding the maximum likelihood values is equivalent to minimizing Eq. 2.8. There are many

different successful methods of finding an ω∗ that minimizes Eq. 2.8, the simplest being gradient

descent. More efficient algorithms include conjugate gradient and quasi-Newton methods [20].

Because this work focuses on Bayesian, not maximum likelihood approaches of determining the

network parameters, I refer you to other resources for the standard training methods [18]. One

issue of standard methods of training neural networks is that no convenient measure of modeling

accuracy is available. Another problem lies in setting up a network when the problem has unknown

complexity [21]. Both issues can be addressed by a Bayesian approach for training neural networks

[21].
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In the Bayesian approach to neural networks, the goal is to construct a posterior probability of

the neural network parameters given the training data, which assigns a probability density to each

point in the neural network parameter space. The posterior probability is given by:

p(ω|x, t) = p(x, t|ω)p(ω)
p(x, t)

. (2.9)

In addition to p(x, t|ω), which is the likelihood function given in Eq. 2.6, we also need the prior

density p(ω). Once a posterior density is obtained, an estimate of the mapping is given by

f̄(x′|x, t) =
∫

f(x′, ω)p(ω|x, t)dω. (2.10)

In practice, given the intractability of Eq. 2.10, the latter must be approximated using Monte

Carlo methods to evaluate the integral. The parameter space of the neural network function is

very complex and high dimensional. Because tanh (−x) = − tanh (x), equivalent solutions can be

generated by a change of sign on all weights exiting a hidden unit. For H hidden nodes, there exist

H sign-flipping equivalent solutions, so for each weight vector ω, there exist 2H other equivalent

weight vectors. In addition, interchanging of the weights associated with one node to another

produces an equivalent solution. In that case, there lies H! equivalent solutions. Therefore, there

are H!2H equivalent solutions, giving a picture of the complicated nature of the parameter space

[18].

2.2 Markov Chain Monte Carlo

Using Monte Carlo integration, Eq. 2.10 is approximated by an average over a sampling of

points in the parameter space according to p(ω|x, t) [22],

f̄(x′) ≈ 1

K

K∑
k=1

f(x′, ωk). (2.11)

The approximation converges to the exact integral as K → ∞. Computationally, the task is to

sample the network parameter space from p(ω|x, t) so the approximation in Eq. 2.11 holds true.

While it may be infeasible to sample K independent ωk parameters, Eq. 2.11 holds true if the ωK

are dependent, without a large covariance between parameter states, and the Markov chain has

reached the equilibrium distribution, p(ω|x, t).
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These dependent ωks are generated using a Markov Chain. Markov Chain Monte Carlo (MCMC)

was first developed by Metropolis, et al. [23] to describe the properties of interacting molecules1.

Owing to the high dimensionality of the problems, random sampling leads to too few meaningful

samples. To obtain more meaningful points, sampling from a probability distribution, in Metropolis’

case of molecules, the canonical ensemble, is used [23]. The method was extended to a general case

by Hastings about 20 years later to produce the well known Metropolis-Hastings algorithm, which

allows the use of non-symmetric proposal densities, and shown to be useful in higher-dimensional

applications [24].

The Metropolis-Hastings algorithm proceeds as follows [20]:

1. choose starting state ω0

2. generate a candidate state ω′ from a proposal distribution Q(ω′|ω(t−1))

3. calculate acceptance probability r = p(ω′|x)/Q(ω′|ω(t−1)))

p(ω(t−1)|x)/Q(ω(t−1)|ω′))

4. accept ω′ as new state with probability min(r, 1), otherwise keep ω(t−1) as new point

5. repeat steps 2-4 T times, keeping every mth ω after a burn-in period in which the chain

converges to the desired distribution.

In the case of a complex, high dimensional distribution, the standard deviation of the proposal

distribution, Q(ω′|ω(t−1)) must be small in order to produce a reasonably high acceptance ratio of

new states. Therefore, there is a high correlation between states, thus requiring a large number

of steps to move through the parameter space. This problem is exacerbated by the random walk

nature of this algorithm. Because of these drawbacks, the Metropolis-Hastings algorithm converges

much too slowly for the Bayesian treatment of neural networks.

In order to remove the necessity to choose a proposal distribution with a small standard de-

viation, the Gibbs sampling method proposes a new point one parameter at a time. The Gibbs

sampling method advances as follows:

1Metropolis demonstrated the validity of his algorithm by analyzing the ergodicity and reversibility of the algo-
rithm. In MCMC, a chain is ergodic, if it will converge to the desired distribution from any initial state. The definition
of an ergodic Markov chain is that there is a nonzero probability to transition from any state in the space to any other
state in the space. In addition, if a transition to a new state is reversible, there is always an equilibrium distribution
to which the chain will converge. Reversibility ensures the preservation of the desired equilibrium distribution of
the system upon transitions between the current state and the proposed state. Reversibility states that, with an
equilibrium distribution P and transition matrix T , a Markov chain is in detailed balance if for all pairs i and j,
PiTij = PjTji. This is known as the detailed balance condition. Ergodicity holds for all MCMC methods discussed
here.
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1. choose starting state ω0

2. for j = 0 : J elements in ω: sample ωt
j from conditional distribution

p(ωj |ωt
1, ..., ω

t
j−1, ω

t−1
j+1, ..., ω

t−1
n ) (2.12)

3. repeat step 2 T times, keeping every mth ω after a burn-in period in which the chain converges

to the desired distribution.

Unfortunately, for a BNN, the conditional distribution given in step 2 can be very messy and

difficult to construct. The computationally demanding construction of the conditional distribution

combined with the penalty of random walks negates Gibbs sampling as a feasible method for BNNs

[20]. A more advanced MCMC method is necessary for Bayesian Neural Networks, specifically one

that avoids random walks.

2.2.1 Hamiltonian Monte Carlo

The Hamiltonian Monte Carlo (HMC) method was first proposed by Duane, et al. as the

Hybrid Monte Carlo method, created for their application in lattice field theory calculations [25],

and extended to the training of neural networks by Radford Neal [26]. The HMC method avoids

random walks by navigating a deterministic path through the parameter space given by Hamilto-

nian dynamics in order to propose a new point, ω′, in the space. The most important result of

Hamiltonian dynamics for use in MCMC is that ergodicity and reversibility hold true exactly, even

when Hamiltonian dynamics is approximated, as will be done in our algorithm.

In this formalization of the HMC method, the space for which we are defining the equations

of motion is the parameter space of the neural network. Therefore, the “position” is a point in

the n-dimensional parameter space. The neural network formalization given in Eq 2.5 gives a

dimensionality of n = 1 +H(2 + I), where H is the number of hidden nodes and I is the number

of inputs in the NN. The state of a system in Hamiltonian dynamics is given by the position, ω,

and the momentum, p. The quantity that describes the state is called the Hamiltonian and given

by a function, H(ω, p). The Hamiltonian represents the total energy of the system. Hamilton’s

equations are differential equations that determine how ω and p change over time

dωi

dt
=

∂H
∂pi

(2.13)

dpi
dt

= −∂H
∂ωi

, (2.14)
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where, for HMC, we will take the classical interpretation of H(ω, p).

H(ω, p) = U(ω) +K(p), (2.15)

where U(ω) is interpreted as the potential energy of the system and K(p) is the kinetic energy of

the system. The kinetic energy is given by the classical definition,

K(p) =
1

2
pTM−1p. (2.16)

The momentum vector p is an n-dimensional vector independent of ω, and M is a diagonal “mass”

matrix, where we will use scalar values for each spatial dimension. This simplifies the kinetic energy

expression in Eq. 2.16 to

K(p) =
n∑

i=1

p2i
2mi

. (2.17)

The simplest case for the mass matrix is the identity matrix, M = I. In the metaphor of a

mechanical system, the energy of the system is assumed to be distributed according to a canonical

distribution, where the probability density is given by:

P (ω, p) ∝ e−H(ω,p), (2.18)

where the units are chosen to make the Hamiltonian dimensionless. This is known as the joint

canonical distribution. The joint canonical distribution must remain invariant throughout the

traversal through the parameter space. Note that this distribution factorizes as follows

P (ω, p) ∝ e−U(ω)e−K(p). (2.19)

In the case of NNs, the goal is to obtain the posterior distribution of ω. Equation 2.19 shows

that both the momentum and the posterior distribution will have a canonical distribution. For the

posterior distribution,

p(ω|x, t) = e−U(ω). (2.20)

Comparing Eq. 2.20 with Eq. 2.19 leads to the potential function U(ω) given by

U(ω) = − log (L(ω|x, t)p(ω)). (2.21)

In order to use the HMC method, it is necessary to construct a finite difference approximation

to Hamilton’s equations, Eq. 2.13. In discretizing Eq. 2.13 for use in a MCMC scheme, a method
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must be chosen that preserves the volume of the (ω, p) space. This is equivalent to the energy of

the system, given by the Hamiltonian, H, being conserved. The simplest discretization is Euler’s

method,

pi(t+ ǫ) = pi(t) + ǫdpidt , = pi(t)− ǫ
∂U

∂ωi
ω(t), (2.22)

ωi(t+ ǫ) = ωi(t) + ǫdωi

dt , = ωi(t) + ǫ
pi(t)

mi
. (2.23)

This method is not time reversible and diverges away from the correct solution with increasing time

[20]. Therefore, it will not work for MCMC. A simple modification, however, exactly preserves the

phase space volume. In the modified Euler’s method, the updated momentum term is immediately

used to calculate the new position term:

pi(t+ ǫ) = pi(t)− ǫ
∂U

∂ωi
ω(t), (2.24)

ωi(t+ ǫ) = ωi(t) + ǫ
pi(t+ ǫ)

mi
. (2.25)

The modified Euler method still lacks the symmetry required for a reversible algorithm, however,

this method operates much better than the Euler method because the updates are shear transfor-

mations in the (ω, p) parameter space. A shear transformation is where one set of points remains

fixed while all other points shift a specified amount parallel to the unmoving set. In this case, the

point (ω(t), p(t)) → (ω(t), p(t + ǫ)), then (ω(t), p(t + ǫ)) → (ω(t + ǫ), p(t + ǫ)). A shear transfor-

mation preserves volume, implying, in the case of the modified Euler’s method, that there will be

no divergence of the algorithm. A divergence would indicate a change in the volume of the (ω, p)

space.

Another simple modification introduces reversibility to the modified Euler’s method through a

symmetric update. The method is called the Leapfrog method [18]. The approach is to take a half

step in momentum, followed by a full step in position, followed again by a half step in momentum.

The symmetry is evident, leading to a reversible scheme:

pi(t+
ǫ

2
) = pi(t)−

ǫ

2

∂U

∂ωi
ω(t), (2.26)

ωi(t+ ǫ) = ωi(t) + ǫ
pi(t+

ǫ
2)

mi
, (2.27)

pi(t+ ǫ) = pi(t+
ǫ

2
)− ǫ

2

∂U

∂ωi
ω(t+ ǫ). (2.28)
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In addition, it is evident that each update is also a shear transformation, so volume is preserved

here as well. Maintaining the reversibility and volume preservation, any number of full steps can

be taken in an iteration of this method, while updating both the position and momentum on all

intermediate steps. The leapfrog method is the discretization method used in this work due to the

reversibility and volume preservation of the scheme. The reversibility of the method guarantees

conservation of energy, or the Hamiltonian. This also guarantees zero error in the calculation of

the leapfrog step. If a method is reversible, meaning taking a step backwards will place ω exactly

in its previous position, the error must be zero. Though the leapfrog method introduces no error,

approximations in the scheme will introduce error. With the discretization of Hamilton’s equations,

we can now describe the HMC algorithm.

The following outlines one iteration of the HMC algorithm.

1. randomly generate new momentum variables from their canonical distribution, which is a

Gaussian distribution.

2. do a half step in momentum pi(t+
ǫ
2) = pi(t)− ǫ

2
∂U
∂ωi

ω(t).

3. do a full step in position, then a full step in momentum (except for the last step), L times

ωi(t+ ǫ) = ωi(t) + ǫ
pi(t+

ǫ
2)

mi
,

pi(t+ ǫ) = pi(t+ ǫ)− ǫ
∂U

∂ωi
ω(t+ ǫ).

4. do a half step in momentum pi(t+ ǫ) = pi(t+
ǫ
2)− ǫ

2
∂U
∂ωi

ω(t+ ǫ).

5. negate the momentum, pi = −pi in order to preserve symmetry.

6. accept the new point (ω∗, p∗) with a probability min[1, e−H(ω∗,p∗)+H(ω,p)].

Perhaps the easiest way to visualize the algorithm is through pseudo code. See Listing 2.1 for the

pseudo code and Table 2.1 for a description of the variables.

Listing 2.1: Pseudo code of the Hamiltonian Monte Carlo method. Looping over vector elements
is implied in mathematical operations. The HMC iteration() function is one HMC iteration. Its
argument is the current point in the parameter space and it returns the new point in the parameter
space, which can be the same as the input point. See Table 2.1 for a description of the variables.

HMC_iteration(w0) {

w = w0;

p = norm_dist ();
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p = p - 0.5* eps*delU(w); // half step in momentum

for(int i=0; i<L; i++){ // do L steps

w = w + eps * p; //step in q

//step in p, except at last step

if(i != L-1)

p = p - eps * delU(w);

}

p = p - 0.5* eps*delU(w); // half step in momentum

// calculate Hamiltonian for old and new points

H0 = U(w0) + K(p0);

H = U(w) + K(w);

// decide which point to keep

if(rand < exp(H - H0)){

return w; // accept

} else {

return w0; // reject

}

}

Table 2.1: Definition of variables used in the HMC algorithm pseudocode in Listing 2.1

w “position” in the parameter space, given by ω.
p momentum vector, one element for each dimension of ω.
eps step size. This can be a scalar or a vector.
U(w) the potential energy function, U(ω). See Eq. 2.8 for BNN U(ω).

delU(w) gradient of the potential energy function.
H Hamiltonian given by H = U(ω) +K(p). See Eq. 2.13.

The HMC model parameters are the number of leapfrog steps, L, and the step size, ǫ. Tuning

these parameters is important in ensuring that the algorithmtraverses the space efficiently. The

“acceptance rate”, the percentage of new accepted points, is the typical indicator of optimal tuning.

For the HMC algorithm, an acceptance rate of 65% for L > 1 has been shown to be optimal [26].

The tuning of L and ǫ is typically the most challenging portion of the algorithm. One approach is

to dynamically change the variables each iteration depending on the current acceptance rate.

2.3 Bayesian Neural Network Algorithm

The HMC pseudo code in Listing 2.1 outlines the algorithm to construct a BNN where ω are the

neural network parameters and the potential energy, U(ω), is defined as the negative log likelihood

16



of the neural network model, − log (L(ω|x, t)p(ω)), given in Eq. 2.8.

To understand the computational complexity of the BNN training algorithm, the evaluation of

U(ω) must be examined. The negative log likelihood function depends on the evaluation of the

network for the entire set of training data, as seen in Listing 2.2. In the case that the number

of training events, N is large, the evaluation of U(ω) becomes the most computationally intensive

portion of the algorithm. The computation time of U(ω) is so significant that the computational

complexity of the algorithm can be analyzed in terms of the number of U(ω) evaluations.

Listing 2.2: Evaluation of U(ω) for a BNN, where U(ω) = − log (L(ω|x, t)p(ω)) =
1

2σ2

∑N
n=1(f(xn, w) − tn)

2. In the case where N is large, this computation becomes the most
time consuming portion of the algorithm.

inline HMC_type BNN_regression ::U(std::vector <HMC_type > &w) {

HMC_type d = 0;

/* Loop over all N training events */

for(int th=0;th <N;th++){

HMC_type f = q[0];

for(int j=0;j<H;j++){

HMC_type inSum = 0.0;

for(int i=0;i<I;i++){

inSum += w[2*H+1+I*j+i]*x[th*I+i];

}

f+=w[j+1]* tanh(w[H+1+j]+inSum );

}

d += (t[th]-f)*(t[th]-f);

}

return sum /(2* sig*sig) + LnPrior(w);

}

2.4 Computational Advantages and Limitations

While it may seem clear that the HMC method will converge in much fewer steps than the more

basic random walk MCMC methods, it may not be clear how this translates to computation time.

In fact, the HMC will converge must faster than the random walk methods. Since the Gibbs method

is not feasible in the BNN calculation, I will compare computation time between the Metropolis

and HMC methods. The Gibbs method, however, scales similarly as the Metropolis algorithm.

The increased computation time for the HMC method is evident due to the necessary calculation

of the gradient of the “potential energy” in the momentum and position updates. If we use a finite

difference approximation for the gradient, that is an additional O(np) evaluations of U(q), where
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(a) 10 steps of the Metropolis-Hastings Algo-
rithm. The proposal distribution is a two dimen-
sional Gaussian, Q(ω′|ωt−1) = e−

1

2
(q[0]2+q[1]2).

(b) 10 steps of the HMC Algorithm with L = 40,
ǫ = 0.05, where L is the number of leapfrog steps
and ǫ is the step size.

Figure 2.2: A comparison of the traversal the parameter space for both the Metropolis-Hastings
algorithm and the HMC algorithm. The target distribution in both cases is a two-dimensional
Gaussian, e−

1
2
(x2+y2). The algorithms both start at (x, y) = (0.5, 0.5). For the HMC algorithm,

there were L = 40 leapfrog steps. To compensate for this in terms of computation time, L = 40
Metropolis iterations were completed in between each point on the plot. It is evident that, even
after 40 iterations, the Metropolis-Hastings points are more correlated than the HMC points.

np is the number of neural network parameters. Let us look at the distance traversed from the

starting point in terms of the number of U(q) calculations of each algorithm. The Metropolis-

Hastings algorithm computes an O(np) U(q) calculations per iteration. Owing to the random-walk

nature of the Metropolis-Hastings algorithm, the distance traveled in L iterations is O(
√
L) [27],

where L it the number of Metropolis-Hastings iterations. In the HMC algorithm, the path is

deterministic and the distance traveled in L leapfrog iterations is O(L). The difference between a

random-walk traversal of the parameter space and a deterministic traversal is shown in Fig. 2.2.

The deterministic nature of an HMC iteration allows the algorithm to traverse the space more

efficiently.
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CHAPTER 3

GRAPHICS PROCESSING UNITS

The video game industry has pushed the limits of graphics processing, developing processors that

have an enormous amount of parallel computational power. Originally developed for the rapid

creation and manipulation of images displayed on a screen, Graphics Processing Units (GPUs)

are now used as highly parallel processors for general computation. General purpose computing

on the GPU is generally referred to as GPGPU. GPGPU is a constantly evolving field due to its

relative newness and therefore there is constant improvement of languages and processors. GPGPU

computing gained a significant following with the release of NVIDIA’s GPU parallel computing

model and platform, named CUDA (Compute Unified Device Architecture) in 1996 [28]. The

popularity of GPGPU increased with the development of more user-friendly GPU code with more

built-in features. In addition, GPUs themselves are becoming more accommodating for GPGPU

computing. In fact, there now exist GPUs that have no associated screen output, like a CPU super

computer. We can expect coding for the GPU to become much more user-friendly as the use of

GPUs in general computing becomes even more mainstream. In fact, a “production release” of

a new CUDA programming model, CUDA 6, was released on March 5, 2014, during the writing

of this dissertation. CUDA 6 boasts easier memory management, more accelerated libraries, and

multi-GPU scaling.

3.1 About GPUs

A GPU is a specialized processor developed for extremely efficient calculations of graphics.

Graphics are represented on a computer by a matrix of values. Therefore, graphics computations

are large vector and matrix transformations.

GPUs have been developed to perform matrix calculations rapidly. The GPU is not designed to

replace the Central Processing Unit (CPU), which is the main processor of a computer. The design-

ers of GPUs take advantage of the fact that a GPU does not need to be a general purpose processor;

it can be highly specialized. In vector and matrix computations, each element’s computations are
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computed independently from one another. Therefore, fast vector and matrix transformations are

achieved through “highly parallel” computation. Parallelism refers to the number of computations

that can be executed simultaneously. The GPU permits massively parallel computation of similar

calculations, and will not perform well for single threaded or few-threaded applications, as described

in Section 3.1.2.

3.1.1 GPU Architecture

The GPU devotes more of its resources to computation because the capabilities of the processor

are much more limited than the CPU. GPU calculations comprise significant arithmetic compu-

tation on a large amount of data. Conversely, the CPU must accommodate many more types of

computations and instructions. On the GPU chip itself, compute-intensive, highly parallel compu-

tations are accomplished by devoting more transistors to data processing and fewer to data flow

and cacheing [4], as illustrated in Fig. 3.1. Conversely, the CPU must have a significant number

Figure 3.1: An illustration depicting the differences between CPU and GPU architectures. The
GPU architecture devotes more transistors to data processing. Image courtesy of NVIDIA [4]. The
size of each processor component indicates the number of processors dedicated to that component.
The control of the CPU is much larger because the CPU must handle many more types of instruc-
tions. The GPU has a control per “multiprocessor”, and each multiprocessor is devoted primarily
to parallel arithmetic computations. Also, because of the data-parallel nature of graphics process-
ing, the GPU cache is per multiprocessor, where the CPU shares one large cache. The Dynamic
Random Access Memory (DRAM) is treated similarly in both the GPU and CPU. In fact, in some
integrated chips, they both share DRAM.

of transistors dedicated to the Control Unit (CU) for processing many types of instructions. In
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order to understand the GPU in more detail, a few terms relating to computer architecture must

be defined.

core a physical computational unit, multiple of which can make up a single processor.

thread a programmed set of instructions that can be executed independently of other threads.

mutithreading the ability for multiple “threads” to execute on a single core at the same time,

utilizing unused computation time, such as when one thread is idle.

latency the time required to perform a single action, such as execute a thread.

throughput the number of actions performed at a time, for example, how many threads can be

executed simultaneously.

clock rate the frequency at which a processor runs. An instruction is measured in clock cycles,

therefore an instruction on a processor with a higher clock rate will be executed faster than

one with a lower clock rate.

In CPUs, latency is extremely important. Generally there are many different tasks that need to be

executed as quickly as possible. To accomplish this, CPUs are designed to operate at a fast clock

speed. However, processors with a higher clock speed run hotter than those with a lower clock

speed. Until the early 2000s, CPUs were made faster by adding more transistors in accordance

with Moore’s law [29]. Then, it seemed that this procedure would no longer work. The CPUs were

becoming far too hot to run efficiently. The solution was to introduce processors with more than one

core. This is called a multicore processor. The multicore processor succeeded in using less energy

because the cores shared resources and the cores are not always all running simultaneously [30].

In graphics computations, throughput is much more important than latency. If the computations

can be done with a high level of parallelism, the latency of a single thread is much less important.

Therefore, GPUs are many-core processors, with many more cores than the typical CPU. However,

the penalty for this is a significantly slower clock rate. Multithreading is a feature utilized in both

the CPU and GPU, although implemented in different ways.

The GPU consists of multiple “streaming multiprocessors”. Each multiprocessor contains mul-

tiple “stream processors”, which are Arithmetic Logic Units (ALUs) [31]. A “stream processor” is a

processor that can execute limited functionality in parallel, for example, multiple identical kernels.

In NVIDIA GPUs, each stream processor executes a “warp”. A warp executes 32 identical threads
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simultaneously[4]. Each line of the kernel is executed on all threads at the same time. Therefore,

logic constructs in which all threads may not have the same operations will become serialized for

each case. For this reason, logic algorithms should be avoided or rewritten. This computational ap-

proach is called Single Thread Multiple Data (STMD) [4]. Each multiprocessor shares fewer special

function units, which calculate mathematical functions that are not provided by the ALU. In the

GPU illustration in Figure 3.1, each row is a single multiprocessor. Therefore, the figure represents

a GPU with 8 multiprocessors, each with 16 stream processors. A core on a GPU corresponds to

one stream processor. In the case of Figure 3.1, the GPU contains 128 CUDA cores. This allows

for significant parallel arithmetic computations on the GPU. It should now be evident that a core

on the CPU is not equivalent to a core on the GPU. To summarize the main differences between

the CPU and GPU architectures, see Table 3.1.

Table 3.1: Highlights of CPU architecture versus GPU architecture.

CPU GPU

general purpose specialized
multicore many core
low latency high throughput

3.1.2 GPU Programming Model

The GPU architecture described in section 3.1.1 is best suited to applications with certain

characteristics. There are:

1. a large computational demand,

2. a large amount of intrinsic parallelism,

3. a need for throughput over latency.

These three characteristics are realized in data-parallel calculations that require significant com-

putation per data element. A data-parallel computation is one in which the data are distributed

amongst different compute nodes and the same computations are performed on the data inde-

pendently. Therefore, the computations must depend on one portion of the data only, and the
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computations must be capable of being performed completely independently from one another.

This is the case for our BNN application, which is discussed in detail in Section 3.3.

The GPU programming model is a Single Program Multiple Data (SPMD) model [32]. The

program is the function that is operated on the data independently. Therefore, the program is

more like a subprogram and is generally referred to as a kernel. The kernel is executed N times by

N different threads in parallel [4]. In order to distribute the work on the GPU cores, the threads

are grouped into blocks. An entire block is transferred to a core and the threads in that block all

share the same local memory. The blocks of threads are known as “thread blocks”. The number

of threads per block is usually set to 256, but a block can contain up to 1024 threads. The thread

blocks must be able to be executed independently. This allows the thread blocks to be grouped

together and distributed to all of the available multiprocessors. A thread block can not span more

than one streaming multiprocessor, but the threads within a block are then distributed amongst the

“streams”, or cores, in the streaming multiprocessor. There can be one or more threads per stream.

The blocks themselves are grouped into grids. A grid is transferred to a GPU. If the application

uses multiple GPUs (such as in a high performance GPU cluster), the grids get distributed amongst

the GPUs. For this application, we are assuming the use of a single GPU.

Thread blocks allow the code to automatically scale with the number of cores. Moreover, the

number of cores on the GPU does not have to be known by the programmer and the same code will

run on any CUDA-capable GPU, regardless of the number of cores. Therefore, the programming

model is device independent. To understand the distribution of threads on the GPU, as well as the

memory that is accessible by each thread, see Fig. 3.2. In fact, the memory hierarchy of a GPU

is not straightforward. The “per-thread local memory” referenced in Fig. 3.2 physically resides in

the device memory, which is the same location as the global memory, but is accessible only by a

single thread. In addition, there are a certain number of registers per thread. These are generally

used for any memory allocated in the device code. The shared memory is physically located in each

streaming multiprocessor and the memory is accessible to all threads in the same thread block.

The global memory is accessible by all threads, and therefore all blocks, in a grid. If using more

than one GPU, grids are distributed amongst GPUs, and a grid can not span more than one GPU.

There is no synchronization or memory sharing between GPUs. Accessing device memory from

the device code is very fast. However, the time required to transfer data between thee host and
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the device is relatively long. Therefore, the frequency of host and device data transfer should be

minimized as much as possible for the application.

Figure 3.2: Schematic of the memory hierarchy of threads on a GPU. Image courtesy of NVIDIA
[4]. There are three different types of read-write memory on a GPU, per-thread memory, per-block
shared memory, and global memory.

Each thread operates the same kernel on a specific set of data. The blocks and threads are

indexed with identifiers from 0 to the number of threads and blocks. Referencing the thread and

block identifier is what allows each thread to operate on different data.
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3.2 CUDA

While there are other languages, both open source and proprietary, that interface with the

GPU, this work uses NVIDIA’s CUDA framework. CUDA was chosen because, at the time of this

dissertation work, it was the best documented, supported, and tested interface available. Therefore,

I will discuss details of programming on the GPU in terms of the CUDA framework. The drawback

of the CUDA framework is that it requires an NVIDIA graphics card. The general concepts are

similar for other popular interfaces, such as OpenCL (an acronym for Open Computing Language),

but not equivalent, and I want to be clear and concrete in my explanation in order to avoid

vagueness. OpenCL is a framework for parallel processing on any external device, not only the

GPU. The programming model for OpenCL is more abstract than CUDA, because CUDA takes

advantage of the fact that it is always applied to GPU hardware.

With CUDA, the GPU is considered an external device. The CPU is called the host. Therefore,

the code is divided into device code, for the GPU, and host code, for the CPU. This work uses

the CUDA C extension in the CUDA 5 programming model. CUDA supports the full C/C++

languages on the host with additions that allow for interfacing with the GPU. The GPU supports

C with some restrictions. The files utilizing the CUDA C extension libraries must be compiled

with the NVIDIA CUDA compiler, nvcc and have the extension .cu. Object files compiled with

nvcc are compatible with C++ and C compilers. In the CUDA 5 programming model, GPU

memory must be explicitly allocated and freed on the CPU and GPU, and then the contents of this

memory must be transferred between the host and the device. As noted above, while the memory

bandwidth within the GPU is high, the memory bandwidth between the host memory and the

device memory is low. Therefore, reducing the number of times a memory transfer occurs leads to

increased speedup.

The setup of CUDA source code containing both host code and device code is accomplished by

the addition of CUDA directives for device code indicating if the function is a kernel that may be

launched from the host code, or a device function known only to the GPU.

Listing 3.1: The syntax for indicating device code. The global kernel is launched from the host
while the device function can only be called from the device.

/* a GPU kernel that can be launched by CPU */

__global__ void diff(float* q, int H, int I) {

/** Device kernel code **/
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float result = gpu_func(q);

};

/* a GPU function that can be called only from the GPU */

__device__ float gpu_func(float* q) {

/** Device function**/

};

In order to launch the kernel execution on the GPU from the CPU, first the number of blocks

per grid and the number of threads per block must be defined. Generally 256 threads per block

are used. This value allows each thread to have access to a sufficient number of registers and most

GPUs do not have a maximum allowed number of threads per block less than 256. This value should

always be a factor of 32, because instructions are issued simultaneously in groups of 32 threads.

These are the warps discussed in Section 3.1.1. The number of blocks is then determined by the

total number of threads necessary for the computation. The number of blocks does not have to

be associated with the number of cores available. The GPU dynamically handles the scheduling of

allocation and execution of blocks on available cores. In the example below, the name of the kernel

function on the GPU is diff. The brackets contain the number of blocks and threads per block

to be generated. The parentheses following the brackets contain the kernel function arguments, in

terms of the variables existing in device, that is GPU, memory. The pointers for any device memory

that will be used in the kernel must be an argument to the function. The function is launched from

the host code as follows.

Listing 3.2: The syntax for launching device (GPU) kernels from the host (CPU).

/* execute __global__ void diff(float* dev , int H, int I) */

diff <<<blocksPerGrid ,threadsPerBlock >>>(dev_q , H, I);

Since the kernel launch from the CPU is actually launching N kernels on the GPU, where N is

the number of threads, all global GPU kernels must have a void return. All memory transfers

between the CPU and GPU must be done using the cudaMemcpy function shown in Listing 3.3.

In the thread example 3.4, each thread computes an element of a desired resultant array, d[N].

The resultant array must then be transferred back to the host after the calculations are completed.

Proper handling of CPU and GPU memory is extremely important. See below for an example of

how memory is allocated and transferred from the CPU to the GPU in CUDA. The following is

host code.
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Listing 3.3: Memory allocation and transfer from host to device.

/** allocate NN parameters q **/

dev_q = new float[np]; // device vector q

cudaMalloc (&dev_q ,size_np ); // allocate on GPU

float* qq = &in_q [0]; // pointer to q vector on CPU

/* copy from CPU to GPU */

cudaMemcpy(dev_q , qq, size_np , cudaMemcpyHostToDevice );

/* Call GPU kernel or do other CPU work

.

.

*/

cudaFree(dev_q ); // Free GPU memory

In order to have each kernel operate on different data, each block and thread within each block is

indexed. These indices allow the different threads to access different data. The blocks and grids

can be indexed in one, two or three dimensions. The following is a one dimensional block and grid

example where a row of I data elements are summed on the device.

Listing 3.4: Example of using thread indices to evaluate the kernel on a portion of the data.
threadIdx, blockIdx, and blockDim are CUDA language extensions that retrieve information
about the thread currently being executed. The result of the calculation for each thread is stored
in an element of the array d[] that is then brought back to the CPU in the host code after all
threads finish executing. See Listing 3.3 for memory transfer syntax.

int thread = threadIdx.x + blockIdx.x*blockDim.x;

float d[thread] = 0;

for(int i = 0; i<I; i++) {

d[thread] += x[thread*I+i];

}

The device and host code can be placed in the same file. See Listing 3.5 for an example of how the

components are put together in a fully functional CUDA program. See Appendix A, for a simplified

rendering of the CUDA code necessary for constructing a BNN. For more a in-depth look at CUDA

programming for the GPU, refer to the CUDA Programming Guide for the most current version

of CUDA [4].

Listing 3.5: A fully working CUDA source code example. This code is compiled by nvcc -o

vec difference vec diff.cu where vec diff.cu is the name of this CUDA file.

#include <iostream >

using namespace std;

/* device code */

__global__ void difference(float* A, float* B, float* C, int N) {

int thread = blockDim.x*blockIdx.x + threadIdx.x;
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if(thread < N){

C[thread] = A[thread] - B[thread ];

}

};

/* host code */

int main() {

int N = 256;

size_t size = N*sizeof(float);

float* A = (float *) malloc(size);

float* B = (float *) malloc(size);

float* C = (float *) malloc(size);

for(int i=0;i<N;i++){

A[i] = i;

B[i] = i;

}

// Allocate vectors in device memory

float* device_A;

cudaMalloc (&device_A , size);

float* device_B;

cudaMalloc (&device_B , size);

float* device_C;

cudaMalloc (&device_C , size);

// Copy vectors from host memory to device memory

cudaMemcpy(device_A , A, size , cudaMemcpyHostToDevice );

cudaMemcpy(device_B , B, size , cudaMemcpyHostToDevice );

int threadsPerBlock = 256;

int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;

difference <<<blocksPerGrid , threadsPerBlock >>>(device_A , device_B , device_C ,

cudaMemcpy(C, device_C , size , cudaMemcpyDeviceToHost );

for(int i=0;i<N;i++){

cout << h_C[i] << endl;

}

// Free device memory

cudaFree(device_A );

cudaFree(device_B );

cudaFree(device_C );

// Free host memory

free(A);

free(B);

free(C);

return 0;

}
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3.2.1 CUDA Thrust Library

This work also makes use of the CUDA-based template library, Thrust [33]. The Thrust library

includes a collection of basic data-parallel functions and algorithms. For those whose goal is the use

of one of the functions or algorithms to speed up data-parallel code, Thrust can be used without

much knowledge of the GPU. The task is to

• include the necessary thrust libraries

• create any necessary host and device vectors using Thrust syntax

• call Thrust library function

• compile using nvcc.

See Listing 3.6 for a basic example. The Thrust library allows the simple utilization of the GPU’s

resources without dealing with the specifics of memory allocation and algorithms. The drawback

is that the applications restricted to the built in parallel functions available in Thrust.

Listing 3.6: A simple Thrust implementation. This program uses the parallel reduce function
available in the Thrust library. A reduce function is a sum of all elements in a vector.

#include <thrust/device_vector.h>

#include <thrust/sequence.h>

#include <thrust/reduce.h>

int main() {

int N = 1000;

thrust :: device_vector <float > d_vec(N,1);

/* Initialize to 1, 2, 3, etc*/

thrust :: sequence(d_dev.begin(),d_dev.end ());

/* sum all elements of the vector */

float sum = thrust :: reduce(d_dev.begin(),d_dev.end ());

return 0;

}

The thrust libraries can also be used in conjunction with programmer-supplied CUDA code.

Thrust has a pointer to device memory that has been allocated using CUDA C. In this work, a

parallel reduction is applied to the vector calculated in the diff() device function outlined in

Listings 3.8. See Listing 3.7 to see how Thrust works with memory already allocated on the GPU.

Listing 3.7: An outline of how the Thrust device pointer is used to apply a thrust library function
to an array already allocated on the device in CUDA.
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dev_d = new float[N]; // device vector

cudaMalloc (&dev_d ,size_n ); // allocate dev_d memory on GPU

thrust :: device_ptr d_dev_ptr(dev_d);

diff <<<blocksPerGrid ,threadsPerBlock >>>(dev_q ,dev_d); //call GPU function

/* Call Thrust function to sum results from diff() */

HMC_type sum = thrust :: reduce(d_dev_ptr ,d_dev_ptr+N);

3.3 BNN Application in Data-Intensive Cases

The application of this dissertation is the BNN algorithm described in section 2.3, applied to the

pMSSM, which is described in Section 1.2.1. The computational hurdle in using the BNN algorithm

to map pMSSM parameters to pMSSM predictions is that the construction of the BNN using HMC

is extremely time consuming. For example, with I = 19 parameters, and H = 10 hidden nodes, the

number of neural network parameters is 1+H(I +2), which yields 211 parameters for the pMSSM

map.

Figures 3.3 to 3.5 show a few results using BNNs constructed with the flexible Bayesian modeling

packag (fbm) of Neal [26]. This highly optimized code, which was executed on 3.6 GHz CPUs, took

25 s / saved point, that is, 1.25 s per iteration, where each iteration comprises L = 100 deterministic

steps of the HMC algorithm. As is clear from the figures, the predictions for the supersymmetric

top masses are very well modeled using 10,000 pMSSM points, but the modeling of the prediction

for the neutral Higgs boson mass, while reasonable, would benefit from the use of a larger training

sample. Our goal is to achieve a substantial reduction in these training times by using GPUs.

The evaluation of the neural network function for each training event is independent of all other

training events. Therefore, these calculations can be done in parallel. A parallel algorithm for the

sum of the square of differences between the target and the computed neural network value in

Eq. 2.8 can also be implemented. This is known as a parallel reduction algorithm. The high level

of parallelism, due to the independence of the training events, paired with a significant amount of

computation per node in the evaluation of a NN with many parameters, fulfills the requirements

for a good GPU application outlined in section 3.1.2.

The device kernel is defined as follows. Each kernel evaluates one term of the log likelihood

terms in Eq. 2.8.
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Figure 3.3: (left) Distribution of the predicted mass, mh, of the light neutral Higgs boson in the
pMSSM. (right) The value of a BNN model of the function mh = f(θ) compared with the actual
prediction of mh, where θ denotes the 19 pMSSM parameters. The BNN function was modeled with
a (I,H, 1) = (19, 10, 1) neural network, 10,000 iterations — each comprising L = 100 deterministic
steps, and 10,000 pMSSM training points. Of the 10,000 iterations and therefore 10,000 NN points
sampled, every 20 were were saved yielding 500 saved points, the last 250 of which were used to
approximate the integration over the neural network parameter space.

Listing 3.8: The variable q contains the neural network parameters, x is the array of training data,
w contains the event weights, t are the target values, d contains the resultant array of differences,
and H and I are the number of hidden nodes and inputs, respectively.

__global__ void diff(HMC_type* q, HMC_type* x, HMC_type* w,

HMC_type* t, HMC_type* d, int H, int I) {

int th = threadIdx.x + blockIdx.x*blockDim.x;

HMC_type f = q[0];

for(int j=0;j<H;j++){

HMC_type inSum = 0.0;

for(int i=0;i<I;i++){

inSum += q[2*H+1+I*j+i]*x[th*I+i];

}

f+=q[j+1]* tanh(q[H+1+j]+inSum );

}

d[th] = w[th]*(t[th]-f)*(t[th]-f);

};

Therefore, the BNN algorithm is parallelized through the evaluations of U(ω). To be clear, in the

Listing examples, ω is given by q. This is the most computationally demanding portion of the
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Figure 3.4: (left) Distribution of the predicted mass, mt̃1
, of the supersymmetric top (“stop”) t̃1

in the pMSSM. (right) The value of a BNN model of the function mt̃1
= f(θ) compared with the

actual prediction. See Fig. 3.3 for details of the BNN.
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Figure 3.5: (left) Distribution of the predicted mass, mt̃2
, of the supersymmetric top t̃2 in the

pMSSM. (right) The value of a BNN model of the function mt̃2
= f(θ) compared with the actual

prediction. See Fig. 3.3 for details of the BNN.
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algorithm. The training data, x, and the targets, t, are loaded onto the device in the constructor of

the BNN class. The neural network parameters, q, must be updated every BNN iteration because

their values are dependent on the previous iteration.
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CHAPTER 4

RESULTS

The goal of this dissertation is to decrease the runtime of the BNN algorithm in the case of large

training sets. In order to gain the runtime improvement, a GPU implementation was introduced, as

described in Section 3.3. Because of the difference in architecture between the CPU and GPU, an

exact comparison is not possible. To determine the method to measure the speedup, the application

and target audience for this code was considered. Speedup in this work is defined as S = tCPU

tGPU
,

where tCPU is the time to run a completely linear implementation on the CPU and the tGPU is the

GPU implementation in Appendix A.

The use of BNNs in the field of high energy physics has been proven useful but has been limited

due to the computation time necessary for construction of the BNN, as discussed in Section 1.3.

Because this application is well suited for the GPU, as described in Section 3.1.2, it was appeal-

ing that the physicists interested in using BNNs to study the pMSSM could use their personal

computers. The many-core nature of the GPU allows for high performance computing cheaply for

suitable applications. If the algorithm is fast enough to run on a personal computer, then there

appears to be enough interest that the use of BNNs in high energy physics applications would

become more routine. There are many more applications outside of the pMSSM that have similar

computational challenges. The event-based data in high energy physics indicates that many more

of these applications would benefit from a GPU BNN implementation.

Because the objective of this study is to create an application for use on a personal computer,

I used the resources available on my personal laptop for all of the speedup testing.

4.1 Systematic Study of BNN in Data-Intensive Cases

The following results were all obtained on my MacBook. GPUs are generally categorized by the

graphics card on which they reside. The MacBook contains a GeForce 320M graphics card. This

is a low-end graphics card. The ability to achieve the speedup reported here on a low-end GPU

model is a very good indicator that this application is well suited for anyone with a programmable
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GPU. See Table 4.1 for a comparison between the graphics card used for these studies compared

to the graphics card currently shipped with a MacBook Pro today. The comparison emphasizes

the rapidly increasing development of GPU technology, and highlights the fact that the speedups

reported in this dissertation could be considered at the lower end of the possible speedup that

could be achieved in this application. The CPU used in these results is the Intel Core 2 Duo.

Table 4.1: Comparison of the GPU used in this study (purchased in 2010) and a current laptop
GPU model (2014). The values in all fields indicate an incredible improvement in GPU performance
could be achieved with newer GPU models. Content from NVIDIA [2]

NVIDIA GeForce 320M NVIDIA GeForce 750M

CUDA cores 48 384
clock speed 450 MHz 967 MHz
memory 512 MB 2048 MB

Comparatively, the CPU in the current MacBook Pro release is the Intel Core i7. As discussed in

Section 3.1, the clock speed of CPUs have not been rising, but they are becoming more parallel,

though not highly parallel like the GPUs. Therefore, if the linear version of the BNN took advantage

of multithreading and four CPU cores, then a speedup is expected for the CPU version as well.

Table 4.2: Comparison of the CPU used in this study (purchased in 2010) and a current laptop
CPU model (2014). Content from Apple [3].

Intel Core 2 Duo Intel Core i7

cores 2 4
clock speed 2.4 GHz 2.3 GHz

number of threads 1 MB 8 MB

The test problem used for the systematic timing study used simulated proton-proton collision

data at 8 TeV using Pythia8 [34]. Specifically, we look at the collision of two protons, which produces

two Z bosons, which each decay into two leptons. This reaction is written as the pp → ZZ → 4ℓ

decay channel. The task is to take the information for the two leptons of one of the Z bosons

and map them to the mass of the Z boson from which they decayed. See Fig. 4.1 for the mass

distribution of the Z boson in which we are interested. The inputs are the momentum variables
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for the two leptons. These are pt, η, and φ for each lepton. Therefore, there are 6 inputs for this

application. The training data and targets were normalized to have a mean of zero and standard

deviation on one. This makes the tuning of L ǫ much easier. In order to study the speedup of

the BNN construction for the GPU relative to the CPU, the times required to run the code over

100 HMC iterations were compared. Training a network with only 100 HMC iterations will not

converge to the posterior distribution, but is sufficient for timing studies.

First, the effect of the number of training events was analyzed. Fig. 4.2 shows the time taken to

run the algorithms. The results indicate that as the amount of data increases, the computation time
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Figure 4.1: Mass of second Z boson from pp → ZZ reaction from . This is the target data for the
neural network. (Plot to be improved)

of the CPU rises faster than the GPU. This result is expected since the GPU version parallelizes the

data by event. Therefore, there are more threads with an increasing number of training events, but

these are grouped into blocks which are then executed in parallel on the GPU when they receive

a free streaming multiprocessor. There would be an increased time, then, only when the number

of blocks becomes another factor greater than the number of streaming multiprocessors. Next, we

investigated the effect of increasing the number of hidden nodes in the network. The optimal number

of hidden nodes for a given application is unknown, but more complicated mappings typically benefit

from more hidden nodes. Increasing the number of hidden nodes increases the computation time per
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Figure 4.2: Times required to run 100 HMC iterations on the CPU and GPU. The parameters used
for the BNN were I = 6 inputs, H = 8 hidden nodes, nOut = 100 HMC iterations, while testing
the number of training events ranging from 1000 to 5000.

thread in the GPU version. Figure 4.3 shows the increase in computation time with an increasing

number of hidden nodes. The computation time for the CPU increases much faster than for the

GPU. In the GPU implementation, the increased time is in the computation in each thread, so the

effect is mitigated by the number of threads running in parallel. This result is very promising for

more complicated applications. Our target application, the pMSSM, requires at least 19 hidden

nodes.

Overall, the speedup achieved through the GPU is significant. In Figures 4.2 and 4.3, there is

a minimum of 2x speedup for the GPU for the parameters scanned, and the speedup increases as

the computation becomes more costly.

4.2 Application to the Phenomenological Minimal

Supersymmetric Standard Model

In Section 4.1, the training of a BNN on a GPU was shown to produce significant speedup.

Therefore, results for the training of a BNN for pMSSM predictions are given solely on the GPU
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Figure 4.3: Times required to train a BNN on the CPU and GPU. The parameters used for the
BNN were I = 6 inputs, nTrain = 2000 training events, nOut = 100 HMC iterations, while testing
the number of neural network hidden nodes ranging from 6 to 20. The outlier in this plot needs to
be further tested and analyzed.
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due to the increased execution time of the problem. For this study, I report times on the same

GPU defined in the first column of Table 4.1, along with results using the GPUs available on the

Spear cluster at the Research Computing Center at Florida State University. The Spear cluster

gives users access to Tesla M2050 GPUs. Table 4.3 highlights some features of the two GPUs used

in this study.

Table 4.3: Architecture specifications for the two GPUs used to train a BNN for a mapping of the
pMSSM parameters to a prediction, the mass of the t̃1 particle. The GeForce 320M is an older
basic laptop GPU, while the Tesla M2050 is a new higher-end GPU available at FSU’s RCC.

GeForce 320M Tesla M2050

CUDA cores 48 448
clock speed 450 MHz 1546 MHz
memory 512 MB 2687 MB

To test the time required to construct a BNN for the mapping of the pMSSM to its predictions,

one of its predictions, the mass of the t̃1 particle, is used as the target. As before, the speedup in

the case of increasing number of training events and number of hidden nodes is studied.

The network used for testing has I = 19 inputs, which are the 19 parameters of the pMSSM

model. The right column of Table 1.1 in the Introduction lists these parameters. For the HMC

tuning parameters, L = 100 deterministic leapfrog steps, and a step size of ǫ = 0.0003 was used.

Fig. 4.4 shows the results from the BNN training using data from the same set as the training

data. The first figure of the plot is the BNN using the first 100 networks produced in the training.

The second also uses 100 networks, but these were sampled after a 50 iteration “burn-in” phase

of training. After the burn-in phase, every tenth network was saved for use in the BNN equation.

This plot indicates that the network is being appropriately trained.

Figure 4.5 shows the time taken for 100 HMC iterations on the GeForce 320M and the Tesla

M2050. The increased number of nodes and the faster clock speed have a significant effect on the

speedup of the algorithm. Figure 4.6 shows the computation time on both GPUs as a function of

the number of hidden nodes. This figure highlights the effect of the increased clock speed of the

Tesla M2050.
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(a) Results from the mapping of the 19 pMSSM
parameters to a prediction, the mass of the t̃1 after
100 HMC iterations. For the network, I = 19,
H = 10, L = 100, ǫ = 0.0003 and 5000 training
events were used.

(b) Results from the mapping of the 19 pMSSM
parameters to a prediction, the mass of the t̃1 after
1050 HMC iterations. For the results, the first 50
HMC iterations were not used, and every 10 net-
works were used after this “burn-in” phase. For
the network, I = 19, H = 10, L = 100, ǫ = 0.0003
and 5000 training events were used.

Figure 4.4: A comparison of the results of the BNN training after 100 and 1050 iterations. The
data is normalized to have a mean of zero and standard deviation of one, and then renormalized
after the training. The choice of HMC tuning parameters is simpler to determine with normalized
data. This mapping was done without much effort in finding optimum tuning parameters.

The results of the pMSSM training indicate that this problem is very well suited for the GPU

and the use of BNNs should be considered for the study of higher-dimensional supersymmetry

models.

4.3 Discussion

4.3.1 Z2 Mass Study

The timing results in Figs. 4.2 and 4.3 follow the scaling expected in comparing the CPU to the

GPU. To obtain a rough estimate of how the timing is expected to scale in the case of increasing

the number of training events and the number of neural network hidden nodes, I will simplify

the architectures. In the simplified picture, the goal is an idealized equation of the computation

time of the two architectures in the case of BNN training. For this toy problem, I consider the
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Figure 4.5: Times required to train 100 HMC iterations on a GeForce 320M and TESLA M2050
GPU. The parameters used for the BNN were I = 19 inputs, H = 10 hidden nodes, nOut = 100
HMC iterations, while testing the number of training events ranging from 1000 to 5000. Note that
the fastest portion of the algorithm, the evaluation of U(ω) was evaluated on the described GPUs.
The rest of the algorithm was computed on the CPU native to the computer that was used.

time required to calculate U(ω), the most computationally intensive portion of the BNN algorithm.

First, I consider the scaling in terms of the variable number of training events, Ntrain. For the

CPU, the total time to compute U(ω), given by TCPU is the number of training events used, Ntrain

times the amount of time taken to evaluate the neural network on the CPU, τCPU . This gives

TCPU = Ntrain × τCPU . (4.1)

The total GPU time must be in terms of the architecture. The GPU has M multiprocessors, each

with C cores, each of which run a warp, w = 32. Naively, this gives M × C × w simultaneously

executing threads1. Some GPUs allow more than one block per multiprocessor, if the GPU supports

enough threads. The total number of threads is the number of training events, Ntrain. For this

1This is, however, an extremely naive approximation. The expression technically refers to the “concurrency” of
the system, or how many threads can exist on the GPU simultaneously. The GPU can not actually evaluate an
arithmetic instruction on every thread in every clock cycle. The throughput, measured in Gflops/s must be studied
to truly look at the parallelism of the system. Our discussion makes use of the concurrency in order to discuss the
scaling in terms of the parameters in the BNN. The scaling discussion should be considered more than ideal.
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Figure 4.6: Times required to train a BNN on a GeForce 320M and TESLA M2050 GPU. The
parameters used for the BNN were I = 19 inputs, nTrain = 5000 training events, nOut = 100
HMC iterations, while testing the number of neural network hidden nodes ranging from 10 to 18.

application, the standard 256 threads per block are used. The number of blocks, nB, is then

nB = ceil(Ntrain

256 ). If the number of blocks that can execute in parallel is M , then the GPU will

have to do ceil(nB

M ) iterations of the computation. In addition to the computation time, the time

required to transfer the neural network weights, ω for the current HMC iteration must be taken

into account. Memory transfer between the host and device is slow, as discussed in Section 3.1.2.

If τGPU is the amount of time the GPU uses to evaluate the neural network, then the total time

for the evaluation of U(ω) is given by

TGPU =
nB × τGPU

M
+ tmem =

Ntrain × τCPU

256×M
+ tmem. (4.2)

In Eq. 4.2, the 256 threads per block and the number of multiprocessors, M are constants dependent

on the GPU architecture, and can be absorbed into a constant variable, γGPU = 256×M ,

TGPU =
NtrainτGPU

γGPU
+ tmem. (4.3)
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For this exercise, we will assume that the time of computation is much larger than the memory

transfer time tmem << NtrainτGPU

γGPU
. The speedup SNtrain

, then, is

SNtrain
=

TCPU

TGPU
=

γGPUNtrainτCPU

NtrainτGPU
=

τCPU

γGPU .τGPU
(4.4)

As discussed in Section 3.1.1, the clock speed of the GPU is significantly slower than the clock speed

of the CPU. Therefore τGPU and τCPU are not equivalent. In the testing reported in Section 4.1,

the CPU clock speed is approximately six times faster than the GPU clock speed. If we assume

that the evaluation time of the neural network between the CPU and GPU scales similarly to the

clock speed, we can approximate τCPU = cτGPU . Plugging this into Eq. 4.4 and grouping together

the constants yields

SNtrain
=

TCPU

TGPU
= αN . (4.5)

The scaling between the execution times on the GPU and CPU is expected to be constant. The

results in Fig. 4.2 follow the expected trend.

The scaling between the CPU and GPU with an increasing number of hidden nodes, H, is

simpler to study. In the case of the GPU, the additional computation time, cH is a factor of the

computational time of the neural network, τGPU . For the total computation time on the GPU, this

gives

TGPU =
chGPU

NtrainτGPU

γGPU
+ tmem. (4.6)

In the case of the CPU, the total time increase is a factor, chCPU , times the computation time of

the neural network, τCPU times the number of training events, Ntrain, giving

TCPU = chCPU
NtrainτCPU . (4.7)

The speedup, then, is

SH =
TCPU

TGPU
=

γGPUchCPUNtrainτCPU

chGPU
NtrainτGPU

. (4.8)

Assuming again that τGPU and τCPU scale by a constant, and grouping together the constants into

αH , the speedup becomes

SH = αH . (4.9)

Therefore, we expect the CPU to increase proportional to Ntrain, which we see in the results in

Fig. 4.3.
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In conclusion, the results give the speedup expected from the approximate calculations above.

The factors αN and αH are hardware dependent and their ranges can be large due to the vast range

of CPUs and GPUs available.

4.3.2 PMSSM Study

The timing results in the pMSSM study show the effect of the GPU architecture on the time

of execution. As seen in Table 4.3, there is a significant gain in the number of nodes and clock

speed. In the case where the number of training events is increased, the effect of the number of

hidden nodes is evident. Figure 4.5 shows that for the Tesla GPU, the training time does not

noticeably increase until 4000 iterations. This is because the Tesla GPU has 14 multiprocessors,

and the GPU can hold 14 blocks at a time. The point with 3000 training events is divided into

12 blocks. Therefore, the points from 1000, 2000, and 3000 training events have not utilized the

entire occupancy of the GPU. At 4000 training events, the data are divided into 16 blocks. At this

point, two blocks must wait until there is available space on the GPU to execute. This is seen in

the figure by the jump in execution time at 4000 iterations.

In the case of increasing number of hidden nodes, the effect of the increased clock speed of the

Tesla GPU can be seen. There is a large difference between the execution time of the GPUs in the

case of increasing the computation time and complexity per thread.

The results of the pMSSM study indicate that that the GPU is very well suited to the training

of BNNs in cases of large amounts of training data and complex neural networks. This is a good

method to better understand the higher dimensional models within the MSSM.

4.4 Using the GPU BNN Program

Since this program was written with the intention of use by many people, I would like to

comment on using the program from a user’s prospective. I wrote the GPU implementation for

constructing a BNN keeping in mind the target group of users: physicists. This program is broadly

applicable to those outside of the high energy physics community, but the setup and use of the

program should be very comfortable for physicists. The only GPU knowledge that the user must

obtain is 1) that they have a CUDA-enabled GPU, and 2) that they have the NVIDIA Toolkit and

nvcc compiler installed. To use the BNN libraries, the user must do the following.
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1. Include the BNN library of interest. In this work, we considered regression. This is given by

BNN Regression.

2. Create a main() function.

3. Load all of the information necessary for the BNN. These include

(a) the number of inputs, I,

(b) the number of training events to use, nTrain,

(c) the number of burn-in iterations, the number of output networks, and how often to write

out a network, nBurn, nOut, nEvery,

(d) the training data, x,

(e) the training data targets, t,

(f) the number of hidden nodes in the network, H,

(g) the tuning parameters L and ǫ,

(h) the per-event weight, if necessary, w,

(i) the output file name for the resultant networks, file.

4. Instantiate the class BNN Regresssion BNN(I,nTrain,nBurn,nOut,nEvery,x,t,H,L,ǫ,w,file)

5. Train the BNN, BNN.run()

Through testing, it is clear that the algorithm converges much faster if the input data and

targets are normalized to have a mean of zero and standard deviation of one. This is most likely

due to the BNN tuning parameters, L and ǫ being much easier to optimize with normalized values.

There are two features that cater to the high energy physicists. The first is that the program

works with ROOT, CERN’s data analysis framework. Also, ROOT is written in C++, so the

ROOT users are already familiar with the language environment necessary for this program. There

is an optional function to load in data event by event directly from the ROOT file, saving the user

time2. The second is the inclusion of event weights for the training data. Often, in high energy

physics, each simulated event is weighted and this information should be taken into account when

calculating the negative log likelihood,

− lnL(ω|x, t) = 1

2σ2

N∑
n=1

wn(f(xn, ω)− tn)
2, (4.10)

2This capability currently exists in the code, but is not yet thoroughly tested.
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where the wn represents the weight for each event. The BNN software options available now do

not currently have support for weighted training data. Weighted training data are useful beyond

the scope of physics as well.

This program was designed for ease of use for those familiar with the C++ programming

environment. See Appendix B for an example of a user-defined main function using the BNN

software.
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CHAPTER 5

SUMMARY

A computer program was created that utilizes the GPU to construct a BNN for regression and

classification in cases where a large amount of training data are necessary to generate the mapping

from input variables to targets. The intent of this program is to encourage the use of BNNs in cases

where computation time was a hinderance for routine use. High energy physicists have an immediate

use for this program in their ongoing study of the pMSSM. The pMSSM is a supersymmetric

theory that encapsulates most of the physics of the MSSM, which is of great interest to the physics

community. The MSSM is a minimal extension to the Standard Model through the addition of

supersymmetry which associates a supersymmetric particle with every particle of the Standard

Model. The Standard Model and supersymmetric particles are listed in Table 1.1. However,

many variables associated with superparticles are unknown, making the search for them extremely

difficult. Scientists are not currently able to search the vast MSSM parameter space in order

to compare predictions to theory. Instead, highly constrained versions of the MSSM are studied

experimentally. Recently, various results which all but ruled out a highly-constrained version of

the MSSM, the CMSSM [11]. It was subsequently shown that the elimination of the CMSSM does

not refute the MSSM [11]. The pMSSM is a much better proxy for the MSSM that encapsulates

much of the physics of the MSSM. The pMSSM has many more parameters than the constrained

models in use, but far fewer than the large MSSM. The pMSSM is still computationally intensive,

and better ways of studying the parameter space are sought.

This work proposes the use of BNNs to construct a mapping from the pMSSM parameters to

their predictions using a Bayesian approach. In this approach one constructs a posterior probability,

p(ω|x, t) of the neural network parameters given the training data. Then, the mapping is estimated

by

f̄(x′|x, t) =
∫

f(x′, ω)p(ω|x, t)dω. (5.1)

Equation 5.1 is approximated using the HMC method.
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The HMC method moves through the neural network parameter space in a deterministic fashion

before proposing a new point. The deterministic path is calculated by treating the traversal as

the path of a particle moving through space. The path is determined by Hamilton’s equations,

with the position as the point in the parameter space and the momentum as an independent

variable [26]. The leapfrog method is used to discretize Hamilton’s equations. There is zero error

leapfrog method. This is because the method is reversible and therefore conserves energy. Error

is accumulated due to the approximation of the gradient. HMC requires the calculation of the

derivative of the log likelihood of the posterior distribution, which increases the computation time

per iteration substantially. However, with the avoidance of random walks, the chain converges to

the posterior distribution much faster than other MCMC methods.

In order to reduce the computation time for cases, such as the pMSSM, that require many

training events, a GPU implementation for the construction of BNNs is studied. The GPU is well

suited for computationally intensive, data parallel applications. The computational bottleneck in

the BNN algorithm with a large number of training points is in the calculation of the potential

energy in the HMC algorithm. The potential energy U(ω) is given by the negative log likelihood

− log (L(ω|x, t)p(ω)) = 1

2σ2

N∑
n=1

(f(xn, w)− tn)
2. (5.2)

This requires a sum over all of the training data, which requires most of the computation in the

algorithm. This sum is parallelized on the GPU, with each thread evaluating of the network for

one training point. NVIDIA’s CUDA C extension is used for the GPU parallelization.

The implementation was tested systematically using a test problem namely, modeling the in-

variant mass of one of the Z bosons in the pp → ZZ → 4ℓ decay channel. The time of the BNN

training was studied using a varying number of hidden nodes and number of training points. The

results displayed in Figs. 4.2 and 4.3 show a minimum speedup of the GPU over the CPU by a

factor of two. The figures also show that the largest speedup is achieved when the number of hidden

nodes increases. This is due to the increased computation time per node.

The results indicate that the GPU is a good resource for the construction of BNNs with many

hidden nodes and a large number of training events. The results indicate that a GPU implementa-

tion of BNNs is a good method to study the pMSSM. Once the BNN is constructed, the evaluation

is quick, and therefore the study of the parameter space becomes much easier.
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In this dissertation, I fully implemented the GPU and CPU BNN algorithms from scratch. I

developed them with the intention that they be used by users interested in a wide range of BNN

applications. Features of my implementation are discussed in Section 4.4.

5.1 Future Work

There are many improvements to this algorithm that I would like to implement. The primary

improvement is an optimization of the HMC algorithm. The linear version of this code does not

currently run as fast as the highly-optimized (fbm) program. The relative speedups between the

CPU and GPU are expected to scale similarly to the results given in Section 4.1 because the

speedup is attained through the calculation of U(ω). Reducing the number of times U(ω) is called

each HMC iteration would reduce the execution time considerably. In addition, I would like to

implement an adaptive tuning of the HMC parameters L and ǫ to eliminate the need to search for

optimal values by running the algorithm many times.

There are further optimizations to improve the performance of the GPU implementation. Two

methods that I would like to study in detail are 1) the use of shared GPU memory for accessing

the training data on the GPU and 2) the use of pitched memory, or texture memory to store the

data on the GPU.

In addition, it would be extremely interesting to compare GPU performance using the current

CUDA programming standard, CUDA 5.5 against the new CUDA programming model, CUDA 6.

There seems to be a lot of promising improvements in CUDA 6. Without doubt, the new method

of memory management will provide much cleaner code and fewer bugs.
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APPENDIX A

GPU IMPLEMENTATION OF BNN

Listing A.1: A simple CUDA implementation of the BNN algorithm.

/** device code **/

__global__ void diff(HMC_type* q, HMC_type* x, HMC_type* w, HMC_type* t,

HMC_type* d, int H, int I) {

int th = threadIdx.x + blockIdx.x*blockDim.x;

HMC_type f = q[0];

for(int j=0;j<H;j++){

HMC_type inSum = 0.0;

for(int i=0;i<I;i++){

inSum += q[2*H+1+I*j+i]*x[th*I+i];

}

f+=q[j+1]* tanh(q[H+1+j]+inSum );

}

d[th] = w[th]*(t[th]-f)*(t[th]-f);

};

/** host code **/

/* allocate device memory in constructor and transfer

training data to device */

BNN_regression :: BNN_regression(int l, int nOut_ , int nRep_ , int nBurn_ ,

int h, int inp , std::vector <HMC_type > &data ,

std::vector <HMC_type > &weights ,

std::vector <HMC_type > &targets , std:: string s)

: HMC_base(l, 1+h*(2+ inp), nOut_ , nRep_ , nBurn_),

v_x(data),

H(h),

I(inp),

N(targets.size()),

sig(1),

v_w(weights),

v_t(targets),

oFile(s),

sigb (100),

sigv (1.65) ,

siga (0.86) ,

sigu (0.54)

{
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np = getNP ();

of.open(oFile.c_str(),std:: ofstream ::out);

of << I << "\t" << H << std::endl;

/** memory allocation on GPU **/

//size in bytes of the NN parameter vector

size_np = np*sizeof(HMC_type );

// size in bytes of the number of training event

size_n = N*sizeof(HMC_type );

/* point vectors to arrays */

x = &v_x [0];

t = &v_t [0];

w = &v_w [0];

/** allocate memory on device **/

/** allocate data x **/

dev_x = new HMC_type[N*I];

cudaMalloc (&dev_x ,size_n*I);

cudaCheckError("cudaMalloc dev_x");

/** allocate dev targets t **/

dev_t = new HMC_type[N];

cudaMalloc (&dev_t ,size_n );

/** allocate dev weights w **/

dev_w = new HMC_type[N];

cudaMalloc (&dev_w ,size_n );

/** allocate NN parameters q **/

dev_q = new HMC_type[np];

cudaMalloc (&dev_q ,size_np );

/** allocate diff array **/

dev_d = new HMC_type[N];

cudaMalloc (&dev_d ,size_n );

/** copying memory from CPU to GPU **/

cudaMemcpy(dev_x , x, size_n*I, cudaMemcpyHostToDevice );

cudaCheckError("cudaMemcpy dev_x");

cudaMemcpy(dev_t , t, size_n , cudaMemcpyHostToDevice );

cudaCheckError("cudaMemcpy dev_t");

cudaMemcpy(dev_w , w, size_n , cudaMemcpyHostToDevice );

cudaCheckError("cudaMemcpy dev_w");

};

/* Destructor */

BNN_regression ::~ BNN_regression () {

/* Free device memory */

cudaFree(dev_x );

cudaFree(dev_t );
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cudaFree(dev_w );

cudaFree(dev_q );

cudaFree(dev_d );

};

inline HMC_type BNN_regression ::U(std::vector <HMC_type > &in_q) {

HMC_type* qq = &in_q [0];

/* define threads per block and calculate blocks per grid */

int threadsPerBlock = 256;

int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;

cudaMemcpy(dev_q , qq, size_np , cudaMemcpyHostToDevice );

cudaCheckError("cudaMemcpy dev_q");

/* point thrust variable to vector on device memory */

thrust :: device_ptr <HMC_type > d_dev_ptr(dev_d);

/* Call device kernals */

diff <<<blocksPerGrid ,threadsPerBlock >>>(dev_q , dev_x , dev_w ,

dev_t , dev_d , H, I);

/* call CUDA thrust library for a parallel

reduction of diff results */

HMC_type sum = thrust :: reduce(d_dev_ptr ,d_dev_ptr+N);

return sum /(2* sig*sig) + LnPrior(in_q);

};

/* Definition of prior for NN parameters */

inline HMC_type BNN_regression :: LnPrior(std::vector <HMC_type > &q) {

HMC_type prior = 0.0;

prior += 0.5*q[0]*q[0]/( sigb*sigb);

for (int v=1; v<H+1;v++){

prior += 0.5*q[v]*q[v]/( sigv*sigv);

}

for(int a=H+1;a<2*H+1;a++){

prior += 0.5*q[a]*q[a]/( siga*siga);

}

for(int u=2*H+1; u<H*(2+I)+1; u++){

prior += 0.5*q[u]*q[u]/( sigu*sigu);

}

return prior;

};

/* HMC parent class */

inline std::vector <HMC_type > HMC_base ::it(std::vector <HMC_type > &q0) {

std::vector <HMC_type > eps(NP);

Uq0 = U(q0);

for(int i=0;i<NP;i++){

eps[i] = 0.02;
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}

std::vector <HMC_type > dU(NP);

q = q0;

assert ((int)p.size() == NP);

for(int i=0;i<NP;i++) {

p[i] = rand_p.Gaus ();

}

std::vector <HMC_type > p0 = p;

// 1/2 step in momentum

dU = delU(q);

for(int i=0; i<NP;i++){

p[i] = p[i] - 0.5* eps[i]*dU[i];

if(p[i] != p[i]){

assert (0);

}

}

for(int i=0;i<L;i++){

// 1 step in position

for(int j=0;j<NP;j++) {

q[j] = q[j] + eps[j]*p[j];

}

dU = delU(q);

// 1 step in momentum , except at the end

if(i != (L-1)){

for(int j=0;j<NP;j++) {

p[j] = p[j] - eps[j]*dU[j];

if(dU[j] != dU[j]){

std::cout << "dU[" << j << "] = " << dU[j] << std::endl;

assert (0);

}

}

}

}

// 1/2 step in momentum

dU = delU(q);

for(int i=0; i<NP;i++){

p[i] = p[i] - 0.5* eps[i]*dU[i];

if(p[i] != p[i]){

assert (0);

}

}

// to symmetrize momentum
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for(int i=0; i<NP;i++){

p[i] = -p[i];

if(p[i] != p[i]){

assert (0);

}

}

// Calculate original and new U & K

HMC_type Uc = U(q0);

HMC_type Un = U(q);

HMC_type Kc = 0;

for(int i=0;i<NP;i++){

Kc += 0.5*p0[i]*p0[i];

}

HMC_type Kn = 0;

for(int i=0;i<NP;i++){

Kn += 0.5*p[i]*p[i];

}

// accept or reject?

HMC_type f = exp(Uc-Un+Kc-Kn);

HMC_type rndm = (HMC_type)rand ()/( HMC_type)RAND_MAX;

if(rndm < f) {

return q; // accept

} else {

return q0; // reject

}

};

int HMC_base :: getNP() {

return NP;

};

void HMC_base ::run (){

int nIter = nBurn + nRep*nOut;

for(int i=0;i<NP; i++){

q[i] = rand_p.Gaus ();

}

int accept = 0;

float acc_ratio = 0.0;

for(int i=0; i<nIter; i++){

q0 = q;

q = it(q0);

if(q != q0) {

accept ++;

}

}

};
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APPENDIX B

EXAMPLE OF USER-DEFINED MAIN FUNCTION

USING BNN SOFTWARE

Listing B.1: An example of how a user uses the BNN training software developed in this dissertation.
Note that the user does not have to do any GPU coding.

#include <fstream >

#include <sstream >

#include <string >

#include "BNN_regression.cuh"

using namespace std;

int main() {

// define HMC variables

int nBurn = 50;

int nOut = 100;

int nRep = 10;

int L = 100;

// define BNN paramters

int dim = 19;

int H = 10;

// store training data into vectors or arrays

string filename = "data/pMSSM_train_t1.dat";

string line;

ifstream datafile(filename.c_str ());

if(! datafile ){

cout << "ERROR: data file not found" << endl;

}

// number of training events used

int nTrain = 2000;

vector <float > x(dim*nTrain );

int row = 0;

int ind = -10;
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string dummy;

getline(datafile , dummy);

// targets and weights

vector <float > t(nTrain );

vector <float > w(nTrain );

while(datafile.good() && row < nTrain ){

getline(datafile ,line);

stringstream ss(stringstream ::in | stringstream ::out);

ss << line;

for(int j=0; j<dim;j++) {

ind = (dim)*row+j;

ss >> x[ind];

}

ss >> t[row];

w[row] = 1;

row++;

}

datafile.close ();

// network results file

string outFile = "results/pMSSM_3_23_H.txt";

// instantiate a BNN regression class

BNN_regression BNN(L, nOut , nRep , nBurn , h, dim , x, w, t, outFile );

// run the BNN training

BNN.run ();

return 0;

}
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