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Fig. 1. Schematic diagram of discharge capillary structure.
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Fig. 2. Mesh division and boundary setting of curved capil-

lary structure.
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Table 1.  Grid independence verification.

RS 5 WA SH A ER A
T/ (mes—t) DL/ %

6581 586 59.23

11524 368 29.50

26044 533 15.48

39977 452 4.63

70628 432 3.57

160003 448 —

*2 UMESEGR

Table 2. Physical parameters.
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Fig. 3. Comparison of experimental plasma density and simu-
lated gas density: (a) Experimental plasma density; (b) simu-

lated gas density on the central axis of the capillary.
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Fig. 4. Gas flow velocity distribution in the simulated com-
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Fig. 5. Gas density in the simulated tube under different in-

flation methods and inflation pressures: (a) One-side infla-
tion; (b) double-side inflation.
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Fig. 6. Gas streamlines in the simulated pipe with different inflation methods: (a) One-side inflation under 68950 Pa; (b) double-side
inflation under 68950 Pa; (c) one-side inflation under 137900 Pa; (d) double-side inflation under 137900 Pa.
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Fig. 11. Gas density distribution in curved capillary tubes with different electron injection channel diameters: (a) 50 pm diameter;
(b) 100 pm diameter; (c) 150 pm diameter; (d) 200 pm diameter; (e) 300 pm diameter.
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Fig. 12. Gas velocity distribution in curved capillary tubes with different electron injection channel diameters: (a) 50 pm diameter;
(b) 100 pm diameter; (c) 150 pm diameter; (d) 200 pm diameter; (e) 300 pm diameter.
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Abstract

Based on the standard k¢ model, a gas flow calculation model in a curved capillary is established, and the
flow process of helium working medium in a curved capillary with gradually changing curvature is numerically
simulated. Compared with other methods of studying micro-scale gas flow, this simulation obtains the gas
density distribution in the curved capillary more conveniently, and has the same variation trend as the
experimental measurement of the plasma electron density distribution, and can predict the gas flow distribution
in the tube more accurately. The situation provides a theoretical basis for designing the discharge capillary
experiment. Based on this model, the gas flow process in the capillary of the one-sided direct flushing, double-
sided hedging and “straight 4+ curved” cascade acceleration structures are numerically simulated. The results
and conclusions are summarized as follows.

1) Comparing with the single-sided straight-bent capillary structure, the gas density fluctuation between
the left gas inlet and the right gas inlet of the double-sided hedging-bend capillary is smaller, the gas flow is
more stable, and a relatively stable plasma density channel can be generated.

2) In the double-sided hedged curved capillary, a relatively uniform gas density distribution is formed
between the two inlets of the capillary under the same inflation back pressure; further research results show
that a more uniform plasma density distribution with different lengths can be obtained by controlling the
position of the gas inlet.

3) In the “traight + curved” cascaded accelerating capillary structure, the diameter of the electron
injection channel will affect the gas density distribution in the bend. When the diameter of the electron
injection channel is small, the absolute pressure in the capillary is low. The larger pressure difference between
them will lead to a higher gas flow rate in the elbow, which will increase the fluctuation of the gas density in
the elbow; the final research shows that the diameters of the electron injection channel, 100 pm and 150 pm are
more suitable for the application in the “direct + bend” cascade acceleration capillary structure design.

In summary, the calculation model of gas flow in the curved capillary constructed in this paper can
accurately predict the gas flow distribution in the tube. The double-sided hedged curved capillary can generate
a relatively stable plasma density channel, and the electron injection channel diameters, 100 pm and 150 pm,
are more suitable for application in the “straight + curved” cascade accelerating capillary structure design. The
research results obtained are expected to provide theoretical guidance and technical support for the laser wake
cascade acceleration experiment based on the curved capillary with gradually changing curvature.

Keywords: curved capillary, compressive flow, gas density, laser wakefield acceleration
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