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Abstract

Kaluza-Klein Compactification of
Higher Spin Gauge Theory

Jaewon Kim

School of Physics & Astronomy

The Graduate School

Seoul National University

A massive higher spin particles are expected to play an important role in describing the

quantum theory of gravity. Though its long history and absence of a no-go result, construc-

tion of fully consistent interacting massive higher spin theory has not been achieved apart

from the String theory due to the technical difficulties related to the number of degrees of

freedom and superluminal propagation. In this thesis, we propose novel Kaluza-Klein com-

pactification of massless higher spin theory to achieve interacting massive higher spin theory

avoiding technical difficulties. To guarantee the consistency we targeted the Vasiliev theory

and that forced us to use anti-de Sitter spacetime as a background. Compactification on anti-

de Sitter background causes several interesting problems like higher derivative boundary

condition. We analyze it in terms of additional boundary degrees of freedom and succeed to

get a lower dimensional massive theory.

Keywords : higher spin, higher spin gauge, massive higher spin, Kaluza-Klein, Kaluza-

Klein with boundary, (Anti-)de Sitter space
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Chapter 1

Introduction

Finding a description of quantum gravity is one of the ultimate goals of theoretical physics.

Though the String theory provides a toy model for quantum gravity, but formulation apart

from the String theory is still far-off. Among many nice properties of the String theory, we

pay attention to the existence of infinitely many massive higher spin particles. In field theory

point of view, the success of the String theory is a UV completion or resolving the non-

renormalizability issue of the Einstein gravity. Massive higher spin particles, whose masses

and couplings are tuned properly, may render the UV behavior of gravity theory and can be

one of the essential ingredients for such success. In this context, studying interacting massive

higher spin theory looks promising.

Also recently, it is shown that the Einstein gravity with higher derivative correction has

causality violation and exchange of infinitely mass massive higher spin particle can cure the

causality issue [1]. This is exactly what happen to the String theory which contains higher

derivative correction to gravity sector and suggests the importance of massive higher spin

particles in gravity theory.

Apart from quantum gravity, massive higher spin particles are observed in a laboratory

as a hadronic resonance. Though they are considered as composites rather than elementary

particles, in IR limit, they should be considered elementary degrees of freedom and there

must be an effective theory of them.

In spite of such importance of massive higher spin theory, interacting theory of massive

higher spin particles is not understood well and fully consistent theory is not known yet ex-

cept the String theory. The reason of poor understanding is due to its technical difficulties

rather than fundamental obstruction. Actually, there are lots of no-go theorems for interact-

ing massless higher spin theory [2, 3, 4], but for massive higher spin theory, there is none.

Instead of the no-go theorem, there is technical obstruction called “Velo-Zwanziger” prob-

lem [5, 6, 7]. When one try to turn on the interaction, there might happen 2 serious problems:

unphysical new propagating degrees of freedom may appear and superluminal non-causal

propagation may appear. These problems can happen even for interacting with background

fields, and additional degrees of freedom or non-minimal coupling should be introduced. A

perturbative way of constructing interacting massive higher spin theory is known [8, 9], but

a non-perturbative resolution is still not known.

Ironically, in spite of no-go theorems, fully consistent interacting massless higher spin
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theory was discovered by M.A. Vasiliev [10, 11, 12]. Almost of no-go theorems can be

evaded by considering (anti-)de Sitter spacetime as a background. De Sitter or anti-de Sitter

spacetime is maximally symmetric curved spacetime where S-matrix cannot be defined or

measured. Almost of no-go theorems are using S-matrix argument, therefore (anti-)de Sit-

ter spacetime provide a nice background for higher spin theory. Actually, Velo-Zwanziger

type argument also can apply to massless theory. However, in contrast to massive theory, a

massless theory has a guidance to keep the number of degrees of freedom and prevent super-

luminal propagation: the gauge symmetry. Gauge symmetry acts as constraints and might

be an obstruction for constructing a theory. At the same time, gauge symmetry controls the

number of physical degrees of freedom and eliminate unphysical degrees of freedom. There-

fore as long as one keep the gauge invariance of the theory, one does not have to consider

Velo-Zwanziger problem. Vasiliev first wrote down higher spin gauge algebra and then found

a systematic way of constructing gauge invariant theory.

Our idea is to study interacting massive higher spin theory from the Vasiliev theory using

Kaluza-Klein compactification. We expect that consistency of the Vasiliev theory is inherited

to lower dimensional massive theory and we can by-pass all the technical difficulties. Once

we find a proper way of doing compactification, it will provide a nice shortcut to interacting

massive higher spin theory. As a first step, we consider Kaluza-Klein compactification of

free higher spin theory on anti-de Sitter background. Kaluza-Klein compactification on anti-

de Sitter background was studied very little and has lots of interesting features. We claim

that circular compactification is not available and boundaries should be introduced. The ex-

istence of boundary causes many technical difficulties together with rich structures. One of

our main results is that higher spin fields require higher derivative boundary conditions. A

higher derivative boundary condition is unusual boundary condition and we find an equiv-

alent description using boundary degrees of freedom. Boundary degrees of freedom gives

us a physical understanding of higher derivative boundary condition and we can tell which

boundary condition is unitary. We find proper boundary conditions and lower dimensional

spectrum depending on the boundary condition, that is the main result of this thesis.

The rest of the thesis is organized as follow. In chapter 2, a brief review of the higher spin

theory is given. We introduce a free theory of both massless and massive higher spin. Then

the obstruction for constructing interacting theory is discussed and the Vasiliev theory is in-

troduced. This chapter supplements our motivation for doing Kaluza-Klein compactification

to circumvent technical difficulties. In chapter 3, compactification of background metric is

discussed. We explain the inevitability of introducing boundaries and find a parametrization

of the background metric for compactification. Using such parametrization, we give a spin-2

example of compactification and discuss relevant issues which appear in the higher spin case

again. In chapter 4, we do Kaluza-Klein compactification of higher spin. First, we find linear
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combinations of lower dimensional fields which have correct symmetric properties. Then

study their gauge transformation to see the lower dimensional spectrum. Various boundary

conditions and lower dimensional spectra depending on boundary condition are given. In

chapter 5, we analyze higher derivative boundary conditions which are inevitable for the

higher spin field. We develop an extended inner product which translates higher derivative

boundary condition into corresponding boundary action. With boundary action, we classify

boundary conditions into the unitary and non-unitary boundary condition. In chapter 6, we

conjecture CFT dual of higher spin theory with boundary based on their spectrum.
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Chapter 2

Review on Higher Spin Theory

In this chapter, a brief review of massive and massless higher spin theory is given. His-

torically, a massive higher spin theory was studied first by Fierz and Pauli [13], and then

massless higher spin theory was obtained as a limit of massive theory by Fronsdal and Fang

[14, 15]. However, we introduce massless higher spin theory first using gauge symmetry. The

free massless higher spin theory is introduced and then the only known interacting massless

higher spin theory, the Vasiliev theory, is reviewed. Also, the free massive higher spin theory

is introduced and the obstruction for bottom-up construction of interacting massive higher

spin theory, so-called “Velo-Zwanziger” problem is reviewed.

2.1 Massless Higher Spin Theory

The most important feature of the massless higher spin theory is that it is a gauge theory.

Gauge symmetry gives a guidance or constraints to construct a theory. Especially one does

not have to consider an issue of the number of degree of freedom as long as one keep the

gauge invariance. For both free and interacting theory, we assume gauge symmetry at the

beginning.

2.1.1 Free massless theory

Massless spin-s field of free theory can be considered as a generalization of the Maxwell

field and linearized Einstein gravity. It is a symmetric rank s tensor to be a representation

of Poincare group. One interesting feature is that it is a reducible representation. Fields of

irreducible representation has totally symmetric and traceless indices.

φirr
μ1μ2···μs

ημ1μ2 = 0 (2.1)

However massless spin-s field, introduced by Fronsdal, is double traceless rather than trace-

less.

φμ1μ2···μsη
μ1μ2 ημ3μ4 = 0 (2.2)
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This field can be understood as a linear combination of traceless rank s tensor and trace-

less rank (s − 2) tensor. Note that fluctuation of Einstein field hμν is not traceless. Gauge

transformation is given as

δξφμ1···μs = ∂(μ1
ξμ2···μs) (2.3)

where ξμ1···μs−1 is a gauge parameter and it is symmetric traceless rank (s − 1) tensor. The

notation (μ1 · · ·μs) is total symmetrization of indices with normalization factor 1
s! . Follow-

ing action is invariant for the gauge transformation on flat background.

S = −1

2

∫
ddx
(
∂μφν1···νs∂

μφν1···νs − s(s− 1)

2
∂μφρ

ρ
ν1···νs−2∂

μφσ
σν1···νs−2

−s ∂ρφσν1···νs−1∂
σφρν1···νs−1 + s(s− 1) ∂μφρ

ρ
ν1···νs−2∂σφ

σμν1···νs−2 (2.4)

−s(s− 1)(s− 2)

4
∂μφ

μ
ρ
ρ
ν1···νs−3∂κφ

κ
σ
σν1···νs−3

)
This action is called Fronsdal action and is fixed up to an overall factor by the gauge trans-

formation (2.3).

For generic background, naive replacement ∂μ → ∇μ does not work. After replace-

ment, ∇μ’s are not commute each other and the action (2.4) is no longer gauge invariant

for s > 2. Lack of gauge invariance means that unphysical degrees of freedom appears

when higher spin fields couple to background graviton minimally. This is very special fea-

ture of spin greater than 2 since it is known that lower spin fields can propagate on any

background by minimal coupling with background graviton. For dynamical graviton, situa-

tion becomes more complecated []. However, for constant curvature background like anti-de

Sitter spacetime, gauge invariance can be restored by adding mass-like terms to action [].

For d-dimensional anti-de Sitter, AdSd, spacetime which is dominantly used for this thesis,

the additional mass-like terms are

ΔL = m1 φν1···νsφ
ν1···νs +m2 φρ

ρ
ν1···νs−2φσ

σν1···νs−2 ,

m1 =− 1

2 r2AdS

(
(s− 1)(s− 2) + s(d− 1)

)
, (2.5)

m2 =
s(s− 1)

4r2AdS

(
s(s− 3) + (s− 1)(d− 1)

)
+

s− 1

r2AdS

,

where rAdS is the radius of AdS spacetime. These mass-like terms cancel the effect from

curved background and give correct higher spin gauge field analogous to massless field on

flat background. Values of m1 and m2 also can be found using representation theory of AdS

isometry group so(d− 1, 2) [16].

6



This is the free massless theory of higher spin which is our starting point of Kaluza-Klein

compactification. During compactification, the action (2.4) is rarely used. Instead, the gauge

transformation (2.3) on a curved background is used since it dictates the action at the free

level. The action only appears when we consider boundary action.

2.1.2 Interacting massless theory

For higher spin field, turnning on interaction even with non-dynamical background field

can cause inconsistency. Finding self-interacting higher spin theory is much more evolved

and there are lots of no-go theorems. Before introducing only known interacting massless

higher spin theory, the Vasiliev theory, imiportant no-go theorems should be reviewed.

Weinberg(1964) [2] Weinberg used factorization property of S-matrix at soft limit to show

that coupling constant for massless higher spin should vanish. Consider a S-matrix of a

massless spin-s particle and N other particles, S(p1, . . . , pN ; q, ε), where qμ, εμ1···μs are

momentum and polarization tensor of spin-s particle and pμ’s are momenta of other particles.

At soft limit of qμ, S-matrix is factorized into S-matrix of N other particles and soft factor

of spin-s particle.

lim
q→0

S(pi; q, ε) =

N∑
i=1

gi

(
pμ1
i · · · pμs

i εμ1···μs

2q · pi

)
S(pi) (2.6)

gi is coupling constant between i-th particle and spin-s field or spin-s charge of i-th particle.

Under the Lorentz transformation, polarization tensor is actually not a tensor and gives non-

tensor piece due to its unphysical components, therefore Lorentz invariance of S-matrix is

not manifest. Instead, following constraint appear.

N∑
i=1

gi p
μ1
i · · · pμs−1

i = 0. (2.7)

For s = 1, it just becomes usual charge conservation of the scattering process,
∑

i gi = 0.

For s = 2, together with momentum conservation
∑

i pi = 0, it becomes quantum version

of equivalence principle, g1 = g2 = · · · = g. However for s > 3, there is no solution of

(2.7) except gi = 0, and this gives no-go theorem of interacting massless higher spin.

Aragone-Deser(1979) [3] Aragon and Deser considered the interaction between high spin

particle and graviton. They showed an action of a higher spin particle minimally coupled to

gravity is not invariant under higher spin gauge transformation. Such gauge transformation
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gives terms proportional to the Riemann tensor and unphysical modes cannot be decoupled

when the Riemann tensor is non-vanishing. They also showed that any local non-minimal

coupling does not change the result. The issue of coupling with background metric which

was in 2.1.1 is one of the examples.

Weinberg-Witten(1980) [4] Using S-matrix argument, Weinberg and Witten showed that

a particle with s > 1 cannot have Lorentz covariant energy-momentum tensor. Suppose

there is a such energy-momentum tensor Tμν for spin-s particle. Consider a matrix element

of Tμν for initial and final state of spin-s particle with momemtum pi, pf and helicity +s,

+s. From the equivalence principle, one can show that

lim
q→0

〈pf ,+s|Tμν |pi,+s〉 = pμpν �= 0 (2.8)

where q ≡ pf−pi. However one also can show that 〈pf ,+s|Tμν |pi,+s〉 = 0 for any space-

like qμ and this gives contradiction. For simplicity, let’s consider 4 dimension example. To

show the latter, one should consider specific frame such that qμ = (0,−�q ), pμi = (12 |�q |, 12�q ),
and pμf = (12 |�q |,−1

2�q ). Decompose the Tμν as spherical tensor then one get Tl,m where

l = 0, 1 and m = 0,±1, · · · ,±l since a symmetirc tracefull tensor Tμν has spin-1 and

spin-2 components. Consider a rotation R(θ) along the �q direction,

〈pf ,+s|R† Tl,mR |pi,+s〉 = eiθm〈pf ,+s|Tl,m |pi,+s〉
= e±2iθs〈pf ,+s|Tl,m |pi,+s〉. (2.9)

The first equlity comes from rotational property of the Tm,l and the second equlity comes

from rotational property of the states. This should hold for generic value of θ, and every

component of Tm,l vanishes when s > 1. Note that this no-go theorem also can be applied

to spin-2, however non-covariant transformation of Tμν can be canceled by diffeomorphism

which is not the case of s > 2.

Except the Aragone-Deser no-go theorem, other no-go theorems are based on S-matrix

argument. Those no-go theorems can be evaded by considering (anti-)de Sitter background

where S-matrix cannot be defined or observed. Also, the Aragone-Deser theorem can be

evaded by introducing non-locality. Vasiliev considered (A)dS background1 and infinitely

many derivatives which are non-local. Evading no-go theorems opens the chance of con-

structing the theory but does not instruction how to construct. The possibility of appearing

unphysical degrees of freedom is still exist. For massless theory, there is very powerful

1His formulation is background independent, however, it gives a theory of higher spin only when it is ex-

panded around the curved background.
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guidance: gauge symmetry. As long as the gauge invariance of the theory is maintained,

the number of degrees of freedom are automatically controlled. Vasiliev considered interact-

ing higher spin gauge algebra which is a generalization of the diffeomorphism and found a

systematic way of constructing a theory which keeps the gauge invariance manifestly.

The higher spin algebra depends on dimension of spacetime very much and we only in-

troduce 4 dimensional higher spin algebra, hs(4). To introduce the higher spin algebra as a

generalization of diffeomorphism, we introduce the oscillator realization of so(2, 3) algebra.

It is algebra of isometry group of AdS4 spacetime which is natural background for higher

spin theory. The generators of so(2, 3) algebra are transvection generators Pa and rotation

generators Mab. By spinor notation they are Pαβ̇ , Mαβ and M̄α̇β̇ . All the so(2, 3) algebra

can be realized by

Pαβ̇ = ŷα ˆ̄yβ̇ , Mαβ =
1

2
{ŷα, ŷβ} , M̄α̇β̇ =

1

2
{ˆ̄yα̇, ˆ̄yβ̇} (2.10)

where

[ŷα, ŷβ ] = 2iεαβ , [ˆ̄yα̇, ˆ̄yβ̇ ] = 2iεα̇β̇ , [ŷα, ˆ̄yβ̇ ] = 0 . (2.11)

Using ŷα and ˆ̄yα̇, one can construct more general operators, for instance Tαβα̇ = {ŷα, ŷβ}ˆ̄yα̇.

Actually all the irreducible representation of so(2, 3) algebra can be constructed including

higher spin generator. Collect every operators which can be made by ŷα and ˆ̄yα̇ then they

form hs(4) algebra. The fact that hs(4) comes from AdS4 isometry algebra shows the intrin-

sic relation between AdS background and higher spin theory. Since the range of the spinor

index is 1 to 2, antisymmetric combination of ŷ’s are not needed. A nice way of considering

such generators is using commuting “symbol” yα, ȳα̇ and “star-product” between symbols

y 
 y. Symbols are commuting variable and generators written by symbols have automati-

cally symmetrized indices. Star-product is associative but not commutative and defined to

give correct operator product.

M1(ŷ) ·M2(ŷ) =
∑
i

c12iMi(ŷ) ⇒ M1(y) 
 M2(y) =
∑
i

c12iMi(y) (2.12)

Practical definition of star-product is,

(P 
 Q)(y, ȳ) =
1

(2π)4

∫
d4u d4v P (y + u, ȳ + ū)Q(y + v, ȳ + v̄)ei(uαvα+ūα̇v̄α̇) (2.13)

where d4u is a shorthand for d2u d2ū. One can check that above definition gives correct
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commutator for y’s,

[yα, yβ ]
 = 2iεαβ , [ȳα̇, ȳβ̇ ]
 = 2iεα̇β̇ , [yα, ȳβ̇ ]
 = 0 (2.14)

where [A,B]
 ≡ A 
 B −B 
 A.

When the gauge algebra is given, it is useful to consider the “connection 1-form” of alge-

bra. For spin-1, connection 1-form is usual gauge field Aμ. Note that for non-abelian gauge

theory, Aμ =
∑

aA
a
μT

a where T a’s are generators of algebra. Also a spin-2 theory can be

written by connection 1-form, Wμ = eaμPa +
1
2 .ω

ab
μ Mab. e

a
μ is gauge field for transvection,

called vierbein and ωab
μ is gauge field for rotation, called spin connection. Field strength

2-form of Wμ is,

Fμν = ∂μWν − ∂νWμ + [Wμ,Wν ]


= TμνaPa +
1

2
Rμν

abMab , (2.15)

or F = dW+W∧
W using compact notation. T a and Rab are torsion and curvature 2-form

repectively. With these quantities one can write down action or equation of motion. Such

formalism is gravity theory as a gauge theory and called “Frame-like” formalism of gravity.

What Vasiliev did is generalization of frame-like formalism for higher spin. Connection 1-

form of higher spin algebra is

W(y, ȳ|x) =
n+m=even∑

n,m

1

2in!m!
ωα1···αnβ̇1···β̇m(x) yα1 · · · yαn ȳβ̇1

· · · ȳβ̇m
. (2.16)

Only n+m = even generators considered since only bosonic quantities are considered. To

construct gauge invariant and consistent system, Vasiliev invented “Unfolded Formulation”.

Unfolded formulation is consist of p-form fields in general. However system with 1-form

and 0-form is already quite general anda able to write down higher spin theory.

dW = W ∧
 W (2.17)

dB = W 
B −B 
W (2.18)

B is 0-form and contains scalar fields and curvatures of higher spin fields which are general-

ization of the Weyl tensor of spin-2. For a gauge parameter ε(y, ȳ|x), above system is gauge

10



invariant,

δW = dε−W 
 ε+ ε 
 W ,

δB = ε 
 B −B 
 ε . (2.19)

Now it is time to introduce the Vasiliev equation. To describe interacting higher spin theory,

auxiliary oscillator zα, z̄α̇ and 0-form auxiliary field S(y, z|x). Consistent fully non-linear

higher spin equation, Vasiliev equations are

dW = W ∧
 W ,

dB = W 
 B −B 
 W̃ ,

dS = W 
 S − S 
W , (2.20)

S 
 B = B 
 S̃ ,

S 
 S = dzαdzα (i+B 
 κ) + dz̄α̇dz̄α̇ (i+B 
 κ̄) .

z and z̄ has commutator relation with opposite sign, [y, y] = −[z, z]. dz is anticommuting

1-form. κ is defined as κ = exp(i zαy
α). At last, tilde notation is defined as

f̃(z, z̄, y, ȳ) = f(−z, z̄,−y, z̄) . (2.21)

Tilde is not necessary for structure like gauge invariance, however without tilde, the whole

system become empty and there is no propagating degrees of freedom. One can show that ex-

pansion of this systme around AdS background gives Fronsdal fields as perturbative degrees

of freedom. This system is invariant under following gauge transformation,

δW = dε−W 
 ε+ ε 
 W ,

δB = ε 
 B −B 
 ε̃ , (2.22)

δS = ε 
 S − S 
 ε .

and there is no issue about number of degrees of freedom with interaction. For more com-

plete review of this subject, see [17].

2.2 Massive Higher Spin Theory

Contrast to massless higher spin, massive higher spin particles are observed as a hadronic

resonance though they considered as a composite. Also, various no-go theorems are not ap-

plied to massive higher spin. However fully consistent interacting massive higher spin theory
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is not known yet except String theory. Study on massive higher spin has long history since

Fierz and Pauli [13]. They suggested set of equations which describe free unitary massive

higher spin field. After that Singh and Hagen [18, 19] found Lagrangian formulation with

auxiliary fields. Auxiliary fields are needed to describe additional constraints which elimi-

nate unphysical degrees of freedom. Such auxiliary fields are fixed by equation of motion

and the Lagrangian does not have any gauge invariance. There is an alternative description

with more auxiliary fields and gauge symmetry, Stueckelberg formulation. This formulation

contains gauge symmetry which can be fixed algebraically. By algebraic gauge fixing, sys-

tem goes back to that of Singh and Hagen. Stueckelberg formulation has a few advantages

and naturally appears as a result of Kaluza-Klein compactification without gauge fixing.

In this section, both Singh-Hagen and Stuckelberg formulation are introduced. Also, the

obstruction for interacting massive higher spin theory is introduced.

2.2.1 Free massive theory

Fierz and Pauli realized Wigner classification of mass m and spin s representation as a

field theory. Starting from irreducible symmetric rank-s representation of Poincare group

φμ1···μs which is traceless,

φμ1···μs η
μ1μ2 = 0 (2.23)

they imposed Klein-Gordom equation,

(�−m2)φμ1···μs = 0. (2.24)

To eliminate lower spin component with repect to rotation subgroup and to get positive

definite total energy, they further imposed so called Fierz-Pauli condition or transversality

condition,

∂μ1φμ1···μs = 0. (2.25)

Naive attempt for Lagrangian formulation would fail. One reason is that the number of equa-

tion is bigger than the number of degrees of freedom. To get both Klein-Gordon equation and

Fierz-Pauli condition from Lagrangian, auxiliary field should be introduced. For instance,

consider spin-2 example. The most general Lagrangian is,

L = −1

2
∂μφνρ∂

μφνρ − 1

2
m2φμνφ

μν +
1

2
α∂ρφρμ∂σφ

σμ . (2.26)
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Equation of motion is,

(�−m2)φμν −
1

2
α
(
2∂ρ∂(μφν)ρ −

2

d
ημν∂

ρ∂σφρσ

)
= 0 , (2.27)

where d is dimension of spacetime. If one can get transversality condition ∂μφμν = 0 from

this equation of motion, then α linear term vanishes and one would recover both Klein-

Gordon equation and transversality condition. Try divergence of equation of motion then,(
(α− 2)�+ 2m2

)
∂μφμν + α(1− 2

d
)∂ν∂

ρ∂σφρσ = 0 , (2.28)

it does not work even for α = 2. Resolution is adding auxiliary field φ with proper coeffi-

cients. Singh-Hagen Lagrangian for spin-2 is,

LSH = −1

2
∂μφνρ∂

μφνρ + ∂ρφρμ∂σφ
σμ +

d− 1

2(d− 2)
∂μφ∂

μφ+ φ∂μ∂νφμν

−1

2
m2
(
φμνφ

μν − d(d− 1)

(d− 2)2
φ2
)
. (2.29)

Equations of motion are

(�−m2)φμν − 2∂ρ∂(μφν)ρ +
2

d
ημν∂

ρ∂σφρσ + ∂μ∂νφ− 1

d
ημν�φ = 0 , (2.30)

�φ− 2
d− 2

d− 1
∂μ∂νφμν −m2 d

d− 2
φ = 0 . (2.31)

Linear combination d ∂μ∂ν(2.30)μν + 1
2
d−1
d−2

(
(2 − d)� − dm2

)
(2.31) = m4d2(d−1)

(d−2)2
φ = 0.

Therefore auxiliary field φ becomes 0 by equation of motion and equation (2.31) gives

∂μ∂νφμν = 0. With this new condition, divergence of equation (2.30) gives correct transver-

sality condition and finally one obtains Klein-Gordon equation for spin-2. Note that ∂μ∂νφμν =

0 is just a divergence of transversality condition and does not impose new constraint. From

spin s Singh-Hagen Lagrangian formulation, one should derive ∂μ · · · ∂μkφμ1···μs = 0,

k = 2, 3, · · · , s. For each k, rank-(s − k) symmetric auxiliary field should be introduced,

therefore Singh-Hagen Lagragian for massive spin-s theory consists of rank 0, 1, · · · , s− 2

and s fields. By taking massless limit of Singh-Hagen Lagrangian, every auxiliary field ex-

cept rank-(s−2) field decouple and rank-(s−2) and rank-s field form Fronsdal Lagrangian.

Singh-Hagen Lagrangian is standard formulation of massive higher spin theory however

its explicit form of Lagrangian is complicated and it is hard to recognize degrees of freedom

at Lagrangian level. There is alternative formulation which was introduced by Stueckelberg

[20]. The Stueckelberg formalism is usually called “Stueckelberg trick” since it contain lots

of auxiliary fields together with gauge symmetry which can be used to eliminate auxiliary
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fields by gauge fixing. Such gauge fixing is algebraic and almost trivial. After gauge fixing,

the system goes back to Singh-Hagen formulation. One can obtain such formalism by writing

down every possible quadratic term of Lagrangian and imposing gauge invariance. Or as a

short cut, one can obtain from dimensional reduction of Fronsdal action without gauge fixing

on flat background [21, 22, 23, 24]. We just introduce the result. One of nice properties

of Stueckelberg formalism is the fields which are consist of the system is the same with

fields of massless theory: double-traceless symmetric tensors. Also the gauge parameters

are the same. Instead, all of spin-0, 1, · · · , s fields are needed to describe a spin-s particle.

Denote the Fronsdal field, guage parameter and Lagrangian of spin-s theory as φs, ξs and

Ls
0 respectively. Then the Lagrangian for massive spin-s theory is,

Ls
Stue =

s∑
k=0

Lk
0 +ΔL , (2.32)

ΔL =

s∑
k=0

ak(φ
k−1)μ1···μk−1

∂ρ(φ
k)ρμ1···μk−1 + bk(φ

k)ρρμ1···μk−2
∂σ(φ

k−1)σμ1···μk−2

+ ck∂
ρ(φk)ρ

σ
σμ1···μk−3

(φk−1)τ
τμ1···μk−3 + dk(φ

k)μ1···μk
(φk)μ1···μk (2.33)

+ ek(φ
k)ρρμ1···μk−2

(φk)σ
σμ1···μk−2 + fk(φ

k)ρρμ1···μk−2
(φk−2)μ1···μk−2 ,

where

ak = −kαk−1 , bk = −k(k − 1)αk−1 , ck = −1

4
k(k − 1)(k − 2)αk−1 ,

dk =
(k + 1)(2k + d− 3)

2k + d− 4
α2
k −

k

2
α2
k−1 for k ≥ 1 , d0 =

d

d− 2
α2
1 ,

ek = −k(k2 − 1)(2k + d)

8(2k + d− 4)
α2
k +

k2(k − 1)

4
α2
k−1 , fk = −k(k − 1)

2
αk−1αk−2 ,

α2
k =

(s− k)(s+ k + d− 3)

(k + 1)(2k + d− 2)
m2 . (2.34)

Ls
Stue is invariance under the following gauge transformation.

δ(φk)μ1···μk
= αk(ξ

k+1)μ1···μk
+ ∂(μ1

(ξk)μ2···μk) + βkη(μ1μ2
(ξk−1)μ3···μk) (2.35)

where βk = 2
(k−1)(2k+d−6)αk−1. Each φk is consist of rank-k traceless tensor and rank-

(k − 2) traceless tensor and ξk+1 can be used to gauge fix rank-k traceless part of φk. Note

that the gauge fixing is algebraic. After fixing every gauge, there remain rank-s and rank-(s−
2), (s − 3), · · · 0 traceless tensor which consist Singh-Hagen massive theory. Like massless
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theory, Stueckelberg formalism on AdS background can be achieved by small modifications.

∂μ → ∇μ , ημν → gAdS
μν ,

m2 → m2 +
1

r2AdS

(s− k − 1)(s+ k + d− 4) ,

Δdk = − 1

r2AdS

(
(k − 1)(k − 4) + (k − 2)(d− 1)

)
,

Δek =
k(k − 1)

4r2AdS

(
k(k − 3) + (k − 1)(d− 1)

)
.

This is what we use to describe the result of Kaluza-Klein compactification on AdS back-

ground. At this level, it may sound too trivial since the everything is done tirivially on flat

background. However there are lots of subtleties and rich structure when we consider AdS

background.

One most important property of Stueckelberg formalism is that the Lagrangian is deter-

mined up to overall normalization factor by the gauge transformation. This property allows

us to study Kaluza-Klein compactification of higher spin theory only using gauge transfor-

mation which is much simpler than Lagrangian or equation of motion.

2.2.2 Velo-Zwanziger problem

Contrast to massless higher spin theory, massive higher spin theory is not a gauge theory.

One might think that it is easier to turn on interaction without gauge symmetry since there

is less restriction. There might be more freedom to write down interacting theory but practi-

cally, it is more difficult. With gauge symmetry, one could concentrate on gauge symmetry

and other issues resolved automatically. Without gauge symmetry, one should handle all

the issues manually when one turns on the interaction. The number of propagating degrees

of freedom should not depend on coupling constant and causality should be kept. In gen-

eral, these conditions do not hold and new constraints or new propagating degrees appear.

This obstruction for interacting massive higher spin theory is called “Velo-Zwanziger prob-

lem” [5, 6, 7]. The most simple example appears for non-zero electromagnetic background.

Consider non-self interacting massive spin-s field under electromagnetic background. If

we consider just minimal coupling, derivatives should be replaced by covariant derivatives,

∂μ → Dμ = ∂μ + ieAμ,

(D2 −m2)φμ1···μs = 0 , Dμ1φμ1···μs = 0 . (2.36)
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Since covariant derivatives are not commute, above 2 equations gives,

[Dμ1 , D2 −m2]φμ1···μs = ieFμ1ρDρφμ1···μs = 0 . (2.37)

This constraint only matters for non-zero charge and non-zero electromagnetic background.

Therefore the number of degrees of freedom between free and interacting theory do not

match. Resolution is considering additional degrees of freedom or non-minimal coupling.

Actually, above example can be cured by non-minimal coupling,

(D2 −m2)φμ1···μ2 − 2ie s F ρ
(μ1

φμ2···μs)ρ = 0 , Dμ1φμ1···μs = 0 . (2.38)

Commutator of above 2 equations is 0 and there is no pathology. However, there is more

serious problem: superluminal propagation. Even for massive spin-2 with electromagnetic

background, it is known that there exist superluminal propagation when electromagnetic

background is non-zero. This problem is serious since even for infinitesimal background, one

always can find a frame where superluminal propagation exists. Again, properly tuned non-

minimal coupling and additional degrees of freedom may cure the situation. String theory

is unique example of interacting massive higher spin theory whose consistency is check for

full order. In general resolving Velo-Zwanziger problem is very challenging and all known

systematic resolution is perturbative way [8, 9].

This is our main motivation for studying Kaluza-Klein compactification of higher spin

theory. If we do every step of compactification carefully, consistency of the Vasiliev theory

may ensure the lower dimensional interacting massive higher spin theory and we may by-

pass the Velo-Zwanziger problem.
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Chapter 3

Compactification of Background Metric

In this chapter, we introduce a background geometry which is used for Kaluza-Klein com-

pactification. One of novel features of our work is that the background is curved and does

not have any S1 fibration. In almost every context of Kaluza-Klein compactification, flat

spacetime, Rd,1, is used as background and one of the spatial directions is considered as an

internal space. Then there is no obstruction for circular compactification and internal space

become S1. Even when a curved background is considered, starting point is Md−1,1×S1 or

fibration of S1 and again, S1 becomes natural internal space. The benefit of using S1 as an

internal space is clear: one does not have to consider boundary condition which can poten-

tially spoil the consistency of the theory. On the other hand, studying non-trivial boundary

condition gives rich structure and one may discover the non-perturbative object of a theory,

for instance D-brane of String theory. We claim that compactification with AdS background

requires non-trivial boundary together with boundary conditions.

We introduce Poincare coordinate as a starting point and suggest a parametrization for

slicing AdSd+2 space into AdSd+1 space. By doing so, we show that boundary should be

introduced. Then, we briefly discuss flat spacetime example with boundary and apply the

background metric compactification to a spin-2 example.

3.1 Slicing of Poincare metric

Free massless higher spin theory minimally coupled with background cannot be defined

on arbitrary background. The background should be either flat or maximally symmetric.

Also free massive higher spin particles cannot couple to arbitrary background because of

Velo-Zwanziger problem. Keeping the interacting theory in our mind, we use anti-de Sitter

space for both higher and lower dimension of compactification. One of the most convenient

coordinate of AdS space is the Poincare coordinate1. For AdSd+2,

ds2 =
r2AdS

z2
(−dt2 + dx 2

d + dz2), (3.1)

1Actually, Poincare coordinate do not cover whole spacetime therefore called Poincare patch. However, that

doesn’t affect the procedule and we can get the same result with global coordinate.
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where xd is vector of Rd. We want to interpret AdSd+2 spacetime as a AdSd+1 spacetime

and internal space. In other word, we want to slice AdSd+2 into AdSd+1 along an internal

direction. There are 2 options with respect to property of internal space. One may choose in-

ternal space from one of isometry direction or non-isometry direction. If we can use isometry

direction as an internal space, metric of AdSd+1 slice is independent of internal coordinate.

Then, there is no obstruction to identify end points of internal space and we can do circu-

lar compactification which is very simple. We claim that it is impossible and one should

use non-isometry direction as an internal space. This is the most important property of our

Kaluza-Klein reduction. To see the reason, consider an example of slicing along isometry

direction.

ds(AdSd+2)
2 =

r2AdS

z2
(
−dt2 + dx 2

d−1 + dz2
)
+

r2AdS

z2
dy2

= ds(AdSd+1)
2 + gyy dy

2 . (3.2)

y is one of xd and xd−1 are rest of them. Translation along y is manifest isometry. As a

slicing, there is no problem, however we cannot use (3.2) for compactification. The reason

is the following. Locally at each y, the isometry of lower dimension so(d, 2) is part of the

original isometry so(d+1, 2). However, globally, this does not hold, since so(d, 2) isometry

transformation does not commute with translation along y direction. By the same reason,

when compactifying along the y-direction, the (d+2)-dimensional tensor does not give rise

to (d+1)-dimensional tensors. Consider, for example, a small fluctuation of the metric. The

tensor ∇μ hνy is dimensionally reduced to ∇μAν + δμz
1
z Aν , where Aμ ≡ hμy. The second

term is a manifestation of non-tensorial transformation in (d+ 1) dimensions.

Any attempt of compactifying along an isometry direction faces the same difficulties.

Instead, we use non-isometry direction as an internal space. Now the metric depends on

internal coordinate y. As we require each slice should be AdSd+1, the internal coordinate

dependence of each slice must be an overall factor.

ds(AdSd+2)
2 = f(y) ds(AdSd+1)

2 + g(y) dy2

= f̃(ỹ)
[
ds(AdSd+1)

2 + c dỹ2
]

(3.3)

One can get the second line by proper coordinate change. A constant c can be chosen any

value. Put this ansatz to the vacuum Einstein equation with negative cosmological constant

then we get a differential equation for f(y).

∂y

( 1

f(y)
∂yf(y)

)
=

2c

r2AdS

f(y) (3.4)
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Set c = r2AdS , then one can check that f(y) = (sec y)2 is a solution. We can explicitly

construct this slicing. We start from Poincare patch of AdSd+2 and change bulk radial coor-

dinate z and another spatial coordinate y to polar coordinates, z = ρ cosθ, y = ρ sinθ. With

this parametrization, the AdSd+2 space can be represented as a fibration of AdSd+1 space

over the interval, θ ∈ [−π
2 ,

π
2 ]:

dsd+2
2 =

r2AdS

z2
(
−dt2 + dx 2

d−1 + dy2 + dz2
)
=

r2AdS

ρ2 cos2θ

(
−dt2 + dx 2

d−1 + dρ2 + ρ2 dθ2
)

=
1

cos2θ
(dsd+1

2 + r2AdS dθ2) . (3.5)

This is generic result and any other parametrization is just a coordinate change of this. Con-

trast to (3.2), (d + 2)-dimensional tensor can be identified as a (d + 1)-dimensional tensor.

For instance, ∇μ hνθ becomes ∇μAν − tanθ hμν + tanθ 1
r2AdS

gμν φ, where Aμ ≡ hμθ and

φ ≡ hθθ. Therefore for the rest of the thesis, our parametrization of background metric for

Kaluza-Klein compactification is,

ds(AdSd+2)
2 =

1

cos2θ

[
ds(AdSd+1)

2 + r2AdS dθ2
]
. (3.6)

We use the symbol θ for both coordinate and vector index of internal space.

The most important consequence of using non-isometry direction as an internal space is

that the end points of internal space θ = ±π/2 cannot be identified. Any other 2 points

of internal space cannot be identified since the value of metric or derivatives of the metric

are not continuous at the identified point. Therefore circular compactification is impossible

for AdS spacetime and we should introduce boundaries together with proper boundary con-

ditions. For simplicity, we put 2 boundaries at θ = ±α, 0 < α < π/2. α is correspond

to the distance between 2 boundaries and is a tunable parameter of the compactification.

α → π/2 limit gives original AdSd+2 spacetime, and α → 0 limit gives AdSd+1 spacetime.

The spectrum of Kaluza-Klein compactification depends on α.

3.2 Flat Spacetime Example with Boundaries

To get an idea for compactification with boundaries, let’s consider flat spacetime example.

What we should deal with is a gauge theory. The structure of gauge theory may give con-

straints on boundary condition. Also, the relation between boundary condition and spectrum

of the lower dimensional theory is what should we find.
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3.2.1 Kalauza-Klein mode expansion

As an example, we study the electromagnetic field in (d + 2)-dimensional flat space-

time with boundaries, paying particular attention to relations between boundary conditions

and spectra for fields of different spins. The flat spacetime is R
1, d × IL, where interval

IL ≡ {0 ≤ z ≤ L}. The (d + 2)-dimensional coordinates can be decomposed into parallel

and perpendicular directions: xM = (xμ, z). The (d + 2)-dimensional spin-one field is de-

composed in (d + 1) dimensions to a spin-one field and a spin-zero field: AM = (Aμ, φ).

The equations of motions are decomposed as

∂M FMν = ∂μ Fμν − ∂z(∂νφ− ∂z Aν) = 0 , (3.7)

∂M FMz = ∂μ (∂μ φ− ∂z Aμ) = 0 , (3.8)

while the gauge transformations are decomposed as

δ Aμ = ∂μ Λ , δ φ = ∂z Λ . (3.9)

We note that both the equations of motion and the gauge transformations manifest the struc-

ture of Stueckelberg system. Recall that the Stueckelberg Lagrangian of massive spin-one

vector field is given by

L = −1

4
FμνF

μν − 1

2
∂μ φ∂μ φ+mAμ

(m
2
Aμ − ∂μ φ

)
, (3.10)

which is invariant under Stueckelberg gauge transformations

δ Aμ = ∂μ λ and δ φ = mλ . (3.11)

The field φ is referred to as the Stueckelberg spin-zero field. This field is redundant for

m �= 0 because it can be eliminated by a suitable gauge transformation. In the massless

limit, m → 0, the Stueckelberg system breaks into a spin-one gauge system and a massless

spin-zero system.

The (d+2)-dimensional spin-one field AM is excited along the z-direction. The field can

be mode-expanded, and expansion coefficients are (d + 1)-dimensional spin-one and spin-

zero fields of varying masses. Importantly, mode functions can be chosen from any complete

set of basis functions. It is natural to choose them by the eigenfunctions of � := − (∂z)
2

with a prescribed boundary condition. Mode functions of the gauge parameter Λ should be

chosen compatible with the mode function of spin-one field AM . Combining the two gauge
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variations Eq.(3.9), we learn that the mode functions ought to be related to each other as

∂z ( mode function of spin-one field Aμ(x, z)) ∝ ( mode function of spin-zero field φ(x, z)) .

(3.12)

Being a local relation, this relation must hold at each boundary as well.

It would be instructive to understand, instead of the required Eq.(3.12), what might go

wrong if one imposes the same boundary conditions for both Aμ and φ, such as zero-

derivative (Dirichlet) or one-derivative (Neumann) boundary conditions. Suppose one adopts

the zero-derivative (Dirichlet) boundary condition for both fields. From Aμ(z)|z=0, L = 0,

φ(z)|z=0,L = 0 and from the field equation of φ, Eq. (3.8), it follows that(
∂μ ∂μ φ(z)− ∂μ ∂z Aμ(z)

)∣∣∣
z=0, L

= −∂μ ∂z Aμ(z)|z=0, L = 0 , (3.13)

and hence ∂z Aμ(z)|z=0,L = 0. But Aμ satisfies second-order partial differential equation,

so these two sets of boundary conditions — Aμ(z)|z=0, L = 0 and ∂z Aμ(z)|z=0,L = 0

— imply that Aμ(z) must vanish everywhere. Likewise, φ satisfies a first-order differential

equation Eq.(3.7), so the two sets of boundary conditions imply that φ(z) vanishes every-

where as well. One concludes that there is no nontrivial field excitations satisfying such

boundary conditions. We remind that this conclusion follows from the fact that these bound-

ary conditions do not preserve the relation Eq.(3.12).

The most general boundary conditions compatible with the relation Eq.(3.12) restricts the

form of boundary conditions for spin-one and spin-zero fields. For example, if we impose the

Robin boundary condition for the spin-zero field, M(∂z)φ|z=0,L := (a∂z + b)φ|z=0,L = 0

where a, b are arbitrary constants, the relation Eq.(3.12) imposes the boundary condition

for the spin-one field as M ∂z Aμ|z=0, L = 0. Modulo higher-derivative generalizations, we

have two possible boundary conditions: a = 0, b �= 0 corresponding to the vector boundary

condition and a �= 0, b = 0 corresponding to the scalar boundary condition. Hereafter, we

analyze each of them explicitly.

3.2.2 Vector boundary condition

We may impose one-derivative (Neumann) boundary condition on the spin-one field Aμ(x, z)

field and zero-derivative (Dirichlet) boundary condition on spin-zero field φ(x, z) at z =

0, L. The corresponding mode expansion for Aμ and φ reads

Aμ(z) =

∞∑
n=0

A(n)
μ cos

(nπ

L
z
)

and φ(z) =

∞∑
n=1

φ(n) sin
(nπ

L
z
)
, (3.14)
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so we mode-expand the field equations Eq.(3.7) and Eq.(3.8) in a suggestive form

∞∑
n=0

cos
(nπ

L
z
) [

∂μ F (n)
μν −
(nπ

L

)( nπ
L

A(n)
ν + ∂ν φ

(n)
)]

= 0 , (3.15)

∞∑
n=1

sin
(nπ

L
z
)
∂μ
( nπ

L
A(n)

μ + ∂μ φ
(n)
)
= 0 . (3.16)

The standing-wave mode functions for n = 0, 1, . . . form a complete set of the orthogonal

basis for square-integrable functions over IL, so individual coefficient in the above equation

ought to vanish. The zero-mode n = 0 is special, as only the first equation is nonempty and

gives the equation of motion for massless spin-one field. All Kaluza-Klein modes, n ≥ 1,

satisfies the Stueckelberg equation of motion for massive spin-one field with mass mn =

nπ/L. The second equation follows from divergence of the first equation, so just confirms

consistency of the prescribed boundary conditions. In the limit L → 0, all Stueckelberg fields

become infinitely massive. As such, there only remains the massless spin-one field A
(0)
μ with

associated gauge invariance. Also, there is no spin-zero field φ(0), an important result that

follows from the prescribed boundary conditions. Intuitively, A
(0)
μ remains massless and

gauge invariant, so Stueckelberg spin-zero field φ(0) is not needed. Moreover, the spectrum

is consistent with the fact that this boundary condition ensures no energy flow across the

boundary z = 0, L.

The key observation crucial for foregoing discussion is that the same result is obtainable

from Kaluza-Klein compactification of gauge transformations Eq.(3.9). The gauge transfor-

mations that preserve the vector boundary conditions can be expanded by the Fourier modes:

Λ =
∞∑
n=0

Λ(n) cos
(nπ

L
z
)
. (3.17)

The gauge transformations of (d+ 1)-dimensional fields read

δ A(n)
μ = ∂μ Λ

(n) (n ≥ 0) and δ φ(n) = −nπ

L
Λ(n) (n ≥ 1) . (3.18)

We note that the n = 0 mode is present only for the gauge transformation of spin-one field.

This is the gauge transformation of a massless gauge vector field. We also note that gauge

transformations of all higher n = 1, 2, · · · modes take precisely the form of Stueckelberg

gauge transformations. Importantly, the Stueckelberg gauge invariance fixes quadratic part

of action.
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3.2.3 Scalar boundary condition

Alternatively, one might impose no-derivative (Dirichlet) boundary condition to the spin-

one field Aμ and one-derivative (Neumann) boundary condition to the spin-zero φ. In this

case, the equations of motion, when mode-expanded, take exactly the same form as above

except that the standing-wave mode functions are interchanged:

∞∑
n=1

sin
(nπ

L
z
) [

∂μ F (n)
μν −
(nπ

L

)( nπ
L

A(n)
ν − ∂ν φ

(n)
)]

= 0 , (3.19)

∞∑
n=0

cos
(nπ

L
z
)
∂μ
( nπ

L
A(n)

μ − ∂μ φ
(n)
)
= 0 . (3.20)

Consequently, the zero-mode n = 0 consists of massless spin-zero field φ(0) only (A
(0)
μ is

absent from the outset). All Kaluza-Klein modes n �= 0 are again Stueckelberg massive spin-

one fields with mass mn = nπ/L. In the limit L → 0, these Stueckelberg field becomes

infinitely massive. Below the Kaluza-Klein scale 1/L, there only remains the massless spin-

zero field φ(0). Once again, this is consistent with the fact that this boundary condition en-

sures no energy flow across the boundary.

Once again, the key idea is that the above results are obtainable from the Kaluza-Klein

compactification of the gauge transformations. For a gauge transformation that preserves the

scalar boundary condition, the gauge function can be expanded as

Λ(x, z) =

∞∑
n=1

Λ(n)(x) sin
(nπ

L
z
)
. (3.21)

With these modes, the gauge transformations of fields are

δ A(n)
μ = ∂μ Λ

(n) (n ≥ 1) and δ φ(n) =
nπ

L
Λ(n) (n ≥ 0) . (3.22)

There is no n = 0 zero-mode gauge transformation, and so no massless gauge spin-one field.

The spin-zero zero-mode φ(0) is invariant under the gauge transformations. We also note that

the gauge transformations take the form of the Stueckelberg gauge symmetries with masses

mn = nπ/L.

Summarizing,
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• Kaluza-Klein spectrum is obtainable either from field equations or from gauge

transformations.

• Stueckelberg formalism naturally arises from Kaluza-Klein compactification.

• Boundary conditions of lower-dimensional component fields (for example, Aμ

and φ from AM ) are correlated each other (for example as in Eq.(3.12)).

3.3 Spin-Two Example of Kaluza-Klein Compactification

With the ideas from previous section, we analyze spin-2 example on AdS background.

Here, we introduce notations for various fields and their mode function. Fields or operators

with bar are (d + 2)-dimensional field. For instance, h̄μν . Fields or operators without bar

are (d + 1)-dimensional. To denote mode functions of various lower dimensional fields,

we use following notation: Θ
k|s
n (θ). s is spin of original higher dimensional field. In this

example, s = 2. k denotes spin of corresponding lower dimensional fields, 0 ≤ k ≤ s. For

example, mode function of Aμ = h̄μθ is Θ
1|2
n (θ). We use M,N,K, . . . for indices of higher

dimension and μ, ν, ρ, . . . for indices of lower dimension. h denotes fluctuation of metric,

therefore spin-two field and g denotes background AdS metric.

In this example, we use both equations of motion and gauge transformation to ensure

that using gauge transformation gives the same result with using equations of motion and is

powerful enough to determine the spectrum of lower dimension.

3.3.1 Mode functions of spin-two field

We begin with the method using the equation of motion. The Pauli-Fierz equation of

motion for a massive spin-two field in AdSd+2 is given by

KMN (h̄)− (d+ 1) (2 h̄MN − ḡMN h̄)−M2 (h̄MN − ḡMN h̄) = 0 , (3.23)

where M2 is the mass-squared, ḡMN is the metric of AdSd+2 space, and KMN (h̄) is the

spin-two Lichnerowicz operator:

KMN (h̄) = � h̄MN − (∇L∇N h̄ML +∇L∇M h̄NL)

+ ḡMN ∇K ∇L h̄KL +∇M ∇N h̄− ḡMN � h̄ , (3.24)
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where (h̄ denotes for the trace part, ḡMN h̄MN ). After the compactification, the (d + 2)-

dimensional spin-two field is decomposed to (d + 1)-dimensional spin-two, spin-one, and

spin-zero component fields:

hμν = h̄μν +
1

d− 1
gμν h̄θθ , h̄μθ = Aμ , h̄θθ = φ . (3.25)

Note that the spin-two field hμν is defined by the linear combination of h̄μν and h̄θθ
2.

The massless spin-two equation of motion in AdSd+2 space decomposes into equations

of motion for component fields (hμν , Aμ, φ) in AdSd+1 space:

Kμν(h)− d (2hμν − gμν h) + Łd−2 Ł−2 (hμν − gμν h)

− Łd−2 (∇μAν +∇ν Aμ − 2 gμν ∇ρAρ) +
d

d− 1
gμν Łd−2 Łd−3 φ = 0 , (3.26)

∇μ Fμν − 2 dAν − Ł−2 (∇μ hμν −∇ν h)−
d

d− 1
Łd−3∇ν φ = 0 , (3.27)

�φ−
(
d+ 1

d− 1
Ł−1 Łd−3 + d+ 1

)
φ− 2Ł−1∇μAμ + Ł−1 Ł−2 h = 0 , (3.28)

where h is the trace part, gμνhμν . The new notation Łm is a linear differential operator,

Łm ≡= ∂θ +m tan θ. The mode expansion of (d+ 1)-dimensional spin-two, spin-one and

spin-zero component fields reads

hμν =
∑
n

h(n)μν Θ
2|2
n (θ) , Aμ =

∑
n

A(n)
μΘ

1|2
n (θ) , φ =

∑
n

φ(n)Θ0|2
n (θ) .

(3.29)

Up to now, we know nothing about mode functions. We just assume they exist and try to

find their properties. From the equations Eqs.(3.26, 3.27, 3.28), we can expect the relations

between mode-functions which can be summarized by following two matrix equations:(
0 Łd−2

Ł−2 0

)(
Θ

2|2
n

Θ
1|2
n

)
=

(
c12n Θ

2|2
n

c21n Θ
1|2
n

)
(3.30)

(
0 Łd−3

Ł−1 0

)(
Θ

1|2
n

Θ
0|2
n

)
=

(
c01n Θ

1|2
n

c10n Θ
0|2
n

)
(3.31)

where cn’s are coefficients. We now have two sets of raising and lowering operators, con-

2The equations of motion have cross terms between h̄ and ∇2φ. This linear combination removes these

cross terms. This specific combination is also the linear part of diagonalized metric in the original Kaluza-Klein

compactification, ḡμν = eφ/(d−1) gμν .
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necting spin-zero and spin-one and spin-one and spin-two, respectively. Accordingly, we

have two pairs of Sturm-Liouville problems. The Eq. (3.30) leads to the first set of Sturm-

Liouville problems for spin-two and spin-one, respectively:

Łd−2 Ł−2Θ
2|2
n = c21n c12n Θ2|2

n = −M2
n Θ

1|2
n ,

Ł−2 Łd−2Θ
1|2
n = c12n c21n Θ1|2

n = −M2
n Θ

1|2
n . (3.32)

The Eq. (3.31) leads to the second set of Sturm-Liouville problems for spin-one and spin-

zero, respectively:

Łd−3 Ł−1Θ
1|2
n = c10n c01n Θ1|2

n ,

Ł−1 Łd−3Θ
0|2
n = c01n c10n Θ0|2

n . (3.33)

The two sets of equations appear overdetermined, as the spin-one mode function Θ
1|2
n is the

eigenfunction of two separate Sturm-Liouville problems. However, it can be shown that the

two Sturm-Liouville problems are actually one and the same problem by using the identity

Łm Łn − Łn−1 Łm+1 = (n−m− 1) . (3.34)

This also leads to eigenvalues relations

c10n c01n = c21n c12n − d+ 1. (3.35)

So, the Sturm-Liouville problems can be summarized by the relations

Θ
2|2
n

Łd−2 �� Ł−2 : −M2
n,2|2 = −M2

n = c21n c12n

Θ
1|2
n

Łd−3 �� Ł−1 : −M2
n,1|2 = −(M2

n + d− 1) = c10n c01n

Θ
0|2
n

(3.36)

We notice that these relations, defined by raising and lowering operators between (d + 1)-

dimensional fields of adjacent spins, is precisely the structure required for Stueckelberg

mechanism 3. If Mn, 2|2 and Mn, 1|2 were nonzero, the corresponding modes among differ-

ent spin fields combine and become the Stueckelberg spin-two system. There are two special

3 Note, however, Mn,1|2 is not related with mass-like term of spin-one field in Eq.(3.27). Mn = Mn,2|2 is

the mass of the spin-two field in the Eq. (3.26).

26



cases, vanishing Mn, 2|2 or vanishing Mn, 1|2. As these are important exceptional situations,

leading to so-called partially massless spin-two fields, we will analyze them separately in

Section 3.3.2 with examples.

We can also obtain Eq. (3.36) from the method using gauge transformations. The gauge

transformations in AdSd+1 space, with the gauge parameter ξ̄M = {ξμ, ξθ}, are decomposed

into components

δhμν = ∇(μ ξν) +
1

d− 1
gμν Łd−2 ξθ ,

δAμ =
1

2
∂μ ξθ +

1

2
Ł−2 ξμ , (3.37)

δφ = Ł−1 ξθ .

Again, to retain the gauge invariances, the mode functions of gauge parameter are set pro-

portional to mode functions of the fields:

ξμ =
∑
n

ξ(n)μ Θ2|2
n (θ) , ξθ =

∑
n

ξ
(n)
θ Θ1|2

n (θ) . (3.38)

By substituting these to Eq.(3.37) and comparing mode expansion terms in the gauge vari-

ations, we see we can recover precisely the same raising and lowering operators as in

Eq.(3.36), which was previously derived from the field equations Eqs.(3.26, 3.27, 3.28).

After the mode expansion, the component field equations read

Kμν(h
(n))− d

[
2h(n)μν − gμν h

(n)
]
+ c21n c12n

[
h(n)μν − gμνh

(n)
]

− c12n

[
∇μA

(n)
ν +∇ν A

(n)
μ − 2 gμν ∇ρA(n)

ρ

]
+ c01n c12n

d

d− 1
gμν φ

(n) = 0 ,

(3.39)

∇μ F (n)
μν − 2 dA(n)

ν − c21n ∇μ
[
h(n)μν − gμν h

(n)
]
− c01n

d

d− 1
∇ν φ

(n) = 0 , (3.40)

�φ(n) −
[
d+ 1

d− 1
c01n c10n + d+ 1

]
φ(n) − 2 c10n ∇μA(n)

μ + c21n c10n h(n) = 0 . (3.41)

Their gauge transformations read

δh(n)μν = ∇(μ ξ
(n)
ν) +

c12n
d− 1

gμν ξ
(n) , δA(n)

μ =
1

2
∂μ ξ

(n) +
c21n
2

ξ(n)μ , δφ(n) = c10n ξ(n) .

(3.42)

We see that this system, Eqs.(3.39, 3.40, 3.41, 3.42), coincides precisely with the spin-two
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Stueckelberg system on AdSd+1, once we redefine cn’s as

c12n = −
√
2Mn, c21n =

Mn√
2
,

c01n = −
√

d

2 (d− 1)
(Mn

2 + d− 1), c10n =

√
2 (d− 1)

d
(Mn

2 + d− 1).

It is also known that the Stueckelberg gauge symmetries can uniquely fix free parts in

the field equations or equivalently in the action. Therefore, from the knowledge of the gauge

transformations Eq.(3.42), we can fully reconstruct the field equations Eqs.(3.39, 3.40, 3.41).

In practice, the gauge transformations are much simpler to handle than the field equations.

Note that the modes which are neither in the kernel of raising operators nor in the kernel of

lowering operators always combine together and undergo the Stueckelberg mechanism for

massive spin-two fields.

Before classifying possible boundary conditions, we summarize Stueckelberg spin-two

system and Goldstone mode decomposition pattern of it. For general values of the masses,

Stueckelberg spin-two system describes the same physical degree of freedom as a massive

spin-two field (having maximal number of longitudinal polarizations). This is because spin-

one and spin-zero fields can be algebraically removed by the gauge symmetries Eq.(3.42),

corresponding to the unitary gauge fixing. However, such gauge fixing is not possible if the

masses take special values:

M2
n = 0 and M2

n = −(d− 1)

r2AdS

. (3.43)

At these special values of the mass parameters, the Stueckelberg system breaks into subsys-

tems which can be deduced just from the gauge transformation.

For the situation that Mn = 0, the gauge transformations are

δ hμν = ∇(μ ξν) , δ Aμ =
1

2
∂μ ξ , δ φ =

1

rAdS

√
2

d
(d− 1) ξ . (3.44)

We see from the first equation that the spin-two field ought to be massless as it has the

spin-two gauge symmetry. We also see that the remaining two equations are precisely the

spin-one Stueckelberg system with m2 = 2 d/r2AdS . This implies that the Goldstone field

of the massive spin-two is given by the massive spin-one system, which in turn was formed

by the Stueckelberg system of massless spin-one and massless spin-zero fields. It should be

noted that the normalization of each field is not standard.

For the situation that M2
n = −(d − 1)/r2AdS , a subtlety arises as the coefficients c12n

28



and c21n are pure imaginary. Specifically, the relation Eq.(3.30) implies that one of the two

mode functions Θ
1|2
n , Θ

2|2
n and corresponding field become pure imaginary. We are thus led

to redefine the mode functions Θ̃
1|2
n = ±iΘ

1|2
n and the fields Ãμ = ±i Aμ

4. The gauge

transformations now become

δhμν = ∇(μ ξν) +

√
2

d− 1

1

rAdS
gμν ξ , δAμ =

1

2
∂μ ξ +

√
d− 1

2

1

2 rAdS
ξμ , δφ = 0 .

(3.45)

The spin-two gauge transformations and spin-one gauge transformations are coupled each

other. In fact, they are precisely the Stueckelberg system of partially massless (PM) spin-

two field [27]. We can always gauge-fix the spin-one field to zero, and the remanent gauge

symmetry coincides with the partially-massless (PM) spin-two gauge symmetry [28]:

δhμν = ∇μ∇ν λ− 1

r2AdS

gμν λ , where λ = rAdS

√
2

d− 1
ξ . (3.46)

Therefore, when the mass-squared hits the special value M2
n = −(d− 1)/r2AdS , the Stueck-

elberg system breaks into a spin-two partially-massless (PM) Stueckelberg system and a

massive spin-zero field of mass-squared m2 = (d+ 1)/r2AdS , as given above in Eq.(3.41).

This spectrum decomposition pattern perfectly fits to the reducibility structure of the

Verma so(d, 2)-module V(Δ, 2) for spin-two field. For the special values of conformal

weights, Δ = d and Δ = d− 1, the Verma module becomes reducible and break into

V (d, 2) = D (d, 2)︸ ︷︷ ︸
massless s=2

⊕ D (d+ 1, 1)︸ ︷︷ ︸
massive s=1

,

V (d− 1, 2) = D (d− 1, 2)︸ ︷︷ ︸
PM s=2

⊕D (d+ 1, 0)︸ ︷︷ ︸
massive s=0

. (3.47)

Here, D (d, 2) and D (d− 1, 2) are irreducible representations of massless and partially

massless states, respectively. Using the relation between the mass-squared and the conformal

weights

m2
spin−1 r

2
AdS = Δ(Δ− d)+(d− 1) and m2

spin−0, 2 r
2
AdS = Δ(Δ− d) , (3.48)

one finds that D (d+ 1, 1) corresponds to spin-one field with m2 = 2 d/r2AdS , and D (d+ 1, 0)

corresponds to spin-zero field with m2 = (d+ 1) /r2AdS . This result exactly matches with

the spectrum decomposition patterns we analyzed above.

4In the path integral formulation, this amounts to choosing that the integration contour purely imaginary.
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Here, we tabulate the four types of fields that appear at special values of masses (the

four irreducible representations that appear in Eqs.((3.47)), as they will be shown to arise as

the ground modes of the Sturm-Liouville problems with appropriate boundary conditions in

section 3.3.2.

type D(Δ, s)so(d,2) field mass-squared

type I D(d+ 1, 1) massive Stueckelberg spin-one m2 = 2 d/r2AdS

type II D(d+ 1, 0) massive spin-zero field m2 = (d+ 1) /r2AdS

type III D( d, 2 ) massless spin-two m2 = 0

type IV D(d− 1, 2) partially-massless Stueckelberg spin-two m2 = − (d− 1) /r2AdS

Table 1: The types of field involved in the inverse Higgs mechanism when spin-two Stueck-

elberg systems decompose into spin-two gauge field and Goldstone field. Type I and II are

Goldstone fields of spin-zero and spin-one. In AdS space, these Goldstone fields are mas-

sive. Type III is massless, spin-two gauge field. Type IV is partially massless, spin-two gauge

field.

3.3.2 Boundary conditions for spin-two field

With mode expansions at hand, we now classify possible boundary conditions. In the

spin-one on a flat background, boundary conditions of different component fields (spin-

one and spin-zero in that case) were related. This property continues to hold for the spin-

two situation. For instance, suppose we impose Dirichlet boundary condition for the spin-

one component field in AdSd+1, Θ1|2|θ=±α = 0. Then, the spectrum generating complex

Eq.(3.36) immediately imposes unique boundary conditions for other component fields:

Ł−2Θ
2|2
n ∼ Θ1|2

n , Ł−2Θ
2|2|θ=±α = 0 ,

Łd−3Θ
0|2
n ∼ Θ1|2

n , Łd−3Θ
0|2|θ=±α = 0 . (3.49)

Likewise, if we impose a boundary condition to a component field, the spectrum generating

complex Eq.(3.36) uniquely fixes boundary conditions for all other component fields. The

minimal choice is imposing the Dirichlet bounary condition to one of the component fields.

As there are s+ 1 = 3 component fields (spin-two, spin-one and spin-zero), there are three
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possible minimal boundary conditions:

B.C. 1: { Θ2|2| = 0 , Łd−2Θ
1|2| = 0 , Łd−2 Łd−3Θ

0|2| = 0 }
B.C. 2: { Ł−2Θ

2|2| = 0 , Θ1|2| = 0 , Łd−3Θ
0|2| = 0 }

B.C. 3: { Ł−1 Ł−2Θ
2|2| = 0 , Ł−1Θ

1|2| = 0 , Θ0|2| = 0 }
,(3.50)

where Θ| is a shorthand notation for the boundary values, Θ|θ=±α. We reiterate that the

boundary conditions on each set are automatically fixed by the spectrum generating complex

Eq.(3.36). We now examine mass spectra and mode functions for each of the three types of

boundary conditions, Eq.(3.50).

To deliver our exposition clear and explicit, we shall perform the analysis for d = 2, viz.

compactification of AdS4 to AdS3 times angular wedge, where the mode solutions of the

Strum-Liouville prpblem, Eq. (3.36), are elementary:

Θ2|2 =

{
sec θ (tan θ cos(znθ)− zn sin(znθ)) , odd parity

sec θ (tan θ sin(znθ) + zn cos(znθ)) , even parity
(3.51)

Θ1|2 =

{
sec θ sin(znθ) , odd parity

sec θ cos(znθ) , even parity
(3.52)

Θ0|2 =

{
sec θ sin(znθ) , odd parity

sec θ cos(znθ) , even parity
(3.53)

with z2n = M2
n + 1. Note that the Sturm-Liouville equation and the boundary condition are

symmetric under the parity θ → −θ, so the solutions are also labelled as either odd or even

parity of θ.

We begin our analysis with B.C. 1. Substituting the above mode functions to the B.C. 1,

we get the same expression for spin-two and spin-one component fields except the condition

that the parity of the mode functions must take opposite values:{
sec θ (tan θ cos(znθ)− zn sin(znθ)) |θ=±α , odd Θ2|2 and even Θ1|2

sec θ (tan θ sin(znθ) + zn cos(znθ)) |θ=±α , even Θ2|2 and odd Θ1|2 . (3.54)

We also get the boundary condition for spin-zero component Θ0|2 as{
zn sec θ (tan θ cos(znθ)− zn sin(znθ)) |θ=±α, odd Θ(0|2)

zn sec θ (tan θ sin(znθ) + zn cos(znθ)) |θ=±α, even Θ(0|2) . (3.55)

We note that, modulo the overall spectral factor zn, this spin-zero boundary condition is the

same as the boundary conditions Eq.(3.54). This agreement is not accidental. Once again,
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they are consequences of the spectrum generating complex Eq.(3.36) and the boundary con-

dition Eq.(3.49).

In general, solutions of each boundary condition, zn, depend on the domain of angular

wedge, α. They are the AdS-counterpart of flat space Kaluza-Klein compactification, and

so zn and Mn blow up as α is sent to zero. They correspond to the “Kaluza-Klein modes”.

For these modes, mode functions of each component spin fields combine and form spin-two

Stueckelberg system with mass-squared, M2
n = z2n − 1.

There are, however, two special solutions that are independent of α, zn = 1 and zn = 0.

They correspond to “ground modes” and have interesting features that are not shared with

the Kaluza-Klein modes. Firstly, masses of the ground modes are equal to the special masses

Eq.(3.43) at which the unitary gauge-fixing ceases to work and the Stueckelberg system

decomposes into subsystems. Secondly, mode function of some spin components is absent.

For zn = 1, the spin-two field is absent as Θ2|2 = 0 in this case. The spin-one and spin-

zero fields combine and form the Stueckelberg spin-one system of type I. For zn = 0, only

massive spin-zero field is present because zn = 0 is not a solution of boundary conditions

Eq.(3.54) or corresponding mode function is 0. This spin-zero field is of type II.

By completing the analysis to other boundary conditions, we find the following spectrums

of ground modes:

B.C. 1: type I and type II
B.C. 2: type II and type III
B.C. 3: type III and type IV

(3.56)

We see that B.C.1 keeps mostly spin-zero, B.C.3 keeps mostly spin-two, while B.C.2 keeps

spin-zero and spin-two even. The complete spectrum of each set of boundary conditions is

summarized in Fig. 1.

Figure 1: Spectral pattern for three types of Dirichlet conditions, B.C.1, B.C.2 and B.C.3
from left to right. Each point represents one mode: squares are from ground modes, while

circles are from Kaluza-Klein modes. Points inside the same rectangle form Stueckelberg

system.
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The ground mode spectra associated with B.C. 3 deserves further elaboration, as they in

fact describe non-unitary system. Firstly, it is non-unitary because the mass-squared is be-

low the Breitenlohner-Freedman bound of spin-two field in AdSd+1 space. In section ??,

we will explain Kaluza-Klein origin of this non-unitarity. Secondly, norms of some mode

functions are negative-definite, implying that the Hilbert space has the structure of indef-

inite metric, leading classically to spectrum unboundedness and instability classically and

quantum mechanically to negative probability. Explicitly, for the mode functions{
Θ

2|2
1 = N5 sec2 θ type III

Θ
2|2
0 = N3 sec θ tan θ , Θ

1|2
0 = N4 tan θ type IV ,

(3.57)

the norms of Θ
2|2
0 and Θ

2|2
1 are −2αN3

2 and − 2
tanαN5

2 and hence negative-definite for all

choices of α. Such negative norms indicate that the higher-spin fields associated with these

ground modes in B.C.3 have wrong sign kinetic term.

As the distance between boundaries, α tends to π/2, the boundaries approach the time-like

asymptotic boundary of the AdSd+2 space. In other words, our spacetime decompactifies to

the AdSd+2 space. In this limit, though, the mass spectrum for each boundary conditions

does not necessarily get to the spectrum of the massless spin-two field in AdSd+2 space.

The reason is that some of the boundary conditions we choose are singular in this limit in

the sense that mode functions are ill-defined. Take for instance the mass spectrum for B.C.
2. It contains the massless spin-two ground mode as well as spin-zero ground mode whose

normalized mode functions are{
Θ

0|2
0 = N1 sec θ , type II ,

Θ
2|2
0 = N2 sec2 θ , type III ,

N1 =
1√
2α

, N2 =

√
1

2 tanα
. (3.58)

These ground-mode functions are not normalizable in AdSd+2 space: the normalized mode

functions vanish as N2 vanishes in the decompactification limit. This explains why there is

no massless spin-two field in the “dimensional degression” method [29]. In the next chapter,

we show that, for arbitrary spacetime dimension d and spin s of higher-spin field, the mass

spectrum of “dimensional degression” spectrum is the spectrum of B.C.1 in the decompact-

ification limit.

Summarizing,
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• The mode functions of different spins in AdSd+1 are related to each other by

the spectrum generating complex Eq.(3.36), whose structure is uniquely fixed

by consideration of Kaluza-Klein compactification of higher-spin gauge trans-

formations.

• At special values of masses, the Stueckelberg spin-two system decomposes into

irreducible representations of massless or partially massless spin-two fields and

massive Goldstone fields. The ground modes of Dirichlet boundary conditions

Eq.(3.50) are precisely these irreducible representations in Table 1 at the spe-

cial mass values.
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Chapter 4

Compactification of Higher Spin Theory

In this chapter, we do Kaluza-Klein compactification of Higher Spin Theory on the back-

ground geometry described in previous chapter. As we learned from spin-two example, the

most simple way is using gauge transformation. As far as we consider the free theory, all the

information which a theory can have is its spectrum. The spectrum of the theory is dictated

by gauge symmetry, therefore, it is enough to determine equation of motion or action to

consider reduction of gauge transformation.

4.1 Compactification of Gauge Transformation

We start from gauge transformation of massless spin-s field on AdSd+2 background.

δφ̂
(s)
M1···Ms

= ∇̂(M1
ξ̂
(s)
M2···Ms)

(4.1)

In this section, we show that after compactification, the gauge transform becomes

δφ
(k)
μ1···μk

=
k

s
∇(μ1

ξ
(k)
μ2···μk)

+ a1 Ł−(s+k−1) ξ
(k+1)
μ1···μk

+ a2 Łd−(s−k)−2 g(μ1μ2
ξ
(k−1)
μ3···μk)

,

(4.2)

where the coefficients are

a1 =
s− k

s
and a2 =

k (k − 1) (d+ s+ k − 3)

s (d+ 2k − 5) (d+ 2k − 3)
.

Eq. (4.1) decomposes into

δφ̂
(s)
M1···Ms

=∇̂(M1
ξ̂
(s)
M2···Ms)

=
1

s

s∑
i=1

∇̂Mi
ξ̂
(s)
M1···Mi−1Mi+1···Ms

=
1

s

s∑
i=1

∂Mi ξ̂
(s)
M1···Ms︸ ︷︷ ︸

(1)

− 1

s

s∑
i,j=1
i �=j

Γ̂λ
MiMj

ξ̂
(s)
M1···Msλ

︸ ︷︷ ︸
(2)

− 1

s

s∑
i,j=1
i �=j

Γ̂θ
MiMj

ξ̂
(s)
M1···Msθ

︸ ︷︷ ︸
(3)

(4.3)
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Let’s define ψ
(s−n)
μ1···μs−n ≡ φ̂

(s)
μ1···μs−nθ(n)

, ζ
(s−n)
μ1···μs−n−1 ≡ ξ̂

(s)
μ1···μs−n−1θ(n)

(θ(n) denotes n θs),

and consider their gauge transform. For δψ
(s−n)
μ1···μs−n each part of equation (4.3) become,

(1) =
1

s

s−n∑
i=1

∂μiζ
(s−n)
μ1···μs−n +

n

s
∂θζ

(s−n+1)
μ1···μs−n

(2) =
1

s

s−n∑
i,j=1
i �=j

Γλ
μiμj

ζ
(s−n)
μ1···μs−nλ

+ 2
n(s− n)

s
tan θ ζ

(s−n+1)
μ1···μs−n (4.4)

(3) =− 1

s

s−n∑
i,j=1
i �=j

gμiμj tanθζ
(s−n−1)
μ1···μs−n +

n(n− 1)

s
tan θ ζ

(s−n+1)
μ1···μs−n

Therefore,

δψ
(s−n)
μ1···μs−n =

s− n

s
∇(μ1

ζ
(s−n)
μ2···μs−n)

+
n

s
[∂θ − (2s− n− 1) tan θ ]ζ

(s−n+1)
μ1···μs−n

+
(s− n)(s− n− 1)

s
tan θ g(μ1μ2

ζ
(s−n−1)
μ3···μs−n)

(4.5)

Up to now, there are bare tan θ factors rather than Łm operators and the form of gauge

transform is differ from Eq.(4.2). A reason is that naively defined quantities ψ(k) and ζ(k)

are not proper variables to describe lower dimensional degrees of freedom. We don’t fix any

gauge during compactification therefore we expect massive fields in Stueckelberg formalism

after compactification. As we reviewed in chapter (2), variables describing Stueckelberg

massive field must be (double)-traceless and ψ(k), ζ(k) are not. Therefore we have to consider

linear combination of naive quantities to get (double)-traceless quantities.

Due to the (double) traceless conditions of φ̂ and ξ̂, ψ and ζ are not (double) traceless.

0 = φ̂
(s)
M1···Ms

ĝM1M2 ĝM3M4 = φ̂
(s)
μ1μ2μ3μ4···Ms

ĝμ1μ2 ĝμ3μ4

+2φ̂
(s)
μ1μ2θθ···Ms

ĝμ1μ2 ĝθθ + φ̂
(s)
θθθθ···Ms

ĝθθĝθθ (4.6)

= cos4θ
(
φ̂
(s)
μ1μ2μ3μ4···Ms

gμ1μ2gμ3μ4

+2φ̂
(s)
μ1μ2θθ···Ms

gμ1μ2 + φ̂
(s)
θθθθ···Ms

)
0 = ξ̂

(s)
M1···Ms−1

ĝM1M2 = ξ̂
(s)
μ1μ2···Ms−1

ĝμ1μ2 + ξ̂
(s)
θθ···Ms−1

ĝθθ (4.7)

= cos2θ
(
ξ̂
(s)
μ1μ2···Ms−1

gμ1μ2 + ξ̂
(s)
θθ···Ms−1

)
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In terms of ψ(s) and ζ(s),

ψ
(s)
μ1μ2μ3μ4···μsg

μ1μ2gμ3μ4 + 2ψ
(s−2)
μ1μ2μ5···μsg

μ1μ2 + ψ
(s−4)
μ5···μs = 0 (4.8)

ζ
(s)
μ1μ2···μs−1g

μ1μ2 + ζ
(s−2)
μ3···μs−1 = 0 (4.9)

These relations are true for every s − n. From now on, spin of original d + 1 dimensional

field will be denoted as sm and s will denote spin of d dimensional fields.(0 ≤ s ≤ sm)

To get the d dimensional double traceless fields φ(s), we have to consider linear com-

bination of ψ(s)s. Without derivatives, most general ψ first order term with symmetric s

indices is g(μ1μ2
· · · gμ2n−1μ2n

ψ
(s−2n+2k)
μ2n+1μ2n+2···μs)ν1ν2···ν2k−1ν2k

gν1ν2 · · · gν2k−1ν2k . Let’s denote

this tensor as ψ
(n,s,k)
μ1···μs . In terms of ψ(n,s,k), equation (4.8) becomes

ψ
(n,s,k+2)
μ1···μs + 2ψ

(n,s,k+1)
μ1···μs + ψ

(n,s,k)
μ1···μs = 0 (4.10)

for any n and k. Up to this relation, the most general linear combination is

φ
(s)
μ1···μs =

[s/2]∑
n=0

{αn,sψ
(n,s,0)
μ1···μs + βn,sψ

(n,s,1)
μ1···μs} (4.11)

However all βn’s should be vanished otherwise the gauge transformation of φ(s) contain

divergence of gauge parameter and that is not we want.1 To calculate the double trace of

φ(s), one have to know the double trace of ψ(n,s,k). The result is

gν1ν2ψ
(n,s,k)
ν1ν2μ1···μs−2 = An,sψ

(n−1,s−2,k)
μ1···μs−2 +Bn,sψ

(n,s−2,k+1)
μ1···μs−2

gν1ν2gν3ν4ψ
(n,s,k)
ν1ν2ν3ν4μ1···μs−4 = An,sAn−1,s−2ψ

(n−2,s−4,k)
μ1···μs−4

+(An,sBn−1,s−2 +Bn,sAn,s−2)ψ
(n−1,s−4,k+1)
μ1···μs−4

+Bn,sBn,s−2ψ
(n,s−4,k+2)
μ1···μs−4 (4.12)

≡ C0
n,sψ

(n−1,s−2,k)
μ1···μs−2

+C1
n,sψ

(n−1,s−4,k+1)
μ1···μs−4 + C2

n,sψ
(n,s−4,k+2)
μ1···μs−4

1With βn = 0, the number of equations become twice of number of variables αn’s. Therefore existance of

solution seems non-trivial. However the double traceless condition of gauge fields are equivalent to traceless

condition of gauge parameter and there is a solution.

37



where An,s =
2n(d+1)+4n(s−n−1)

s(s−1) , Bn,s =
(s−2n)(s−2n−1)

s(s−1) and

C0
n,s ≡ An,sAn−1,s−2

C1
n,s ≡ An,sBn−1,s−2 +Bn,sAn,s−2 (4.13)

C2
n,s ≡ Bn,sBn,s−2

Therefore φ
(s)
ν1···μsg

ν1ν2gν3ν4 is

α0,s

[
C2
0,sψ

(0,s−4,2)
]

+ α1,s

[
C2
1,sψ

(1,s−4,2) + C1
1,sψ

(0,s−4,1)
]

+

[s/2]∑
n=2

αn,s

[
C2
n,sψ

(n,s−4,2) + C1
n,sψ

(n−1,s−4,1) + C0
n,sψ

(n−2,s−4,0)
]

(4.14)

After rearrangement,

[s/2]−2∑
n=0

αn,sC
2
n,sψ

(n,s−4,2) + αn+1,sC
1
n+1,sψ

(n,s−4,1) + αn+2,sC
0
n+2,sψ

(n,s−4,0) (4.15)

By equation (4.10), double traceless condition is

αn,sC
2
n,s : αn+1,sC

1
n+1,s : αn+2,sC

0
n+2,s = 1 : 2 : 1 (4.16)

At first sight, it seems there are too many equations:
αn+1,s

αn,s
=

2C2
n,s

C1
n+1,s

,
αn+1,s

αn,s
=

C1
n,s

2C0
n+1,s

.

However one can check
2C2

n,s

C1
n+1,s

=
C1

n,s

2C0
n+1,s

for any n and there exist a solution up to overall

normalization. With α0,s = 1,

αn,s =
1

4nn!

s(s− 1) · · · (s− (2n− 1))

(s+ (d+ 1)/2− 3)(s+ (d+ 1)/2− 4) · · · (s+ (d+ 1)/2− 2− n)

=
1

4nn!

Γ(s+ 1)Γ(s+ (d+ 1)/2− 2− n)

Γ(s− 2n+ 1)Γ(s+ (d+ 1)/2− 2)
(4.17)

From the equation (4.5), gauge transformation of ψ(n,s,0) is

δψ
(n,s,0)
μ1···μs =

s− 2n

sm
∇(μ1

ζ
(n,s−1,0)
μ2···μs)

+
sm − s+ 2n

sm
[∂θ − (sm + s− 2n− 1)tanθ]ζ

(n,s,0)
μ1···μs

+
(s− 2n)(s− 2n− 1)

sm
tanθζ

(n+1,s,0)
μ1···μs (4.18)

where the notation ζ(n,s,k) is the same notation which already appeared for ψ.(s is the num-
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ber of indices rather than related spin)

Let’s concentrate on part of gauge transformation of φ(s) which contain gauge parameters

with covariant derivative, because this part do not mix with the other.

1

sm
∇(μ1

[s/2]∑
n=0

αn,s(s− 2n)ζ
(n,s−1,0)
μ2···μs)

(4.19)

Define ξ
(s)
μ1···μs−1 ≡∑[s/2]

n=0
s−2n

s αn,sζ
(n,s−1,0)
μ1···μs−1 and calculate trace of ξ(s).

ξ
(s)
ν1ν2μ1···μs−3g

ν1ν2 =

[s/2]∑
n=0

s− 2n

s
αn,s(An,s−1ζ

(n−1,s−3,0)
μ1···μs−3 +Bn,s−1ζ

(n,s−3,1)
μ1···μs−3 ) (4.20)

=

[s/2]−1∑
n=0

(
s− 2(n+ 1)

s
αn+1,sAn+1,s−1ζ

(n,s−3,0)
μ1···μs−3 +

s− 2n

s
αn,sBn,s−1ζ

(n,s−3,1)
μ1···μs−3 )

One can show that (s−2(n+1))αn+1,sAn+1,s−1 = (s−2n)αn,sBn,s−1 for any n and with

equation (4.9), one can recognize that ξ(s) is traceless.

Let’s rewrite the other part with this traceless combination ξ(s). Final result should have

only ξ
(s+1)
μ1···μs and g(μ1μ2

ξ
(s−1)
μ3···μs)

, otherwise the gauge transformation will not preserve double

tracelessness of field. g(μ1μ2
ξ
(s−1)
μ3···μs)

do not contain ζ(0,s,0). Therefore ζ(0,s,0) term in equa-

tion (20) will fix the coefficient of ξ
(s+1)
μ1···μs and the coefficient is sm−s

sm
[∂θ−(sm+s−1)tanθ].

Now Łm operator start to appear. One can guess that final result contain sm−s
sm

Ł−(sm+s−1)ξ
(s+1)

and the remnant is little complicate but after some massage one get the compact expression,

s(s− 1)(d+ sm + s− 3)

sm(d+ 2s− 5)(d+ 2s− 3)
Łd−(sm−s)−3 g(μ1μ2

ξ
(s−1)
μ3···μs)

(4.21)

In summary, the final expression of gauge transformation of φ(s) in terms of our previous

convention is

δφ
(k)
μ1···μk

=
k

s
∇(μ1

ξ
(k)
μ2···μk)

+
s− k

s
Ł−(s+k−1)ξ

(k+1)
μ1···μs (4.22)

+
k(k − 1)(d+ s+ k − 3)

s(d+ 2k − 5)(d+ 2k − 3)
Łd−(s−k)−2 g(μ1μ2

ξ
(k−1)
μ3···μk)

4.2 Boundary Conditions and Spectrum

Having identified the correct gauge transformations Eq.(4.2), we now derive the relations

between expansion modes Θ
k|s
n s and their differential relations. Requiring each term in the

gauge transformations Eq.(4.2) expanded by the same mode functions, we get the relations
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(
0 Łd−(s−k)−2

Ł−(s+k−2) 0

)(
Θ

k|s
n

Θ
k−1|s
n

)
=

(
c
k−1|k
n Θ

k|s
n

c
k|k−1
n Θ

k−1|s
n

)
, (4.23)

These relations determine the Sturm-Liouville differential equations of Θ
k|s
n ’s for all k =

0, · · · , s:

Łd−(s−k)−2 Ł−(s+k−2)Θ
k|s
n = ck|k−1 ck−1|k Θk|s

n , (4.24)

Ł−(s+k−1) Łd−(s−k)−1Θ
k|s
n = ck|k+1 ck+1|k Θk|s

n . (4.25)

Here, −M2
n,k|s is used to represent the n-th characteristic value of the Sturm-Liouville pro-

lems Eqs.(4.24,4.25). One can show that Eq.(4.24) and Eq.(4.25) are equivalent since the

identity

Łm Łn − Łn−1 Łm+1 = (n−m− 1)

related the Sturm-Liouville operators are related each other and the characteristic values are

related each other by

M2
n,k|s = M2

n,k+1|s + d+ 2k − 3. (4.26)

All relations is summarized by the spin-s spectrum generating complex :

Θ
s|s
n

Łd−2 �� Ł−(2s−2) −M2
n,s|s = −M2

n

...
...

Łd−(s−k−1)−2 �� Ł−(s+(k+1)−2) −M2
n,k+1|s = −

(
M2

n + (s− k − 1) (d+ s+ k − 3)
)

Θ
k|s
n

Łd−(s−k)−2 �� Ł−(s+k−2) −M2
n,k|s = −

(
M2

n + (s− k) (d+ s+ k − 4)
)

...
...

Łd−s−1 �� Ł−(s−1) −M2
n,1|s = −

(
M2

n + (s− 1) (d+ s− 3)
)

Θ
0|s
n

(4.27)

Here, M2
n,s|s is the mass-squared of n-th mode of spin-s field. They in turn determine mass-

squared of lower spin fields, k = s − 1, s − 2, · · · , 1. This spectrum-generating complex

among mode functions enables us to interpret the gauge transformation Eq.(4.2) as Stueck-

elberg gauge transformations. Let us choose, for convenience, relative normalizations in

Eq.(4.27) as

Ł−(s+k−2)Θ
k|s
n = −ak|sMn,k|sΘ

k−1|s
n and Łd−(s−k)−2Θ

k−1|s
n =

Mn,k|s
ak|s

Θk|s
n (4.28)
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where factors independent of mode index n are put together to

a2k|s =
k (d+ s+ k − 3)

(s− k + 1) (2k + d− 3)
.

Then, the gauge transformation Eq.(4.2) precisely gives rise to the Stueckelberg spin-s gauge

transformations in AdSd+1 space previously derived in [27]:

δφ
(k)
μ1···μk

=
k

s
∇(μ1

ξ
(k)
μ2···μk)

+ αk ξ
(k+1)
μ1···μk

+ βk g(μ1μ2
ξ
(k−1)
μ3···μk)

, (4.29)

where

α2
k =

(k + 1) (s− k) (d+ s+ k − 2)

s2 (d+ 2k − 1)

(
M2 + (s− k − 1) (d+ s+ k − 3)

)
, (4.30)

βk = − (k − 1)

(d+ 2k − 5)
αk−1.

Here, the dependence on mode n enters only through the mass-squared M2 := M2
n. Apart

from this, all modes of spin-k fields have the same structure of gauge transformations. There-

fore, spin-k gauge transformation of n-th mode is simply the Stueckelberg gauge transfor-

mation of spin-k field with mass Mn. In turn, these gauge transformations completely fix

the equation of motion for each spin k = 0, 1, · · · , s and for each mode n. They constitute

the Kaluza-Klein modes.

As for lower spin cases, were if M2
n is tuned to special negative values, it can happen that

αk = 0. These special values are the values at which Mn,k+1|s = 0 as well. In this case, the

Stueckelberg system of spin-s field decompose into two subsystems: the partially massless

spin-s system of depth t = (s − k − 1) and the Stueckelberg spin-k field. Importantly, the

massless spin-s field is also part of the spectrum, since it is nothing but partially massless

spin-s field of depth-0 2. Together, they constitute the ground modes:

2Note that our conventions of the mass-squared of higher-spin field is such that it is zero when the higher-spin

fields have gauge symmetries. So, it differs form the mass-squared that appears in the AdS Fierz-Pauli equation,(∇2 + κ2
s

)
φμ1 μ2 ·μs = 0.
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• The upper subsystem consists of
(
φ(s), φ(s−1), · · · φ(k+1)

)
and forms the

Stueckelberg system of partially massless field with depth t = (s − k − 1).

Their mass spectra are given by

M2 = −t (d+ 2s− t− 4) /r2AdS . (4.31)

• The lower subsystem consists of
(
φ(k), φ(k−1), · · · φ(0)

)
and forms the

Stueckelberg spin-k field. Their mass spectra are given by

M2 = (s− k + 1)(d+ s+ k − 3)/r2AdS . (4.32)

Group theoretically, the decomposition pattern of the ground modes can be understood in

terms of the Verma so(d, 2)-modules. At generic conformal weight Δ, the Verma module

V (Δ, s) is irreducible. At special values of Δ = d+ k − 1, however, V(Δ, s) decomposes

into so(d, 2) irreducible representations [32, 33]:

V (d+ k − 1, s) = D (d+ k − 1, s)⊕D (d+ s− 1, k) . (4.33)

In Eq.(4.33), the irreducible representation D(d+ k− 1, s) represents the partially massless

spin-s field, while D (d+ s− 1, k) represent the massive spin-(k + 1) field whose mass-

squared is set by the conformal weight Δ

m2 r2AdS = Δ(Δ− d)− (s− 2) (d+ s− 2) . (4.34)

We next classify all possible boundary conditions and determine the mass spectra. As

for the lower-spin fields, we shall only consider boundary conditions derived from Dirichlet

conditions on Θk|s|θ=±α = 0 for some k. As 0 ≤ k ≤ s, there are (s+1) possible Dirichlet

conditions. The relations Eq.(4.27) then fix boundary condition for all other fields originating

from the same mode functions:

Ł−(s+k−1) · · · · · · · · ·Łs+�−2Θ
�|s
∣∣∣
θ=±α

= 0 (� = k, k + 1, · · · , s)

Łd−(s−k)−2 · · ·Łd−(s−�−1)−2Θ
�k|s
∣∣∣
θ=±α

= 0 (� = k, k + 1, · · · , s) .(4.35)

Below, we show that the pattern of mass spectrum takes the form of Fig.2. First, to counter

cluttering indices, we define simplifying notations as Θ� := Θk+�|s, M2
n,� := M2

n, k+�|s,

U� := Łd−s−2+�+k and D� = Ł−s+2−�−k. Then sub-complex of Eq.(4.27) can be written in
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the form

Θ�
n

U� �� D� : −M2
n,� = −

(
M2

n + (s− k − �) (d+ s+ k + �− 4)
)

Θ�−1
n

. (4.36)

By this complex, there is one-to-one map between Θ�
n and Θ�−1

n for M2
n,� �= 0. If M2

n,� = 0,

there exists one additional mode Θ�
0 (Θ�−1

0 ) when � is positive (negative). This additional

mode satisfies Dl Θ
l
0 = 0 for positive l, Ul Θ

l−1 for negative l. After inductively applying

this relation from � = 0, one can show that the structure of mode function is given by

{Θk+�|s} = {K�
i , G

l
a=1, 2, ··· �} , and {Θk−�|s} = {K−�

i , G−�
a=1, 2, ··· �} . (4.37)

Here, K�
i ’s are the Kaluza-Klein modes, and G�

a’s are the ground modes which satisfy the

equations{
DaDa+1 · · ·D�G

�
a = 0 with Dk Dk+1 · · ·D�G

�
a �= 0 for all a < k

U−a+1 U−a · · ·U−�+1G
−�
a = 0 with Uk Uk+1 · · ·U−�+1G

−�
a �= 0 for all a < −k + 1

.

(4.38)

The ground modes G�
i with the same subscript i have the same characteristic value. Their

characteristic value can be obtained by the first-order differential equation D�G
�
� = 0 and

U−�+1G
−�
� = 0 for positive �. Finally, fields corresponding to G�

a, � = s − k, · · · , a form

the Stueckelberg system of partially massless spin-s field with depth-(s − k − a + 1). We

explained this already in Eq.(4.30) and below. Fields corresponding to G�
a, � = −a, · · · ,−k

form the massive spin-(k − a) Stueckelberg field with mass-squared M2 = (s − k + a +

1)(d+ s+ k − a− 3)/r2AdS . These spectra are depicted in Fig. 2.

Summarizing,
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Figure 2: Mass spectra for all possible boundary conditions characterized by Dirichlet con-

ditions on Θk|s. Each point represents a mode function. Points in the same rectangle form the

Stueckelberg system with the highest spin. The the upper triangle consists of the Stueckel-

berg system of partially massless field, while the lower triangle consists of the Stueckelberg

spin � = 0, 1, · · · k − 1, as described in Eq.(4.39).

• Mass spectrum for the boundary condition characterized by Dirichlet condition

at Θk|s consists of three parts. The first part is the set of massive spin-s Kaluza-

Klein tower, whose mass-squared is given by the characteristic value of Sturm-

Liouville problem, Eq. (4.24) with k = s. The second part is the set of partially

massless spin-s field with depth-(0, 1, 2, · · · , s−k−1). The third part consists

of the set of massive Stueckelberg spin � = 0, 1, · · · , k−1 with mass-squared,

M2 = (s− �+ 1)(d+ s+ �− 3)/r2AdS .

• The so(d, 2) representations of ground modes are{
D (d+ s− t− 2, s) for t = 0, 1, · · · , s− k − 1

D (d+ s− 1, �) for � = 0, 1, · · · , k − 1
(4.39)

whose masses are set in terms of conformal weights by Eq.(4.34).
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4.3 Decompactification Limit

In our setup, the distance between boundaries, α ranges over [−α, α]. If the wedge α

approaches π/2, the spacetime decompactifies to the entire AdSd+2. In other words, the α =

±π/2 hyperplanes correspond to the AdSd+2 boundary. As such, one might anticipate the

spectra of compactified theory approach the spectra of AdSd+2. This seems to be in tension

with our result as the mass spectra of spin-s field in AdSd+1 space arises only for special set

of boundary conditions. Here, we discuss subtleties involved in the decompactification limit.

Consider the AdSd+2 massless spin-s spectrum from the viewpoint of AdSd+1 space. This

is just like the L → ∞ limit of flat space we studied in section 2. The L2 square-integrable

modes of massless spin-s field form the so(d+1, 2)-module: D(d+ s− 1, s)so(d+1,2). Rep-

resentation theoretically, we can decompose this module into so(d, 2)-modules, a procedure

referred to as the ”dimensional digression” in [29]:

D(d+s−1, s)so(d+1,2) =
∞⊕
n=0

D(d+n+s−1, s)so(d,2)⊕
s−1⊕
l=0

D(d+s−1, l)so(d,2) . (4.40)

We can relate these modules with states that arise from the compactifiation of higher-spin

field, as the foliation of Fig.?? precisely matches with the above dimensional digression.

There are two kinds of so(d, 2)-modules in the right hand side of Eq.(4.40): the first set of

modules have the same spin, spin-s but different conformal dimensions, while the second set

of modules have the same conformal dimension but different spins ranging over 0 to s − 1.

We se that the second set of modules in Eq.(4.40) coincide with the set of ground modes for

k = s (Θs|s|θ=±α = 0) in Eq.(4.39). In order to reconstruc the so(d + 1, 2) module in the

left side of Eq.(4.40), we would then need the Kaluza-Klein modes from k = s to match

with the first set of modules. Below, we demonstrate this affirmatively.

In the k = s case, the mass spectra of spin-s field are determined by the Sturm-Liouville

equation Eq.(4.24) and the Dirichlet condition for mode functions Θs|s:

Łd−2 Ł−2(s−1)Θ
s|s
n = −M2

n Θ
s|s
n , where Θs|s|θ=±α = 0 . (4.41)

The solution is given by

Θs|s
n = (cos θ)μ (c1 P

μ
ν (sin θ) + c2Q

μ
ν (sin θ)) , (4.42)

where Pμ
ν and Qμ

ν are the associated Legendre functions with arguments, μ = 1
2 (d+ 2 s− 3)

and ν (ν + 1) = M2
n − 1

4

(
1− (d+ 2s− 4)2

)
. In the decompactification limit, the bound-
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ary conditions Θs|s|θ=±α = 0 take the form

0 = −π

2
sinA
(
(Pμ

ν )
2 − 4

π2
(Qμ

ν )
2
)
− 2 cosAPμ

ν Qμ
ν (4.43)

�

⎧⎪⎪⎨⎪⎪⎩
− 1

2π sinA (cos(μπ) Γ(μ))2
(
2
ε

)μ
for even d

−π
2 sinA

(
1

Γ(1−μ)

)2 (
2
ε

)μ
for odd d

(4.44)

where A = π (μ+ ν) and 1 � ε = 1−sinα > 0. Therefore, it must be that μ+ν are integer-

valued in the decompactification limit. From the relation Eq.(4.34), it immediately follows

that the modules that correspond to the Kaluza-Klein modes are precisely
⊕∞

n=0 D(d+n+

s− 1, s).

Spectrum for the cases of (k = s) goes to the spectrum of “dimensional degression

[29]” in the decompactification limit(i.e. α → π/2).

All are well so far, so one might anticipate that the spectral match with the dimensional

digression continues to hold for k �= s. This, however, is no longer true. The point is that

some of the ground modes in Eq.(4.39) contain the modules which are not in massless spin-s

modules of AdSd+2 space, D(d + s − 1, s)so(d+1,2) in Eq.(4.40). The mode functions that

would potentially match are actually singular (equivalently, the normalization factor goes to

zero) in the decompactification limit. In particular, the massless spin-s field in the AdSd+2

space belongs to one of these singular modes. For spin-two case, this was already shown in

Eq.(3.58). Conversely, this explains transparently why the dimensional degression [29] of

AdSd+2 space does not generate “massless” spin-s fields in AdSd+1 space.
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Chapter 5

Higher Derivative Boundary Conditions and
Boundary Degrees of Freedom

We encountered eigenvalue problems with higher-derivative boundary condition(HD BC).

Especially for fields with spin greater than three, HD BC is unavoidable consequence. With

HD BC, an Strum-Liouville differential operator is not self-adjoint on L2 functional space

and eigenfunctions are not orthogonal nor complete. Suppose we have an arbitrary function

f(θ) and eigenfunctions Θn(θ) from eigenvalue problem with HD BC. In previous chapters,

we just assumed f(θ) can be expanded by Θn(θ) — f(θ) =
∑

fnΘn(θ) — and f(θ) = 0

gives fn = 0 for every n. Without orthogonality and completeness of Θn(θ), each step is

unclear and even we cannot get fn from f(θ). How can we get fn = 0 which correspond to

lower dimensional equation of motions?

There is another issue possibly related with HD BC. As we can see from the spectrum

of spin-two example and higher spin compactification, for some boundary conditions, non-

unitary partially massless representations appear. Which means some boundary condition

gives unitary lower dimensional theory and some boundary condition does not. In terms

of HD BC, it is hard to tell which boundary condition is unitary before studying lower

dimensional spectrum. How can we see the origin of non-unitarity?

In this chapter, we answer above 2 questions. These questions are closely related and

solved by a single resolution. We develop a way of translating HD BC into corresponding

boundary action. In terms of boundary action, the physical properties are clear we can tell

which boundary condition is unitary. Also, the existence of boundary action or boundary

degrees of freedom implies the extension of function space of the field degrees of freedom.

We claim that extended function space and inner product gives correct resolution for the

mode expansion with HD BC.

In physics literature, HD BC is dealt numerically rather than analytically. In mathematical

literature, one can find analytically resolutions and the idea of extended function space [35,

36, 37, 38].

In the first section, we study simple mechanical example of a string where the HD BC

naturally appears. From string example, we can learn both mathematical and physical as-

pects of HD BC. Especially we introduce the extended inner product. Using extended inner

product, we naturally translate HD BC into boundary action. Then we apply what we learn
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from string example to spin-two example with specific 2-derivative boundary conditions.

We point out the origin of non-unitarity from HD BC. In the last section, we describe more

systematics to find the extended inner product for more HD BCs.

5.1 String Example

As the first case, we study classical field theory of an open string attached to nonrelativistic

massive particles at both ends.1 The motion of open string is subject to boundary conditions.

It is intuitively clear that the endpoint particles exert boundary conditions that interpolate

between Neumann and Dirichlet types. If the masses are infinite, the string endpoints are

pinned to a fixed position. If the masses are zero, the string endpoints move freely. It is

less obvious, however, that endpoint particles with finite mass put the open string to higher-

derivative boundary conditions.

We explain its physical meaning. We will study this system in three difference ways. At

the end, we will get the refined inner product and mechanism for finding boundary action

from HD BC.

As the first approach, we shall start with boundary degrees of freedom, integrate them out,

and convert their dynamics to HD BC for the open string. Consider an open string of tension

T , stretched along x-direction 0 ≤ x ≤ � and vibrating with vertical amplitude y(x, t).

String’s end points are attached to harmonic oscillator particles at x = 0, � whose masses,

vertical positions and Hooke’s constants are M1, y1(t), k1 and M2, y2(t), k2, respectively.

See Fig. 3. The system is described by the action

Figure 3: Open string connected to massive particles in harmonic potential.

1This example was considered in detail at [34].
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I =

∫
dt
(
Lstring + Lparticle, 1 + Lparticle, 2

)
, (5.1)

where the Lagrangians of open string and massive particles are

Lstring =
T

2

∫ l

0
dx
(
(∂ty)

2 − (∂xy)
2
)

and Lparticle, a =
1

2

(
Ma ẏ

2
a − ka ya

2
)

(a = 1, 2).

(5.2)

The action completely determine dynamics of the variables (y(x, t), y1(t), y2(t)) without

specifying any boundary conditions. As the string is attached to the particles, the string

amplitude is related to particle positions by

y(x, t)
∣∣∣
x=0

= y1(t) and y(x, t)
∣∣∣
x=�

= y2(t). (5.3)

Thus, one can alternatively eliminate the particle variables y1(t), y2(t) and express them in

terms of just the string amplitude y(x, t). This then replaces the constraints Eq.(5.3) and

particle actions by some boundary conditions to the string amplitude y(x, t) at x = 0, �. Our

goal is to derive these boundary conditions, starting from boundary actions
∫
dtLparticle, 1,2

that are provided by the endpoint particle actions.

So, to figure out the boundary condition, we derive the field equation of the string from

the action Eq.(5.1):

δI =

∫
dt

⎛⎝−T

∫
dx δy

[
∂2
t y − ∂2

xy
]
+ T [δy ∂xy]

l
0 −
∑
a=1,2

δya(Maÿa + kaya)

⎞⎠
(5.4)

Imposing the constraints Eq.(5.3), δy(0, t) = δy1(t) and δy(l, t) = δy2(t), so we obtain the

string field equation of motion(
∂2
t − ∂2

x

)
y(x, t) = 0 (0 ≤ x ≤ �) (5.5)

and equations of motion for particles

M1 ÿ1 + k1 y1 − T ∂xy
∣∣∣
x=0

= 0 and M2 ÿ2 + k2 y2 + T ∂xy
∣∣∣
x=�

= 0 . (5.6)

Integrating out the endpoint particles amount to relating y1(t), y2(t) to the endpoints of

string amplitude by combining Eq.(5.3) with Eq.(5.5). We obtain the sought-for boundary
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conditions

M1 ∂
2
xy − T ∂xy + k1 y

∣∣∣
x=0

= 0 and M2 ∂
2
xy + T ∂xy + k2 y

∣∣∣
x=�

= 0 . (5.7)

We see that, for finite M1 and M2, the boundary conditions are second order in normal

derivatives, so they are indeed HD BCs. Were if M1,M2 zero, the boundary conditions are

the most general Robin boundary conditions. The Robin boundary conditions are reduced to

Neumann and Dirichlet boundary conditions in the limit k1,2 are zero and infinite, respec-

tively. Were if M1,M2 infinite, regularity of boundary conditions require that ∂2
xy vanishes

at the boundaries. In turn, ∂xy is constant at the boundaries, and so the boundary conditions

are again reduced to Dirichlet boundary conditions.

Conversely, we can always reinterpret HD BCs on open string as attaching massive par-

ticles at the endpoints. Start with an open string whose field equation Eq.(5.5) is subject to

HD BCs Eq.(5.7). This is the same situation as we have for the higher-spin field in AdS

waveguide. Solving the open string field equation subject to the boundary conditions is the

same as extremizing some modified action Ĩ whose variation is given by

δĨ =

∫
dt

(
−T

∫ �

0
dx δy

[
∂2
t y − ∂2

xy
])

−
∫
x=0

dtλ1(t) δy
[
M1∂

2
xy − T∂xy + k1y

]
−
∫
x=�

dtλ2(t) δy
[
M2∂

2
xy + T∂xy + k2y

]
−M1

∫
x=0

dt δy
[
∂2
t y − ∂2

xy
]
−M2

∫
x=�

dt δy
[
∂2
t y − ∂2

xy
]
, (5.8)

where λ1,2(t) are Lagrange multipliers that imposes the HD BCs. The last line is redundant,

since they vanish automatically when the open string field equation from the first line is

obeyed. By reparametrization of time t at both boundaries, it is always possible to put them

to constant values which we set to unity. To reconstruct the action Ĩ , we combine derivative

terms that depend on string tension T :

T

∫
dt

∫ l

0
dx δy ∂2

xy − T

∫
dt
(
δy ∂xy

)�
0
= −δ

(
T

2

∫
dt

∫ �

0
dx (∂xy)

2

)
, (5.9)

and also combine derivative terms that depend on the mass parameters M1,M2:

−M1

∫
x=0

dt δy ∂2
xy −M1

∫
x=0

dt δy
[
∂2
t y − ∂2

xy
]
= −M1

∫
x=0

dt δy ∂2
t y = δ

(
M1

2

∫
dt ẏ2
)

−M2

∫
x=�

dt δy ∂2
xy −M2

∫
x=�

dt δy
[
∂2
t y − ∂2

xy
]
= −M2

∫
x=�

dt δy ∂2
t y = δ

(
M2

2

∫
dt ẏ2
)
.

(5.10)
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Combining with other terms in the variation, we get

Ĩ =
T

2

∫
dt

∫ �

0
dx
[
(∂ty)

2 − (∂xy)
2
]
+

1

2

∫
dt (M1 ẏ

2
1 − k1y

2
1) +

1

2

∫
dt (M2 ẏ

2
2 − k2y

2
2) .

(5.11)

By renaming the endpoint positions as in Eq.(5.3), we find that the action Ĩ is precisely

the action of open string coupled to dynamical harmonic oscillator particles at each ends,

Eq.(5.2).

We still need to understand how the Sturm-Liouville operator −∂2
x of open string can be

made self-adjoint for HD BC. It is useful to recall implication of self-adjointness for the

Robin boundary condition. In this case, we can rewrite the open string action in terms of

inner product for square-integrable functions

Istring =
T

2

∫
dt
(
〈∂ty, ∂ty〉 − 〈y, (−∂2

x)y〉
)

where 〈f, g〉 ≡
∫ �

0
dx f(x) g(x) .

(5.12)

Denote the square-integrable normal mode functions of (−∂2
x) as Xn (n = 0, 1, 2, 3, · · · ),

viz. (−∂2
x)Xn = λnXn. As the Sturm-Liouville operator (−∂2

x) is self-adjoint for the Robin

boundary condition, the normal mode functions can be made orthonormal and form a com-

plete set of basis of the Hilbert space of square-integrable functions. So, we can decompose

the string amplitude y(x, t) as

y(x, t) =
∑
n

Tn(t)Xn(x) (5.13)

and the open string action Istring as

Istring =
∑
n

T

2

∫
dt
(
Ṫ 2
n − λnT

2
n

)
. (5.14)

Motivated by this line of reasonings, we ask if the combined action of open string with

HD BCs can be written in terms of some inner product 〈〈 , 〉〉:

I〈〈,〉〉 =
T

2

∫
dt
(
〈〈∂ty, ∂ty〉〉 − 〈〈y, (−∂2

x)y〉〉
)
. (5.15)

We now prove that the inner product 〈〈 , 〉〉 that renders the Sturm-Liouville opertor (−∂2
x)

self-adjoint under the HD BC Eq.(5.7) is precisely the extended inner product Eq.(??). In the

present case, the additional vector space is provided by the positions of two massive particles
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attached at string endpoints. Therefore, it spans R⊕ R. The metric of this two-dimensional

vector space is given by masses (measured relative to string tension). For a function space

L2⊕R
2, a general element and its inner product with respect to HD BC Eq.(5.7) would take

the form

f =

⎛⎜⎝ f(x)

f1

f2

⎞⎟⎠ ∈ L2 ⊕ R
2, f · g =

∫ �

0
dx f(x) g(x) +G11f1g1 +G22f2g2. (5.16)

Roughly speaking, two new real numbers f1,2 correspond to boundary value of f(x) which

are left undetermined by the Sturm-Liouville differential equation and HD BC. The bound-

ary conditions on element of L2 ⊕ R
2 are HD BC in Eq.(5.7) for f(x), together with

f1 = f(0) and f2 = f(l). With these boundary conditions, we now define the extended

inner product 〈〈 , 〉〉 for the open string with HD BC as

〈〈f, g〉〉 ≡
∫ �

0
dx f(x) g(x) +

M1

T
f(0)g(0) +

M2

T
f(l)g(l), (5.17)

where the metric of R2 is chosen by the parameters in the HD BCs, Eq.(5.7). With respect

to this extended inner product, we now find that the Sturm-Liouville operator (−∂2
x) of open

string is indeed self-adjoint:

〈〈f, (−∂2
x)g〉〉 − 〈〈(−∂2

x)f, g〉〉

=− 1

T
f(M1∂

2
xg − T∂xg + k1g)

∣∣∣
x=0

+
1

T
(M1∂

2
xf − T∂xf + k1f)g

∣∣∣
x=0

+
1

T
f(M2∂

2
xg + T∂xg + k2g)

∣∣∣
x=�

− 1

T
(M2∂

2
xf + T∂xf + k2f)g

∣∣∣
x=�

= 0 , (5.18)

where we arranged the harmonic force term (zero derivative terms in the boundary condition)

and the HD BC Eq.(5.7) for f and g. With the extended inner product, we shall expand the

proposed action Eq.(5.15) in terms of the original inner product over L2-space and additional

inner product over R2 space. We observe that, after renaming the boundary values of y(x, t)

as Eq.(5.3), the proposed action I〈〈,〉〉 in Eq.(5.15) is precisely the action of open string

attached to endpoint particles, I = Istring + Iboundary. We reiterate the key point here is that

extended inner product, HD BCs, and boundary actions are bear the same information and

dictate their structures one another.

The extended inner product we introduced poses a new issue originating from the HD

BC, equivalently, the endpoint particle dynamics. For some choices of the HD BCs, the ex-
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tended Hilbert space can be indefinite, viz. the norm 〈〈y, y〉〉 can become negative. This hap-

pen precisely when the metric components M1,2/T have negative signs. Take, for instance,

M1 = M2 = M and k1 = k2 = 0. There then always exists at least one mode

X0(x) = N0 sinh

[
m0

(
x− �

2

)]
with

1

m0
= −M

T
tanh

m0 �

2
, (5.19)

whose extended norm is negative for negative value of M

〈〈X0, X0〉〉 = N0
2

[
− �

2
+

M

T
sinh2

m0 �

2

]
< 0 . (5.20)

This mode is problematic as, upon mode expansion, the corresponding component in the

action Eq. (5.14) has the kinetic term with wrong sign,

(−)
T

2

∫
dt
(
Ṫ 2
0 − λ0T

2
0

)
. (5.21)

This causes negative energy of the open string at classical level and negative probability

(and hence lack of unitarity) at quantum level. Moreover, the mode eigenvalue λ0 = −m2
0

is negative definite (which is again a consequence of negative value of M , as seen from

Eq.(5.19)) and so the variable T0(t) develops an instability to grow exponentially large.

There is another example demonstrating the utility of the boundary degrees of freedom

view point. Consider k1 = k2 = k < 0, M1 = M2 = M > 0 and T > 0 case. In this case,

the extended inner product Eq.(5.17) ensures positivity of the norm. However there are some

modes with negative eigenvalue. Generic even (with respect to x = �
2 ) mode function with

negative eigenvalue is Xe(x) = cosh
[
λ
(
x− �

2

)]
, (−∂2

x)Xe = −λ2Xe. HD BC implies

Mλ2 + T λ tanh(
�

2
λ) = −k (5.22)

and this equation always has solutions because for λ ≥ 0, l.h.s is starting from 0 and mono-

tonically increasing. Also the HD BC of generic odd function Xo(x) = sinh
[
λ
(
x− �

2

)]
implies

M λ2 tanh(
�

2
λ) + T λ = −k tanh(

�

2
λ) (5.23)

and this equation has solutions when T < − �
2 k.2 Again, these negative eigenvalue modes

show instability of the system. In terms of HD BC, it is hard to see the origin of this insta-

2In terms of boundary degrees of freedom, this inequality means that repulsive force from spring is bigger

than string tension.
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bility. However, in terms of boundary degrees of freedom, it is immediate that the origin of

instability is the negative spring constant.

So, by relating HD BCs to boundary action of extra degrees of freedom, we gain a better

understanding of underlying physics. For M negative, it is hard to recognize the above in-

stability or non-unitarily at the level of the equation of motion and boundary conditions. In

contrast, the boundary action clearly shows the origin of instability or non-unitarity and it is

simply a consequence of negative mass of the endpoint particles.

5.2 Spin-Two Example

We now apply our understanding of the HD BC in the previous subsection to the spin-two

field in AdS waveguide studied in section 3.3.2. Recall that spin-two is the first situation that

HD BCs start to appear and, among three possible Dirichlet classes, B.C. 1 and B.C. 3 con-

tain two-derivative boundary conditions to some of the component fields. In this subsection,

we identify the extended inner product for these boundary conditions and explain the origin

of non-unitarity for partially massless representations in AdSd+1.

We first construct the extended inner product for spin-two fields in AdS space. The Sturm-

Liouville problems with HD BCs that we will consider have the following form:

Łb ŁaΘn = −λnΘn where Łc ŁaΘn

∣∣
θ=±α

= 0 (5.24)

for some weights a, b, c. Note that the Sturm-Liouville equation and the boundary condition

share the same operator Ła. From free action of the spin-two field, we get an L2 inner product

〈Θm ,Θn〉 =
∫ α

−α
dθ (secθ)d−4Θm(θ)Θn(θ) , (5.25)

where the weight factor in the integration measure originates from the conformal factor of

the metric Eq.(3.6). As we deal with spin-two, s = 2 and so a+b = d−2s = d−4. We thus

take the weight factor as (secθ)a+b. For any conformal factor (secθ)c with arbitrary weight

c, we integrate by part∫ α

−α
dθ (secθ)cΘm(ŁaΘn) = −

∫ α

−α
dθ (secθ)c (Łc−aΘm)Θn + (secα)c

[
ΘmΘn

]+α

−α
.

(5.26)

Using this, one finds that the differential operator Łb Ła is not self-adjoint on L2 functional
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space,

〈Θm, (Łb ŁaΘn)〉 − 〈(Łb ŁaΘm),Θn〉 = (secα)a+b
[
Θm(ŁaΘn)− (ŁaΘm)Θn

]+α

−α
�= 0 .

(5.27)

By inspection, we find an extended inner product which renders the Sturm-Liouville operator

ŁbŁa self-adjoint,

〈〈Θm,Θn〉〉 ≡ 〈Θm,Θn〉+
∑
σ=±

NσΘm(σα)Θn(σα) , (5.28)

where

N+ = N− = (c− b)−1 cotα(sec α)a+b. (5.29)

We can confirm that ŁbŁa is indeed self-adjoint with respect to the extended inner product:

〈〈Θm, (Łb ŁaΘn)〉〉 − 〈〈(Łb ŁaΘm),Θn〉〉

=(secα)a+b
∑
σ=±

(
Θm(ŁaΘn)− (ŁaΘm)Θn +Nσ(ΘmŁbŁaΘn − (ŁbŁaΘm)Θn)

)
(σα)

=(secα)a+b
∑
σ=±

Nσ

(
Θm(ŁcŁaΘn)(σα)−(ŁcŁaΘm)Θn(σα)

)
. (5.30)

The last expression vanishes by the HD BCs in Eq.(5.56).

We apply the extended inner product to the ground modes for the HD BCs, B.C. 1 and

B.C. 3 in section 3.3.2. In the last subsection, whether a given HD BC lead to non-unitarity or

not depends on parameters specifying the boundary conditions. The extended norm-squared

is positive definite if unitary, while it is negative definite if non-unitary. For B.C. 1, the HD

BCs are imposed on spin-zero mode with a = d − 3, b = −1 and c = d − 2. We see

that the normalization constants N± in Eq.(5.28) are positive-definite, so the norm-squared

is positive-definite. In contrast, for B.C. 3, HD BCs are imposed on spin-two mode with

a = −2, b = d− 2, c = −1 and the normalization constants N± are negative-definite. More

explicitly, the ground modes of B.C. 3 are{
Θ

2|2
1 = N1 sec θ tan θ , Θ

1|2
1 = N2 sec θ type IV in Table 1 ,

Θ
2|2
0 = N3 sec2 θ type II in Table 1 ,

(5.31)

which correspond to the PM spin-two and massless spin-two fields, respectively. Boundary

condition of spin-one mode function is one-derivative boundary condition and its norm is
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positive-definite. In contrast, the norms of spin-two modes are

〈〈Θ2|2
1 ,Θ

2|2
1 〉〉 = N1

2

(∫ α

−α
dθ secd−2 θ tan2 θ − 2

d− 1
secd−2 α tanα

)
,(5.32)

〈〈Θ2|2
0 ,Θ

2|2
0 〉〉 = N3

2

(∫ α

−α
dθ secd θ − 2 secd α

(d− 1) tanα

)
. (5.33)

It can be shown that the norm Eq.(5.32) which corresponds to PM mode, is always negative3

by the following estimation.

〈〈Θ2|2
1 ,Θ

2|2
1 〉〉 = N1

2

(
2

∫ α

0
dθ secd θ sin2 θ − 2

d− 1
secd−1 α sinα

)
< N1

2

(
2 sinα

∫ α

0
dθ secd θ sin θ − 2

d− 1
secd−1 α sinα

)
(5.34)

= −N1
2 2

d− 1

Inequality holds because sin θ < sinα for 0 ≤ θ < α < π
2 . This negative norm implies that

the kinetic term of PM mode has the wrong sign.

With the extended inner product, we can construct boundary action which reveals physical

properties of the imposed HD BCs. The action of free massless spin-two field h̄MN on

AdSd+2 background is

Ispin−two =

∫ √
ḡ dd+2xL2

(
h̄MN ; ḡMN , d+ 2

)
=

∫ √
ḡ dd+2x

[
− 1

2
∇̄L h̄MN ∇̄L h̄MN + ∇̄M h̄NL ∇̄N h̄ML − ∇̄M h̄MN ∇̄N h̄

+
1

2
∇̄L h̄ ∇̄L h̄− (d+ 1)

(
h̄MN h̄MN − 1

2
h̄2
)]

(5.35)

After compactification on the AdS waveguide, each term of Eq.(5.35) is decomposed into

quadratic terms of component fields, hμν , Aμ and φ, which can be expressed as L2 inner

product Eq.(5.25) with a+ b = d− 2s = d− 4. For example,∫
dd+1x

√−g

∫ α

−α
dθ (secθ)d−4∇ρ hμν ∇ρ hμν =

∫
dd+1x

√−g 〈∇ρ hμν ,∇ρ hμν 〉 .

As in the open string case, we require that each term of the quadratic action expressed by

appropriate inner product which ensures orthogonality and completeness of the mode func-

3 The other norm Eq.(5.33) is negative for α ∼ 0 and positive for α ∼ π/2. When one of Kaluza-Klein mass

hits zero mass, this norm vanishes. In this specific value of α, there is no massless spin-two field, type III, in

the spectrum and type II appear instead.
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tions. We now know that, depending on the nature of boundary conditions, some of these

terms needs to be the extended inner product which contains the contribution of boundary

action. The situation is more involved as there are three component fields each of which

obeys different boundary conditions. From the spectrum generating complex, we have three

kinds of boundary conditions:

• spin-two Dirichlet, expanded by Θ
2|2
n : hμν , Łd−2Aμ, Łd−2Łd−3φ

• spin-one Dirichlet, expanded by Θ
1|2
n : Ł−2hμν , Aμ, Łd−3φ

• spin-zero Dirichlet, expanded by Θ
0|2
n : Ł−1Ł−2hμν , Ł−1Aμ, φ .

By straightforward computation, we find that the action is decomposed as

I =

∫
dθ (secθ)d−4 L2 (hμν ; gμν , d+ 1)

+
[
− 1

2
〈Fμν , Fμν〉 − 2d 〈Aμ, Aμ〉+ 〈Ł−2h

μν ,∇μAν +∇νAμ − 2gμν∇ρAρ〉

− 1

2
〈Ł−2 h

μν ,Ł−2 hμν〉+
1

2
〈Ł−2 h,Ł−2 h〉+

d(d+ 1)

(d− 1)2
〈Łd−4φ,Łd−4φ〉 −

d

d− 1
〈Ł−2h,Łd−4φ〉

]
+
[
− d

d− 1

(1
2
〈∇μ φ,∇μ φ〉+

d+ 1

2
〈φ, φ〉

)
+

2d

d− 1
〈Ł−1A

μ,∇μφ〉
]
. (5.36)

The first line, the second bracket and the third bracket are spin component of modes: 〈Θs|2,Θs|2〉
for s = 2, 1, 0, respectively 4.

Consider first B.C. 1. In this case, the spin-zero component field obeys HD BC:

Ł−1Łd−3Θ
0|2 = −λΘ0|2 and Łd−2Łd−3Θ

0|2∣∣
θ=±α

= 0. (5.37)

So, we need to adopt the extended inner product for terms involving the mode function

Θ0|2. They are the terms in the third bracket of Eq.(5.36). Using the extended inner product

Eq.(5.28) with a = d − 3, b = −1 and c = d − 2, we obtain the corresponding boundary

action from the difference between extended inner product and original inner product∫
dd+1x

√−g
d

(d− 1)2
(secα)d−4

tanα

∑
σ=±

[
−
(1
2
∇μφ∇μφ+

d+ 1

2
φ2
)
+
(

Ł−1A
μ∇μφ

)]
θ=σα

.

(5.38)

4 The classification appears somewhat arbitrary. For instance, 〈Łd−3φ,Łd−3φ〉 belongs to 〈Θ1|2,Θ1|2〉 ,but

its another form 〈φ,Ł−1Łd−3φ〉 obtained by integration by parts belongs to 〈Θ0|2,Θ0|2〉. We will show that the

total action is nevertheless the same provided we keep track of boundary terms.
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Redefining the boundary values of spin-zero field as

φσ =

(
d

(d− 1)2
(secα)d−4

tanα

)1/2

φ
∣∣∣
θ=σα

, (σ = ±), (5.39)

we get the boundary action as

Iboundary,BC1 =
∑
σ=±

∫
dd+1x

√−g
[
−
(1
2
∇μφσ∇μφ

σ +
d+ 1

2
(φσ)2

)
+ C
(

Ł−1A
μ
∣∣
θ=σα

∇μφ
σ
)]

,

(5.40)

where C =
(

d
(d−1)2

cotα(secα)d−4
)1/2

. Note that the sign of kinetic term for boundary

spin-zero fields φ± is standard in our convention. This matches precisely with the result of

section 5.2 that the waveguide compactification with B.C. 1 yields only unitary spectrum.

For the second term of boundary action, we may interpret it two alternative ways. We can

interpret that the bulk field Aμ is sourced by the boundary field φ±, equivalently, the bound-

ary value of bulk field Aμ turns on the boundary field φ±. Alternatively, we can eliminate

this term by writing the cross term 〈Ł−1A
μ,∇μφ〉 as 〈Aμ,Łd−3∇μφ〉. This is related to the

freedom which is explained in the footnote 4. We will revisit this issue at the end of this

section.

Consider next B.C. 3. In this case, the spin-two component field is subject to HD BC:

Łd−2Ł−2Θ
0|2 = −λΘ2|2 and Ł−1Ł−2Θ

2|2∣∣
θ=±α

= 0. (5.41)

We thus need to adopt the extended inner product for terms involving the mode function

Θ2|2. They are the first term in Eq.(5.36) that contain the kinetic and mass-like terms of spn-

two field hμν . Using the extended inner product Eq.(5.28) with a = −2, b = d− 2, c = −1,

we now get the boundary action as

Iboundary,BC3 = −
∑
σ=±

∫
dd+1x

√−g L2

(
hσμν ; gμν , d+ 1

)
(5.42)

where we renamed the boundary value of the bulk spin-two field by

hσμν =

(
1

d− 1

(secα)d−4

tanα

)1/2

hμν

∣∣∣
θ=σα

, (σ = ±). (5.43)

Most significantly, with extra minus sign in front of the boundary action Eq.(5.42), the

boundary spin-two field h±μν has kinetic terms of wrong sign. Again, this fits perfectly with

the result of section 5.2 that the waveguide compactification with B.C. 3 yields non-unitary
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spectrum for the partially massless spin-two fields. As stressed already, this result was hardly

obvious to anticipate just from the HD BCs. With the extended inner product, we now have a

firm understanding for the origin of non-unitarity of partially massless spin-two field without

ever invoking so(d, 2) representation theory.

Summarizing,

• For HD BC, we need to extend the functional space from L2 to L2 ⊕ R
N to

render Sturm-Liouville operator self-adjoint. We showed that this extension

can be physically understood as adding N many boundary degrees of freedom.

• From the extended inner product, we constructed the boundary action for a

given HD BC. The boundary action enabled to directly trace the origin of

(non)unitarity of waveguide spectrum.

• For B.C. 3 in section 3.3.2, the boundary action of boundary spin-two fields

has kinetic term of the wrong sign. This explained why the partially massless

spin-two field is non-unitary.

• For B.C. 1 in section 3.3.2, the boundary action of boundary spin-zero fields

have kinetic term of conventional sign. This explains why the massive spin-

zero field is unitary.

Before concluding this subsection, let us revisit the ambiguity mentioned in the footnote

4. Consider B.C. 1 and the term 〈Łd−3φ,Łd−3φ〉. Such term was classified as originating

from 〈Θ1|2,Θ1|2〉, so appears not to be refined. On the other hand, using Eq.(5.26), this term

can also be rewritten as −〈φ,Ł−1Łd−3φ〉 with surface term
[
(secα)d−4 φŁd−3φ

]∣∣+α

−α
. This

term belongs to 〈Θ0|2,Θ0|2〉, so needs to be refined. Thought this seems to pose ambiguous,

it is actually not. From

〈〈φ,Ł−1Łd−3φ 〉〉 = 〈φ,Ł−1Łd−3φ〉+
∑
σ=±

Nσ

(
φŁ−1Łd−3φ

)
θ=σα

= −〈Łd−3φ,Łd−3φ〉+
∑
σ=±

Nσ

(
φŁd−2Łd−3φ

)
θ=±α

, (5.44)

we see that 〈〈φ,Ł−1Łd−3φ〉〉 and −〈Łd−3φ,Łd−3φ〉 are the same up to boundary conditions.

One can start with any bulk action, and the extended action is the same. There is no ambigu-

ity.
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5.3 Systematics for HDBC

In this section, we describe how to expand function space and inner product for 2, 3, 4

derivatives boundary conditions. See appendix B for 5 and 6 derivatives cases. We concen-

trate on the HD BC comes from the Dirichlet boundary condition on Θ
s|s
n which means,

n-derivative boundary condition for Θ
s−n|s
n . For 2 derivative boundary condition, the situa-

tion is much simple and we analyze with more generality. Unfortunately, our method cannot

apply to generic higher derivative boundary condition since the complexity grows too fast.

5.3.1 Strategy

Since now we deal with more general cases with various spin, let’s define more specific

notation for inner product.

〈 f(θ), g(θ) 〉cL2 =
1

(secα)c

∫ +α

−α
dθ (sec θ)cf(θ)g(θ) (5.45)

Here c denotes weight factor for L2 inner product. Under L2 inner product, difference be-

tween 〈Θm,ŁbŁaΘn〉a+b
L2 and 〈ŁbŁaΘm,Θn〉a+b

L2 is a surface term
[
Θm(ŁaΘn)−(ŁaΘm)Θn

]+α

−α
.

This surface term vanish only for the Dirichlet boundary condition Θn|±α = 0 or mixed

boundary condition. Using eigenvalue equation and derivative of eigenvalue equation at

the boundary, one can expand eigenfunction Θn ∈ L2 to generalized eigenvector �Θn ∈
L2 ⊕ RN . With generalized eigenvector �Θn, also the eigenvalue operator is naturally ex-

panded to eigenvalue operator E acting on �Θn. By defining proper inner product of general-

ized eigenvector 〈�Θn, �Θm〉L2⊕RN , one can make the difference between 〈�Θn,E�Θm〉L2⊕RN

and 〈E�Θn, �Θm〉L2⊕RN to a surface term which vanish under given higher derivative bound-

ary condition. Then, under this inner product, operator E is self-adjoint and every nice prop-

erties are restored. Note that this procedure at θ = +α and θ = −α are totally independent

therefore expanded space always should be L2 ⊕R2N . This is the consequence of consider-

ing identical parallel 2 boundaries. This system is symmetric under θ → −θ, therefore every

calculation for ±α is completely parallel. From the next subsection, we will concentrate on

surface terms at θ = +α and omit the θ = −α part except for 2 derivative example.

More concretely, eigenfunction Θn(θ) and eigenvalue equation ŁbŁaΘn(θ) = −λΘn(θ)
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are expanded to

E �Θn = E ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Θn(θ)

I1(Θn)|+α

I1(Θn)|−α

I2(Θn)|+α

...

IN (Θn)|+α

IN (Θn)|−α

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ŁbŁaΘn(θ)

J1(Θn)|+α

J1(Θn)|−α

J2(Θn)|+α

...

JN (Θn)|+α

JN (Θn)|−α

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= −λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Θn(θ)

I1(Θn)|+α

I1(Θn)|−α

I2(Θn)|+α

...

IN (Θn)|+α

IN (Θn)|−α

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= −λ�Θn

(5.46)

Ii and Ji are the linear functions of Θn and satisfy the relation

Ji(Θn(θ)) = −λIi(Θn(θ)) (5.47)

Ii and Ji are constructed from the eigenvalue equation and derivatives of eigenvalue equa-

tion. Also Ii, Ji give the definition of E therefore they are the main object we should calcu-

late. Under these conditions, {�Θn} forms complete basis for L2⊕R2N and arbitrary element

�f ∈ L2 ⊕R2N can be expanded by {�Θn}.

�f =

⎛⎜⎜⎜⎜⎝
f(θ)

f1
...

f2N

⎞⎟⎟⎟⎟⎠ =
∑
m

cm�Θm (5.48)

Here, fi’s are just arbitrary real numbers and indepent with f(θ). Natural inner product of

L2 ⊕R2N is

〈�f,�g 〉L2⊕R2N ≡ 〈f, g〉a+b
L2 +

2N∑
i=1

Ni fi gi ≡ 〈f, g〉a+b
L2 +B2N (�f,�g) (5.49)

Ni is the normalization factor (N2k−1 = N2k because of θ → −θ symmetry) and the sign

of this factor is the most important information. So what we have to calculate are Ii, Ji and

Ni. Guiding principle for determining Ii, Ji and Ni comes from the previous requirement

on the inner product of �Θn.

〈�Θn,E�Θm〉L2⊕R2N − 〈E�Θn, �Θm〉L2⊕R2N =
[
Surface Term

]+α

−α
(5.50)

This surface term should vanish under given higher derivative boundary condition. N is the
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number of necessary Ii and Ji to achieve this requirement.

Actually, we already know the relation between N and the number of derivatives in the

boundary condition. From the direct calculation, we got eigenfunctions for given higher

derivative boundary condition, and classified them into “Kaluza-Klein Modes” and “Ground

Modes”. The eigenvalues of “Kaluza-Klein Modes” depend on the distance between the

boundaries, α but the eigenvalues of “Ground Modes” do not depend on α. For M-derivative

boundary condition, there are M “Ground Modes”. When M is even, “Kaluza-Klein Modes”

form a basis for L2 space and the number of “Ground Modes” is the same with 2N . When

M is odd, “Kaluza-Klein Modes” together with one of “Ground Modes”, which is analogous

to the ground mode of the Neumann boundary condition, form a basis of L2 space and

the number of the rest of the “Ground Modes”, M − 1, is the same with 2N . Therefore

N = [M/2]. This is not a rigorous statement and is related with the uniqueness of expansion

to the generalized eigenvector. Up to now, we don’t have complete proof and will just take

N = [M/2].

5.3.2 Basis of Higher Derivatives

The elements for extended inner product are Ii and Ji and they are linear functional of

higher derivative to make a surface term which vanish by HD BC. To deal with arbitrary

linear higher derivatives, we should fix the basis for higher derivatives. Also to keep the

structure of the eigenfunctions, we should use Łm operators. Considering higher derivatives

in terms of Łm operator is highly ambiguous since one can consider various m’s. One nice

basis is

Ł
(m)
k|s ≡ Łd−s+k−3+m · · ·Łd−s+k−1Łd−s+k−2︸ ︷︷ ︸

m Ł′
s

(5.51)

for m > 0. This operator is product of successive m raising Łm operators, therefore

Ł
(m)
k|s Θ

k|s
n ∼ Θk+m|s

n . (5.52)

We can omit subscript k|s since this operator only action Θk|s and there is no ambiguity.

Using this basis is notationally and schematically convenient, because boundary condition

is given in terms of Ł(m). One can define this operator for m < 0 with different set of Łm’s.
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When Ł−(s+k−1)Łd−s+k−2Θ
k|s
n = −λΘ

k|s
n ,

Ł−(s+(k+m)−1)Łd−s+(k+m)−2Ł(m)Θk|s
n =

(
−λ+

m∑
i=1

(d+ 2k − 4 + 2i)

)
Ł(m)Θk|s

n

(5.53)

In terms of Ł(m) only,(
Ł(m+2) −Ak|s

m Ł(m+1) −Bk|s
m Ł(m)

)
Θk|s

n = −λŁ(m)Θk|s
n (5.54)

Ak|s
m = Δ

k|s
m+1 Tθ = (d+ 2k − 2 + 2m) tanθ

Bk|s
m =

m∑
i=1

Δ
k|s
i = m (d+ 2k − 3 +m)

Δ
k|s
i ≡ d+ 2k − 4 + 2i , Tθ ≡ tanθ

for m ≥ 1, equation (5.54) is the m-derivative of the eigenvalue equation and for m = 0,

it is the eigenvalue equation itself. (B
k|s
0 = 0) These equations provide complete building

block of equation (5.47) therefore Ii and Ji. Consider an arbitrary Ii =
∑M

m=0 bi,mŁ(m)

then corresponding Ji should be

Ji =
M+2∑
m=1

ci,mŁ(m) =

M+2∑
m=1

(bi,m−2 −A
k|s
m−1 bi,m−1 −Bk|s

m bi,m)Ł(m) (5.55)

bi,−1 = bi,M+1 = bi,M+2 = 0. Therefore indepent variables are Ii and Ji are bi,m’s. Actu-

ally, bi.m’s contain every information we need including the normalization factor Ni. How-

ever, for convenience, we set bi,M = 1 and consider Ni as a free variable.

5.3.3 2 derivative

2 derivative boundary condition is relatively simple to analyze so we can do it with more

generality. And we write down both surface terms at θ = ±α only for this example. From

the next example, we will omit the surface term at θ = −α. Consider following eignevalue

equation and boundary condition,

ŁbŁaΘn = −λΘn (5.56)

ŁcŁaΘn

∣∣
θ=±α

= 0 (5.57)
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Eigenvalue equation can be rewritten as

J(Θn) ≡ (ŁcŁa − (c− b)Tθ Ła)Θn = −λΘn ≡ −λI(Θn) (5.58)

This is all we need.(N = [2/2] = 1) This system can be expanded to that of �Θn ∈ L2 ⊕R2.

E ·

⎛⎜⎝ Θn(θ)

I(Θn)|+α

I(Θn)|−α

⎞⎟⎠ =

⎛⎜⎝ ŁbŁaΘn(θ)

J(Θn)|+α

J(Θn)|−α

⎞⎟⎠ = −λ

⎛⎜⎝ Θn(θ)

I(Θn)|+α

I(Θn)|−α

⎞⎟⎠ (5.59)

Up to now, there was no free parameter that we can tune. The only free parameter of 2

derivative boundary condition is the normalization factor N .

〈�Θn,E�Θm〉L2⊕R2 =〈Θn,ŁbŁaΘm〉a+b
L2 +N

(
I(Θn)J(Θm)|+α + I(Θn)J(Θm)|−α

)
=

1

(secα)a+b

∫ α

−α
dθ (secθ)a+bΘnŁbŁaΘm (5.60)

+N (ΘnŁcŁaΘm − (c− b)Tθ ΘnŁaΘm)
∣∣
+α

+N (ΘnŁcŁaΘm − (c− b)Tθ ΘnŁaΘm)
∣∣
−α

Then,

〈�Θn,E�Θm〉L2⊕R2 − 〈E�Θn, �Θm〉L2⊕R2

=
[
Θn(ŁaΘm)− (ŁaΘn)Θm

]+α

−α
(5.61)

− (c− b)TαN
(
Θn(ŁaΘm)− (ŁaΘn)Θm

)∣∣
+α

+ (c− b)TαN
(
Θn(ŁaΘm)− (ŁaΘn)Θm

)∣∣
−α

+N
(
Θn(ŁcŁaΘm)− (ŁcŁaΘn)Θm

)∣∣
+α

+N
(
Θn(ŁcŁaΘm)− (ŁcŁaΘn)Θm

)∣∣
−α

Note that T−α = −Tα. Set N to 1
(c−b)Tα and the original surface term from L2 inner product

is canceled. Remaining surface term is

〈�Θn,E�Θm〉L2⊕R2 − 〈E�Θn, �Θm〉L2⊕R2 (5.62)

=
1

(c− b)Tα

[(
Θn(ŁcŁaΘm)− (ŁcŁaΘn)Θm

)∣∣
+α

+
(
Θn(ŁcŁaΘm)− (ŁcŁaΘn)Θm

)∣∣
−α

]
and this surface term vanish for given boundary condition ŁcŁaΘn|±α = 0. Therefore the

eigenvalue operator E is self-adjoint under the inner product (5.60) with N = 1
(c−b)Tα .

Basically what we did is adding additional surface term B2N (�Θn, �Θm) to L2 inner product

(5.49) s.t. B2N replace original surface term to another surface term which vanishes under

higher derivative boundary condition up to Θn ↔ Θm symmetric piece. Because the surface
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term from L2 inner product is alway in the same form, from the next example, we focus on

this B2N especially for θ = +α part, BN .

5.3.4 3 derivative

From now on, we stick to the boundary condition which comes from the Dirichlet bound-

ary condition on Θs|s. In that situation, 3 derivative boundary condition is imposed on

Θ
s−3|s
n .

Ł−(2s−4)Łd−5Θ
s−3|s
n = −λΘs−3|s

n (5.63)

Łd−3Łd−4Łd−5Θ
s−3|s
n

∣∣
θ=±α

= Ł(3)Θs−3|s
n

∣∣
θ=±α

= 0 (5.64)

N = [3/2] = 1, so we have to determine one I , J and N . This time, 3 derivative should

appear so we have to mix following 2 equations to construct I and J .(
Ł(3) − (d+ 2s− 6)Tθ Ł(2) − (d+ 2s− 8)Ł(1)

)
Θs−3|s

n = −λŁ(1)Θs−3|s
n (5.65)(

Ł(2) − (d+ 2s− 8)TθŁ(1)
)
Θs−3|s

n = −λΘs−3|s
n (5.66)

If there is Ł(2) term in J , one cannot cancel it nor make it Θm ↔ Θn symmetric, because

there is no Ł(2) term in I . Therefore the only possibility is removing Ł(2) term in J at the

beginning. This condition fix everything. (s− 3|s will be omitted)

J(Θn) =
[
Ł(3) −

(
(d+ 2s− 6)(d+ 2s− 8)T 2

θ + (d+ 2s− 8)
)

Ł(1)
]
Θn

= −λ
(

Ł(1) + (d+ 2s− 6)Tθ
)
Θn (5.67)

= −λ I(Θn)

or just b1 = 1, b0 = (d+ 2s− 6)Tθ for compact notation. Then,

B1(�Θn,E�Θm) = N I(Θn)J(Θm)
∣∣
+α

(5.68)

= N I(Θn) · Ł(3)Θm

∣∣
+α

+N c1 Ł(1)Θn · Ł(1)Θm

∣∣
+α

+N b0c1Θn · Ł(1)Θm

∣∣
+α

where c1 = −
(
(d+ 2s− 6)(d+ 2s− 8)T 2

θ + (d+ 2s− 8)
)

. Set N to − 1
b0c1

then,

〈�Θn,E�Θm〉L2⊕R − 〈E�Θn, �Θm〉L2⊕R

=〈Θn,Ł−(2s−4)Łd−5Θm〉L2 − 〈Ł−(2s−4)Łd−5Θn,Θm〉L2 +B1(�Θn,E�Θm)−B1(E�Θn, �Θm)

=− 1

b0c1

(
I(Θn) · Ł(3)Θm − Ł(3)Θn · I(Θm)

)∣∣
+α

(5.69)
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Again, remaining surface term vanish for Ł(3)Θn|±α = 0 and the eigenvalue operator be-

come self-adjoint. Note that Ł(1)Θn·Ł(1)Θm term in B1 is n ↔ m symmetric and is canceled

at equation (5.69). N−1 = −b0c1 > 0 therefore the norm is positive definite.

5.3.5 4 derivative

4 derivatibe boundary condition come from Θ
s−4|s
n .

Ł−(2s−5)Łd−6Θ
s−4|s
n = −λΘs−4|s

n (5.70)

Ł(4)Θs−4|s
n

∣∣
θ=±α

= 0 (5.71)

This time, N = [4/2] = 2 and we have to determine I1, I2, J1 and J2. One of J (let’s say

J2) should contain 4 derivative term and should not contain 3 derivative term. J1 contain

2 derivative term and should be come from the eigenvalue equation. (There is no other 2

derivative equation to mix with the eigenvalue equation.) With these conditions, there are 3

parameters to be determined, N1, N2 and b2,0.

J1(Θn) =
(

Ł(2) − (d+ 2s− 10)Tθ Ł(1)
)
Θn

= −λΘn (5.72)

= −λ I1(Θn)

J2(Θn) =
(

Ł(4) + c2,2Ł(2) + c2,1Ł(1)
)
Θn

= −λ
(

Ł(2) + (d+ 2s− 6)Tθ Ł(1) + b2,0

)
Θn (5.73)

= −λ I2(Θn)

c2,2 = b2,0 − (d+ 2s− 6)(d+ 2s− 8)T 2
θ − 2(d+ 2s− 9)

c2,1 = −(d+ 2s− 10)Tθ b2,0 − (d+ 2s− 6)(d+ 2s− 10)Tθ

Now B2(�Θn,E�Θm) = N1 I1(Θn)J1(Θm)
∣∣
+α

+N2 I2(Θn)J2(Θm)
∣∣
+α

is parametrized by

N1, N2 and b2,0. B2(�Θn,E�Θm) is sum of product of linear function of Θn, therefore always

in the form of

B2(�Θn,E�Θm) = Bij(N1,N2, b2,0)Ł(i)Θn · Ł(j)Θm

∣∣
+α

(5.74)

Let’s impose the condition, equation (5.50) on B2. Bii is the coefficient of m ↔ n symmetric

term and do not appear in (5.50). B4i and Bi4 can be arbitrary because they are the coeffi-

cients of the term which vanish for given boundary condition. From the above expression of
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Ii and Ji, we get 3 equations,

B01 − B10 = −N1 (d+ 2s− 10)Tα +N2 b2,0 c2,1 = −1

B02 − B20 = N1 +N2 b2,0 c2,2 = 0 (5.75)

B12 − B21 = N2(d+ 2s− 6)Tα c2,2 −N2c2,1 = 0

The solution is

b2,0 =
1

2
(d+ 2s− 6)(1 + (d+ 2s− 6)T 2

α )

N−1
1 = 2(d+ 2s− 8)Tα (5.76)

N−1
2 =

1

2
(d+ 2s− 10)(3 + (d+ 2s− 6)T 2

α )N−1
1 b2,0

Because s ≥ 4, this norm is positive definite if d ≥ 3. For 5 and 6 derivative boundary

conditions, see appendix B.

5.4 Conjecture for unitary boundary condition

Unfortunately, our procedure of the previous section cannot apply to arbitrary higher

derivative boundary condition since the complexity increase very fastly. For 7 derivatives

case, we get 6 order algebraic equation which cannot be solved analytically. Finding a recur-

sive way of getting extended inner product can be a resolution. To say something concrete,

we need to know general properties of extended inner product.

However, examples up to 6 derivatives boundary condition are enough to make a con-

jecture. Especially, 2-derivative example tells us what is non-unitary boundary condition.

For spin greater than 3, every set of boundary conditions contains 2-derivative boundary

condition. When the Dirichlet boundary condition is imposed on Θk|s, 2-derivative bound-

ary condition on Θk−2|s gives positive definite norm but 2-derivative boundary condition

on Θk+2|s gives non-positive definite norm. As we see from string and spin-two example,

this non-positive definite norm is the origin of non-unitarity. The only way to avoid such

non-unitarity is to choose k ≥ s − 1. For k ≥ s − 1, Θk+2|s does not exist. Also, we can

conclude that for k < s − 1, there is always non-unitarity. Therefore our conjecture for

unitary boundary condition is that k should be s or s − 1. All the other examples of 3 to

6 derivatives boundary condition support our conjecture. They correspond to k = s case,

and all the extended norm is positive definite. It is interesting that among various boundary

conditions, only the Dirichlet or 1-derivative boundary condition on spin-s component give

a unitary spectrum.
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Chapter 6

Discussion

Higher spin gauge theory provides the simplest example of AdS/CFT correspondence. It is

conjectured that the Vasiliev theory is dual to free/critical O(N) vector model [39]. It would

be interesting if we can find holographic dual of our case. In the first section, we discuss

possible holographic dual. In the second section, on-going future works are introduced.

6.1 Holography

Since Klebanov and Polyakov [39], lots of nice works has been done for higher spin

holography, for instance, [40, 41, 42, 43, 44]. Compare to holography from the String the-

ory, higher spin theory provides very simple setup. The dual CFT is just free/ciritical O(N)

vector model. One of strong evidence for higher spin holography is the fact that one can con-

struct all the conserved higher spin current from O(N) vector model. Group theoretically, it

can be represented as [45, 46]

D
(
d

2
− 1, 0

)
⊗D
(
d

2
− 1, 0

)
=

∞⊕
s=0

D(d+ s− 2, s) (6.1)

As reviewed in appendix A, D(d + s − 2, s) is correspond to massless spin-s field, and

D
(
d
2 − 1, 0

)
is called singleton. In terms of boundary CFT, singleton is just a scalar field

which satisfy Klein-Gordon eqution.

Our theory of AdS side consists of bulk higher spin theory and boundary theory from HD

BC. Note that these boundaries are different from the asymptotic boundary where CFT lives.

At the free level of the Vasiliev theory, the bulk higher spin theory is the (d+2)-dimensional

Fronsdal theory of all the spin-one to ∞, and a scalar of specific mass. It is natural to think

O(N) vector model with boundaries as a dual CFT, the boundary theory of O(N) vector

model would be holographic dual of boundary theory of higher spin theory. To guess which

theory lives at the boundary of O(N) vector model, we should know the correct boundary

degrees of freedom for higher spin theory.

Due to lack of extended inner product for generic case, we cannot specify exact spectrum

of boundary degrees of freedom. However with the extended inner product of 2 to 6 deriva-

tives, we could find a pattern for specific boundary condition. If we impose the Dirichlet
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boundary condition on Θk|s, k < s−1, there appear partially massless fields. For such case,

corresponding boundary degrees also contains the partially massless fields. We found an ob-

servation about the pattern of the depth of partially massless field. When we consider spin-s

massless bulk field, it seems that required boundary degrees of freedom contains spin-s par-

tially massless fields of depth-0, 2, 4 · · · 2[(s − k)/2]. In our convention, depth-0 partially

massless means just massless. Interestingly, there is following group theoretical identifica-

tion,

D
(
d

2
− p, 0

)
⊗D
(
d

2
− p, 0

)
=

∞⊕
s=0

p⊕
k=1

D(d+ s− 2k, s). (6.2)

D(d+s−2k, s) is correspond to partially massless field of depth-(2k−2), and D
(
d
2 − p, 0

)
is something called “higher-order Signleton”. Therefore the spectrum of r.h.s. exactly match

the spectrum of our boundary degrees of freedom if p = [(s−k)/2]+1. Which means if we

impose the Dirichlet boundary condition on k = s−2p+2 for each spin-s, all the boundary

partially massless degrees of freedom can be obtained from product higher-order singleton.

In terms of boundary CFT, higher-order singleton is a scalar whose equation of motion is

�pφ = 0 . (6.3)

Therefore we conjecture that the holographic dual of our theory is vector O(N) model with

boundary higher-order singleton.

We should mention one unclear point of our conjecture. Actually, if we impose the Dirich-

let boundary condition on k = s−2p+2, not only partially massless but also massive fields

with various spin appear. Therefore we need something more than higher-order singleton at

the boundary of CFT.

6.2 Future works

Through the whole thesis, we discuss free higher spin theory. To achieve our original goal,

the Kaluza-Klein compactification of the Vasiliev theory, we should study interacting cases.

There are 2 ways of studying them.

One is perturbative approach keeping the metric-like formalism. The metric-like formal-

ism of higher spin is easy to use but is only known perturbatively. However, we expect to

learn an important lesson for consistency of our formalism at interacting level. Also, there

are 2 immediate applications about the spin-two system. Finding unitary theory of partially

massless spin-two coupled to graviton at de Sitter background is a promising problem of

cosmology. Contrast to the partially massless field on anti-de Sitter background, it is known
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to be unitary on de Sitter background but the way of unitary coupling with graviton is still

unknown. One of our set of boundary condition produce massless and partially massless

spin-two field as ground modes and we expect to get a unitary interacting theory of them.

Another problem is revisiting Gibbons-Hawking term of gravity in terms of our formalism.

It will be instructive to understand perturbative degrees of freedom for Gibbons-Hawking

term and we may find another possible boundary term apart from Gibbons-Hawking term.

The other is non-perturbative approach using frame-like formalism. The Vasiliev theory

is the generalization of the frame-like formalism of gravity and every variable is generaliza-

tion of vierbein and spin-connection. Frame-like formalism is useful when one try to write

down interacting theory we may be able to succeed to compactify the Vasiliev theory due to

the intrinsic relation between frame-like formalism and interaction. As a first step, we did

Kaluza-Klein compactification of free higher spin theory in terms of the frame-like variable.

It contains more degrees of freedom and more gauge symmetry. Also, it contains not only

totally symmetric representation but also mixed symmetric degrees of freedom. Using this,

we hope we can achieve our final goal.

71



72



Appendices

73





Chapter A

Verma module and partially massless field

Here we recall the definition of the Verma so(d, 2)-module. Consider a finite dimensional

module Y(Δ, Y ) of sub-algebra so(2) ⊕ so(d). We use Δ to denote conformal dimension

and Y to denote Young diagram of so(d). For the analisys of symmetric higher spin, we

limit ourself to the Young diagram of a single row of length s. The Verma so(d, 2)-module

V(Δ, s) is the space generated by action of the raising operators to the module Y(Δ, Y ). We

will also denote D(Δ, s) for the irreducible quotient of Verma module V(Δ, s). For generic

value, Verma module V(Δ, s) is irreducible and therefore coincides with D(Δ, s). However,

for specific values, it becomes reducible with a non-trivial submodule. For instance, Δ =

d+ k− 1 with an integer 0 ≤ k ≤ s− 1, there is a submodule D (d+ s− 1, k). Therefore,

D (d+ k − 1, s) is not equal to Verma module but is to the quotient of Verma module:

V (d+ k − 1, s) � D (d+ k − 1, s)⊕D (d+ s− 1, k) ,

D (d+ k − 1, s) � V (d+ k − 1, s)

D (d+ s− 1, k)
. (A.1)

For k = s − 1, D(d + (s − 1) − 1, s) is unitary and its field theoretical realization is the

massless spin-s field propagating in AdSd+1. For 0 ≤ k < s − 1, D(d + k − 1, s) is non-

unitary and their field theoretical realizations are partially massless(PM) fields1 with depth

t = (s − k − 1). (For more general cases, see [32, ?].) The action for PM field has the PM

gauge symmetry which contains covariant derivatives up to order t− 1. This can be derived

by Stueckelberg form of PM field.

δ φμ1μ2···μs = ∇(μ1
· · · ∇μt+1 ξμt+2···μs) + · · · (A.2)

See paragraph below Eq.(3.45) for PM spin-two case. The followings are properties of PM

field:

Field type Δ+ m2 Gauge variation: δ φμ1μ2···μs

depth-t PM field d+ s− t− 2 − σ
r2AdS

t (d+ 2s− t− 4) ∇(μ1
· · · ∇μt+1 ξμt+2···μs) + · · ·

Table 2: Partially massless(PM) field

1 Extrapolating our convention, the massless higher-spin field is the partially-massless higher-spin field with

depth-zero.
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In Table 2, m is defined by the following convention. By the mass of a field, we refer to the

mass in flat limit. Therefore, it is zero when the higher spin gauge symmetry exist. In this

convention, the relation between mass-squared and conformal dimension is given by

m2 r2AdS = Δ(Δ− d)− (s− 2) (d+ s− 2) . (A.3)

Note that this is different from the mass-squared which appears in Fierz-Pauli equation in

AdS [?]:
(
∇2 + κ2

)
φμ1 μ2 ·μs = 0 which is given as κ2 r2AdS = Δ(Δ− d)− s.

Finally, so(d+1, 2)-module for massless spin-s can be decomposed into so(d, 2)-modules

by the following branching rules [?]:

D(d+s−1, s)so(d+1,2) =
∞⊕
n=0

D(d+n+s−1, s)so(d,2)⊕
s−1⊕
l=0

D(d+s−1, l)so(d,2) (A.4)

In main text we open omit subscripts so(d,2) for brevity.
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Chapter B

5 and 6 derivatives boundary conditions

5 derivative

Ł−(2s−6)Łd−7Θ
s−5|s
n = −λΘs−5|s

n (B.1)

Ł(5)Θs−5|s
n

∣∣
θ=±α

= 0 (B.2)

I1(Θn) =
(

Ł(1) + b1,0

)
Θn (B.3)

J1(Θn) =
(

Ł(3) + c1,2Ł(2) + c1,1Ł(1)
)
Θn

I2(Θn) =
(

Ł(3) + (d+ 2s− 6)Tθ Ł(2) + b2,1Ł(1) + b2,0

)
Θn (B.4)

J2(Θn) =
(

Ł(5) + c2,3Ł(3) + c2,2Ł(2) + c2,1Ł(1)
)
Θn

c1,2 = b1,0 − (d+ 2s− 10)Tθ
c1,1 = −(d+ 2s− 12)Tθ b1,0 − (d+ 2s− 12)

c2,3 = b2,1 − (d+ 2s− 6)(d+ 2s− 8)T 2
θ − 3(d+ 2s− 10)

c2,2 = b2,0 − (d+ 2s− 10)Tθ b2,1 − 2(d+ 2s− 11)(d+ 2s− 6)Tθ
c2,1 = −(d+ 2s− 12)Tθ b2,0 − (d+ 2s− 12)b2,1

We have 5 variables b1,0, b2,0, b2,1, N1 and N2. And 6 equations,

B01 − B10 = N1 b1,0 c1,1 +N2 b2,0 c2,1 = −1

B02 − B20 = N1 b1,0 c1,2 +N2 b2,0 c2,2 = 0

B03 − B30 = N1 b1,0 +N2 b2,0 c2,3 = 0 (B.5)

B12 − B21 = N1 c1,2 +N2 b2,1 c2,2 −N2 (d+ 2s− 6)Tα c2,1 = 0

B13 − B31 = N1 +N2 b2,1c2,3 −N2 c2,1 = 0

B23 − B32 = N2 (d+ 2s− 6)Tα c2,3 −N2 c2,2 = 0
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The solution is,

b1,0 = 2Δ2Tα

b2,0 =
Δ2Δ3Tα(1 + Δ3T 2

α )(3 + Δ3T 2
α )

3 + (4Δ2 +Δ1)T 2
α

b2,1 =
3Δ3(1 + Δ2T 2

α )(1 + Δ3T 2
α )

3 + (4Δ2 +Δ1)T 2
α

(B.6)

N−1
1 = Δ1Δ2Tα

(
3 + (4Δ2 +Δ1)T 2

α

)
N−1

2 = b2,0Δ0Δ1(3 + 6Δ2T 2
α +Δ2Δ3T 4

α )

where Δm ≡ Δ
s−5|s
m+1 = d+ 2s− 12 + 2m. Because s ≥ 5, this norm is positive definite if

d ≥ 3. (Δn > Δ0 > 0, when n > 0) Though there was a unique solution, existance of the

solution was non trivial. 5 variables should satisfy 6 conditions. Existance of a solution will

be clear with semi-recursive construction.

6 derivative

Ł−(2s−7)Łd−8Θ
s−6|s
n = −λΘs−6|s

n (B.7)

Ł(6)Θs−6|s
n

∣∣
θ=±α

= 0 (B.8)

I1(Θn) = Θn (B.9)

J1(Θn) =
(

Ł(2) − (d+ 2s− 14)Tθ Ł(1)
)
Θn

I2(Θn) =
(

Ł(2) + b2,1Ł(1) + b2,0

)
Θn (B.10)

J2(Θn) =
(

Ł(4) + c2,3Ł(3) + c2,2Ł(2) + c2,1Ł(1)
)
Θn

I3(Θn) =
(

Ł(4) + (d+ 2s− 6)Tθ Ł(3) + b3,2Ł(2) + b3,1Ł(1) + b3,0

)
Θn (B.11)

J3(Θn) =
(

Ł(6) + c3,4Ł(4) + c3,3Ł(3) + c3,2Ł(2) + c3,1Ł(1)
)
Θn

ci,m’s can be described by bi,m’s from equation (5.55). We have 5 bi,m’s and 3 Ni’s to be

determined. And now we have 10 conditions to be satisfied.

B01 − B10 = −1

Bij − Bji = 0 , 4 ≥ j > i ≥ 0 (B.12)
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Again, there is a unique solution.

b2,0 =
1

3
Δ3

(
3 + (4Δ3 +Δ2)T 2

α

)
b2,1 = 2Δ3Tα

b3,2 =
3

2
Δ4

(1 + Δ4T 2
α )(9 + 10Δ3T 2

α +Δ3(2Δ3 +Δ2)T 4
α )

9 + 6(2Δ3 +Δ2)T 2
α +Δ3(6Δ2 +Δ4)T 4

α

b3,1 = 2Δ3Δ4Tα
(1 + Δ4T 2

α )(3 + Δ3T 2
α )(3 + Δ4T 2

α )

9 + 6(2Δ3 +Δ2)T 2
α +Δ3(6Δ2 +Δ4)T 4

α

b3,0 =
1

2
Δ3Δ4

(1 + Δ4T 2
α )(3 + Δ4T 2

α )(3 + 6Δ3T 2
α +Δ3Δ4T 4

α )

9 + 6(2Δ3 +Δ2)T 2
α +Δ3(6Δ2 +Δ4)T 4

α

N−1
1 = 3Δ2Tα

N−1
2 =

2

3
Δ1Δ2Δ3Tα

(
9 + 6(2Δ3 +Δ2)T 2

α +Δ3(6Δ2 +Δ4)T 4
α

)
N−1

3 = b3,0Δ0Δ1Δ2Tα(15 + 10Δ3T 2
α +Δ3Δ4T 4

α )

where Δm ≡ Δ
s−6|s
m+1 = d + 2s − 14 + 2m. Because s ≥ 6, this norm is positive definite

if d ≥ 3. (Δn > Δ0 > 0, when n > 0) Using Δm is a little bit ambiguous. For example,

Δa + Δb = 2Δa+b
2

. However it is very useful to check that N ’s are positive. Note that the

definition of Δm is different from that of 5 derivative case. This can be potentially annoying

when we do semi-recursive construction so we should be careful.
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초록

질량을 가지는 고차 스핀 입자들은 양자 중력을 기술하는데 중요한 역할을 한다. 그

럼에도질량을가지는고차스핀입자들의상호작용하는이론은오직끈이론만이알려져

있다. 이는 이론을 구성할때 인과율, 자유도의 개수와 관련된 기술적인 문제를 해결하지

못했기때문이다.우리는그러한기술적문제들을회피하고자,칼루자-클라인콤팩트화를

이용하여 질량이 없는 고차 스핀 이론으로부터 질량이 있는 이론을 구성하는 방법을 제

안하였다.올바른이론을얻기위하여유일하게알려진고차스핀게이지이론인 Vasiliev

이론을목표로하였고그것을위해반드지터공간을사용하여야했다.그과정에서고차

미분경계조건과같은여러흥미로운기술적인문제들이발견되었고,고차미분경계조건

을경계에존재하는추가적인자유도로해석할수있었다.경계의자유도관점에서우리는

올바른경계조건을찾을수있었고낮은차원의질량을가지는이론을성공적으로얻을수

있었다.

주요어 : 고차 스핀, 고차 스핀 게이지, 칼루자 클라인, 경계가 있는 칼루자 클라인, 반

드지터공간

학번 : 2009-20405
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