
TOPOLOGICAL PHASE OF MATTER AND FLOQUET
CODES

by

Bowen Yan

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Physics and Astronomy

West Lafayette, Indiana

December 2024



THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr.Xingshan Cui, Chair

Department of Mathematics

Dr. Jukka Vayrynen

Department of Physics and Astronomy

Dr. Arnab Banerjee

Department of Physics and Astronomy

Dr. Ralph Kaufmann

Department of Mathematics

Approved by:

Dr. Gabor Csathy

2



ACKNOWLEDGMENTS

First, I would like to express my deepest gratitude to my advisor, Xingshan Cui. I

am profoundly thankful for his unwavering encouragement, freedom, and understanding

throughout my studies and research. His vast knowledge and sharp insights have been

invaluable, as he consistently identified the crux of my confusions and explained them with

remarkable clarity, detail, and patience. This thesis would not have been possible without

his clear guidance and support.

I would also like to thank my undergraduate advisor, Changgan Zeng, who introduced me

to the fascinating world of flat-band systems and gave me my first exposure to the intriguing

realm of strongly correlated electrons. My gratitude extends to Chris Greene, who helped

me delve into AMO physics, guiding me through this fundamental and enriching field.

My heartfelt thanks go to my committee members: Arnab Banerjee, Jukka Vayrynen,

and Ralph Kaufmann. I am deeply grateful for their valuable advice, encouragement, time,

and insightful discussions, which have driven me to improve and progress. A special thank

you to Jukka Vayrynen for his kind encouragement and for introducing me to his research

group, where I immersed myself in an inspiring condensed matter physics environment and

gained a deeper understanding of topological phases of matter in physical systems.

I also owe special thanks to Martin Kruczenski for introducing me to conformal field

theory and for his continued support and encouragement throughout my journey.

I want to express my gratitude to my friends Yuming Shi, Penghua Chen, Yuchen Wang,

Xi Cheng, and Guangjie Li. A special thanks goes to Penghua Chen for being an incredible

collaborator and providing invaluable support. My deep thanks also go to Yuming Shi for

always being a thoughtful listener and engaging in genuine and meaningful conversations

with me. To my 5-year roommate Yuchen Wang, I am truly grateful for your endless help

and friendship during this time.

I also thank Nan Cheng for the memorable trips and passionate academic discussions

that have made this journey even more meaningful. My thanks also go to Zhengmian Hu

and Xingrui Song for the many joyful and thought-provoking discussions on various topics.

3



Lastly, I must express my greatest gratitude to my parents. Your unwavering support and

presence, especially during difficult times, have been my anchor. I could not have achieved

this without your love and encouragement. Thank you for standing with me and believing

in me every step of the way.

4



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 

2 RIBBON OPERATORS IN THE GENERALIZED KITAEV QUANTUM DOU-

BLE MODEL BASED ON HOPF ALGEBRAS . . . . . . . . . . . . . . . . . . .  17 

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 

2.2.1 Hopf algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 

2.2.2 Representations of semisimple Hopf algebras . . . . . . . . . . . . . .  24 

2.2.3 Drinfeld double of Hopf algebras . . . . . . . . . . . . . . . . . . . . .  26 

2.2.4 Generalized Kitaev model based on Hopf algebras . . . . . . . . . . .  27 

2.3 Ribbon operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 

2.3.1 Directed ribbons . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 

2.3.2 Definition of ribbon operators . . . . . . . . . . . . . . . . . . . . . .  32 

2.3.3 Local orientation in original Kitaev model . . . . . . . . . . . . . . .  35 

2.3.4 Properties of ribbon operators . . . . . . . . . . . . . . . . . . . . . .  36 

2.4 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41 

3 GENERALIZED KITAEV SPIN LIQUID MODEL AND EMERGENT TWIST

DEFECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43 

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43 

3.2 Kitaev Honeycomb Model . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46 

3.3 Generalized Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49 

3.3.1 Toric Code on a lattice where qubits are placed on vertices . . . . . .  49 

3.3.2 Generalized model on a lattice with all vertices having even degree . .  49 

5



3.3.3 Generalized model on arbitrary planar lattice . . . . . . . . . . . . .  54 

3.4 Emergent Twist Defect in the gapped phase . . . . . . . . . . . . . . . . . .  58 

3.5 Subsystem Code aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66 

3.6 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67 

4 FLOQUET CODES FROM COUPLED SPIN CHAIN . . . . . . . . . . . . . . .  69 

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69 

4.2 2D Floquet Code from Spin Chain Construction . . . . . . . . . . . . . . . .  72 

4.2.1 Spin Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72 

4.2.2 2D Floquet Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74 

4.2.3 Referred Syndrome Operators . . . . . . . . . . . . . . . . . . . . . .  77 

4.2.4 Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79 

4.3 3D Error-Correctable Floquet Code . . . . . . . . . . . . . . . . . . . . . . .  81 

4.3.1 3D Floquet Toric Code . . . . . . . . . . . . . . . . . . . . . . . . . .  81 

4.3.2 Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84 

4.3.3 Criteria for the Error Correction of Floquet Codes . . . . . . . . . . .  86 

4.3.4 Construction on General Lattices and Higher Dimensions . . . . . . .  88 

4.3.5 n-Dimensional Floquet X-Cube Code . . . . . . . . . . . . . . . . . .  91 

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96 

A SUPPLEMENTARY MATERIAL FOR CHAPTER 3 . . . . . . . . . . . . . . . .  105 

A.1 Straightening equation of Aa and Bf . . . . . . . . . . . . . . . . . . . . . .  105 

A.2 Violation and correction in group algebra . . . . . . . . . . . . . . . . . . . .  106 

A.3 Multiplication of ribbon operators on elementary ribbons . . . . . . . . . . .  108 

A.3.1 For locally clockwise ribbons τL . . . . . . . . . . . . . . . . . . . . .  108 

A.3.2 For locally counterclockwise ribbons τR . . . . . . . . . . . . . . . . .  109 

A.4 Proof of Lemma  2.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111 

A.4.1 Equation  2.63a for short ribbons . . . . . . . . . . . . . . . . . . . . .  111 

A.4.2 Equation  2.63b for short ribbons . . . . . . . . . . . . . . . . . . . .  113 

6



A.4.3 Equation  2.63c for short ribbons . . . . . . . . . . . . . . . . . . . . .  113 

A.4.4 Equation  2.63d for short ribbons . . . . . . . . . . . . . . . . . . . .  114 

A.4.5 Equation  2.64a for short ribbons . . . . . . . . . . . . . . . . . . . . .  115 

A.4.6 Equation  2.64b for short ribbons . . . . . . . . . . . . . . . . . . . .  116 

A.4.7 Equation  2.64c for short ribbons . . . . . . . . . . . . . . . . . . . . .  117 

A.4.8 Equation  2.64d for short ribbons . . . . . . . . . . . . . . . . . . . .  119 

A.4.9 Equations  2.63b and  2.63c for long ribbons . . . . . . . . . . . . . . .  119 

A.5 Proof of Proposition  2.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121 

A.5.1 Equation  2.65a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121 

A.5.2 Equation  2.65b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122 

A.6 Fourier transformation of H∗ . . . . . . . . . . . . . . . . . . . . . . . . . . .  123 

B SUPPLEMENTARY MATERIAL FOR CHAPTER 4 . . . . . . . . . . . . . . . .  126 

B.1 Perturbation treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126 

B.1.1 Effective Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . .  126 

B.1.2 Geometric Factor αp . . . . . . . . . . . . . . . . . . . . . . . . . . .  128 

B.2 Mapping Table of vertex with dv > 4 . . . . . . . . . . . . . . . . . . . . . .  130 

B.3 Possible Measurement-Based Initializing Method . . . . . . . . . . . . . . . .  131 

C SUPPLEMENTARY MATERIAL FOR CHAPTER 4 . . . . . . . . . . . . . . . .  133 

C.1 The Instantaneous Phase of Floquet code in dimension 3 . . . . . . . . . . .  133 

C.2 A Trivalent 3D Kitaev Spin Liquid Model from Coupling Spin Chain . . . .  134 

C.2.1 A Short Review of Binary Vector Representation of the Pauli Hamil-

tonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  134 

C.2.2 The Ground State Degeneracy of the 3D Trivalent Model . . . . . . .  136 

C.3 The evolution of logic operator . . . . . . . . . . . . . . . . . . . . . . . . .  140 

C.4 Properties of higher dimensional X-cube code . . . . . . . . . . . . . . . . .  141 

7



LIST OF TABLES

3.1 Mapping Table for a vertex with dv = 6 . . . . . . . . . . . . . . . . . . . . . . .  54 

4.1 Measurement routine for 2d floquet code . . . . . . . . . . . . . . . . . . . . . .  78 

4.2 The Instantaneous Stabilizer Group table . . . . . . . . . . . . . . . . . . . . . .  83 

4.3 Updated SSG table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85 

4.4 Measurement routine for CSS floquet code . . . . . . . . . . . . . . . . . . . . .  90 

8



LIST OF FIGURES

2.1 An illustration of elementary ribbons . . . . . . . . . . . . . . . . . . . . . . . .  19 

2.2 Illustration of some fundamental definition . . . . . . . . . . . . . . . . . . . . .  28 

2.3 The convention for the local operator Aa(s) . . . . . . . . . . . . . . . . . . . .  28 

2.4 Definition of local operator Bf (s) . . . . . . . . . . . . . . . . . . . . . . . . . .  29 

2.5 A ribbon is composed of a series of triangles . . . . . . . . . . . . . . . . . . . .  32 

2.6 A counter-example of the Equation  2.59 . . . . . . . . . . . . . . . . . . . . . .  36 

2.7 Ribbons marked with (a)-(d) correspond the Equation  2.63 a-d. . . . . . . . . .  39 

2.8 Ribbons marked with (a)-(d) correspond the Equation  2.64 a-d. . . . . . . . . .  39 

3.1 The original Kitaev Spin Liquid model . . . . . . . . . . . . . . . . . . . . . . .  47 

3.2 Transformation of original lattices . . . . . . . . . . . . . . . . . . . . . . . . . .  50 

3.3 The arrangement of check operators . . . . . . . . . . . . . . . . . . . . . . . . .  52 

3.4 The effective action of plaquette operators around even degree vertices . . . . .  55 

3.5 A illustration of combining two odd degree vertices . . . . . . . . . . . . . . . .  57 

3.6 Spin liquid without any defect . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58 

3.7 The spin liquid with a pair of defects . . . . . . . . . . . . . . . . . . . . . . . .  58 

3.8 Illustration of static Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . . .  59 

3.9 The detailed local part of a honeycomb lattice . . . . . . . . . . . . . . . . . . .  60 

3.10 A local image of the lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62 

3.11 Demonstration of the time evolution by excited plaquettes . . . . . . . . . . . .  66 

4.1 Interaction diagrams of spin chains . . . . . . . . . . . . . . . . . . . . . . . . .  73 

4.2 Placing spin chain on the faces of 2d lattices . . . . . . . . . . . . . . . . . . . .  75 

4.3 Placing spin chain on the faces of the dual lattice . . . . . . . . . . . . . . . . .  76 

4.4 Error correction for 2d floquet code . . . . . . . . . . . . . . . . . . . . . . . . .  80 

4.5 The construction of 3d floquet toric code . . . . . . . . . . . . . . . . . . . . . .  82 

4.6 Illustration of triangular operators . . . . . . . . . . . . . . . . . . . . . . . . .  83 

4.7 3d Error correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85 

4.8 A simple illustration of floquet Bacon-Shor code . . . . . . . . . . . . . . . . . .  89 

4.9 Hexagonal prism case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90 

9



4.10 3D X-cube floquet code construction . . . . . . . . . . . . . . . . . . . . . . . .  93 

B.1 Demostration of perturbation tree . . . . . . . . . . . . . . . . . . . . . . . . . .  127 

B.2 Example of a plaquette operator in honeycomb lattice . . . . . . . . . . . . . . .  129 

B.3 A honeycomb lattice holding effective toric code . . . . . . . . . . . . . . . . . .  132 

C.1 Equivalent placement of spin chains on two dimensional lattices . . . . . . . . .  136 

C.2 A trivalent 3-dimensional lattice . . . . . . . . . . . . . . . . . . . . . . . . . . .  139 

C.3 Evolution of logical operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  140 

10



ABSTRACT

This abstract contains work from the article entitled “Floquet Codes from Coupled Spin
Chains” written by the author, Penghua Chen, and Shawn X. Cui published on arXiv [  1 ],
and the article entitled “Generalized Kitaev spin liquid model and emergent twist defect”
written by the author, Penghua Chen, and Shawn X. Cui published on Annals of Physics [  2 ],
and the article entitled “Ribbon operators in the generalized Kitaev quantum double model
based on Hopf algebras” written by the author, Penghua Chen, and Shawn X. Cui published
on Journal of Physics A [  3 ].

Kitaev’s quantum double model is a family of exactly solvable lattice models that realize

two dimensional topological phases of matter. The model was originally based on finite

groups, and was later generalized to semi-simple Hopf algebras. In this thesis, We rigorously

define and study ribbon operators in the generalized quantum double model. These ribbon

operators are important tools to understand quasi-particle excitations. It turns out that

there are some subtleties in defining the operators in contrast to what one would naively

think of. In particular, one has to distinguish two classes of ribbons which we call locally

clockwise and locally counterclockwise ribbons. Moreover, we point out that the issue already

exists in the original model based on finite non-Abelian groups, but it seems to not have

been noticed in the literature. We show how certain common properties would fail even

in the original model if we were not to distinguish these two classes of ribbons. Perhaps

not surprisingly, under the new definitions ribbon operators satisfy all properties that are

expected. For instance, they create quasi-particle excitations only at the end of the ribbon,

and the types of the quasi-particles correspond to irreducible representations of the Drinfeld

double of the input Hopf algebra. However, the proofs of these properties are much more

complicated than those in the case of finite groups. This is partly due to the complications

in dealing with general Hopf algebras rather than group algebras.

On the other hand, the Kitaev spin liquid model on a honeycomb lattice offers an in-

triguing feature that encapsulates both Abelian and non-Abelian phases [  4 ]. Recent studies

suggest that the comprehensive phase diagram of the possible generalized Kitaev model

largely depends on the specific details of the discrete lattice, which somewhat deviates from

the traditional understanding of “topological” phases. In the second part of this thesis, we

propose an adapted version of the Kitaev spin liquid model on arbitrary planar lattices. Our
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revised model recovers the surface code model under certain parameter selections within

the Hamiltonian terms. Changes in parameters can initiate the emergence of holes, domain

walls, or twist defects. Notably, the twist defect, which presents as a lattice dislocation de-

fect, exhibits non-Abelian braiding statistics upon tuning the coefficients of the Hamiltonian.

Additionally, we illustrate that the creation, movement, and fusion of these defects can be

accomplished through natural time evolution by linearly interpolating the static Hamilto-

nian. These defects demonstrate the Ising anyon fusion rule as anticipated. Our findings

hint at possible implementation in actual physical materials owing to a more realistically

achievable two-body interaction.

The topological phase of matter not only supports anyons as quasi-particle excitations

but also exhibits a long-range entangled ground state, which often functions as a quantum

error-correcting code. The Floquet code is introduced to reduce the high cost of measuring

many-body syndrome operators. In the third part of this thesis, we propose a novel con-

struction of the Floquet 3D toric code and Floquet X-cube code through the coupling of spin

chains. This approach not only recovers the coupling layer construction on foliated lattices in

three dimensions but also avoids the complexity of coupling layers in higher dimensions, of-

fering a more localized and easily generalizable framework. Our method extends the Floquet

3D toric code to a broader class of lattices, aligning with its topological phase properties.

Furthermore, we generalize the Floquet X-cube model to arbitrary manifolds, provided the

lattice is locally cubic, consistent with its Fractonic phases. We also introduce a unified

error-correction paradigm for Floquet codes by defining a subgroup, the Steady Stabilizer

Group (SSG), of the Instantaneous Stabilizer Group (ISG), emphasizing that not all terms in

the ISG contribute to error correction, but only those terms that can be referred to at least

twice before being removed from the ISG. We show that correctable Floquet codes naturally

require the SSG to form a classical error-correcting code, and we present a simple 2-step

Bacon-Shor Floquet code as an example, where SSG forms instantaneous repetition codes.

Finally, our construction intrinsically supports the extension to n-dimensional Floquet (n, 1)

toric codes and generalized n-dimensional Floquet X-cube codes.

12



1. INTRODUCTION

This introduction contains work from the article entitled “Generalized Kitaev spin liquid
model and emergent twist defect” written by the author, Penghua Chen, and Shawn X.
Cui published on Annals of Physics [ 2 ], and the article entitled “Ribbon operators in the
generalized Kitaev quantum double model based on Hopf algebras” written by the author,
Penghua Chen, and Shawn X. Cui published on Journal of Physics A [  3 ].

People want quantum computers for different reasons. The original motivation was to

simulate the quantum world, which requires an exponential amount of computational re-

sources on a classical computer. On the other hand, since the factoring problem was shown

to be solvable efficiently on a quantum computer [  5 ], quantum computation has demonstrated

the potential to dramatically reduce the computational time for certain problems compared

to a classical computer. Shortly thereafter, effective simulation of quantum mechanics was

proposed [  6 ].

If we examine the architecture of a general computer, it consists of three major functional

elements. The first is an encoder, which interprets information into a computable basis. This

is followed by a functional unit, which applies actions or computations to the computational

basis. Finally, a decoder is required to read out the desired information. While classical com-

puters use binary strings as their computational basis, quantum computers utilize quantum

states. As demonstrated in [  7 ], quantum computers are much more error-prone than classical

ones due to the fragility of quantum states, which can decohere under small but unavoidable

perturbations or unexpected couplings. Fortunately, Shor argued that with a sufficiently low

error rate, error-correcting codes provide a useful paradigm that enables reliable quantum

computation [ 8 ].

One may ask if a fault-tolerant quantum computational paradigm could ever exist. We

can "imagine" a scenario as follows. Suppose we have a nucleus at hand and define one

quantum bit basis as follows: | 0〉 if it is a proton, and | 1〉 if it is a neutron. Such a

basis would be exceptionally robust, as no error could change the state unless a nuclear

reaction occurs. Thus, we can conclude that encoding information into particle types would

be naturally fault-tolerant. The next question would be whether a "good" quantum gate
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could exist. One might consider braiding to be fault-tolerant, as it is unaffected by local

perturbations along the path and depends only on the topology of the particle trajectories.

Surely, the above imagination cannot be realized with elementary particles in our uni-

verse. Setting aside the question of whether a superposition of a proton and a neutron is

physically meaningful, the braiding of elementary particles always results in ±1, which is

insufficient for computation. This raises a mathematical question: under what scenarios can

a non-trivial representation of braiding group be realized?

Fortunately, this question is answered by anyon theories, which underpin topological

quantum computation [  9 ], [  10 ]. Anyons, which are generalizations of bosons and fermions.

Unitary matrices can be realized through the braiding of non-abelian anyons. Even more

remarkable is that anyons appear as quasi-particle excitations in two-dimensional topolog-

ical phases of matter, fundamentally representing a collective quantum state. This makes

superpositioning them natural, thereby enabling the construction of computational quantum

bits.

Finding a topological phase of matter is a major task for realizing topological quantum

computation, and it is also an intriguing topic in its own right.

Two large classes of topological phases of matter are realized on lattice models. The

Kitaev Quantum Double model achieves the realization of a vast class of anyon theories

described by the representation category of the Drinfeld double of a group G [ 11 ]. Another

important class of lattice models is the Levin-Wen model, which describes anyon theories

characterized by the Drinfeld center of a fusion category [  12 ]. The relationship between

these two models is studied in [  13 ]. It is conjectured that these two models are equivalent,

which implies a generalization of the Kitaev Quantum Double model to the semisimple weak

Hopf algebra case. A large class of similar models has also been studied [ 14 ]. The boundary

and anyon condensation aspects are further investigated in [  15 ]–[ 20 ]. Some researchers have

explored how these models can be implemented as quantum memory [  21 ]. The model has

been extended to the C*-semisimple Hopf algebra case [  22 ].

In Chapter  2 , we extend this line of work by explicitly determining the structure of ribbon

operators and pointing out the necessity of local orientation [  3 ].
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Anyon theories are well described by Unitary Modular Tensor Categories (UMTC) [  23 ].

It can be proven that some of the non-Abelian cases support universal quantum computa-

tion. These theories have also been extensively studied from the perspective of topological

quantum field theory [  23 ]–[ 25 ]. For a good review on tensor categories, we recommend [  26 ],

[ 27 ].

Another interesting and exactly solvable model is the Kitaev Spin Liquid Model [  4 ], which

supports Abelian anyons in the gapped phase and non-Abelian anyons after opening a gap

to the gapless phase. This model is simple yet fruitful and may be relatively easy to realize

in real laboratories due to its two-body nearest-neighbor interactions.

Theoretically, numerous subsequent works have sought to generalize this model. For

example, it has been explored on translationally invariant two-dimensional lattices with

vertices of higher coordination numbers [ 28 ]–[ 30 ], on two-dimensional amorphous lattices

[ 31 ], on three-dimensional diamond lattices [ 32 ], and on trivalent three-dimensional lattices

[ 33 ]. These studies suggest that the gapless phase strongly depends on the geometric details

of the lattice, challenging the conventional notion of a "topological" phase.

In Chapter  3 , we will focus on the gapped phase, specifically the Toric Code in the

original honeycomb model [ 4 ], and generalize it. We will demonstrate that the entire theory

can be formulated on arbitrary planar lattices. The gapped phase of the model can be either

the Toric Code model or a Toric Code with defects, as described in [ 34 ], which behaves as

non-Abelian Ising anyons. Furthermore, we will show that there is a natural way to move

these defects through time evolution.

The topological phase of matter is a special quantum phase that lies beyond Landau’s

symmetry-breaking paradigm [  4 ]. The most well-known platform for realizing this phase is

the Fractional Quantum Hall Effect [  35 ]. For a comprehensive review, see [  36 ]. This phase

can support anyons as its quasi-particle excitations, contributing significantly to topolog-

ical quantum computation. Furthermore, its ground state can serve as a quantum error-

correcting code, as no local operator can have a non-trivial effect on the ground state.

One drawback of using the ground state of a topological phase of matter is the re-

quirement to measure many-body syndrome operators, which is computationally expensive.

Interestingly, the Kitaev spin liquid model can be treated as a subsystem code that requires
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only two-body operators. For a review of subsystem codes, we recommend [  37 ], [  38 ]. More-

over, the honeycomb subsystem code has been “floquetified” in [ 39 ], exhibiting a non-trivial

automorphism of the toric code. This approach has been further developed into the frame-

work of dynamical automorphism codes [  40 ], [  41 ]. In Chapter  4 , we present the construction

of floquet (n, 1) toric codes and floquet n-dimensional X-cube codes, which can be realized

by coupling spin chains. The construction is localized, allowing it to be defined on general

n-dimensional lattices.

It remains unclear how to precisely identify a topological phase. Topological entangle-

ment entropy provides one way to characterize such phases [  42 ], [ 43 ]. Significant efforts have

been devoted to studying the properties of topological order [ 44 ]–[ 47 ].

An analysis shows the fragility of the 2D Toric Code under thermalization [  48 ], which

has motivated interest in three-dimensional topological phases. The Walker-Wang model was

proposed from the perspective of topological quantum field theory [  49 ], [  50 ]. Additionally,

there are a couple of 3D lattice models, such as the 3D Toric Code [ 51 ], 3D Color Code [  52 ],

and fracton codes [ 53 ]–[ 59 ].

Fracton models exhibit exotic topological phases of matter, where the ground state de-

generacy depends not only on the topology of the underlying lattice but also on its size.

The excitations in these models are highly constrained and cannot move freely, which con-

tributes to their thermal stability. However, the application of 3D topological matter to the

paradigm of topological quantum computation remains unclear. Nevertheless, these systems

are of great theoretical interest.
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2. RIBBON OPERATORS IN THE GENERALIZED KITAEV

QUANTUM DOUBLE MODEL BASED ON HOPF ALGEBRAS

This chapter contains work from the article entitled “Ribbon operators in the generalized
Kitaev quantum double model based on Hopf algebras” written by the author, Penghua
Chen, and Shawn X. Cui published on Journal of Physics A [  3 ].

2.1 Introduction

Topological phases of matter (TPM) in two spacial dimensions are gapped quantum

liquids at low temperature that have robust ground state degeneracy, stable long-range

entanglement, quasi-particle excitations (aka anyons), and possibly non-Abelian exchanging

statistics. There exist global degrees of freedom encoded in the ground states which are

resistant to local perturbations and which can be changed unitarily by non-trivial movements

of quasi-particle excitations. These features make TPMs ideal quantum media to perform

fault-tolerant quantum computing, namely, topological quantum computing [  11 ] [  60 ]. The

theory of TPMs in 2D can be described equivalently by either a (2 + 1) topological quantum

field theory or a unitary modular tensor category.

A large class of TPMs in 2D are realized by spin lattice models. Among the most well

known lies the toric code which is an Abelian toplogical phase and can also be described

by a Z2 gauge theory. Toric code is a special example of Kitaev’s quantum double models

that associate to each finite group G an exactly solvable lattice model [  11 ]. When G is

Z2, the theory reduces to toric code. When G is a non-Abelian group, the model realizes

a non-Abelian topological phase. In such models, anyon types correspond to irreducible

representations of the Hopf algebra D(G), the Drinfeld double (or, quantum double) of the

group algebra C[G]. The quantum double model can be generalized by replacing G with a

semi-simple C∗ Hopf algebra H. Given such a Hopf algebra, the authors in [  61 ] wrote down

a frustration-free Hamiltonian consisting of pairwise commuting local projectors analogous

to the original setup. We call this model the generalized Kitaev quantum double model  

1
 .

1
 ↑ This model can be further generalized to a semi-simple weak Hopf algebra [  62 ]. We will not discuss this

generalization in this paper.
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Another class of realizations are the Levin-Wen string-net models [ 12 ] based on unitary

fusion categories. String-net models and the quantum double models are closely related.

Specifically, for a Hopf algebra H, it was shown that the generalized quantum double model

based on H is equivalent to the string-net model based on Rep(H), the category of repre-

sentations of H [ 63 ] [  64 ].

A key tool to describe the creation/annihilation and movement of anyons in the models

mentioned above is the notion of ribbon operators (or string operators). In toric code, these

are a string of Pauli Z operators on the lattice or a string of Pauli X operators on the dual

lattice. However, when the group G is non-Abelian, these two types of string operators have

to be ‘entangled’; one has to consider a thickened string of operators, namely, operators on

a ribbon. Roughly, a ribbon is a strip in the lattice with one side running along edges of the

lattice and the other side along edges of the dual lattice. In the quantum double model, one

first defines the operators for two types of elementary ribbons (triangles), and then extend

the definition to longer ribbons using an induction (see [  11 ] [  65 ] for details). In [ 61 ], it was

stated briefly without proofs that ribbon operators in the generalized quantum double model

can also be defined in a similar way.

In this paper, we rigorously define ribbon operators in the generalized quantum double

model based on a semi-simple C∗ Hopf algebra, and systemically study their properties. It

is illustrated that the ribbon operators can be interpreted as representations of D(H)∗ or

D(H)∗,op, where D(H) is the Drinfeld double of H. We also prove explicitly that, given a

ribbon, the ribbon operators on it commute with all terms in the Hamiltonian except for those

associated with the two ends of the ribbon. Hence, ribbon operators create excitations only

at their ends. For a ribbon τ , denote by Vτ the space of states obtained by ribbon operators

on τ acting on the ground state. Vτ is the space of 2-point excitations where the excitations

lie at the ends of τ . It is shown that Vτ is naturally isomorphic to D(H)∗. Moreover, local

operators at the ends of τ act on Vτ by regular representations of D(H). It follows that

elementary excitation types are in one-to-one correspondence to irreducible representations

of D(H). Although these properties are as anticipated, and hence may not be surprising

to experts, the computations involved in proving them turn out to be significantly more
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complicated than those in the case of finite groups. This is partly due to the complications

in dealing with general Hopf algebras rather than just group algebras.

Furthermore, we reveal some subtleties in the definition of ribbon operators. In the

literature (e.g., [ 11 ], [ 65 ]), only two types of elementary ribbons are considered, the direct

triangle and the dual triangle. For instance, in Figure  2.1 , I and III are direct triangles,

while II and IV are dual triangles. However, we show in Section  2.3.2 that I and III have

to be treated differently when defining operators on them, and so do II and IV. The point

is that there is a property, which we call local orientation, that distinguishes each pair of

the above triangles. For instance, II is locally clockwise while IV is locally counterclockwise.

Local orientation can also be extended to general ribbons. As a consequence, there will

be two types of ribbons according to their local orientation, and the definition of ribbon

operators on each type has to be different. If we were not to distinguish these two types of

ribbons, certain common properties to be expected would not hold. For example, the ribbon

operator would fail to commute with terms of the Hamiltonian away from the end points.

Surprisingly, we point out that this issue already exists even in the original quantum double

model when the input group is non-Abelian, but this issue seems to not have been addressed

in the literature to the best of our knowledge. Lastly, our definition of ribbon operators

is explicit, in contrast to those in the string-net models where one needs to solve a set of

consistency equations.

I
II

III
IV

Figure 2.1. An illustration of elementary ribbons (dark solid triangles). The
solid grid represents the lattice and the dashed grid represents the dual lattice.
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The rest of the paper is organized as follows. In Section  2.2 , we collect some basic facts

about semi-simple Hopf algebras, their representations, and Drinfeld double. We also review

the Hamiltonian of the generalized quantum double model. In Section  2.3 , we carefully

formulate ribbons, provide the definition of ribbon operators, and study their properties. In

particular, it is shown in Section  2.3.3 that local orientation needs to be considered even in

the original Kitaev model with a non-Abelian group. Many of technical details can be found

in the appendices.

2.2 Background

2.2.1 Hopf algebra

Hopf algebras are important objects in a number of areas, such as representation theory,

tensor categories, algebraic topology, topological quantum field theories, etc. There is an

extensive literature covering different aspects of Hopf algebras. In this section, we simply

provide a brief review with the main purpose of fixing conventions. For detailed discussions,

see for instance [ 66 ] [  67 ].

A Hopf algebra over C is a vector space H endowed with the linear maps (called structure

maps),

µ : H ⊗ H → H, η : C → H, (2.1)

∆: H → H ⊗ H, ε : H → C, (2.2)

S : H → H, (2.3)

satisfying several conditions to be specified in the following.

Firstly, (µ, η) defines an (associative) algebra structure. That is, the multiplication µ is

associative:

µ [µ(a ⊗ b) ⊗ c] = µ [a ⊗ µ(b ⊗ c)] , (2.4)

or briefly

(ab)c = a(bc). (2.5)
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The unit 1H for the multiplication µ is given by η(1). Secondly, (∆, ε) defines a (coassociative)

coalgebra structure with ∆ and ε the comultiplication and counit, respectively. We will use

the Sweedler notation for expressions involving comultiplications. For instance, we write

∆(a) =
∑
(a)

a′ ⊗ a′′. (2.6)

The comultiplication map being coassociative means

(∆ ⊗ id) ◦ ∆ = (id ⊗ ∆) ◦ ∆, (2.7)

or in Sweedler notation,

∑
(a)

∑
(a′)

(a′)′ ⊗ (a′)′′

⊗ a′′ =
∑
(a)

a′ ⊗

∑
(a′′)

(a′′)′ ⊗ (a′′)′′

 . (2.8)

Due to the above equality, we simply write

(∆ ⊗ id) ◦ ∆(a) =
∑
(a)

a′ ⊗ a′′ ⊗ a′′′, (2.9)

or

(∆ ⊗ id) ◦ ∆(a) =
∑
(a)

a(1) ⊗ a(2) ⊗ a(3). (2.10)

More generally, we use the Sweedler notation for

(∆ ⊗ idH⊗(n−2)) ◦ · · · ◦ (∆ ⊗ id) ◦ ∆(a) =
∑
(a)

a(1) ⊗ · · · ⊗ a(n). (2.11)

The counit ε satisfies ∑
(a)

ε(a′)a′′ =
∑
(a)

a′ε(a′′) = a. (2.12)
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Thirdly, ∆ and ε are both required to be algebra morphisms. In particular, this implies

ε defines a 1-dimensional representation of H. Lastly, S is called the antipode which is

invertible in our consideration satisfying:

∑
(a)

a′S(a′′) = ε(a)1H =
∑
(a)

S(a′)a′′. (2.13)

To emphasize on structure maps, we also denote a Hopf algebra by

(H; µ, η, ∆, ε, S). (2.14)

In this paper, we will only consider finite dimensional semisimple Hopf algebras. Over

C, semisimplicity is equivalent to the condition that S is involutory, namely, S2 = id. The

following identities are implied in a finite dimensional Hopf algebra.

S(ab) = S(b)S(a), S(1H) = 1H , ε[S(a)] = ε(a), (2.15)

∑
(a)

S(a′′) ⊗ S(a′) =
∑

(S(a))
S(a)′ ⊗ S(a)′′. (2.16)

Given a Hopf algebra (H; µ, η, ∆, ε, S), there are several ways of constructing new Hopf

algebras out of it. Take H∗ to be the linear dual of H. Then

(H∗; ∆T , εT , µT , ηT , ST ), (2.17)

defines a Hopf algebra structure on H∗, where for a map f , fT means the linear dual of f . 

2
 

For example, µT is a map from H∗ to H∗ ⊗ H∗:

µT (f)(a ⊗ b) = f [µ(a ⊗ b)] = f(ab). (2.18)
2

 ↑ Another common notation for fT is f∗. Here we use fT since under appropriate bases, the matrix of fT is
the transpose of that of f . Another reason is to avoid confusion since we will introduce a ∗ operation below
with a different meaning.
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where a, b ∈ H, and f ∈ H∗. We can also define the opposite Hopf algebra Hop by

(Hop; µop, η, ∆, ε, S−1), (2.19)

where Hop as a vector space is the same as H, and µop is defined as

µop(a ⊗ b) = µ(b ⊗ a) = ba. (2.20)

Similarly, we have the co-opposite Hopf algebra Hcop,

(Hcop; µ, η, ∆cop, ε, S−1), (2.21)

where again Hcop as a vector space is H, and ∆cop is defined as

∆cop(a) =
∑
(a)

a′′ ⊗ a′. (2.22)

The above three operations (·)∗, (·)op, and (·)cop are all involutive, and can also be composed

with each other. It is direct to check that as Hopf algebras (H∗)cop ' (Hop)∗ and (H∗)op '

(Hcop)∗.

For a semisimple Hopf algebra H, a (two-sided) integral is an element h0 ∈ H such that

for all a ∈ H,

ah0 = h0a = ε(a)h0. (2.23)

The space of integrals is a 1-dimensional subspace, and hence h0 is uniquely defined if we

require

h2
0 = h0, or equivalently ε(h0) = 1. (2.24)

We call such an h0 the Haar integral of H. It can be proved that h0 is cocommutative,

namely

∆(h0) =
∑
(h0)

h′
0 ⊗ h′′

0 =
∑
(h0)

h′′
0 ⊗ h′

0. (2.25)
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To make a Hopf algebra into a Hilbert space, we introduce the ∗-structure. A ∗-structure

on H is a conjugate-linear map ∗ : H → H satisfying the following properties:

(a∗)∗ = a, (ab)∗ = b∗a∗, 1∗ = 1, (2.26)

∑
(a)

(a′)∗ ⊗ (a′′)∗ =
∑
(a∗)

(a∗)′ ⊗ (a∗)′′. (2.27)

A Hopf algebra endowed with a ∗-structure is called a C∗ Hopf algebra. Let H be such a

Hopf algebra, and denote by φ the Haar integral of H∗. For a, b ∈ H, define

〈a, b〉 = φ(a∗b). (2.28)

The above form 〈·, ·〉 defines a Hermitian inner product on H.

Unless otherwise stated, throughout this paper we will, as a convention, use letters such

as h0, φ for the Haar integrals, a, b, c, x, y for general elements of H, and f , g, t for

general elements of H∗. We adopt the notation that f(x?) is an element of H∗ such that

f(x?)(y) = f(xy).

2.2.2 Representations of semisimple Hopf algebras

The category of finite dimensional representations over C of a semisimple Hopf algebra

H is a semisimple tensor category with duals. If V, W are two representations,

ρV : H → End(V ), (2.29)

ρW : H → End(W ), (2.30)

then V ⊗ W is a representation with the action given by,

a.(v ⊗ w) :=
(
(ρV ⊗ ρW )∆(a)

)
(v ⊗ w), a ∈ H, v ∈ V, w ∈ W, (2.31)
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and so is V ∗ with the action given by,

a.f := f ◦ ρV (S(a)), a ∈ H, f ∈ V ∗. (2.32)

A representation V of H is irreducible if EndH(V ) ' C. Denote by IrrH the set of

isomorphism classes of irreducible representations of H. Consider the regular representation

H with the action given by left multiplication,

L(a)(c) := ac, (2.33)

or by right multiplication by S(·),

R(a)(c) := cS(a). (2.34)

These two actions commute and hence define an action of H ⊗ H on H by,

(a ⊗ b).c := acS(b). (2.35)

It is a basic fact that as a representation of H ⊗ H, we have the isomorphism,

H '
⊕

µ∈IrrH

µ∗ ⊗ µ. (2.36)

An explicit isomorphism is given as follows. For each µ ∈ IrrH , fix a basis {| i〉 | i =

1, · · · , dim(µ)}, and denote the matrix of an element a ∈ H under this basis by Dµ(a). Let

h0 ∈ H be the Haar integral (see Equations  2.23 ,  2.24 ). We define the ‘Fourier transforma-

tion’ on H by [ 64 ],

| νij〉 =

√√√√ dim(ν)
dim(H)

∑
(h0)

Dν(h′
0)ijh

′′
0, (2.37)

where ν ∈ IrrH , and i, j = 1, 2, · · · , dim(ν). For self-containedness, in Appendix  A.6 , we

verify that the action of H ⊗ H on the subspace span{| νij〉 | i, j = 1, · · · , dim(ν)} is given

by ν∗ ⊗ ν, and hence defines a desired isomorphism for Equation  2.36 .
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Lastly, the two representations L and R each induce a representation of H on H∗,

L(a) | f〉 =| f [S(a)?]〉, (2.38)

R(a) | f〉 =| f(?a)〉, |f〉 ∈ H∗. (2.39)

2.2.3 Drinfeld double of Hopf algebras

The Drinfeld double (or quantum double) D(H) of a Hopf algebra H is a Hopf algebra

D(H) =
(
(H∗)cop ⊗ H; µD, ηD, ∆D, εD, SD

)
. (2.40)

It is constructed as a bicrossed product of H and (H∗)cop. For f, g ∈ H∗, a, b ∈ H, µD is

defined as

µD [(f ⊗ a) ⊗ (g ⊗ b)] =
∑
(a)

f g
[
S−1(a′′′)?a′

]
⊗ a′′b, (2.41)

which is known as the straightening equation. Notice that we have

f ⊗ a = (f ⊗ 1)(1 ⊗ a). (2.42)

The other structure maps can be determined by the property that (H∗)cop and H are both

sub Hopf algebras of D(H) by the inclusions f 7→ f ⊗ 1 and a 7→ ε ⊗ a, respectively. For

example, ∆D is given by,

∆D(f ⊗ a) =
∑

(f),(a)
(f ′′ ⊗ a′) ⊗ (f ′ ⊗ a′′), (2.43)

where in the Sweedler notation of f , we treat f as an element of H∗ rather than (H∗)cop.

We will also use this convention throughout the paper. Namely, for a ∈ Hcop, as far as

the Sweedler notation is concerned, we use ∆ rather than ∆cop to define a′, a′′, etc. Other

structure maps are provided as follows,

ηD(1) = ε ⊗ 1, (2.44)
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εD(f ⊗ a) = f(1) ⊗ ε(a), (2.45)

SD(f ⊗ a) = S(a)ST (f). (2.46)

2.2.4 Generalized Kitaev model based on Hopf algebras

In this subsection, H denotes a semisimple C∗ Hopf algebra. The original Kitaev model

[ 11 ] is constructed based on the group algebra C[G] of a finite group G while the generalized

Kitaev model is based on a semisimple C∗ Hopf algebra H. The latter is introduced in [ 61 ]

which we review below.

For simplicity, we take a square lattice Γ = (V, E, P ) to establish the model, where V, E,

and P denote the set of vertices, (directed) edges, and faces, respectively, as shown in Figure

 2.2 (the solid grid)  

3
 . We also define the dual lattice Γ∗ = (P ∗, E∗, V ∗) where P ∗ is the set

of vertices in Γ∗ dual to the faces P in Γ, and E∗ and V ∗ have similar interpretations. For

an element x ∈ V ∪ E ∪ P , denote by x∗ the corresponding element in V ∗ ∪ E∗ ∪ P ∗. For

an edge e ∈ E, the direction of the dual edge e∗ is obtained by rotating the direction of e

counterclockwise by 90◦. A site s = (v, p) is a pair of a vertex v and an adjacent face p

containing v. We draw a segment connecting v and the dual vertex p∗ to represent the site.

See Figure  2.2 .

To each edge e of Γ, we attach a copy of the Hopf algebra (also a Hilbert space) He := H.

The total Hilbert space of the model is the tensor product over all edges of the associated

Hilbert spaces:

H :=
⊗
e∈E

He. (2.47)

La
+(x) = ax, La

−(x) = xS(a). (2.48)

T f
+(x) = f(x′′)x′, T f

−(x) = f [S(x′)]x′′. (2.49)

Upon the establishment of the oriented graph Γ = (V, E, P ), we can define the edge

operators [ 61 ] illustrated in Figure  2.2 and the local operators Aa(s) and Bf (s) on a site
3

 ↑ The edges in the lattice can be arbitrarily directed, and the physics of the model will be independent of
those directions.
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90◦

p∗

v s
T f

−

T f
+

La
−

La
+

Figure 2.2. The solid grid connecting all vertices V represents the square
lattice Γ, while the dashed grid connecting all dual vertices P ∗ represents the
dual square lattice Γ∗. A site s = (v, p) is represented by a segment connecting
a vertex v and a dual vertex p∗. For f ∈ H∗, a ∈ H, the edge operators T f

±
and La

± act on the Hilbert space He of an edge e.

s = (v, p) illustrated in Figure  2.3 and Figure  2.4 , respectively. For each edge e of the lattice

and for f ∈ H∗, a ∈ H, the edge operators T f
± and La

± act on the Hilbert space He. See

Equations  2.48 - 2.49 .

To define Aa(s) for a ∈ H, we start from the site s, go around the vertex v to apply edge

operators La′
± , La′′

± , La′′′
± , La(4)

± to each edge adjacent to v in counterclockwise order as shown

and explained in Figure  2.3 . For example, when it is applied to the product state of | x1〉,

| x2〉, | x3〉, | x4〉 for the configuration in Figure  2.3 , the result is

Aa(s) | x1〉 | x2〉 | x3〉 | x4〉 =
∑

| a′x1〉 | a′′x2〉 | a′′′x3〉 | a(4)x4〉. (2.50)

Aa(s) =
∑

La′

+ ⊗ La′′

+ ⊗ La′′′

+ ⊗ La(4)

+ (2.51)

x1

x2

x3

x4v
s

Figure 2.3. The convention for the local operator Aa(s): for each edge, we
choose + sign for the edge operator La(n) if the edge leaves the vertex, and
choose − sign otherwise.
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To define Bf (s), f ∈ H∗, we start from the site s, go around the dual vertex p∗ to apply

edge operators T f ′

± , T f ′′

± , T f ′′′

± , T f (4)

± to the edges on the boundary of p in counterclockwise

order as shown and explained in Figure  2.4 . When it is applied to the product state of | x1〉,

| x2〉, | x3〉, | x4〉 for the configuration of Figure  2.4 , the result is  

4
 

Bf (s) | x1〉 | x2〉 | x3〉 | x4〉 =
∑

f(x′′
1x′′

2x′′
3x′′

4) | x′
1〉 | x′

2〉 | x′
3〉 | x′

4〉. (2.52)

Bf (s) =
∑

T f ′

+ ⊗ T f ′′

+ ⊗ T f ′′′

+ ⊗ T f (4)

+ (2.53)

x1

x2

x3

x4 p∗

s

Figure 2.4. The convention for the local operator Bf (s): for each edge, we
choose + sign for the edge operator T f (n) if the direction of the edge coincides
with the counterclockwise orientation of the boundary of p, and choose − sign
otherwise.

Remark 2.2.1. We remark that our convention for defining the operators Aa(s) and Bf (s)

is opposite to that in [  11 ] [  61 ]. Explicitly, these operators on a lattice Γ will be the same as

those of [ 61 ] on a lattice Γ′ obtained from Γ by reversing the orientation of all edges. When

the Hopf algebra is a group algebra, our convention is consistent with that in [  65 ].

For each site s = (v, p), we extend the definition of Aa(s), Bf (s) to the whole Hilbert

space H by tensoring the identity operator on edges not adjacent to v or p. The Aa(s)

and Bf (s) are called local operators at s. They define a representation of the Drinfeld

double D(H) by mapping f ⊗ a to BfAa. The most nontrivial part of the statement is the

straightening equation. For self containedness, we verify the straightening equation for the

local operators in Appendix  A.1 .

Let h0 ∈ H and φ ∈ H∗ be the Haar integral. For a site s = (v, p), it can be checked that

Ah0(v) := Ah0(s) only depends on v and Bφ(p) := Bφ(s) only depends on p. Moreover, the
4

 ↑ To derive Equation  2.52 , we use the fact that the comultiplication ∆∗ in H∗ is actually µT .
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set of operators {Ah0(v) : v ∈ V } ∪ {Bφ(p) : p ∈ P} are mutually commuting projectors.

The (frustration-free) Hamiltonian of the model is given by,

H = −
∑
v∈V

Ah0(v) −
∑
p∈P

Bφ(p). (2.54)

The ground states are simultaneously stabilized by all the terms in the Hamiltonian.

Equivalently, the ground states space can be characterized as the subspace of H correspond-

ing to the trivial representation of D(H) on all sites s.

2.3 Ribbon operators

In this section, we rigorously define ribbons, operators on them called ribbon operators,

and study some of their important properties.

2.3.1 Directed ribbons

Let s0 = (v0, p0) and s1 = (v1, p1) be two distinct sites that share a common vertex (i.e.,

v0 = v1) or a common dual vertex (i.e., p0 = p1). There is a unique triangle τ whose sides

are given by s0, s1, and an edge eτ in the lattice or the dual lattice. See the bottom left

two examples in Figure  2.5 . The triangle τ is said to be of dual (resp. direct) type if eτ

is an edge in the dual (resp. direct) lattice, or equivalently, if v0 = v1 (resp. p0 = p1).

We also assign a direction to τ , indicated by a double arrow inside the triangle, so that it

points from s0 to s1. Denote by si = ∂iτ, i = 0, 1. A ribbon is a sequence of mutually

non-overlapping directed triangles τ = τ1τ2 · · · τn such that ∂1τi = ∂0τi+1, i = 1, · · · , n − 1.

Note that τ inherits a direction from its components, also indicated by a double arrow, and

we call ∂0τ := ∂0τ1 the initial site and ∂1τ := ∂1τn the terminal site of τ . See Figure  2.5 

for an illustration of several ribbons. By default, all ribbons are directed. A closed ribbon

is one for which the initial site and terminal site coincide. Unless otherwise stated, ribbons

considered in this paper are not closed. Triangles are called elementary ribbons.
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We introduce a property, called local orientation, of directed ribbons which seems to

be missing in the literature, but will turn out to be critical to coherently define ribbon

operators.

Definition 2.3.1. Let τ be a directed triangle (of dual or direct type) with initial site s0 =

∂0τ = (v0, p0). Then τ has clockwise (resp. counterclockwise) local orientation if a clockwise

(resp. counterclockwise) rotation of s0 around p∗
0 immediately swipes through the interior of

τ . We draw a clockwise/counterclockwise arrow around p∗
0 to denote the local orientation of

τ (See Figure  2.5 ).

An intuitive motivation for introducing local orientation is as follows. We can see that

for a triangle of a given type, a choice of direction is not sufficient to uniquely determine the

shape of the triangle. For example, the triangles II and IV in Figure  2.5 are both of dual

type and directed to the right, but IV is an ‘upside down’ version of II, and as will be shown

later, they have to be treated differently when we define ribbon operators on them. Local

orientation can be used to distinguish those two since triangle II is locally clockwise while

IV is locally counterclockwise.

It is straightforward to see that changing the direction of a triangle will also change its

local orientation. We note that a choice of direction is a structure on the triangle, while

the type and local orientation are each a property of a directed triangle (though only the

later depends on the direction). Thus, there are four classes of directed triangles according

to different combinations of local orientation and type. In Figure  2.5 , the triangles I-IV in

increasing order are, respectively, clockwise direct, clockwise dual, counterclockwise direct,

and counterclockwise dual.

Now let τ be a general directed ribbon. Clearly, its composite triangles can have different

types (direct or dual). However, an important observation is that all of the triangles of τ

must have the same local orientation. Hence, we can extend the notion of local orientation

from triangles to general ribbons. Intuitively, if a ribbon aligns horizontally and directs from

left to right, then turning it upside down will change its local orientation while keeping its

direction. Reversing the direction alone will flip its local orientation as well. As a notation,
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τ

τ1 τ2
τ3 τ4

s0 s1τR τL s0s1

I
II

III
IV

s0

s1

s1

τL

τR

Figure 2.5. A ribbon τ is composed of triangles τi (i = 1, 2 · · · n) with a
direction from s0 to s1. A triangle is a component of a ribbon with inherited
direction and also the shortest ribbon.

we also denote a directed ribbon by τL if it is locally clockwise and by τR if it is locally

counterclockwise. (This notation is motivated by the left/right hand rule)

2.3.2 Definition of ribbon operators

For a directed ribbon τ and h ⊗ f ∈ H ⊗ H∗, we will define the ribbon operator F h⊗f (τ),

also written as F (h,f)(τ). The operators will act on the whole Hilbert space H, but the

action is non-trivial only on the edges contained in τ . Explicitly, for an elementary ribbon

τ , let Hτ := Heτ if τ is direct, and Hτ := He∗
τ

otherwise. For a general ribbon τ , decompose

τ = τ1 t τ2 so that ∂1τ1 = ∂0τ2 and define inductively Hτ := Hτ1 ⊗ Hτ2 . Then F (h,f)(τ) will

only act non-trivially on the space Hτ . The definition of ribbon operators below is motivated

by [ 11 ] [  65 ] for group algebras and by [  61 ] for Hopf algebras. However, none of the above

references addresses the critical issue of local orientation, as to be discussed later.

First, assume τ is an elementary directed ribbon, i.e., a triangle. There are four cases

depending on its type and local orientation. Also, recall that the edges in the lattice as well

as those in the dual lattice are directed. The direction of the edge eτ and that of τ can

be either parallel or opposite. Taking this into consideration, we distinguish eight cases in

Equations  2.55 a- 2.55 h, where Equations (a) − (d) correspond to locally clockwise triangles

and (e) − (h) locally counterclockwise triangles.
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x

F (h,f)(τL) | x〉 =
∑
(x)

ε(h)f [S(x′′)] | x′〉

(2.55a)

x

F (h,f)(τL) | x〉 =
∑
(x)

ε(h)f(x′) | x′′〉

(2.55b)

x
F (h,f)(τL) | x〉 = ε(f) | xS(h)〉

(2.55c)

x F (h,f)(τL) | x〉 = ε(f) | hx〉 (2.55d)

x
F (h,f)(τR) | x〉 =

∑
(x)

ε(h)f [S(x′)] | x′′〉

(2.55e)
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x
F (h,f)(τR) | x〉 =

∑
(x)

ε(h)f(x′′) | x′〉

(2.55f)

x

F (h,f)(τR) | x〉 = ε(f) | S(h)x〉

(2.55g)

x

F (h,f)(τR) | x〉 = ε(f) | xh〉 (2.55h)

For ribbons other than elementary triangles, we define the ribbon operators inductively.

Let τ be an arbitrary ribbon. Decompose τ as τ = τ1 t τ2, where the terminal site of τ1

matches the initial site of τ2, and they are disjoint otherwise. For h ⊗ f ∈ H ⊗ H∗, define

F h,f (τ) :=
∑

i,(i),(h)
F h′,gi(τ1)F S(i′′′)h′′i′,f(i′′?)(τ2), (2.56)

where {i} is an orthogonal complete basis of H, and gi = 〈i, 〉 is the corresponding functional

in H∗. The above definition is explicit, but a more intuitive way is as follows. For an element

h ⊗ f ∈ D(H)∗ ' H ⊗ H∗ where the isomorphism denotes a linear isomorphism between

vector spaces,

∆(h ⊗ f) =
∑

(h⊗f)
(h ⊗ f)′ ⊗ (h ⊗ f)′′. (2.57)

We apply the expansion to the construction of ribbon operators as

F h⊗f (τ) :=
∑

(h⊗f)
F (h⊗f)′(τ1)F (h⊗f)′′(τ2). (2.58)
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It can be checked that Equations  2.56 and  2.58 are equivalent. The ribbon operators do

not depend on how the ribbon is partitioned into shorter ones due to the coassociativity of

the comultiplication in Hopf algebras.

2.3.3 Local orientation in original Kitaev model

In this subsection, we show that the distinction of local orientation is already necessary

in the orignal Kitaev model. Note that, from Equations  2.55 , F (h,f)(τ) does not distinguish

local orientations on direct triangles if H is cocommutative, and it does not distinguish local

orientations on dual triangles if H is commutative. In particular, if H is the group algebra

of an Abelian group (e.g., toric code), then local orientations are redundant. On the other

hand, for the group algebra of a non-Abelian group in the original Kitaev model, the two

local orientations on a dual triangle should support different ribbon operators according to

our definitions. This distinction, however, has not been addressed in the literature, to the

best of our knowledge. In [  11 ], [ 65 ], the definition of ribbon operators on triangles coincide

with that presented in Equations  2.55 a- 2.55 d corresponding to locally clockwise orientation.

We show below with an explicit example that ignoring local orientations can cause certain

properties to fail.

For the rest of the subsection, let H = C[G] be the group algebra of a non-Abelian

group G. Equation  2.59 is a commutation relation that is expected to hold between ribbon

operators and plaquette operators, where s0 is the initial site of a ribbon τ (see Equation

(B42) in [  65 ]), and t, h, g ∈ G.

Bt(s0)F h,g(τ) = F h,g(τ)Bth(s0). (2.59)

In fact, we just need the above identity to hold when both sides act on the ground state.

Take τ to be the ribbon shown in Figure  2.6 , which is a dual triangle and has locally

counterclockwise orientation. In Appendix  A.2 , we show in detail that Equation  2.59 fails

for τ and any other ribbon that starts with τ if we use the old definition of ribbon operators

on them. By recognizing τ with locally counterclockwise orientation and using the new
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definition (Equation  2.55 g), we can resolve the issue, and obtain the following commutation

relation,

Bt(s0)F h,g(τ) = F h,g(τ)Bht(s0), (2.60)

which is equivalent to Equation  2.59 when acting on the ground state since δht,e = δth,e.

x1

x2

x3

x4
s0

Figure 2.6. A counter-example of a ribbon for which Equation  2.59 fails in
the original Kitaev model.

2.3.4 Properties of ribbon operators

In this section, we establish a few properties of ribbon operators. Recall that the ribbon

operators F h,f (τ) only act non-trivially on the Hilbert space Hτ .

Proposition 2.3.1. Let τL and τR be a locally clockwise and a locally counterclockwise

ribbon, respectively. Then,

F h1,f1(τL) · F h2,f2(τL) = F h1h2,f2f1(τL), (2.61)

F h1,f1(τR) · F h2,f2(τR) = F h2h1,f1f2(τR). (2.62)

In another words, the operators F h,f (τ) define a representation of D(H)∗,op on Hτ if τ is

locally clockwise, and a representation of D(H)∗ if τ is locally counterclockwise.

Proof. In Appendix  A.3 , we show in details that the above two equations hold for elementary

ribbons. Then it can be proved inductively that they also hold for general ribbons using

the compatibility condition between multiplication and comultiplication in a Hopf algebra.
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Notice that D(H)∗,op and D(H)∗ share the same comultiplication. Below we only give the

proof for τR since that of the other case is similar.

Let τR be a locally counterclockwise ribbon. Assume Equation  2.62 holds for any ribbon

whose length is shorter than that of τR. Decompose τR as τR = τ1 t τ2 such that ∂1τ1 = ∂0τ2.

Then,

F h1⊗f1(τR) · F h2⊗f2(τR)

=
∑

(h1⊗f1)
F (h1⊗f1)′(τ1)F (h1⊗f1)′′(τ2) ·

∑
(h2⊗f2)

F (h2⊗f2)′(τ1)F (h2⊗f2)′′(τ2)

=
∑

(h1⊗f1)

∑
(h2⊗f2)

F (h1⊗f1)′(τ1)F (h2⊗f2)′(τ1) F (h1⊗f1)′′(τ2)F (h2⊗f2)′′(τ2)

=
∑

(h1⊗f1)

∑
(h2⊗f2)

F (h1⊗f1)′(h2⊗f2)′(τ1) F (h1⊗f1)′′(h2⊗f2)′′(τ2)

=
∑

(h2h1⊗f1f2)
F (h2h1⊗f1f2)′(τ1) F (h2h1⊗f1f2)′′(τ2)

= F h2h1,f1f2(τR).

In the above derivation, the first and the last equality are due to Equation  2.58 , the third

by induction, the fourth by the compatibility condition between multiplication and comul-

tiplication in D(H)∗, and the second by the commutativity between ribbon operators on τ1

and those on τ2.

Next, we examine the commutation relation between ribbon operators and local opera-

tors. Let |GS〉 ∈ H be the ground state 

5
 . Then at any site s, the local operators act on

|GS〉 as follows,

Aa(s)|GS〉 = |GS〉,

Bf (s)|GS〉 = f(1)|GS〉, a ∈ H, f ∈ H∗.

Let τ be a ribbon with initial site s0 = ∂0τ and terminal site s1 = ∂1τ . Assume the length

of τ , i.e., the number of triangles contained in τ , is greater than one. The following is a
5

 ↑ To the interest of the current paper, we can assume the lattice is defined on the sphere or the infinite
plane, and so there is a unique ground state.
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technical lemma concerning the commutation relation between ribbon operators on τ and

local operators on its ends.

Lemma 2.3.1. Let τL and τR be a locally clockwise and a locally counterclockwise ribbon,

respectively, as described above.

(1) At s0, we have

Aa(s0)F (h,f)(τL) =
∑
(a)

F {a′hS(a′′′),f [S(a′′)?]}(τL)Aa(4)(s0), (2.63a)

Aa(s0)F (h,f)(τR) =
∑
(a)

F {a′′hS(a(4)),f [S(a′′′)?]}(τR)Aa′(s0), (2.63b)

Bt(s0)F (h,f)(τL) =
∑
(h)

F (h′′,f)(τL)Bt[?S(h′)](s0), (2.63c)

Bt(s0)F (h,f)(τR) =
∑
(h)

F (h′′,f)(τR)Bt[S(h′)?](s0). (2.63d)

(2) At s1, we have

Aa(s1)F (h,f)(τL) =
∑
(a)

F [h,f(?a′′)](τL)Aa′(s1), (2.64a)

Aa(s1)F (h,f)(τR) =
∑
(a)

F [h,f(?a′)](τR)Aa′′(s1), (2.64b)

Bt(s1)F (h,f)(τL) =
∑

(i),(h),i
f(i′′)F (h′,gi)(τL)Bt[S(i′′′)h′′i′?](s1), (2.64c)

Bt(s1)F (h,f)(τR) =
∑

(i),(h),i
f(i′′)F (h′,gi)(τR)Bt[?S(i′′′)h′′i′](s1). (2.64d)

In the above, {i} is an orthogonal complete basis of H, and gi = 〈i, 〉 is the corre-

sponding functional in H∗.

Proof. For a detailed proof, see Appendix  A.4 . The idea is that we first prove the above

equations for ribbons with shortest possible length, and then extend the equality to longer

ribbons using the decomposition formula in Equation  2.58 . The shortest possible ribbons

for the equalities in Equation  2.63 are illustrated in Figure  2.7 , and those in Equation  2.64 

illustrated in Figure  2.8 .
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x1
x2

x3

x4

(a)
(b)s0

x1

x2

x3

x4

(c)
(d)

s0

Figure 2.7. Ribbons marked with (a)-(d) correspond the Equation  2.63 a-d.

x1
x2

x3

x4

(a)
(b)

s1

x1

x2

x3

x4

(c)
(d) s1

Figure 2.8. Ribbons marked with (a)-(d) correspond the Equation  2.64 a-d.

Using Lemma  2.3.1 , we can also deduce that ribbon operators commute with all terms

in the Hamiltonian except for those associated with the ends of the ribbon.

Proposition 2.3.2. Let τ be a ribbon and s be a site on τ such that s has no overlap with

∂iτ . Denote the terms associated to s in the Hamiltonian by A(s) = Ah0(s), B(s) = Bφ(s)

where h0 ∈ H is the Haar integral of H and φ ∈ H∗ is the Haar integral of H∗. Then,

A(s)F (h,f)(τ) = F (h,f)(τ)A(s), (2.65a)

B(s)F (h,f)(τ) = F (h,f)(τ)B(s). (2.65b)

Proof. See Appendix  A.5 for a proof.

The commutation relation between ribbon operators and local operators at the ends in

Lemma  2.3.1 may look complicated. However, if we restrict ribbon operators on the ground
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state, then those relations reduce to more compact formulas. Let Vτ be the Hilbert space of

ribbon operators on τ acting on the ground state,

Vτ = spanC{|h ⊗ f〉 ≡ F h⊗f (τ)|GS〉 : h ⊗ f ∈ D(H)∗}.

Then, Vτ is naturally identified with the space D(H)∗. Recall from Equations  2.38 and  2.39 ,

D(H), as a Hopf algebra, has two natural representations on D(H)∗ denoted by L and R,

where L is induced from the left multiplication of D(H) on itself and R is induced from the

right multiplication (precomposed by the antipode). Apparently, these two actions commute

with each other.

Proposition 2.3.3. Let τ be a ribbon of either local orientation with si = ∂iτ . Identify Vτ

with D(H)∗. Then the local operators Bt(s0)Aa(s0) define a representation of D(H) on Vτ

isomorphic to L, and Bt(s1)Aa(s1) define a representation isomorphic to R.

Proof. The statement can be proved by restricting the identities in Equations  2.63 and  2.64 

on the ground state. It is straightforward to see that, at s0, the two identities in Equations

 2.63a and  2.63b corresponding to the two cases of local orientations both reduce to,

Aa(s0) | h ⊗ f〉 =
∑
(a)

| a′hS(a′′′), f [S(a′′)?]〉, (2.66)

which agrees with Equation  2.38 , the action L on D(H)∗:

L(a) | (h ⊗ f)〉 =| (h ⊗ f)(S(a)?)〉 =
∑
(a)

| a′hS(a′′′) ⊗ f [S(a′′)?]〉. (2.67)

Similarly, at s1, for either local orientation we have

Aa(s1) | h ⊗ f〉 =| h, f(?a)〉, (2.68)

which agrees with Equation  2.39 , the action R on D(H)∗:

R(a) | h ⊗ f〉 =| (h ⊗ f)(?a)〉 =| h ⊗ f(?a)〉. (2.69)
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We leave the verification for the actions of Bf (s0) and Bf (s1) as an exercise.

To summarize, ribbon operators on a sufficiently long ribbon τ commute with all terms

in the Hamiltonian except those associated with the ends of τ . Hence, ribbon operators

create excitations only at the ends of a ribbon. When acting on the ground state, the space

of ribbon operators on τ is naturally identified with D(H)∗. The action of local operators on

∂iτ preserve D(H)∗. Thus, D(H)∗ can be thought of as the space of elementary excitations.

More specifically, the action on ∂0τ define a representation of D(H) on D(H)∗ coinciding

with L, and that on ∂1τ a representation of D(H) on D(H)∗ coinciding with R. These

two actions commute. By standard representation theory (see Equation  2.36 ), we have the

decomposition,

D(H)∗ '
⊕

µ∈IrrD(H)

µ ⊗ µ∗, (2.70)

where L acts on the first factor and R acts on the second factor. Therefore, the local operators

on the ends of τ can map a state in a sector µ∗ ⊗µ to any other state within the same sector,

but cannot permute states of different sectors. This implies that the types of elementary ex-

citations are labelled by irreducible representations of D(H). Using Fourier transformation,

it is not hard to find a specific basis {〈νab | : ν ∈ IrrD(H), a, b = 1, · · · , dim(ν)} of D(H)∗ so

that L acts only on the a index and R acts only on the b index (See Appendix  A.6 ). That

is, for m ∈ D(H),

L(m)(〈νab |) =
∑

k

Dν(m)ka〈νkb |, (2.71)

R(m)(〈νab |) =
∑

k

Dν∗(m)kb〈νak | . (2.72)

2.4 Conclusion and outlook

In this paper, we provided a concrete definition of ribbon operators in the generalized

Kitaev quantum double model, which is constructed over a semisimple Hopf algebra. We

introduced the notion of local orientation on ribbons which we must distinguish in defin-

ing the operators on them. It was shown that even in the original Kitaev model based on

non-Abelian groups, the issue of local orientation has to be addressed. Otherwise, certain
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properties of ribbon operators that are expected to hold would fail. We derived some prop-

erties of ribbon operators in the generalized model. For instance, they create quasi-particle

excitations only at the end of the ribbon, and the types of the quasi-particles correspond

to irreducible representations of the Drinfeld double of the input Hopf algebra. While these

properties are a folklore, their derivations are technically complicated.

There are several future directions to proceed. Firstly, since this Hopf-algebra-model can

be further replaced by a weak Hopf algebra (or quantum groupoid) [  62 ], it will be interesting

to define and study ribbon operators in that case. Secondly, the generalized Kitaev model

may find applications in topological quantum computing. For example, which Hopf algebras

support universal quantum computing? Lastly, in [  68 ], the authors gave a Hamiltonian

formulation for gapped boundaries in the original Kitaev model. It will be interesting to

generalize the formulation to the case of Hopf algebras.
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3. GENERALIZED KITAEV SPIN LIQUID MODEL AND

EMERGENT TWIST DEFECT

This chapter contains work from the article entitled “Generalized Kitaev spin liquid model
and emergent twist defect” written by the author, Penghua Chen, and Shawn X. Cui pub-
lished on Annals of Physics [  2 ].

3.1 Introduction

Since Kitaev proposed the Kitaev Quantum Double model [  10 ], it has garnered consider-

able attention due to its typical anyon behavior and the paradigm it provides for topological

quantum computation. The model demonstrates how one can circumvent local errors by

encoding information into anyon types and executing gates through anyon braiding, whose

information is completely described by Unitary Modular Tensor Categories (UMTC). It has

been proven that certain non-Abelian cases, such as the Fibonacci Anyon, can support uni-

versal quantum computation.

Following this development, numerous lattice models have been proposed with the ob-

jective of identifying different types of anyons. Two significant classes of these include the

Kitaev Quantum Double model [  10 ] and the Levin-Wen model [  69 ]. These models actualize

anyon models from varying perspectives, which are described by the Drinfeld center of a

fusion category.

The realization of the actual topological phase is a complex and pivotal task. Renowned

models, such as the Kitaev Quantum Double model and the Levin-Wen model, necessitate

multi-body interactions, making them challenging to implement in a real-world laboratory

setting. While some comparatively achievable cases, such as the toric code, are not suitable

for universal computation because they only support Abelian anyons. This reality has led

to an increased interest in the twist defect, as introduced by [  34 ]. This defect exemplifies

a non-Abelian Ising anyon, which stems from the lattice dislocation of the Abelian anyon

case, the toric code model. Recent experimental observations of the Ising anyon statistics,

as reported by [ 70 ], attest to this. It should be noted that the defect is dependent on the

disruption of the lattice’s local two-colorability.
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Another intriguing model is the Kitaev spin liquid Model [  4 ], which supports Abelian

anyons in the gapped phase region, as well as non-Abelian anyons upon the introduction of a

magnetic field to the gapless phase. This model is simple yet fruitful. However, the definition

of the model relies heavily on the geometry of the honeycomb lattice, which deviates from

the idea of a topological phase and is the main question to be solved in this paper. Moreover,

it has also been pointed out that a spin liquid model on a honeycomb lattice with lattice

dislocation will generate the twist defect as in [ 71 ]. The generalization to Zn rotor model

has been shown in [  72 ]. This model is potentially easily realizable in a real laboratory due

to the two-body nearest interaction.

Considerable theoretical progress has been made in the generalization of this model.

Examples include those on a translationally invariant two-dimensional lattice with higher-

coordination vertices [  28 ][ 29 ][ 30 ], on a two-dimensional amorphous lattice [ 31 ], a three-

dimensional diamond lattice [  32 ], and works on trivalent 3D lattices [  33 ]. It is clear that the

overall phase diagram is strongly influenced by the geometric specifics of the lattice, thus

also deviating our traditional understanding of “topological” phases.

In this paper, we demonstrate that the entire theory can be formulated on a generic

planar lattice. The main motivation relies on the toric code limit of the original honeycomb

spin liquid model as mentioned before, which is briefly reviewed in Section  3.2 . We sketch

the main idea here, and details are in the following sections.

The Hamiltonian of the honeycomb spin liquid system is a summation of weighted check

operators, which are two-body nearest Pauli operators. The Hamiltonian is frustrated due

to the non-commutation of the check operators. We say a check operator in the Hamiltonian

is dominant if the coefficient of the operator is much larger than others. Kitaev selected

what he refers to as “z-link” check operators to take dominance in the Hamiltonian. As a

result, the vicinity of the ground state in the spectrum can be accurately described by a toric

code model. The exact choice of “z-link” check operators is not important. The key is that

“z-link” check operators compose a maximum set of commuting operators, which is denoted

as the stabilizer center Sc in this paper. Sc satisfies that any check operator outside this

set should anticommute with exactly two elements in Sc. We find that if one can find a
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proper Sc on an arbitrary planar lattice, a toric code model always appears in the vicinity

of the ground state, provided all elements in the Sc are dominant.

Moreover, we get a toric code with defects if we slightly break the requirement of Sc.

Further, we propose that linearly interpolating Hamiltonians, which statically have different

dominant Scs, could be a natural way to create, move, and fuse defects in a physical system.

This approach circumvents the need for introducing multi-body interaction or longer-range

interactions. This proposal might inspire real material realization since we only need to

establish and adjust the strength of two-body interactions, as illustrated in Section  3.4 .

Moreover, a circuit description is plausible since these operations are facilitated by time

evolution operators, which are naturally unitary.

This paper is organized as follows:

In Section  3.2 , we provide a concise review of the original honeycomb model and reintro-

duce necessary notations, such as the shrunken lattice.

Section  3.3 introduces our method of generalization, to describe the Hamiltonian over an

arbitrary lattice. Initially, we rewrite the toric code on a lattice where qubits are positioned

on vertices rather than edges, as discussed in Section  3.3.1 . This rewriting is inspiring, as

the recovery of the toric code typically results in a lattice with qubits placed on vertices.

Subsequently, in Sections  3.3.2 and  3.3.3 , we demonstrate how to define check operators

on arbitrary lattices where vertices have degrees greater than 3, and given an appropriate

choice of a Stabilizer Center (Sc), the toric code can be recovered if the shrunken lattice is

2-colorable. It should be noted that a local disruption in the two-colorability of the shrunken

lattice leads to the emergence of a twist defect.

Section  3.4 illustrates the process of creation, movement, and fusion of defects through

time evolution operators.

Next, in Section  3.5 , we demonstrate that the entire model can be treated as a zero-logic-

qubit subsystem code in the context of an error-correcting code.

Finally, Section  3.6 concludes the paper and discusses potential future extensions.
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3.2 Kitaev Honeycomb Model

Let us briefly revisit the Kitaev Honeycomb Model and establish some notations. The

lattice, depicted in Figure  3.1a and denoted by Γ = (V, E, P ), consists of vertices (V ), edges

(E), and plaquettes (P ).

The notation ∂1e and ∂2e are used to refer to the two vertices at the end of edge e ∈ E,

and ∂e = {∂1e, ∂2e} indicates the set. N(A) is the count of the set A. A frequently used

symbol, dv, denotes the count of set e | e ∈ E, v ∈ ∂e, i.e., the degree of the vertex v.

Bo(p) ⊆ E, for p ∈ P , represents the edges that border the plaquette p.

Each vertex houses a qubit. The total Hilbert Space is defined as:

H :=
⊗
v∈V

Hv (3.1)

Each edge on the lattice is associated with a symbol x, y, z. For the honeycomb lattice, we

label all the edges as illustrated in Figure  3.1a , consistent with the original paper [ 4 ]. These

edges are referred to as “x-edges”, “y-edges”, and “z-edges”. The edge associated with x(y, z)

involves a two-body Pauli operator X ⊗X (Y ⊗Y , Z ⊗Z) acting on the qubits at the ends of

the edge. The operators linked to edges are defined as check operators, denoted by Pe. We

say that two check operators are unconnected if the edges associated with these operators

are not connected. In this paper, we use X, Y, Z to represent Pauli Operators σx, σy, σz:

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 1


The Hamiltonian is the summation of weighted check operators:

H = −Jx

∑
x−edges

X ⊗ X − Jy

∑
y−edges

Y ⊗ Y − Jz

∑
Z−edges

Z ⊗ Z (3.2)

As depicted in Figure  3.1b , the phase diagram of the Honeycomb model is well-defined.

In region A (B), it represents a gapped (gapless) phase. Kitaev explicitly demonstrated,

using perturbation theory, that the gapped phase is the toric code phase, where one of the
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(a) (b) (c)

Figure 3.1. (a) The original Honeycomb Lattice. This lattice serves as the
foundational structure for discussing the Kitaev model. (b) Phase diagram
depicting the gapped phases. When one of Jx, Jy, or Jz is dominant, the
system is mathematically equivalent to a toric code model. This equivalence
is pivotal for understanding the model’s topological properties. (c) Depiction
of the shrunken lattice when Jz is dominant, illustrated by the reduction of
two physical qubits to one effective qubit in the ground state of the “z-edge”
check operators. This reduction highlights the effective simplification in the
systems complexity under dominant conditions.
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parameters Jx, Jy, Jz is much larger than the others. Then, the two qubits connected by

z-edges will remain in the ground state of the check operator Z ⊗ Z. We say these two

qubits are effectively “shrunk” to a single qubit. Subsequently, the lattice is also shrunk by

replacing each z-edge with a single vertex, as shown in Figure  3.1c . This process leads to

what is referred to as the “shrunken” lattice.

In our notations, we denote these check operators associated with z-edges as the Stabilizer

center Sc. We obtain a shrunken lattice when this Sc is dominant. The ground state under

this limit is twofold: it is simultaneously the ground state of Sc and the ground state of all

plaquette terms Wp, where Wp is the product of check operators associated with edges in

Bo(p).

Generally, on a trivalent lattice, a Hamiltonian of the following form can be considered:

H = −
∑
e∈E

JePe (3.3)

The definition of check operators can vary as long as the following commutative relation

remains:

The commutation relations between check operators are defined as follows:

[Pe, Pe′ ] = 0 if ∂e ∩ ∂e′ = ∅, (3.4)

{Pe, Pe′} = 0 if ∂e ∩ ∂e′ 6= ∅, (3.5)

for any e 6= e′. This means that check operators should anticommute if they intersect at

exactly one vertex and commute under other scenarios. We require all check operators

in the Stabilizer center Sc to be unconnected. Allowing Sc to be dominant, we obtain a

shrunken lattice by replacing the edges of Sc with a single vertex. We will demonstrate that

this configuration results in a specific surface code. Indeed, the shrunken lattice can vary

with different Sc settings. For example, in this honeycomb lattice, the shrunken lattice at

dominant x-edges and z-edges forms square lattices. However, in the work by Hastings and

Haah [  73 ], their shrunken lattice is a kagome lattice when the qubits are considered to be

placed on vertices. The concept of a shrunken lattice at a given Sc will be frequently utilized.
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3.3 Generalized Method

3.3.1 Toric Code on a lattice where qubits are placed on vertices

The toric code model is defined on an arbitrary planar lattice Γ = (V, E, P ), with one

qubit placed on each edge. The Hamiltonian is:

H = −
∑

v

Av −
∑

p

Bp (3.6)

Here, Av = ⊗
e|v∈∂e Xe and similarly, Bp = ⊗

e|e∈Bo(p) Ze. The symbols Xe and Ze indicate

that the Pauli operator X and Z acts on the qubit placed on the edge e. For our purposes,

we need to reshape the lattice into a more convenient form as shown in figure  3.2 . The

process is as follows. First, we attach a new vertex on each edge e, denoted by red dots. We

add one edge to connect red dots on e1 and e2 if they satisfy:

e1 6= e2 (3.7)

N(∂e1 ∩ ∂e2) = 1 (3.8)

∃p ∈ P, e1, e2 ⊆ Bo(p) (3.9)

We will add two edges to connect e1 and e2 if N(∂e1 ∩ ∂e2) = 2 in the above requirement.

This results in a new lattice Γ′ = (V ′, E ′, P ′), where V ′ is the set of red dots and V ′ = E as

sets. E ′ is the set of newly added edges connecting red dots and P ′ = V ∪ P as sets.

Notably, the degree of the new vertex is automatically 4. The new plaquettes are two-

colored by vertices and plaquettes of Γ. Consequently, the toric code becomes a lattice model

on Γ′, with one qubit placed on each vertex. In the new lattice as in figure  3.2c , the plaquette

pg(pr) with a green(red) circle has a plaquette term that is ⊗X(Z) on each qubit on the

boundary of pg(pr), corresponding to previous Av(Bp) operators.

3.3.2 Generalized model on a lattice with all vertices having even degree

To generalize the model, one has to define check operators on arbitrary planar lattices Γ =

(V, E, P ), where vertices can have any number as their degrees dv. The original Honeycomb
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(a) (b) (c)

Figure 3.2. (a) Figure 1: Original lattice model with qubits placed on edges.
Black dots represent vertices E.(b) Figure 2: Transformation process of the
lattice. Red dots label the center of edges. Two red dots are connected if they
belong to the same plaquette and are connected. New plaquettes are colored
in red and grey circles.(c) Figure 3: The transformed lattice with qubits on
vertices. The original lattice is removed. Av and Bp operators act on the two
types of plaquettes, labeled by red and grey circles respectively.
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model provides a good definition for vertices that have degrees dv less than or equal to 3;

thus, we must address vertices with degrees greater than 3. We begin with a lattice, where

each vertex v ∈ V has an even degree dv, which proves to be a simple and inspiring case.

The check operator Pe should take the form of a tensor product of Pauli operators acting on

the ends of edge e, namely Pe = P∂1e ⊗ P∂2e. To maintain the property that check operators

anticommute if they are connected, additional operators are required that anticommute with

each other when the vertex has a higher degree. We find that placing dv/2 − 1 qubits on

each vertex facilitates this. For k qubits, there are 2k + 1 mutually anti-commuting Pauli

operators as follows:

P1 = 1⊗ 1⊗ 1⊗ · · · X

P2 = 1⊗ 1⊗ 1⊗ · · · Y
... ... . . . ...

P2t+1 = 1 · · · ⊗ 1︸ ︷︷ ︸
k−t−1

⊗ X⊗ Z⊗ · · · Z

P2t+2 = 1 · · · ⊗ 1︸ ︷︷ ︸
k−t−1

⊗ Y ⊗ Z⊗ · · · Z

... ... . . . ...

P2k+1 = Z⊗ Z⊗ Z⊗ · · · Z

(3.10)

Importantly, because we ultimately aim to reach the toric code, the signs of each term

do not significantly matter, as different sign configurations are related by unitary transforma-

tions. This allows us to consider each operator within the Pauli group P = {G/{+1, −1, +i, −i}},

where G is designated to represent the set of all possible tensor products of Pauli operators.

Within the Pauli group, the phase gate Pgate interchanges X and Y , while leaving Z

unaffected. This can swap P2t+1 with P2t+2 for any 0 ≤ t < k. Subsequently, the Hadamard

gate Hgate flips X and Z, which in turn flips P2k+1 with P2k−1. The gate Sgate = Pgate ◦Hgate ◦

Pgate flips Y and Z. CNOT gate is a unitary operator. Elementary actions by conjugating

CNOT gate on two-qubits Pauli operators are given by:

CNOT(IX) = IX, CNOT(XI) = XX,

CNOT(IZ) = ZZ, CNOT(ZI) = ZI.
(3.11)
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A sequence of conjugations of operators above is then sufficient to flip P1 with P4, noting

that it is sufficient to consider only the last two qubits. Here is how to flip X ⊗Z with 1⊗Y ,

without changing the other operators:

X ⊗ Z
Hgate⊗Id−−−−−→ Z ⊗ Z

CNOT−−−→ 1 ⊗ Z
Sgate⊗Sgate−−−−−−−→ 1 ⊗ Y

Pgate⊗1−−−−→ 1 ⊗ Y

1 ⊗ Y
Hgate⊗Id−−−−−→ 1 ⊗ Y

CNOT−−−→ Z ⊗ Y
Sgate⊗Sgate−−−−−−−→ Y ⊗ Z

Pgate⊗1−−−−→ X ⊗ Z

(a)

P5

P2
P1

P4 P3

P5
P2

P1
P4

P3

(b)

Figure 3.3. (a) Figure 1: A local part of the entire lattice diagram. (b) Figure
2: A simplified illustration of the assignment of Pauli operator P1 through P4
from each vertex v to the surrounding Pe, while P5 is assigned to the Pv. Each
Pe is the tensor product of operators from the two end vertices of e. For
example, the operator on the orange edge is (1 ⊗ X) ⊗ (Y ⊗ Z), or simply
P3 ⊗ P2.

This approach is sufficient to exchange any Pi with Pj by stacking the aforementioned

operations, asserting that any distribution of these operators is equivalent. Consider a lattice

where all vertices have a degree of four. The check operator on an edge, Pe, can be defined as

the tensor product of Pauli operators supported on the vertices at the end of the edge e. It

is important to note that the actual assignment of a Pauli operator for one Pe is not crucial,

as long as Pe operators anticommute with each other when they are connected. Figure  3.3 

provides an example of the assignment of Pauli operators, and any other assignment is

equivalent up to a unitary transformation. An operator Pv represents a new type of check

operator that is associated with only one vertex v, which, for our convenience, is chosen as

Pv = P5. The Hamiltonian is as follows:
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H = −
∑

v

JvPv −
∑

e

JePe (3.12)

Now let Jv dominate. Note that these operators commute with each other, hence they share

common eigenspaces. Let Je � Jv, with Jv = 1, and examine the corresponding perturbation

theory where H0 = ∑
v Pv and H ′ = λ

∑
e JePe, the perturbation Hamiltonian. Here, λ is a

small factor to denote the perturbation order. Denote | GS〉 as the ground state of H0. As

in Kitaev’s paper [ 4 ], the effective Hamiltonian around the ground state is given by:

Heff = T (H ′ + H ′G′
0H

′ + H ′G′
0H

′G′
0H

′ + . . .) T (3.13)

where T =| GS〉〈GS | is the projector onto the ground state of H0, and G′
0 =

(
1

E0−H0

)′
is

the Green’s function, where the prime notation implies that G′
0 vanishes on the ground state

and acts normally on the excited states.

Appendix  B.1 provides an explicit treatment of the perturbation method; here, we derive

the effective Hamiltonian:

Heff = (−1)γp
∑

p

αpλlpWp + constant (3.14)

Wp is the plaquette operator, which is the product of check operators bordering the plaquette.

lp indicates the perturbation order and (−1)γp is used to fullfill the gap between the perturbed

effective Hamiltonian with Wp. They are explained in the appendix. αp is an interesting

path-dependent factor arises from the perturbation and we leave an interesting discussion of

the zero point property in the appendix  B.1 .

When Pv is dominant, the two qubits placed on the vertex effectively become one qubit.

The corresponding shrunken lattice, illustrated in Figure  3.4a , has dv = 4, and the action of

plaquette terms Wp around each vertex exerts the same local action on the vertex as in the

toric code case, as shown in Figure  3.3.1 .

Vertices with dv = 2k can be treated similarly, where k > 2 and k is an integer. Generally,

for a vertex with an even dv, we place k = dv/2 − 1 qubits on the vertex, and designate
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⊗
k Z, or P2k+1, to be Pv and distribute the remaining dv Pauli operators to the surrounding

edges. The check operator is defined similarly to the case where dv = 4. Then, the phase

we are investigating is when all Pvs are dominant. We illustrate the example of a vertex

with dv = 6 in Diagram  3.4b . The computation is grounded on the mapping table to find

the effective Hamiltonian, as in Table  3.1 . Essentially, we provide a specific distribution

of operators around the vertex and calculate the effective action of the plaquette terms on

this vertex. We observe that the effective two qubits split into two connected vertices with

dv = 4. It is clear that both vertices maintain consistent and identical local properties as

of the toric code. The generic mapping table for a vertex with degree dv ≥ 4 is shown in

Appendix  B.2 . When we examine the ground state of dominant Pvs, each vertex with degree

dv = 2k will split into k − 1 vertices with degree 4.

Table 3.1. Mapping Table for a vertex with dv = 6

Operator Effective operator
X ⊗ X ⊗ 1 X ⊗ 1
1 ⊗ X ⊗ X 1 ⊗ X
1 ⊗ 1 ⊗ Z 1 ⊗ Z
1 ⊗ Z ⊗ 1 Z ⊗ Z
Z ⊗ 1 ⊗ 1 Z ⊗ 1

After splitting all vertices with dv = 2k, we obtain the shrunken lattice. We conclude

that a Z2 phase is recovered in the generalized Kitaev model with even degree vertices when

the shrunken lattice is two-colorable.

3.3.3 Generalized model on arbitrary planar lattice

The remaining question concerns how to address vertices with an odd degree dv ≥ 5. It

is logical to place (dv − 1)/2 qubits on each vertex and distribute dv Clifford operators to
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Figure 3.4. (a) Figure 1: This illustration demonstrates how the effective
plaquette terms are obtained on the ground state of the Pes. Each operator
in the figure represents the action of either a check operator or a plaquette
operator on the qubits located at the vertices. The green operator represents
one of the anticommuting Clifford operators associated with edges. The black
operator illustrates the plaquette term on a given vertex, and the red operator
presents the effective plaquette term on the same vertex. (b) Figure 2: This
depiction also shows how a vertex with degree dv = 6 is transformed into two
connected vertices, each with a degree of dv = 4. It is essential to note that
the effective action is consistent with the toric code case.
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the surrounding edges so that all check operators are defined. The general Hamiltonian on

a lattice Γ = (V, E, P ) is given by:

H = −
∑

{v|dv=2k,k∈Z}
JvPv −

∑
e∈E

JePe, (3.15)

Pe = P∂1e ⊗ P∂2e. (3.16)

We designate the stabilizer center Sc as H0, which includes all {Pv | v ∈ V } and a subset

Se of {Pe | e ∈ E} such that any two Pe ∈ Se commute with each other and with {Pv | v ∈ V }.

In other words, Se consists of check operators on the edges that connect vertices with an odd

dv. If we further require that the shrunken lattice at Sc is a two-colorable degree-4 lattice,

or equivalently, that any two vertices with an odd degree are shrunk, then the effective

Hamiltonian resembles the toric code model when the coefficients of Sc are dominant.

The proof involves transforming the lattice into one where all vertices have even degrees.

Notably, if we make the operators on the edge connecting two vertices with odd degrees d1

and d2 dominant, it is algebraically equivalent to a single vertex with degree d1 + d2 − 2

and a dominant Pv. An example is illustrated in Figure  3.5 , and the general case follows

similarly. However, a vertex of odd degree cannot be made equivalent to the combination of

two vertices with lower degree, thus making the generalization nontrivial.

We now conclude that on a general lattice Γ, if there exists a set Sc such that all vertices

are shrunk and the resulting shrunk lattice is 2-colorable, the generalized Kitaev Spin liquid

model resides in the Z2 phase.

56



1ZX

1ZY

1X1
1Y 1

Y 11

X11 XZX
11Z

1Y Y

1Z1Y Y 1

Z11

ZX

ZY

X1
Y 1

11Z

1Y Y

1Z1Y

X

Z ZZZ11

XZX

Y Y 1

Figure 3.5. This illustration demonstrates that a vertex of degree 3 combined
with a vertex of degree 5 is equivalent to a single vertex of degree 6. In the left
above, a Pe = Z ⊗ Z ⊗ Z over the red edge is put into the Sc, and in the right
above, a Pv = Z ⊗ Z ⊗ Z is put into the Sc. They have the same action of
surrounding plaquette, hence these two cases are equivalent for our purpose.

57



3.4 Emergent Twist Defect in the gapped phase

In all previous instances, we selected Sc such that vertices with odd degrees were paired

with each other, ensuring that any check operator would violate two terms in Sc. However,

what happens if there is an odd-degree vertex, such as a trivalent vertex, that has not been

paired with another odd-degree vertex? Revisiting the Honeycomb lattice, as depicted in

Figure  3.7b , the effective Hamiltonian resembles a toric code model with two defects, similar

to the findings in [  34 ]. Notably, in our case, there is one additional plaquette as well as one

more qubit within the defect line. As studied in [  74 ], this type of lattice dislocation defect

could capture unpaired Majorana modes in the original Honeycomb model.

Remarkably, keeping the nearest interaction and altering the strength of Sc is simpler

than introducing more interactions between qubits. We will demonstrate in the following

that a linearly interpolating Hamiltonian with different Sc choices can manipulate the defects.

(a) (b)

Figure 3.6. (a) Shows a honeycomb lattice where all vertices have been
paired and shrunk by dominating the yellow edges. (b) The resulting effective
or shrunk lattice where a toric code Hamiltonian acts.

(a)
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0

0

0

0

0

0

0

1

1

1

1

1

1
1

(b)

Figure 3.7. (a) Displays a situation where two trivalent vertices (labelled
by red circles) are not shrunk with another vertex. (b) shows the underlined
phase where all check operators on yellow edges are dominant. This represents
the toric code with a pair of defects.
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(a) toric code with no defect

(b) toric code with a pair of defects labelled by red circles

(c) Illustrates The right defect being moved one step to the right.

(d) Toric code with two pairs of defects

(e) Illustrates the process of fusing the two middle defects, which merges the separate pairs into a
single pair.

Figure 3.8. The figures presented above depict the static Hamiltonian on a
portion of the lattice. It is required that all check operators on yellow edges be
dominant. Different choices of dominant check operators will lead to various
cases of the effective toric code Hamiltonian, with or without defects.

The defect remains at the trivalent vertex, as a degree of three disrupts the local 2-

colorability, as indicated in Figure  3.7a . Therefore, moving the defect involves relocating the

trivalent vertex.

Consider Figure  3.8 , which depicts a section of a larger lattice, similar to those shown

in Figures  3.6 and  3.7 . All check operators on yellow edges are designated as dominant.

The configuration outside this localized area remains unchanged. This setup presents five

potential configurations, where the effective Hamiltonian can represent the toric code, with

or without defects. To transition between these static states, we introduce time evolution,

facilitating the creation, movement, and fusion of defects.
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Focusing on the movement of a defect as a detailed example (the other processes are

analogous), we examine a more specific local structure in Figure  3.9 , which illustrates the

transformation from Figure  3.8b to Figure  3.8c . We use H(0) and H(T ) to denote their

respective static Hamiltonians. The linear interpolation between them is introduced as

follows:

H(t) = H(0)
(

1 − t

T

)
+ H(T ) t

T
(3.17)

H(0) and H(T ) represents the Hamiltonian with dominant coefficients of Sc(0) and Sc(T )

and all perturbation terms were shut down to avoid subtlety. H(t) commutes with all the

plaquette terms so the action of all plaquette terms remains unchanged. Therefore, the

action of the time evolution operator on the stabilizer centerSc is crucial. We expect the

state will transition into the spectrum of new stabilizer centers.

X X X X

Y

Y

Y

Y

Y

Y

Z Z Z Z

(a) (b)

Figure 3.9. The figure on the left depicts a detailed local part of a honeycomb
lattice to elucidate the movement of a defect, with the check operator explicitly
labeled. On the right, the numerical results are displayed, illustrating that
the real and imaginary differences between β1 and β2 vanish at T = 1000.
Furthermore, this pattern persists for all T > 1000.

Note that most terms remain unchanged, contributing to a constant phase, as the state

is always their eigenstate with an eigenvalue of +1. The only non-trivial terms are:

H = − t

T
Z ⊗ Z ⊗ 1 + −(1 − t

T
)1 ⊗ X ⊗ X (3.18)
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The time evolution operator(TEO):

O(t) = T
∫

eiHdt (3.19)

This is a formal notation; calculations need to be done by explicitly applying the Time Order

operator T . But we realize that after expanding O(t), the general form is:

O(t) = a(t) + b(t)Z ⊗ Z ⊗ 1 + c(t)1 ⊗ X ⊗ X + d(t)Z ⊗ Y ⊗ X (3.20)

Where a, b, c, and d are complex, time-dependent functions. Since the operator O(t) acts on

the ground state of 1⊗X ⊗X, a simplified representation is allowed due to the trivial action

of 1 ⊗ X ⊗ X:

O(t) = β1 + β2Z ⊗ Z ⊗ 1 (3.21)

Utilizing the differential equation

dO(t)
dt

= HO(t) (3.22)

we numerically solve for O(t), finding that at time T , O(T ) = β(1 + Z ⊗ Z ⊗ 1). Here, β is a

complex number whose significance is determined by the value of T . Assuming the ground

state initiates as

| GS〉t=0 = Πp∈P
Wp + 1

2
⊗

v′∈V ′
| 0〉v′ (3.23)

Remember V ′ is the set of vertices on the shrunken lattice. Since the plaquette operators

commute with the time evolution operator, the ground state transitions to:

| GS〉t=T = Πp∈P
Wp + 1

2

O(T )
⊗

v∈V ′
| 0〉

 (3.24)

This is equivalent to the ground state of H(T )! Thus we claim we are able to move the

defect.

It is instructive to concentrate on a single chain as depicted in Figure  3.10 . In this

illustration, red edges correspond to the check operator X ⊗ X, and blue edges to Z ⊗ Z.
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1 2 3 4 5 6 7 8 9

Figure 3.10. The image displays a local section of the lattice, where alter-
nating red and blue edges represent the X ⊗ X and Z ⊗ Z checks respectively.
Each edge is labeled by a unique number, with the check operator of the cor-
responding edge identified accordingly. The red circles indicate the positions
intended for defect placement.
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These operators are denoted by Opi, where i signifies the numerical assignment to the edges.

Initially, all blue checks are designated as part of the Stabilizer center.

Within this framework, we explore several critical processes. The initial process entails

the creation of defects via the application of the Hamiltonian:

H(t) = −(Op1 + Op3)
(

1 − t

T

)
− (Op2)

t

T
(3.25)

Terms that commute with H(t) are omitted. A numerical solution reveals that the time

evolution operator is expressed as:

Ocreation(T ) = β(T )(1 + Op2) (3.26)

This implies that the state will be projected onto the ground state of Op2, as anticipated,

leading to the creation of a pair of defects. This transformation is represented in the transi-

tion from Figure  3.8a to Figure  3.8b .

In the second scenario, the movement of one of the defects is achieved through the

following process:

H(t) = −(Op2 + Op5)
(

1 − t

T

)
− (Op2 + Op4)

t

T
(3.27)

As explicitly demonstrated above, this time evolution is as expected to move defects.

The final process to consider is the fusion of defects. The initial case of fusion involves

creating a pair of defects and subsequently fusing them back together, essentially reversing

the creation process:

H(t) = −Op2

(
1 − t

T

)
− (Op1 + Op3)

t

T
(3.28)

The numerical solution for the time evolution operator is given by:

O(T ) = β3(T )(1 + Op1)(1 + Op3)

+ β4(T ) [(1 − Op1)(1 + Op3) + (1 + Op1)(1 − Op3)] (3.29)
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In this scenario, only (1 + Op1)(1 + Op3) has non-zero action by examining energy levels.

This indicates that upon fusing the pair created from the vacuum, we algebraically regain

the vacuum state as expected. A more intriguing case of fusion involves creating two pairs of

defects from the vacuum, as depicted in Figure  3.8d , and then fusing the two central defects.

Denote the state before fusion as | GS4〉, derived from creating four defects from | GS〉, as

seen in Equation  3.23 . The process then transitions these two pairs into a single pair:

H(t) = −Op5(1 − t

T
) − (Op4 + Op6)

t

T
(3.30)

The TEO is similar as  3.29 :

O(T ) = β5(T )(1 + Op4)(1 + Op6) + β6(T )[(1 − Op4)(1 + Op6) + (1 + Op4)(1 − Op6)] (3.31)

To check the fusion rule of the defects. We should check the normalization of the projectors.

We will see 〈GS4 | (1 ± Op4)(1 ± Op6) | GS4〉 is consistently identical. To understand this,

notice that:

〈GS4 | Op4 | GS4〉 = 〈GS4 | Op6 | GS4〉 = 0 (3.32)

This is because Op4(Op6) | GS4〉 has different energy from | GS4〉, as 1+Op5
2 | GS4〉 =| GS4〉

and Op4
1+Op5

2 | GS4〉 = 1−Op5
2 Op4 | GS4〉. The intricate part is:

〈GS4 | Op4 ⊗ Op6 | GS4〉 =
 ⊗

v′∈V ′
〈0 |v′

Πp∈P
Wp + 1

2 Op4 ⊗ Op6

 ⊗
v′′∈V ′

| 0〉v′′

 (3.33)

Remember V ′ here represents the set of vertices of the shrunken lattice. Notice:

 ⊗
v′∈V ′

〈0 |v′

Πp∈P ′WpOp4 ⊗ Op6

 ⊗
v′′∈V ′

| 0〉v′′

 = 0 (3.34)

Because, for any P ′ ⊂ P , the product of Wps always acts on a trivial loop of the lattice,

which can not match the action of the Op4 ⊗ Op6 on an open cut. And Op4 ⊗ Op6 itself can

not act trivially on ⊗v∈V ′ | 0〉v.
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Naturally, (1+Op4)(1+Op6) yields the vacuum, while (1−Op4)(1+Op6)+(1+Op4)(1−

Op6) gives rise to a free fermion. If fusion rule obeys the rule of the Ising Anyon, their

coefficients should satisfy:

β5(T ) =
√

2β6(T ) (3.35)

Numerical solutions suggest that | β5(T ) |=
√

2 | β6(T ) |, with a surprisingly introduced

phase. However, we can account for this by moving the phase into the definition of the state

or choose the T carefully to let the phase vanish. As highlighted in [  4 ], the free fermion

excitation exhibits the same algebra as the composite quasi-particle of electric and magnetic

charge ε of the toric code, even though they differ in energy. Kitaev proposed that the free

fermion would decay to ε when exposed to a certain thermal bath. Consequently, we can

deduce that the defects explicitly comply with the nontrivial fusion rule of the Ising Anyon

as demonstrated in [ 34 ]:

σ × σ = 1 + ε (3.36)

σ represents the twist defect. ε represents the fermion. The last thing we have to care is

that although the action of plaquette terms are fixed during time evolution, the effective

Hamiltonian may flip its sign so it may have excitations which violates plaquette terms.

To see this, rewrite the overall Hamiltonian in a simplified manner:

H = −Sc − cpWp (3.37)

cp absorbs all coefficients of the plaquette operators and Sc are dominant. From explicit

numerical evaluation in appendix(  B.1.1 ), the sign of two plaquette operator flips after cre-

ating or fusing a pair of defects. So two extra excitations appear or annihilate but moving

defects won’t create any excitation as shown in diagram  3.11 . The yellow plaquette is the

one that is excited while white plaquette stays at the ground state of the corresponding

Wp. The overall picture is: create two pairs of defects and four plaquettes carry plaquette

excitations. Then the central two defects fused with two plaquette excitation annihilates,

leaving a superposition of vacuum and free fermion excitation, which agrees with the picture

that the defects capture the Majorana fermion and behaves like Ising anyon.
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Figure 3.11. Demonstration of the excited plaquettes. Yellow plaquettes
are the excited ones while white plaquettes stays at the ground state of the
corresponding plaquette operators. The first figure is a part of regular surface
code case and the state stays at the ground state. When two pairs of defects
are created, two pairs of plaquettes, which have the trivalent vertex, will be
excited. Moving defects will move the excited plaquettes accordingly with no
more excitation created. After fusing the central two defects, the correspond-
ing excitation annihilates, leaving two remaining defects at ends.

3.5 Subsystem Code aspects

In recent work by [  75 ], the Kitaev spin liquid code on trivalent and 3-colorable lattices

has been proved to be a zero-logical-qubit subsystem code. Here, we generalize this to our

case. We describe the lattice using nv for the number of vertices, ne for the number of edges,

and np for the number of plaquettes. We focus on orientable lattices, which could be easily

extended to non-orientable cases. Initially, we prove this is true when all the vertices of the

lattice have odd degrees. The gauge group is generated by Pe | e ∈ E. The number of gauge

group generators is ne − 1 due to the Πe∈EPe = 1. The generators of the stabilizer group S

are generated by {Wp | p ∈ P} ∪ {Wl}, where Wl denotes the set of operators formed by the
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product of check operators along non-trivial loops of the lattice. The number of generators of

S is given by np − 1 + k, where k is the number of non-trivial loops on the lattice. Assuming

a vertex v has degree dv and tv qubits are placed on it, then:

nv − ne + np = 2 − k, (3.38)

2ne =
∑

v

dv, (3.39)

nq =
∑

v

tv, (3.40)

where nq is the total number of qubits. The number of logical qubits nL of this subsystem

code is given by:

nL = nq − (ng − ns)/2 − ns, (3.41)

= 1
2(2nq − ng − ns), (3.42)

= 1
2(2nq − ne − np + 2 − k), (3.43)

= 1
2(2nq − ne + nv − ne), (3.44)

= 1
2

(∑
v∈V

(2tv + 1 − dv)
)

. (3.45)

In our setup, the number of qubits on an odd degree vertex is given by tv = (dv − 1)/2. This

automatically results in nL = 0. An even degree vertex could be treated as two connected

odd degree vertices, as depicted in Fig.  3.5 , but in a converse manner. This splitting does not

change any of the aforementioned total quantities. Thus, our generalized two-dimensional

Kitaev spin liquid model always forms a zero-logical-qubit subsystem. The implications of

Floquet code are possible but are outside the scope of this paper.

3.6 Conclusion and outlook

In this paper, we have generalized the Kitaev spin liquid model on a general planar lattice.

We proposed that if we can identify a stabilizer center Sc to satisfy certain requirement, that

Sc contains maximum amount of commuting check operators, the vicinity of the ground
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state of Sc will be effectively toric code model. If a single trivalent vertex remains in the

shrunken lattice, a pair of twist defects would emerge, exhibiting Non-Abelian statistics as

Ising Anyons. We have conclusively shown that we can manipulate and fuse the defect as long

as the Hamiltonian is altered slowly. Furthermore, the processes of creation, movement, and

fusion are all achieved by the time evolution operator, which are inherently unitary operators.

It is equivalent to say we can use unitary operators to create, move and fuse defects, which

aligns with our usual taste of manipulating anyons. Nonetheless, braiding continues to pose

a challenge in this context. In conclusion, the generalized spin liquid model appears to be a

versatile platform for realizing a general surface code.

Several promising directions for future research emerge from this study. For instance, the

nature of a defect resulting from a left vertex of degree 5 remains to be explored. The algebra

looks similar but it creates defect disrupting more plaquettes. An extension to describe three

dimensional topological phases or Fractonic phases would also be an intriguing prospect,

and is currently under preparation. An analytical calculation of the geometric factor αp may

be interesting since the numerical calculation yields highly regular and interesting results.

Moreover, a more general and analogous generalization that could support the non-Abelian

Kitaev Quantum Double model would be of significant interest and importance.
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4. FLOQUET CODES FROM COUPLED SPIN CHAIN

This chapter contains work from the article entitled “Floquet Codes from Coupled Spin
Chains” written by the author, Penghua Chen, and Shawn X. Cui published on arXiv [  1 ].

4.1 Introduction

Kitaev proposed the paradigm for topological quantum computation via manipulating

anyons [  76 ]. The information is stored in the fusion space of anyons, and quantum gates

are accessed by braiding, thus not affectable at the microscopic level, making them natu-

rally fault-tolerant to local perturbations. This paradigm opens new horizons for quantum

computation, while the anyon theory itself, or the topological phase of matter that supports

anyons, remains a topic of great theoretical interest. Among these, exactly solvable topolog-

ical lattice models, such as the Kitaev quantum double model [  76 ], the string-net model [ 12 ],

and the Kitaev spin liquid model [  77 ][ 78 ], are excellent examples that exhibit the typical

nature of topological phases of matter.

Exactly solvable topological models are typically associated with frustration-free Hamil-

tonians, which makes them natural quantum stabilizer codes where their ground states are

considered as code subspaces. They are inherently error-correcting, though their multi-qubit

syndrome operators are costly to measure. The introduction of the Floquet code [  39 ] offers

an explicit approach to mitigating the complexity of measuring multi-qubit syndrome op-

erators by periodically measuring two-qubit operators, which has been shown to have good

error correction properties [  79 ][ 80 ][ 81 ].

One interesting aspect of the Floquet code is its instantaneous phase. At each round

of measuring checks, the Floquet state is stabilized by a round-varying stabilizer, the In-

stantaneous Stabilizer Group (ISG). The original honeycomb code exhibits an instantaneous

topological Z2 phase on a honeycomb lattice, further generalized to any 2D trivalent and 3-

colorable planar lattices [  82 ]. In 3D, based on the idea of coupling layers [  83 ][ 84 ], 3D X-cube

Floquet codes [  85 ] and 3D toric code Floquet codes [  86 ] have been introduced. Moreover,

the latter introduced the rewinding technique to ensure that all instantaneous phases of the

Floquet code are topological. On the other hand, the original honeycomb code [  39 ] exhibits a
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self-automorphism of instantaneous topological phases. This idea has been further explored

through the concept of dynamical automorphism codes [ 40 ], where Floquet codes are con-

structed from adiabatic paths of gapped Hamiltonians. A 3D Floquet color code has been

demonstrated based on this idea [  87 ]. These aforementioned codes are always associated with

a parent subsystem code, or equivalently can be described by a Kitaev spin liquid model

with varying parameters. However, Floquet codes without parent subsystem codes are also

possible, as shown in [  88 ][ 89 ].

Inspired by the coupling layers construction, we recognized that it inherently possesses the

characteristics of coupled spin chains. We present an explicit construction of Floquet codes

using coupling spin chains, applicable to a large family of general lattices in any dimension

greater than 2, as announced in Section  4.3 . It is shown that the previous requirement of

trivalent and 3-colorable lattices can be unified into a vertex-2-colorable physical lattice. We

provide two different constructions based on the placement of coupling spin chains, which

exhibit instantaneous (n, 1) toric code topological phases [  90 ] and n-dimensional X-cube

fractonic phases, respectively, while the latter agrees with the construction by coupling layers

in 3D [  85 ] on a 3D cubic lattice. Our construction also demonstrates that topological phases

can be realized through coupling spin chains, which broadens the applicability of coupling

spin chains [  91 ][ 92 ][ 93 ]. It naturally leads to the n-dimensional X-cube model, where we

show that, on a hypercubic lattice of size L, the leading order of ground state degeneracy

for the generalized model is given by 2n(n−1)·Ln−2 . The excitations are also composed of

lineons and hyper-planons. We show that lineons must form (n − 2)-dimensional multipoles

to unlock extended mobility.

In the 3D construction, unlike in the 2D case, the syndrome operators can no longer

survive throughout the measurement routine. They appear at certain rounds, persist for

several rounds, and are then removed from the ISG. We need to be cautious about this process

regarding error correction: errors are detected by observing changes of the measurement

outcomes of the syndrome operators, so the measurement outcomes must be obtained at

least twice before being removed from the ISG. If this is achieved, it can correct errors

occurring during the rounds when the syndrome operators persist, at low error rate. However,

errors outside these rounds need to be detected via other sets of syndromes. Therefore, the
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synchronization of syndrome operators in the ISG is crucial to ensure error detection for all

rounds of the Floquet codes. In our spin chain construction, however, we select a Steady

Stabilizer Group (SSG) that persists throughout the Floquet routine and enables a unified

decoder. We will show that the ISG forming topological phases is not sufficient for error

correction in Floquet codes, but SSG forming classical error-correcting codes is. We present

a simple 2-step Floquet Bacon-Shor code [  94 ] that fits completely within this framework.

The paper is organized as follows.

In Section  4.2 , we first present a clean formulation of the Floquet code in 2D, demon-

strating how the 3-colorability of the interactions naturally arises on any 2D lattice. In

Section  4.2.3 , we give a detailed explanation of when and how we can get the effective

measurement value of syndrome operators so that we can continue the error correction in

section  4.2.4 .

We then extend this construction to three dimensions in Section  4.3 , where we place

one spin chain on each plaquette and show how this generates the 3D Floquet toric code

on a cubic lattice. Next, we focus on error correction in Section  4.3.2 , which differs from

previous works to accommodate general lattices. The error correction relies on a subgroup of

the Instantaneous Stabilizer Group (ISG), called the Steady Stabilizer Group (SSG), which

persists throughout the measurement routine. In Section  4.3.3 , we explain that the Floquet

code remains error-correctable when the SSG forms a classical error-correcting code at each

round. The Floquet Bacon-Shor code is presented as an example that fits this paradigm.

This method can be easily generalized to higher-dimensional lattices.

In Section  4.3.5 , we place closed spin chains around vertices, rather than on plaquettes, to

construct the X-cube Floquet code, which can be generalized to higher-dimensional, locally

hypercubic-like lattices. The properties of the generalized X-cube model are also discussed.

Finally, in Section  4.4 , we conclude the paper and provide a discussion on error correction,

automorphisms of Floquet codes, and future directions for research.

Appendix A explicitly shows the instantaneous phases of the Floquet code, which are of

particular interest. Appendix B briefly review the Laurent polynomial method and presents

a special 3D Kitaev Spin Liquid model on a trivalent lattice that contains a topological phase
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similar to the 3D toric code. Appendix C analyzes the properties of the generalized X-cube

code on higher-dimensional hypercubic lattices with periodic boundary conditions.

4.2 2D Floquet Code from Spin Chain Construction

4.2.1 Spin Chain

A spin chain is a one-dimensional chain of spins, or qubits, of length 2n, where nearest-

neighbor interactions alternate between X ⊗ X and Y ⊗ Y terms:

H = −
n−1∑
k=0

(X2k ⊗ X2k+1 + Y2k+1 ⊗ Y2k+2) , (4.1)

where X, Y , and Z represent the Pauli matrices, also denoted as σx, σy, and σz:

X = σx =

0 1

1 0

 , Y = σy =

0 −i

i 0

 , Z = σz =

1 0

0 −1

 (4.2)

These matrices satisfy the following relation:

σi · σj = δij + iεijkσk, (4.3)

where δij is the Kronecker delta and εijk is the Levi-Civita symbol.

The Z ⊗ Z operator is introduced to couple between spin chains, as shown in Figure  4.1 .

Qubits are placed on the black dots. These two-body interactions are called check operators.

Specifically, X ⊗ X and Y ⊗ Y are nearest-neighbor interactions within the same spin chain,

referred to as inner-chain check operators, depicted by green and blue edges. On the other

hand, Z ⊗ Z couples the spin chains and is represented by red edges, named inter-chain

operators. Note that all the edges shown in the figure represent interactions, rather than

“real” lattice edges. We will refer to these as checks, and the figure composed of these checks

will be called the interaction diagram throughout this paper.
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Figure 4.1. A demonstration of three different interaction diagrams of spin
chains. The left diagram represents an open chain that contains nearest-
neighbor X ⊗ X and Y ⊗ Y interactions, marked by green and blue edges,
respectively. The middle diagram shows two spin chains coupled by Z ⊗ Z
inter-chain check operators, marked by red edges. The right diagram repre-
sents a closed hexagonal spin chain.
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4.2.2 2D Floquet Code

We begin by restating the 2D Floquet code for further generalization. Throughout this

paper, we will only consider lattices with periodic boundary conditions unless specifically

mentioned otherwise. Consider a 2D physical lattice Γ, represented by the lattice connected

by black edges in Figure  4.2 . Let E, V , and P represent the sets of edges, vertices, and

plaquettes, respectively. For each plaquette p of the physical lattice, we place a closed spin

chain that turns at the boundary edges, with one qubit located at each turning point. We

slightly deform the turning points away from the edges to emphasize the independence of

the qubits from different spin chains, though it is important to note that these qubits are

still placed on the physical edges.

As a simple example, we take the 2D square lattice shown in Figure  4.2a , where black

edges represent the physical lattice. One closed spin chain is placed on each plaquette.

Since each black edge borders two plaquettes, two spin chains will coincide at the edge from

different directions. In this case, we place a Z ⊗ Z operator, marked by red edges, to couple

the two qubits that coincide at the same edge.

The edge-colored lattice represents the interaction diagram, denoted as Γ′. This lattice is

automatically trivalent in 2D, as each edge borders only two plaquettes. Interestingly, when

the original lattice Γ is 2-colorable at all vertices, Γ′ becomes a trivalent and 3-colorable

lattice, which has been shown to support a planar Floquet code in [  82 ].

In the figure, we match the edge colors in Γ′ to the vertex colors of Γ as follows: - All

edges of Γ′ crossing a black edge are colored red. - All edges of Γ′ contained within plaquettes

of Γ are colored according to the nearest vertices of Γ. The plaquettes of Γ′ are then colored

as: - Green if bordered only by green and red checks, - Blue if bordered only by blue and

red checks, - Red if bordered only by blue and green checks.

We break the 3-color symmetry here, as this symmetry naturally breaks in higher di-

mensions. The interaction diagram obtained from the physical square lattice in Figure  4.2a 

explicitly represents the 2D Floquet code on a 4.8.8 lattice. In the original lattice Γ, the red-

colored plaquettes correspond to the original plaquettes, while the green and blue plaquettes

correspond to the two-colored vertices of Γ.
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(a) (b)

Figure 4.2. The two figures above show two physical lattices connected by
black edges. The vertices of the lattices are colored green and blue, with no
adjacent vertices sharing the same color. In both cases, a closed spin chain is
placed on each plaquette, and spin chains are coupled by red edges (Z ⊗ Z)
where they meet at a black edge. The interaction diagram is represented by the
colored edges, and one qubit is placed at each vertex of the interaction diagram.
Figure  4.2a depicts a square lattice, while Figure  4.2b shows a general planar
lattice. It is clear that as long as the vertices connected by black edges can be
2-colored, the interaction diagram forms a trivalent, 3-colorable lattice, which
has been shown to support a planar Floquet code [  82 ].
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Now we can conclude that on a 2D lattice where the vertices are 2-colorable, we can place

closed spin chains over the plaquettes, which will support a 2D Floquet code. Specifically,

immediately after the measurement of the red checks, or at the strong coupling limit, the

instantaneous phase corresponds explicitly to the toric code on Γ, where qubits are placed

on the edges of Γ.

Alternatively, we can place closed spin chains on the faces of the dual lattice Γ̄ of Γ,

which can also be viewed as placing them on the vertices of Γ, as shown in Figure  4.3 . The

3-coloring of the new interaction diagram is determined by the 2-coloring of the vertices of

Γ̄, or equivalently, the 2-coloring of the faces of Γ.

It is clear that these two different placements of closed spin chains are equivalent due to

the duality of the 2D toric code, and they yield equivalent 2D Floquet codes. However, as

we will see, in higher dimensions, these two placements lead to different outcomes.

(a) (b)

Figure 4.3. Figure  4.3a shows the dual lattice Γ′ of a square lattice Γ. Γ is
connected by thin black edges, and Γ′ by dashed edges. Γ and Γ′ are dual to
each other. Figure  4.3b illustrates the case where the closed spin chains are
placed on the plaquettes of Γ′, or equivalently around the vertices of Γ. Note
that in this case, the inner-chain checks are colored based on the 2-coloring of
the plaquettes of Γ.
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4.2.3 Referred Syndrome Operators

The essence of the Floquet code is to avoid directly measuring the syndrome operators,

although we still need the measurement results of syndromes for error detection and correc-

tion. Here, we provide a detailed explanation of how and when the measurement outcomes

are inferred from the measurement results of check operators.

With the coupled spin chain construction, the Floquet routine proceeds as follows: at

step 3r, we measure the red checks; at step 3r + 1, we measure the blue checks; and at

step 3r + 2, we measure the green checks, as shown in Table  4.1 . Suppose that the green

check operators are labeled as Og, and the projectors on the eigenstate with eigenvalue +1

are labeled as Pg. Similarly, blue and red checks are associated with Ob, Or, and Pb, Pr,

respectively. Starting with an initial state Starting with an initial state | φ〉, the state after

round 2 can be written as:

| φ2〉 = Pg · Pb · Pr · · · | φ〉 (4.4)

We abbreviate the notation so that each Pi in the above equation, where i ∈ {r, b, g}, rep-

resents the product of all projectors of the same color. Here, we assume that all measurement

results are +1, although other outcomes can be treated equivalently.

To better understand how the measurement outcome of a red plaquette operator is in-

ferred from the measurement outcomes of the checks, consider the example shown in Fig-

ure  4.2 . Take a red plaquette that is bordered by two green checks, two blue checks, and

four red checks attached to its boundary, each labeled by a number. We can then rewrite

the state | φ2〉 at round 2 as:

| φ2〉 = Pg1Pg2 · Pb1Pb2 · Pr1Pr2Pr3Pr4 | φ〉 (4.5)

Note that we neglect all other projectors that have no common support with this red

plaquette operator in the above equation. The plaquette operators are denoted by Wi,

where each Wi is the product of the check operators on the boundary of a plaquette of
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color i, with i ∈ {r, b, g}. For this example, a red plaquette can be written explicitly as

Wr = Og1Ob1Og2Ob2. When applied to the state | φ3r+2〉, we have:

Og1Ob1Og2Ob2Pg1Pg2 · Pb1Pb2 · Pr1Pr2Pr3Pr4 | φ〉

= −Og1Og2Ob1Ob2Pg1Pg2 · Pb1Pb2 · Pr1Pr2Pr3Pr4 | φ〉

= −Og1Og2Pg1Pg2 · Ob1Ob2Pb1Pb2 · Pr1Pr2Pr3Pr4 | φ〉

= −Pg1Pg2 · Pb1Pb2 · Pr1Pr2Pr3Pr4 | φ〉 (4.6)

The equation above holds because, for any operator O, we have O2 = Id, and the

corresponding projector onto the +1 eigenstate is P = 1+O
2 , thus OP = P . Additionally,

Ob1Ob2 can pass through Pg from the second to the third line, since the product of the blue

checks around a red plaquette commutes with the green checks.

The entire Floquet state is the eigenstate of Wr with eigenvalue −1, and its value is

determined, or we say “inferred”, from the measurements of check operators, immediately

after the measurement of the green checks at step 3r + 2, where r ∈ Z. This process works

similarly for other plaquette operators. The plaquette operators form the Steady Stabilizer

Group (SSG), a subgroup of the Instantaneous Stabilizer Group (ISG). We simply have

ISGr = SSG ∪ {r-checks}. Elements in SSG will have fixed values if no error occurs and

can be effectively “measured” in the Floquet code, enabling error detection by reading their

updated measurement outcomes.

Table 4.1. Measurement routine of the 2D Floquet code. At each step, one
type of plaquette operator is referred, allowing the measurement result of the
syndrome operator to be updated without directly measuring it.

Steps 3r 3r+1 3r+2 3r+3 . . .
Measure checks Red Blue Green Red . . .

Updated stabilizers Blue Green Red Blue . . .
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4.2.4 Error Correction

Note that elements in the Steady Stabilizer Group (SSG) survive throughout the mea-

surement routine and are updated periodically. As a result, they can be used as syndrome

operators to detect the occurrence of errors. Here, we briefly outline the error correction

method, which is largely similar to the approach presented in [  39 ].

The interaction diagram has a trivalent nature, meaning any error must be surrounded

by exactly three plaquettes with distinct actions on the qubit. Thus, any Pauli error will

anticommute with two of the plaquette operators.

We refer to Pauli X, Y , and Z errors as green, blue, and red errors, respectively. Any

single Pauli error can be detected by observing that two measurement results have flipped.

For example, a green error, as shown in Figure  4.4 , will flip the nearest green and red

plaquette operators. Conversely, if the measurement of one red and one green plaquette

operator flips, we can deduce that a green error occurred at the shared edge, the thickened

edge in the figure, which must be a green edge under our assignment.

It is not possible to distinguish between green errors at either end of a green check, since

X ⊗I = (X ⊗X) ·(I ⊗X), and plaquette operators always commute with all check operators.

However, this does not affect the correctability of the error. We can simply apply a green

operator to either end of the green edge. For example, applying X ⊗ I to the first vertex will

either cancel the error if it was indeed X ⊗ I, or result in X ⊗ X acting on the Floquet state

if the error was I ⊗ X. This X ⊗ X is a check error, which will disappear automatically, as

pointed out in the original paper, and can also be verified in Equation  4.2.3 , since the check

operator will contribute only an overall constant after it is measured.

The above argument applies similarly to any Pauli error on any vertex where surrounding

plaquette operators are recorded. Thus, the entire Floquet code is error-correctable under a

low error rate.
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b

Figure 4.4. This figure shows the colored interaction diagram of the 2D
Floquet code over a physical black square lattice. Each colored edge represents
a check operator. Each plaquette is colored based on the color of its center dot
and is associated with a plaquette operator. When a green error, marked by
a green circle, occurs, the two plaquette operators on the plaquettes marked
by r and b will be flipped. Conversely, when the values of these two plaquette
operators are flipped, we know that a green error occurred at the thickened
green edge. We can simply apply a green operator to either end of the green
edge, which will either correct the error or create a green check error that will
disappear automatically.
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4.3 3D Error-Correctable Floquet Code

4.3.1 3D Floquet Toric Code

In two dimensions, there is only one topological phase that can be realized by a frustration-

free Pauli Hamiltonian: the 2D toric code. However, in higher dimensions, there are clearly

more topological phases. Therefore, we can expect different Floquet codes with distinct

instantaneous topological phases arising from the coupling spin chain construction.

We take a 3D cubic physical lattice Γ as an example, as shown in Figure  4.5a , where the

physical cubic lattice is represented by dashed lines. This is a direct generalization of the 2D

case shown in Figure  4.2 . On each plaquette of the lattice, we place a closed spin chain, and

we introduce Z ⊗ Z interactions between spin chains where they meet at the same physical

edge. As before, this leads to an interaction diagram Γ′. For convenience in coloring, we

slightly deform the figure by aligning the inner-chain links to their nearest physical vertices.

We 2-color the vertices of Γ, and the edges of Γ′ (the inner-chain checks) are colored

based on their nearest physical vertex. The inter-chain checks are further divided into two

parts. One part, colored red, consists of a set of check operators whose product covers all

qubits on one edge of Γ. For example, in the 3D cubic lattice, assigning a closed spin chain

to each plaquette results in four qubits surrounding one edge of Γ. To handle this, we select

two non-overlapping inter-chain checks to be red, while the remaining one is marked black,

as shown in Figure  4.5a . Note that in 2D, this black inter-chain check naturally disappears

because the entire lattice is trivalent.

The measurement routine and ISG at each round is given by table  4.2 . Green/Blue

stabilizers Wg/Wb are the product of green/blue and red checks bordering the octahedron

centered on the green/blue vertex. Red stabilizers are still operators formed by the product

of inner-chain checks within each closed spin chain. We observe that only these three color

operators commute with all checks and survive throughout the measurement routine, and

thus we refer to them as the Steady Stabilizer Group (SSG). However, the Instantaneous

Stabilizer Group (ISG) at round r is given by ISGr = SSG ∪ r-checks ∪ NSSGr, where the

Non-Steady Stabilizer Group (NSSGr) contains instantaneous stabilizers whose values are
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(a) (b)

(c)

Figure 4.5. The above diagrams show the 3D Floquet toric code. Figure  4.5a 

depicts a physical cubic lattice Γ, represented by dashed black edges. A closed
qubit chain is placed on each plaquette of Γ. Note that four qubits are located
on each edge of Γ, though we separate them a little apart for clarity. We
introduce three Z ⊗ Z check operators to couple them: two colored red and
one black, with the two red checks disjoint from each other. In Figure  4.5b ,
the inner-chain checks are moved closer to the vertices, forming octahedra
centered on the vertices of Γ. The inner-chain checks are colored according to
the color of the vertex at the center of the octahedron they belong to. In the
3D Floquet code, the product of check operators (excluding the black checks)
bordering each octahedron forms a stabilizer in the Steady Stabilizer Group.
Figure  4.5c shows an explicit arrangement of the colored checks. In this case,
the yellow edges represent the physical edges. For clarity, only three groups of
red and black checks are shown, but in reality, these checks are placed on any
four qubits adjacent to a physical edge.
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Table 4.2. This table shows the Instantaneous Stabilizer Group (ISG) at each
round of the measurement routine, containing the Steady Stabilizer Group
(SSG), possible Non-Steady Stabilizer Groups (NSSG), and the check opera-
tors measured in the current round. The triangular operators in the table are
depicted in Figure  4.6 . The actual NSSG_{3,4,5} is not shown explicitly, as
it varies depending on the choice of red checks.

Round Check measured ISG
6r Red + Black SSG + red checks + black checks

6r+1 Green SSG + triangular-green + green checks
6r+2 Blue SSG + triangular-green + blue checks
6r+3 Red SSG + NSSG_3 + red checks
6r+4 Green SSG + NSSG_4 + blue checks
6r+5 Blue SSG + NSSG_5 + green checks

(a) (b)

Figure 4.6. This diagram shows two triangular operators. Figure  4.6a il-
lustrates an operator that is the product of checks along a loop on the green
octahedron, marked by red circles. As expected, there are eight such opera-
tors on the green octahedron. We refer to this operator as a triangular-green
operator. Similarly, Figure  4.6b shows the triangular-blue operator. These
triangular operators commute with all elements of the SSG, as well as the blue
and green checks, but they do not commute with the red or black checks and
do not always mutually commute.
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randomized at certain rounds. We did not show explicit NSSGr as they will depend on the

choice of the black check.

In Appendix  C.1 , we show that the SSG are equivalent to the stabilizers of the 3D toric

code at step 6r + 5, using the language of the 3D Kitaev spin liquid model.

The 3D toric code Hamiltonian, defined as the negative summation of all its stabilizers,

follows the definition of the (3,1) toric code in [  90 ]. One qubit is placed on each edge:

H = −
∑
v∈V

Av −
∑
p∈P

Bp, (4.7)

The vertex term Av is defined as the application of the Pauli operator X over the six edges

connected to the vertex v, while Bp refers to the application of the Pauli operator Z over the

four edges that form the boundary of the plaquette p. It is straightforward to see that these

newly defined operators satisfy the relations A2
v = B2

p = 1 and commute with each other,

i.e., [Av, Bp] = 0.

4.3.2 Error Correction

The 3D Floquet error correction is similar to the 2D case. We still label Pauli errors by

color, corresponding to the action of the check operators (e.g., X/Y/Z errors are labeled green

/ blue / red). There are four qubits placed on an edge (since four closed spin chains intersect

at that edge), and six stabilizer operators have nontrivial action on these four qubits. These

six stabilizers belong to the Steady Stabilizer Group (SSG), and are periodically updated,

as listed in Table  4.3 , making them useful for error detection.

Now, suppose that a green error occurs. One of the red stabilizers and the green stabilizer

will flip. The flipped red stabilizer shares only one common edge with the green stabilizer,

and this edge is, naturally, green. It is not surprising that the green errors at either end of

the green check are indistinguishable. However, similar to the 2D case, we can apply a green

operator to either end of the check, and it will correct the error regardless.
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The blue error behaves similarly: it flips one red stabilizer and one blue stabilizer. We

can apply a blue operator to either end of the common blue edge shared by the two flipped

stabilizers to correct the error.

Table 4.3. The elements of the SSG are the product of check operators. The
green/blue stabilizer is the product of the blue/green, red, and black checks
on the octahedron centered at the green/blue vertex of Γ. The red stabilizer
is the product of inner-chain checks along each closed spin chain. This table
shows the operators in the SSG, whose values are updated immediately after
each round of measurement.

steps 6 r 6 r+1 6 r +2 6 r +3 6 r +4 6 r +5
Measure checks Red and Black Green Blue Red Green Blue
Updated SSG Green Blue Red — — red

V1 V2

Figure 4.7. An example of a red error: it will flip the octahedron opera-
tors centered on the vertices labeled V1 and V2. Conversely, when these two
octahedron operators are flipped, we know that a red error has occurred. As
before, we can apply a red operator to either end of the red check shown, which
will either cancel the error or form a red or black check that will disappear
automatically.

In 2D, all three colors are symmetric because the lattice is trivalent. However, even in

the simplest 3D cubic cases, while the blue, red, and green checks still form a 3D trivalent

lattice, the black checks break this symmetry in 3D. When a red error occurs, only the blue

and green stabilizers are flipped. The common support for these two operators consists of

four qubits on the same edge. We can apply another red error to any qubit around the same

edge, which will either cancel the error or become part of the group generated by the red

and black check operators, disappearing at step 6r + 5. Thus, the entire code is proven to

correct any single Pauli error.
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One may ask why we don’t use three colors and create a 3-step routine, given that error

correction works. This leads us to consider logical information, which must commute with

all stabilizers and remain invariant throughout the Floquet routine. The product of check

operators along loops forms the inner logical information, while the outer logical operators

are effectively the string operators on non-trivial loops on the 3-torus at step 6r + 5. While

the 3-step Floquet routine can correct errors, the logical operator collapses.

In the cubic lattice case, the red checks can be chosen so that the construction can be

viewed as coupling layers, where the blue, green, and red checks form separate 2D toric

code layers, and the black checks couple these layers into a 3D toric code. The string

logical operator of the 3D toric code is the 2D toric code’s electric logical operator, which

commutes with the black checks. However, if a 3-step routine is applied, the 2D electric

operator becomes a magnetic logical operator, which is randomized when the black checks

are measured, as it does not commute with the black checks.

To address this, we adopt the "rewinding" technique from [ 88 ], where doubling the mea-

surement of blue, green, and red checks eventually maps the 2D electric logical operator

back to itself, allowing it to survive the entire measurement routine. Details are provided in

Appendix  C.3 .

4.3.3 Criteria for the Error Correction of Floquet Codes

It is common to require each instantaneous phase to be topological so that it can be

framed within the automorphism codes framework [  40 ]. However, we argue that this does not

directly lead to an error-correctable Floquet code. First, having an instantaneous topological

phase means that the elements in the ISG can detect errors as syndrome operators.

Consider a Floquet code where three types of checks, X ⊗ X, Y ⊗ Y , and Z ⊗ Z, are

measured at specific steps, and ISG is always topological. For simplicity, we assume that all

the measurement outcomes of the checks are +1.

Suppose X ⊗ X is measured at round r. This implies that the two qubits connected

by X ⊗ X effectively become one qubit. The ISGr = SSG ∪ r-checks ∪ NSSGr. The fact

that the instantaneous phase at round r is topological means that SSG ∪ NSSGr forms a
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topological phase on the effective qubits. Thus, any effective single-qubit error, such as

Xeff = X ⊗ 1 = 1 ⊗ X, Zeff = Z ⊗ Z, and Yeff = Y ⊗ Z = Z ⊗ Y , must be distinguishable by

SSG∪NSSGr. Interestingly, Xeff corresponds to a single-qubit error in the Floquet code. The

topological nature at round r ensures that a single-qubit X error is detectable and therefore

error-correctable. Although 1 ⊗ X and X ⊗ 1 are indistinguishable (as they represent the

same effective operator), this poses no issue for error correction since these two form a check

operator, as discussed in Section  4.3.2 .

Similarly, single Y and Z errors are distinguishable at rounds where Y ⊗ Y and Z ⊗ Z

are measured. Thus, if all ISGs form topological phases, all single Pauli errors are detectable

by elements in the ISG. However, for the Floquet code to function, these operators must be

referenced at least twice during the measurement routine before they are removed from the

ISG, as syndrome operators are not measured directly in Floquet codes.

A direct example can be seen at step 6r + 3 in Table  4.2 . If we treat the construction as

coupling layers, with red checks within each layer and black checks coupling layers, green and

blue plaquette operators within each 2D layer as in Section  4.2 will appear. The red, blue,

and green plaquette operators together form the full stabilizer group for uncoupled 2D toric

code layers, similar to what is described in [ 85 ]. However, only the blue plaquette operator is

referenced again at round 6r + 4, while the green plaquette operator is not referenced again

before being removed from the ISG. Thus, these NSSG operators cannot be used for error

correction. A similar situation occurs with the triangular-green operators, which appear in

round 6r + 1 and are removed after round 6r + 3.

In contrast, elements in SSG are periodically referenced because they are not removed

from ISG. Any change in the referred value of SSG can be used to detect errors as expected.

Therefore, it is clearer for SSG to handle error correction, as discussed throughout this paper.

The key observation is that it is sufficient if an effective σi error, which is a single-qubit σi

error, can be distinguished by SSG when σi ⊗ σi is measured, where i ∈ {x, y, z}. In other

words, in each instantaneous phase, SSG should behave as a classical error-correcting code.

We find that the Floquet version of the Bacon-Shor code [  95 ] fits explicitly within this

framework. For our purposes, we adopt a two-step measurement routine on a L × L square

lattice, preserving only the inner logical operator, which corresponds to the logical operator
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of the parent Bacon-Shor subsystem code. In round 2r, red checks are measured, and in

round 2r + 1, green checks are measured. Each round yields an effective L-length repetition

code, which is a classical error-correcting code. An explicit example is shown in Figure  4.8 

on a 3 × 3 lattice. Thus, a well-aligned classical code may be used to construct an error-

correctable Floquet code, which we leave for future work.

4.3.4 Construction on General Lattices and Higher Dimensions

The coupling spin chain construction is purely localized, making it applicable to more

general lattices. In 3D, if a lattice Γ satisfies the following requirements: 1. All vertices are

2-colorable. 2. Each edge of Γ borders an even number of plaquettes.

Then, a 3D error-correctable Floquet code can be defined. The assignment of colors is

quite similar: we assign blue and green colors to the vertices, and the inner-chain checks

are colored by the nearest vertex of Γ. For any edge e bordering Nq plaquettes, Nq qubits

are placed on the edge. The inter-spin chain checks are again separated into red and black.

Half of the non-overlapping inter-chain checks (Nq

2 ) will be colored red, while the remaining

ones will be black. This can be achieved under the second requirement above. The Floquet

routine follows the same sequence as in Table  4.3 , and the decoder is the same as in the 3D

cubic case, using the SSG as syndrome operators.

An interesting example is a translationally invariant lattice composed of hexagonal prisms

as its unit cell. This lattice is vertex-2-colorable, but the vertical edges border three pla-

quettes, which do not meet the above requirement. However, this can be compensated by

introducing extra vertical spin chains, as shown in Figure  4.9 . New checks are assigned in

the same way as usual checks, and an error-correctable Floquet code can be defined similarly.

This further loosens the requirements for constructing a Floquet toric code to the following:

1. All vertices are 2-colorable. 2. Edges of Γ that border an odd number of plaquettes form

several closed loops.

Interestingly, since the current checks are 3-colored (except for the black checks), this

naturally opens the possibility of a CSS Floquet code, which is a dynamical code that does

not have a proper parent subsystem code, as explained in [ 88 ]. The checks are associated with
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(a) (b) (c)

(d) (e)

Figure 4.8. A simple illustration of the 2-step Floquet Bacon-Shor code
is provided. In this example, the code is defined on a 3 × 3 square lattice.
Figure  4.8a shows the lattice with one qubit placed on each vertex. Each
horizontal edge is associated with a Z⊗Z check, shown in red, and each vertical
edge is associated with an X ⊗ X check, shown in green. Figure  4.8b shows
the elements of the Stabilizer Group. The first type is the tensor product of
Z operators on qubits along any two consecutive vertical lines (red example),
and the second type is the tensor product of X operators on qubits along
any two consecutive horizontal lines (green example). Figure  4.8c shows the
logical operators of the subsystem code. The tensor product of Z operators
along the red line serves as the logical ZL operator, and the tensor product of
X operators along the green line serves as the logical XL operator. Figure  4.8d 

shows that when all red checks are measured at round 2r, the four qubits on
each horizontal line effectively become a single qubit, and an effective Z ⊗ Z
acts on adjacent effective qubits. Figure  4.8e shows the case at round 2r + 1,
where all green checks are measured, resulting in a similar effect. Essentially,
both form a repetition code on different bases. It is important to note that
the only logical information retained in this Floquet code is the inner logical
information. Outer logical information can be found in [  41 ] by adjusting the
measurement routine.
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different operators throughout the routine. In this case, the coupling spin chain construction

only provides the coloring of the edges in the interaction diagram, without attaching fixed

check operators. Therefore, we distinguish between "check" and "edge" here.

The measurement routine is shown in Table  4.4 . At each measurement step, the two-body

operator of the specified type is measured on the two qubits at the ends of the given edge

color. This arrangement yields a CSS Floquet code with preserved outer logical information,

as described in [ 88 ].

Table 4.4. Measurement routine for the CSS Floquet code. At each round, a
two-body operator of the specified type is measured on the two qubits at the
ends of the edges of the given color.

Steps 6r 6r+1 6r+2 6r+3 6r+4 6r+5
Edge Color Blue and Red Green Red Blue Green Red and Black

Operator Type Green Red Green Red Green Red

Figure 4.9. The unit cell of a translationally invariant lattice with hexagonal
symmetry does not support a coupling layer construction, as it does not satisfy
the requirement that each edge must border an even number of plaquettes.
However, extra closed spin chains can be introduced along each vertical axis,
as shown. The checks of the vertical spin chains are colored similarly, enabling
the construction of a valid error-correctable Floquet code.

This generalization naturally extends to higher dimensions, using the same color ar-

rangement for the edges, the same measurement routine shown in Table  4.3 , and the same

decoder introduced in Section  4.3 . The result is an n-dimensional error-correctable Floquet

code with an instantaneous n-dimensional (n, 1) toric code phase, following the definition in
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[ 90 ], where one qubit is placed on each 1-cell (the edge), and the Hamiltonian consists of the

0-cell terms (the vertex terms Av) and the 2-cell terms (the plaquette terms Bp), similar to

equation  4.3.1 :

H = −
∑
v∈V

Av −
∑
p∈P

Bp, (4.8)

The vertex term Av is defined as the application of the Pauli operator X over the all edges

connected to the vertex v, while Bp refers to the application of the Pauli operator Z over

the edges on the boundary of the plaquette p.

4.3.5 n-Dimensional Floquet X-Cube Code

In 2D, there are two ways to place closed spin chains, both leading to the same Floquet

code, as discussed in Section  4.2.3 . Generalizing this approach by placing spin chains on the

faces of Γ results in the n-dimensional toric code Floquet code. In this section, we extend this

idea based on the diagram in Figure  4.3 . A 3D cubic lattice can be treated as intersecting

transversal planar slices, as shown in Figure  4.10 . We place closed spin chains around the

vertices in the planes x-y, x-z, and y-z, respectively. When the spin chains intersect at an

edge, a Z ⊗ Z coupling is introduced to enable interaction between them.

Interestingly, the coloring of checks must be determined within each planar slice. On each

2D slice of the lattice, the plaquettes are 2-colored, and the inner-chain checks are assigned

the color of the plaquette to which they belong, similar to the 2D coloring in Figure  4.3b .

Furthermore, there is no flexibility in separating red and black checks: the red checks must

be the inter-chain checks within each 2D planar slice, while the remaining checks are colored

black. Following this coloring scheme, we can apply the same measurement routine as

outlined in Table  4.3 to realize the 3D X-cube Floquet code.

The 3D X-cube code is defined on a 3D cubic lattice, with one qubit placed on each edge

of the lattice:

H = −
∑
v∈V

(Ax,y
v + Ay,z

v + Ax,z
v ) −

∑
c∈C

Bc, (4.9)

where V and C represent the sets of vertices and cubes, respectively. The operator Ai,j
v , with

i, j ∈ {x, y, z}, applies the Pauli Z operator to the qubits on the four edges connected to
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vertex v within the planar slice spanned by the i and j axes. The term Bc applies the Pauli

X operator to the twelve edges within the cube c. These operators satisfy (Ai,j
v )2 = B2

c = 1

and [Ai,j
v , Bc] = 0.

The Steady Stabilizer Group (SSG) of this Floquet code consists of two types of terms.

The first type is the vertex term, which is the product of inner-chain checks along each closed

spin chain. The second type is the cubic term, which is the product of all checks within each

unit cube, as shown in Figure  4.10b . Error correction can again be performed using the

SSG alone. Note that all closed spin chains are connected by inter-chain coupling checks,

ensuring they never overlap. When a red error (Pauli Z) occurs on a qubit, four cubic terms

will flip. The common support of these four cubic terms consists of the four qubits connected

by inter-chain Z ⊗ Z couplings. If a green or blue error occurs, it will flip two cubic terms

and one vertex term. The common support of these three operators involves a single check

of the same color as the error. Thus, the error correction process is similar to that of the

Floquet toric code.

At round 6r, the vertex terms correspond to Ai,j
v , and the cubic terms correspond to Bc,

as expected. This construction recovers the X-cube Floquet code in three dimensions [  85 ],

but with a different decoding scheme.

Moreover, this construction is purely localized, avoiding the need for global coupling

layers, and can be easily applied to construct the X-cube Floquet code on any manifold,

consistent with previous results [ 96 ]. More interestingly, on n-dimensional lattices composed

of transversely intersecting surfaces, we can place spin chains around each vertex, with each

spin chain lying in a 2D plane within the local cube. The coloring of edges follows the

same rules as in the 3D case. As a result, we obtain an extended X-cube model on an

n-dimensional lattice Γ at round 6r:

H = −
∑
v∈V

∑
xi,xj

Axi,xj
v −

∑
c∈C

Bc, (4.10)

where xi indexes the spatial axes, and A
xi,xj
v applies the Pauli Z operator to the nearest

qubits on the local 2D plane spanned by xi and xj. Here, c denotes the n-cell of Γ, and Bc

acts on the qubits within the n-cell c.
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The extended model yields results similar to those of the 3D X-cube model, where the

logarithm of the ground-state degeneracy scales as log(GSD) ≈ Ln−2 on an n-dimensional

cubic lattice of length L. It is also a fracton model, exhibiting lineon and hyper-planon

excitations. Further details can be found in Appendix  C.4 .

(a) (b)

Figure 4.10. Figure  4.10a illustrates the placement of spin chains on a 3D
cubic lattice. Spin chains of the same color are confined to the same planar
slide. Within each planar slide, the coloring of checks follows the same scheme
as in Figure  4.3b . This setup generalizes the placement of spin chains on the
faces of the dual lattice in 2D, placing three closed spin chains around each
vertex of Γ. Each physical edge is crossed by four spin chains. Figure  4.10b 

shows the unit cell of this construction. All purple-colored edges represent
inner-chain checks, which are colored within each planar slide. The product
of all checks within the unit cell gives the cubic stabilizers.

4.4 Conclusion

In this paper, we demonstrate how the 2D Floquet code can be generally integrated into

a coupling spin chain construction. We distinguish real lattice edges from the interaction

diagrams composed of interaction checks. Under this construction, the previous requirement

of a trivalent and 3-colorable check network is replaced by the simpler condition that the

real lattice vertices are 2-colorable. By generalizing the placement of closed spin chains

over the plaquettes of the lattice, we provide an explicit construction of an n-dimensional

Floquet code with an instantaneous n-dimensional Z2 phase. Since the coupling spin chain

construction is purely localized, our Floquet code can be applied to any dimensional lattice,

as long as its vertices are 2-colorable.
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We also describe how the Floquet state evolves and explain the emergence of an exact n-

dimensional (n, 1) toric code. It is important to note that the n-dimensional toric code only

appears instantaneously, and the Floquet routine does not obviously induce an automor-

phism of topological orders. However, we demonstrate that it is sufficient to use the Steady

Stabilizer Group (SSG) for error correction, with logical information preserved in the 6-step

measurement routine. Therefore, a topological Floquet code is error-correctable without re-

quiring all instantaneous phases to be topological. As outlined in Section  4.3.3 , the Floquet

code remains error-correctable if the SSG forms an instantaneous classical error-correcting

code at all times. We explicitly present the 2-step Floquet Bacon-Shor code, which holds

instantaneous repetition codes at each round.

Additionally, the 3-coloring of checks provides a natural framework for constructing a

CSS Floquet code when periodic check measurements are implemented. We argue that this

CSS Floquet code is error-correctable and capable of carrying logical information, serving as

a counterexample to the general assumption that coupling wires or spin chains always lead

to fractonic phases, as suggested in [ 84 ], [  91 ]–[ 93 ], [  97 ], [  98 ].

The X-cube Floquet code [  85 ] can be understood by placing closed spin chains around

vertices within each planar slice, generalizing the placement of closed spin chains on the dual

lattice plaquettes as seen in Figure  4.3b . Error correction can also be performed using the

Steady Stabilizer Group (SSG) alone.

Our localized construction allows us to explicitly visualize the foliation structure. Further

analysis can extend the construction to any lattice that is locally cubic-like, aligning with

the general 3D X-cube model on arbitrary manifolds [  96 ]. This approach also extends

naturally to higher dimensions, where we obtain an error-correctable Floquet code with

instantaneous higher-dimensional X-cube behavior. Using the Laurent polynomial method

on an n-dimensional hypercubic lattice of size L with periodic boundary conditions, we show

that the ground state degeneracy (GSD) satisfies:

log2(GSD) = Nq − NS = 2 · C2
nLn−2 + poly(L, n − 3), (4.11)
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where poly(L, n−3) is a polynomial of degree n−3. This model is topological, exhibiting

lineon and hyper-planon excitations. Lineons, in particular, can move in extended dimensions

as long as an n − 2 dimensional multipole is paired.

In conclusion, the coupling spin chain construction localizes the traditional coupling layer

approach, naturally providing a parent subsystem code. Two different families of Floquet

codes can be constructed in dimensions higher than two and on more general lattices. Both

are error-correctable and carry logical information. We argue that Floquet codes remain

error-correctable when the SSG forms an instantaneous classical error-correcting code, as

demonstrated by the Floquet Bacon-Shor code. This suggests that a well-aligned classical

error-correcting code could provide a more general framework for constructing quantum

Floquet codes, a topic we leave for future work.

We also identify a special type of subsystem code that behaves similarly to the 3D toric

code when a maximal commuting set of gauge checks is added to the stabilizer group. This

demonstrates the potential of the spin chain construction in discovering new topological

phases. In the future, we aim to explore more topological phases that can be constructed

using this approach and investigate how the coupling spin chain might offer new Floquet code

possibilities. Additionally, CSS Floquet codes, although not typically associated with a useful

parent code, might be described through anyon condensation of certain color codes. This is

particularly interesting in our case, as it may lead to symmetry-broken higher-dimensional

color codes.
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A. SUPPLEMENTARY MATERIAL FOR CHAPTER 3

This chapter contains work from the article entitled “Ribbon operators in the generalized
Kitaev quantum double model based on Hopf algebras” written by the author, Penghua
Chen, and Shawn X. Cui published on Journal of Physics A [  3 ].

A.1 Straightening equation of Aa and Bf

x1

x2

x3

x4

x5

x6

s

x4

x5

x6

x1
s

x1

x2

x3

x4
s

This equation holds no matter how the edges are oriented. We check the case as shown

above.

Aa(s)Bf (s) | x1 x2 x3 x4 x5 x6〉

= Aa(s)
∑
(xi)

f(x′′
1x′′

2x′′
3x′′

4) | x′
1 x′

2 x′
3 x′

4 x5 x6〉

=
∑

(xi),(a)
f(x′′

1x′′
2x′′

3x′′
4) | a(4)x′

1 x′
2 x′

3 x′
4S(a′) a′′x5 x6S(a′′′)〉

=
∑

(xi),(a)
f [S(a(8))a(7)x′′

1x′′
2x′′

3x′′
4S(a′′)a′]

| a(6)x′
1 x′

2 x′
3 x′

4S(a′′′) a(4)x′
5 x6S(a(5))〉

=
∑

(xi),(a)
Bf [S(a(6))?a′](s) | a(5)x1 x2 x3 x4S(a′′) a′′′x5 x6S(a(4))〉

=
∑
(a)

Bf [S(a′′′)?a′](s)Aa′′(s) | x1 x2 x3 x4 x5 x6〉

This is exactly the straightening equation.
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A.2 Violation and correction in group algebra

x1

x2

x3

x4
s0

x

F (h,g)(τ) | x〉 = δg,e | xh̄〉

x

F (h,g)(τ) | x〉 = δg,e | hx〉

We show Equation  2.59 is violated for the ribbon τ in the first figure above for the original

Kitaev model where H is taken to be the group algebra of a non-Abelian group G. In [  65 ],

only two formulas are provided for dual triangles as shown in the second and third figure

above. However, we can not get the desired commutation relation using either of them:

Bh′(s0)F (h,g)(τ) | x1 x2 x3 x4〉

= Bh′(s0)δg,e | x1h̄ x2 x3 x4〉

= δh′,x1h̄x2x3x4δg,e | x1h̄ x2 x3 x4〉

6= δg,eδhh′,x1x2x3x4 | x1h̄ x2 x3 x4〉

= F (h,g)(τ)δhh′,x1x2x3x4 | x1 x2 x3 x4〉

= F (h,g)(τ)Bhh′(s0) | x1 x2 x3 x4〉

Bh′(s0)F (h,g)(τ) | x1 x2 x3 x4〉

= Bh′(s0)δg,e | hx1 x2 x3 x4〉

= δh′,hx1x2x3x4δg,e | hx1 x2 x3 x4〉

6= δg,eδhh′,x1x2x3x4 | hx1 x2 x3 x4〉

= F (h,g)(τ)δhh′,x1x2x3x4 | x1 x2 x3 x4〉

= F (h,g)(τ)Bhh′(s0) | x1 x2 x3 x4〉
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Moreover, the issue can not be removed by making τ longer. Roughly, this is because for

the current τ , the initial site and terminal site already lie in different plaquettes, and thus

lengthening it will not affect the action of the plaquette operator at the initial site.

To resolve the issue, we recognize that τ has locally counterclockwise orientation, and

hence we need to apply the following formulas for the ribbon operators,

x

F (h,g)(τ) | x〉 = δg,e | h̄x〉

x

F (h,g)(τ) | x〉 = δg,e | xh〉

With the new formula above, we have,

Bh′(s0)F (h,g)(τ) | x1 x2 x3 x4〉

= Bh′(s0)δg,e | h̄x1 x2 x3 x4〉

= δh′,h̄x1x2x3x4δg,e | h̄x1 x2 x3 x4〉

= δg,eδhh′,x1x2x3x4 | h̄x1 x2 x3 x4〉

= F (h,g)(τ)δhh′,x1x2x3x4 | x1 x2 x3 x4〉

= F (h,g)(τ)Bhh′(s0) | x1 x2 x3 x4〉
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A.3 Multiplication of ribbon operators on elementary ribbons

A.3.1 For locally clockwise ribbons τL

x

F (h1,f1)(τL)F (h2,f2)(τL) | x〉

=
∑
(x)

F (h1,f1)(τL)ε(h2)f2[S(x′′)] | x′〉

=
∑
(x)

ε(h2)ε(h1)f2[S(x′′′)]f1[S(x′′)] | x′〉

=
∑
(x)

ε(h1h2)〈f2 ⊗ f1, ∆[S(x′′)]〉 | x′〉

= F (h1h2,f2f1)(τL) | x〉

x

F (h1,f1)(τL)F (h2,f2)(τL) | x〉

=
∑
(x)

F (h1,f1)(τL)ε(h2)f2(x′) | x′′〉

=
∑
(x)

ε(h2)ε(h1)f2(x′)f1(x′′) | x′′′〉

=
∑
(x)

ε(h1h2)〈f2 ⊗ f1, ∆(x′)〉 | x′′〉

= F (h1h2,f2f1)(τL) | x〉

108



x

F (h1,f1)(τL)F (h2,f2)(τL) | x〉

= F (h1,f1)(τL)ε(f2) | xS(h2)〉

= ε(f2)ε(f1) | xS(h2)S(h1)〉

= ε(f2f1) | xS(h1h2)〉

= F (h1h2,f2f1)(τL) | x〉

x

F (h1,f1)(τL)F (h2,f2)(τL) | x〉

= F (h1,f1)(τL)ε(f2) | h2x〉

= ε(f2)ε(f1) | h1h2x〉

= F (h1h2,f2f1)(τL) | x〉

A.3.2 For locally counterclockwise ribbons τR

x

F (h1,f1)(τR)F (h2,f2)(τR) | x〉

=
∑
(x)

F (h1,f1)(τR)ε(h2)f2(x′′) | x′〉

=
∑
(x)

ε(h2)ε(h1)f2(x′′′)f1(x′′) | x′〉

=
∑
(x)

ε(h2h1)〈f1 ⊗ f2, ∆(x′′)〉 | x′〉

= F (h2h1,f1f2)(τR) | x〉
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x

F (h1,f1)(τR)F (h2,f2)(τR) | x〉

=
∑
(x)

F (h1,f1)(τR)ε(h2)f2[S(x′)] | x′′〉

=
∑
(x)

ε(h2)ε(h1)f2[S(x′)]f1[S(x′′)] | x′′′〉

=
∑
(x)

ε(h2h1)〈f1 ⊗ f2, ∆[S(x′)]〉 | x′′〉

= F (h2h1,f1f2)(τR) | x〉

x

F (h1,f1)(τR)F (h2,f2)(τR) | x〉

= F (h1,f1)(τR)ε(f2) | S(h2)x〉

= ε(f2)ε(f1) | S(h1)S(h2)x〉

= ε(f1f2) | S(h2h1)x〉

= F (h2h1,f1f2)(τR) | x〉

x

F (h1,f1)(τR)F (h2,f2)(τR) | x〉

= F (h1,f1)(τR)ε(f2) | xh2〉

= ε(f2)ε(f1) | xh2h1〉

= ε(f1f2) | xh2h1〉

= F (h2h1,f1f2)(τR) | x〉
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A.4 Proof of Lemma  2.3.1 

The idea is to first prove the equations in Lemma  2.3.1 for ribbons as short as possible,

and then extend them to longer ribbons. It turns out that the shortest ribbon for some of the

equations to hold is a triangle (direct or dual), while for others is a 2-triangle. For example,

see the ribbon in Subsection  A.4.1 . Equation  2.63a does not hold for the rightmost triangle

alone. This is roughly because for that triangle, its initial site and terminal site share the

same vertex so that Aa(s0) would also act on s1, which is unexpected. As will be shown

below, the equation does hold as long as we make the triangle a bit longer. This is not a

problem since we are only interested in properties of sufficiently long ribbons.

Subsections  A.4.1 - A.4.8 each addresses an identity in Equations  2.63a -  2.64d for the

shortest possible ribbon. For each of the eight equations, there are two types of triangles

(direct or dual) to consider. To avoid lengthy calculations, we only present the details for

one of the two types for each equation. The proof for the other cases is similar. If a triangle

does not work, then we lengthen it to a 2-triangle. In Subsection  A.4.9 we extend the results

to longer ribbons for Equations  2.63b and  2.63c while leave the other six cases as an exercise

(whose proof is similar as well).

A.4.1 Equation  2.63a for short ribbons

x1
x2

x3

x4

s0
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Aa(s0)F (h,f)(τL) | x1 x4 x3 x2〉

= Aa(s0)
∑

(i),i,(h)
F (h′,gi)(τ1)F [S(i′′′)h′′i′,f(i′′?)](τ2) | x1 x4 x3 x2〉

= Aa(s0)
∑

(h),(i),i,(x3)
F (h′,gi)(τ1)ε[S(i′′′)h′′i′]f(i′′x′

3) | x1 x4 x′′
3 x2〉

= Aa(s0)
∑

(h),(i),i,(x3)
ε(gi)ε[S(i′′′)h′′i′]f(i′′x′

3) | x1 x4S(h′) x′′
3 x2〉

= Aa(s0)
∑

(e),(x3),(h)
ε(e′′′)ε(h′′)ε(e′)f(e′′x′

3) | x1 x4S(h′) x′′
3 x2〉

=
∑

(a),(x3),(h)
f(ex′

3) | a(4)x1 x4S(h′)S(a′) a′′x′′
3 x2S(a′′′)〉

=
∑

(a),(x3)
f [ε(a′′)x′

3] | a(5)x1 x4ε(a(6))S(h)S(a′) a′′′x′′
3 x2S(a(4))〉

=
∑

(a),(x3)
f [S(a′′)ea′′′x′

3] | a(6)x1 x4S(h)S(a′) a(4)x′′
3 x2S(a(5))〉

=
∑

(i),i,(h),(x3),(a)
ε(gi)ε(i′′′)ε{[a′′h′′S(a(4))]}ε(i′)f [S(a′′′)i′′a(7)x′

3]

| a(10)x1 x4S(a(6))S{[a′h′S(a(5))]} a(8)x′′
3 x2S(a(9))〉

=
∑

(i),i,(x3),(a),(x3)
F {[a′hS(a′′′)]′,gi}(τ1)ε{S(i′′′)[a′hS(a′′′)]′′i′}f [S(a′′)i′′(a′′′)′x′

3]

| a(7)x1 x4S(a(4)) (a(5))′′x′′
3 x2S(a(6))〉

=
∑

(i),i,(a),(a′hS(a′′′))
F {[a′hS(a′′′)]′,gi}(τ1)F {S(i′′′)[a′hS(a(3))]′′i′,f [S(a′′)i′′?]}(τ2)

| a(7)x1 x4S(a(4)) a(5)x3 x2S(a(6))〉

=
∑

(i),(a)
F {a′hS(a′′′),f [S(a′′)?]}(τL) | a(7)x1 x4S(a(4)) a(5)x3 x2S(a(6))〉

=
∑

(i),(a)
F {a′hS(a(3)),f [S(a′′)?]}(τL)Aa(4)(s0) | x1 x4 x3 x2〉

From the fourth line to the fifth line above, we used ε(gi) = gi(e) and

∑
(i),i

gi(a)i′f(i′′) =
∑
(a)

a′f(a′′).
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To derive the above equality, note that,

∑
(a)

a′f(a′′) = (Id ⊗ f)∆(a) = (Id ⊗ f)∆
(∑

i

gi(a)i
)

.

A.4.2 Equation  2.63b for short ribbons

x1
x2

x3

x4 s0

Aa(s0)F (h,f)(τR) | x1 x4 x3 x2〉

= Aa(s0)
∑
(x1)

ε(h)f(x′′
1) | x′

1 x4 x3 x2〉

=
∑

(x1),(a)
ε(h)f(x′′

1) | a(4)x′
1 x4S(a′) a′′x3 x2S(a′′′)〉

=
∑

(x1),(a)
ε(a(6))ε(h)ε(a(8))f [S(a(7))a(5)x′′

1] | a(4)x′
1 x4S(a′) a′′x3 x2S(a′′′)〉

=
∑

(x1),(a)
ε[a(5)hS(a(7))]f [S(a(6))(a(4)x1)′′] | (a(4)x1)′ x4S(a′) a′′x3 x2S(a′′′)〉

=
∑
(a)

F {a(5)hS(a(7)),f [S(a(6))?]}(τR) | a(4)x1 x4S(a′) a′′x3 x2S(a′′′)〉

=
∑
(a)

F {a′′hS(a(4)),f [S(a′′′)?]}(τR)Aa′(s0) | x1 x4 x3 x2〉

A.4.3 Equation  2.63c for short ribbons

x1

x2

x3

x4

s0
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Bt(s0)F (h,f)(τL) | x1 x2 x3 x4〉

= Bt(s0)ε(f) | x1 x2 x3 x4S(h)〉

=
∑

(xi),(h)
ε(f)t[x′′

1x′′
2x′′

3x′′
4S(h′)] | x′

1 x′
2 x′

3 x′
4S(h′′)〉

=
∑

(xi),(h)
F (h′′,f)(τL)t[x′′

1x′′
2x′′

3x′′
4S(h′)] | x′

1 x′
2 x′

3 x′
4〉

=
∑
(h)

F (h′′,f)(τL)Bt[?S(h′)](s0) | x1 x2 x3 x4〉

A.4.4 Equation  2.63d for short ribbons

x1

x2

x3

x4

s0
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Bt(s0)F (h,f)(τR) | x1 x2 x3 x4〉

= Bt(s0)
∑

(h),i,(i)
F (h′,gi)(τ1)F [S(i′′′)h′′i′,f(i′′?)](τ2) | x1 x2 x3 x4〉

= Bt(s0)
∑

(h),i,(i)
F (h′,gi)(τ1)ε[f(i′′?)] | x1 S[S(i′′′)h′′i′]x2 x3 x4〉

= Bt(s0)
∑

(h),i,(i),(x1)
ε(h′)gi(x′′

1)f(i′′) | x′
1 S(i′)S(h′′)i′′′x2 x3 x4〉

= Bt(s0)
∑
(x1)

f(x′′′
1 ) | x′

1 S(x′′
1)S(h)x(4)

1 x2 x3 x4〉

=
∑

(h),(xi)
f(x(5)

1 )t[x′′
1S(x′′′

1 )S(h′)x(7)
1 x′′

2x′′
3x′′

4] | x′
1 S(x(4)

1 )S(h′′)x(6)
1 x′

2 x′
3 x′

4〉

=
∑

(h),(xi)
f(x(4)

1 )t[ε(x′′
1)S(h′)x(6)

1 x′′
2x′′

3x′′
4] | x′

1 S(x′′′
1 )S(h′′)x(5)

1 x′
2 x′

3 x′
4〉

=
∑

(h),(xi)
f(x′′′

1 )t[S(h)x(5)
1 x′′

2x′′
3x′′

4] | x′
1 S(x′′

1)S(h′′)x(4)
1 x′

2 x′
3 x′

4〉

=
∑

(h),(xi),i,(i)
ε(h′′)gi(x′′

1)f(i′′)t[S(h′)x′′
1x′′

2x′′
3x′′

4] | x′
1 S(i′)S(h′′′)i′′′x′

2 x′
3 x′

4〉

=
∑

(h),(xi),i,(i)
F (h′′,gi)(τ1)ε[f(i′′?)]t[S(h′)x′′

1x′′
2x′′

3x′′
4] | x′

1 S[S(i′′′)h′′′i′]x′
2 x′

3 x′
4〉

=
∑

(h),(xi),i,(i)
F (h′′,gi)(τ1)F [S(i′′′)h′′′i′,f(i′′?)](τ2)t[S(h′)x′′

1x′′
2x′′

3x′′
4] | x′

1 x′
2 x′

3 x′
4〉

=
∑

(h),(xi)
F (h′′,f)(τR)t[S(h′)x′′

1x′′
2x′′

3x′′
4] | x′

1 x′
2 x′

3 x′
4〉

=
∑
(h)

F (h′′,f)(τR)Bt[S(h′)?](s0) | x1 x2 x3 x4〉

A.4.5 Equation  2.64a for short ribbons

x1
x2

x3

x4

s1
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Aa(s1)F (h,f)(τL) | x1 x4 x3 x2〉

= Aa(s1)
∑
(x1)

ε(h)f(x′′
1) | x′

1 x4 x3 x2〉

=
∑

(x1),(a)
ε(h)f [S(x′′

1)] | a(4)x′
1 x4S(a′) a′′x3 x2S(a′′′)〉

=
∑

(x1),(a)
ε(h)f [S(x′′

1)ε(a(5))] | a(4)x′
1 x4S(a′) a′′x3 x2S(a′′′)〉

=
∑

(x1),(a)
ε(h)f [S(x′′

1)S(a(5))a(6)] | a(4)x′
1 x4S(a′) a′′x3 x2S(a′′′)〉

=
∑
(a)

F [h,f(?a(5))](τL) | a(4)x1 x4S(a′) a′′x3 x2S(a′′′)〉

=
∑
(a)

F [h,f(?a′′)](τL)Aa′(s1) | x1 x4 x3 x2〉

A.4.6 Equation  2.64b for short ribbons

x1
x2

x3

x4

s1
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Aa(s1)F (h,f)(τR) | x1 x4 x3 x2〉

= Aa(s1)
∑

(i),i,(h)
F (h′,gi)(τ1)F [S(i′′′)h′′i′,f(i′′?)](τ2) | x1 x4 x3 x2〉

= Aa(s1)
∑

(i),i,(h)
F (h′,gi)(τ1)ε[f(i′?)] | x1 x4S(i′′′)h′′i′ x3 x2〉

= Aa(s1)
∑

(i),i,(h),(x3)
ε(h′)gi[S(x′

3)]f(i′′) | x1 x4S(i′′′)h′′i′ x′′
3 x2〉

=
∑
(x3)

Aa(s1)f [S(x′′
3)] | x1 x4x

′
3hS(x′′′

3 ) x
(4)
3 x2〉

=
∑

(a),(x3)
f [S(x′′

3)] | a(4)x1 x4x
′
3hS(x′′′

3 )S(a′) a′′x
(4)
3 x2S(a′′′)〉

=
∑

(a),(x3)
f [S(x′′

3)S(a′′)a′] | a(6)x1 x4x
′
3hS(x′′′

3 )S(a′′′) a(4)x
(4)
3 x2S(a(5))〉

=
∑

(a),(x3)
f [S(a(4)x′′

3)a′] | a(8)x1 x4S(a′′)a′′′x′
3hS(x′′′

3 )S(a(5)) a(6)x
(4)
3 x2S(a(7))〉

=
∑

(a),(i),i,(h),(x3)
ε(h′)gi[S(a′′′x′

3)]ε[f(i′′?a′)]

| a(6)x1 x4S(a′′)S(i′′′)h′′i′ a(4)x′′
3 x2S(a(5))〉

=
∑

(a),(i),i,(h)
F (h′,gi)(τ1)ε[f(i′′?a′)] | a(5)x1 x4S(a′′)S(i′′′)h′′i′ a′′′x3 x2S(a(4))〉

=
∑

(a),(i),i,(h)
F (h′,gi)(τ1)F [S(i′′′)h′′i′,f(i′′?a′)](τ2) | a(5)x1 x4S(a′′) a′′′x3 x2S(a(4))〉

=
∑
(a)

F [h,f(?a′)](τR) | a(5)x1 x4S(a′′) a′′′x3 x2S(a(4))〉

=
∑
(a)

F [h,f(?a′)](τR)Aa′′(s1) | x1 x4 x3 x2〉

A.4.7 Equation  2.64c for short ribbons

x1

x2

x3

x4

s1
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Bt(s1)F (h,f)(τL) | x1 x2 x3 x4〉

= Bt(s1)
∑

(h),i,(i)
F (h′,gi)(τ1)F [S(i′′′)h′′i′,f(i′′?)](τ2) | x1 x2 x3 x4〉

= Bt(s1)
∑

(h),i,(i),(x1)
F (h′,gi)(τ1)ε[S(i′′′)h′′i′]f(i′′x′

1) | x′′
1 x2 x3 x4〉

= Bt(s1)
∑

(h),i,(i),(x1)
ε(gi)ε(i′′′)ε(h′′)ε(i′)f(i′′x′

1) | x′′
1 x2S(h′) x3 x4〉

=
∑
(x1)

Bt(s1)f(x′
1) | x′′

1 x2S(h) x3 x4)〉

=
∑

(xi),(h)
f(x′

1)t[S(x′′
1)h′′S(x′

2)S(x′
3)S(x′

4)] | x′′′
1 x′′

2S(h′) x′′
3 x′′

4〉

=
∑

(xi),(h)
f(x′′′

1 )t[S(x(4)
1 )h′′x′′

1S(x′
1)S(x′

2)S(x′
3)S(x′

4)] | x
(5)
1 x′′

2S(h′) x′′
3 x′′

4〉

=
∑

(xi),i,(i),(h)
f(i′′)gi(x′′

1)t[S(i′′′)h′′i′S(x′
1)S(x′

2)S(x′
3)S(x′

4)] | x′′′
1 x′′

2S(h′) x′′
3 x′′

4〉

=
∑

(xi),i,(i),j,(j),(h)
f(i′′)ε(gi)ε(j′′′)ε(h′′)ε(j′)gi(j′′x′′

1)

t[S(i′′′)h′′i′S(x′
1)S(x′

2)S(x′
3)S(x′

4)] | x′′′
1 x′′

2S(h′) x′′
3 x′′

4〉

=
∑

(xi),i,(i),j,(j),(h)
f(i′′)F (h′,gi)(τ1)ε[S(j′′′)h′′j′]gi(j′′x′′

1)

t[S(i′′′)h′′i′S(x′
1)S(x′

2)S(x′
3)S(x′

4)] | x′′′
1 x′′

2 x′′
3 x′′

4〉

=
∑

(xi),i,(i),j,(j),(h)
f(i′′)F (h′,gi)(τ1)F [S(j′′′)h′′j′,gi(j′′?)](τ2)

t[S(i′′′)h′′i′S(x′
1)S(x′

2)S(x′
3)S(x′

4)] | x′′
1 x′′

2 x′′
3 x′′

4〉

=
∑

(xi),i,(i),(h)
f(i′′)F (h′,gi)(τL)t[S(i′′′)h′′i′S(x′

1)S(x′
2)S(x′

3)S(x′
4)] | x′′

1 x′′
2 x′′

3 x′′
4〉

=
∑

i,(i),(h)
f(i′′)F (h′,gi)(τL)Bt[S(i′′′)h′′i′?](s1) | x1 x2 x3 x4〉
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A.4.8 Equation  2.64d for short ribbons

x1

x2

x3

x4

s1

Bt(s1)F (h,f)(τR) | x1 x2 x3 x4〉

= Bt(s1)ε(f) | x1 x2 x3 x4S(h)〉

=
∑

(xi),(h)
f(e)t(x′′

1x′′
2x′′

3x′′
4h′′) | x′

1 x′
2 x′

3 x′
4h

′〉

=
∑

(xi),(h),i,(i)
f(i′′)ε(gi)t[x′′

1x′′
2x′′

3x′′
4S(i′′′)h′′i′](s1) | x′

1 x′
2 x′

3 x′
4h

′〉

=
∑

(xi),(h),i,(i)
f(i′′)F (h′,gi)(τR)t[x′′

1x′′
2x′′

3x′′
4S(i′′′)h′′i′](s1) | x′

1 x′
2 x′

3 x′
4〉

=
∑

(h),i,(i)
f(i′′)F (h′,gi)(τR)Bt[?S(i′′′)h′′i′](s1) | x1 x2 x3 x4〉

A.4.9 Equations  2.63b and  2.63c for long ribbons

x1
x2

x3

x4 τ1 τ2
...s0

x1

x2

x3

x4

τ1
τ2... s0
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For the left figure above, we have,

Aa(s0)F (h,f)(τR)

=
∑

(h),i,(i)
Aa(s0)F (h′,gi)(τ1)F [S(i′′′)h′′i′,f(i′′?)](τ2)

=
∑

(a),(h),i,(i)
F {a′′h′S(a(4)),gi[S(a′′′)?]}(τ1)Aa′′(s0)F [S(i′′′)h′′i′,f(i′′?)](τ2)

=
∑

(a),(h),i,(i)
F {a′′h′S(a(4)),gi[S(a′′′)?]}(τ1)F [S(i′′′)h′′i′,f(i′′?)](τ2)Aa′(s0)

=
∑

(a),(h),i,(i),j
F {a′′h′S(a(4)),gi[S(a′′′)j]gj(?)}(τ1)F [S(i′′′)h′′i′,f(i′′?)](τ2)Aa′′(s0)

=
∑

(a),(h),j,(j)
F [a′′h′S(a(6)),gj ](τ1)F {S(j′′′)a′′′h′′S(a(5))j′,f [S(a(4))j′′?]}(τ2)Aa′(s0)

=
∑

(a),(h)
F {a′′hS(a(4)),f [S(a′′′)?]}(τR)Aa′(s0)

From the forth line to the fifth line in the above equation, we need to use

gi(a b) = gi

a
∑

j

gj(b)j
 =

∑
j

gi(a j)gj(b)

=⇒ gi(a ?) =
∑

j

gi(a j)gj(?).

For the right figure above,

Bt(s0)F (h,f)(τL)

=
∑

(h),i,(i)
Bt(s0)F (h′,gi)(τ1)F [S(i′′′)h′′i′,f(i′′?)](τ2)

=
∑

(h),i,(i)
F (h′′,gi)(τ1)Bt[?S(h′)](s0)F [S(i′′′)h′′′i′,f(i′′?)](τ2)

=
∑

(h),i,(i)
F (h′′,gi)(τ1)F [S(i′′′)h′′′i′,f(i′′?)](τ2)Bt[?S(h′)](s0)

=
∑
(h)

F (h′′,f)(τL)Bt[?S(h′)](s0)
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A.5 Proof of Proposition  2.3.2 

We are going to talk about Hamiltonian terms where a is the Haar integral of H and t is

the Haar integral of H∗ temporarily. Notice that the Haar integral is cocomutative, and so we

can cyclically rotate the components a′, a′′, a′′′, etc. Below we prove the commutation relation

for locally clockwise ribbons, and leave the details for locally counterclockwise ribbons to

the reader.

A.5.1 Equation  2.65a 

x1
x2

x3

x4

s τ1 ...τ2
...
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Aa(s)F h,f (τL)

=
∑

(h),i,(i)
Aa(s)F (h′,gi)(τ1)F [S(i′′′)h′′i′,f(i′′?)](τ2)

=
∑

(h),i,(i),(a)
F [h′,gi(?a′′)](τ1)Aa′(s)F [S(i′′′)h′′i′,f(i′′?)](τ2)

=
∑

(h),i,(i),(a)
F [h′,gi(?a(5))](τ1)F {a′S(i′′′)h′′i′S(a′′′),f [i′′S(a′′)?]}(τ2)Aa(4)(s)

=
∑

(h),i,(i),(a),j
F [h′,gi(ja(5))gj(?)](τ1)F {a′S(i′′′)h′′i′S(a′′′),f [i′′S(a′′)?]}(τ2)Aa(4)(s)

=
∑

(h),(a),j,(j)
F (h′,gj)(τ1)F {a′S(a(7))S(j′′′)h′′j′a(5)S(a′′′),f [j′′a(6)S(a′′)?]}(τ2)Aa(4)(s)

=
∑

(h),(a),j,(j)
F (h′,gj)(τ1)F {S(j′′′)h′′j′a(4)S(a′′),f [j′′a(5)S(a′)?]}(τ2)Aa′′′(s)

=
∑

(h),(a),j,(j)
F (h′,gj)(τ1)F {S(j′′′)h′′j′a(3)S(a′),f [j′′?]}(τ2)Aa′′(s)

=
∑

(h),j,(j)
F (h′,gj)(τ1)F {S(j′′′)h′′j′,f [j′′?]}(τ2)Aa(s)

= F h,f (τL)Aa(s)

From the sixth line to the end in the above equation, we used the cocomutative condition of

a ∈ H, the Haar integral of H. So we can rotate a′ to a(nmax) and a(n) to a(n−1) for n > 1.

After the rotation, we obtain ε(a(n)) to lower the maximum order step by step.

A.5.2 Equation  2.65b 

x1

x2

x3

x4

s
τ1 ...τ2

...
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Bt(s)F (h,f)(τL)

=
∑

(h),i,(i)
Bt(s)F (h′,gi)(τ1)F [S(i′′′)h′′i′,f(i′′?)](τ2)

=
∑

(h),i,(i),j,(j)
gi(j′′)F (h′,gj)(τ1)Bt[S(j′′′)h′′j′?](S)F [S(i′′′)h′′′i′,f(i′′?)](τ2)

=
∑

(h),i,(i),j,(j)
gi(j′′)F (h′,gj)(τ1)F [S(i(4))h(4)i′′,f(i′′′?)](τ2)

Bt[S(j′′′)h′′j′?S(i′)S(h′′′)i(5)](s)

=
∑

(h),j,(j)
F (h′,gj)(τ1)F [S(j(5))h(4)j′′′,f(j(4)?)](τ2)Bt[S(j(7))h′′j′?S(j′′)S(h′′′)j(6)](s)

=
∑

(h),j,(j)
F (h′,gj)(τ1)F [S(j(5))h(4)j′′′,f(j(4)?)](τ2)Bt[S(j′′)S(h′′′)j(6)S(j(7))h′′j′?](s)

=
∑

(h),j,(j)
F (h′,gj)(τ1)F [S(j′′′)h′′j′,f(j′′?)](τ2)Bt(s)

= F (h,f)(τL)Bt(s)

Similarly, from the last third line to the last second line, we used the cocomutative condition

of t ∈ H∗, the Haar integral of H∗.

A.6 Fourier transformation of H∗

Let H be any finite dimensional C∗ Hopf algebra. First, we define a Fourier transforma-

tion on H [ 64 ]:

| νab〉 =

√√√√ dim(ν)
dim(H)

∑
(h0)

Dν(h′
0)abh

′′
0, ν ∈ IrrH , a, b = 1, · · · , dim(ν),

where IrrH is the set of irreducible representations of H, and Dν(h′
0)ab is the matrix entry of

h′
0 for the representation ν under a chosen (fixed) basis.

Recall from Section  2.2.2 that there are two commuting actions, L and R, of H on

itself corresponding to multiplication on the left and multiplication on the right by S(·),

respectively. We check the form of the two actions under the Fourier basis.
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For an element m ∈ H, the action L(m) is,

L(m) | νab〉 =

√√√√ dim(ν)
dim(H)

∑
(h0)

Dν(h′
0)abmh′′

0

=

√√√√ dim(ν)
dim(H)

∑
(h0),(m)

Dν(h′
0)abm

′ε(m′′)h′′
0

=

√√√√ dim(ν)
dim(H)

∑
(h0),(m)

Dν(h′
0)abm

′ε[S(m′′)]h′′
0.

As xh0 = ε(x)h0, we have ∑(x),(h0) x′h′
0 ⊗ x′′h′′

0 = ε(x)∑(h0) h′
0 ⊗ h′′

0. Applying the above

identity for x = S(m′′), we obtain

L(m) | νab〉 =

√√√√ dim(ν)
dim(H)

∑
(h0),(m)

Dν [S(m′′′)h′
0]abm

′S(m′′)h′′
0

=

√√√√ dim(ν)
dim(H)

∑
(h0)

Dν [S(m)h′
0]abh

′′
0

=

√√√√ dim(ν)
dim(H)

∑
(h0),k

Dν [S(m)]akDν(h′
0)kbh

′′
0

=
∑

k

Dν [S(m)]ak | νkb〉

=
∑

k

Dν∗ [m]ka | νkb〉.

Similarly, we can obtain the action of R(m):

R(m) | νab〉 =
∑

k

Dν(m)kb | νak〉.

Now, take the dual basis {〈νab |} in H∗. L and R each induces a representation on H∗,

still denoted by the same letter. Then on the dual basis, the two actions are given by,

L(m)(〈νab |) =
∑

k

Dν(m)ka〈νkb |,

R(m)(〈νab |) =
∑

k

Dν∗(m)kb〈νak |,
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Apply the above dual basis to D(H), we obtain the desired basis for Equations  2.71 and

 2.72 .
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B. SUPPLEMENTARY MATERIAL FOR CHAPTER 4

This chapter contains work from the article entitled “Generalized Kitaev spin liquid model
and emergent twist defect” written by the author, Penghua Chen, and Shawn X. Cui pub-
lished on Annals of Physics [  2 ].

B.1 Perturbation treatment

B.1.1 Effective Hamiltonian

In this appendix, V represents the perturbation H ′ to avoid confusion. Consider the

effective Hamiltonian:

Heff = T (V + V G′
0V + V G′

0V G′
0V + . . .) T (B.1)

where T =| GS〉〈GS | is the projector onto the ground state of the system described by Jv,

and G′
0 =

(
1

E0−H0

)′
. Here, the prime notation on G′

0 indicates that it vanishes on the ground

state and acts normally on the excited states.

In this appendix, V represents the perturbation H ′ to avoid confusion. For the effective

Hamiltonian, we have:

Heff = T (V + V G′
0V + V G′

0V G′
0V + . . .) T (B.2)

where T =| GS〉〈GS | is the projector onto the ground state of Jvs, and G′
0 =

(
1

E0−H0

)′
,

indicating that G′
0 vanishes on the ground state and acts normally on the excited states.

The perturbation tree, shown in Figure  B.1 , illustrates the general idea of the calculation.

Each node of the diagram is labeled with a state Φ. The action of each check operator on

| Φ0〉 =| GS〉 will flip two terms in H0, increasing the energy by 4. Applying another term in

V on the intermediate state | Φ1〉 yields different outcomes based on the product of Pe1 ×Pe2 ,

where:

- If ∂e1 ∩ ∂e2 = ∅, then we obtain | Φ23〉 with energy 8. - If ∂e1 = ∂e2, then we obtain

| Φ21〉, reverting to the ground state. - The remaining possibility is that e1 and e2 share one

common vertex, resulting in energy 4.
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| Φ0〉, 0 | Φ1〉, 4

| Φ21〉, 0

| Φ22〉, 4

| Φ23〉, 8

| 0〉, 0

| Φ31〉, 0

| Φ32〉, 4

| Φ33〉, 8

| Φ34〉, 4

| Φ35〉, 8

| Φ36〉, 12

V

V G
′
0

V G
′
0

V G
′
0

V G
′
0

V G
′
0

V G
′
0

V G
′
0

V G
′
0

V G
′
0

V G
′
0

Figure B.1. Demostration of perturbation tree
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Repeating this process for higher-order perturbations results in different sectors with

varying energy levels, as shown in Figure  B.1 . The energy sector Φi,j reverting back to the

ground state contributes to the i-th order of the effective Hamiltonian:

H i
eff = αi〈GS | V i | GS〉 (B.3)

Where αi is a path-dependent factor calculable from the diagram, named the geometric

factor. Terms in V i that do not vanish in the ground state are those that commute with all

Pv. Generators could be Pei
Pej

, where ei = ej, contributing to a constant factor, or Πej
Pej

,

where ej forms a closed loop, contributing to the plaquette term W ′
p = Πe∈Bo(p)|Pe∈H′Pe.

Thus, the effective Hamiltonian is:

Heff =
∑

p

(−1)γpαlpλlpWp + constant (B.4)

Where lp is the number of edges in W ′
p. The factor λlp arises from the dominant contribu-

tion in the lp-th order perturbation. The cases of creation or fusion are handled differently,

indicating a transformation of the plaquette, leading to alterations in the effective Hamilto-

nian despite maintaining the same eigenvalue.

B.1.2 Geometric Factor αp

The geometric factor αp needs to be evaluated via explicit calculation and we did not find

a general formula for it. However, we are primarily concerned with cases where the factor

αp = 0 as this scenario represents a hole in the surface code limit. We identify a family of

plaquettes that would have αp = 0 when the corresponding plaquette operator consists of

an odd number of anti-commutative check operator pairs. The proof is as follows:

Suppose we have a plaquette operator W ′
p, which is a product of several perturbation

check operators. The factor αp is calculated in the lp-th order of perturbation through the

diagram shown in Figure  B.1 . For any permutation σ ∈ Slp , the product ∏i Aσ(i) has a

nontrivial perturbation contribution to the plaquette operator W ′
p, where Sn is the n-th

order of the permutation group.
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E

E

E

E

D

D

D

D

A

A

A

A

B

B

B

B

F

F

F

F

C

C

C

C

Figure B.2. The figures provided illustrate a plaquette consisting of six edges
within a honeycomb lattice, where the red edges represent the dominant check
operators, and the black edges denote perturbation terms. The figure in the
top-right position depicts a typical scenario observed in the honeycomb lattice.
In contrast, the figure in the bottom-left position shows the configuration after
defects have been moved. The figure in the bottom-right position illustrates
the state of the plaquette when a defect is present.

The perturbation contribution consists of two parts. One comes from the action of the

Green’s function, essentially derived from the path on the perturbation tree, denoted as Fgσ.

Then, the outcome of the perturbation can be written as αpW ′
p = ∑

σ∈Slp
Fgσ

∏
i Aσ(i). Thus,

αp = ∑
σ∈Slp

FgσSgσ, where Sgσ results from aligning ∏i Aσ(i) to a fixed form W ′
p = ∏lp

i=1 Ai,

controlled simply by the commutation relation between Ais. Consider σ̄: σ̄(i) = σ(lp − i+1),

a function that is the reverse permutation of σ. Notice that reversing the order of check

operators in the perturbation tree remains valid since it starts and ends in the ground state,

and they have Fgσ = Fgσ̄ due to symmetry.

The relative sign Sgσ

Sgσ̄
is determined by converting ∏i Aσ(i) to ∏i Aσ̄(i). For illustration,

consider three elements A1, A2, A3, and σ(i) = i, σ̄(i) = 3 − i. The relative sign, determined

by the commutation relations of Ais, depends on the parity of the anti-commutative pairs.

The relative sign is −1 if Wp contains an odd number of anti-commutative pairs of check

operators, and +1 if even, resulting in αlp = 0 since the reverse permutation forms an

equivalence relation in the permutation group Slp .

Remark 1: In a general lattice with vertices where dv = 4, the coefficient of each Wp is

no longer uniform. However, continuously deforming the coefficients of Wps to be uniformly
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large, regardless of the sign (as argued, the sign does not impact the toric code phase), is

a continuous transformation that does not close the gap. Therefore, it maintains the same

phase.

Remark 2: Concerns about cases where αp = 0 are significant because this factor is path-

dependent and heavily reliant on the details of the lattice and the choice of Sc. However,

for a zero αp with multiple channels in the diagram shown in Figure  B.1 , we might find a

nonzero (lp + 2)-th order contribution by inserting a pair of Pe0 in the process to build up

Wp, where e0 /∈ Bo(p), into the perturbation tree. This change in the action of G′
0 between

the pair of Pe0 , being generally non-linear, might result in a nonzero effect. If it remains

zero, further insertions could be attempted. Ultimately, Wp may survive in higher orders of

perturbation theory.

Remark 3: In cases of a large plaquette in the lattice Γ, since lp is large, λlp is generally

so small that this plaquette could be treated as a hole or a boundary, depending on its color.

Alternatively, if some αp = 0 and cannot survive even under the argument of Remark 2, or

it only survives in a very high order of perturbation, it also serves as a hole in the toric code

model.

B.2 Mapping Table of vertex with dv > 4

Consider a vertex with degree dv > 4. Assuming dv = 2k, there are k qubits placed on

it. We define a k-order Pauli operator as a tensor product of k Pauli operators. We choose

Pv = ⊗k
i=1 Z, where each Z acts on a different qubit. The eigenstate of Pv corresponding to

the eigenvalue +1 represents the ground state for these qubits. The eigenspace associated

with this eigenvalue is 2k−1-dimensional. The task is to identify effective k − 1 order Pauli

operators from the set of k-order Pauli operators that commute with Pv. The generators of

these commuting operators are of the following form:

Xi = 1 ⊗ 1 · · · 1︸ ︷︷ ︸
i−1

⊗X ⊗ X ⊗ 1 ⊗ · · · 1 ⊗ 1 (B.5)
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Here X represents a tensor product of k Pauli operators. Xi is explicitly two X operators

at positions i and i + 1, with the identity I at the others. We have obviously k − 1 such

operators {Xi | i = 1, 2, . . . , k − 1}. Another set of generators are:

Zi = I ⊗ I · · · I︸ ︷︷ ︸
i−1

⊗Z ⊗ I · · · I (B.6)

Which means Zi is one Z operator located at position i, with identity I at the others. We

have k such operators, {Zi | i = 1, 2, . . . , k}. Notice, | φ0〉 = ⊗k
j=1 | 0〉 is one of the bases

in the eigenspace. Xi | φ0〉 effectively generates the whole eigenspace. Then we define the

mapping of Xi to k − 1 order operator:

Xi → I ⊗ I · · · I︸ ︷︷ ︸
i−1

⊗X ⊗ X ⊗ I · · · I (B.7)

We denote the notation X̃i to represent the effective action of Xi in the eigenspace of Pv.

Notice on the right, it is a tensor product of k − 1 Pauli operators. Similarly, Z̃i represents

the effective operator of Zi:

Z̃i = I ⊗ I · · · I︸ ︷︷ ︸
i−2

⊗Z ⊗ Z ⊗ I · · · I ⊗ I (B.8)

For 1 < i < k − 1, and Z̃1 = Z ⊗ I · · · I ⊗ I, Z̃k = I ⊗ I · · · I ⊗ Z. Notice the product of Z̃i

is 1, which agrees with ∏k
i=1 Zi = Pv. Then arranging the operators similarly as in Fig.  3.4b 

would give rise to the splitting of dv > 6.

B.3 Possible Measurement-Based Initializing Method

We have emphasized that since each process is described by time evolution, it is natural

to depict each process (movement, creation, and fusion) by a quantum circuit. Here, we

describe a convenient measurement-based method to initialize a ground state of the effective

toric code on a honeycomb lattice as shown in Figure  B.3 , which follows the same approach

as in the Floquet code described in [  73 ].
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The method follows a measurement schedule:

First, measure the check operators associated with yellow edges.

Second, measure the check operators associated with blue edges.

Third, measure the check operators associated with red edges.

Repeat the routine above.

After the fourth step, the state achieves the ground state of all plaquette terms (with signs

that depend on the measurement outcomes). We then proceed to measure the yellow checks

(or equivalently, the elements in Sc) as depicted in Figure  3.6 . Following this measurement,

the state transitions into the ground state of the plaquette operators and the stabilizer

center Sc, with the corresponding eigenvalues depending on the measurement outcomes.

This process effectively generates the desired toric code. Subsequently, we can apply the

unitary operator, as described by the time evolution operators in the previous section, to

manipulate the twist defects.
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Figure B.3. This figure illustrates a honeycomb lattice used to initialize
a ground state of the effective toric code, a platform that facilitates defect
manipulation. Each edge is colored according to the plaquettes to which it is
connected.
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C. SUPPLEMENTARY MATERIAL FOR CHAPTER 4

This chapter contains work from the article entitled “Floquet Codes from Coupled Spin
Chains” written by the author, Penghua Chen, and Shawn X. Cui published on arXiv [  1 ].

C.1 The Instantaneous Phase of Floquet code in dimension 3

Consider a 3-dimensional Kitaev Spin Liquid(KSL) Hamiltonian:

H =
∑

−JxX ⊗ X − JY Y ⊗ Y − JzZ ⊗ Z (C.1)

The arrangement of check operators is shown in figure  4.5a . Green/Blue checks are associated

with X ⊗X/Y ⊗Y operators and controlled by Jx/Jy, and red and black checks are all Z ⊗Z

operators, controlled by Jz. The check operators no longer always anti-commute when they

are connected. When Jz is dominant, we will get the instantaneous phase at round 6r.

Each group of 4 qubits near each physical edge will falls into the +1 common eigenspace of

operators Z ⊗ Z ⊗ I ⊗ I, I ⊗ Z ⊗ Z ⊗ I and I ⊗ I ⊗ Z ⊗ Z, thus become effective one qubit.

Effective Pauli operators are generated by Z = Z ⊗I ⊗· · ·⊗I and X = X ⊗X ⊗X ⊗X. It is

easy to see, the red stabilizers in SSG are products of X along the border of each plaquette

and the blue/green stabilizers are products of X over each edges connected to the vertex.

We shall note here, if one edge only borders odd number of qubits, that two vertex opertors

that the edge connects will anticommute. So, the requirement of possible splitting of red

and black checks agree with the commutativity of effective stabilizer operators. The above

argument only require the whole lattice is vertex-2-colorable and each edge borders even

number of plaquettes, which matchs the requirement of construcing the floquet code and

works on general lattices. So it naturally works also in higher dimensions, thus will generate

(n, 1) toric code model at round 6r.

For the X-cube construction, a unit cell of cubic lattice as shown in figure  4.10a , edges of

the same color represents the edges from the same spin chain, and Z ⊗Z inter-chain coupling

are in between concussive qubits on the same edge. Effective operators are cubic terms, that

are product of all check operators shown in this figure, and the vertices terms, that are
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the product of check operators of the same color around a single vertex, noticing that the

arrangement of edge operators are translational-invariant. Each edge is surrounded by 4 cube

terms, and the action of them on this edge are X ⊗X ⊗X ⊗X, X ⊗Y ⊗X ⊗Y , Y ⊗Y ⊗Y ⊗Y ,

Y ⊗ X ⊗ Y ⊗ X, respectively. They commute so they have the same effective representation

X. The action of vertex terms on each edge is the effective operator Z. So they matches

the Hamiltonian of X Cube model. The analysis works naturally to higher dimensions, thus

permits n-dimensional instantaneous (4,1) toric code and generalized X-cube model.

C.2 A Trivalent 3D Kitaev Spin Liquid Model from Coupling Spin Chain

C.2.1 A Short Review of Binary Vector Representation of the Pauli Hamilto-
nian

Single-qubit Pauli operators, or the Pauli matrices, are denoted by X, Y , Z, or σx, σy,

σz, satisfying

σi · σj = δi,j + iεijkσk.

Thus, the tensor product of Pauli matrices over finite support forms an abelian group P ,

with scalars of {±1, ±i}. When considering the stabilizer code, one can ignore the scalar

coefficients, leading to the abelian Pauli group P/{±1, ±i}. Thus, we can define an F2

module vector representation for Pauli matrices as follows:

Pauli-X 7→

1

0

 , Pauli-Y 7→

1

1

 , Pauli-Z 7→

0

1

 .

To restate the commutation relation in this new language, we shall use the symplectic matrix.

λ =

0 1

1 0


We call the map τ : P → V as VP , where P is a Pauli operator, and VP is the corresponding

vector representation. The commutation relation [P, P ′] = 0 is restated as V T
P · λ · V ′

P =

0 (mod 2). Here, T denotes transpose.

134



For a Pauli operator that is the tensor product of K Pauli matrices, we can use a 2K-

dimensional vector to represent it, i.e., the direct sum of the vector representation of each

Pauli matrix. We rearrange the vector so that the first (last) K entries mainly record the

σx (σz) on K sites.

For a translationally invariant stabilizer code, one can write the Hamiltonian term in

a compact form. An n-dimensional translationally invariant lattice is denoted as a binary

polynomial ring F2[x1, x2, . . . , xn]. Suppose each unit cell of the lattice contains q qubits.

Then a generator of a translationally invariant stabilizer code can be denoted as:

P 7→
[
L1(x1, x2, . . . , xn) L2(x1, x2, . . . , xn) . . . L2q(x1, x2, . . . , xn)

]

where Li(x1, x2, . . . , xn) is a Laurent polynomial over F2.

A simple but non-trivial example is to consider a 2D lattice, denoted as F2[x, y], with 2

qubits placed on each vertex, labeled by a and b, respectively. The Hamiltonian, which is

the negative sum of all stabilizers, is written as:

H = −
∑
i,j

Xa
i,j ⊗ Xa

i+1,j ⊗ Xb
i,j+1.

The subscript {i, j} denotes the position of the qubit being acted upon. We can pick any

point on the lattice as the origin and denote this origin as position 1. The Hamiltonian

term at the origin is referred to as the generator, since all other terms can be obtained by

translating this generator. The generator applies σx to the first qubit of the a-labeled qubit

at position 1 and x, and applies σx to the b-labeled qubit at position y. It can be written as

the following binary vector:

h =
[
1 + x y 0 0

]
.

All Hamiltonian terms can be generated by the formula M(x, y) · h, where M(x, y) is a

monomial of x and y, representing the position of the Hamiltonian term.

If there are more Hamiltonian generators, we simply have more vectors. Thus, a Hamil-

tonian or a stabilizer code can be written as a k × 2q matrix, where k is the number of
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generators, and each entry of the matrix is a Laurent polynomial. For a more detailed

reference, see[ 99 ].

C.2.2 The Ground State Degeneracy of the 3D Trivalent Model

(a) (b)

Figure C.1.  C.1a places spin chains extending horizontally and couples them
vertically in a specific manner. This setup recovers the honeycomb Kitaev
spin liquid model and supports the toric code phase in the limit of strong
inter-chain coupling. However, note that this is not a natural Floquet code
construction (unless the color of the checks is rearranged).  C.1b places closed
spin chains and couples them as a square-octagon lattice. Similarly, this can
be viewed as a Kitaev spin liquid model, and a Z2 phase is recovered at the
strong inter-chain coupling limit. Indeed, there are various ways to place the
spin chains, and they will always recover the Z2 phase in the strong coupling
limit when the interaction diagram is trivalent.

In 2D, different placements of spin chains result in the same phase, as shown in Fig-

ure  C.1b and Figure  C.1a , consistent with the fact that a 2D translationally invariant Pauli

Hamiltonian can only support a Z2 topological phase. However, in 3D, there are many more

distinct topological and exotic phases. Here, we identify a special coupling spin chain con-

struction, shown in Figure  C.2 . This construction deviates significantly from the traditional

coupling layer approach, but we prove that it has the same ground state degeneracy (GSD)

as the 3D toric code on any manifold, though it is unknown whether they are fully equivalent.

This suggests that coupling spin chain constructions could recover more topological phases

or even lead to new Floquet codes.
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In the context of the Kitaev spin liquid (KSL) or equivalently a gauge-fixed subsystem

code, the effective Hamiltonian can be calculated using perturbation theory [  77 ][ 2 ]. To

rigorously demonstrate that this special construction shares the same GSD as the 3D toric

code, we adopt the Laurent polynomial representation of the effective Hamiltonian.

H =



x + 1 y + 1 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 y + 1 xy + y y xy x 1

0 z + 1 z + 1 z + 1 0 0 0 0 z z 0 0

0 yz + y 0 0 z + 1 z + 1 0 0 0 0 z z

z + 1 0 0 z + 1 z + 1 0 0 0 0 1 1 0

0 0 0 0 xz + x z + 1 z + 1 0 0 0 x 1

0 0 z + 1 xz + x 0 0 z + 1 0 1 x 0 0

0 0 yz + y 0 0 z + 1 0 yz + y yz 0 0 z


Each column represents a generator of the Hamiltonian. Thus, the Hamiltonian contains 8

generators, and each unit cell has 6 qubits. We find the following invertible matrices:

r =



0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 x̄ x̄ 0 x̄ 0 z̄ + 1 x̄z̄ + x̄ x̄z̄ + x̄ z̄ + 1

0 0 0 0 0 0 0 0 xz̄ z̄ z̄ xz̄

0 0 0 0 0 0 0 ȳ 0 0 0 0

0 0 0 zx̄ zx̄ 0 zx̄ + x̄ 0 0 zx̄ + x̄ zx̄ + x̄ 0

0 0 0 0 1 1 0 zȳ + ȳ 0 0 z + 1 z + 1

0 0 1 x̄ x̄ 1 0 0 z̄ + 1 x̄z̄ + x̄ x̄z̄ + x̄ z̄ + 1

x̄z̄ 0 0 0 x̄z̄ x̄z̄ 0 x̄ȳz̄ 0 0 0 x̄z̄ + z̄

0 0 0 0 0 z̄ 0 0 0 0 0 0

0 ȳ 0 x̄ȳ x̄ȳ 0 x̄ȳ 0 ȳz̄ + ȳ x̄ȳz̄ + x̄ȳ x̄ȳz̄ + x̄ȳ ȳz̄ + 1


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l =



1 0 0 1 0 0 1 z + 1

0 0 0 1 0 0 0 0

0 0 0 0 1 y 0 1

0 0 0 0 0 1 0 1

0 0 1 x + 1 0 z x + 1 x + 1

0 0 0 0 0 0 1 1

0 1 0 y + 1 z 0 1 1

0 0 0 0 0 1 0 0


The ī, for i ∈ {x, y, z}, denotes the inverse of i. We find:

r · HT · l =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 y + 1 z + 1 0 0 0

0 0 0 0 x + 1 y + 1 0 0

0 0 0 x + 1 0 z + 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 x̄ + 1 0

0 0 0 0 0 0 z̄ + 1 0

0 0 0 0 0 0 ȳ + 1 0


The RHS is equivalent to the 3D toric code Hamiltonian, tensored with 3 ancilla qubits.

The ground state degeneracy (GSD) is given by log2 GSD = rank (ker(Hσ)/H). Since both

r and l are invertible, this model exhibits the same GSD behavior as the 3D toric code.

However, since r and l are not symplectic, we cannot simply conclude that these two models

are equivalent up to a quantum circuit.
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Figure C.2. It shows a special spin chain construction of a 3d Kitaev spin
liquid model. Closed spin chains on squares are places on each plane and
coupled to vertically spin chains . We prove it is topological phase that share
the same GSD with 3d toric code at the strong coupling limit. It also have
the mobile point like charges excitations.
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C.3 The evolution of logic operator

In this appendix, we will present, in Figure  C.3 , the evolution of the logical operator of the

2D toric code to demonstrate the necessary requirements to maintain the logical information

of the 3D Floquet code, by doubling the measurement routine as first discussed in [  86 ].

Figure C.3. The evolution of the logical operator in a measurement routine.
Each subfigure represents the current logical operator at each measurement
round. From top-left to bottom-right, red, blue, and green checks are measured
respectively. Each small (red/blue/green) circle represents a Z/Y/X Pauli
operator at the marked position, and the logical operator is the tensor product
of the operators on the circles. It is shown that the logical operator changes its
type after 3 steps of measurement and evolves back after 6 steps. The entire
process requires consecutive closed spin chains connected by red checks.

Where the green/blue/red segments represent the corresponding checks, and the blue/-

green/red circles represent the Y/X/Z Pauli operators acting on the qubits at the marked

vertices, forming the instantaneous logical operator. The evolution itself is not new, but

it is important to highlight that this evolution can be achieved within a series of closed

spin chains coupled through red checks. As mentioned earlier, the division of red and black

checks is hand-chosen. Therefore, when the lattice satisfies the requirements in Section  4.3 ,

we can select three series of non-overlapping plaquettes along three homotopically nontriv-

ial loops on the lattice, which is sufficient to ensure that three line logical operators of the

instantaneous 3D toric code phase survive.
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C.4 Properties of higher dimensional X-cube code

As proposed in Section  4.3.4 , we are able to construct the Floquet code with an instan-

taneous phase being the higher-dimensional X-cube code on locally hyper-cubic lattices. In

an n-dimensional cubic lattice, the Hamiltonian is given by Equation  4.3.5 . The number of

ground state degeneracies is given by Nq − NS, where Nq is the number of qubits, and NS is

the number of independent generators of the stabilizer group. The conditions Iq+1 = 0 and

Iq 6= 0 ensure that there is non-trivial ground state degeneracy (GSD) and no local logical

operator, confirming a topological phase. Clearly, the GSD is a polynomial in the size of the

cubic lattice L. We address the leading order of GSD as follows:

On an n-dimensional L × L × · · · × L cubic lattice with periodic boundary condition, the

translational group is represented by F2[x1, x2, . . . , xn], where xL
i = 1. There are Ln vertices,

n · Ln edges, and Ln n-cells. Since each edge has a qubit placed on it, Nq = n · Ln.

For the generator A
xi,xj
v , notice that A

xi,xj
v ·Axi,xk

v = A
xj ,xk
v . Thus, Ax1,xi

v for i = 2, 3, . . . , n

forms a complete set of generators. With the notation of Laurent polynomials, we have the

generators:

Ai,j = (0, . . . , 1 + x̄i, 0, . . . , 1 + x̄j, . . . , 0 || 0, 0, . . . , 0),

where 1 + x̄i and 1 + x̄j appear at the i-th and j-th positions, respectively, and x̄i = x−1
i .

The symbol || represents the division between the representation of the Pauli-X and Pauli-Z

regions.

As discussed above, A1,i for i = 2, 3, . . . , n constitutes a complete set of almost indepen-

dent generators. Any term in the Hamiltonian can be represented as M(x1, x2, . . . , xn)A1,i,

where M(x1, x2, . . . , xn) is a monomial of x1, x2, . . . , xn. Therefore, we estimate that NSA
≈

(n − 1) · Ln, where ≈ is used because these generators are not exactly independent.

To understand this dependency, note that since the lattice has periodic boundary con-

ditions, we define Ki = 1 + x + x2 + · · · + xL−1 such that Ki · (1 + xi) = 0 over F2.

Thus, the constraints are represented by M(x1, . . . , x̃i, . . . , x̃j, . . . , xn)KiKj · Ai,j = 0, where

M(x1, . . . , x̃i, . . . , x̃j, . . . , xn) is any monomial of variables x1, x2, . . . , xn, excluding xi and xj.

This contributes
(

n
2

)
· Ln−2 constraints, which we call 2-constraints since they are induced

from the 2D planes. We conclude that:
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NSA
≈ (n − 1) · Ln −

(
n

2

)
· Ln−2

Again, we use ≈ since the above 2-constraints are not independent. For example,

M(x4, x5, . . . , xn)xk
3K1K2A

1,2 = 0 M(x4, x5, . . . , xn)K3K1K2A
1,2 = 0

For k ranging from 0, 1, 2, . . . , L − 1, the second equation is obtained by summing k up in

the first equation. Similarly, we get:

M(x4, x5, . . . , xn)K3K1K2A
1,3 = 0 M(x4, x5, . . . , xn)K3K1K2A

2,3 = 0

However,

M(x4, x5, . . . , xn)K3K1K2A
1,2·M(x4, x5, . . . , xn)K3K1K2A

1,3 = M(x4, x5, . . . , xn)K3K1K2A
3,2

The coefficients M(x4, x5, . . . , xn)K3K1K2 represent positions, so they have to match to

allow the product as shown above. These equations demonstrate that the 2-constraints

are not independent in any 3D hyperplane. We call the redundancy of 2-constraints the

3-constraints. The number of 3-constraints is clearly of the order Ln−3.

This process can be iterated: the number of k-constraints is of the order of Ln−k and

is further reduced by (k + 1)-constraints, which are of the order of Ln−k−1, over (k + 1)-

dimensional hyperplanes. If we denote the number of k-constraints as ξk, we obtain:

NSA
= (n − 1) · Ln − ξ2 + ξ3 − . . .

where ξ2 =
(

n
2

)
Ln−2. Similarly, for the Bc terms, they are not independent. The generator

of Bc is represented as:

B = (0, 0, . . . , 0 || Ξ/(1 + x1), Ξ/(1 + x2), . . . , Ξ/(1 + xn))
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where Ξ = ∏
i=1,2,...,n(1 + xi). Similarly, M(x1, . . . , x̃i, . . . , x̃j, . . . , xn)KiKj · B = 0, and

we have almost the same structure as for Ai,j. Thus, NSB
= Ln − ξ2 + ξ′

3 − . . . , where ξ′
3 is

not necessarily equal to ξ3. Since the generators Bc and Av are mutually independent, we

get NS = NSA
+ NSB

, and:

log2 GSD = Nq − NS = 2 ·
(

n

2

)
Ln−2 + poly(L, n − 3) (C.2)

where poly(L, n − 3) is a polynomial in L with a degree less than n − 3. This equation

clearly holds in both dimension 3 and dimension 2 (which returns to the toric code), and

aligns with numerical results in dimension 4.

The behavior of excitations is quite similar to that in 3D. We have lineons that move

freely along specific lines but cannot turn, and membrane operators that trap excitations

at the corners of the membrane. However, a pair of lineons, commonly referred to as a

dipole, exhibits the same mobility as individual lineons. In 4D, these dipoles can turn

when a quadrupole of lineons is paired up. More generally, in dimension n, an (n − 2)-

dimensional multipole can freely move in a plane perpendicular to the dimension spanned

by the multipole, suggesting a higher-dimensional tensor field description.
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