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Abstract

Kaluza-Klein Compactification of
Higher Spin Gauge Theory

Jaewon Kim
School of Physics & Astronomy

The Graduate School
Seoul National University

A massive higher spin particles are expected to play an important role in describing the
quantum theory of gravity. Though its long history and absence of a no-go result, construc-
tion of fully consistent interacting massive higher spin theory has not been achieved apart
from the String theory due to the technical difficulties related to the number of degrees of
freedom and superluminal propagation. In this thesis, we propose novel Kaluza-Klein com-
pactification of massless higher spin theory to achieve interacting massive higher spin theory
avoiding technical difficulties. To guarantee the consistency we targeted the Vasiliev theory
and that forced us to use anti-de Sitter spacetime as a background. Compactification on anti-
de Sitter background causes several interesting problems like higher derivative boundary
condition. We analyze it in terms of additional boundary degrees of freedom and succeed to

get a lower dimensional massive theory.

Keywords : higher spin, higher spin gauge, massive higher spin, Kaluza-Klein, Kaluza-
Klein with boundary, (Anti-)de Sitter space
Student Number : 2009-20405
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Chapter 1

Introduction

Finding a description of quantum gravity is one of the ultimate goals of theoretical physics.
Though the String theory provides a toy model for quantum gravity, but formulation apart
from the String theory is still far-off. Among many nice properties of the String theory, we
pay attention to the existence of infinitely many massive higher spin particles. In field theory
point of view, the success of the String theory is a UV completion or resolving the non-
renormalizability issue of the Einstein gravity. Massive higher spin particles, whose masses
and couplings are tuned properly, may render the UV behavior of gravity theory and can be
one of the essential ingredients for such success. In this context, studying interacting massive
higher spin theory looks promising.

Also recently, it is shown that the Einstein gravity with higher derivative correction has
causality violation and exchange of infinitely mass massive higher spin particle can cure the
causality issue [1]. This is exactly what happen to the String theory which contains higher
derivative correction to gravity sector and suggests the importance of massive higher spin
particles in gravity theory.

Apart from quantum gravity, massive higher spin particles are observed in a laboratory
as a hadronic resonance. Though they are considered as composites rather than elementary
particles, in IR limit, they should be considered elementary degrees of freedom and there
must be an effective theory of them.

In spite of such importance of massive higher spin theory, interacting theory of massive
higher spin particles is not understood well and fully consistent theory is not known yet ex-
cept the String theory. The reason of poor understanding is due to its technical difficulties
rather than fundamental obstruction. Actually, there are lots of no-go theorems for interact-
ing massless higher spin theory [2, 3, 4], but for massive higher spin theory, there is none.
Instead of the no-go theorem, there is technical obstruction called “Velo-Zwanziger” prob-
lem [5, 6, 7]. When one try to turn on the interaction, there might happen 2 serious problems:
unphysical new propagating degrees of freedom may appear and superluminal non-causal
propagation may appear. These problems can happen even for interacting with background
fields, and additional degrees of freedom or non-minimal coupling should be introduced. A
perturbative way of constructing interacting massive higher spin theory is known [8, 9], but
a non-perturbative resolution is still not known.

Ironically, in spite of no-go theorems, fully consistent interacting massless higher spin
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theory was discovered by M.A. Vasiliev [10, 11, 12]. Almost of no-go theorems can be
evaded by considering (anti-)de Sitter spacetime as a background. De Sitter or anti-de Sitter
spacetime is maximally symmetric curved spacetime where S-matrix cannot be defined or
measured. Almost of no-go theorems are using S-matrix argument, therefore (anti-)de Sit-
ter spacetime provide a nice background for higher spin theory. Actually, Velo-Zwanziger
type argument also can apply to massless theory. However, in contrast to massive theory, a
massless theory has a guidance to keep the number of degrees of freedom and prevent super-
luminal propagation: the gauge symmetry. Gauge symmetry acts as constraints and might
be an obstruction for constructing a theory. At the same time, gauge symmetry controls the
number of physical degrees of freedom and eliminate unphysical degrees of freedom. There-
fore as long as one keep the gauge invariance of the theory, one does not have to consider
Velo-Zwanziger problem. Vasiliev first wrote down higher spin gauge algebra and then found
a systematic way of constructing gauge invariant theory.

Our idea is to study interacting massive higher spin theory from the Vasiliev theory using
Kaluza-Klein compactification. We expect that consistency of the Vasiliev theory is inherited
to lower dimensional massive theory and we can by-pass all the technical difficulties. Once
we find a proper way of doing compactification, it will provide a nice shortcut to interacting
massive higher spin theory. As a first step, we consider Kaluza-Klein compactification of
free higher spin theory on anti-de Sitter background. Kaluza-Klein compactification on anti-
de Sitter background was studied very little and has lots of interesting features. We claim
that circular compactification is not available and boundaries should be introduced. The ex-
istence of boundary causes many technical difficulties together with rich structures. One of
our main results is that higher spin fields require higher derivative boundary conditions. A
higher derivative boundary condition is unusual boundary condition and we find an equiv-
alent description using boundary degrees of freedom. Boundary degrees of freedom gives
us a physical understanding of higher derivative boundary condition and we can tell which
boundary condition is unitary. We find proper boundary conditions and lower dimensional
spectrum depending on the boundary condition, that is the main result of this thesis.

The rest of the thesis is organized as follow. In chapter 2, a brief review of the higher spin
theory is given. We introduce a free theory of both massless and massive higher spin. Then
the obstruction for constructing interacting theory is discussed and the Vasiliev theory is in-
troduced. This chapter supplements our motivation for doing Kaluza-Klein compactification
to circumvent technical difficulties. In chapter 3, compactification of background metric is
discussed. We explain the inevitability of introducing boundaries and find a parametrization
of the background metric for compactification. Using such parametrization, we give a spin-2
example of compactification and discuss relevant issues which appear in the higher spin case

again. In chapter 4, we do Kaluza-Klein compactification of higher spin. First, we find linear

B

o

|

TUl



combinations of lower dimensional fields which have correct symmetric properties. Then
study their gauge transformation to see the lower dimensional spectrum. Various boundary
conditions and lower dimensional spectra depending on boundary condition are given. In
chapter 5, we analyze higher derivative boundary conditions which are inevitable for the
higher spin field. We develop an extended inner product which translates higher derivative
boundary condition into corresponding boundary action. With boundary action, we classify
boundary conditions into the unitary and non-unitary boundary condition. In chapter 6, we

conjecture CFT dual of higher spin theory with boundary based on their spectrum.
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Chapter 2

Review on Higher Spin Theory

In this chapter, a brief review of massive and massless higher spin theory is given. His-
torically, a massive higher spin theory was studied first by Fierz and Pauli [13], and then
massless higher spin theory was obtained as a limit of massive theory by Fronsdal and Fang
[14, 15]. However, we introduce massless higher spin theory first using gauge symmetry. The
free massless higher spin theory is introduced and then the only known interacting massless
higher spin theory, the Vasiliev theory, is reviewed. Also, the free massive higher spin theory
is introduced and the obstruction for bottom-up construction of interacting massive higher

spin theory, so-called “Velo-Zwanziger” problem is reviewed.

2.1 Massless Higher Spin Theory

The most important feature of the massless higher spin theory is that it is a gauge theory.
Gauge symmetry gives a guidance or constraints to construct a theory. Especially one does
not have to consider an issue of the number of degree of freedom as long as one keep the
gauge invariance. For both free and interacting theory, we assume gauge symmetry at the

beginning.

2.1.1 Free massless theory

Massless spin-s field of free theory can be considered as a generalization of the Maxwell
field and linearized Einstein gravity. It is a symmetric rank s tensor to be a representation
of Poincare group. One interesting feature is that it is a reducible representation. Fields of
irreducible representation has totally symmetric and traceless indices.

httpzes M =0 @.1)

However massless spin-s field, introduced by Fronsdal, is double traceless rather than trace-
less.

Dprpizepa =0 22)
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This field can be understood as a linear combination of traceless rank s tensor and trace-
less rank (s — 2) tensor. Note that fluctuation of Einstein field %, is not traceless. Gauge

transformation is given as

O¢Pur-ps = O(pur Sparpss) (23)

where &, ...,,_, is a gauge parameter and it is symmetric traceless rank (s — 1) tensor. The
notation (p - - - pus) is total symmetrization of indices with normalization factor % Follow-
ing action is invariant for the gauge transformation on flat background.

1 —1
§=73 / A% (Do, O 8(82)8“%%1%28%0”1"'”82

=5 0pGoineg_ 1 07 4 5(5 — 1) Opp’ vy oo O 71572 2.4)

S g o)
This action is called Fronsdal action and is fixed up to an overall factor by the gauge trans-
formation (2.3).

For generic background, naive replacement 9,, — V, does not work. After replace-
ment, V,’s are not commute each other and the action (2.4) is no longer gauge invariant
for s > 2. Lack of gauge invariance means that unphysical degrees of freedom appears
when higher spin fields couple to background graviton minimally. This is very special fea-
ture of spin greater than 2 since it is known that lower spin fields can propagate on any
background by minimal coupling with background graviton. For dynamical graviton, situa-
tion becomes more complecated []. However, for constant curvature background like anti-de
Sitter spacetime, gauge invariance can be restored by adding mass-like terms to action [].
For d-dimensional anti-de Sitter, AdS,, spacetime which is dominantly used for this thesis,

the additional mass-like terms are

AL = mi ¢l/1~~'l/s (bulmys + ma ¢pp1/1--~usfg ¢UO-V1“.VS_2 )

mi = — 27”;4115 <(3 —1)(s—2) + s(d — 1)) , 2.5)
s(s—1) s—1
mo :%(s(s —3)+(s—1)(d— 1)) + 2

where 1 445 is the radius of AdS spacetime. These mass-like terms cancel the effect from
curved background and give correct higher spin gauge field analogous to massless field on
flat background. Values of m; and ms also can be found using representation theory of AdS

isometry group so(d — 1,2) [16].
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This is the free massless theory of higher spin which is our starting point of Kaluza-Klein
compactification. During compactification, the action (2.4) is rarely used. Instead, the gauge
transformation (2.3) on a curved background is used since it dictates the action at the free

level. The action only appears when we consider boundary action.

2.1.2 Interacting massless theory

For higher spin field, turnning on interaction even with non-dynamical background field
can cause inconsistency. Finding self-interacting higher spin theory is much more evolved
and there are lots of no-go theorems. Before introducing only known interacting massless
higher spin theory, the Vasiliev theory, imiportant no-go theorems should be reviewed.

Weinberg(1964) [2] Weinberg used factorization property of S-matrix at soft limit to show
that coupling constant for massless higher spin should vanish. Consider a S-matrix of a
massless spin-s particle and N other particles, S(p1,...,pn; ¢, €), where g, €,,...,, are
momentum and polarization tensor of spin-s particle and p,,’s are momenta of other particles.
At soft limit of ¢, S-matrix is factorized into S-matrix of N other particles and soft factor

of spin-s particle.

.. 6
hm S ph q,€ Zgz (pl 26]2 p#l ,us) S<pz) (26)

g; is coupling constant between ¢-th particle and spin-s field or spin-s charge of ¢-th particle.
Under the Lorentz transformation, polarization tensor is actually not a tensor and gives non-
tensor piece due to its unphysical components, therefore Lorentz invariance of S-matrix is

not manifest. Instead, following constraint appear.

Z glplu . Ms 1_ . 2.7)

For s = 1, it just becomes usual charge conservation of the scattering process, » . g; = 0.
For s = 2, together with momentum conservation Zl p; = 0, it becomes quantum version
of equivalence principle, g1 = g2 = --- = g. However for s > 3, there is no solution of

(2.7) except g; = 0, and this gives no-go theorem of interacting massless higher spin.

Aragone-Deser(1979) [3] Aragon and Deser considered the interaction between high spin
particle and graviton. They showed an action of a higher spin particle minimally coupled to

gravity is not invariant under higher spin gauge transformation. Such gauge transformation

s Rl

-Tf] &



gives terms proportional to the Riemann tensor and unphysical modes cannot be decoupled
when the Riemann tensor is non-vanishing. They also showed that any local non-minimal
coupling does not change the result. The issue of coupling with background metric which

was in 2.1.1 is one of the examples.

Weinberg-Witten(1980) [4] Using S-matrix argument, Weinberg and Witten showed that
a particle with s > 1 cannot have Lorentz covariant energy-momentum tensor. Suppose
there is a such energy-momentum tensor 7}, for spin-s particle. Consider a matrix element
of T}, for initial and final state of spin-s particle with momemtum p;, py and helicity +s,

+s. From the equivalence principle, one can show that
(%1_1% <pf7 +3’ ZUJ |pia +3> = PuPv 7é 0 (28)

where ¢ = py —p;. However one also can show that (ps, +s| T, |pi, +s) = 0 for any space-
like g, and this gives contradiction. For simplicity, let’s consider 4 dimension example. To
show the latter, one should consider specific frame such that ¢* = (0, —¢), p!' = (% |71, %cj’ ),
and p’]ﬁ = (3|¢], —37)- Decompose the T}, as spherical tensor then one get 7, where
[l = 0,1and m = 0,%1,---, %l since a symmetirc tracefull tensor 7}, has spin-1 and
spin-2 components. Consider a rotation R(#) along the ¢ direction,

(g, +8| RN Ty Rpi, +5) = €™ (pg, +5| Tim iy +5)
= 205 (pr 45| Ty i, +5). 2.9)

The first equlity comes from rotational property of the 7}, ; and the second equlity comes
from rotational property of the states. This should hold for generic value of 6, and every
component of T;,, ; vanishes when s > 1. Note that this no-go theorem also can be applied
to spin-2, however non-covariant transformation of 7},,, can be canceled by diffeomorphism
which is not the case of s > 2.

Except the Aragone-Deser no-go theorem, other no-go theorems are based on S-matrix
argument. Those no-go theorems can be evaded by considering (anti-)de Sitter background
where S-matrix cannot be defined or observed. Also, the Aragone-Deser theorem can be
evaded by introducing non-locality. Vasiliev considered (A)dS background! and infinitely
many derivatives which are non-local. Evading no-go theorems opens the chance of con-
structing the theory but does not instruction how to construct. The possibility of appearing

unphysical degrees of freedom is still exist. For massless theory, there is very powerful

"His formulation is background independent, however, it gives a theory of higher spin only when it is ex-
panded around the curved background.
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guidance: gauge symmetry. As long as the gauge invariance of the theory is maintained,
the number of degrees of freedom are automatically controlled. Vasiliev considered interact-
ing higher spin gauge algebra which is a generalization of the diffeomorphism and found a
systematic way of constructing a theory which keeps the gauge invariance manifestly.

The higher spin algebra depends on dimension of spacetime very much and we only in-
troduce 4 dimensional higher spin algebra, hs(4). To introduce the higher spin algebra as a
generalization of diffeomorphism, we introduce the oscillator realization of so(2, 3) algebra.
It is algebra of isometry group of AdS, spacetime which is natural background for higher
spin theory. The generators of so(2, 3) algebra are transvection generators P, and rotation
generators Mgy,. By spinor notation they are P 4 Mp and Ma i All the so(2, 3) algebra

can be realized by
LA ... - 1. .
Pag' = yoaygy Maﬁ - 5{?/017?/,3}7 M@B - §{yd7y,@} (2.10)
where
[Gas 98] = 2i€ap,  [JarUg] = 2i€sz,  [JarUgl = 0. (21D

Using ¢, and ¥4, one can construct more general operators, for instance T, 56 = {00, U5 }Ya-
Actually all the irreducible representation of so(2, 3) algebra can be constructed including
higher spin generator. Collect every operators which can be made by 9, and i then they
form hs(4) algebra. The fact that hs(4) comes from AdS, isometry algebra shows the intrin-
sic relation between AdS background and higher spin theory. Since the range of the spinor
index is 1 to 2, antisymmetric combination of ¢’s are not needed. A nice way of considering
such generators is using commuting “symbol” y,, ¥ and “star-product” between symbols
y % y. Symbols are commuting variable and generators written by symbols have automati-
cally symmetrized indices. Star-product is associative but not commutative and defined to
give correct operator product.

My(§) - Ma(9) = > eras Mi() = Mi(y) * Ma(y) = Y _ 1o Mi(y) (2.12)

7 7

Practical definition of star-product is,

(P*Q)(y,7) = / d*ud*o Py + u, G + @) Qy + v, § + 0)e/ e T80 (2 13)

1
(2m)*

where d*u is a shorthand for d?u d?@. One can check that above definition gives correct
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commutator for y’s,

[Wa, Ysle = 2icap,  [Ua,Ysls = 2ies3,  [Ya, Yple =0 (2.14)

where [A, B, = Ax B — Bx A.

When the gauge algebra is given, it is useful to consider the “connection 1-form” of alge-
bra. For spin-1, connection 1-form is usual gauge field A,,. Note that for non-abelian gauge
theory, A, = >, AT where T’s are generators of algebra. Also a spin-2 theory can be
written by connection 1-form, W), = e}, P, + %.wszab. e}, is gauge field for transvection,
called vierbein and wgb is gauge field for rotation, called spin connection. Field strength
2-form of W, is,

Fuy = 0,W, — 0,W,, + [W,, W, ],

1
= TP+ 5RWC”’MM,, (2.15)

or F' = dW+W A, W using compact notation. 7% and R are torsion and curvature 2-form
repectively. With these quantities one can write down action or equation of motion. Such
formalism is gravity theory as a gauge theory and called “Frame-like” formalism of gravity.
What Vasiliev did is generalization of frame-like formalism for higher spin. Connection 1-

form of higher spin algebra is

n—+m=even
_ 1 i i
Wiy, gle) = Y, g @ I (@) yoy e Gy, B, - (216)
n,m

Only n 4+ m = even generators considered since only bosonic quantities are considered. To
construct gauge invariant and consistent system, Vasiliev invented “Unfolded Formulation”.
Unfolded formulation is consist of p-form fields in general. However system with 1-form

and O-form is already quite general anda able to write down higher spin theory.

dW =W A W (2.17)
dB=WxB—-B*xW (2.18)

B is O-form and contains scalar fields and curvatures of higher spin fields which are general-

ization of the Weyl tensor of spin-2. For a gauge parameter €(y, y|z), above system is gauge

10
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invariant,

W =de—Wxe+ex W,
0B=¢e¢xB—Bxe. (2.19)

Now it is time to introduce the Vasiliev equation. To describe interacting higher spin theory,
auxiliary oscillator z,, Zs and O-form auxiliary field S(y, z|z). Consistent fully non-linear

higher spin equation, Vasiliev equations are

dW =W AW,

dB=W B - B+ W,

dS=Wx*xS§—-8S*xW, (2.20)
SxB=DBx*S,

S %S =dz%dz, (i + Bxk)+dz%dz4 (i + BxR).

z and z has commutator relation with opposite sign, [y, y] = —|z, z]. dz is anticommuting

1-form. & is defined as k = exp(i zoy®). At last, tilde notation is defined as

f<2757y73!):f(_2;57_y72)- (221)

Tilde is not necessary for structure like gauge invariance, however without tilde, the whole
system become empty and there is no propagating degrees of freedom. One can show that ex-
pansion of this systme around AdS background gives Fronsdal fields as perturbative degrees

of freedom. This system is invariant under following gauge transformation,

W =de—Wxe+exW,
0B=¢c¢xB— Bx¢, (2.22)
05 =exS —Sxe.

and there is no issue about number of degrees of freedom with interaction. For more com-

plete review of this subject, see [17].

2.2 Massive Higher Spin Theory

Contrast to massless higher spin, massive higher spin particles are observed as a hadronic
resonance though they considered as a composite. Also, various no-go theorems are not ap-

plied to massive higher spin. However fully consistent interacting massive higher spin theory

11
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is not known yet except String theory. Study on massive higher spin has long history since
Fierz and Pauli [13]. They suggested set of equations which describe free unitary massive
higher spin field. After that Singh and Hagen [18, 19] found Lagrangian formulation with
auxiliary fields. Auxiliary fields are needed to describe additional constraints which elimi-
nate unphysical degrees of freedom. Such auxiliary fields are fixed by equation of motion
and the Lagrangian does not have any gauge invariance. There is an alternative description
with more auxiliary fields and gauge symmetry, Stueckelberg formulation. This formulation
contains gauge symmetry which can be fixed algebraically. By algebraic gauge fixing, sys-
tem goes back to that of Singh and Hagen. Stueckelberg formulation has a few advantages
and naturally appears as a result of Kaluza-Klein compactification without gauge fixing.

In this section, both Singh-Hagen and Stuckelberg formulation are introduced. Also, the

obstruction for interacting massive higher spin theory is introduced.

2.2.1 Free massive theory

Fierz and Pauli realized Wigner classification of mass m and spin s representation as a
field theory. Starting from irreducible symmetric rank-s representation of Poincare group

G-, Which is traceless,
Gpyoops M2 =0 (2.23)
they imposed Klein-Gordom equation,
(O = m*) g, = 0. (2.24)

To eliminate lower spin component with repect to rotation subgroup and to get positive
definite total energy, they further imposed so called Fierz-Pauli condition or transversality

condition,
0" ¢uypy = 0. (2.25)

Naive attempt for Lagrangian formulation would fail. One reason is that the number of equa-
tion is bigger than the number of degrees of freedom. To get both Klein-Gordon equation and
Fierz-Pauli condition from Lagrangian, auxiliary field should be introduced. For instance,

consider spin-2 example. The most general Lagrangian is,

1 1 1
£ = 508" — 5" + 50 000,67 (226)

12
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Equation of motion is,

1 2
(O = m?) ¢y — 504(26%(“%),) = nﬂ,,aﬂa%pg) —0, 2.27)

where d is dimension of spacetime. If one can get transversality condition 0" ¢,,, = 0 from
this equation of motion, then « linear term vanishes and one would recover both Klein-

Gordon equation and transversality condition. Try divergence of equation of motion then,
2
((a _9)o+ 2m2)aﬂ¢>w +a(l = 2)2,0° 076y = 0, (2.28)

it does not work even for a = 2. Resolution is adding auxiliary field ¢ with proper coeffi-

cients. Singh-Hagen Lagrangian for spin-2 is,

1
ESH - u¢upau¢yp + 8p¢pu a‘bgu + u(z)au(z) + gb@“c‘)”gbw

(d 2)

(%w (( )2) ¢2> (2.29)

Equations of motion are

2 1
(O —m?) o — 20°0,0,), + y Nuw0°0° ¢po + 0,0, — gnﬂymgb =0, (2.30)
d—2
|:| p, 12 _ .
o — 2d "0 — m—d 2(;5 0. (2.31)
Linear combination d 9#9"(2.30),,,, + ((2 —d)0—dm )(2 31) = #qﬁ = 0.

Therefore auxiliary field ¢ becomes O by equation of motion and equation (2.31) gives
0"9" ¢, = 0. With this new condition, divergence of equation (2.30) gives correct transver-
sality condition and finally one obtains Klein-Gordon equation for spin-2. Note that 900" ¢,,,,

0 is just a divergence of transversality condition and does not impose new constraint. From

spin s Singh-Hagen Lagrangian formulation, one should derive 0" --- 0" ¢, ..., = 0,
k = 2,3,---,s. For each k, rank-(s — k) symmetric auxiliary field should be introduced,
therefore Singh-Hagen Lagragian for massive spin-s theory consists of rank 0,1,--- ;5 — 2

and s fields. By taking massless limit of Singh-Hagen Lagrangian, every auxiliary field ex-
cept rank-(s — 2) field decouple and rank-(s — 2) and rank-s field form Fronsdal Lagrangian.

Singh-Hagen Lagrangian is standard formulation of massive higher spin theory however
its explicit form of Lagrangian is complicated and it is hard to recognize degrees of freedom
at Lagrangian level. There is alternative formulation which was introduced by Stueckelberg
[20]. The Stueckelberg formalism is usually called “Stueckelberg trick” since it contain lots

of auxiliary fields together with gauge symmetry which can be used to eliminate auxiliary
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fields by gauge fixing. Such gauge fixing is algebraic and almost trivial. After gauge fixing,
the system goes back to Singh-Hagen formulation. One can obtain such formalism by writing
down every possible quadratic term of Lagrangian and imposing gauge invariance. Or as a
short cut, one can obtain from dimensional reduction of Fronsdal action without gauge fixing
on flat background [21, 22, 23, 24]. We just introduce the result. One of nice properties
of Stueckelberg formalism is the fields which are consist of the system is the same with
fields of massless theory: double-traceless symmetric tensors. Also the gauge parameters
are the same. Instead, all of spin-0, 1, -- - , s fields are needed to describe a spin-s particle.
Denote the Fronsdal field, guage parameter and Lagrangian of spin-s theory as ¢, £° and
L§ respectively. Then the Lagrangian for massive spin-s theory is,

S
Stue = > LG+ AL, (2.32)
k=0

AL =Y @0 s BB+ ()P s, O ()71
k=0

+ Ckap(¢k)pgau1“'uk—3 (¢k*1)7_7u1---uk,3 + dk(¢k)ul"'uk (QZ)k)Mm”k (2.33)
+ ek(gbk)ppmmukfz (QS/TC)UUMWMC*2 + fk:(@bk)ppur--ukfz (Qbk_Q)Mm#k*Q )

where

1
ar = —kag_1, bp=—-k(k—1Dag_1, ck= _Zk(k - 1)(k—2)ag_1,
(k+1)2k+d—-3) 4 k d

= - = 2 > = 3
dp. Skt d_d o 2ak_1 fork>1, dy d_2a1,
kR -DRk+d) 5, K(E-1) __k(*-1)
= Sk d—a) kT T g %k Je= ook,

(s—k)(s+k+d—3) ,
k+1)(2k+d—2)

i = (2.34)

Srye 18 invariance under the following gauge transformation.

5(¢k)ﬂl"‘ﬂk = ak(£k+1)ﬂl"‘ﬂk + 8(#1 (fk)mm#k) + Bkn(#l/& (ék_l)u:r'#k) (2.35)

where 3, = mak,l. Each ¢* is consist of rank-% traceless tensor and rank-
(k — 2) traceless tensor and 1 can be used to gauge fix rank-k traceless part of ¢*. Note
that the gauge fixing is algebraic. After fixing every gauge, there remain rank-s and rank-(s—

2), (s —3),--- 0 traceless tensor which consist Singh-Hagen massive theory. Like massless
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theory, Stueckelberg formalism on AdS background can be achieved by small modifications.

AdS
6,u — vua 77/”/ — gp,l/ Y

1
m? > m*+ ——(s—k—1)(s+k+d—4),

T"Ads

Ady = = (k= 1)k =4 + (k= 2)(d = 1))
AdS
k(k — 1)

This is what we use to describe the result of Kaluza-Klein compactification on AdS back-
ground. At this level, it may sound too trivial since the everything is done tirivially on flat
background. However there are lots of subtleties and rich structure when we consider AdS
background.

One most important property of Stueckelberg formalism is that the Lagrangian is deter-
mined up to overall normalization factor by the gauge transformation. This property allows
us to study Kaluza-Klein compactification of higher spin theory only using gauge transfor-

mation which is much simpler than Lagrangian or equation of motion.

2.2.2 Velo-Zwanziger problem

Contrast to massless higher spin theory, massive higher spin theory is not a gauge theory.
One might think that it is easier to turn on interaction without gauge symmetry since there
is less restriction. There might be more freedom to write down interacting theory but practi-
cally, it is more difficult. With gauge symmetry, one could concentrate on gauge symmetry
and other issues resolved automatically. Without gauge symmetry, one should handle all
the issues manually when one turns on the interaction. The number of propagating degrees
of freedom should not depend on coupling constant and causality should be kept. In gen-
eral, these conditions do not hold and new constraints or new propagating degrees appear.
This obstruction for interacting massive higher spin theory is called “Velo-Zwanziger prob-
lem” [5, 6, 7]. The most simple example appears for non-zero electromagnetic background.
Consider non-self interacting massive spin-s field under electromagnetic background. If
we consider just minimal coupling, derivatives should be replaced by covariant derivatives,
Oy — Dy, = 0y, +ieA,,

(D* —=m?) ¢pyops =0, DMy, =0. (2.36)
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Since covariant derivatives are not commute, above 2 equations gives,
2 2 :
(DM, D= —m®| ¢y, = 1€F"P Doy, = 0. (2.37)

This constraint only matters for non-zero charge and non-zero electromagnetic background.
Therefore the number of degrees of freedom between free and interacting theory do not
match. Resolution is considering additional degrees of freedom or non-minimal coupling.

Actually, above example can be cured by non-minimal coupling,
(D?* = m?)bpuy iy — 20 8 FP (1 bpiypiy)p = 0, DMy, = 0. (2.38)

Commutator of above 2 equations is O and there is no pathology. However, there is more
serious problem: superluminal propagation. Even for massive spin-2 with electromagnetic
background, it is known that there exist superluminal propagation when electromagnetic
background is non-zero. This problem is serious since even for infinitesimal background, one
always can find a frame where superluminal propagation exists. Again, properly tuned non-
minimal coupling and additional degrees of freedom may cure the situation. String theory
is unique example of interacting massive higher spin theory whose consistency is check for
full order. In general resolving Velo-Zwanziger problem is very challenging and all known
systematic resolution is perturbative way [8, 9].

This is our main motivation for studying Kaluza-Klein compactification of higher spin
theory. If we do every step of compactification carefully, consistency of the Vasiliev theory
may ensure the lower dimensional interacting massive higher spin theory and we may by-

pass the Velo-Zwanziger problem.
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Chapter 3

Compactification of Background Metric

In this chapter, we introduce a background geometry which is used for Kaluza-Klein com-
pactification. One of novel features of our work is that the background is curved and does
not have any S! fibration. In almost every context of Kaluza-Klein compactification, flat
spacetime, R%!, is used as background and one of the spatial directions is considered as an
internal space. Then there is no obstruction for circular compactification and internal space
become S'. Even when a curved background is considered, starting point is M4~ 11 x S' or
fibration of S' and again, S becomes natural internal space. The benefit of using S* as an
internal space is clear: one does not have to consider boundary condition which can poten-
tially spoil the consistency of the theory. On the other hand, studying non-trivial boundary
condition gives rich structure and one may discover the non-perturbative object of a theory,
for instance D-brane of String theory. We claim that compactification with AdS background
requires non-trivial boundary together with boundary conditions.

We introduce Poincare coordinate as a starting point and suggest a parametrization for
slicing AdS;12 space into AdS;+1 space. By doing so, we show that boundary should be
introduced. Then, we briefly discuss flat spacetime example with boundary and apply the
background metric compactification to a spin-2 example.

3.1 Slicing of Poincare metric

Free massless higher spin theory minimally coupled with background cannot be defined
on arbitrary background. The background should be either flat or maximally symmetric.
Also free massive higher spin particles cannot couple to arbitrary background because of
Velo-Zwanziger problem. Keeping the interacting theory in our mind, we use anti-de Sitter
space for both higher and lower dimension of compactification. One of the most convenient

coordinate of AdS space is the Poincare coordinate'. For AdS,, o,

2
ds* = T;‘#(fdtz +dx] + dz?), 3.1

! Actually, Poincare coordinate do not cover whole spacetime therefore called Poincare patch. However, that
doesn’t affect the procedule and we can get the same result with global coordinate.
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where x4 is vector of R%. We want to interpret AdS;4 o spacetime as a AdS4,1 spacetime
and internal space. In other word, we want to slice AdS4 2 into AdS,; along an internal
direction. There are 2 options with respect to property of internal space. One may choose in-
ternal space from one of isometry direction or non-isometry direction. If we can use isometry
direction as an internal space, metric of AdS,; slice is independent of internal coordinate.
Then, there is no obstruction to identify end points of internal space and we can do circu-
lar compactification which is very simple. We claim that it is impossible and one should
use non-isometry direction as an internal space. This is the most important property of our
Kaluza-Klein reduction. To see the reason, consider an example of slicing along isometry

direction.

2 2
ds(AdSg42)” = T;‘% (—dt? +dx? | +d2?) + —rfz‘g’s dy?

= ds(AdSg41)? + gyy dy*. (3.2)

y is one of x4 and x4 are rest of them. Translation along y is manifest isometry. As a
slicing, there is no problem, however we cannot use (3.2) for compactification. The reason
is the following. Locally at each y, the isometry of lower dimension so0(d, 2) is part of the
original isometry so(d + 1, 2). However, globally, this does not hold, since so(d, 2) isometry
transformation does not commute with translation along y direction. By the same reason,
when compactifying along the y-direction, the (d 4 2)-dimensional tensor does not give rise
to (d + 1)-dimensional tensors. Consider, for example, a small fluctuation of the metric. The
tensor V, h,, is dimensionally reduced to V,, A, 4+, £ A,, where A,, = hy,,. The second
term is a manifestation of non-tensorial transformation in (d + 1) dimensions.

Any attempt of compactifying along an isometry direction faces the same difficulties.
Instead, we use non-isometry direction as an internal space. Now the metric depends on
internal coordinate y. As we require each slice should be AdS,1, the internal coordinate

dependence of each slice must be an overall factor.

ds(AdSg+2)” = f(y) ds(AdSas1)? + g(y) dy?
= f(®) [ds(AdeH)Q + e dif? (3.3)
One can get the second line by proper coordinate change. A constant ¢ can be chosen any

value. Put this ansatz to the vacuum Einstein equation with negative cosmological constant

then we get a differential equation for f(y).

0y (550 W) = é;f(y) (3.4
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Set ¢ = rids, then one can check that f(y) = (secy)? is a solution. We can explicitly
construct this slicing. We start from Poincare patch of AdS;5 and change bulk radial coor-
dinate z and another spatial coordinate y to polar coordinates, z = pcosf), y = psinf. With
this parametrization, the AdS,; 2 space can be represented as a fibration of AdS;;; space

over the interval, § € [-7, T]:

2 cos20

2 2
T r
dsgyo? = % (=dt* + dx ]| +dy* + d2*) = % (=dt* + dxj_; +dp” + p* d6?)

1
= C 20 (d8d+1 +rAdS d0 ) (35)

This is generic result and any other parametrization is just a coordinate change of this. Con-
trast to (3.2), (d + 2)-dimensional tensor can be identiﬁed as a (d + 1)-dimensional tensor.
For instance, V, h,9 becomes V,, A, — tanf h,,, + tanf »— = Juv ¢, where A, = h,9 and
¢ = hgg. Therefore for the rest of the thesis, our parametrlzatlon of background metric for

Kaluza-Klein compactification is,

ds(AdSg40)? = ds(AdSg41)? + rhgg d6?] . (3.6)

s26 [

We use the symbol 6 for both coordinate and vector index of internal space.

The most important consequence of using non-isometry direction as an internal space is
that the end points of internal space § = 4 /2 cannot be identified. Any other 2 points
of internal space cannot be identified since the value of metric or derivatives of the metric
are not continuous at the identified point. Therefore circular compactification is impossible
for AdS spacetime and we should introduce boundaries together with proper boundary con-
ditions. For simplicity, we put 2 boundaries at 0 = +a, 0 < a < /2. « is correspond
to the distance between 2 boundaries and is a tunable parameter of the compactification.
a — /2 limit gives original AdS, o spacetime, and «« — 0 limit gives AdS4.1 spacetime.

The spectrum of Kaluza-Klein compactification depends on a.

3.2 Flat Spacetime Example with Boundaries

To get an idea for compactification with boundaries, let’s consider flat spacetime example.
What we should deal with is a gauge theory. The structure of gauge theory may give con-
straints on boundary condition. Also, the relation between boundary condition and spectrum

of the lower dimensional theory is what should we find.
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3.2.1 Kalauza-Klein mode expansion

As an example, we study the electromagnetic field in (d + 2)-dimensional flat space-
time with boundaries, paying particular attention to relations between boundary conditions
and spectra for fields of different spins. The flat spacetime is R1¢ x Iy, where interval
I, = {0 < z < L}. The (d + 2)-dimensional coordinates can be decomposed into parallel
and perpendicular directions: 2 = (x#, 2). The (d + 2)-dimensional spin-one field is de-
composed in (d + 1) dimensions to a spin-one field and a spin-zero field: Ay; = (A, ¢).

The equations of motions are decomposed as

aM FMV = auﬂw _8z(8ud)_az AV) = O; (37)
M Fyp, = 0" (0,0 — 0, A,) =0, (3.8)

while the gauge transformations are decomposed as
0A, =0, 0p=0,A. 3.9

We note that both the equations of motion and the gauge transformations manifest the struc-
ture of Stueckelberg system. Recall that the Stueckelberg Lagrangian of massive spin-one

vector field is given by

1

£:4

1
FuF" = 20,00" 6 +m A, (% A“—6“¢> : (3.10)
which is invariant under Stueckelberg gauge transformations
0A, =0, and dp=mM. (3.11)

The field ¢ is referred to as the Stueckelberg spin-zero field. This field is redundant for
m # 0 because it can be eliminated by a suitable gauge transformation. In the massless
limit, m — 0, the Stueckelberg system breaks into a spin-one gauge system and a massless
spin-zero system.

The (d + 2)-dimensional spin-one field A is excited along the z-direction. The field can
be mode-expanded, and expansion coefficients are (d + 1)-dimensional spin-one and spin-
zero fields of varying masses. Importantly, mode functions can be chosen from any complete
set of basis functions. It is natural to choose them by the eigenfunctions of O := — (82)2
with a prescribed boundary condition. Mode functions of the gauge parameter A should be

chosen compatible with the mode function of spin-one field A;. Combining the two gauge

20

SRk

TUl



variations Eq.(3.9), we learn that the mode functions ought to be related to each other as

0. ( mode function of spin-one field A, (z, z)) o ( mode function of spin-zero field ¢(z, z)) .
(3.12)
Being a local relation, this relation must hold at each boundary as well.

It would be instructive to understand, instead of the required Eq.(3.12), what might go
wrong if one imposes the same boundary conditions for both A, and ¢, such as zero-
derivative (Dirichlet) or one-derivative (Neumann) boundary conditions. Suppose one adopts
the zero-derivative (Dirichlet) boundary condition for both fields. From A, (2)|.=0, 1 = 0,
¢(2)]2=0,2. = 0 and from the field equation of ¢, Eq. (3.8), it follows that

(aﬂ 0, 6(z) — 9" 0. Au(z))

o —0" 0, Ap(2)]2=0,0 =0, (3.13)
and hence 0, A, (2)|.—0,. = 0. But A, satisfies second-order partial differential equation,
so these two sets of boundary conditions — A,,(2)|.—0,, = 0 and 0, A,(2)|.—0,r. = 0
— imply that A, (z) must vanish everywhere. Likewise, ¢ satisfies a first-order differential
equation Eq.(3.7), so the two sets of boundary conditions imply that ¢(z) vanishes every-
where as well. One concludes that there is no nontrivial field excitations satisfying such
boundary conditions. We remind that this conclusion follows from the fact that these bound-
ary conditions do not preserve the relation Eq.(3.12).

The most general boundary conditions compatible with the relation Eq.(3.12) restricts the
form of boundary conditions for spin-one and spin-zero fields. For example, if we impose the
Robin boundary condition for the spin-zero field, M(0,)¢|.—o,1. := (a0, + b)¢|.—0,, =0
where a, b are arbitrary constants, the relation Eq.(3.12) imposes the boundary condition
for the spin-one field as M 0. A, |.—o, 1, = 0. Modulo higher-derivative generalizations, we
have two possible boundary conditions: a = 0, b # 0 corresponding to the vector boundary
condition and @ # 0,b = 0 corresponding to the scalar boundary condition. Hereafter, we

analyze each of them explicitly.

3.2.2 Vector boundary condition

We may impose one-derivative (Neumann) boundary condition on the spin-one field A, (z, 2)

field and zero-derivative (Dirichlet) boundary condition on spin-zero field ¢(x, z) at z =

0, L. The corresponding mode expansion for A, and ¢ reads

Au(z) = i@ AL”) cos (% z) and o(z) = il o™ sin (nL—W z) , (314
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so we mode-expand the field equations Eq.(3.7) and Eq.(3.8) in a suggestive form

S cos (72 [or ) (PTY (P74 4 g 6] —

;]cos( - z) [a F™, (L ) ( TA 0,0 )} 0, (3.15)

S in (77 ) gi (T 4 (n)):

;sm(L z)a (L A 19, ¢ 0. (3.16)
The standing-wave mode functions for n = 0,1, ... form a complete set of the orthogonal

basis for square-integrable functions over Iy, so individual coefficient in the above equation
ought to vanish. The zero-mode n = 0 is special, as only the first equation is nonempty and
gives the equation of motion for massless spin-one field. All Kaluza-Klein modes, n > 1,
satisfies the Stueckelberg equation of motion for massive spin-one field with mass m,, =
n /L. The second equation follows from divergence of the first equation, so just confirms
consistency of the prescribed boundary conditions. In the limit L — 0, all Stueckelberg fields
become infinitely massive. As such, there only remains the massless spin-one field A,(P) with
associated gauge invariance. Also, there is no spin-zero field ¢(?), an important result that
follows from the prescribed boundary conditions. Intuitively, ALO) remains massless and
gauge invariant, so Stueckelberg spin-zero field #© is not needed. Moreover, the spectrum
is consistent with the fact that this boundary condition ensures no energy flow across the
boundary z = 0, L.

The key observation crucial for foregoing discussion is that the same result is obtainable
from Kaluza-Klein compactification of gauge transformations Eq.(3.9). The gauge transfor-

mations that preserve the vector boundary conditions can be expanded by the Fourier modes:

[e.e]

A=Y A cos (”T” z) . (3.17)
n=0

The gauge transformations of (d + 1)-dimensional fields read

§AM =9, A (n>0)  and 5¢<n>:—%A<n> n>1. (318

We note that the n = 0 mode is present only for the gauge transformation of spin-one field.
This is the gauge transformation of a massless gauge vector field. We also note that gauge
transformations of all higher n = 1,2, --- modes take precisely the form of Stueckelberg
gauge transformations. Importantly, the Stueckelberg gauge invariance fixes quadratic part
of action.
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3.2.3 Scalar boundary condition

Alternatively, one might impose no-derivative (Dirichlet) boundary condition to the spin-
one field A, and one-derivative (Neumann) boundary condition to the spin-zero ¢. In this
case, the equations of motion, when mode-expanded, take exactly the same form as above

except that the standing-wave mode functions are interchanged:
Zsm <7 z) [aﬂﬂ n) (”;) ( T AL — 0,6 )} - (3.19)
ngocos (n% z) o (n% ”) gb(” ) = (3.20)

Consequently, the zero-mode n = 0 consists of massless spin-zero field ¢(*) only (A,(? ) is
absent from the outset). All Kaluza-Klein modes n # 0 are again Stueckelberg massive spin-
one fields with mass m,, = nm/L. In the limit L — 0, these Stueckelberg field becomes
infinitely massive. Below the Kaluza-Klein scale 1/L, there only remains the massless spin-
zero field ¢(9). Once again, this is consistent with the fact that this boundary condition en-
sures no energy flow across the boundary.

Once again, the key idea is that the above results are obtainable from the Kaluza-Klein
compactification of the gauge transformations. For a gauge transformation that preserves the

scalar boundary condition, the gauge function can be expanded as

Z A (z) sin (T z) . 3.21)

With these modes, the gauge transformations of fields are

FAM =9, A™ (m>1) and 5™ = % A® (> 0). (3.22)

There is no n = 0 zero-mode gauge transformation, and so no massless gauge spin-one field.
The spin-zero zero-mode ¢(©) is invariant under the gauge transformations. We also note that
the gauge transformations take the form of the Stueckelberg gauge symmetries with masses
m, =nmn/L.

Summarizing,
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e Kaluza-Klein spectrum is obtainable either from field equations or from gauge

transformations.
 Stueckelberg formalism naturally arises from Kaluza-Klein compactification.

* Boundary conditions of lower-dimensional component fields (for example, A,

and ¢ from A ;) are correlated each other (for example as in Eq.(3.12)).

3.3 Spin-Two Example of Kaluza-Klein Compactification

With the ideas from previous section, we analyze spin-2 example on AdS background.
Here, we introduce notations for various fields and their mode function. Fields or operators
with bar are (d 4 2)-dimensional field. For instance, Buu- Fields or operators without bar
are (d + 1)-dimensional. To denote mode functions of various lower dimensional fields,
we use following notation: @Z‘S(H). s is spin of original higher dimensional field. In this
example, s = 2. k denotes spin of corresponding lower dimensional fields, 0 < k& < s. For
example, mode function of A, = 71”9 is @,11‘2(9). Weuse M, N, K, ... for indices of higher
dimension and u, v, p, ... for indices of lower dimension. h denotes fluctuation of metric,
therefore spin-two field and g denotes background AdS metric.

In this example, we use both equations of motion and gauge transformation to ensure
that using gauge transformation gives the same result with using equations of motion and is

powerful enough to determine the spectrum of lower dimension.

3.3.1 Mode functions of spin-two field

We begin with the method using the equation of motion. The Pauli-Fierz equation of
motion for a massive spin-two field in AdS4 s is given by

ICMN(B) — (d-l— 1) (2 EMN — JMN 71) — M? (BMN — JMN il) =0, (3.23)

where M? is the mass-squared, gysn is the metric of AdS, o space, and Ky N(l_z) is the

spin-two Lichnerowicz operator:

/CMN(B) = DFLMN — (vaN iLML +vaM BNL)
+ gun Ve V5 + ¥y Vv b — gunOh, (3.24)
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where (h denotes for the trace part, gV hjyrn). After the compactification, the (d + 2)-
dimensional spin-two field is decomposed to (d + 1)-dimensional spin-two, spin-one, and
spin-zero component fields:

_ 1 _ _ _
h;ux = h,ul/ + i—1 Guv heg , h,u@ = Auv hog = ¢ (3.25)

d

Note that the spin-two field 4, is defined by the linear combination of i_LW and hgg?.
The massless spin-two equation of motion in AdS;2 space decomposes into equations

of motion for component fields (., A, ¢) in AdS4y1 space:

Kuv(h) —d(2hu — guw h) +Ea—2b_o (hy — guw h)

—Lq o (VAL + VLA, —2g, VP A, + Guwtaotqg 3¢=0, (3.26)

d—1
d
VMFHV —QdAl, —L72 (V“h/“, —Vl,h) - ﬁLd_gde): O, (327)
d+1
O — 7]’4 1bg s +d+1 ¢—2L_1V'MAM+L_1L_2]’L:0, (3.28)

where h is the trace part, g*”h,,. The new notation L, is a linear differential operator,
L,, == 0y + m tan 6. The mode expansion of (d + 1)-dimensional spin-two, spin-one and

spin-zero component fields reads
s = Z B, ©22(0 ZA Wu0.20), o= o™ ()
(3.29)

Up to now, we know nothing about mode functions. We just assume they exist and try to
find their properties. From the equations Eqs.(3.26, 3.27, 3.28), we can expect the relations

between mode-functions which can be summarized by following two matrix equations:
0 R\ (€77  [c26? 230
b 0 ol )~ \2elP £
-2 n Cp Yn
0 Eas) [0\ [&e)? -
9 0 o2 )~ \ ol =
-1 n Cp Yn

where ¢,,’s are coefficients. We now have two sets of raising and lowering operators, con-

>The equations of motion have cross terms between h and VZ¢. This linear combination removes these
cross terms. This specific combination is also the linear part of diagonalized metric in the original Kaluza-Klein
compactification, g,, = e®/(d=1) Juv
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necting spin-zero and spin-one and spin-one and spin-two, respectively. Accordingly, we
have two pairs of Sturm-Liouville problems. The Eq. (3.30) leads to the first set of Sturm-

Liouville problems for spin-two and spin-one, respectively:

Lo ok 2022 = 212022 = _p2ell?,
L oobg 202 =22 ell2 = _p2ell2, (3.32)

The Eq. (3.31) leads to the second set of Sturm-Liouville problems for spin-one and spin-

zero, respectively:

1|2 10 01 1]2
Ld,3 oA @n‘ =C, C, @n| s

b by 3002 = 01 0902, (3.33)

The two sets of equations appear overdetermined, as the spin-one mode function @;'2 is the
eigenfunction of two separate Sturm-Liouville problems. However, it can be shown that the

two Sturm-Liouville problems are actually one and the same problem by using the identity
Lan —Ln,1 Lm+1 == (n—m— 1) (334)
This also leads to eigenvalues relations

OOl — 21el2 gy, (3.35)

1
n n

So, the Sturm-Liouville problems can be summarized by the relations

o322
) 11 k2 : _Mig‘g = _Mg = C?LlC}LQ
oLP (3.36)
Eas 1l B 0 M2 =—(M74+d-1) = )
QU2
n

We notice that these relations, defined by raising and lowering operators between (d + 1)-
dimensional fields of adjacent spins, is precisely the structure required for Stueckelberg
mechanism 3. If M, 22 and M, 1) were nonzero, the corresponding modes among differ-

ent spin fields combine and become the Stueckelberg spin-two system. There are two special

3 Note, however, M, 1)2 is not related with mass-like term of spin-one field in Eq.(3.27). M,, = M,, o3 is
the mass of the spin-two field in the Eq. (3.26).
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cases, vanishing M,, oo or vanishing M, 1)2. As these are important exceptional situations,
leading to so-called partially massless spin-two fields, we will analyze them separately in
Section 3.3.2 with examples.

We can also obtain Eq. (3.36) from the method using gauge transformations. The gauge
transformations in AdS4, 1 space, with the gauge parameter £y = {¢& u, o}, are decomposed

into components

1
5h;w = V(M éu) + -1 9 Bd—2 o,

1 1
6AM = 5 8# &g + 3 Lo ﬁu , (3.37)
d¢p =L_1&.

Again, to retain the gauge invariances, the mode functions of gauge parameter are set pro-
portional to mode functions of the fields:

FEDMIRCELIOR g=> ¢"0lR0). (3.38)

By substituting these to Eq.(3.37) and comparing mode expansion terms in the gauge vari-
ations, we see we can recover precisely the same raising and lowering operators as in
Eq.(3.36), which was previously derived from the field equations Eqs.(3.26, 3.27, 3.28).

After the mode expansion, the component field equations read
K (B™) — d {2 h™ o = G h(n)} b2l [hm)W _ gwhm)}

n

d
— k2 [Vu A, + v, A(")M — 29, V* A(")p] + DL 12 71 9w o™ =0,

(3.39)
VEEM,, —2d A0, = 20 [0, — g, k0] - ! % V, ™ =0, (3.40)
(n) d+1 o1 19 (n) 10 wp 4(n) 21 10 1 (n)
o' — 715 +d+1|¢" —2¢, VFA™ ¢ c, b =0. (3.41)
Their gauge transformations read
() ), 0w ) _ Ly ey G pm (W) _ 410 )
o) = V€5 + L g €, SAD = 0,60+ Tgl) 5 = (0,

(3.42)

We see that this system, Eqs.(3.39, 3.40, 3.41, 3.42), coincides precisely with the spin-two
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Stueckelberg system on AdS,, 1, once we redefine ¢,,’s as

M,
12 21 n
= VoM, 2t="F,

V2

= ‘\/z(dd—mMn? w0, o= 2 Doreaoy

It is also known that the Stueckelberg gauge symmetries can uniquely fix free parts in
the field equations or equivalently in the action. Therefore, from the knowledge of the gauge
transformations Eq.(3.42), we can fully reconstruct the field equations Eqs.(3.39, 3.40, 3.41).
In practice, the gauge transformations are much simpler to handle than the field equations.
Note that the modes which are neither in the kernel of raising operators nor in the kernel of
lowering operators always combine together and undergo the Stueckelberg mechanism for
massive spin-two fields.

Before classifying possible boundary conditions, we summarize Stueckelberg spin-two
system and Goldstone mode decomposition pattern of it. For general values of the masses,
Stueckelberg spin-two system describes the same physical degree of freedom as a massive
spin-two field (having maximal number of longitudinal polarizations). This is because spin-
one and spin-zero fields can be algebraically removed by the gauge symmetries Eq.(3.42),
corresponding to the unitary gauge fixing. However, such gauge fixing is not possible if the

masses take special values:

(d-1)

2
T"Ads

M2=0 and M?=-— (3.43)
At these special values of the mass parameters, the Stueckelberg system breaks into subsys-
tems which can be deduced just from the gauge transformation.

For the situation that M,, = 0, the gauge transformations are

1 1 /2
30uE T0= Sd-1)¢. (3.44)

Shu =V &y,  6A,=

We see from the first equation that the spin-two field ought to be massless as it has the
spin-two gauge symmetry. We also see that the remaining two equations are precisely the
spin-one Stueckelberg system with m? = 2d/ Tids- This implies that the Goldstone field
of the massive spin-two is given by the massive spin-one system, which in turn was formed
by the Stueckelberg system of massless spin-one and massless spin-zero fields. It should be
noted that the normalization of each field is not standard.

For the situation that M? = —(d — 1)/r% g, a subtlety arises as the coefficients >
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and c2! are pure imaginary. Specifically, the relation Eq.(3.30) implies that one of the two
mode functions @}JQ, @iIQ and corresponding field become pure imaginary. We are thus led
to redefine the mode functions (:)%L‘2 = £ @%'2 and the fields flu = +iA, 4. The gauge

transformations now become

2 1 1 di—1 1
5hW:V(M§,,)+1/d7ng§, 0Au= 506t~ &ur  00=0.

27448
(3.45)

The spin-two gauge transformations and spin-one gauge transformations are coupled each
other. In fact, they are precisely the Stueckelberg system of partially massless (PM) spin-
two field [27]. We can always gauge-fix the spin-one field to zero, and the remanent gauge
symmetry coincides with the partially-massless (PM) spin-two gauge symmetry [28]:

1 2
hyw = ViVl = 5—guw A, where A =raasy)/ —=¢. (3.46)
T4ds d—-1
Therefore, when the mass-squared hits the special value M2 = —(d — 1)/r% 4. the Stueck-

elberg system breaks into a spin-two partially-massless (PM) Stueckelberg system and a
massive spin-zero field of mass-squared m? = (d + 1)/r% 4. as given above in Eq.(3.41).
This spectrum decomposition pattern perfectly fits to the reducibility structure of the
Verma so(d, 2)-module V(A,2) for spin-two field. For the special values of conformal
weights, A = d and A = d — 1, the Verma module becomes reducible and break into

V(d,2) = D(d,2) ® D(d+1,1),
—— —_————
massless s=2 massive s=1
V(d-1,2) = D(d—-1,2)D(d+1,0). (3.47)
PM s=2 massive s=0

Here, D (d, 2) and D (d — 1, 2) are irreducible representations of massless and partially
massless states, respectively. Using the relation between the mass-squared and the conformal
weights

M 17has = A (A —d)+(d—1)  and  mly o o7r%as = A(A—d), (3.48)

spin—1

one finds that D (d + 1, 1) corresponds to spin-one field with m? = 2d/r% 5, and D (d + 1, 0)

corresponds to spin-zero field with m? = (d + 1) /r% . This result exactly matches with
the spectrum decomposition patterns we analyzed above.

“In the path integral formulation, this amounts to choosing that the integration contour purely imaginary.
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Here, we tabulate the four types of fields that appear at special values of masses (the
four irreducible representations that appear in Eqs.((3.47)), as they will be shown to arise as
the ground modes of the Sturm-Liouville problems with appropriate boundary conditions in

section 3.3.2.

type \ D(A, 8)s0(d,2) \ field \ mass-squared ‘
type I | D(d+1,1) massive Stueckelberg spin-one m? =2d/ 7"124 dS
type II | D(d+1,0) massive spin-zero field m? = (d+1) /ri,s
type I11 D(d, 2) massless spin-two m? =0
type IV | D(d —1,2) | partially-massless Stueckelberg spin-two | m* = — (d — 1) /77,4

Table 1: The types of field involved in the inverse Higgs mechanism when spin-two Stueck-
elberg systems decompose into spin-two gauge field and Goldstone field. Type I and II are
Goldstone fields of spin-zero and spin-one. In AdS space, these Goldstone fields are mas-
sive. Type I11 is massless, spin-two gauge field. Type IV is partially massless, spin-two gauge
field.

3.3.2 Boundary conditions for spin-two field

With mode expansions at hand, we now classify possible boundary conditions. In the
spin-one on a flat background, boundary conditions of different component fields (spin-
one and spin-zero in that case) were related. This property continues to hold for the spin-
two situation. For instance, suppose we impose Dirichlet boundary condition for the spin-
one component field in AdS;y1, @1|2]9:ia = 0. Then, the spectrum generating complex

Eq.(3.36) immediately imposes unique boundary conditions for other component fields:

| ) @721‘2 ~ @,11‘2 s ) @2|2|9::|:o¢ = 07
Ea 3007 ~ 0,7, Ea30%%[p_rn = 0. (3.49)

Likewise, if we impose a boundary condition to a component field, the spectrum generating
complex Eq.(3.36) uniquely fixes boundary conditions for all other component fields. The
minimal choice is imposing the Dirichlet bounary condition to one of the component fields.

As there are s + 1 = 3 component fields (spin-two, spin-one and spin-zero), there are three
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possible minimal boundary conditions:

B.C.1: | 022 =0, Li 20 =0, k4 obg 302 =0 }
B.C.22 { L_,0%? =0, o' =0, b 302 =0  1(3.50)
B.C.3: { L, E,0%=0, L0 =0, 0% =0 }

where ©| is a shorthand notation for the boundary values, ©|p—1,. We reiterate that the
boundary conditions on each set are automatically fixed by the spectrum generating complex
Eq.(3.36). We now examine mass spectra and mode functions for each of the three types of
boundary conditions, Eq.(3.50).

To deliver our exposition clear and explicit, we shall perform the analysis for d = 2, viz.
compactification of AdS, to AdSs times angular wedge, where the mode solutions of the
Strum-Liouville prpblem, Eq. (3.36), are elementary:

22 secf (tan @ cos(zp0) — 2, sin(z,0)) , odd parity

022 = ' . (3.51)
secd (tan 6 sin(z,0) + z, cos(z,0)) , even parity

oll2 sec sin(z,0), odd parit.y (3.52)
sec cos(z,0), even parity

ol — sec sin(z,0), odd parit.y (3.53)
sec cos(z,0), even parity

with z2 = M2 + 1. Note that the Sturm-Liouville equation and the boundary condition are
symmetric under the parity # — —#@, so the solutions are also labelled as either odd or even
parity of 6.

We begin our analysis with B.C. 1. Substituting the above mode functions to the B.C. 1,
we get the same expression for spin-two and spin-one component fields except the condition

that the parity of the mode functions must take opposite values:

secd (tan @ cos(zp6) — 2, sin(zp0)) |o—+a, odd ©22 and even O112 G5
sec O (tan 6 sin(z,0) + 2, cos(2p0)) |g—+a , even ©22 and odd O112 '
We also get the boundary condition for spin-zero component ©°2 as
zp, sec B (tan @ cos(z,0) — zy, sin(z,0)) |p=+a, odd ©012) (3.55)
zp, sec B (tan @ sin(z,0) + 2z, cos(z,0)) lp=+a, even ©(012) :

We note that, modulo the overall spectral factor z,, this spin-zero boundary condition is the

same as the boundary conditions Eq.(3.54). This agreement is not accidental. Once again,
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they are consequences of the spectrum generating complex Eq.(3.36) and the boundary con-
dition Eq.(3.49).

In general, solutions of each boundary condition, z,,, depend on the domain of angular
wedge, a. They are the AdS-counterpart of flat space Kaluza-Klein compactification, and
so z, and M,, blow up as « is sent to zero. They correspond to the “Kaluza-Klein modes”.
For these modes, mode functions of each component spin fields combine and form spin-two
Stueckelberg system with mass-squared, M2 = 22 — 1.

There are, however, two special solutions that are independent of «, z,, = 1 and z,, = 0.
They correspond to “ground modes” and have interesting features that are not shared with
the Kaluza-Klein modes. Firstly, masses of the ground modes are equal to the special masses
Eq.(3.43) at which the unitary gauge-fixing ceases to work and the Stueckelberg system
decomposes into subsystems. Secondly, mode function of some spin components is absent.
For z, = 1, the spin-two field is absent as ©2> = 0 in this case. The spin-one and spin-
zero fields combine and form the Stueckelberg spin-one system of type I. For z,, = 0, only
massive spin-zero field is present because z,, = 0 is not a solution of boundary conditions
Eq.(3.54) or corresponding mode function is 0. This spin-zero field is of type II.

By completing the analysis to other boundary conditions, we find the following spectrums
of ground modes:

B.C.1: typel and typell
B.C.2: typell and typeIlII (3.56)
B.C.3: typelll and typelV

We see that B.C.1 keeps mostly spin-zero, B.C.3 keeps mostly spin-two, while B.C.2 keeps
spin-zero and spin-two even. The complete spectrum of each set of boundary conditions is

summarized in Fig. 1.

O Kaluza Klein [0 Ground O Kaluza Klein [0 Ground O Kaluza Klein O Ground

spin 2 [ =

spin 1 o o L o O o

spin 0 o] ks o} vous | . ailes
n=0 n=1 n=2 n=3 n=4 n=0 n=1 n=2 n=3 n=4 n=0 n=1 n=2 n=3 n=4

Figure 1: Spectral pattern for three types of Dirichlet conditions, B.C.1, B.C.2 and B.C.3
from left to right. Each point represents one mode: squares are from ground modes, while
circles are from Kaluza-Klein modes. Points inside the same rectangle form Stueckelberg
system.
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The ground mode spectra associated with B.C. 3 deserves further elaboration, as they in
fact describe non-unitary system. Firstly, it is non-unitary because the mass-squared is be-
low the Breitenlohner-Freedman bound of spin-two field in AdS;41 space. In section ??,
we will explain Kaluza-Klein origin of this non-unitarity. Secondly, norms of some mode
functions are negative-definite, implying that the Hilbert space has the structure of indef-
inite metric, leading classically to spectrum unboundedness and instability classically and

quantum mechanically to negative probability. Explicitly, for the mode functions

202
{ (91‘ = Nj sec? type III (3.57)

93‘2 = N3 secf tanf, @(1)|2 = N4 tanf type IV,

the norms of @3‘2 and @?'2 are —2a N32 and — taiaNg,Q and hence negative-definite for all
choices of a. Such negative norms indicate that the higher-spin fields associated with these
ground modes in B.C.3 have wrong sign kinetic term.

As the distance between boundaries, « tends to 7 /2, the boundaries approach the time-like
asymptotic boundary of the AdS4» space. In other words, our spacetime decompactifies to
the AdS,442 space. In this limit, though, the mass spectrum for each boundary conditions
does not necessarily get to the spectrum of the massless spin-two field in AdS442 space.
The reason is that some of the boundary conditions we choose are singular in this limit in
the sense that mode functions are ill-defined. Take for instance the mass spectrum for B.C.
2. It contains the massless spin-two ground mode as well as spin-zero ground mode whose

normalized mode functions are

002 = Ny sech,  typell, 1 1

0, T P Ni=—— Ny=y/—— . (358

Oy~ = Na sec”d, type III V2a 2tan
These ground-mode functions are not normalizable in AdS,4,2 space: the normalized mode
functions vanish as Ny vanishes in the decompactification limit. This explains why there is
no massless spin-two field in the “dimensional degression” method [29]. In the next chapter,
we show that, for arbitrary spacetime dimension d and spin s of higher-spin field, the mass
spectrum of “dimensional degression” spectrum is the spectrum of B.C.1 in the decompact-

ification limit.

Summarizing,
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* The mode functions of different spins in AdS,4; are related to each other by
the spectrum generating complex Eq.(3.36), whose structure is uniquely fixed
by consideration of Kaluza-Klein compactification of higher-spin gauge trans-

formations.

* At special values of masses, the Stueckelberg spin-two system decomposes into
irreducible representations of massless or partially massless spin-two fields and
massive Goldstone fields. The ground modes of Dirichlet boundary conditions
Eq.(3.50) are precisely these irreducible representations in Table 1 at the spe-

cial mass values.
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Chapter 4

Compactification of Higher Spin Theory

In this chapter, we do Kaluza-Klein compactification of Higher Spin Theory on the back-
ground geometry described in previous chapter. As we learned from spin-two example, the
most simple way is using gauge transformation. As far as we consider the free theory, all the
information which a theory can have is its spectrum. The spectrum of the theory is dictated
by gauge symmetry, therefore, it is enough to determine equation of motion or action to

consider reduction of gauge transformation.

4.1 Compactification of Gauge Transformation
We start from gauge transformation of massless spin-s field on AdS; 5 background.

0850 at, = V€ 4.1)

In this section, we show that after compactification, the gauge transform becomes

k) k+1 k—1
6¢u1 M T v(ul 5;82 k) + a L—(s—‘,—k—l) g;(nu)k + a2 Ld—(s—k)—? g(M1M2 f,gd,jk) ’
4.2)
where the coefficients are
a _s—k and 0 — E(k—1)(d+s+k—3)
T T s(d+2k—5)(d+2k—3)"
Eq. (4.1) decomposes into
5¢§\f[)1 M1§M2 ]\/[g Z VM é.]\41 z 1M1+1 ]\/[s
728 £9) _’ZfA £) _}Zfe £
M;S My - p M; M;SMy Mo\ M; M;S My - M6
i,j=1 J=1
i fi
(1)
(2 3)
4.3)
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Let’s define w,fl Z)S L = ¢:1) e nB(n)? ,(ﬁf.z)s_n_l = fm e 16(n) (f(n) denotes n 6s),
(s—n)

and consider their gauge transform. For 67, ...;,_,, each part of equation (4.3) become,

+1)
Zauzgﬂi Zs n + a Clgsl TLS n

1 s—n B n .
D=1 300 2 g ) 4
i,j=1
i#]
1) n{n 1 1
S tandcfi )+ 2D i)
1,j=1
i#]

Therefore,

s—n Ss—n s—n n s—n

K1 NQ"'Ms—n)
(s—n)(s—n-—1)

S

C(sfnfl)

+ /1/3"'Msfn)

taneg(mm 4.5)

Up to now, there are bare tan @ factors rather than k.., operators and the form of gauge
transform is differ from Eq.(4.2). A reason is that naively defined quantities 1)) and ¢(*)
are not proper variables to describe lower dimensional degrees of freedom. We don’t fix any
gauge during compactification therefore we expect massive fields in Stueckelberg formalism
after compactification. As we reviewed in chapter (2), variables describing Stueckelberg
massive field must be (double)-traceless and (), ¢ (k) are not. Therefore we have to consider
linear combination of naive quantities to get (double)-traceless quantities.

Due to the (double) traceless conditions of gZ; and é , ¥ and ( are not (double) traceless.

0= d) AM1M2gM3M4 _ gulmgusm

¢u1u2u5u4 M
+2¢E¢1)#299 Msgmwg% + ¢és49)09~~Msg99g09 (4.6)
= COS40<¢Ll)uzu3u4 gl ghsee
+2¢u1u299 g+ %999 MS>
~ My Mo

0 = éj(\j)lMsflg - é-F("Sl,U'Q Ms lgul‘u‘2 +£(€ M@ lgee (47)

_ 29 ( £(s
= COS 9(6“1”2 M, g'ul'u2+§0 M71>
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In terms of w(s) and C(S)

—4
@Z)muzusm usgmmguslm + 27/’#1#2#5 us9 g + 7/’(8 )s =0 (4.8)
2)
l(li);uﬂ Hs— 1gN1M2 +C,L(LS3 Hs—1 = 0 (49)

These relations are true for every s — n. From now on, spin of original d + 1 dimensional
field will be denoted as s, and s will denote spin of d dimensional fields.(0 < s < s,,,)

To get the d dimensional double traceless fields ¢(*), we have to consider linear com-
bination of 1(*)s. Without derivatives, most general v first order term with symmetric s

@Z)(S*Z”JF%) griv2 ... gv2k—1V2k Let’s denote

indices is g(uluz " Gpzn-1pzn H2n 1 f2n 2 s )1V Vop_1V2)

this tensor as 1/),(]:5,]2 In terms of 1)(™%*) equation (4.8) becomes
/S?sk+2)+2w(nsk+l)+w(nsk (4.10)

for any n and k. Up to this relation, the most general linear combination is

(/2]
Z{answ”so)Jrﬁnsw("“} (4.11)

However all 3,,’s should be vanished otherwise the gauge transformation of ¢(*) contain
divergence of gauge parameter and that is not we want.! To calculate the double trace of
#®), one have to know the double trace of ¢)(™*) The result is

V1V2¢VT1LVZS1 Ps—2 n8¢/[1l }: 22 k)“’an ;(ﬁ’-ﬁ/zf’—l?l)
GG s = AnsAn— 12t )
+(An,an—1,s 2+Bn sAn,s—2) ,L(Zib:,_f’k—’—l)
+Bp s Bps_oth i) 4.12)
= nswu? }LSS 22 M
FOL ) 4 O2 s D

"With [Br = 0, the number of equations become twice of number of variables «,’s. Therefore existance of
solution seems non-trivial. However the double traceless condition of gauge fields are equivalent to traceless
condition of gauge parameter and there is a solution.
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2n(d+1)+4n(s—n—1 s—2n)(s—2n—1
where An7s = ( 2(8—1() ), Bn,s = % and

Cg,s = An,sAn—l,s—2
0711,5 = An,anfl,sz + Bn,sAn,s—Z (4.13)
0721,5 = Bn,an,sf2

Therefore (;51(,‘? L gV gVt s

oo [cR 0012

T als{c%sw(l,sfm) +Cll7sw(o,sf4,1)]

[s/2]
i Z o, S[ (n s—4.2) 4 C}L s¢ n—ls—41) | 0278¢(n—2,5—470)] (4.14)

After rearrangement,

[s/2]-2
> ansCo ) g Oy Y g O 0 (4.15)

By equation (4.10), double traceless condition is

2 . 1 . 0 —1.9.
An,sCh st Ant1,sCny1 st Ang2sChio s =1:2:1 (4.16)
. . . 202 cl .
At first sight, it seems there are too many equations: “ntls — “fms & Gntls .
An,s Cn+1 s An,s 20n+1 s

202 cl .
However one can check ot = 5 CO” *— for any n and there exist a solution up to overall
n+1,s n+1,s

normalization. With a5 = 1,

1 s(s=1)---(s—(2n—1))
T Al (s (d+1)/2-3)(s+(d+1)/2—4) - (s+(d+1)/2—2—n)
I T(s+1)I'(s+(d+1)/2—2—n)

_ 4.17
4rplT(s —2n+ 1)I'(s+ (d+1)/2 —2) ( :

From the equation (4.5), gauge transformation of (") is

_9 _ —5+2
6¢(n ,8,0) anv(#lcizfusl),o) + 57”(9#[89 — (s +s—2n— 1)tan0]gﬁ sBS
m m
— o) (s —2
C n)(ss "= 1) angc(rtLs0 (4.18)
m

where the notation ¢(™*) is the same notation which already appeared for t.(s is the num-
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ber of indices rather than related spin)
Let’s concentrate on part of gauge transformation of ¢(*) which contain gauge parameters

with covariant derivative, because this part do not mix with the other.

[s/2]

Vin Zans (s — 2n)¢ o B0 (4.19)

Define f/(i)~--us L 2[5/2 5 52” Qs (5" 1.9) and calculate trace of )

M1 Hs—1
Hs—on 1,5-3,0 3,1
61/11/2#1 s— 3gy1y2 = Z an,s(Ans 1 ;ﬁ ugs 3 )+Bn,s—1 /([1178;9:5)) (420)
n=0
[s/2]—1
s—2(n+1 3,0 —2n 3,1
= Z ((S)O‘n-I—l sAn—l—ls 1C,ﬁsus 3) + O, ans 1@35,;5 3))

n=0

One can show that (s —2(n+1))an+1,sAn+1,6-1 = (S —2n) oy, s By s—1 for any n and with
equation (4.9), one can recognize that & () is traceless.

Let’s rewrite the other part with this traceless combination &(*). Final result should have
only gfff 1, and Iy 1o f/(;f_llzs), otherwise the gauge transformation will not preserve double
o 5;(;_12 ) do not contain ¢(©*0)_ Therefore ¢(*59 term in equa-

tion (20) will fix the coefficient of £ ,(le ,25 and the coefficientis *2=2[Jy — (s, + s —1)tan6)].

tracelessness of field. 9

Now L., operator start to appear. One can guess that final result contain STS”;S Eo(snts-1)

and the remnant is little complicate but after some massage one get the compact expression,

s(s=1)(d+ sm+s—3) P f(s_l)
Sm(d+ 25 — 5)(d+ 25 — 3) & (em =973 InpaSpg )

4.21)

In summary, the final expression of gauge transformation of ¢*) in terms of our previous

convention is

k k S —k k
5¢u1 e = f( : S L—(s—i—k—l) EJL)S (4.22)

2 fig)
k(k—1)(d+s+k=3) (1)
S(d 1 2k — 5)(d + 2k — 3) Z4= (=02 i oSy )

4.2 Boundary Conditions and Spectrum

Having identified the correct gauge transformations Eq.(4.2), we now derive the relations

between expansion modes @n s and their differential relations. Requiring each term in the

gauge transformations Eq.(4.2) expanded by the same mode functions, we get the relations
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k[s k—1lk ~kls
0 Ee@ma)f O G [ e O (4.23)
b (s+k—2) 0 k-1ls b1 gh=1ls |

These relations determine the Sturm-Liouville differential equations of @Z'S’s for all £k =
07 SR &

Ei (s k)2E (s1k2) OR° = FIH 1Rl (4.24)

B (orho1) B (s_py_1 OFF = cFIFHL Frllk gkls (4.25)

Here, —Miy ks is used to represent the n-th characteristic value of the Sturm-Liouville pro-
lems Eqs.(4.24,4.25). One can show that Eq.(4.24) and Eq.(4.25) are equivalent since the
identity

b, Lo b =(n—m-—1)

related the Sturm-Liouville operators are related each other and the characteristic values are
related each other by
n

M2 o= M2 4y +d+2k = 3. (4.26)

All relations is summarized by the spin-s spectrum generating complex :

o5
a2 11 E_(2s-9) -M? . =—-M2

n,sls —

n

o (s—k-1—2 1| E_(srkt1)-2) _MQ’];;JFHS =—(M2+(s—k-1)(d+s+k—3))

I 4.27)
La—o—i—2 1| E_(oqr—2) M=~ (MR + (s — k) (d+s+k—4))
La—s—1 11 E_(so1) M2 =~ (MZ+ (s —1) (d+5—3))
®0|s
Here, MZ ols is the mass-squared of n-th mode of spin-s field. They in turn determine mass-
squared of lower spin fields, k = s — 1, s — 2,--- , 1. This spectrum-generating complex

among mode functions enables us to interpret the gauge transformation Eq.(4.2) as Stueck-
elberg gauge transformations. Let us choose, for convenience, relative normalizations in
Eq.(4.27) as

_ _ M,, 1,
B (sih2) O = —ap M, s O and By OF 1 = ank|s Okl (4.28)
S
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where factors independent of mode index n are put together to

9 k(d+s+k—3)

s = (s _k+1)(2k+d—3)

Then, the gauge transformation Eq.(4.2) precisely gives rise to the Stueckelberg spin-s gauge
transformations in AdS, space previously derived in [27]:

k k k k1 k-1
004 i = = V (ot oy O G B Gy (4.29)
where
o ktD(s—kdtstk=2), 5 -
Q= 2T 2%—1) (M?+(s—k—=1)(d+s+k—3), (430
_ (k=1
Ph= a2k —5) M

Here, the dependence on mode n enters only through the mass-squared M? := M?2. Apart
from this, all modes of spin-k fields have the same structure of gauge transformations. There-
fore, spin-k gauge transformation of n-th mode is simply the Stueckelberg gauge transfor-
mation of spin-k field with mass M,,. In turn, these gauge transformations completely fix
the equation of motion for each spin £k = 0,1, --- | s and for each mode n. They constitute
the Kaluza-Klein modes.

As for lower spin cases, were if M?2 is tuned to special negative values, it can happen that
ay, = 0. These special values are the values at which M,, ;. 1, = 0 as well. In this case, the
Stueckelberg system of spin-s field decompose into two subsystems: the partially massless
spin-s system of depth ¢ = (s — k — 1) and the Stueckelberg spin-£ field. Importantly, the
massless spin-s field is also part of the spectrum, since it is nothing but partially massless
spin-s field of depth-0 2. Together, they constitute the ground modes:

Note that our conventions of the mass-squared of higher-spin field is such that it is zero when the higher-spin
fields have gauge symmetries. So, it differs form the mass-squared that appears in the AdS Fierz-Pauli equation,

(VQ + "93) Gpy po ps = 0.
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* The upper subsystem consists of (qﬁ(s), pe= oo </>(k+1)) and forms the
Stueckelberg system of partially massless field with depth t = (s — k — 1).
Their mass spectra are given by

M= —t(d+2s—t—4) [ris (4.31)

* The lower subsystem consists of ((;S(k), D R ¢(0)) and forms the

Stueckelberg spin-k field. Their mass spectra are given by

M2=(s—k+1)(d+s+k—3)/rdys. (4.32)

J

Group theoretically, the decomposition pattern of the ground modes can be understood in
terms of the Verma so(d, 2)-modules. At generic conformal weight A, the Verma module
V (A, s) is irreducible. At special values of A = d + k — 1, however, V(A, s) decomposes
into so(d, 2) irreducible representations [32, 33]:

V(d+k—1,8)=D(d+k-1,8)@D(d+s—1,k). (4.33)

In Eq.(4.33), the irreducible representation D(d + k — 1, s) represents the partially massless
spin-s field, while D (d + s — 1, k) represent the massive spin-(k + 1) field whose mass-
squared is set by the conformal weight A

m? 14 =A(A —d) —(s—2)(d+5—2) . (4.34)

We next classify all possible boundary conditions and determine the mass spectra. As
for the lower-spin fields, we shall only consider boundary conditions derived from Dirichlet
conditions on ©%l%|y_., = 0 for some k. As 0 < k < s, there are (s + 1) possible Dirichlet
conditions. The relations Eq.(4.27) then fix boundary condition for all other fields originating

from the same mode functions:

-0 (C=kk+1,--,5)

=0 (C=kk+1,-- s}4.35)

Below, we show that the pattern of mass spectrum takes the form of Fig.2. First, to counter
cluttering indices, we define simplifying notations as ©¢ := ©F+fs A2, .= M2 | s
Uy =tg_s—o+¢+rand Dy =L _¢ 1o ¢ . Then sub-complex of Eq.(4.27) can be written in
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the form

CH
U 1l D¢ : —M2,=— (M2+(s—k—0)(d+s+k+0—4)) . 436)
oLt

By this complex, there is one-to-one map between ©% and ©%~! for Mn2 o 7 0.1f Mn2 =0,
there exists one additional mode @6 (@g_l) when £ is positive (negative). This additional
mode satisfies D; O = 0 for positive I, U; ©'~! for negative [. After inductively applying

this relation from ¢ = 0, one can show that the structure of mode function is given by
(MY = (K}, G\l p g}, and {0 =K GL L, . 43T)

Here, K f ’s are the Kaluza-Klein modes, and Gg’s are the ground modes which satisfy the

equations
DyDgy1---DyGL =0 with Dy Dpy1---DyGS #0 forall a < k
U arU- U g1G;P =0  with Uy Upyr---U_p41 G #0 forall a< —k+1

(4.38)
The ground modes Gf with the same subscript 7 have the same characteristic value. Their
characteristic value can be obtained by the first-order differential equation D, Gﬁ = 0 and
U,L;HGZK = 0 for positive £. Finally, fields corresponding to G%, ¢ = s — k, --- , a form
the Stueckelberg system of partially massless spin-s field with depth-(s — k — a + 1). We
explained this already in Eq.(4.30) and below. Fields corresponding to G, ¢ = —a, --- , —k
form the massive spin-(k — a) Stueckelberg field with mass-squared M? = (s — k + a +
1)(d+ s+ k —a— 3)/r?%,5- These spectra are depicted in Fig. 2.

Summarizing,
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0 Ground O Kaluza Klein

spin-s [=1 o E e E O] 3 3 3
spin-(s-1) ajig . Of |01 O] |O
L HIHIHIR
spin-(k+2) ol (IR (1R[] R[]
spin-(k+1) O} 10110} |0
spin-k Ol 101109110}
spin-(k-1) __ o1 10110} |0
spin-(k-2) ol __ 0110110110

| ol lo O] 10110} |O
sp.in-z. ol la ollo]|o] 16
spin-2 af (o oflofio11°]....
spin-1 ol 1o (o2 ¥ (=J & (=d § {4
spin-o oHo OHHOHOHOT—

Figure 2: Mass spectra for all possible boundary conditions characterized by Dirichlet con-
ditions on ©F!*. Each point represents a mode function. Points in the same rectangle form the
Stueckelberg system with the highest spin. The the upper triangle consists of the Stueckel-
berg system of partially massless field, while the lower triangle consists of the Stueckelberg
spinf{ =0, 1,---k — 1, as described in Eq.(4.39).

e Mass spectrum for the boundary condition characterized by Dirichlet condition
at ©FI® consists of three parts. The first part is the set of massive spin-s Kaluza-
Klein tower, whose mass-squared is given by the characteristic value of Sturm-
Liouville problem, Eq. (4.24) with k = s. The second part is the set of partially
massless spin-s field with depth-(0, 1, 2, -+, s—k—1). The third part consists
of the set of massive Stueckelberg spin# = 0, 1,--- , k—1 with mass-squared,
M2=(s—L+1)(d+s+L—3)/r% s

* The so(d, 2) representations of ground modes are

(4.39)

Dd+s—t—2,s) for t=0,1,---,s—k—1
D(d+s—1,0) for ¢=0,1,---,k—1

whose masses are set in terms of conformal weights by Eq.(4.34).
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4.3 Decompactification Limit

In our setup, the distance between boundaries, a ranges over [—a, «]. If the wedge «
approaches 7 /2, the spacetime decompactifies to the entire AdS . 5. In other words, the o« =
+7/2 hyperplanes correspond to the AdS;;2 boundary. As such, one might anticipate the
spectra of compactified theory approach the spectra of AdS; 2. This seems to be in tension
with our result as the mass spectra of spin-s field in AdS, space arises only for special set
of boundary conditions. Here, we discuss subtleties involved in the decompactification limit.

Consider the AdS ;2 massless spin-s spectrum from the viewpoint of AdS ;. space. This
is just like the L — oo limit of flat space we studied in section 2. The £? square-integrable
modes of massless spin-s field form the so(d + 1, 2)-module: D(d + s — 1, 8)s0(a+1,2)- Rep-
resentation theoretically, we can decompose this module into so(d, 2)-modules, a procedure

referred to as the “dimensional digression” in [29]:

00 s—1
(d+3 L, S so(d+1,2) @ D d+n+3_17 S)so(d,Q)@@ D(d+8_1a l)so(d,2) . (4.40)
n=0 =0

We can relate these modules with states that arise from the compactifiation of higher-spin
field, as the foliation of Fig.?? precisely matches with the above dimensional digression.
There are two kinds of so(d, 2)-modules in the right hand side of Eq.(4.40): the first set of
modules have the same spin, spin-s but different conformal dimensions, while the second set
of modules have the same conformal dimension but different spins ranging over 0 to s — 1.
We se that the second set of modules in Eq.(4.40) coincide with the set of ground modes for
k= 5 (0%°|g—+q = 0) in Eq.(4.39). In order to reconstruc the so(d + 1,2) module in the
left side of Eq.(4.40), we would then need the Kaluza-Klein modes from k£ = s to match
with the first set of modules. Below, we demonstrate this affirmatively.

In the k£ = s case, the mass spectra of spin-s field are determined by the Sturm-Liouville
equation Eq.(4.24) and the Dirichlet condition for mode functions ©%/°:

Ly ok o 1) O =—M2O3,  where Oy, =0. (4.41)
The solution is given by
0315 = (cos )" (¢ PH(sinf) + co Q" (sin#)) , (4.42)

where P}’ and Q% are the associated Legendre functions with arguments, 1 = % (d+2s—3)
andv (v+1) = M2 — 1 (1 — (d+2s — 4)2) . In the decompactification limit, the bound-

45

A =

-Tf] &



ary conditions ©° s lg=+o = O take the form

_ I u2_i 2y _ Ok
0= —3 smA((PV) = (Qy)> 2 cos A PP Q¥ (4.43)

— - sin A (cos(um) [(w))?* (2)" forevend

12

(4.44)
2
—5 sin A (ﬁ) (%)“ for odd d
where A = 7 (u + v) and 1 > € = 1—sin « > 0. Therefore, it must be that pi+v are integer-
valued in the decompactification limit. From the relation Eq.(4.34), it immediately follows
that the modules that correspond to the Kaluza-Klein modes are precisely @,~, D(d+n+
s—1,s).

Spectrum for the cases of (k = s) goes to the spectrum of “dimensional degression

[29]” in the decompactification limit(i.e. « — 7/2).

All are well so far, so one might anticipate that the spectral match with the dimensional
digression continues to hold for k # s. This, however, is no longer true. The point is that
some of the ground modes in Eq.(4.39) contain the modules which are not in massless spin-s
modules of AdSy;2 space, D(d + s — 1, 5)50(d41,2) in Eq.(4.40). The mode functions that
would potentially match are actually singular (equivalently, the normalization factor goes to
zero) in the decompactification limit. In particular, the massless spin-s field in the AdS ;2
space belongs to one of these singular modes. For spin-two case, this was already shown in
Eq.(3.58). Conversely, this explains transparently why the dimensional degression [29] of

AdS,42 space does not generate “massless” spin-s fields in AdS,4; space.
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Chapter 5

Higher Derivative Boundary Conditions and
Boundary Degrees of Freedom

We encountered eigenvalue problems with higher-derivative boundary condition(HD BC).
Especially for fields with spin greater than three, HD BC is unavoidable consequence. With
HD BC, an Strum-Liouville differential operator is not self-adjoint on L? functional space
and eigenfunctions are not orthogonal nor complete. Suppose we have an arbitrary function
f(0) and eigenfunctions ©,,(6) from eigenvalue problem with HD BC. In previous chapters,
we just assumed f(6) can be expanded by ©,,(0) — f(0) = > fn©,(0) —and f(f) =0
gives f, = 0 for every n. Without orthogonality and completeness of ©,,(#), each step is
unclear and even we cannot get f,, from f(6). How can we get f,, = 0 which correspond to
lower dimensional equation of motions?

There is another issue possibly related with HD BC. As we can see from the spectrum
of spin-two example and higher spin compactification, for some boundary conditions, non-
unitary partially massless representations appear. Which means some boundary condition
gives unitary lower dimensional theory and some boundary condition does not. In terms
of HD BQC, it is hard to tell which boundary condition is unitary before studying lower
dimensional spectrum. How can we see the origin of non-unitarity?

In this chapter, we answer above 2 questions. These questions are closely related and
solved by a single resolution. We develop a way of translating HD BC into corresponding
boundary action. In terms of boundary action, the physical properties are clear we can tell
which boundary condition is unitary. Also, the existence of boundary action or boundary
degrees of freedom implies the extension of function space of the field degrees of freedom.
We claim that extended function space and inner product gives correct resolution for the
mode expansion with HD BC.

In physics literature, HD BC is dealt numerically rather than analytically. In mathematical
literature, one can find analytically resolutions and the idea of extended function space [35,
36, 37, 38].

In the first section, we study simple mechanical example of a string where the HD BC
naturally appears. From string example, we can learn both mathematical and physical as-
pects of HD BC. Especially we introduce the extended inner product. Using extended inner

product, we naturally translate HD BC into boundary action. Then we apply what we learn
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from string example to spin-two example with specific 2-derivative boundary conditions.
We point out the origin of non-unitarity from HD BC. In the last section, we describe more

systematics to find the extended inner product for more HD BCs.

5.1 String Example

As the first case, we study classical field theory of an open string attached to nonrelativistic
massive particles at both ends.' The motion of open string is subject to boundary conditions.
It is intuitively clear that the endpoint particles exert boundary conditions that interpolate
between Neumann and Dirichlet types. If the masses are infinite, the string endpoints are
pinned to a fixed position. If the masses are zero, the string endpoints move freely. It is
less obvious, however, that endpoint particles with finite mass put the open string to higher-
derivative boundary conditions.

We explain its physical meaning. We will study this system in three difference ways. At
the end, we will get the refined inner product and mechanism for finding boundary action
from HD BC.

As the first approach, we shall start with boundary degrees of freedom, integrate them out,
and convert their dynamics to HD BC for the open string. Consider an open string of tension
T, stretched along z-direction 0 < z < /¢ and vibrating with vertical amplitude y(z,t).
String’s end points are attached to harmonic oscillator particles at x = 0, ¢ whose masses,
vertical positions and Hooke’s constants are M, y(t), k1 and My, yo(t), ko, respectively.
See Fig. 3. The system is described by the action

Figure 3: Open string connected to massive particles in harmonic potential.

""This example was considered in detail at [34].
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I= /dt (Lstring + Lparticle, 1+ Lparticle,Q) y (51)

where the Lagrangians of open string and massive particles are

—_

T l
Lstring = 2/ dx ((aty)z - (893:1/)2) and Lparticle,a = 5
0
(5.2)
The action completely determine dynamics of the variables (y(x,t),y1(t), y2(t)) without
specifying any boundary conditions. As the string is attached to the particles, the string

amplitude is related to particle positions by

y(z,t) = y1(t) and y(z,t) T ya(t). (5.3)

Thus, one can alternatively eliminate the particle variables y;(t), y2(t) and express them in
terms of just the string amplitude y(x,t). This then replaces the constraints Eq.(5.3) and
particle actions by some boundary conditions to the string amplitude y(z, t) at = 0, £. Our
goal is to derive these boundary conditions, starting from boundary actions f dt Lparticle, 1,2
that are provided by the endpoint particle actions.

So, to figure out the boundary condition, we derive the field equation of the string from
the action Eq.(5.1):

oI = / dt | -7 / dz oy [0y — 02y] + T [0y Oyl — D 0ya(Maja + kaya)
a=1,2
(5.4)

Imposing the constraints Eq.(5.3), 0y(0,t) = dyi1(t) and dy(l,t) = dya(t), so we obtain the

string field equation of motion
(02-22)y@ty=0 (0<z<0) (5.5)
and equations of motion for particles

Miyi +kiyr —T 0y

» =0 and Ms 9o + ko yo2 + T 0y —4:0' (5.6)

Integrating out the endpoint particles amount to relating y;(¢), y2(t) to the endpoints of
string amplitude by combining Eq.(5.3) with Eq.(5.5). We obtain the sought-for boundary
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conditions
My O2y — Ty +k1y =0 and My 9>y + T Opy + ko y ,= 0 (5.7)
xTr= xr=

We see that, for finite M; and Ms, the boundary conditions are second order in normal
derivatives, so they are indeed HD BCs. Were if M7, M zero, the boundary conditions are
the most general Robin boundary conditions. The Robin boundary conditions are reduced to
Neumann and Dirichlet boundary conditions in the limit %1 o are zero and infinite, respec-
tively. Were if My, M, infinite, regularity of boundary conditions require that 9%y vanishes
at the boundaries. In turn, 0,y is constant at the boundaries, and so the boundary conditions
are again reduced to Dirichlet boundary conditions.

Conversely, we can always reinterpret HD BCs on open string as attaching massive par-
ticles at the endpoints. Start with an open string whose field equation Eq.(5.5) is subject to
HD BCs Eq.(5.7). This is the same situation as we have for the higher-spin field in AdS
waveguide. Solving the open string field equation subject to the boundary conditions is the

same as extremizing some modified action I whose variation is given by

_ l
ol = /dt (—T/ dx 5y[8t2y— 8£y])
0

— At (t) 6y [M102y — TO,y + kry| — dtAa(t) 6y [M202y + TOyy + kay]
=0 =0

— M, / dt oy [E)fy — agy] — Mg/ dt oy [8t2y — Eﬁy] , (5.8)
=0 z=(

where A\ (t) are Lagrange multipliers that imposes the HD BCs. The last line is redundant,
since they vanish automatically when the open string field equation from the first line is
obeyed. By reparametrization of time ¢ at both boundaries, it is always possible to put them
to constant values which we set to unity. To reconstruct the action I, we combine derivative

terms that depend on string tension 7:

l l
T/dt/ dz 6y 0%y — T/dt (5y 8xy)§ =9 (g /dt/ dx (8my)2> ) 5.9
0 0

and also combine derivative terms that depend on the mass parameters M, Moy:

- Ml/ dt 6y 02y — Ml/ dt oy [0fy — 02y] = —Ml/ dt 6y D2y = 6 (]\gl/dtgf)
x=0 x=0 =0

M
— Mg/ dtéyﬁgy — M2/ dt (Sy[@fy — 821/] = —Mg/ dtéyafy =0 (22 /dty'2> .
=0 =0 r=0

(5.10)
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Combining with other terms in the variation, we get

~ T ¢ 1 1
I= 2/dt/ dz [(9wy)? — (9:y)?] +2/dt (M, Q%—kly%)+2/dt (Mo 9 — kay3) .
0

(5.11)

By renaming the endpoint positions as in Eq.(5.3), we find that the action Iis precisely
the action of open string coupled to dynamical harmonic oscillator particles at each ends,
Eq.(5.2).

We still need to understand how the Sturm-Liouville operator —d2 of open string can be
made self-adjoint for HD BC. It is useful to recall implication of self-adjointness for the
Robin boundary condition. In this case, we can rewrite the open string action in terms of

inner product for square-integrable functions

T ¢
Lasvg = 5 [ 4t (0.00) — (0 (~02)0) where (.9 = [ do f(a) gla).
0
(5.12)
Denote the square-integrable normal mode functions of (—92) as X,, (n = 0,1,2,3,---),
viz. (—02)X,, = Ay X,. As the Sturm-Liouville operator (—d?2) is self-adjoint for the Robin
boundary condition, the normal mode functions can be made orthonormal and form a com-

plete set of basis of the Hilbert space of square-integrable functions. So, we can decompose

the string amplitude y(z, t) as
y(a,t) = Tp(t) Xn() (5.13)

and the open string action Igtying as

Tsing = > g / dt (Tg - AnTg) . (5.14)

Motivated by this line of reasonings, we ask if the combined action of open string with

HD BCs can be written in terms of some inner product (, ):

iy =3 [ (@m.0m) - (. -02m). 5.15)

We now prove that the inner product {, )) that renders the Sturm-Liouville opertor (—92)

self-adjoint under the HD BC Eq.(5.7) is precisely the extended inner product Eq.(??). In the
present case, the additional vector space is provided by the positions of two massive particles
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attached at string endpoints. Therefore, it spans R ¢ R. The metric of this two-dimensional
vector space is given by masses (measured relative to string tension). For a function space
£? ®R?, a general element and its inner product with respect to HD BC Eq.(5.7) would take

the form

f(z) ¢
f= fi €L’BR?, f-g= /0 dz f(z) g(x) + G11.f191 + G2z fag2. (5.16)
fo

Roughly speaking, two new real numbers f; » correspond to boundary value of f(x) which
are left undetermined by the Sturm-Liouville differential equation and HD BC. The bound-
ary conditions on element of £? @ R? are HD BC in Eq.(5.7) for f(z), together with
fi = f(0) and fo = f(I). With these boundary conditions, we now define the extended
inner product ( , )) for the open string with HD BC as

l
(ra)= [ def@a@) + FHO00 + F 00, 61D

where the metric of R? is chosen by the parameters in the HD BCs, Eq.(5.7). With respect
to this extended inner product, we now find that the Sturm-Liouville operator (—d?2) of open
string is indeed self-adjoint:

(£, (~3)g) — ((~0)1..)
—— LIy~ TOug + kag)|_ + 7 (M2 ~Touf +hf)g]
+ LSOO+ T0,g + kag)|_ — Z(Mo2f +T0,f + haf)g| _
o, (5.18)

where we arranged the harmonic force term (zero derivative terms in the boundary condition)
and the HD BC Eq.(5.7) for f and g. With the extended inner product, we shall expand the
proposed action Eq.(5.15) in terms of the original inner product over £2-space and additional
inner product over R? space. We observe that, after renaming the boundary values of y(z, t)
as Eq.(5.3), the proposed action [ ®) in Eq.(5.15) is precisely the action of open string
attached to endpoint particles, I = Istring + Iboundary- We reiterate the key point here is that
extended inner product, HD BCs, and boundary actions are bear the same information and
dictate their structures one another.

The extended inner product we introduced poses a new issue originating from the HD

BC, equivalently, the endpoint particle dynamics. For some choices of the HD BCs, the ex-
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tended Hilbert space can be indefinite, viz. the norm ((y, y)) can become negative. This hap-
pen precisely when the metric components M 2 /T have negative signs. Take, for instance,
My = My = M and k; = ko = 0. There then always exists at least one mode

l 1 M l
Xo(z) = Ny sinh {mg <x - 2)] with = —?tanhm?o, (5.19)
whose extended norm is negative for negative value of M
¢ M 4
(X0, Xo) = No® [—2 + T sinh? m20] <0. (5.20)

This mode is problematic as, upon mode expansion, the corresponding component in the

action Eq. (5.14) has the kinetic term with wrong sign,

T .
(—)Q/dt (TS —AoT(?) . (5.21)

This causes negative energy of the open string at classical level and negative probability
(and hence lack of unitarity) at quantum level. Moreover, the mode eigenvalue A\g = —m%
is negative definite (which is again a consequence of negative value of M, as seen from
Eq.(5.19)) and so the variable Tp(t) develops an instability to grow exponentially large.
There is another example demonstrating the utility of the boundary degrees of freedom
view point. Consider k1 = ko = k < 0, M1 = My = M > 0 and T' > 0 case. In this case,
the extended inner product Eq.(5.17) ensures positivity of the norm. However there are some
modes with negative eigenvalue. Generic even (with respect to x = %) mode function with
negative eigenvalue is X, (z) = cosh [\ (z — £)], (—02)X. = —A2X,. HD BC implies

(
MN + T\ tanh(3A) = —k (5.22)

and this equation always has solutions because for A > 0, Lh.s is starting from 0 and mono-
tonically increasing. Also the HD BC of generic odd function X,(z) = sinh [)\ (x — %)]

implies
) ¢ ¢
M\ tanh(§/\) +TA=—k tanh(gz\) (5.23)

and this equation has solutions when 7" < —% k.? Again, these negative eigenvalue modes

show instability of the system. In terms of HD BC, it is hard to see the origin of this insta-

?In terms of boundary degrees of freedom, this inequality means that repulsive force from spring is bigger
than string tension.
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bility. However, in terms of boundary degrees of freedom, it is immediate that the origin of
instability is the negative spring constant.

So, by relating HD BCs to boundary action of extra degrees of freedom, we gain a better
understanding of underlying physics. For M negative, it is hard to recognize the above in-
stability or non-unitarily at the level of the equation of motion and boundary conditions. In
contrast, the boundary action clearly shows the origin of instability or non-unitarity and it is

simply a consequence of negative mass of the endpoint particles.

5.2 Spin-Two Example

We now apply our understanding of the HD BC in the previous subsection to the spin-two
field in AdS waveguide studied in section 3.3.2. Recall that spin-two is the first situation that
HD BCs start to appear and, among three possible Dirichlet classes, B.C. 1 and B.C. 3 con-
tain two-derivative boundary conditions to some of the component fields. In this subsection,
we identify the extended inner product for these boundary conditions and explain the origin
of non-unitarity for partially massless representations in AdSg .

We first construct the extended inner product for spin-two fields in AdS space. The Sturm-

Liouville problems with HD BCs that we will consider have the following form:
by ba©, = -2, ©0,  where k. E,Op[,_, =0 (5.24)

for some weights a, b, c. Note that the Sturm-Liouville equation and the boundary condition
share the same operator k. From free action of the spin-two field, we get an £2 inner product

«
(O ,0,) = / dé (sech)1 ©,,(0) ©,,(0), (5.25)
—Q
where the weight factor in the integration measure originates from the conformal factor of
the metric Eq.(3.6). As we deal with spin-two, s = 2 and so a+b = d—2s = d — 4. We thus
take the weight factor as (secf)®*?. For any conformal factor (secf)® with arbitrary weight
¢, we integrate by part
«

/ " a0 (s¢ch)® O (£aOp) = — / d0 (sech) (Le—aOm) O + (seca)®[0,,0,] 2.

—Q —Q

(5.26)

Using this, one finds that the differential operator £, £, is not self-adjoint on £2 functional
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space,

(Om, (Bs£40,)) — (EyEa On), On) = (seca) [0, (£aOn) — (£0©0n)0n] 7% #0.
(5.27)

By inspection, we find an extended inner product which renders the Sturm-Liouville operator
Lk, self-adjoint,

(Om, On) = (O, 0n) + > NoOp(00)O,(0a), (5.28)
o==+

where
Ny =N_=(c—b) L cotalsec a)*t’. (5.29)
We can confirm that £k, is indeed self-adjoint with respect to the extended inner product:

<<@ma (Lb La@n)» - <<(Lb La@m)’ @n»
:(SGCO[)a+b Z (@m(La@n) - (La@m)@n +Na(@meLa®n - (LbLa@m) QH)) (O'Oé)
o=+

=(seca)™™ 3" N, (@m(LcLa@n)(aa)—(LCLa@m)@n(aa)) . (5.30)
o=%

The last expression vanishes by the HD BCs in Eq.(5.56).

We apply the extended inner product to the ground modes for the HD BCs, B.C. 1 and
B.C. 3 in section 3.3.2. In the last subsection, whether a given HD BC lead to non-unitarity or
not depends on parameters specifying the boundary conditions. The extended norm-squared
is positive definite if unitary, while it is negative definite if non-unitary. For B.C. 1, the HD
BCs are imposed on spin-zero mode with ¢ = d — 3, b = —1 and ¢ = d — 2. We see
that the normalization constants N in Eq.(5.28) are positive-definite, so the norm-squared
is positive-definite. In contrast, for B.C. 3, HD BCs are imposed on spin-two mode with
a = —2,b=d—2,c= —1 and the normalization constants N are negative-definite. More
explicitly, the ground modes of B.C. 3 are

{ 01” = Ny secf tan#, ©}” = Ny secf typeIVinTable 1, (5.31)

@gp = N3 sec? type II in Table 1,

which correspond to the PM spin-two and massless spin-two fields, respectively. Boundary

condition of spin-one mode function is one-derivative boundary condition and its norm is
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positive-definite. In contrast, the norms of spin-two modes are

@ 2
<<®?‘2, (9%'2}) = N,? </ df sec?26 tan? 6 — sec?™? o tan a) (5.32)

. a-1
(052, 05%) = Ny? /a 00 sectp 25T Y (5.33)
0 >0 W (d—1) tana

It can be shown that the norm Eq.(5.32) which corresponds to PM mode, is always negative’

by the following estimation.

« 2
<<®?‘2, @fp)) = N,? <2/0 d sec? 0 sin® 0 — 71 sec? o sin a)

@ 2
< N;? <2 sina/ df sec? 0 sinf — -1 sec® v sin a> (5.34)
0 _
2

=—N;2
La-1

Inequality holds because sin § < sina for 0 < 6§ < o < 7. This negative norm implies that
the kinetic term of PM mode has the wrong sign.

With the extended inner product, we can construct boundary action which reveals physical
properties of the imposed HD BCs. The action of free massless spin-two field hj;n on
AdS 442 background is

Ispin—two :/\/gdeer Lo (BMN;gMN’d"’_ 2)
1 -, - _ _ _ _ _ _ ar
:/\/gdd+2x|:_QVLhMNthMN+VMhNLthML_thMNth

o I 1_
+ 5 VERVLR = (d+1) (BN hasy — 5 1) (5.35)

DO |

After compactification on the AdS waveguide, each term of Eq.(5.35) is decomposed into
quadratic terms of component fields, h,,, A, and ¢, which can be expressed as L2 inner
product Eq.(5.25) with a + b = d — 2s = d — 4. For example,

/dd“ms/i—g d6 (secd)* VP W N, by, = /dd“x\ﬁ—gwp R Ny By ) -
—

As in the open string case, we require that each term of the quadratic action expressed by

appropriate inner product which ensures orthogonality and completeness of the mode func-

3 The other norm Eq.(5.33) is negative for a ~ 0 and positive for o ~ 7 /2. When one of Kaluza-Klein mass
hits zero mass, this norm vanishes. In this specific value of «, there is no massless spin-two field, type III, in
the spectrum and type II appear instead.
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tions. We now know that, depending on the nature of boundary conditions, some of these
terms needs to be the extended inner product which contains the contribution of boundary
action. The situation is more involved as there are three component fields each of which
obeys different boundary conditions. From the spectrum generating complex, we have three

kinds of boundary conditions:

* spin-two Dirichlet, expanded by @2‘2 hyuw,s by 2A,, Lgobg 3¢
* spin-one Dirichlet, expanded by @1‘2 L ohu, A, Lg_s¢
* spin-zero Dirichlet, expanded by O, 02 bk ohy, L4, 10)

By straightforward computation, we find that the action is decomposed as

I = /d@ (sec&)d_4 Lo (h,ul/; Guvs d+1)

1
[ 5 (P Fu) = 20 (A%, Ay) + (Eoh?, VA, + YAy = 20,97 A,)

1 1 d(d+1 d
~ b2 M b o ) + o (b2 b koo h) + w@d 10, bia0) — o (Eah. R )
+ [—di ( (V' 6,V ¢>+ﬂ<¢ ) + 2d1< LA Y, (5.36)

The first line, the second bracket and the third bracket are spin component of modes: <@5‘2, @S|2>

for s = 2,1, 0, respectively *.
Consider first B.C. 1. In this case, the spin-zero component field obeys HD BC:

E_ikg 30°7 = —20%2  and kg0 507, =0 (5.37)

So, we need to adopt the extended inner product for terms involving the mode function
(CRES They are the terms in the third bracket of Eq.(5.36). Using the extended inner product
Eq.(5.28) witha = d — 3, b = —1 and ¢ = d — 2, we obtain the corresponding boundary
action from the difference between extended inner product and original inner product

)d74

[0 5 (b 1) 4 (7,0

(5.38)

* The classification appears somewhat arbitrary. For instance, (Ea—30,Lq—30) belongs to (61‘2, 61‘2> but
its another form (¢, £._1t.4_3¢) obtained by integration by parts belongs to (@OlQ, @O|2>. We will show that the
total action is nevertheless the same provided we keep track of boundary terms.
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Redefining the boundary values of spin-zero field as

d d—a 1/2
¢ = ((d —1)2 (Setca(jlzl ) ¢‘9:m’ (0 =), (5.39)

we get the boundary action as

Tomasspcr = Y. [ 40712y=g [ = (57079,0° + 52 072) + C(bad]y, V07|
o=+

(5.40)

where C' = (ﬁ cot a(seca)d*‘l) /2 Note that the sign of kinetic term for boundary
spin-zero fields ¢ is standard in our convention. This matches precisely with the result of
section 5.2 that the waveguide compactification with B.C. 1 yields only unitary spectrum.
For the second term of boundary action, we may interpret it two alternative ways. We can
interpret that the bulk field A, is sourced by the boundary field ¢+, equivalently, the bound-
ary value of bulk field A, turns on the boundary field ¢*. Alternatively, we can eliminate
this term by writing the cross term (L_1 A*,V ,¢) as (A" L33V ). This is related to the
freedom which is explained in the footnote 4. We will revisit this issue at the end of this
section.

Consider next B.C. 3. In this case, the spin-two component field is subject to HD BC:
Egok 20"7 = -20%?  and E_ £ ,0%%|,_, =0 (5.41)

We thus need to adopt the extended inner product for terms involving the mode function
©212. They are the first term in Eq.(5.36) that contain the kinetic and mass-like terms of spn-
two field /. Using the extended inner product Eq.(5.28) witha = —2,b=d —2,c = —1,

we now get the boundary action as
Iboundary,BCS = - Z /dd+1xv -9 Lo (th; Guvs d+ 1) (5.42)
o=%

where we renamed the boundary value of the bulk spin-two field by

_— 1 (seca)®™ 1/2 B
P = (d -1 tana h“”’@:oa’ (0=4). ©4)

Most significantly, with extra minus sign in front of the boundary action Eq.(5.42), the
boundary spin-two field hffy has kinetic terms of wrong sign. Again, this fits perfectly with
the result of section 5.2 that the waveguide compactification with B.C. 3 yields non-unitary
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spectrum for the partially massless spin-two fields. As stressed already, this result was hardly
obvious to anticipate just from the HD BCs. With the extended inner product, we now have a
firm understanding for the origin of non-unitarity of partially massless spin-two field without
ever invoking so(d, 2) representation theory.

Summarizing,

« For HD BC, we need to extend the functional space from £% to £> & R" to
render Sturm-Liouville operator self-adjoint. We showed that this extension

can be physically understood as adding /N many boundary degrees of freedom.

e From the extended inner product, we constructed the boundary action for a
given HD BC. The boundary action enabled to directly trace the origin of

(non)unitarity of waveguide spectrum.

e For B.C. 3 in section 3.3.2, the boundary action of boundary spin-two fields
has kinetic term of the wrong sign. This explained why the partially massless

spin-two field is non-unitary.

e For B.C. 1 in section 3.3.2, the boundary action of boundary spin-zero fields
have kinetic term of conventional sign. This explains why the massive spin-

zero field is unitary.

J

Before concluding this subsection, let us revisit the ambiguity mentioned in the footnote
4. Consider B.C. 1 and the term (E;_3¢,E;-3¢). Such term was classified as originating
from <®1‘2, @”2), so appears not to be refined. On the other hand, using Eq.(5.26), this term
can also be rewritten as — (¢, £._1£4_3¢) with surface term [(secar)?™* ¢ Eq_50] EZ This
term belongs to <®0‘2, G)O|2), so needs to be refined. Thought this seems to pose ambiguous,

it is actually not. From

O=o«

(0B 1kg 30) = (0, E_1ka 30) + > N (¢L—1Ld—3¢)
o=%

= —(Eq-3¢,Ea30) + > _ N, <¢ Ld72Ld73¢> (5.44)
o==+

0=+a’

we see that (¢, £._1t4_30) and —(Ly_30, 4_3¢) are the same up to boundary conditions.

One can start with any bulk action, and the extended action is the same. There is no ambigu-

ity.
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5.3 Systematics for HDBC

In this section, we describe how to expand function space and inner product for 2, 3, 4
derivatives boundary conditions. See appendix B for 5 and 6 derivatives cases. We concen-
s|s
n

trate on the HD BC comes from the Dirichlet boundary condition on ©;" which means,

n-derivative boundary condition for @Z_ms. For 2 derivative boundary condition, the situa-
tion is much simple and we analyze with more generality. Unfortunately, our method cannot

apply to generic higher derivative boundary condition since the complexity grows too fast.

5.3.1 Strategy

Since now we deal with more general cases with various spin, let’s define more specific

notation for inner product.

1 +a
(F0):90))5: = oooie [ A0 GecO) S ©)g(6) (5.45)

(seca)e J_,

Here ¢ denotes weight factor for L? inner product. Under L? inner product, difference be-

tween (O,;,, LbLaG)n&"gb and (£4£,0,,, @n)‘z’;b is a surface term [@m(La(an)— (La®m)@n] J_r )

This surface term vanish only for the Dirichlet boundary condition ©,|+, = 0 or mixed
boundary condition. Using eigenvalue equation and derivative of eigenvalue equation at
the boundary, one can expand eigenfunction ©,, € L? to generalized eigenvector 0, €
L? ® RN. With generalized eigenvector 6,,, also the eigenvalue operator is naturally ex-
panded to eigenvalue operator [E acting on O,. By defining proper inner product of general-
ized eigenvector (6,,, 6,,) 12q RN > one can make the difference between (6, EO,,) L2 RN
and <Eén, ém> 12 RN to a surface term which vanish under given higher derivative bound-
ary condition. Then, under this inner product, operator E is self-adjoint and every nice prop-
erties are restored. Note that this procedure at # = 4+« and § = —« are totally independent
therefore expanded space always should be L2 @ RV . This is the consequence of consider-
ing identical parallel 2 boundaries. This system is symmetric under § — —6, therefore every
calculation for +« is completely parallel. From the next subsection, we will concentrate on
surface terms at 6 = +« and omit the § = —a part except for 2 derivative example.

More concretely, eigenfunction ©,,() and eigenvalue equation £,£,0,,(0) = —\0,,(0)
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are expanded to

©,(0) L, ©,,(0) ©,(0)
Il(®n)‘+a Jl(@n)|+a L (@n)|+a
Il(gn) —« J1(®n)|fa Il((_)n) —«
Eén =K I2(®n)‘+a = J2(®n)|+a =-A 12(@71)’-&-04 = —)\én
IN(en)‘-&-a JN(@n)’—i-a IN(@n)’—&-a
IN(Gn) —a JN(@n)|fa IN(@n) —a
(5.46)
1; and J; are the linear functions of ©,, and satisfy the relation
Ji(©,(0)) = =A;(©,(0)) (5.47)

I; and J; are constructed from the eigenvalue equation and derivatives of eigenvalue equa-
tion. Also I;, J; give the definition of [E therefore they are the main object we should calcu-
late. Under these conditions, {én} forms complete basis for L?@® R?Y and arbitrary element
f e L@ R2YN can be expanded by {6, }.

f(9)
[ > cnOm (5.48)

fan

Here, f;’s are just arbitrary real numbers and indepent with f(#). Natural inner product of
L? & R*N is

2N
(Fo)2eren = (£9)53° + Y N figi = (£,9)58° + Bon(£,5) (5.49)
=1

N is the normalization factor (NVoj,_1 = No because of 6 — —6 symmetry) and the sign
of this factor is the most important information. So what we have to calculate are I;, J; and
N;. Guiding principle for determining I;, J; and N; comes from the previous requirement
on the inner product of 6,.

<én,]Eém>L2®R2N — (EO,, ém>L2€BR2N = [Surface Term| +Z (5.50)

This surface term should vanish under given higher derivative boundary condition. NV is the
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number of necessary /; and J; to achieve this requirement.

Actually, we already know the relation between N and the number of derivatives in the
boundary condition. From the direct calculation, we got eigenfunctions for given higher
derivative boundary condition, and classified them into “Kaluza-Klein Modes” and “Ground
Modes”. The eigenvalues of “Kaluza-Klein Modes” depend on the distance between the
boundaries, « but the eigenvalues of “Ground Modes” do not depend on «. For M-derivative
boundary condition, there are M “Ground Modes”. When M is even, ‘“Kaluza-Klein Modes”
form a basis for L? space and the number of “Ground Modes” is the same with 2/N. When
M is odd, “Kaluza-Klein Modes” together with one of “Ground Modes”, which is analogous
to the ground mode of the Neumann boundary condition, form a basis of L? space and
the number of the rest of the “Ground Modes”, M — 1, is the same with 2/NV. Therefore
N = [M/2]. This is not a rigorous statement and is related with the uniqueness of expansion
to the generalized eigenvector. Up to now, we don’t have complete proof and will just take
N = [M)2].

5.3.2 Basis of Higher Derivatives

The elements for extended inner product are I; and J; and they are linear functional of
higher derivative to make a surface term which vanish by HD BC. To deal with arbitrary
linear higher derivatives, we should fix the basis for higher derivatives. Also to keep the
structure of the eigenfunctions, we should use t.,,, operators. Considering higher derivatives
in terms of L.,,, operator is highly ambiguous since one can consider various m’s. One nice
basis is

Lg@) =L stk—34+m - Ed—str—1ba—str—2 (5.51)
m E's

for m > 0. This operator is product of successive m raising L.,,, operators, therefore

BV O ~ el (5.52)

We can omit subscript k|s since this operator only action ©*ls and there is no ambiguity.
Using this basis is notationally and schematically convenient, because boundary condition

is given in terms of £(™)_ One can define this operator for m < 0 with different set of L,,,’s.
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k k
When L,(SJrk,l)Ld_s_;_k_Q@nls = —/\@n|s,

Lf(s+(k+m)fl)Ldfs+(k+m)f2L(m)@ﬁls = (—)\ + Z(d +2k—4+ 21)) (M ekl
i=1
(5.53)

In terms of £ only,

(L<m+2> — Aklsg(m+1) _ pkls L<m>) okls — _\pmgkls (5.54)

Akl =AM T = (d 4 2k — 2+ 2m) tand

BQS:ZAfls:m(d—l—Zlﬁ—Sij)

i=1

AP =g ok —a12i,  T5=tand

for m > 1, equation (5.54) is the m-derivative of the eigenvalue equation and for m = 0,
it is the eigenvalue equation itself. (BéC s = 0) These equations provide complete building
block of equation (5.47) therefore I; and J;. Consider an arbitrary I; = Z%:o bi,mL(m)

then corresponding .J; should be

M+2 M+42
Ji= 3" cimb™ = 3" (bimen — AN i1 — BEE by ) R (5.55)
m=1 m=1

bi,—1 = bi m+1 = bj p4+2 = 0. Therefore indepent variables are I; and J; are b; ,,’s. Actu-
ally, b; ;s contain every information we need including the normalization factor N;. How-

ever, for convenience, we set b; ,y = 1 and consider N as a free variable.

5.3.3 2 derivative

2 derivative boundary condition is relatively simple to analyze so we can do it with more
generality. And we write down both surface terms at § = +« only for this example. From
the next example, we will omit the surface term at § = —«. Consider following eignevalue

equation and boundary condition,

L,L,0, = -0, (5.56)

LebaOn |y ., =0 (5.57)
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Eigenvalue equation can be rewritten as
J(O,)={kt, — (c—b)Toky) O, = —XO, = —\I(O,) (5.58)

This is all we need.(N = [2/2] = 1) This system can be expanded to that of ©,, € L2 & R2

©,(0) Eyb,0,(0) ©,(0)
E-| I(®n)]+a | = J(On)|+a ==A| 1(On)]+a (5.59)
1(On)|-a J(On)]-a 1(On)|-a

Up to now, there was no free parameter that we can tune. The only free parameter of 2

derivative boundary condition is the normalization factor .

(61 EOm) 12m2 =(On EoaOn )51 + N (1(02)J(Om)|+a +1(04)(O)] )

—(Seml)m / dé (sech)* ™ 0, Lk, 0., (5.60)

+ N (O4kkaOm — (¢ = b)Tp OntaOn) |,
+ N (OnkckaOp — (¢ — )Ty OnkaOn) |

Then,

<éna IEém>L2@R2 - <Eém ém)LQGBRQ
= [04(LaOm) — (£a0,)0,,] " (5.61)
m)

. b)’ra/\/(@n(La a(L 0,) m) ot (e me(@n(La@m) - (La@n)®m> |

+ N(en(LcLa@m) — (Eeka®)0m )| + N (On(EkaOn) = (Eka©r)On )|,

Note that 7_,, = —T5. Set V' to ¢ b)T and the original surface term from L? inner product

is canceled. Remalnmg surface term is

—

(6, EO,) r20m2 — (EOy, O r26 52 (5.62)
1
e (OnEta®rm) — (£ka0)On )|, + (On(EekaOn) — (Eka®,)00 )|, ]
and this surface term vanish for given boundary condition £.£,0, |+, = 0. Therefore the
eigenvalue operator I is self-adjoint under the inner product (5.60) with N/ = = b)T
Basically what we did is adding additional surface term By N(@n, @m) to L? inner product
(5.49) s.t. By replace original surface term to another surface term which vanishes under

higher derivative boundary condition up to ©,, <+ ©,, symmetric piece. Because the surface
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term from L? inner product is alway in the same form, from the next example, we focus on

this By especially for § = +« part, By.

5.3.4 3 derivative

From now on, we stick to the boundary condition which comes from the Dirichlet bound-
ary condition on ©%l5. In that situation, 3 derivative boundary condition is imposed on
(_)8—3\5

no .

E_(2e-nka50; % = —xe5 0 (5.63)
Eg-sbaaba 50570, =t®es | _ =0 (5.64)

N = [3/2] = 1, so we have to determine one I, J and N. This time, 3 derivative should
appear so we have to mix following 2 equations to construct I and J.

(L<3> —(d+25—6)Tp£®@ — (d+ 25 — 8)L<1>)@;—3‘8 = —ALMEs 3l (5.65)
(L@) — (d+ 25 — 8)ToL! )@S Bls — _)\@3~3ls (5.66)
If there is £?) term in .J , one cannot cancel it nor make it ©,, <> ©,, symmetric, because

there is no E(?) term in I. Therefore the only possibility is removing £ term in .J at the

beginning. This condition fix everything. (s — 3|s will be omitted)

J(On) = [L(?’) - ((d 425 —6)(d + 25 — 8) T2 + (d + 25 — 8)>L(1)] 0,
- —/\<L(1) +(d+2s— 6)7'9) o, (5.67)
= —-A1(0y)

orjustb; =1, bg = (d + 2s — 6)7p for compact notation. Then,

Bi(6,,,E6,,) = N 1(0,)(Om)],, (5.68)
=NI1(©,) P,  +Ncathe, t1e,|, +Nbu6, £He,|,
where ¢; = —((d + 25— 6)(d+ 25 — 8)T2 + (d+ 25 — 8)). Set N to — 5L then,
(61, EOm) 120k — (EOn, Om) 126k
=(On. b (95 nta5Om) 2 — (& (25 kd—5On, On) 12 + B1(6,,EO,,) — Bi(E6,, O,,)
1

(I(@n) 1®0,, —1®0, I(@m)) s (5.69)
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(3)®n’:ta = 0 and the eigenvalue operator be-

Again, remaining surface term vanish for L
come self-adjoint. Note that L(I)Gn-L(l)Gm term in Bj isn <> m symmetric and is canceled

at equation (5.69). N~ = —bgcy > 0 therefore the norm is positive definite.

5.3.5 4 derivative
4 derivatibe boundary condition come from 62_4‘8.
E_ (o5 5)ka_O) 1F = —205 74 (5.70)

Lot _ =0 (5.71)

This time, N = [4/2] = 2 and we have to determine Iy, 2, J; and Ja. One of J (let’s say
Jo) should contain 4 derivative term and should not contain 3 derivative term. J; contain
2 derivative term and should be come from the eigenvalue equation. (There is no other 2
derivative equation to mix with the eigenvalue equation.) With these conditions, there are 3

parameters to be determined, N7, N2 and b o.

J1(0,) = <L<2> —(d+2s—10)Tp L(1)>@n

_ e, (5.72)
=-A\11(0,)

1(00) = (B + e250@ + 5,210,
— A (L(2> Y (d+2s—6)ToED + bz,o) 0, (5.73)
=—-\12(0,)

oo =bog— (d+2s—6)(d+2s—8)TF —2(d+ 25— 9)
ca1=—(d+2s—10)Tgbao — (d+ 25— 6)(d + 25 — 10) Ty

Now BQ(én, Eém) =M Il(@n)Jl(@m)’Jra + N> Ig(@n)Jg(@m)‘+a is parametrized by
N1, N5 and b2 . Bg(én, Eém) is sum of product of linear function of ©,,, therefore always
in the form of

By(6,,,E6,,) = Bij(N1, Na, by o) L0, - EVO,, |, (5.74)

Let’s impose the condition, equation (5.50) on Bs. 3;; is the coefficient of m <+ n symmetric
term and do not appear in (5.50). By4; and ;4 can be arbitrary because they are the coeffi-

cients of the term which vanish for given boundary condition. From the above expression of
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I; and J;, we get 3 equations,

801 — 810 = —N1 (d+ 25 — 10)7'0[ —I—Ng b270 2,1 = -1
Boz — Bag = N1+ Nabggcao =0 (5.75)
Bia — Bai = Nao(d+ 25 — 6)Tq ca2 — Nacgg =0

The solution is

bgoz%(d+23—6)(1+(d+23—6)7;2)

)

N =2(d+2s - 8)T, (5.76)

Nyt = %(d +25 —10)(3+ (d+ 25 — 6)T7) Ny 'bag

Because s > 4, this norm is positive definite if d > 3. For 5 and 6 derivative boundary

conditions, see appendix B.

5.4 Conjecture for unitary boundary condition

Unfortunately, our procedure of the previous section cannot apply to arbitrary higher
derivative boundary condition since the complexity increase very fastly. For 7 derivatives
case, we get 6 order algebraic equation which cannot be solved analytically. Finding a recur-
sive way of getting extended inner product can be a resolution. To say something concrete,
we need to know general properties of extended inner product.

However, examples up to 6 derivatives boundary condition are enough to make a con-
jecture. Especially, 2-derivative example tells us what is non-unitary boundary condition.
For spin greater than 3, every set of boundary conditions contains 2-derivative boundary
condition. When the Dirichlet boundary condition is imposed on ©FI*, 2-derivative bound-
ary condition on ©*~2ls gives positive definite norm but 2-derivative boundary condition
on ©Ft2ls gives non-positive definite norm. As we see from string and spin-two example,
this non-positive definite norm is the origin of non-unitarity. The only way to avoid such
non-unitarity is to choose K > s — 1. For k > s — 1, OF+2ls does not exist. Also, we can
conclude that for £ < s — 1, there is always non-unitarity. Therefore our conjecture for
unitary boundary condition is that k£ should be s or s — 1. All the other examples of 3 to
6 derivatives boundary condition support our conjecture. They correspond to k = s case,
and all the extended norm is positive definite. It is interesting that among various boundary
conditions, only the Dirichlet or 1-derivative boundary condition on spin-s component give

a unitary spectrum.
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Chapter 6

Discussion

Higher spin gauge theory provides the simplest example of AdS/CFT correspondence. It is
conjectured that the Vasiliev theory is dual to free/critical O(N') vector model [39]. It would
be interesting if we can find holographic dual of our case. In the first section, we discuss

possible holographic dual. In the second section, on-going future works are introduced.

6.1 Holography

Since Klebanov and Polyakov [39], lots of nice works has been done for higher spin
holography, for instance, [40, 41, 42, 43, 44]. Compare to holography from the String the-
ory, higher spin theory provides very simple setup. The dual CFT is just free/ciritical O(N)
vector model. One of strong evidence for higher spin holography is the fact that one can con-
struct all the conserved higher spin current from O(NN) vector model. Group theoretically, it

can be represented as [45, 46]

d d =
D<2—1,0>®D<2—1,0>:SG:%D(d+s—2,s) 6.1)

As reviewed in appendix A, D(d + s — 2, s) is correspond to massless spin-s field, and
D (% -1, O) is called singleton. In terms of boundary CFT, singleton is just a scalar field
which satisfy Klein-Gordon eqution.

Our theory of AdS side consists of bulk higher spin theory and boundary theory from HD
BC. Note that these boundaries are different from the asymptotic boundary where CFT lives.
At the free level of the Vasiliev theory, the bulk higher spin theory is the (d 4 2)-dimensional
Fronsdal theory of all the spin-one to co, and a scalar of specific mass. It is natural to think
O(N) vector model with boundaries as a dual CFT, the boundary theory of O(N) vector
model would be holographic dual of boundary theory of higher spin theory. To guess which
theory lives at the boundary of O(NV) vector model, we should know the correct boundary
degrees of freedom for higher spin theory.

Due to lack of extended inner product for generic case, we cannot specify exact spectrum
of boundary degrees of freedom. However with the extended inner product of 2 to 6 deriva-

tives, we could find a pattern for specific boundary condition. If we impose the Dirichlet
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boundary condition on ©FI*, k < s — 1, there appear partially massless fields. For such case,
corresponding boundary degrees also contains the partially massless fields. We found an ob-
servation about the pattern of the depth of partially massless field. When we consider spin-s
massless bulk field, it seems that required boundary degrees of freedom contains spin-s par-
tially massless fields of depth-0,2,4 - --2[(s — k)/2]. In our convention, depth-0 partially
massless means just massless. Interestingly, there is following group theoretical identifica-

tion,

p

d d T
D(z—p,O)®D<2—p,0):@@D(d+8—2k,8)- (6.2)

s=0 k=1

D(d+s—2k, s) is correspond to partially massless field of depth-(2k —2), and D (4 — p, 0)
is something called “higher-order Signleton”. Therefore the spectrum of r.h.s. exactly match
the spectrum of our boundary degrees of freedom if p = [(s — k) /2] + 1. Which means if we
impose the Dirichlet boundary condition on £ = s — 2p 4+ 2 for each spin-s, all the boundary
partially massless degrees of freedom can be obtained from product higher-order singleton.

In terms of boundary CFT, higher-order singleton is a scalar whose equation of motion is
OP¢ =0. (6.3)

Therefore we conjecture that the holographic dual of our theory is vector O(N') model with
boundary higher-order singleton.

We should mention one unclear point of our conjecture. Actually, if we impose the Dirich-
let boundary condition on k = s — 2p + 2, not only partially massless but also massive fields
with various spin appear. Therefore we need something more than higher-order singleton at
the boundary of CFT.

6.2 Future works

Through the whole thesis, we discuss free higher spin theory. To achieve our original goal,
the Kaluza-Klein compactification of the Vasiliev theory, we should study interacting cases.
There are 2 ways of studying them.

One is perturbative approach keeping the metric-like formalism. The metric-like formal-
ism of higher spin is easy to use but is only known perturbatively. However, we expect to
learn an important lesson for consistency of our formalism at interacting level. Also, there
are 2 immediate applications about the spin-two system. Finding unitary theory of partially
massless spin-two coupled to graviton at de Sitter background is a promising problem of

cosmology. Contrast to the partially massless field on anti-de Sitter background, it is known
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to be unitary on de Sitter background but the way of unitary coupling with graviton is still
unknown. One of our set of boundary condition produce massless and partially massless
spin-two field as ground modes and we expect to get a unitary interacting theory of them.
Another problem is revisiting Gibbons-Hawking term of gravity in terms of our formalism.
It will be instructive to understand perturbative degrees of freedom for Gibbons-Hawking
term and we may find another possible boundary term apart from Gibbons-Hawking term.
The other is non-perturbative approach using frame-like formalism. The Vasiliev theory
is the generalization of the frame-like formalism of gravity and every variable is generaliza-
tion of vierbein and spin-connection. Frame-like formalism is useful when one try to write
down interacting theory we may be able to succeed to compactify the Vasiliev theory due to
the intrinsic relation between frame-like formalism and interaction. As a first step, we did
Kaluza-Klein compactification of free higher spin theory in terms of the frame-like variable.
It contains more degrees of freedom and more gauge symmetry. Also, it contains not only
totally symmetric representation but also mixed symmetric degrees of freedom. Using this,

we hope we can achieve our final goal.
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Chapter A

Verma module and partially massless field

Here we recall the definition of the Verma so(d, 2)-module. Consider a finite dimensional
module V(A, Y') of sub-algebra s0(2) & so(d). We use A to denote conformal dimension
and Y to denote Young diagram of so(d). For the analisys of symmetric higher spin, we
limit ourself to the Young diagram of a single row of length s. The Verma so(d, 2)-module
V(A, s) is the space generated by action of the raising operators to the module Y (A, Y'). We
will also denote D(A, s) for the irreducible quotient of Verma module V(A, s). For generic
value, Verma module V(A, s) is irreducible and therefore coincides with D(A, s). However,
for specific values, it becomes reducible with a non-trivial submodule. For instance, A =
d+ k — 1 with an integer 0 < k < s — 1, there is a submodule D (d + s — 1, k). Therefore,

D (d+ k — 1, s) is not equal to Verma module but is to the quotient of Verma module:

V(d+k—1,8)~D(d+k—-1,s)®D(d+s—1,k),

V(d+k—1,s
Dd+k—1, S)ZDEd—i—S—l k‘))

(A.1)

Fork =s—1,D(d+ (s — 1) — 1, s) is unitary and its field theoretical realization is the
massless spin-s field propagating in AdS;11. For0 < k < s — 1, D(d + k — 1, s) is non-
unitary and their field theoretical realizations are partially massless(PM) fields! with depth
t = (s — k — 1). (For more general cases, see [32, ?].) The action for PM field has the PM
gauge symmetry which contains covariant derivatives up to order ¢ — 1. This can be derived
by Stueckelberg form of PM field.

5¢M1M2"'N5 = v(m e vm+1 €Ht+2""us) + - (A.2)

See paragraph below Eq.(3.45) for PM spin-two case. The followings are properties of PM
field:

Field type Ay m? Gauge variation: 6 ¢, uy-..pu,
depth-t PMfield | d+s—t—2 | =7 t(d+2s =t —4) | Vi, Vi §uppnope) T

AdS

Table 2: Partially massless(PM) field

! Extrapolating our convention, the massless higher-spin field is the partially-massless higher-spin field with
depth-zero.
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In Table 2, m is defined by the following convention. By the mass of a field, we refer to the
mass in flat limit. Therefore, it is zero when the higher spin gauge symmetry exist. In this

convention, the relation between mass-squared and conformal dimension is given by
m*riys = A (A —d) —(s—2)(d+s5—2) . (A.3)

Note that this is different from the mass-squared which appears in Fierz-Pauli equation in
AdS [?]: (V2 + K2) ¢y pg s = 0 which is given as k1% ;o = A (A — d) — .
Finally, so(d+1, 2)-module for massless spin-s can be decomposed into so(d, 2)-modules

by the following branching rules [?]:

[e'e) s—1
D(d+5—1,8)s0(dr1,2) = EP D(d+n+5-1,8)50(a2) DEP D(d+5—1,1)s0(a2) (A4)
n=0 =0

In main text we open omit subscripts 44,2 for brevity.
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Chapter B

5 and 6 derivatives boundary conditions

5 derivative

E_ (95 6ka_70571 = —x@; 0l (B.1)
el =0 (B.2)
1(0,) = (L<1> v bm) O, (B.3)
J1(0) = (L<3) +eiak® 4 cmL(l)) O,
1,(0,) = (L<3> 4 (d+ 25— 6)TpE® + by £ + bm) O, (B.4)
2(0n) = (E9) + ca0b® + 20@ + 25100,

c12=>b10—(d+2s5s—10)Ty

ci1=—(d+2s—12)Tgb1o — (d+ 2s — 12)

ca3 = b1 — (d+2s—6)(d+2s —8)T7 — 3(d + 2s — 10)
c22="bao— (d+25s—10)Tgpba1 —2(d+ 2s — 11)(d + 25 — 6) Ty
co1=—(d+25s—12)Tgbao — (d+ 25 — 12)ba 1

We have 5 variables b1 g, 020, b2 1, N7 and Ns. And 6 equations,

Boi — Bio =M bigcii +Nabagear = —1

Bo2 — Bag = Nibigcia+Nabagcao =0

Boz — B3o = Nibig+Nabagcaz =0 (B.5)
Bia — Bar =Nicio+Noboicoo —No(d+2s—6)Toco1 =0

Biz — Bsi = N1 +Nabyicoz —Noca =0

Bag — Bsg = Na (d+2s — 6)Toca3 —Nacago =0

77

A2t &



The solution is,

bio = 2027,

by — Ao AsTo(1+ AsT2)(3 + A3T2)
’ 3+ (482 + A1)T2

C3A3(14+ AT (1 + AsT2)

- 3+ (402 + A1)T2

N = AATL (34 (440 + A)TE)

N2_1 = bQ’OAOAl (3 + 6A27;2 + A2A37:;1)

ba 1 (B.6)

where A,, = Afn_f'ls = d + 25 — 12 + 2m. Because s > 5, this norm is positive definite if
d > 3. (A, > Ag > 0, when n > 0) Though there was a unique solution, existance of the
solution was non trivial. 5 variables should satisfy 6 conditions. Existance of a solution will

be clear with semi-recursive construction.

6 derivative

E_ (5 750570 = —x@; 6l (B.7)
L(G)@;—G\S‘ezi =0 (B.8)

«

11(On) = O (B.9)
J1(On) = <L<2) —(d+2s —14)Ty L<1)> O,

1(0,) = <L<2> 4 by kD) 4 52,0> O, (B.10)
J2(On) = (L(4) + e sE® + b ) 4 02,1L(1)>®n

13(0n) = (L(4) +(d+25—6)ToE® + b3 o1 + b3 £V 4 bg,o) 0,  (B.I)
J5(0,) = (L<6> et ® 4k ® 4 epb® 0371L(1)> o,

ci,m’s can be described by b; ,,,’s from equation (5.55). We have 5 b; ,,,’s and 3 N;’s to be

determined. And now we have 10 conditions to be satisfied.

Bor — Big = —1
Bij—Bji=0 ,4>j>i>0 (B.12)
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Again, there is a unique solution.

1
bao = §A3 (3+ (4A3 + A2)7'a2)

ba,1 = 2437,
1+ A4T2) (9 + 10A3T2 + Az(2A3 + Ax)TH
9+ 6(2A3 + A2)7-a2 + A3(6A2 + A4)7-Oj1
(14+ A4T2)(3+ AsT2)(3+ AyT2)
9+ 6(2A3 + AQ)%Q + A3(6A2 + A4)7:;1
(1+ A4T2) (3 + AgT2) (3 + 6A3T2 + AzALTH)
9+ 6(2A3 + A2)T2 + Az(6As + Ay) T2

3
b3 = 2A4<

b31 = 203047,

1
b3 = §A3A4
Nt =3A0T,
2
Nyt = §A1A2A37;(9 +6(205 + A2)TZ + A3(6A2 + Ay)TY)
N?’_l = b3’0AOA1A27-a(15 + 10A37;2 + A3A4721)
where A, = Afn_f‘ls = d + 2s — 14 4+ 2m. Because s > 6, this norm is positive definite
ifd > 3. (A, > Ap > 0, when n > 0) Using A,, is a little bit ambiguous. For example,
A, + Ap = 2A a4 However it is very useful to check that N’s are positive. Note that the
2

definition of A, is different from that of 5 derivative case. This can be potentially annoying

when we do semi-recursive construction so we should be careful.
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