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Abstract
In the classic multi-stage Stern–Gerlach experiment conducted by Frisch and Segrè, the
Majorana (Landau–Zener) and Rabi formulae diverge far from the experimental observation
while the physical mechanism for electron-spin collapse remains unidentified. Here, introducing
the physical co-quantum concept provides a plausible physical mechanism and predicts the
experimental observation in absolute units without fitting (i.e. no parameters adjusted), with a
p-value less than one per million, which is the probability that the co-quantum theory happens
to match the experimental observation purely by chance. Further, the co-quantum concept is
corroborated by exactly statistically reproducing the wave function, density operator, and
uncertainty relation for electron spin in Stern–Gerlach experiments.
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1. Introduction

Performed three years before the successful development
of quantum mechanics, the 1922 Stern–Gerlach experiment
on silver atoms [1] quickly proved fundamental to quantum
physics [2, 3]. The benchmark experiment led to the quantiza-
tion of all angular momenta, discovery of electron spin, study
of the measurement problem and superposition, direct invest-
igation of the ground-state properties of atoms without elec-
tronic excitation, and selection of fully spin-polarized atoms
[2]. Within a few weeks, Einstein and Ehrenfest concluded
that spin collapse cannot be interpreted by radiation, which
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would take 100 years [4]. Recently, Wennerström and West-
lund numerically simulated that relaxation of 1 µs qualitat-
ively reproduced the double branched collapse pattern [5], and
Norsen interpreted spin collapse using the de Broglie–Bohm
pilot-wave theory [6]. The significance of the Stern–Gerlach
experiment and relevant works are detailed in a 2016 inspiring
review [2], concluding that ‘The physical mechanism respons-
ible for the alignment of the silver atoms remained and remains
a mystery’ and quoting Feynman, ‘… instead of trying to give
you a theoretical explanation, we will just say that you are
stuck with the result of this experiment …’ [7].

Immediately, Heisenberg and Einstein proposed multi-
stage Stern–Gerlach experiments to explore deeper myster-
ies of directional quantization [2]. Ten years later, Phipps
and Stern reported the first effort [8], which was unfortu-
nately discontinued owing to Phipps’ involuntary return to
the US [2]. A year later, Frisch and Segrè modified the same
apparatus by adopting Einstein’s suggestion on the use of
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a single wire instead of three electromagnets to rotate spin;
they also improved magnetic shielding, slit filtering, and sig-
nal detection [2]. Despite the use of three layers of magnetic
shielding for the middle stage (i.e. the inner rotation or IR
chamber), the remnant or residual fringe magnetic field was
still 0.42× 10−4 T (or 0.42 G). Rather than fight the fringe
magnetic field further, they took advantage of it. The mag-
netic field from the wire in the middle stage cancels the rem-
nant field to produce a magnetic null point, around which the
field is approximated as a magnetic quadrupole; consequently,
they successfully observed nonadiabatic spin flip [9]. Note that
only the magnetic field near a null point is effective for non-
adiabatic spin flip; thus, the field far from a null point does not
significantly affect transition, and its detailed distribution is of
little import. Frisch and Segrè varied the wire current, which
is the only independent variable controlled here, over nearly
two orders of magnitude approximately uniformly on a logar-
ithmic scale to observe the peak fraction of spin flip and its
entire range. They started and ended with sufficiently extreme
currents that yielded negligible fractions of spin flip. Having
reached a nearly zero fraction of spin flip at the highest cur-
rent might be the reason that they ceased increasing the cur-
rent further. Further, the calculation of the fraction automat-
ically obviates the requirement for absolute calibration. This
data set suggests they designed and executed the experiment
with great care.

Frisch and Segrè found that their observation [9] unexpec-
tedly diverges from the Majorana formula (figure 1) [10, 11],
which was stimulated by the experiment of Frisch and Segrè.
The Majorana formula is a variant of the Landau–Zener for-
mula, which is better-known despite the concurrent public-
ations of all four related papers in the same year [12–14].
For a historical comparison of the four papers, please refer
to [15]. Fermi suggested that interaction among atoms could
be responsible for the divergence, but atoms were sufficiently
sparse to be treated independently [9]. Rabi acknowledged
‘Professor E. Segrè for discussions on the details of the Frisch
and Segrè experiment’, recognized the role of the nuclear
magnetic moment, and revised the Majorana formula through
hyperfine coupling [16]. Rabi’s revised formula, however, did
not overcome the divergence (figure 1).

Multi-stage Stern–Gerlach (Frisch–Segrè) experiments are
much more difficult to model than single-stage ones. Mul-
tiple stages produce far more nuanced observation because
the middle stage can vary the electron spin orientation over
a wide range after polarization by the first stage. A correct
single-stage theory must pass the more stringent test of the
multi-stage experiment. This spin-flip divergence in multi-
stage Stern–Gerlach experiments remains unresolved [2]. One
may only speculate why the 1933 discrepancy [9] has not been
resolved. The seminal paper has not been republished in Eng-
lish, which might have limited its visibility.

Here, a theory, called co-quantum dynamics (CQD) [17],
is presented to both provide a collapse mechanism and pre-
dict the Frisch–Segrè experimental observation (figure 1) [9].
CQD is theoretically verified by reproducing, for electron spin
in Stern–Gerlach experiments, the quantum mechanical wave

Figure 1. Illustration of the divergence of the Majorana and Rabi
formulae from the Frisch–Segrè experimental observation and the
convergence of the co-quantum dynamic formula. Details are to be
discussed.

function, density operator, and uncertainty relation as well as,
in a recent publication [17], the Schrödinger–Pauli equation.
In section 2, CQD is presented in three subsections, includ-
ing the equations of motion, branching condition, and pre-
collapse state function and prediction expression. In section 3,
Stern–Gerlach experiments in both single and multiple stages
are modeled. For flow continuity, lengthy interpretations are
postponed to section 4, and detailed mathematical derivations
are presented in Appendices (supplement material). The CQD
derivation of the uncertainty relation is deferred to the last
appendix.

The following table (table 1) compares briefly CQD with
the representative existing quantum mechanical theories for
collapse [18], e.g. the Ghirardi–Rimini–Weber model [19] and
continuous spontaneous localization model [20, 21]. CQD,
based on the classical Bloch equation (or its Landau–Lifshitz–
Gilbert derivative) and the two postulates, provides a physical
instead of phenomenological mechanism for electron spin col-
lapse. In the presence of an external magnetic field, the nuclear
magnetic moment is responsible for the collapse of electron
spin. The absence of fitting with any adjustable parameters and
the high coefficient of determination R2 (or high correlation
coefficient) led to the small p-value (p< 8× 10−7) [22, 23]. In
general, fitting with more and more adjustable parameters, one
may improve R2 towards unity. While R2 is not penalized for
the number of adjustable parameters used relative to the num-
ber of experimental data points available, the p-value is. There-
fore, one may achieve an arbitrarily high R2 at the expense of
the p-value. The p-value is an objective measure of agreement
between a theory and the experiment. As a standard definition,
the p-value quantifies the probability of observing results at
least as extreme as the ones observed given that the null hypo-
thesis is true. For stringent discoveries, high-energy physics,
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Table 1. Comparison between representative existing quantum mechanical theories and CQD.

Existing theories Co-quantum dynamics

Domain Quantum mechanical Semiclassical
Starting equation Schrödinger equation Bloch equation (classical) [17]
Cause for collapse Phenomenological: no physical object

identified [18]
Physical: nuclear magnetic moment identified

Angular distribution of
nuclear magnetic moment

Discrete (quantized); isotropic Continuous; isotropic or anisotropic

Collapse rate Preset as a constant dimensional rate
(1 s−1)

Scaled dynamically via a dimensionless
constant (equation 9)

Measurement uncertainty Inequality Equality (equation 186), yielding the inequality
(equation 187)

Quantitative prediction of
multi-stage Stern–Gerlach
(Frisch–Segrè) experiment

Not found yet in the literature except the
Majorana or Rabi formulae

Accurately (p< 8× 10−7) without scaling or
fitting, no parameters are adjusted

for example, requires p ⩽ 3× 10−7, which corresponds to 5σ
[24]. The Laser Interferometer Gravitational-wave Observat-
ory (LIGO) observation of gravitational waves applied a sim-
ilar criterion [25]. The agreement of CQD with the experi-
ment is at a similar level as well. While the LIGO observed a
chirp signal, which is common in various forms in nature, the
Frisch–Segrè experimental data follow an uncommon shape,
which is even more unlikely to be matched by random chance.
Therefore, the value of p< 8× 10−7 claims a statistical sig-
nificance that cannot be ignored objectively. The probability
that CQD happens to match the experimental observation so
well purely by chance is less than one in a million. It is even
less likely for an incorrect theory to match an incorrect exper-
iment by chance if one doubts the Frisch–Segrè experimental
data. Because the Majorana or Rabi formula, if correct, fol-
lows a monotonic trend, it would be difficult to fathom that
some experimental imperfections caused the fraction of spin
flip to increase at low currents and to decrease at high currents.
Matching a theory with the experiment so well without using
any adjustable parameters inspires conviction. Further, CQD
is corroborated by statistically reproducing exactly the wave
function, density operator, and uncertainty relation for elec-
tron spin. This corroboration may be considered supporting
evidence because an incorrect theory would highly unlikely
be able to reproduce so many fundamental aspects of quantum
mechanics.

2. Methods

2.1. CQD equations of motion

In classical electrodynamics, the motion of a magnetic dipole
moment, µ⃗, is described by the Bloch equation,

dµ̂
dt

= γµ̂× B⃗, (1)

where caret denotes a unit vector, t time, γ the gyromag-
netic ratio, and B⃗ the magnetic flux density. Majorana stated
that both the classical and the quantum-mechanical treat-
ments on spin flip require integration of the same differential
equations [10, 11]. It is known that the Schrödinger or von

Neumann equation for a unitary two-level system can be con-
verted to the Bloch equation or its analog [7, 26, 27].

We now extend the Bloch equation to the Landau–Lifshitz–
Gilbert equation [28],

dµ̂
dt

= γµ̂× B⃗− kiµ̂× dµ̂
dt

, (2)

where the dimensionless ki is called the induction factor here.
Although this equation was originally intended for condensed
matter, the underlying physical mechanism for the added term
is compatible with CQD (see paragraph 1 in section 4). In fact,
the author had developed CQD before realizing its connec-
tion with the Landau–Lifshitz–Gilbert equation. If ki = 0, the
Bloch equation is recovered.

Henceforth, subscripted e and n denote electron and nuc-
leus, respectively. The default atom, to match the Frisch–Segrè
experiment [9], is potassium (39K). The scope of the manu-
script is limited to potassium in the Stern–Gerlach or Frisch–
Segrè experiment.

The torque-averaged magnetic flux densities from µ⃗n and
µ⃗e applied on each other are respectively (appendix 1)

B⃗n =
5µ0

16πR3
µ⃗n (3)

and

B⃗e =
5µ0

16πR3
µ⃗e, (4)

where µ0 is the vacuum permeability (4π × 10−7 H m−1) and
R is the van der Waals atomic radius (2.75× 10−10 m) [29].
Chiefly because the nucleus is more massive, µe (9.285×
10−24 J T−1) ≫ µn (1.977× 10−27 J T−1); thus, Be (558.1×
10−4 T) ≫ Bn (0.119× 10−4 T), where 10−4 T = 1 Gauss.

CQD refers to µ⃗e as the principal quantum and µ⃗n in the
same atom as the co-quantum. Postulate 1 states that induc-
tion between the electron and the nucleus tends to increase
|θe − θn|, where θ denotes the polar angle relative to the quant-
ization axis (see paragraph 1 in section 4). We (1) apply
the Landau–Lifshitz–Gilbert equation to both µ̂e and µ̂n, (2)
express the unit vectors in spherical coordinates, and (3) revise
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the signs of the induction terms to implement the above pos-
tulate, leading to the following CQD equations of motion
(appendix 2):

θ̇e =−γe [By cosϕ e +Bn sinθn sin(ϕ n −ϕ e)]

− sgn(θn − θe)ki
∣∣∣ϕ̇ e

∣∣∣sinθe, (5)

θ̇n =−γn [By cosϕ n +Be sinθe sin(ϕ e −ϕ n)]

− sgn(θe − θn)ki
∣∣∣ϕ̇ n

∣∣∣sinθn, (6)

ϕ̇ e =−γe {Bz +Bn cosθn − cotθe [By sinϕ e

+ Bn sinθn cos(ϕ n −ϕ e)]}−
sgnϕ̇ eki

∣∣∣θ̇e∣∣∣
sinθe

, (7)

and

ϕ̇ n =−γn {Bz +Be cosθe − cotθn [By sinϕ n

+Be sinθe cos(ϕ e −ϕ n)]}−
sgnϕ̇ nki

∣∣∣θ̇n∣∣∣
sinθn

. (8)

Here, ϕ denotes the azimuthal angle; By and Bz represent,
respectively, the y (axis of the atomic beam) and z compon-
ents of the external magnetic flux densities; Bx is neglected
for brevity; sgn denotes the sign function. When θe = 0 or
π , equation (7) is replaced with ϕ̇ e = 0; when θn = 0 or π ,
equation (8) is replaced with ϕ̇ n = 0. Primarily because the
nucleus is more massive again, γe (−1.761× 1011 rad Hz T−1)
in absolute value is four orders of magnitude greater than γn
(1.250× 107 rad Hz T−1). If Bn = 0 and ki = 0, equations (5)
and (7) reduce to the equations shown by Majorana [10, 11].

2.2. CQD branching condition

Postulate 2 states that the polar angle of the co-quantum,
θn, varies negligibly (≪ π ) during flight in typical Stern–
Gerlach experiments, where the duration is too short for the
co-quantum to collapse (see paragraph 2 in section 4). The
external main field, B0, along the z axis is usually much
stronger than Be and Bn. While the fast motion of µ̂e is pre-
cession about the main field, the secondary motion is collapse
due to the induction term, which yields the following trend
from equation (5):

tan
θe (t)
2

= tan
θe (0)
2

exp [−sgn(θn − θe)ki |∆ϕ e (t)|] . (9)

Here, ∆ϕ e denotes the traversed azimuthal angle
(i.e. unwrapped phase). If the Larmor frequency of the electron
magnetic moment ωe is constant, we simply have ∆ϕ e = ωet.
As time evolves, θe approaches either 0 or π according to the
following branching condition:

sgn(θn − θe) =

 1 if θn > θe,
0 if θn = θe,
−1 else.

(10)

Figure 2. Examples of collapse directions determined by the
branching condition in Stern–Gerlach experiments. B0: external
main field; e: electron magnetic moment (principal quantum), µ̂e; n:
nuclear magnetic moment (co-quantum), µ̂n; short arrows: collapse
directions. While µ̂e precesses about B0 right-handedly at its
Larmor frequency (ωe =−γeB0), µ̂n does left-handedly at the
Larmor frequency (ωn =−γnB0); note that |ωe/ωn|> 104. For the
same given µ̂e, the collapse direction, down (left panel) or up (right
panel), depends on µ̂n according to the branching condition
(equation (10)). It takes on the order of Nc (estimated to be on the
order of ∼220 in section 3) Larmor cycles to collapse. In typical
Stern–Gerlach experiments, it is assumed that µ̂n does not collapse,
i.e. θn is approximately constant.

Therefore, µ̂e collapses to either+z or−zwhile precessing
about B0, depending on the polar angle of the co-quantum θn
relative to θe (figure 2).

The number of precession cycles required to vary tan(θe/2)
by a factor of e is given by

Nc =
1

2π ki
(11)

regardless of the strength of the external magnetic field. For a
constant Larmor frequency, ωe, the collapse time constant is

Tc = Nc
2π
|ωe|

=
1

ki |ωe|
. (12)

2.3. CQD pre-collapse state function and CQD prediction
expression

The CQD pre-collapse state function is denoted by |µ̂e©µ̂n⟩,
where the co-quantum, µ̂n, is prefixed with © for clarity.
|µ̂e©µ̂n⟩ represents µ̂e accompanied with µ̂n, both governed
by the CQD equations of motion.

The CQD prediction expression for Stern–Gerlach experi-
ments is written as

|µ̂e©µ̂n⟩= C+ (µ̂e, µ̂n) |+z⟩+C− (µ̂e, µ̂n)exp(iϕ e) |−z⟩ .
(13)

The equal sign functions as a right arrow (→) because the
right side predicts the measurement outcome. A given µ̂e col-
lapses to either+ẑ or−ẑ according to the branching condition
(equation (10)). The two real and positive C coefficients take
on mutually exclusive binary values while exp(iϕ e) captures
the phase information. If θn > θe, then C+ = 1 and C− = 0; if
θn < θe, C+ = 0 and C− = 1. In either case, C+ ·C− = 0 and
C+ +C− = 1.
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Figure 3. Multi-stage Stern–Gerlach (SG) experiment conducted by Frisch and Segrè [9]. The atomic beam from the oven is sent through
(1) Stage SG1 to collapse µ̂e (principal quantum), (2) the magnetically shielded inner rotation (IR) chamber to rotate µ̂e, (3) a slit (not
shown) to select a branch, and (4) Stage SG2 to measure the fraction of spin flip. The red solid line and filled circle represent the
current-carrying wire, and the gray sphere in cutaway view represents magnetic shielding. Inset (a) Angular distributions of µ̂n (co-quanta)
before and after Stage SG1. Inset (b) Magnetic field lines within the IR chamber; NP: null point, formed by the cancelation of the magnetic
field from the wire by the vertical remnant (residual) fringe magnetic field. Here, the vertical distance of the atomic beam from the center of
the wire, za = 1.05× 10−4 m; the most likely speed of atoms, v= 800 m s−1; the uniformly distributed remnant (residual) fringe magnetic
flux density, Br = 0.42× 10−4 T, which is parallel with the +z axis (up in the figure); and the current carried by the wire, I, points along the
−x axis (into the screen).

3. Results

3.1. Single-stage Stern–Gerlach experiment

To describe the angular distribution of µ̂e or µ̂n in an ensemble
of atoms, we define the angular probability density function,
p(θ,ϕ), as the probability of µ̂ pointing to the vicinity of
(θ,ϕ) per unit infinitesimal solid angle, with the following
normalization:

π̂

0

2π̂

0

p(θ,ϕ)sinθdϕdθ = 1. (14)

If the azimuthal distribution is isotropic, the integral

reduces to
π́

0
p(θ,ϕ)2π sinθdθ = 1.

The angular distribution of µ̂n for atoms immediately out
of the oven is presumed to be isotropic as given by (figure 3,
inset a, dashed circle)

pn0 (θn,ϕ n) =
1
4π

. (15)

In a single-stage Stern–Gerlach experiment (figure 3, SG1),
the probabilities of collapse for a given θe are related to the

binary coefficients through ensemble averaging of the pre-
averaging density operator defined in appendix 3 (equation
(70)) over pn0. The outcome is summarized as

⟨C+⟩2n =
π̂

θe

pn02π sinθndθn = cos2
θe
2

(16)

and

⟨C−⟩2n =
θeˆ

0

pn02π sinθndθn = sin2
θe
2
. (17)

The angle brackets, with the subscripts denoting nuc-
lear, represent ensemble averaging with the integration limits
determined by the branching condition (equation (10)). The
two probabilities are proportional to the solid angles formed
by the down and up sides of the cone shaped by the initial
Bloch vector [15] precessing over one cycle. Each solid angle
determines the probability of having the co-quantum on the
corresponding side of the cone.

From equations (16) and (17), the pre-collapse state
function (equation (13)) averages to the following familiar
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quantum mechanical wave function for a pure state
(appendix 3):

|µ̂e⟩= cos
θe
2
|+z⟩+ sin

θe
2

exp(iϕ e) |−z⟩ . (18)

If µ̂e is also isotropically distributed as

pe0 (θe,ϕ e) =
1
4π

, (19)

the probabilities of collapse are predicted by averaging
equations (16) and (17) over pe0 (appendix 3):

⟨C+⟩2n,e =
π̂

0

cos2
θe
2
pe02π sinθedθe =

1
2

(20)

and

⟨C−⟩2n,e =
π̂

0

sin2
θe
2
pe02π sinθedθe =

1
2
. (21)

The e subscripts denote electron. The outcomes agree with
the familiar quantum mechanical prediction for a maximally
mixed state of atoms immediately out of the oven, represented
by a density operator (equation (87), appendix 3).

3.2. Multi-stage Stern–Gerlach experiment

In the multi-stage Stern–Gerlach experiment conducted by
Frisch and Segrè (figure 3) [9], Stage SG1 collapses µ̂e into
two branches. The inner rotation (IR) chamber rotates µ̂e by
an angle of αr using the magnetic field shown in inset b. A slit
(not shown) selects one branch: the +z branch is chosen here.
Stage SG2 collapses µ̂e and measures the fraction of spin flip.
Therefore, Stage SG1 serves as a polarizer, the IR chamber a
rotator, and Stage SG2 an analyzer.

The probability of spin flip has been predicted [10, 11] by
quantum mechanics as (see equation (17), set θe = αr)

Wqm = ⟨−z|αr⟩2 = sin2
αr

2
, (22)

which leads to the following Majorana formula (appendix 4,
equation (117)) [10, 11]:

Wm = exp
(
−π za

2v
|γe|By

)
. (23)

Here, za is the vertical distance of the atomic beam from
the center of the wire, and v is the most likely speed of the
atoms. The spin flip is because Bz vanishes and reverses its
sign near the null point (figure 3, inset b). Because By is
inversely proportional to the current carried by the wire, I
(equations (92) and (94) in appendix 4), the Majorana for-
mula predicts a probability of spin flip approaching 100%
with increasing currents (figure 4, Curve m), i.e. as By → 0,
Wm → 1; yet, the experimental outcome decreases to nearly

Figure 4. Fraction of spin flip versus wire current. The down arrow
points to the current where B ′

y = Bn sin⟨θn⟩ or k0 = k1 to separate the
low- and high-current regions. Curves m and 1–4 represent Wm and
W1 −W4, respectively. WhileWm diverges from the experiment with
a negative R2, W3 matches the low-current experimental observation
in absolute units without fitting with R2 = 0.9495; further, W4

matches the entire observation with improved R2 = 0.9787 and
p< 8× 10−7. No adjustable or free parameters are used.

zero after peaking at 31% (figure 4, circles) [9]. Consequently,
Wm yields a negative coefficient of determination (R2). Using
the dimensionless adiabaticity parameter km (equation (103)
in appendix 4), one can express the above equation concisely
as Wm = exp(−π km/2) (equation (116)). Rabi revised the
Majorana formula to W1/4

m /4 [16], which, however, overes-
timates the starting points, underestimates the peak, and con-
tinues to diverge thereafter; as a result, the R2 remains negative
(figure 1).

In CQD, Stage SG1 varies θn negligibly according to Postu-
late 2. However, polarization selection by the slit reshapes the
co-quantum angular distribution from the original isotropic pn0
(equation (15)) to

pn1 (θn,ϕ n) = pn0 (θn,ϕ n) · 2
θnˆ

0

pe02π sinθedθe

=
1− cos(θn)

4π
. (24)

Here, the pre-factor 2 compensates for the overall slit rejec-
tion of the opposite polarization (equation (20)), pe0 is given
by equation (19), and the integration limits are based on
the branching condition (equation (10)). Because atoms with
smaller θn are deflected to the blocked−z branch with greater
probabilities, pn1 forms a heart shape (figure 3, inset a, solid
line; paragraph 3 in section 4).

The heart shape is assumed to be approximately maintained
throughout the IR chamber owing to the extension of Postulate
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2 (see paragraph 2 in section 4). The co-quanta engender the
following four effects on the principal quanta.

First, the probability of spin flip is derived by ensemble
averaging over pn1 instead of pn0 (equation (89) with θe = αr

in appendix 3):

Wcqd = ⟨−z|αr⟩2 =
αrˆ

0

pn12π sinθndθn = sin4
(αr

2

)
, (25)

which equals W2
qm (equation (22)). As shown by Curve 1 in

figure 4, simply squaring Wm (equation (23)) already brings
the solution much closer to the observation at low currents, but
with an overcorrection near I= 0.03 A. This squaring effect
evolves the probability of spin flip from Wm to

W1 =W2
m = exp

(
−π za

v
|γe|By

)
, (26)

where By is computed from the remnant (residual) fringe
magnetic flux density, Br, using equations (92) and (94) in
appendix 4. Using the dimensionless adiabaticity parameter km
(equation (103)), one can express the above equation concisely
as W1 = exp(−π km) (see equation (154) in appendix 5).

Second, the z component of B⃗n (equation 3), represen-
ted by Bn cos⟨θn⟩, offsets the upward Br. We substitute Br +
Bn cos⟨θn⟩ (equation (119) in appendix 5) for Br to update By

to B ′
y (equation (122)). The heart shape (equation (24)) yields

⟨θn⟩= 5π/8 (equation (118)). The magnitude of Bn cos⟨θn⟩=
−0.045× 10−4 T exceeds 10% of Br (0.42× 10−4 T), pro-
ducing an appreciable remnant-alteration effect. As shown by
Curve 2 in figure 4, the corrected curve passes through the first
two data circles and grazes the third one. If the co-quantum dis-
tribution were isotropic, ⟨θn⟩ would be π/2; Bn cos⟨θn⟩ would
vanish, sowould the remnant-alteration effect. Effect 2 evolves
W1 to (see equation (136))

W2 = exp
(
−π za

v
|γe|B ′

y

)
, (27)

where B ′
y, however, is computed using Br +Bn cos⟨θn⟩ instead

of Br. Using the dimensionless adiabaticity parameters k0
(equation (125)), one can express the above equation concisely
as W2 = exp(−π k0) (see equation (153)).

Third, the co-quanta saturate the rotation. As shown
by equation (27), W2 increases with decreasing B ′

y. How-
ever, the weakness of B ′

y is spoiled by the transverse (xy)

component of B⃗n, denoted by Bn sin⟨θn⟩. Substitution of√
B ′2
y +(Bn sin⟨θn⟩)2 for B ′

y (see equation (141)) evolves W2

to

W3 = exp

(
−π za

v
|γe|

√
B ′2
y +(Bn sin⟨θn⟩)2

)
. (28)

Using the dimensionless adiabaticity parameters k0
(equation (125)) and k1 (equation (126)), one can express

the above equation concisely as W3 = exp
(
−π

√
k20 + k0k1

)
(see equation (152)).

As shown by Curve 3 in figure 4, this rotation-saturation
effect clamps the overshoot in Curve 2. The clamped curve

passes through the first four data circles. The current is divided
into two regions at 0.067 A, where B ′

y = Bn sin⟨θn⟩= 0.11×
10−4 T. At low currents before the fourth data point (I=
0.05 A and B ′

y = 0.15× 10−4 T), B ′
y is greater than Bn sin⟨θn⟩;

at high currents, conversely, Bn sin⟨θn⟩ becomes dominant and
saturates the curve. If the co-quantum distribution were iso-
tropic, then ⟨θn⟩= π/2; consequently, both the squaring and
remnant-alteration effects (effects 1 and 2) would vanish. In
this case, the rotation-saturation effect (effect 3) alone could
not bring the Majorana solution down sufficiently in the low-
current region because as the current decreasesB ′

y increasingly
overpowers Bn; thus, the effect of the co-quanta would become
negligible.

Combining the three effects, CQD accurately predicts
the low-current observation in absolute units without fitting
(i.e. no parameters are adjusted). The coefficient of determin-
ation R2 for the low-current regime reaches 0.9495 as com-
puted using the natural logarithm of the fractions of flip to
suppress the exponential dependence (equation (28)). There-
fore, effecting the three modifications to theMajorana formula
has already shown evidence for the existence of both the co-
quantum and the derived heart-shaped distribution.

Fourth, in the high-current regime, the precession of B⃗n

generates substantial nuclear-resonant rotation, due to preces-
sion resonance between µ⃗e and µ⃗n when their Larmor fre-
quencies are matched (see appendix 5 for details). This effect
evolves W3 to (equation (167) in appendix 5)

W4 =W3 exp
(
−cr1I

3
)
, (29)

where the resonant-rotation coefficient, cr1, is given by
equation (163). The fraction of spin flip peaks near I=
0.1 A, where B ′

y = 0.074× 10−4 T, comparable to but less
than Bn sin⟨θn⟩= 0.11× 10−4 T. As shown by Curve 4 in
figure 4, this effect increases with the current and bends
down Curve 3. At the maximum current (I= 0.5 A), B ′

y =

0.015× 10−4 T, far less than Bn sin⟨θn⟩; the fraction of
spin flip decreases to nearly zero. Expression of the above
equation based on dimensionless parameters is discussed
below equation (150). Using the dimensionless adiabaticity
parameters k0 (equation (125)) and k1 (equation (126)) as well
as fr1 (equation (146)), one can express the above equation

concisely as W4 = exp
(
−π

√
k20 + k0k1 − 1

2 [π k1 ]
2fr1

)
(see

equation (151)), where fr1 denotes the fraction of the Larmor
period of the nuclear magnetic moment precessed during the
effective flight path-length for nuclear-resonant rotation.

Combining all four effects, CQD accurately predicts the
experimental observation in absolute units without fitting
(figure 4, Curve 4) over the entire domain; R2 is computed to
be 0.9787 using the natural logarithm of the fractions of flip to
suppress the exponential dependence (equation (29)). Under
the null hypothesis that the theoretical prediction is uncor-
related with the observation, we estimate the p-value to be
< 8× 10−7 (Function regress or corr, MATLAB,MathWorks)
[22, 23]. Such a small p-value further objectively confirms the
existence of both the co-quantum and the derived heart-shaped
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distribution. In comparison, without taking the logarithm of
the fractions of flip, R2 is computed to be 0.9621.

Thus far, we have set the induction factor ki = 0 for the
flight in the IR chamber, owing to the low field (appendix 5).
Including ki yields the following combined probability of spin
flip (appendix 5, equation (160)):

Wcqd = exp

[
−
√
(cr0/I)

2
+ c2rs − cr1I

3 − criI

]
, (30)

where cr0, crs, cr1, and cri represent null-point rotation, rotation
saturation, nuclear-resonant rotation, and induction rotation,
respectively. The current, I, controls the external magnetic
field in the IR chamber. Taken from Frisch and Segrè [9], the
only device-specific parameters for the predictions include Br

(0.42× 10−4 T), za (1.05× 10−4 m), and v (800 m s−1). The
theoretical predictions from equations (161)–(163) without
adjusting any parameters are cr0 = 0.054 A, crs = 0.80,
and cr1 = 48 A−3. Substitution of these coefficients into
equation (30) with cri = 0 produces Curve 4 in figure 4, where
no free parameters are used.

Despite its small contribution in the IR chamber, the
induction factor is estimated for its order of magnitude.
While holding all three other parameters constant at the pre-
dicted values, fitting Wcqd (equation (30)) for the experi-
mental data in figure 4 yields cri ∼ 0.57 A. Substitution into
equation (164) produces ki ∼ 7.4× 10−4. Further substitution
into equation (11) concludes that electron-spin collapse takes
on the order of Nc ∼ 220 precession cycles.

4. Discussion

CQD postulates that the electron and nuclear magnetic
moments in an external field B0 along z repel in the polar dir-
ection, which results in a revision to the sign of the induction
term in the Landau–Lifshitz–Gilbert equation. Whereas pre-
cession is governed by the terms from the Bloch equation,
collapse is modeled by the revised induction term. If ki =
0, the equation of motion reduces to the Bloch or equival-
ent Schrödinger equation [7, 10, 11, 26, 27], which does
not model collapse [30]. While precession is the dominant
motion, collapse is secondary but concurrent. Although the
exact mechanism for the repulsion is to be investigated, a con-
jecture is diamagnetism extended from orbital to spin motions.
Diamagnetic magnetization, a weak but universal induction
effect on all atoms, causes repulsion [31, 32]. The relativ-
istic momentum density in the Dirac wave field shows that the
magnetic moment of an electron can be attributed to a circu-
lating flow of electric charge (equation (34) in appendix 1),
similar to that in orbital motions [33]. Therefore, it is con-
ceivable that diamagnetism applies to spin as well. In the
laboratory reference frame, as µ⃗e and µ⃗n precess in oppos-
ite directions, each azimuthal encounter may be viewed as
a ‘collision’, causing repulsion. Because induction is related
to relative motion, the induced field on the electron may be
written as B⃗i ∝ d(µ̂e − µ̂n)/dt, and the corresponding induced

torque is τ⃗i ∝ µ̂e × B⃗i. If µ̂e × dµ̂n/dt averages out, the aver-
age induced torque becomes µ̂e × dµ̂e/dt, matching the induc-
tion term in the Landau–Lifshitz–Gilbert equation. As µ̂e nears
either up or down, the average induced torque approaches
zero, providing stability. In the rotating reference frame that
rotates atωe, the external B0 vanishes, µ⃗e becomes azimuthally
stationary [34]; the rapidly precessing µ⃗n forms in the time-
average sense a cone-shaped magnet, which repels µ⃗e towards
±z. The sign function in the induction terms in the equations
of motion is the key difference from the standard Landau–
Lifshitz–Gilbert equation and is central to CQD. While stand-
ard damping always leads to a lower-energy state, collapse due
to the co-quantum can reach a state of either higher or lower
energy in the presence of an external magnetic field, accord-
ing to the branching condition, which agrees with the Stern–
Gerlach experimental observation. Numerical solutions to the
CQD equations of motion, to be reported separately, have
illustrated collapse with the induction term and none without.
This postulate is consistent with the Pauli exclusion principle
for two identical fermions, where the two magnetic moments
repel towards anti-alignment. Therefore, one may regard this
postulate as an extension to the Pauli exclusion principle. Note
that while diamagnetism explains the collapse term, paramag-
netism is expected to perturb the precession term slightly,
which is neglected here.

CQD also postulates that the polar angle of µ⃗n in flight
varies negligibly. Because the nuclear Larmor frequency is
four orders of magnitude smaller (i.e. |ωn| ≪ |ωe|), nuclear
spin collapses much more slowly than electron spin. Because
no data on the collapse rates have been found in the literat-
ure, we reference the T1 relaxation times. Typical T1 relaxa-
tion times in electron paramagnetic resonance are on the µs
scale [35], consistent with the previous estimation of the col-
lapse time scale of µ⃗e [5]. In contrast, typical T1 relaxation
times in gas-phase nuclear magnetic resonance are on the ms
scale [36], indicating the order-of-magnitude collapse time of
µ⃗n. In a typical Stern–Gerlach experiment [5, 37], the main
external field B0 along z is at least 0.3 T (B0 > Be ≫ Bn, the
Paschen–Back regime [16]), the length of the main field is
∼35 mm, and the most likely atomic speed v is ∼800 m s−1.
Consequently, the flight time through the main field is only
∼44 µs, which is long enough for µ⃗e to collapse but too short
for µ⃗n to collapse. In fact, the fringe field on the source side of
the main field collapses µ⃗e [2]. Besides the two distinct col-
lapse branches due to the quantization of µ⃗e, no additional
branches due to the quantization of µ⃗n have been observed
by Frisch and Segrè [9] despite the prediction of up to eight
branches total [38]. For Nc ∼220 (equation (11)) estimated
from the Frisch–Segrè experimental data shown in figure 4,
the collapse time constants (Tc, equation (12) and its nuc-
lear counterpart) at the main field strength are computed to
be ∼3× 10−8 and ∼4× 10−4 s for µ⃗e and µ⃗n, respectively,
which are consistent with the above-mentioned correspond-
ing T1 relaxation times in orders of magnitude [35, 36]. This
postulate, extended to the weaker-field IR chamber, is con-
sistent with the selection rule for observing an electron-spin–
resonance transition, stating that the magnetic quantum num-
ber of the nuclear spin remains constant (i.e. ∆mI = 0) [39].
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Figure 5. Illustration of the cone of µ̂n formed by precession
around the external main field, B0. n: nuclear magnetic moment
(co-quantum), µ̂n. Any electron magnetic moment (principal
quantum), µ̂e, precessing around B0 within the cone collapses up,
whereas µ̂e precessing outside the cone collapses down. For a given
θn, the probability for the atom from the oven to reach the up branch
in the single-stage Stern–Gerlach experiment is proportional to the
solid angle of the cone.

The selection rule was also a major basis for Rabi’s revision
to the Majorana formula [16].

The heart-shaped pn1 in equation (24) (figure 3, inset a) can
be understood in two ways. First, the integral can be perceived
as the expected transmittance through Stage SG1 for a given
θn. All principal quanta with θe < θn collapse to +z, and the
atoms propagate through the slit further; otherwise, the atoms
are blocked by the slit. The greater the θn is, the greater the
transmittance, proportional to the solid angle formed by the
cone having a half angle of θn (figure 5). Second, one may
examine how much principal quanta at the source around each
θe within dθe contribute to pn1. For θe = 0, the contribution
forms a perfect spherical distribution of co-quanta because
co-quanta in any direction can reach the second stage. For
0< θe < π , the contribution forms a truncated sphere with
the cone of θn < θe removed because co-quanta in this range
have collapsed the principal quanta to the blocked branch.
For θe = π , the contribution vanishes because the principal
quanta are always in the blocked branch. Integrating these
(truncated) spheres form the final heart shape. Conversely, the
co-quantum angular distribution for the opposite branch is an
inverted heart shape. Average the two complementary shapes
recovers the original isotropic pn0.

A key reason for the agreement between CQD and the
Frisch–Segrè experimental observation is that the angular
distribution of the co-quantum (i.e. the nuclear magnetic
moment) is changed from an isotropic shape (equation (15))
to a continuous heart shape (equation (24)) due to the
polarization. The subsequent effects are illustrated using
the evolution of the curves in figure 4. As more effects
are included, the model becomes more and more accur-
ate while all parameters were given (i.e. no paramet-
ers were tuned to fit the experimental data). If the heart
shape were incorrect, the agreement would be completely
off. In comparison, the Majorana or Landau–Zener for-
mula neglected the nuclear magnetic moment altogether,
and Rabi used an isotropic angular distribution instead

of the heart shape [16]. Note that as the wire current
approaches infinity, Rabi’s formula predicts a maximum of

1
2I+1 =

1
4 , which is well below the experimental peak of

31% (figure 1); here, I= 3
2 denotes the nuclear spin number

for potassium-39. Further, Rabi’s standard hyperfine coup-
ling does not contain the induction terms in CQD and hence
does not model collapse. Also, the torque-averaged fields
provide greater agreement than the self-averaged fields (see
appendix 1).

Quantum mechanics, celebrated for its countless tri-
umphs, still pose mysteries as discussed insightfully in recent
literature [30, 40–43]. The Copenhagen interpretation con-
strues that an electron spin is simultaneously in both eigen-
states and collapses statistically upon measurement to either
[7]. The collapse is not modeled by the original Schrödinger
equation but stated separately as ameasurement postulate [30].
Debatable inconsistency has been found in thought experi-
ments, such as ‘Schrödinger’s cat’ [44–46].

CQD potentially offers new insight. If co-quanta are iso-
tropically distributed, CQD has been verified with quantum
mechanics by exactly reproducing the wave function and the
density operator (appendix 3) as well as the uncertainty rela-
tion (appendix 6). The probabilities of reaching the two eigen-
states split according to cos2 θe

2 : sin2 θe
2 ; the wave function

is reproduced in equation (18). However, if the co-quanta
have, for example, a heart-shaped distribution (equation (24)),
the split becomes 1− sin4 θe

2 : sin4 θe
2 (equations (88) and (89)

in appendix 3); the wave function is revised accordingly
(equation (90)). The density operator is found to originate
from a pre-averaging counterpart with independent realiza-
tions (appendix 3). The measurement uncertainty product,
explained by co-quanta, depends on the initial phase of the
principal quanta and the measurement sequence, as shown
by the uncertainty equality (equation (186)), which leads to
the familiar quantum mechanical inequality (equation (187)).
CQD has also enabled the derivation from the classical Bloch
equation to the quantum Schrödinger–Pauli equation [17],
while the latter has thus far been treated as a postulate.

CQD can be further tested with atoms having nuclear spins
of 0 (µn = 0), whichmay collapse differently in Stern–Gerlach
experiments. Examples include 38m1K, 50K, 94Ag, and 130Ag,
which are isotopes of the stable 39K, 107Ag, and 109Ag. Unfor-
tunately, these isotopes have short lifetimes ranging from 100s
to 10s of ms. Note that free electrons have not been used owing
to the Lorentz force and orbital magnetic moment.

Since the submission of this manuscript, our team has
produced several new manuscripts to support this work.
Titimbo et al numerically modeled the Frisch–Segrè exper-
iment using CQD via the Bloch equation [47], whereas He
et al numerically modeled the experiment using CQD via
the Schrödinger equation [48]. Both works have numer-
ically confirmed the analytical solution presented here
and the equivalence between the Bloch equation and the
Schrödinger equation stated by Majorana. Interestingly,
Majorana wrote the ‘Bloch’ equation [10, 11] 14 years
before Bloch published his eponymous equation [49]. The
author recently derived from the Bloch equation, which Bloch
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intended for macroscopic magnetization instead of indi-
vidual nuclear magnetic moments [49], to the Schrödinger
or Schrödinger–Pauli equation [17]. Kahraman et al demon-
strated that the standard existing treatment of hyper-
fine interaction, consistent with the Breit–Rabi formula
[38], cannot model the Frisch–Segrè experiment accur-
ately but can be improved by incorporating CQD features
[50]. The treatment also does not agree with the Rabi
formula [16].

While no alternative theory, to the best of our knowledge,
matches the Frisch–Segrè experiment, a recent multi-stage
Stern–Gerlach experiment on superatomic icosahedral cage-
clusters Mn@Sn12 also reveals discrepancy of the Landau–
Zener formula from experimental observation [51].

5. Conclusions

CQD, based on the sign-modified Landau–Lifshitz–Gilbert
equation, provides a plausible collapse mechanism for elec-
tron spin in Stern–Gerlach experiments. CQD models both
spin evolution and collapse by the same equations of motion.
With an anisotropic angular distribution of co-quanta, CQD
revises the wave function and accurately predicts the Frisch–
Segrè experimental observation in absolute units without fit-
ting with adjustable parameter, achieving p< 8× 10−7—an
objective statistical indication that reflects both correlation
and degrees of freedom. Therefore, it is extremely unlikely
that CQD happens to match the experimental observation so
well by sheer chance. Further, with an isotropic angular dis-
tribution of co-quanta, CQD is theoretically corroborated by
quantum mechanics. Both the strong experimental evidence
and the exact quantitative agreement with quantum mechan-
ics in diverse forms collectively support CQD. Like statistical
mechanics [52], which uses molecular properties to predict
macroscopic properties by ensemble averaging, CQD repro-
duces quantum mechanical properties by ensemble averaging
over co-quanta (appendix 3). If orthodox quantum mechan-
ics is incomplete [44], CQD may stimulate development for a
complete theory.
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