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Abstract

This thesis presents various corrections to F-theory compactifications which rely on the
computation of refined Bogomol'nyi-Prasad-Sommerfield (BPS) invariants and the analysis
of backreacted geometries.

Detailed information about rigid supersymmetric theories in five dimensions is contained
in an index counting refined BPS invariants. These BPS states fall into representations of
SU(2)r, x SU(2)Rg, the little group in five dimensions, which has an induced action on the
cohomology of the moduli space of stable pairs.

In the first part of this thesis, we present the computation of refined BPS state multi-
plicities associated to M-theory compactifications on local Calabi-Yau manifolds whose base
is given by a del Pezzo or half K3 surface. For geometries with a toric realization we use
an algorithm which is based on the Weierstrass normal form of the mirror geometry. In
addition we use the refined holomorphic anomaly equation and the gap condition at the
conifold locus in the moduli space in order to perform the direct integration and to fix the
holomorphic ambiguity. In a second approach, we use the refined Gottsche formula and
the refined modular anomaly equation that govern the (refined) genus expansion of the free
energy of the half K3 surface. By this procedure, we compute the refined BPS invariants
of the half K3 from which the results of the remaining del Pezzo surfaces are obtained by
flop transitions and blow-downs. These calculations also make use of the high symmetry
of the del Pezzo surfaces whose homology lattice contains the root lattice of exceptional
Lie algebras. In cases where both approaches are applicable, we successfully check the
compatibility of these two methods.

In the second part of this thesis, we apply the results obtained from the calculation
of the refined invariants of the del Pezzo respectively the half K3 surfaces to count non-
perturbative objects in F-theory. The first application is given by BPS states of the E-String
which are counted in the dual F-theory compactification. Using the refined BPS invariants
we can count these states and explain their space-time spin content. In addition, we explain
that they fall into representations of Eg which can be explicitly determined. The second
application is given by a proposal how to count [p, ¢]-strings within F-theory which is based
on the D3 probe-brane picture and the dual Seiberg-Witten description.

As a third contribution to F-theory which is independent of the results obtained in the
first part, we consider the backreaction of G4-flux onto the geometry of a local model of
a Calabi-Yau fourfold geometry. This induces a non-trivial warp-factor and modifies the
Kaluza-Klein reduction ansatz. Taking this into account we demonstrate how corrections
to the 7-brane gauge coupling function can be computed within F-theory.
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1. Introduction

This thesis makes two contributions to modern string theory research. In the first part,
we compute refined Bogomol'nyi-Prasad-Sommerfield (BPS) invariants of local Calabi-Yau
manifolds. In the second part, we discuss corrections and non-perturbative phenomena in
F-theory which are partly based on the results obtained in the first part.

To embed this thesis into a broader scientific context, we start with an overview of the
current state of fundamental physics that provides a consistent and very successful picture
of our universe. We point out that despite the huge success of our description of nature
we are in need of new physics that is able to explain open questions from particle physics
and cosmology. This new physics should also allow to approach conceptual questions that
arise in the underlying framework which is provided by quantum field theory and general
relativity.

String theory is a natural candidate for a theory that unifies the concepts of particle
physics and cosmology and provides furthermore a consistent, perturbative formulation of
quantum gravity. Moreover, it implies the concept of (a partial) geometrization of physics,
which states that physical questions can be translated into geometrical ones. Besides con-
tributing to the field of theoretical physics, the idea of geometrization has also led to a
fruitful exchange with mathematics and caused many important developments on both
sides. We therefore continue by outlining some key properties of string theory and shed
more light on these concepts. Finally, we end the introduction by explaining how the results
from the present thesis fit into this discussion.

The modern physical description of nature

By today we have a very profound understanding of fundamental physics. On large scales,
our universe is described by the standard model of cosmology, while the sub-atomic world of
particles is governed by the standard model of particle physics. Both have been enormously
successful in explaining known phenomena, making predictions and passing various tests.
In the following we briefly review the main features of these two theories.

The Standard Model of Cosmology

Modern cosmology has started with Einstein’s theory of general relativity which reinter-
pretes gravity as the curvature of space-time. This theory successfully explains phenomena
like the precision of mercury and predicts e.g. gravitational lensing and gravitational time
dilation, which both have been confirmed.

Even more importantly, Einstein’s theory can be used to describe the dynamics of the
whole universe. The Friedman-Lemaitre-Robertson-Walker solutions give rise to the stan-
dard model of cosmology which is in addition based on the cosmological principle stating
that our universe is on large scales isotropic and homogeneous. This theory depends in
addition crucially on various parameters such as €2,,, 2, and Q5 which describe the density
of matter, radiation and vacuum energy. The standard model describes an expanding uni-
verse that has started with a big bang and successfully explains/predicts e.g. the observed
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Hubble expansion, the cosmic microwave background (CMB) and a helium density of 25%
within gas clouds with few metal. During the last years, cosmology has become a high
precision science and many of these parameters have been measured with great accuracy,
e.g. the data of the Planck mission [3] fix the above parameters as Q) = 0.686 £ 0.02 and
Qy;, = 0.31440.020 and almost vanishing €2, which corresponds to an (almost) flat universe
which is dark energy dominatedm

The standard model of cosmology is extended by the inflation mechanism, which is based
on the idea of a much higher vacuum energy in early times of the universe, and predicts an
exponential expansion during this epoch. This is a favorable explanation for the horizon
problem which addresses the questions why the CMB is homogeneous even on small scales
and also provides an answer how the observed flatness of our universe can be explained
without fine-tuning.

The Standard Model of Particle Physics

Our current understanding of particle physics is governed by a gauge theory with gauge
group SU(3)c x (SU(2)r x U(1)y). The first factor describes the strong force being medi-
ated by the massless gluons, whereas the second factor is spontaneously broken to U(1)gm
by the Higgs mechanism. This results in three massive gauge bosons W+ and Z° that medi-
ate the weak force while the remaining massless photon is the carrier of the electromagnetic
interaction. In addition, the fundamental constituents of matter are organized within three
families of quarks and leptons which receive their masses through Yukawa couplings with
the Higgs boson. Just like cosmology, modern particle physics is a high precision science
offering setups for very stringent tests for the standard model like the By decay into two
muons to state one recent example [4]. The discovery of the Higgs boson two years ago [5, [6]
and the subsequent confirmation of its desired properties, leading finally to the Nobel Prize
2013, is the cope stone of the confirmation of the particle content of the standard model.

Frameworks of Modern Physics

The achievement of both theories is also based on two very successful frameworks which
are however very different in nature. This reflects the diverse validity ranges of the two
standard models. General relativity unifies Newton’s theory of gravity with Einstein’s
theory of special relativity by considering gravity as the curvature of space-time due to the
presence of matter and energy. Quantum field theory on the other hand unifies Einstein’s
theory of special relativity with quantum theory and successfully describes the creation and
annihilation of particles and their interactions within space-time. Stated differently, while
general relativity is able to describe the dynamics of space-time, it does not have to say
much about the nature of the objects that cause this dynamics and vice versa, quantum
field theory describes the dynamics of these objects but in the background of space and
time.

Open Questions and the Demand for New Physics

Although the standard model of particle physics has been tested to a very high accuracy, it
also produces new open questions that ask for physics beyond the standard model. One is
the hierarchy problem which adresses the question why the electroweak breaking scale is so

'This conclusion has already been drawn before Planck, we just display the precision.



much lower than the cut-off scale A.;; of quantum field theory which could be as large as
the Planck scale Mp. The electroweak scale is fixed by the standard model Higgs vacuum
expectation value which receives quadratic quantum corrections in A.,;. A promising so-
lution is provided by supersymmetry being a new symmetry between bosons and fermions
such that the new particles cure the quadratic divergence. It was found in recent years
that neutrinos have a small mass which is not incorporated by the standard model. One
way to achieve this is the see-saw mechanism that includes right-handed neutrinos with
large Majorana masses and Yukawa couplings to the left-handed neutrinos. This can be
implemented within grand unified theories (GUTs) which unify the microscopic forces by
embedding the standard model gauge group into one of the Lie groups SU(5), SO(10) or
Eg. In combination with supersymmetry, this also leads to gauge coupling unification. An-
other obstacle is provided by the gauge couplings and mass parameters of the standard
model. Besides the fact that it is un-satisfying to have 19 parameters which need to be
determined by experiment, many of them are found to be extremely small. In order to
avoid fine-tuning it would be desirable to have a symmetry explaining the smallness. Apart
from that, it would also be interesting to have a mechanism that explains why there are
three families of particles and why they come precisely in the representations which are
observedﬂ or why this physics takes place in four space-time dimensionsﬂ

Also the cosmological point of view contains open questions, most notably that of the
nature of dark matter and dark energy. It is known from e.g. the measurement of rotational
curves of galaxies that only a small part of the matter is of baryonic nature, which only
contributes 0.04 to the overall 2. Even more importantly, the nature of dark energy is
completely unknown. In addition, the physics that is responsible for the generation of
matter/antimatter asymmetry after the big bang or describes the microscopic processes of
inflation is unknown.

While the problems of particle physics might be answered by an extension of the standard
model of particle physics on its own, the questions raised within cosmology already point
towards an answer within a unified description of both theories. Apart from that also the
frameworks, general relativity and quantum field theory are both struggling with conceptual
questions.

From a more abstract point of view, already the fact that general relativity is a classical
theory leads to a clash. In fact, any classical interaction allows in principle to determine
the position and velocity of a particle with arbitrary precision, which violates Heisenberg’s
uncertainty principle. Another theoretical argument is provided by the proper description
of black holes. First of all - although hidden behind the event horizon -, the differential-
geometric description of space-time breaks down at the singularity. In addition, it was
found by Bekenstein and Hawking that black holes obey the laws of thermodynamics if one
assigns to them an entropy which is proportional to their event horizon. However, in general
relativity a black hole is only characterized by mass, charge and angular momentum and no
microscopic explanation can be given. A third problem is given by the information paradox:
How can unitarity within quantum mechanics be maintained if a well-defined state enters
the black hole, but the latter only radiates thermally?

Quantum field theory on the other hand uses the concept of perturbation theory which
calculates physical quantities typically in a power-series of a coupling constant. A famous
experimentally confirmed result of this principle is the magnetic moment of the electron.

2There is a partial answer from anomaly cancellation to this question.
3This question could equally well be addressed to cosmology.
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However, this series is in general only meaningful, if the coupling constant is small which
makes quantum chromodynamics so difficult to solve. Apart from that, it was already
pointed out by Dyson [7] that the perturbation series has not to converge at all. Finally,
if one tries to apply the concepts of quantum field theory to gravity, one finds that the
resulting theory is not renormalizable.

All this provides convincing evidence that we are in need of an extension of the physics
known by today. These physics should include the features of particle physics and cosmology
and in particular include a theory of quantum gravity.

String Theory and its Key Properties

String theory [8,9] is a promising candidate to solve some of the problems discussed above or
to at least improve the situation. The key idea is that the smallest building stones of nature
are not given by particles but by a one-dimensional object, the string, whose oscillations are
identified with matter and forces, including gravity. In addition, its length [y introduces a
new fundamental scale. This leads to a Copernican revolution: Physics is not governed by
quantum fields within space-time but by quantum fields on the world-sheet swept out by
the propagation of the string through space-time. In addition, all couplings and dynamics
of the physical fields should in principle be determined by the minimal embedding of the
world-sheet into space-time which implies that I becomes the only scale of the system! In
particular, the value of the string coupling constant g; which describes the probability that
a string splits into two strings is determined dynamically.

Implications of the Finite String Length

The finite length [ of the string has important consequences: In contrast to a world-line, the
concept of a world-sheet does not allow to single out one particular interaction point. Instead
the interaction is reflected by the non-local geometry of the world-sheet. This cures UV-
divergences arising from nearby interaction points. In particular, as its spectrum naturally
contains gravitons, string theory thus provides a consistent, perturbative formulation of
quantum gravity.

Secondly, extended objects probe space-time very differently. In contrast to the field
theory limit, where one gets a tower of massless states when performing a Kaluza-Klein
compactification on a circle in the limit of large radius, one obtains in the stringy case a
massless tower also in the limit of vanishing radius which comes from light winding modes.
This shows that (closed) string theory is only able to probe space-time up to length scales
of I,.

In the limit [y — 0, which corresponds to the supergravity limit, one obtains back the
equations of motion for gravity and gauge theories while string theory corrects these at
finite [g.

The Web of String Theories

The field theory on the world-sheet is in fact conformal and the preservation of Weyl invari-
ance upon quantization restricts space-time to be ten-dimensional. Moreover consistency of
the theory at one loop in perturbation theory, or equivalently the cancellation of tachyons,
predicts on the one hand side space-time supersymmetry but also gives rise to five different
ways to formulate this theory known as Type ITA, Type IIB, Heterotic Eg x Eg, Heterotic
SO(32) and Type I theory.



All string theories are connected through a web of dualities. These dualities can roughly
be divided into two classes, S- and T-dualities which are related to the expansion in g5 and
ls respectively. S-duality exchanges a weakly coupled theory with a strongly coupled one
and T-duality exchanges a theory at large scales with a theory at small scales. These can
be used to map non-perturbative physics onto perturbative descriptions that are easier to
deal with. It should be pointed out that T-duality can be proven while S-duality can only
be tested by considering non-perturbative objects which are by supersymmetry protected
against decay even in the strong coupling regime.

A consistent unification of all five string theories and their dualities might be provided
by M-theory, which is a conjectured eleven-dimensional theory whose low-energy effective
action is given by eleven-dimensional supergravity and which reproduces in certain limits
all five known string theories.

Compactifications and the Geometrization of Physics

As stated above, a consistent formulation of string theory requires a ten-dimensional space-
time. As this is clearly in contrast with daily life experience, six dimensions have to be
compactified on small spaces with diameter below the today experimentally accessible length
scalesﬂ It is desirable to preserve some of the ten-dimensional supersymmetry in this
process, as this gives on the one hand side some control over the resulting four-dimensional
theory and is phenomenologically favored on the other hand, as discussed previously. The
string theory equations of motion and preservation of supersymmetry demand that these
compactification geometries have to be complex three-dimensional Calabi-Yau manifolds
X. These are three-dimensional Ké&hler manifolds with vanishing first Chern class. As a
next step, one performs a Kaluza-Klein reduction on X and integrates out massive higher
Kaluza-Klein modes to obtain the four-dimensional Wilsonian effective action.

In contrast to the original idea by Kaluza and Klein to obtain gauge theories from gra-
vity and the geometry in a higher-dimensional space, the situation at hand is different.
The higher-dimensional string theories already incorporate besides gravity also higher form
fields and gauge fields. This is reflected in the fact that a consistent background for com-
pactifications requires besides a Calabi-Yau manifold X also additional data such as flat
G-bundles in the Heterotic case or brane/orientifold configurations in a Type II set-up and
in general fluxes which constitute non-trivial background field configurations. These ad-
ditional structures may take one away from the Calabi-Yau condition and lead to more
complicated compactification geometries.

F-Theory

Instead of the compactification of string theory on three-dimensional Calabi-Yau manifolds,
one can also consider the compactification of F-theory [I1] on Calabi-Yau fourfolds. F-
theory is a twelve-dimensional theoryﬂ which is a non-perturbative formulation of Type IIB
string theory. The latter possesses an SL(2,Z) symmetry which acts in particular on the
string coupling constant and exchanges the theory at weak coupling with another Type 1IB
realization at strong coupling. More precisely, one combines the string coupling constant
gs with another field of the theory, the so-called Cy field as 7 = Cy + gis and interprets this

4There are exceptions like e.g. Randall-Sundrum scenarios. See also [10] for a review of possible scenarios.
5In constrast to string and M-theory, there is no twelve-dimensional supergravity action which could serve
as the low-energy effective action of F-theory.
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as the complex structure modulus of an auxiliary torus and the SL(2,Z) symmetry as the
group of large diffeomorphisms of this torus. Moreover, if one fibers the auxiliary torus over
space-time and thus allows a different value of 7 over each point (in a smooth way), one
obtains a non-perturbative description of Type IIB string theory. This allows insights into
the dynamics of strongly coupled objects within Type IIB string theory which could not
be obtained from the weak coupling description. In addition, 7-branes that are a source of
gauge theories within Type IIB are interpreted as degenerations of the auxiliary torus in
F-theory which allows to study the properties of these gauge theories geometrically.

Wrapping up, despite its stringent formulation in ten dimensions, string theory looses
its predictability in lower dimensions. By today, there is no mechanism known that would
single out one particular or at least a manageable subset of these possible string theory
vacua. One is therefore led to perform a change of paradigm and address the question how
certain physical properties can be geometrically addressed respectively engineered. There
are two directions one can proceed into. One can investigate how certain properties within
cosmology or particle physics can be obtained, e.g. how to build models that explain
inflation or a standard-model like gauge theory with three families of particles. This is
the arena of string cosmology and string phenomenology respectively. In an optimistic
scenario one would expect that these insights together with an improved understanding of
the theoretical framework of string theory will finally lead to constraints that a so severe
that they allow for new predictions. The second, of course not completely unrelated question
one can ask within this geometrization program is how certain conceptual properties within
the underlying theoretical framework like e.g. black hole entropies can be adressed. In the
following we focus on the second question and discuss topological string theory which has
provided deep insights into these issues during recent years.

Topological String Theory

Within the last years, it has been shown that a certain sub-sector of the full string theory, the
topological string theory, is enormously useful in investigating the conceptual consequences
of the geometrization procedure. Topological string theory [12) [13] arises by performing
a so-called topological twist in the world-sheet conformal field theory, which redefines the
spins of the fields. By this, the theory becomes a topological field theory. As a conse-
quence, it does not have a space-time interpretation anymore, but only probes the compact
geometry. Although the theory for itself is therefore unphysical it computes a part of the
physical amplitudes of string theory and has many important physical and mathematical
applications.

Mirror Symmetry

There are two ways to perform the above mentioned twist, resulting in the A- and the
B-model. On the world-sheet, these differ only by a sign, but from a space-time point
of view this implies that the A-model on a certain Calabi-Yau manifold X is physically
equivalent [14, [I5] to the B-model on a different Calabi-Yau manifold Y, called the mirror
of X. An important insight is to not consider single theories but instead complete fami-
lies of theories parameterized by so-called moduli. The A-model is parameterized by the
complexified Kahler moduli of the Calabi-Yau manifold, while the B-model is sensitive to
the complex structure moduli. The assignment of the mirror manifold works via a map



which exchanges the complex structure moduli space of one family of Calabi-Yau manifolds
with the quantum-corrected Kéahler moduli space of another family of Calabi-Yau mani-
folds, the so-called mirror map. Thus mirror symmetry builds a bridge between complex
and symplectic geometry.

This has led to the mathematical conjecture of homological mirror symmetry [16], stating
that the Fukaya category on a Calabi-Yau manifold modeling A-branes by Lagrangian sub-
manifolds and open strings by Floer cohomology is equivalent to the derived category of
coherent sheaves where open strings are modeled by Ext-groups.

Counting Curves and BPS States via Enumerative Geometry

It turns out that one is for physical and mathematical reasons often interested to count
curves inside a Calabi-Yau manifold. Here we refer to complex curves, i.e. Riemann surfaces.
These are basically given by a sphere with ¢ handles attached to it. From the mathematics
perspective this is the arena of enumerative geometry and such countings provide invariants
of the geometries under consideration.

In physics one obtains a particle in space-time, once one wraps a two-dimensional ex-
tended object, a brane, around a curve. Moreover under certain conditions, the holomor-
phicity of the wrapped curve implies that the resulting particle is a Bogomol’'nyi-Prasad-
Sommerfield (BPS) state. This constitutes a super-symmetric state that is protected against
decayﬁ if one enters the strongly coupled regime of string theory and therefore provides valu-
able information.

Topological string theory is able to count these curves as follows. The respective twists
for the A- and B-model imply that the semi-classical approximations to the path integrals
become exact. It turns out that the B-model localizes on constant maps while the A-model
localizes on holomorphic maps from the world-sheet into space-time. Roughly speaking this
implies that the B-model is easy to compute, whereas the A-model is harder to compute.
The latter encodes however the desired information about the curves one wants to count.
Let us sketch how this works. String theory is defined as a perturbation series, which is
organized by the genera (number of handles). At genus g, the amplitude of the topological
A-model takes roughly the form

9(+) — 9B
F9(t)=> NIQ".
B
F9 is called the free energy and N g count in a certain sense how many maps from a genus g
curve into the class f € Ho(X,Z) exist. They are called genus g Gromov-Witten invariants

[13,18]. Physically, the Q” correspond to instantons that correct the perturbative evaluation
of the amplitude.

Applications of Topological String Theory

Geometrical Engineering

One application of topological string theory is given by the idea of geometric engimeering{Z]7
i.e. to the construction of a field theory whose field content and dynamics is completely con-

5This statement only holds true if the remaining moduli are fixed. Otherwise there are phenomena like
wall-crossing that can lead to a decay of these states and only an appropriate index is invariant.
"See e.g. [17] for a review and references therein.
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trolled by the geometry. A prominent example is the engineering of Seiberg-Witten theory
on non-compact, three-dimensional Calabi-Yau manifolds. Seiberg-Witten theory [19] de-
termines the effective four-dimensional theory of gauge theories with A/ = 2 supersymmetry
at all values of the gauge coupling function. It builds up on the strong non-renormalization
theorems for A/ = 2 supersymmetry and interprets the vacuum expectation values of the
Cartan generators as the periods of a meromorphic one-form on an auxiliary Riemann sur-
face. This Riemann surface can be used as a basis for a non-compact Calabi-Yau manifold
which upon compactifying topological theory on it gives rise to the four-dimensional gauge
theory. In this way a whole dictionary between gauge theory and geometry can be estab-
lished. For example, the actions of N' = 2 supersymmetric, four-dimensional theories are
completely determined by a function that depends on the superfields and is called the pre-
potential. This is just given by the genus zero free energy of the topological string and can
be exactly computed using mirror symmetry.

The geometric solution of N' = 2 theories also incorporates an appropriate description
of non-perturbative objects like magnetic monopoles and dyons and shows how the infinite
instanton contributions can be meaningfully re-summed. In addition, questions like confine-
ment in N/ = 2 supersymmetric versions of quantum chromodynamics can be addressed and
solved within this framework. It is even possible to go one step further and to geometrically
describe gauge theories without a known Lagrangian description [20].

Black Hole Micro-state Counting

As already mentioned above, it is important to understand the microscopic origin of black
holes. In the case of five-dimensional, extremal black-holes within A/ = 2 supergravity
such an understanding was achieved by Strominger and Vafa [2I]. Such black holes are
characterized by their angular momentum J and the charge ) that stand in a certain
relation and their entropy can be calculated within supergravity as

50:27T\/Q3—J2.

The crucial idea is to engineer these black holes geometrically by BPS particles. These arise
in M-theory compactifications on a Calabi-Yau manifold X by wrapping M2-branes around
curves C' in X. More precisely for any curve C there is a dual two-form w¢ that can be
used to (Kaluza-Klein) reduce the M-theory form-field Cs on it which gives rise to a U(1)-
field under which these black holes are charged. In addition, one can also geometrically
identify the angular momentum, but this is less intuitive. It comes from a Lefshetz action
on the moduli space of these curves [22H24]. Fortunately, these curves can be counted by
the topological string! In fact, it is possible to compute a generating function Q(Q, J) for
the degeneracies of BPS states with charge @) and one finds that

reproduces the macroscopic result in the limit of large charge and angular momentum.
A similar result exists in four dimensions, where the Ooguri-Strominger-Vafa conjecture
[25] relates the black-hole partition function to that of the topological string as

ZBH = ‘Zt0p|27 Ztop = €Xp <Z Fg(t)g§g2> .

g



Embedding the Thesis into the Context

This thesis contributes a new application of topological string theory to count objects
namely E- and [p, ¢]-strings that appear in F-theory. For these purposes we use a modified
version of the topological string, the refined topological string [26], which governs the first
main part of this thesis. In the second part we discuss besides the counting of E- and [p, q]-
strings also a second contribution to F-theory which is independent of topological string
theory, namely the computation of the D7-brane gauge coupling function within F-theory
which relies on the analysis of backreacted geometries.

Enumerative Geometry of Refined Topological Strings

As discussed previously, five-dimensional BPS-particles arise by wrapping M2-branes around
curves in three-dimensional Calabi-Yau manifolds. Moreover, their spins are encoded in the
geometry and can be displayed by the topological string [22-24]. The true spin content of a
five-dimensional massive particle is given by two SU(2) spins, i.e. the little group is SO(4)
= SU(2) x SU(2). We are interested in the numbers N JgL jp of particles coming from an
M2-brane wrapping the class 5 € Hy(X,Z) and have spin (jr,jr). These are called refined
BPS states and are counted by the refined topological string, whereas the usual topological
string only counts the index

nf = Z(—1)2jR(2jR +1)N?

JL JLJR "
JR

Let us emphasize that the generating function (@, J) in the above discussion only depends
on n’ .

The refined topological string contains therefore considerably more information than the
unrefined string. However due to technica][ﬂ reasons this counting is only possible on toric
Calabi-Yau manifolds. From a mathematical perspective, refined BPS invariants consti-
tute new enumerative invariants of toric Calabi-Yau manifolds, named refined stable pair
invariants and have only recently been defined [27, 2§].

In this thesis we compute the refined stable pair invariants for local Calabi-Yau manifolds
which are constructed as anti-canonical bundles over del Pezzo and half K3 surfaces. These
computations are technically involved and rely on the use of mirror symmetry, the refined
holomorphic anomaly equations [29, B0] and modularity propertiesﬂ [31H34]. It is however
crucial to stress that it is the physical insight coming e.g. from Seiberg-Witten theory
and topological string theory which allows to perform these calculations. Apart from that
the above geometries have a beautiful inner structure, as their homology is governed by
exceptional groups [35]. In the following we explain how the results can be used to count
non-perturbative objects in F-theory.

E-strings and Phase Transitions in F-Theory Vacua

F-theory theory compactifications on Calabi-Yau manifolds play an important role in the
web of string theory vacua. Such vacua are parameterized by the moduli spaces of the
Calabi-Yau manifolds. Most notably it is possible to connect different families of vacua

8By this we do not mean computational reasons. In fact the theory requires an additional U(1) symmetry
which is only present on toric Calabi-Yau manifolds.
9This is a selection among those contributions that are of particular importance for us.
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by phase transitions [36], 37]. This happens if some subspace in the geometry shrinks to
zero size and some other subspace grows. Technically, this corresponds to a bi-rational
transformation within the geometry. At the point of the phase transition itself, one expects
new physics to enter. The reason is as discussed earlier, higher-dimensional objects within
string theory, so-called branes can wrap these shrinking subspaces and appear as point-
particles within space-time. In addition, their masses are determined by the volumes of
the wrapped subspaces and thus they become light when the latter shrink. A different
description of such a process is given by the Heterotic string where a so-called E-String
[31L B2, B8-40] becomes tensionless which governs the physics of small Eg instantons [32]
39, 41, 42]. It is extremely interesting to study the new physics that happens at such
transitions, as (so far) no Lagrangian description for the new massless states exists [36].
The latter is caused by the fact that at the same time magnetically and electrically charged
states become massless. However using the refined topological string we are able to count
these states and to predict their space-time spins as well as their gauge theory quantum
numbers!

[p, q)-Strings in F-Theory

Type IIB string theory contains besides the fundamental string also another, non-pertur-
bative, one-dimensional object, the D1-brane. This can form a bound state with the fun-
damental string which is referred to as a [p, g]-string. These constitute the microscopic
ingredients for gauge enhancements on strongly coupled 7-brane stacks [43-46]. As previ-
ously discussed, these get part of the geometry in F-theory. However, not much is known
about a microscopic formulation of F-theory, i.e. in particular what are the microscopic
ingredients for gauge enhancements in F-theory. Using the results obtained from the stable
pair invariants of the half K3 surface we make a proposal how these states can be identified
as refined BPS states within F-theory and suitably counted.

Gauge Coupling Function from Backreacted Geometry

Finally, the second part of this thesis also discusses a contribution to F-theory that does
not resort on the calculations which are performed in the first part. Besides the question of
identifying non-perturbative objects in F-theory, it is important to discuss how the results
known from type IIB string theory compactifications can be re-produced from an F-theory
perspective and extended away from the small coupling limit. In particular, we investigate
how the D7-brane gauge coupling function can be recomputed within F-theory. As D7-
branes get part of the geometry, all these data, including stringy corrections in s must be
encoded in the geometry and the G4-flux. We answer this question using the M-/F-theory
duality by constructing a local model of the neighborhood of a D7-brane stack consisting
of periodic Kaluza-Klein monopole solutions in M-theory. This is in turn used to show that
the desired corrections obtain an interpretation in terms of back-reaction of G4-flux onto
the geometry and modifications of the Kaluza-Klein reduction ansatz.

Besides its conceptual relevance, the results obtained in this part are also of phenomeno-
logical relevance. G4-flux plays an important role in the understanding of moduli stabiliza-
tion [47, [48], the generation of a chiral spectrum [49-55] and is essential to cancel D3-brane
tadpoles [47, 48] and a complete analysis asks for the inclusion of its backreaction. In ad-
dition, the understanding of corrections to the gauge coupling function is crucial for the
investigation of gauge coupling unification in F-theory, e.g. [56-58].
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QOutline

This thesis is divided into two parts. The first part is concerned with the computation of
refined BPS state multiplicities. It consists of the chapters[2to[6l The second part discusses
applications to F-theory and includes chapter [7] [§ and [9] The conclusion is presented in
chapter

In chapter 2| we introduce topological string theory starting with superconformal field
theories and discuss the geometric realization in terms of nonlinear Sigma models. The
A- and the B-model are introduced and mirror symmetry is discussed. We proceed to
topological string theory and discuss the space-time interpretation of the free energy of
the A-model and Gopakumar Vafa invariants. At the end we introduce refinement and its
mathematical formulation in terms of refined stable pair invariants.

In chapter [3] we discuss the formalism of direct integration and its extension to the refined
case. In particular, we discuss the refined holomorphic anomaly equations. Afterwards we
present an algorithm that relies on the Weierstrass normal form of an elliptic curve and
allows to perform the direct integration procedure very efficiently for geometries with a
genus one mirror curve.

Chapter [4] deals with geometric background material. We discuss the geometry of del
Pezzo surfaces and the half K3 and present the tools needed to construct toric Calabi-Yau
mirror pairs.

We use the methods of the introductory chapters to compute the refined BPS invariants
of toric del Pezzo surface which include toric del Pezzo and almost del Pezzo surfaces, as
well as massless higher del Pezzo surfaces in chapter We also discuss a toric example
with has a genus two mirror curve. Most of the results of this chaper have appeared in [I].

Afterwards the computation of the refined BPS invariants of the half K3 surface is dis-
cussed in chapter@which is based on [I]. The main ingredients here are the refined Gottsche
formula and the refined modular anomaly equations. We discuss the massless and massive
half K3 separately and comment on the boundary conditions that are needed to fix the
modular ambiguity of the refined modular anomaly equations.

The second part of this thesis starts with a brief review of F-theory in chapter [7]including
the discussion as the strong coupling limit of Type IIB and its dualities with M-theory and
the Heterotic string.

Afterwards we demonstrate how the results of the first part can be used to count non-
perturbative objects in F-theory which are given by E-Strings and [p, ¢]-flux in chapter
Both subjects are briefly reviewed before we comment on the progress which has appeared
in [I].

In chapter [9] the computation of the 7-brane gauge coupling function within F-theory is
presented which relies on the analysis of a backreacted geometry. This chapter is based on
the results in [2].

Finally, the conclusions are presented in chapter

The appendix [A] contains some calculations and results that are too long to be presented
in the main text and are referred to when needed.
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This thesis is based on the following two publications of the author:

e M. -X. Huang, A. Klemm and M. Poretschkin, “Refined stable pair invariants for E-,
M- and [p, q]-strings,” [arXiv:1308.0619 [hep-th]].
Published in Journal of High Energy Physics, 1311 (2013) 112.

e T. W. Grimm, D. Klevers and M. Poretschkin, “Fluxes and Warping for Gauge Cou-
plings in F-theory,” [arXiv:1202.0285 [hep-th]].
Published in Journal of High Energy Physics, 1301 (2013) 023.
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2. The Refined Topological String

In this chapter we discuss the necessary background material from refined topological string
theory. We start with a review of superconformal field theories and their deformation rings
in section and explain how one constructs topological field theories by the topological
twist. Afterwards, we proceed to the nonlinear Sigma model realization of superconformal
field theories in section and discuss the A- and the B-model. In particular, we discuss
their moduli spaces and identify the deformation ring, which is the basis for the discussion
of mirror symmetry in section where we also review the coupling of the A- and B-model
to gravity to obtain topological string theory. In addition, we consider the holomorphic
anomaly equations. In the last section [2.4] we review the notion of Gopakumar Vafa invari-
ants and show how the free energy of the A-model can also be computed by integrating out
BPS particles in a self-dual gravi-photon background field. This serves as preparation for
the discussion of refinement and refined BPS invariants which follows next. Finally, we end
the chapter by briefly discussing the mathematical formulation of refined BPS invariants
which is constituted by the notion of refined stable pair invariants.

2.1. Twisting superconformal field theories

In this section we discuss the basic features of superconformal field theories as these are the
foundation for a discussion of mirror symmetry. As our goal for this section is to construct
topological field theories, these get introduced first.

2.1.1. Topological field theories

A topological field theory of Witten or cohomological type is defined by the following prop-
erties. It has a scalar Grassmann symmetry operator Q, also referred to as BRST operator,
that obeys

Q? =0, (2.1.1)

such that the action as well as the energy-momentum tensor are Q-exact
S={9,V}, Tu={9Gu} (2.1.2)

The first condition implies that the observables of the topological theory are given
by the O-cohomology of the theory as the observables have to be O-invariant operators
while correlation functions containing Q-exact operators vanish which implies that the latter
decouple from the theory. The second condition implies that the correlation functions
do not depend on the background metric, as the variation with respect to the metric results
in the insertion of an energy-momentum operator into the correlation function. Finally it
implies that the semi-classical evaluation of the path integral becomes exact. See e.g. [179]
for details.
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2.1.2. N = (2,2) superconformal field theories

The N = 2 superconformal algebra is generated by the energy momentum tensor T'(z), two
anti-commuting super-currents G*(z) and a U(1) current .J(z)

T(z) _ Z an—n—Q’ G:i:(z) _ Z Giiaz—(n:ta)—3/2’ J(z) _ Z an—n—l.

nez ne”L neZ
(2.1.3)

Here a takes into account the possible boundary conditions being 0 for the Ramond sector
and 3 in the NS sector. The fields (2.1.3) are subject to the following OPEs

+ w
TG W) ~ e+
T(2)J(w) ~ (ZJ_(“;S)ﬁ?”i(;";,

2¢/3 n 2J(w) 2T (w) £ Oy J (w)
z—w)

(2 —iw)3 (z —w)? (z —w) ’
J()GEw) ~ ig_(t”u)) ,
J(2)J(w) ~ (zc—/i))Z . (2.1.4)

An N = (2,2) superconformal theory is obtained by adding an anti-holomorphic copy of
these fields which have trivial OPEs with the holomorphic sector. See e.g. [124] for more
background material.

2.1.3. The chiral ring
A highest weight state is given by
Ly|¢) =0, GE|¢)=0, Jul¢)=0, n,r,m>0 (2.1.5)
and labeled by the zero modes
Lol¢) = hg o), Jolo) =qsl9)- (2.1.6)

A primary field ¢ creates a highest weight state |¢) = ¢|0) and is called chiral primary field
if

GTylo)=0 (2.1.7)

and anti-chiral primary field it is annihilated by G~ ,. From the OPE one can deduce that

[N

he = (—)%d’ (2.1.8)

for an (anti-) chiral primary field. In addition, the OPE of (anti-)chiral operators is again
an (anti-)chiral operator (this statement is understood to hold in correlation functions) such

16
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that one gets a ring structure
$i; = Clion . (2.1.9)

Taking also the anti-holomorphic sector into account, one obtains four choices for these rings
called (¢, ¢), (¢, a), (a,c), (a,a). As the last two choices are related by complex conjugation
to the first two, there are only two physical rings which are referred to as chiral (¢, ¢) and
anti-chiral ring (a, c).

2.1.4. Deformations

(Anti-)chiral operators are also important to study deformations of the conformal field
theory. These are caused by marginal operators that have conformal weightsﬂ h=h=1.
In the following we only consider the chiral ring, as the anti-chiral ring works analogously.
Choose a basis ¢; in the space # (11 of chiral operators of charg (1,1). One then constructs
marginal operators as follows|

6? (w, @) = 7{ d=G(2) 7{ 426G (2)(w, ) (2.1.10)
P (w, w) = f{ dzG*(z) jf dzG (2)dr(w, W) (2.1.11)

The reason for this construction is that the chiral operators have weights (h,h) = (%, %),
which gets corrected by this construction. The deformation space constructed by these
operators is called the moduli space M. Choosing coordinates ', #*, these parameterize the

deformations of the action as

sS=t [ ¢Pyp [ P (2.1.12)
29 29
In the next section, we investigate how the space of vacua varies over this moduli space.

2.1.5. The vacuum bundle

In the following we consider a vector-bundle V' over the moduli space M whose fiber consists
of the ground-states of the theory and which is called the vacuum bundléﬂ While the bundle
V' does not change, there are certain ways of splitting the vacuum bundle into sub-spaces
and in fact this splitting varies. For the following discussion it is assumed that the central
charge c¢ is nine, which is the case we will be finally interested in. In this case, due to
anomaly cancellation [I91], one has to demand that the charges of operators inserted into
a sphere correlation function sums up to three.

We considerﬂ the sub-ring of the chiral ring which is created by the (1, 1) operators and
choose a basis denoted by (o, @i, (¢p)i, (¢D)o), ¢ = 1,...,n whose elements have charges
(0,0),(1,1),(2,2),(3,3) respectively. Here ¢¢ is just the identity operator. In addition,
there is the topological metric

nij = (®i(éD);) (2.1.13)
'We are restricting ourselves to spinless operators.
2The fields ¢ in the (a, a) ring have charges (—1, —1).
3See e.g. [180, 213] for more details.
40ur presentation of the vacuum bundle and its identification in the A- and the B-model is partly based
on [180].
5See (E.g. }[61, 64] for details of this construction.
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and the three-point function is defined by
Cijk = (9i®jdr) = Clinim- (2.1.14)

Denoting ¢' = n”/(¢p); and choosing a section for the unique ground state as |eg) one can
display the representation of the chiral ring as [180]

leq) 06 0 0 leo)
le5) 0 0 Ciyx O] lex)
. 7 - : , 2.1.1
¢ eJ> 0 0 0o ¢ ek> ( 5)
€0> 0 O 0 0 60>
=C;

where |ej) = ¢; |eo), |ej> = ¢/ |eo), |60> = ¢#"|ep) and induces a splitting of the bundle V
as
V =HOO gD g 422 g G (2.1.16)

Here H (% denotes the subspace created by the charge (i,1) operatorﬁ . The insertion of ¢;
can also be understood as taking a derivative 9. In this way the bundle can be endowed
with a connection V = 9y, — C; which is flat

Vi, V] =0 (2.1.17)

and is called the Gauss-Manin connection. In fact, there is a second way basis for the vacuum
bundle which also gives rise to a flat connection. For these purposes, one introduces the
CPT operator © on the world-sheet and considers the metric

b = <ea @e”> (2.1.18)

which gives rise to the new basis

|€z> = Gkz

ek>, lea) = gog |€°) - (2.1.19)

The action of the chiral ring reads in the new basis{Z]

leg) 0 oF 0 0 leg)
i le) | _ [0 0 Cyrg®™ 0 lex)
‘ej_> 0 0 0 googzg ’6E>
leg) 0 0 0 0 leo)
=C;
leo) 0 0 0 0\ /leo)
lej) 9% 00 0| [les)
. - . 2.1.20
¢ le7) 0 Cijl}gkk 0 0 ler) ( )
leq) 0 0 6F 0/ \leg)
ZZC%

5To be more precise, such an operator gives rise to another vacuum state via the analog of the Hodge

decomposition.
"By abuse of notation, we also denote the following transformation by C; although it differs from (2.1.15).
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2.1. Twisting superconformal field theories

One can thus decompose V' as
V=LBLRITMSLITM L. (2.1.21)

Here L denotes the line bundle generated by the preferred ground-state |ep) from which
the other ground states can be generated by acting with chiral operators of weight (1,1).
However, these were identified with deformations and can in turn be identified with a section
of LRT M. One can introduce a connection on the bundle spanned by the new basis which
is given as

(A:)° = ¢"Digae. (2.1.22)

It is easily checked that this quantity transforms under gauge transformations indeed as a
connection. This connection induces a covariant derivative

Dileq) = i lea) — (4:)° |ey) (2.1.23)

The commutators of the covariant derivative with respect to this connection are called ¢t*
equations and read as follows

(D, 1:75] = -GGl
[_DZ', DJ] == [Dia Dj] == [_Dr“ C*] == [Di, C]] == 0,

The derivation of these equations is rather involved and based on explicit path integral
integral computations. We refer to the original literature [60] or reviews [61], [64] for details.
These can be used to define a flat connection given by

Vi=D;+aC;, V;=D;+a 'C;. (2.1.25)

(12.1.25)) is also a realization of the Gauss - Manin connection. This splitting of the vacuum
bundle will be important for the discussion of the holomorphic anomaly in section [2.3.2
The tt* metric can furthermore be used to endow M with a Kéhler metric by setting
Gy =21 (2.1.26)
900

Here the Kihler potential is given as gyg = e X and the equality G;; = 0,0y K is a
consequence of the ¢t* equations (2.1.24)), see e.g. [61] for a derivation of this fact.

2.1.6. The topological twist

In this section we will introduce the topological twist [I3] that transforms an N = (2,2)
SCFT into a topological field theory. This algebra possesses two isomorphisms, also called
twists that are given as

A0 T() T+ 00, T() —T() - 30I(3)
B: T(z) — T(z) - %&](z), T(z) — T(2) — %&J_(z) (2.1.27)
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2. The Refined Topological String

There are two more twists, but these are related to these two by complex conjugation.
For the moment we concentrate on the holomorphic part of the A-twist and analyze its
implications. We do not work out all the new OPEs but remark that

2T (w) 0T (w)

T T ~ ’

(2)T'(w) Cow? aow
c 1 J(w oJ(w
L Jw) 9w

T@)J(w) ~ 3Gz—w)Bd  z—w)?  (z—w)

(2.1.28)

Here the first OPE implies that no ghosts are necessary in order to quantize the system,
while the second OPE displays that the twisted current acquires an anomaly. Another effect
of the twisting is that the conformal charge of G* becomes one, which can be used to define
a BRST operator

Q= 7{G+. (2.1.29)

Also, the energy-momentum tensor T becomes exact
-1 B
T= i{Q’G IS (2.1.30)

which implies that the theory gets topological by the twist.

The discussion of an-holomorphic sector and of the B-twist works analogously. Altogether
the twisting leads to two sets of BRST operators{ﬂ

(a,c): Qa=Gy +G§
(c,;o): Qp=G{ +G¢ (2.1.31)

that annihilate the anti-chiral respectively the anti-chiral ring.

In fact, the two twists are related by the re-definition J — —J and from the conformal
point of view there is no difference between them. A crucial difference between them will
arise, once one considers the realization by non-linear Sigma-models. This is the subject of
the next section.

2.2. Nonlinear Sigma model realization

One important realization of SCF theories is given by a non-linear Sigma-model (see e.g.
[61] [64, (180l 186] for further reference), i.e. a supersymmetric embedding of a Riemann
surface X, of genus g into a Calabi-Yau threefoldﬂ X

8, — X. (2.2.1)

In particular, it will be used in the following to geometrically realize the A- and the B-
model. The full field content of the theory reads as follows, note that we also display the
effect of twisting

8The twisting changes the conformal weight, which results in a shift within the mode expansion.
9We restrict in general our discussion to threefolds.
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2.2. Nonlinear Sigma model realization

Section before twisting Section (A) twist Section (B) twist
z T(%,, X) T(%,, X) T(%,, X)
¥ | T(Sy, 2" (TXM0) @ K2) | T(X,,2*(TX10)) | I(Z,,2"(TX10) ® K)
b | T(S,, 2" (TX0) @ K2) | T(Sy,2*(TX19) @ K) | [(Z,,25(TX 1) @ K)
X | T(Z,, 24 (TXOV) @ K2) 2 (TXOD ® K) (S, z*(TX )
Y | T(Sy,a*(TXOD) @ K2) | T(Z,,2*(TXOD)) I(S,, 2" (TXOD)

TX =TX19 ¢ TX©01 denotes the complexified tangent bundle of X and K denotes the
canonical bundle of ¥J,. The dynamics of the un-twisted fields are governed by the following
action

S = / d2z(\/ﬁgijn“”8uxi 2!+ \/ﬁBijn“”('?Hxi e

EQ
o _ 1 7
—Zgin]DEW - ZginJDzlbZ - §R¢g—kz‘¢z¢kx7xl) (2~2-2)

Here 7, denotes the world-sheet metric on ¥4, in contrast to the space-time metric g;;.
The covariant derivative acting on the fermionic fields reads as follows, with FZl denoting
the Christoffel symbols

Dzwi = 3z¢2 - %Wﬂﬁi + F,Z;lale%bl y

Dzt = 851/7+%wz&"+rﬁglazx%". (2.2.3)

The operators of the superconformal algebra are realized as follows

J = g% +9'N),

gt = gij(¢i8z$j+ P'05a7)

G~ = g;(x70.2" + X70:2"),

T = gi5(0:2 0527 + ix?0,4" +ix?0:¢"). (2.2.4)

The curly quantities denote the sum of right- and left-moving part, e.g. J = J + J. Before
we discuss the A- and the B-model in detail, we briefly comment on the distinguished role
of Calabi-Yau threefolds.

2.2.1. The special role of Calabi-Yau threefolds

This section explains the special role of Calabi-Yau threefolds among the possible target
spaces [61]. In fact NV = (1, 1)-supersymmetric models can be formulated on any Rieman-
nian manifold, the extension to N = (2,2) supersymmetry requires the manifold to be
Kéhler, which allows for left- and right-running U(1) R-symmetries. These can be linearly
combined to vector U(1)y and axial U(1) 4 currents. The topological twist can be shown to
be equivalent to a coupling of the form

Jws, (2.2.5)
Eg

where wg denotes the spin connection and .J is the respective linear combination of U(1)
currents. The A-model couples to the vector current and can therefore be defined on any
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2. The Refined Topological String

Kéhler manifold. The B-model gets couples to the U(1) 4 current which acquires an anomaly

c

—/ x*(c1(TM)). (2.2.6)
3Js,
The cancellation of this anomaly is equivalent to demanding that X is a Calabi-Yau mani-
fold. However, in the following discussion it is assumed that both, the A- and the B-model
are defined on Calabi-Yau manifolds. To point out the distinguished role of three complex
dimensions, one has to anticipate some results from topological string theory, see also[2.3.2]
Firstly, for d = 3 the anomalous coefficient in becomes —3, which reflects the
fact, that one can establish an isomorphism between the bosonic and the topological field
theory. This will be important for the construction of the topological string in section
Secondly, the virtual dimension of the moduli space Mg(X , B) of stable maps from a
Riemann surface of genus g has dimension [61]

vir dimM, (X, 8) = /ﬁCI(X) +dim(X - 3)(1 —g) (2.2.7)

which becomes zero in the case of threefolds but negative for higher dimensions, if g >
1. Roughly speaking, this implies that topological string theory is uninteresting on these
spaces.

2.2.2. The moduli space of Calabi-Yau threefolds

As the understanding of the moduli space of Calabi-Yau manifolds [I84] is crucial for the
discussion of A- and B-model, it is briefly analyzed in the following. Consider an infinites-
imal variation g,, + 0g,, of a Ricci-flat metric on a Calabi-Yau manifold X. Demanding
that the Ricci-flatness is preserved

Ru(9)=0,  Rulg+dg)=0 (2.2.8)
one is lead in the gauge V¥g,,, = 0 to the so-called Lichnerowicz equation
VAV ASGu + 2R, 8g.r = 0. (2.2.9)

Using the splitting of the indices u, v into holomorphic and anti-holomorphic indices m, 7,
one can analyze dgm,n and dgp,, separately. It turns out that demands that §g,,7 is
harmonic with respect to Ay, while d¢g™ = gmké,;ﬁdzﬁ is Az harmonic. These are therefore
associated with elements of H(:) (X, C) and HOD (X, T(10) X) respectively. The latter is
due to the globally non-vanishing holomorphic three-form isomorphic to H® (X, C).

As the first type of deformation preserves the index structure it is identified with de-
formations of the K#hler form, which can accordingly be expanded within a basis w* of
HOD(X,C) as

w=Y . (2.2.10)
k

Here t; denote the real Kéhler parameter. Note that not any deformation is allowed but
only those which do not violate the positivity condition, i.e.

/wZO, /w/\wZO, /w/\w/\wzo. (2.2.11)
C S X

22



2.2. Nonlinear Sigma model realization

for all curves C and surfaces S which leads to the notion of the Kéhler cone. Later on,
it turns out to be useful to consider the complexified Kéhler form J = w + ¢B, where B
denotes the Kalb-Ramond field.

The second type of variations changes the index structure of the metric. One therefore
needs an anti-holomorphic coordinate transformatiorm to restore the original type. These
deformations are accordingly associated with complex structure deformations.

2.2.3. The A-model

In this case the twist is given by

~ 1 _ _
T=T+ 5&], T=T--07 (2.2.12)

1
2
The BRST-operator

Q4= dez + fé*dz (2.2.13)

acts as follows on the fields
Sax' = e’ 4" =0, 40" = 2ieda’ + I'yply",
Sax' = €X', dax'=0, 0ax’ = —2iedx'+ eri_,-cxﬂ‘x’“. (2.2.14)

Here, I’;k denote the Christoffel symbols with respect to the space-time metric and we have
se@ €4+ = €_ and made use of the notation

daf =1[Qa, fls. (2.2.15)

The vanishing of the fermionic variations implies that the BRST-invariant configurations
are given by holomorphic maps. The A-twisted action of the non-linear sigma model action

is given by
S =itdx (/ d2zV) + t/ d%z %, V =g (Xjagxi + 8zxjtﬁi) ) (2.2.16)
Zg Eg

with J denoting the complexified Kahler form. This form of the action can be used to show
that the A-model is invariant under deformations of the complex structure up to BRST
trivial terms. See e.g. [I86]. The BRST closed operators of the topological field theory take
the form

N W KL LI CL (2.2.17)
The identification (u,u being local coordinates)

Yl dut, X e di, Qarrd=0+0 (2.2.18)

implies that the A-model calculates the de Rham cohomology of the target space. The
deformations of the A-model are given by the (1,1)-elements of the anti-chiral ring that

0Tt is non-trivial that the infinitesimal transformation can be integrated to a finite one. See e.g. [I85].

"This swallows some cohomological information. See [61] for the full transformations.

2Here ¢ denotes a parameter that takes the role of % in QFT and is not to be confused with a Kéhler
modulus.
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2. The Refined Topological String

take the form A
wi¥'X’ (2.2.19)

and are identified with Kéahler deformationﬁ using (2.2.18)).

2.2.4. A-model realization of the vacuum bundle

The realization of the vacuum bundle within the A-model relies on the notion of quantum
cohomology [I87,[188], see also [61],186]. The basic idea is to deform the classical intersection
numbers by world-sheet instantons. This happens as follows. The charge conservation and
anomaly cancellation constrain the correlation function on a sphere to take the following
form

Cijk = <¢Z(0)¢](1)¢k(00)> (2.2.20)

where in addition the SL(2,Z) invariance has been used. is also called Yukawa
coupling as it gives rise to this quantity in e.g. certain Heterotic compactifications. The
operators ¢; are elements of H(») (X, C) and we denote their dual divisors by D;. As the
path integral localizes on the holomorphic maps this path integral can in a first step reduced
to the moduli space of maps

Co= Y @ / ev(wi) A evi(ws) A evi(ws) (2.2.21)
BEH(X,Z) Mo, 3(X,5)

The notation is as follows. My 3(X, ) denotes the moduli space of stablﬂ maps of genus
zero with three punctures. ev; : Mo3(X,3) — X is the evaluation map. In addition
choose dual bases e; and e/ of H'(X) and Ho(X) respectively such that the Kihler form
reads J = t'e; and any class 8 = d;e’. The Kihler parameters are explicitly given as

ti:/,J:/.w—l—iB. (2.2.22)

. 1,1 . . .
Also Q) = e~ 27" and we denote in the following Hiil ) Q?Z = Q®. The three-point function
can accordingly we evaluated as

Cijk =D;N Dj N Dy + Z Ngdidjdeﬁ. (2.2.23)
0£B8€ Ha (X,Z)

Here Ng are the values of the integrals over the moduli spaces Mg 3(X, 5) and are called
Gromov-Witten invariants at genus zero. The map with d; = 0 is special and corresponds
to the map which sends the punctured sphere onto a point in X. It reproduces the classical
intersections that get corrected by world-sheet instantons. This evaluation takes place
around a point in the moduli space, where the volume of the corresponding curves is large
and the instanton sum has a sensible meaning. This is called the large radius point.

The three-point function can also be expressed as the third derivative of the prepotential

13To obtain complexified deformations one has to add the hermitian conjugate which vanishes in @4 BRST-
cohomology.

1A map from a pointed nodal curve ¥ into X is called stable if any contracted component of genus zero
has at least three special points and any of genus one at least one in order to cancel the isometries.
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2.2. Nonlinear Sigma model realization

which is also called the free energy at genus zero.

1
FO(t) = /J/\ JNT+ > NJQP, Cij = 0,00, F°. (2.2.24)
0#£B€H(X,Z)

The vacuum bundle discussed in section [2.1.5] is realized in the A-model via the sequence
[180]

HO(X,C) ¥4 H2(X,C) ¥4 HY(X,C) ¥4 HS(X,C). (2.2.25)
To define the connection V 4 one picks a generator 19 of H(X, C) and a basis n; of H(X, C).

In addition one chooses bases x; and yo of H*(X,C) and HS(X,C) that are dual to the
first two with respect to the symplectic pairing. The connection reads

n dO; n dO; )
Vano = Zm ® Q, Vang = Z CijkX; ® Q, Vax; = xo—~- 4G, Vaxo=0.
i=1 Qi ij=1 @ @
(2.2.26)
2.2.5. The B-model
The BRST operator of the B-model [61], [I86] is given as follows
Op = ]{sz + fé*dz (2.2.27)

and in order to display its action on the fields it is useful to introduce the combinations

=0 +x), 0;i=g;(—x") (2.2.28)
The BRST transformations on the operators read as follows

5B$i =0, (5B:Lj = 6775, 537#Z = iE@(IJi, 5377;1 = —iEéxi, (5377? =0, 6go;=0.
(2.2.29)
In contrast to the A-model this implies that the B-model path integral localizes on constant
maps into the target space, which is one source of its easier computability. After twisting
the action takes the following form

S =it / {QB,V} +tW, vV = gij(wiagxﬂ'ﬂz?iazxi),
W = / (—6;Dy" — WWAW rg’") (2.2.30)
Zg

One can show that the B-model is BRST cohomologically invariant under Kéhler deforma-
tions. The physical operators of the B-model take the form

W)y, 0, (2.2.31)
and after identifying i ) )
n'—dz', 0;— 0, Qp—0 (2.2.32)

one notices that the topological operators are just given by the elements of the twisted
cohomology group H (%9 (APT X (1:0)) which can be identified with H®~79) (X, C) by making
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2. The Refined Topological String

use of the globally non-vanishing three-form 2. The deformations of the B-model are given
by operators of the form o
¢ = (b°)in'6, (2.2.33)
)

where b® constitute a basis of H(:D (X, 7(10) X).

2.2.6. Hodge filtration and Picard-Fuchs equations

The moduli space of the B-model is given by the complex structure moduli space of the
target space. The bundle corresponding to the deformation sub-ring is therefore given as
H3(X,C). Once a complex structure is chosen, there is a natural splitting [61, [180]

H(X,C)= P H(X). (2.2.34)
p+q=3

Unfortunately, this splitting does not vary holomorphically as one moves in the complex
structure moduli space. Instead one is led to consider the so-called Hodge filtration, which
does vary holomorphically

H*=F'>F'>F*>F,  FP=PH"*X)CH (2.2.35)
a>p

from which the split (2.2.34]) can be re-discovered as

HPY(X) = FP(X) N Fi1(X). (2.2.36)

In addition the filtration (2.2.35)) is equipped with a flat connection, named the Gauss-
Manin connection, that enjoys the so-called Griffiths transversality condition VFP C FP~1,
This property can be used to construct a basis of H3(X,C) that reads

G = {05} = (2B, oV /(12 o09),

i

i=1,....h3Y  g=0,...mX). (2.2.37)
The Gauss-Manin connection takes up to exact terms the form
Vil (z) = (8; — A)(z) = 0 (2.2.38)

which implies that it annihilates the periods
I15(2) :/ Qs(2), € H3X), «apB=0,...hX). (2.2.39)
,Ya

Here 7“ denotes a basis of H3(X). Also, the Griffiths transversality condition implies that
it is meaningful to define

Cz'jk = / QA ViVjka. (2.2.40)
X
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2.2. Nonlinear Sigma model realization

Denote by {2*} a set of coordinates on the complex structure moduli. One notices that

2
2
afkgzl e HGO g gy g g2
3
02802102k

This implies that there is a set of forth order differential equations L4, such that
L 1% = 0. (2.2.42)

The Picard-Fuchs equations can be seen as one manifestation of the flatness of the Gauss-
Manin connection. As the moduli space is not simply connected, corresponding to the fact
that singular and orbifold loci are cut out, the periods can have non-trivial monodromy
although the connection is flat. The monodromy group I is generated by transport around
loops 7¢ € HY(M) and is a subgroup of Sp(h3(X),Z), see [61] for more details.

B-model realization of the vacuum bundle

Next, we construct suitable coordinates for the complex structure moduli space. We start
by picking a symplectic bases for Hs(X,Z) [61], 176, 180]

AN B' =L, A;NA; =0, B'NnB =0 (2.2.43)

and a Poincaré dual one of H3(X,Z) such that

/onk/\ﬁl:/Alak:/Bkﬁlzéé. (2.2.44)

The allows accordingly for an expansion of {2 as
Q>z) = X*(2)ou + Fe(2)8%, XF= / Q, Fp= / 0 (2.2.45)
Ay Bk
and one writes IT' = (X*, F;). The Riemann bilinear identity implies that
which implies in turn the existence of the so-called prepotential which satisfies
1 .
The complex structure moduli space locally coincides with H?!(X, C) which has dimension

%h?’ — 1. One can show that the X* are homogeneous coordinates for the complex structure
moduli space and inhomogeneous coordinates are provided by

t* =X/ XY, (2.2.48)
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2. The Refined Topological String

The latter are also called flat or special coordinates. The normalized three-form vy =
Q(t)/ X" has the following expansion [180]

vo = ag + t%aq + BUFy(t) + (2F°(t) — t°F (1)) 5° (2.2.49)
with .
FO>t) = (X0)°F,  Fu(t)= az;tit)_ (2.2.50)

One also defines

Vg = Qg+ BbFab(t) + (Fa(t) - tbFab(t))ﬁo )
b = B,
UO — _50 . (2251)

In addition, the three-point function takes in these coordinates the form

Cape = 0qO0p0:Fo(t) = / v A 0,000 - (2.2.52)
X

This form makes also contact with the field theory definition of the three-point function
as the derivative with respect to t* corresponds to the insertion of a marginal operator.
Indeed, it is known that the three-point function takes the form [61]

(P10203) = /X(<Z>1)§11(¢2)Z(¢3)§29m~2i3d2ﬂ Adz2 A dEB A Q. (2.2.53)

In these quantities the action of the derivative 0, = a%l can finally be expressed as [180]

Vo 0 52 0 0 Vo
Vp . 0 O Cabc 0 Ve

da al=1o o 0 &l (2.2.54)
v 0 0 0 0 v

This defines the Gauss-Manin connection (2.2.38)) in special coordinates and is the B-model
realization of the chiral ring structure (2.1.15|).

There is also a B-model realization of second the decomposition of the vacuum
bundle that leads to the tt*-equations. This can be constructed as follows. To obtain the
corresponding Kéhler potential, one identifies the projectively unique three-form € (in a
certain complex structure) as the section of a line bundle £ over the complex structure
moduli space and introduces the Kahler potential K as

g =€ K = —i/Q AQ (2.2.55)

Here the Kihler potential is manifestly invariant under Sp(h3,Z) and can be expressed in
terms of the periods as

K= —log (HT2H>, - (_01 (1)> : (2.2.56)
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2.3. Mirror symmetry and topological string theory

IT denotes the period vector defined in (2.2.45)). One also define bases of HZ1) and H(1:2)
respectively as

and finds a K&hler metric

gi7 = Z/ Xi N X5 = E_KGl'j = e‘K&@;K (2,2‘58)
X

Gz is called the Weyl-Petersen metric. In these coordinates the Gauss-Manin connection
is expressed as

Q 0 oF 0 0 0

D | =V 0 e GO Xk (2.2.59)
X7 0 0 0 G| | x&
Q 0 0 0 0 Q

This is completely analogous to ([2.1.20]).

2.3. Mirror symmetry and topological string theory

We recall that the two twists differ from a CF'T perspective just by a map J — —J,
which exchanges chiral and anti-chiral ring. Furthermore we have shown, that the (1,1)-
elements of the chiral and anti-chiral ring are realized by the cohomology groups H 1) (X,C)
respectively H (21 (X,C). This leads to the far reaching conjecture that for any Calabi-
Yau manifold X there is another Calabi-Yau manifold Y, such that the A-model on X is
equivalent to the B-model on Y and vice versa. In particular this implies that

WOD(X,C)=h®D(v,0),  hD(Y,C) = h®D(X,C). (2:3.1)

It is a crucial question how the Kahler moduli of X are identified with the complex structure
moduli of Y. This is answered by the identification of the deformation bundle in the A-
and the B-bundle respectively and their comparison to the abstract CFT. This leads to the
following identification. Denote the period vector in the A-model by

Ta(t) = (1,4, 0;F, 2F} — t40,F}) (2.3.2)

Here F4 denotes the prepotential of the A-model side, i.e. the free energy at genus zero. t*
are the Kahler moduli as defined in (2.2.22)). This gets identified with the period vector

Mp(t) = (1,th, O;Ff, 2F) — t50,Fp) (2.3.3)

on the B-model side. Here the t% are the special coordinates defined by ([2.2.48|).

The large radius point on the A-model side gets under the mirror map identified with the
point of maximal unipotent monodromy@ At this point, the solutions to the Picard-Fuchs

151t is a corollary of the mirror conjecture that such a point exists in the moduli space of any Calabi-Yau
manifold. [192]
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equations take the following structure [199]

X0 Ja0 © “o
H( ) Xh2,1 fA . 9) Wh2,1 (2 3 4)
z) = = h< = K21 0.
Fo Jgo Q2 W2h271+2h;{'1212:1 A
: : Sy T lwi
FhQ,l thQ’l Q :

Here, wy denotes a holomorphic power series, w;, 1 < i < h?! denote single logarithmic
solutions, w;, h*! +1 < i < 2h%! 4 1 are double logarithmic solutions and finally, w21 192
is the projectively unique triple logarithmic solution. We refer to [61), I81] [199] for further
expositions.

2.3.1. Topological string theory and mirror symmetry at higher genus

So far with have been dealing with topological field theories and the only world-sheet ge-
ometry was a sphereEGL There exits a generalization of the prepotential to arbitrary genus
g called the free energy FY9(t) of genus g. These are organized as

F(t) = iggg—ZFg, Z(t) = exp(F(t)) (2.3.5)
n=0

and Z(t) is called the partition function. In particular, mirror symmetry states that
Fi(ta) = (XO)2 215 (=(1)). (2.3.6)

The definition of the higher genus free energies demands to go beyond field theory and to
consider topological string theory. This is the subject of the next section, where we start
on the B-model side.

2.3.2. Coupling the B-model to topological gravity

We consider a correlation function ]

(] %s.) (2.3.7)

for operators Oy, which are related to cohomology elements of H?4(X,C). The anomalous
U(1) 4 current demands that [212]

Y pa=> ta=d(1-g). (2.3.8)

which implies that a-priori only the sphere and the torus give rise to non-trivial correlation
functions. This can be traced back to the fact that one is integrating over a fixed metric.

160ne can also consider the torus as a world-sheet within field theory. See below.
17See [61], 186, 212 for further reference.
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2.3. Mirror symmetry and topological string theory

Coupling the theory to two-dimensional gravity allows also for non-trivial higher genus cor-
relation functions. Note that so far we have been strictly speaking dealing with topological
field theories. By this step we pass over to what is called topological string theory. To
proceed one notices by inspecting the OPEs that one can establish an isomorphism
[186, 212] to the bosonic string

(G, LT,G7) — (Q, Jghost: T, ) (2.3.9)

which allows to carry over the methods of coupling the bosonic string to gravity to the
topological string. By the usual Fadeev-Popov procedure one reduces the path integral
to an integral over the moduli space M, times an integral over the "matter and ghost”
system. The moduli space of Riemann surfaces is parametrized by the Beltrami differentials
ue H(LO)(EQ,T(O’I)EQ) and has real dimension 6g — 6 for g > 2.

The construction of the measure can be interpreted as follows. In analogy to the bosonic
string where one has to insert 6g — 6 anti-ghosts in order to soak up the zero modes, one
has here to insert this number of G~ operators to cancel the anomaly of the axial anomaly.

One defines a top form on the moduli space M, of Riemann surfaces of genus g by

39—3 39—3
wy= N\ dmi/\dmi<H |G—(m-)|2>, G‘(m):/z Go(u)ids Adz.  (2.3.10)
g

=1 =1

In analogy to the bosonic string the free energies at genus ¢ are then defined as

ng/M wg (2.3.11)

g

which transform as sections of £2729, where £ denotes the line bundle specified by the
choice of holomorphic three-form Q as its section.

The holomorphic anomaly equations

It is certainly difficult to perform the integrals (2.3.11)) directly. Fortunately the free energies
string obey a recursive relation, the so-called holomorphic anomaly equations that read as

follows
g—1

O F9 = %C@_,—fe”( GG (DD FI™ '+ Dy F D FT). (2.3.12)
r=1

Here K denotes the Kahler potential defined in and D; denotes the covariant deriva-
tivﬂ . The holomorphic anomaly reflects the fact that the Hodge decomposition
does not vary holomorphically over the moduli space which leads to the consequence that
the anti-holomorphic deformations, corresponding to the (a,a)-ring do not completely de-
couple. In the following we do not repeat the whole derivation of the holomorphic anomaly
equations which is quite complicated. Instead we just point out the idea and refer to the
original literature [86] for details or nice reviews [61),[199]. In usual QFT, an anomaly arises
whenever a classical symmetry does not leave the path integral measure invariant. Some-
thing similar happens here. We consider again the perturbation of the action by marginal

18Note that this may acquire additional contributions from the Christoffel symbols of the Weyl-Peterson

metric (2.2.58]).
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2. The Refined Topological String

operators
S= | dzLo+) ti/ P+ P/ d? 2y . (2.3.13)
Xy i g 7 g

The derivative with respectFE] to ' leads to the insertion of an (a,a) operator ¢; (in the
B-model). This can be shown to be BRST exact

or = —%dsz{Cf“ + G, [GT -G, ¢} (2.3.14)

and upon taking commutators would - naively thought - annihilate the expression when
one finally hits the vacuum. However this argument gets destroyed by the insertion of the
additional G~ operators from the measure. Instead these commutators lead to the insertion
of additional energy momentum tensors. These can be traded for derivatives with respect
to the moduli m® of the Riemann surface X, exploiting the well-known relation

/ A2z /o0 Ty = / a2\ 5 mO T, + 9% 5m R, | (2.3.15)
g EQ

Re-expressing everything being said so far in formulae we obtain

Q_,Fg = 8_/ Wy
ott ot Jamg

- [ (o fowt ot T] e T ),

39—3 2
= / [dm] > 48</¢5H/MGG—H/%G—> . (2.3.16)
Mg 5 Omp Oy ab ath ¥

The last integral would vanish if the boundary of the moduli space of Riemann surfaces had
no boundaries. In fact it does have, which displays the possible degenerations of Riemann
surfaces. Either a handle pinches off which decreases the genus by one and is reflected by
the first term in , while the second term in corresponds to a split into two
lower genus Riemann surfaces, compare also figure . The free energy at genus one
obeys its own anomaly equation which reads

_ 1 _ ~ o
OOF" = SCinCl! (% ~1) Gy, O = RGHGI Oy (2.3.17)

Here x denotes the Euler characteristic of the Calabi Yau manifold.

2.3.3. Coupling the A-model to topological gravity

Coupling the topological A-model to topological gravity works analogously to the discussion
of the B-model. As for the prepotential, one obtains for the higher genus amplitudes a

19This only holds for the distinguished coordinates #*. For general coordinates one has to take the covariant
derivative.
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2.4. Space-time perspective and refinement

® ©

Figure 2.1.: Two boundary components (on the right) of the moduli space of Riemann
surface of genus two.

classical contribution and a series of word-sheet instanton corrections.

Fi(t) = —i JNea(X)+ ) NjQY,
B
_ (X) 3 98
Fpo(t) = (1) BRSO\ 1oL (2.3.18)
g s Jo Nt I

Here A\;_1 is the gth Chern class of the Hodge bundleFE] and the corresponding integral is
found [70] to be
| Bag||B2g—2|

/Mg 71 = 29029 - (29 — D)1 (2.3.19)

By, denote the Bernoulli numbers and the numbers N g are called higher genus Gromov-
Witten invariants. They can be computed similarly to the discussion as the integrals over
certain moduli spaces. There is a well developed machinery to carry out these integrals for
toric Calabi-Yau manifolds. We refer to the literature for a discussion [611 [64) [79]. Instead
we continue by discussing how the topological string computes certain type ITA amplitudes.

2.4. Space-time perspective and refinement

Apart from providing valuable insights into mirror symmetry, the topological string com-
putes a part of the amplitudes of the physical Type IIA string. A general scattering ampli-
tude of the physical string takes the form [189] [190]

((space-time operators))
(det Imr)g

A~ - ((o-model of the internal theory)) . (2.4.1)

In case the space-time part of the integral cancels the factor coming from the period matrix
7 of the world-sheet, the remaining expression is completely determined by the zero-mode

*Over M, one has a vector bundle whose fibers consist of the holomorphic sections of the line bundle K,
over M. This is called the Hodge bundle.
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2. The Refined Topological String

part of the internal d-dimensional sigma-model. In fact, this happens for higher derivative
terms in the four-dimensional effective action of the physical Type II string. These take the
following form

/ d*zd OWH FI(t;) = / dFIt)RLFI2 + ... (2.4.2)

Here, W denotes the Weyl multiplet and R, and F denote the self-dual parts of the curva-
ture respectively the graviphoton field and F'Y denotes the free energy that was introduced
in . There is also second perspective on these amplitudes coming from integrating
out certain BPS particles which leads to the notion of Gopakumar Vafa invariants. In the
following we sketch this point of view in some more detail.

2.4.1. The Gopakumar Vafa invariants

Such BPS particles arise in type ITA compactifications from D2-D0 bound states wrapping
a holomorphic curve C in the class 8 € H?(X,Z) of the Calabi-Yau manifold X [22] 23].
In fact, it is easier to discuss the problem in the equivalent M-theory setup obtained by
decompactifying the fifth dimension. This limit is possible, as the amplitudes under consid-
eration correspond to the computation of corrections to the vector multiplet moduli space
from which the dilaton decouples. In the following we therefore consider a compactification
of M-theory on X x S!. A general BPS state transforming under the little groups SO(4) =
SU(2), x SU(2)r is represented by a field content of the form

i,

2 O) ©® 2(07 0)] ® Z Nj1,j2(jlaj2)a Nj1,j2 € Z. (2'4'3)

J1,J2

As was shown in [22| 23], the first factor in is absorbed by the insertion of the factor
R? in (2.4.2)) such that the integral can be reduced to a Schwinger loop calculation.

The mass of such a BPS particle consists of the volume of the wrapped curve in the class
B € Hy(X,Z) as well as momentum along the additional circle

1
m=— / J+2min, neZ (2.4.4)
9s Jp

where gs; denotes the string coupling constant and J the complexified Kahler form. By
integrating out a particle of mass m and charge e in the background field strength F one
obtains a contribution to the free energy F' as

F:/oo @TI‘(— )Ffefsm2 —2seoy, - F
€

; (e E ) (2.4.5)

Here F; denotes the fermion number and oy, is the Cartan element of SU(2)r. To evaluate

this expression, we introduce the numbers N BL JR which count the numbers of M2-branes
wrapping a curve in the homology class 8 and give rise to particles with the spin content
(jr,jr) in five dimensions. We postpone the discussion of the geometric origin of the spin
content to the next section. As the field strength of the graviphoton field is self-dual it only
couples to the left spin which implies that is useful to introduce the weighted, right-spin
averaged numbers

ny, = > (=1)¥R(2jr+ 1N, . (2.4.6)

JR
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2.4. Space-time perspective and refinement

As a next step, we perform a change of spin basis

Sl =Sl L= [(1/2) + 20 (2.4.7)
r=0 JL
B

The new numbers n;, are called Gopakumar-Vafa invariants and provide another set of
geometric invariants of the Calabi-Yau manifold X, see also the discussion in section ([2.4.3)).
Also note that I, is just the SU(2) spin content of the Lefshetz decomposition of a torus 7"
which will get an interpretation in the next section. Any particle in the representation I,
coming from the class 8 contributes to as

zﬂ: / %e—sﬁ’ﬂ“m) <2sin (%))QH. (2.4.8)

Here we have already summed over all n - accounting for all possible momenta along the
circle - and taken the trace which can be easily evaluated for the representation I,. (2.4.8))

can be re-summed to . _—
L —mt-fB 598)) T
> e <2s n( . . (2.4.9)
m>0

Taking into account the classical terms as well as contributions from unwrapped D2-branes,
the final form of the free energy is given by

1.1 - 1
F(t,gs) = ?(gcﬁktlﬁt’f + Py(t)) — 57 ¢2(X)ti + const (2.4.10)
S
XB Bg 1 29 2 g dgs 2972 dﬁ
Z4ggg_2 )(2g — 2)! 9s +ZZZ 6(2sm 2)) QY

gO,Bdl

c2(X) is the second Chern class of X and P»(t;) is a ambiguous term (see [64] for a comment
on this). In addition, we have made again use of the notation Q? = e~*#. It is satisfying
to see that this computation gives back precisely the term that comes from the evaluation
of the Hodge integral .

The Gopakumar-Vafa invariants are integerﬂ and give furthermore insight in the enu-
merative meaning of the Gromov-Witten invariants which are in general rational numbers.
The latter receive corrections from multi-covering [86], 193] and bubbling contributions. The
first correction comes about as follows. Given a holomorphic map z : P! — X in the class
B one can compose this with a degree d cover of P! to obtain a contribution to the class
dfB. In order to properly count primitive maps one has to subtract the contributions coming
from multi-covering curves of lower degree. If one expands the last contribution of
in g one finds

|Baglng | 2(—1)9n) 9-2 g 8\ 1 5
Fy(t) = +.- = Liz_ 24.11
10 Z (29(29_2)[ T (29 —2)! 12 9—1 +ng> i3-24(Q7) ( )

which gives a precise description of the multi-cover contributions.
The second effect, the bubbling, comes from gluing a very small Riemann surface of genus

2'This follows from the definition (2.4.6) and the fact that the diagonal elements of the transformation
matrix (2.4.7)) are given by 1.
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2. The Refined Topological String

h into another one of genus g one obtains a map from a Riemann surface of genus g + h
which implies that primitive maps at genus g also contribute in this way to higher genus
maps [212].

2.4.2. The geometrical origin of the spin content

In this section we explain the geometric origin of the five-dimensional spin content [23].
There are eight scalars arising from the world-volume theory of the M2 brane. Four of
them describe the displacement within space-time and another four the deformations within
the Calabi-Yau manifold. From the IIA perspective there are seven scalars and the U(1)
field strength which dualizes in three dimensions to another scalar. The moduli space of
deformations M is given by deformations of Yy within X and the choice of a flat U(1)
connection on ;. Therefore one has a fiber map with a section

M—M, MM, (2.4.12)

whose fiber is given by Jac(¥) = T%. M is Kéhler and enjoys a Lefshetz action that
splitf?? into two separate Lefshetz actions on the fiber (SU(2).,) and on the base (SU(2)g).
These get identified with the spin quantum numbers of the BPS particles in five dimensions
[23], see [61] for a pedagogical derivation. In particular the representation I, from
is identified with the spin content of the Lefshetz decomposition of the Jacobian. The
Euler characteristics of the two moduli spaces, M, M are encoded in the Gopakumar Vafa
invariants as

~

np = (DI, ) = (~)TmeMy (). (2.4.13)
In easy cases, the definition can be used to directly compute the numbers IV j’BL in
Example. Consider the canonical class of Fy = P! x P! which is given by 2b+ 2f, where b, f
denote the class of the base and fiber respectively. This is a torus given by a bi-quadratic
curve in P! x P'. The moduli space of this curve together with its Jacobian is
given by a P” bundle over P! x P!. Choosing a connection a torus corresponds by T-duality
to picking a point p on the dual torus. Mark this point in P* x P!. This moduli space of
bi-quadratic curves passing through this point p is given by P7. Let us first calculate the
diagonal Lefshetz decomposition@ of P! x P! x P which gives

D0 e

The Lefshetz decomposition of the fiber, being a torus, gives I1 = (%) @2(0). We also know

that the decomposition has to contain a summand with the highest left spin, i.e (%) and

that taking the diagonal has to give a back the decomposition (2.4.14]). This information
suffices to conclude that (jz,j R)—decompositior@ is given by

(90109

Using these numbers one can compute the Gopakumar Vafa invariants via (2.4.6) and

22The Kibhler class k can be split as kr, = (k — 7 (¢*(k))) and kg = v*(k).
ZThe Lefshetz decomposition of P is (%)
241n fact this is precisely the decomposition that we find by the refined topological string computation listed

in table (5.4)).
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2.4. Space-time perspective and refinement

. In fact it is often easier to calculate the free energies on the mirror side, to transfer
this result accordingly to the A-model side and to extract the Gopakumar-Vafa invariants
from the expansion . Besides that there are important techniques like the topological
vertex [79] , or the B-model version of the Eynard-Orantin formalism [123] which we do not
go into in this thesis.

2.4.3. Refinement of the free energy

In the last section, Gopakumar Vafa invariants were introduced which arose from integrat-
ing out BPS particles in a self-dual graviphoton background field by a Schwinger-Loop
calculation. Instead one can drop the self-duality condition

F = gsdxy N\ dxg + gsdxs A dxy (2.4.16)
and consider a general background field strength that is parameterized by
F = erdxri Ndxry — eadxg A dxy . (2.4.17)

In this case one expects to see also the right spin content. In fact, the generalized Schwinger
loop calculation yields [10§]

8 JZL: ;" jZR? gpmn
EOO 2(jL+ir) NJ'LJR mr=—jrL mRr=—JjR R kB
Flenent) = (=1) Tk T he — N (2.4.18)
JjrL,jr=0 2 sinh <71> 2sinh <72>
k=1

which is called the refined free energy. Here we have defined €7,/r = €1 F €2 and qp/p =
e“L/R. The numbers N7 . are called refined BPS invariant This leads accordingly to a

L. JLSJR
decomposition of the free energy as

+oo
F(El, €2, t) = Z (61 + 62)2n(€1€2)g_1F(n’g) (t) . (2.4.19)
n,g=0

Note that the limit g; = €; = —eg gives back the usual expansion (2.3.5). In addition, the
refined topological string partition function takes the form [108]

20 +ip)N?

JL/R [ee) JLIR

7= T I I I (g derde)
BEH2(X,Z) jr/r ML/R=—JL/R ™M1,m2=1
(2.4.20)
An important question is whether the refined BPS invariants are also enumerative invariants.
To answer this question, we step back to the Gopakumar Vafa invariants. These are counted
by the following five-dimensional index

I(a, B) = Trpps(—1)¥ %R exp(—aJi — BH) (2.4.21)

2580 far, this is just a name.
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2. The Refined Topological String

where H denotes the Hamiltonian and the trace is taken over the whole Hilbert space.
This index reproduces the topological string partition [23] function@ One can show that
only the short BPS multiplets which are annihilated by the supercharge transforming as
2(0, %) effectively contribute to the above trace. While the numbers N ]BL jp can change
under complex structure deformations, the BPS multiplets that are created or destroyed in
this process always have to pair up in long multiplets that do not contribute to the above
index. This shows that the Gopakumar Vafa invariants are in fact invariant under complex
structure deformations [23]. See [24], 29] for examples where N. JBL jr change under complex
structure deformations. One can ask under which circumstances it might be possible to
define an index that computes the refined BPS numbers Nji jp In fact, if there is an

additional U(1)g symmetry one can use the generator J3 to define the following indexlz_7|
counting refined BPS invariants

ZBps(q, 62) = Tr(—1)2(jL+jR) exp —((61—62)(]%4-(61 +62)J]3%+<61 +€2)J%+5H) . (2.4.22)

This index was developed in [26] in the study of supersymmetric five-dimensional gauge
theories. Fixing (e1 + e2)(Jp + J3) = J'3, corresponds to the following twist in the five-
dimensional theory. Its symmetry group is given as SU(2)z, x SU(2)r x SU(2)g, where the
first two factors correspond to the little group and the last one refers to the R-symmetry.
If one chooses instead the Lorentz group SU(2);, x SU(2)p where the last factor is the
diagonal in SU(2)r x SU(2)g the eight super-charges transform as a self-dual two-from

Zy, a vector G, and scalar ). Then one considers the equivariant cohomology of the
BRST operator

Q = Q+ E.Q2"Q, (2.4.23)

where E, € so(4) and Q5"x#0, is the generator for a rotation. Q becomes an equivariant
differential on the moduli space of framed instantons that are counted by the Nekrasov
partition function [26].

If the theory has more symmetries, like e.g. flavor symmetries, one can use different U(1)
generators Jr to perform the twisting (e; + e)(J3 + j%) =J ?1’%. Typically such a twist can
result in a shift of mass parameters of the five-dimensional fields, such as m; — m; + g;eR,
where ¢; denotes the charge under the generator Jz [129].

A geometry that realizes the two twists is referred to as {2-background. It can be con-
structed as follows [129] . Consider a four-dimensional N' = 2 theory that can be lifted to a
six-dimensional N = 1 theory, whose dimensional reduction gives back the four-dimensional
theory. As a next step one compactifies the six-dimensional theory on a R* over a torus
T? such that there are non-trivial holonomies of a flat SU(2) x SU(2) connection that read
explicitly

(e%Re(ElJﬂzg)og7 G%Re(elfez)og) and (G%Im(€1+€2)037 e%lm(qfq)ag)' (2424)

Next one embeds the first SU(2) factor of the connection into the six-dimensional R sym-
metry group and finally one takes the limit » — 0 to obtain the twisted four-dimensional
theory. In fact the above procedure works also for an arbitrary four-manifold that has U(1)
x U(1) symmetry?s} Another often used geometric realization [214], see also [78], of the

26To be more precise its holomorphic part. See and for details.
*7See also the appendix of [197], for a nice discussion.

281t was conjectured in [129] that also a U(1) invariant conformal structure suffices.
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twisting is a compactification of M-theory on the following space
X x S'x TN, (2.4.25)

where X denotes again a toric Calabi-Yau manifold. These allow for an additional U(1)
symmetry which realizes the isometry of the second S'. The four-dimensional space is given
by a Taub-Nut spacelg TN, coordinized by z1, 29, that is twisted along the S* as

21 > €€z, 29 > €522 . (2.4.26)

The additional U(1) symmetry on toric Calabi-Yau manifolds reflects the fact that these do
not have complex structure deformations which reconciles with the starting point of the dis-
cussion. We close the discussion by mentioning that only preserves supersymmetry
in the case that X is compact if €1 + ¢ = 0 which corresponds to the unrefined case.

2.4.4. Refined stable pair invariants

Finally, in the last section of this chapter, we review the basic mathematical background
material in order to define refined BPS invariants which is based on the notion of stable
pairs.

A stable pair [TIH73] on a smooth threefold X consists of a sheaf F on X and a section
s such that

e F is pure of dimension 1
e s generates F outside a finite set of points

A stable pair is a D6-D2-D0 bound statd®] and can be written as a complex
0—Jo—0x 5 F—Q—0. (2.4.27)

Here C is the curve supporting the D2 brane with J¢ its annihilation ideal. Q denotes the
cokernel that encodes the DO brane charge and Ox denotes the structure sheaf. We denote
by P, (X, ) the moduli space of stable pairs with chaF = 3, x(F) = n. The fact that X is
Calabi Yau implies that P, (X, 3) supports a symmetric obstruction theoryiﬂ which follows
from Serre duality and the triviality of the canonical class [85]. Due to the symmetric
obstruction theory the virtual dimension of P, (X, 3) becomes zero and in addition one has
a virtual class of degree zero [P, (X, 3)]""" which can be integrated

Poy— / 1 () dmPXB) (P, (X, B)). (2.4.28)
[Pn(X,B)]Vr

Here the last equality holds only in the smooth case. These are counted by the Pandharipande-
Thomas partition function
Zpr =Y Popd"Q”. (2.4.29)
n7ﬁ

29This includes in particular the case R* if the charge equals one.
39The D6 brane gets transparent from (2.4.25)) as a Taub-Nut space is the M-theory lift of a D6-brane.
311.e. the obstructions are dual to their deformations.
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2. The Refined Topological String

We recall the partition function for the Gromov-Witten invariants

Zew = exp (Faw (N, Q)), Fow = Z ZNggig‘QQﬂ- (2.4.30)
B#0 g
It is conjectured that after the variable transformation ¢ = —e®¥s it holds that Zpr = Zaw .

This has been proven in the toric case [73]. The basic idea to compute the Pandharipande
Thomas invariants for toric Calabi-Yau manifolds is to note that the moduli space P, (X, /)
inherits the torus action of the Calabi-Yau manifold which can be used to localize the integral
to T-fixed stable pairs. For such a T-fixed stable pair the ideal Jo is monomial
and by this property in one-to-one correspondence with three-dimensional partitions. The
computation is therefore reduced to a combinatorial box-counting problem [71], see also [27]
for a good review.

Via an extension of the classical Bialynicki-Birula decomposition to the virtual case it is
possible to refine the obstruction theory [27]. This requires a C*-action on P, (X, 3) with
finitely many fixed points. Denoting by ¢ the coordinate of C*, one can consider the cells

+ i e — — i L=
U, = {x € P, (X, ,8)]%1_r>r(1)t x p} , U, {3: € P (X, B)]tliglot x p} (2.4.31)

for each fixed point p of dimensions d;r and d,, respectively. Picking a generic enough C*-
action, such that its fixed points coincide with those of the torus action one defines the
virtual motive

Pu(X, B = 3 (-LVRE (2.4.32)
pEPn(Xvﬁ)C*

where IL denotes the absolute motive of C. From this expression one extracts the refined
BPS numbers as follows. First one notices that the SU(2) characters

UrlL ==L778 4+ .+ L/" (2.4.33)

form a basis of the Laurent polynomial in LY/2. Accordingly we can rewrite (2.4.32) in
terms of (2.4.33) and extract the refined BPS numbers from the expansion

[Pipa (X, B = (=1)%END - [jr] - (2.4.34)
JR
These are counted by the refined Pandharipande Thomas partition function

jL/R oo m

-1
Z};T = H H H H (1 — L_m/2+1/2+j—mR(_q)m—2mLQﬁ
7=0

ByjL,jr ML/ R=—Jr/r m=1j

_1\2(J+J B

(2.4.35)
which coincides with ([2.4.20]) after the identification
qi/Z — —q~ !, qr— LY e s ]Lfl/Q(—q), e 2 ]L1/2(—q). (2.4.36)

32Here the multiplication is given by the decomposition into irreducible representations.
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3. Direct Integration of the Refined
Holomorphic Anomaly Equations

The aim of this chapter is to explain how the refined BPS invariants can be computed using
mirror symmetry and the direct integration approach on the B-model side. As discussed in
the last chapter, the notion of refined BPS invariants is only meaningful on non-compact
Calabi-Yau manifolds. We start the discussion with a brief review how the unrefined holo-
morphic anomaly equations can be integrated using special geometry relations in section
Afterwards, we continue with the introduction of two important limits given by the
local and the holomorphic limit in section The latter is contrasted with the expan-
sion of the string theory partition function in terms of modular forms in the wave-function
picture. After these preliminaries we proceed to the discussion of the direct integration of
refined holomorphic anomaly equations in section We discuss their local B-model in-
terpretation and comment on the definition of the corresponding refined free energies. As a
next step, we comment on the gap condition which allows to fix the holomorphic ambiguity.
Finally, the last section [3.4] presents a very efficient algorithm that allows to perform the
direct integration which applies to geometries that have an elliptic mirror curve and which
is based on the Weierstrass normal form of the latter.

3.1. Integration of the unrefined holomorphic anomaly equations

The starting point for the integration of the holomorphic anomaly equations ([2.3.12]) is the
so-called special geometry relation which can be derived from the tt*-equations (2.1.24)

Oy = 0} Gz + 07 G = Cin Gy (3-1.1)

From which one may deduce [172] [173] relations for the propagators S¥, S? S, transforming
as sections of £L72®Sym?T* M, L72@T*M and L2 respectively, which are central objects
in the integration procedure of the holomorphic anomaly equations.

DS = §1S% 4 88T — Cypn ST S 4+ BV
DiS7 = 2678 — CippnS™S™ + WK, + b

1 1 ;
Din = —KZ’KJ' - C’”kSk + CiijkZKl + hij . (312)
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3. Direct Integration of the Refined Holomorphic Anomaly Equations

Here, the covariant derivativ and K; are again given by (12.2.57) and h;, hz , hzk and hj;;
denote holomorphic functions. These equations are solved by
S = (O (600 + 60k) K + Tiy + fia)
S' = (G (WKOK — 00K + f1,0;K) fia)
1

S = T ((h"' +1)S" — D;SY — S9SKC) 0 (K + log(| f])/2)
1 . .
o7 (DiS' + 8757 i) (3.1.3)

fs fij fi’} denote holomorphic functions, K is the Kéahler potential and Ffj denotes the
Christoffel symbol of the Weyl-Peterson metric defined in (2.2.58]). These solutions can be
used to construct the free energies at higher genus as follows. First of all one notices that
the holomorphic anomaly equation for F! (2.3.17) can be integrated as [S6]

1 X

.k ~ 7
81‘F1 = 5 iij] — (ﬁ — I)Kz + A;, A; = 81-(@]- log Aj + bj log Zj) . (314)

Aj denote irreducible components of the conifold locu In the last expression a;,b; are
un-known numbers that need to be determined from suitable boundary conditions (compare
also the discussion in section . This implies that the derivative of F'! is expressible
in terms of the propagators and the derivative of the Kéahler potential. x denotes the
Euler number of the compact Calabi-Yau geometry. Next, one observes that any anti-
holomorphic dependence of the free energies must be inherited from the propagators and
the Kahler potential as the Yukawa coupling is a holomorphic quantity. Using the relations

889 =CF, 9,8 =GpSY, %S =GypSt, (3.1.5)
it is therefore possible to rewrite the anti-holomorphic dependence of FY using (3.1.2)) as

F9 _OF9 . OF9
—_— L L i .
or, T 95 70 BSJ) (3.1.6)

—
OF = O g

+ Gz‘i(

Note that the indices of the Yukawa coupling need to be raised with the metric g;; instead the
Weyl-Peterson metric itself. This implies that the holomorphic anomaly equations (2.3.12))
can be re-expressed under the assumption of the independence of G;; and C? F as

-1
oF9 1 1%

— = _D;D;F9' + - " D;F9"D,F". (3.1.7)
98— 2 2

See also [176, [199] for further expositions.

3.2. The local and the holomorphic limit

In this section we discuss two important limits which are important for our setups. The
holomorphic limit where all anti-holomorphic dependence is dropped and the local limit

LIf the covariant derivative acts on objects that also transform as a section of T* M it obtains a contribution
from the Christoffel symbol of the Weyl Peterson metric, too.
2The conifold is the locus in the moduli space where a cycle shrinks to zero size.
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3.2. The local and the holomorphic limit

which reduces the formalism to computations on local Calabi-Yau manifolds.

3.2.1. The local limit

The non-compact limit of a Calabi-Yau corresponds physically to decoupling gravity in
type 11 compactiﬁcationsﬂ This means that one passes from special geometry of NV = 2
supergravity which is realized in the moduli space of Calabi-Yau manifolds to rigid N' = 2
geometry which is realized in the moduli space of Riemann surfacesﬂ

In this case one proceeds as in section One chooses a symplectic basisﬂ and computes
the periods of the meromorphic one-form that arise from the holomorphic three-form by
integrating out the non-compact directionﬁﬂ

ti:/ A, Fi:/ A (3.2.1)
ai bl

oF
ot ”

Also in this case there exists a prepotential F', such that F; =
the period matrix of the Riemann surface as

This encodes in particular

O*F

One important difference to the case of compact Calabi-Yau manifolds is given by the fact
that the t’ are already the flat coordinates. In fact, when analyzing the Picard Fuchs system
one sees that the analytic period is given by a constant, see also and therefore
the homogeneous coordinates coincide with the inhomogeneous ones. The Kéhler potential
reads in the local case

K = S(t'F;, - F) = I, (3.2.3)

See e.g. [104] or [194] for a nice discussion and derivation. This Kéhler potential implies

the metric )

2i
In contrast to the case of compact Calabi-Yau manifolds there may also be additional pa-
rameters m® on which the surface depends, which are no real moduli. These correspond
to non-normalizable directions in the moduli space that arise from periods of the meromor-
phic one-form A that have no compact dual within the surface. Stated differently, they are
encircling points where A has non-vanishing residua. They are also called mass parameters
as they correspond to the masses in the geometrically engineered Seiberg-Witten theoryﬂ

Gig = 0i0;K = - (7ij — Tig) - (3.2.4)

3Roughly speaking because the four-dimensional Newton constant is proportional to the volume of the
Calabi-Yau.

1See e.g. [195] for details.

5The Riemann surfaces that appear as mirrors of non-compact Calabi-Yau are naturally non-compact and
therefore a symplectic basis need not to exist, but one has instead a; N b = nf € Z. For purposes of
cleaner notation the following discussion applies however to the symplectic case and is easily modified.

SWe refer to section for the derivation of the meromorphic one-form that is induced from the holo-
morphic three-form in the case of toric Calabi-Yau manifolds. See also [66].

" Actually, this is not quite true. Only those parameters that correspond to blow-ups within the geometry
correspond to masses in four-dimensional Seiberg-Witten theory. Recall that the easiest way to geometri-
cally engineer Seiberg-Witten theory is by compactifying type II on a Hirzebruch surface [66]. Fo already
has such an isomonodromic parameter, but this gets frozen in the geometrical engineering resulting in
pure SU(2) Seiberg-Witten theory. See also the discussion in
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3. Direct Integration of the Refined Holomorphic Anomaly Equations

In complete analogy to the latter, they also are also invariant under monodromy transfor-
mations, but may appear in the monodromy transformations of real moduli, i.e. one has
[33]

Fi = AZ]F] + Bijtj + Emma s
t = CYF;+ DYt/ + Fim®, (g g) € Sp(24,Z), FEio, F', €.
me = me. (3.2.5)

Note that the genus of the mirror curve is denoted by ¢ and not to be confused with the
world-sheet genus denoted by g. Therefore yet another characterization for these parameters
is as isomonodromic deformations. See also [33, [104] for further explanations.

3.2.2. The holomorphic limit

The holomorphic limit denotes an expansion around the point £ — oo making all quantities
purely holomorphic. As the prepotential and the Yukawa couplings are holomorphic in
any case, all the anti-holomorphic dependence comes from the Ké&hler potential and the
expressions derived from it, i.e. the topological metri G;7 and the Christoffel symbols Ffj
These drastically simplify in this limit as follows [86]

T
77 0z

K — —log(wo), G k= GHo,G . (3.2.6)
Note in particular that the holomorphic limit of the Kéahler potential vanishes in the case
of a local Calabi-Yau manifolds. Consequently many expressions simplify in the limit.

3.2.3. Holomorphicity versus modularity

This subsection is devoted to a discussion of the interpretation of the topological string
partition function as a wave function. It was shown in [I7I] that the topological string
partition function is interpreted as a state |Z) in the Hilbert space obtained by quantizing
H3(M,Z) where g, plays the role of h. After picking a basis « this state gives rise to a
wave-function Z(«a) = («a|Z). There are two important choices of such a basis. First of
all one can pick a symplectic basis A’, B in order to parametrize the complex structure
moduli space

a:[—/ w, pJ—/ w, we H¥(X,C). (3.2.7)
Al By

This results in a wave function Z(x) and is called the real polarization. There is second
important basis which relies on choosing a background complex structure 2 to define a
Hodge decomposition of H3(M,C) that decomposes w according to

w= N+ 2'D;Q + 2 D;Q + ¢Q (3.2.8)

which results in a wave-function Z(ip, z%). This is called the holomorphic polarization. As
was shown in [I71], the second basis is physically the natural one.

8Here we refer to the Weyl Peterson metric transformed to the complex structure coordinates z;. In many
expressions, the Weyl Peterson metric enters as log (|Gi;|) and in the holomorphic limit only the Jacobian

8‘9” survives.
zj
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3.3. Direct integration of the refined topological string

Instead of deriving the holomorphic anomaly equations from the wave-function picture
directly as in [I7I], one can investigate [33] how this can be directly used in order to
constrain the form of the free energies. In particular one can ask how the action of the
monodromy group I' C Sp(2n,Z) constrains the form of the free energies. Here the two
bases are particularly useful. In the holomorphic polarization the wave function becomes
dependent on the monodromies as the symplectic basis changes under these transformations.
On the other hand, in the holomorphic polarization, the wave function is not allowed to
transform under I' as it is physical. This has the following consequences

1. In the holomorphic polarization the free energies are almost modular forms (i.e. mod-
ular invariant but not holomorphic) having an expansion

F9 = FJ + h((Im7)~1) (3.2.9)

with h((Im7)~!) is a polynomial without constant part and 7 denotes the period

matrixﬂ

2. In the real polarization the free energies are quasi modular forms (i.e. holomorphic
but not modular invariant) F¢ and in fact F9 = F§ in (3.2.9).

3. The propagator can be shown to be a modular form of weight two
EY(7,7) = EY(7) + ((Tmr) )" (3.2.10)

transforming as

EY(r,7) w5 (Cr+D)i(Cr+ D)LEN(7,7) (é g) € Sp(23,2),

T+ F=(Ar+B)(Cr+D)"". (3.2.11)

Here E takes values in C9%9. In fact, any free energy F'9 in holomorphic polarization
can be written as a polynomial in Bl (1, 7) where the coefficients are given by modular
forms. Finally, the holomorphic anomaly equations can be re-derived by considering
the coordinate transformation from the holomorphic to the real polarization. For the
theory of almost and quasi modular forms we refer to [109].

3.3. Direct integration of the refined topological string

So far we have discussed how the special geometry relations can be used to integrate the
unrefined holomorphic anomaly equations. In addition, it was explained how to calculate
the prepotential F(%9 which does not get refined. In the following we discuss the refined
holomorphic anomaly equations that allow analogously to the unrefined ones to recursively
determine the refined free energies. They need besides F(%:0) and F(O1) also the refined free
energy F(10) as an input datum.

9We restrict here to non-compact Calabi-Yau manifolds, as the period matrix of a compact matrix has
signature (h**,1) See also [33].
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3. Direct Integration of the Refined Holomorphic Anomaly Equations

3.3.1. The refined holomorphic anomaly equations

Refined holomorphic equations have been proposed in [29, [30]

_ 1 _.
B, Fm9) — §cg’“(17J-17k}7<7l’9*1> + Z,DjF(m’h)DkF(”’m’g’h)) . n+g>1. (33.1)

m,h

Here the covariant derivatives are as in and and the prime denotes omission of
(m,h) = (0,0) and (n,g) in the sum. These equations have some similarity to the holo-
morphic anomaly equations for a genus g amplitude where n fields have in addition been
inserted [80]
39—3
P9 () = / (0" T 845" pdm A dit. (3.3.2)
My k=1

Here the operator O should take the form of an integral over a descendant from a 0-form
field ¢, O = Js $?). In fact it was argued in [30] that a candidate for the field ¢ is
provided by the dilaton as its contact terms with marginal fields vanish in the limit of
a local Calabi Yau manifold. Repeating the same arguments as for the derivation of the
unrefined holomorphic anomaly equations, one has in addition to distribute the n insertion
points among the degenerate world sheet topologies, which gives rise to the second sum in
(3-3.1). As so far a world-sheet description of the refined topological string is missing, it is
difficult to derive these equations rigorously away from the local limi@. However, there is
a rigorous way to compute refined free energies which is given by the refined holomorphic
vertex [107, 108]. In all cases where a comparison is possible, the results coincide. It
is however important to stress that the refined holomorphic anomaly equations have a
much wider range of applicability as the underlying geometry is not required to engineer
a gauge theory. Besides that these equations have also been checked with the Eynard-
Orantin formalism and Seiberg-Witten theories [29] [30]. So far these proposals have passed
all tests which are highly non-trivial, as the extracted refined BPS numbers are required
to be integers. See also [112] [I13] for a slightly different approach to a refinement of the
holomorphic anomaly equations.

3.3.2. The refined free energies at genus one and the propagator

Here we discuss how the free energies are computed in the local and holomorphic limit
where many expressions considerably simplify.

The holomorphic equation at genus one ([2.3.17)) integrates in the local and holomorphic
limit to 1
FOD = "log (det G;jl|f112) . (3.3.3)

Here f; is a holomorphic ambiguity which is given as

fi=A]=r. (3.3.4)
j

The apriori unknown constants a, b; can be either fixed from embedding the geometry into

10 A5 it has been discussed, refined BPS invariants are only well defined in the local limit.

46



3.3. Direct integration of the refined topological string

a compact model and calculating

h2’1

1
i FOD — _ L N A
Jim F 2 ;_1 t; /X coJ; (3.3.5)

or by matching - which is in practice easier - with a few known BPS numbers. In addition,
there is the universal behaviour of the exponent a = —% at conifold loc A [196]. Note
that the covariant derivative also drastically simplifies as the Ké&hler potential vanishes
in the holomorphic and local limit and the line bundle £ becomes trivial. The covariant
derivative is accordingly given as

D;,=0; —T;. (3.3.6)

This also implies a great simplification of the propagators (3.1.2)). Indeed, the only surviving
object is S which is accordingly determined from

DiSkl — _Cimnskmslm‘i‘fz‘kl,
Iy = —CyuS"+ fi,
1 .
o F, = 3 ST+ A (3.3.7)

These equations can be solved from the following anséatze

h(z)

Kkl _ v

5= 2 AP

A = 0 (dj log Aj + Z?j log Zj) . (3.3.8)

The first formula applies to both, fikl and ffl. h(z;) is a polynomial and m; and p denote
exponents which need to be determined from the equations (3.3.7]).

We turn our attention to the refined free energy F(10)
in [30], that the refined free energy at genus 0, F(*+1.0)

. More generally, it was conjectured
takes the form

FOFL0) — (60 (0)6®) (1)¢® (00) O™ =g (3.3.9)

which implies in particular that F(1:9) is holomorphic, as the boundary of the moduli space
of stable rational curves with n punctures is caused by coincident punctures. The most
general ansatz for F(19) reads correspondingly

F(L0) _ i log(A® T 2 . (3.3.10)

(2

To determine the constants a,b; one requires regularity at infinity and needs information
about the vanishing of a few low degree BPS numbers.

3.3.3. The behavior at the conifold and the gap condition

The behavior of the topological amplitudes at the conifold locus is of particular interest as
it allows to fix the holomorphic ambiguity, i.e. the integration constant that needs to be

"The conifold is the locus in the moduli space where a cycle shrinks to zero size.

47



3. Direct Integration of the Refined Holomorphic Anomaly Equations

fixed upon integratingF_TI (3.3.1). This takes in general the form

(n.9) __ &)
fP (u,m) A2 (3.3.11)

where the degree of the unknown polynomial p is such that f is regular at infinity. In fact
the leading behavior of F'(ej,€9,t) at the nodes of the mirror-curve can be determined by
explicitly performing the Schwinger-Loop integral under the assumption that that a single
hypermultiplet with mass m = t. becomes massless at the node. Let us denote by t. the
vanishing coordinate at the node under investigation, then the leading behavior reads [29]

® ds exp(—st.) 0
- , _ ds O(+ 3.3.12
(8,9s:tc) /0 s 4sinh(se;/2) sinh(sez/2) o) ( )
1 1
= [~ 35+ gp(a T e)*(ce) " log(t)
1 2 3)!
+ Z( g2g 2 Z BagBog—ame? 23" + ...
€1€2 9—=0 c
1 1, 1, 7 [T
= [—- =+ = log(t ~ 540 1440° 5760 2
[ = qp g0 Jleslte) + [ = 50508+ 10065 ~ 5ra0” 9 12
1 a1 31 5 3 3

+{

4 JE— J—
1008% ~ 20160°% T 26880° ~ 161280

+ contributions to 2(g +n) —2 >4,

1
s°05 %] 7 + O(F)

where{i—_gl g% = (e1€2) and s = (€1 + €2)?.

In order to perform computations at the conifold locus one needs good coordinates, which
are in general given by choosing one coordinate being normal to the conifold locus and the
rest tangential and solving the Picard Fuchs equations in these coordinates . In case that
not all discriminant components have normal crossing one has to resolve the conifold locus
by suitable blow-ups [174} [I75]. The normal coordinate corresponds to the period t. that
vanishes at this locus and has to be compared to the Schwinger-Loop calculation.

In general, if t. does also depend on further tangential directions one finds that the
vanishing of the sub-leading singularities yields an over-determined system, which turns
out to be solvable. It was argued in [ITI] that, since the only type of degeneration of a
Riemann surface in complex co-dimension one is the nodal degeneration, the gap structure
holds universally true regardless of the particular conifold pointE] nor the direction
from which it is approached. On the other hand provides only information to solve
for all except for one unknown of the ambiguity. The last one can be fixed by matching

with (2.4.10).
3.4. Elliptic curve mirrors and closed modular expressions

One main concern of this thesis are Calabi-Yau manifolds defined as the anti-canonical
bundle over toric (almost) del Pezzo surfaces S, i.e. the total space of O(—Kg) — S. As

12See also [T02] for higher genus local mirror symmetry in the unrefined case.
"Here Bm = (37—t — 1) £2 and the Bernoulli numbers By, are defined by ¢/(e’ — 1) = >.°°_ B L7,
MExcept from intersections of the conifold locus with the large radius regime. In addition, to be more

precise, this argument was given for the un-refined case.

tm
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3.4. Elliptic curve mirrors and closed modular expressions

will be discussed in section [4] their mirror geometries are given by a genus one curve C with
punctures and a meromorphic differential A, with the property that 0, is the holomorphic
differential of C. For our applications it is sufficient that this is true up to exact terms.

Any family of elliptic curves can be brought into Weierstrass form
y? =42 — go(u,m)x — g3(u,m) . (3.4.1)

In the following we present a powerful algorithm [30] which allows us to perform the direct
integration procedure completely in terms of the Weierstrass normal form of the elliptic
curve. Our formalism distinguishes v € M = P!\ {p1,...,p,} as the complex modulus
of the family of curves, defining the monodromy of C, from the “mass” parameters m =
{m1,...,my,} which do not transform under monodromies, as discussed in

3.4.1. Computing the period and prepotential from the elliptic curve

With the formalism developed in [30] one can calculate the prepotential F(*9) (¢, m) using
its relation

to the 7-function of the elliptic curve. Here the constant ¢y reflects the fact that the
mirror-curve is potentially non-compact what might prevent the finding of a canonically
normalized symplectic basis of the homology violating the relation tp = 9,F (9. This
implies the following form of the Yukawa coupling

93 (0.0) omi dr

Here the relation between the local flat coordinate t at a cusp point in M, the fundamental
region of SL(2,Z), and (u,m) is obtained by integrating [215]

dt | Eg(7)g2(u, m)

du = \| Ba(r)gs(u, m) 344

with vanishing constant of integration. The g; are not invariants of the curve, but can be
re-scaled as

gi = N(u,m)g;, (3.4.5)
which changes (3.4.4). One can fix this ambiguity so that j—i = 2%” fu %“ for the vanishing
cycle p. In praxis this is done by matching the leading behavior of the integral. E4 and Eg

are the Eisenstein series. We obtain 7 as a function of (¢, m) by inverting the j(7)-function

g3(t,m) _  Ei(7)
A(t,m) — Bj(r) — E§(7)

1
j=1728 — = 4744+ 192688q + . .. . (3.4.6)
q

Here A = g3(t,m) — 27g3(t,m) denotes the discriminant and ¢ = exp(27it). With this
information (3.4.2) determines F(%9(¢,m) up to classical terms, which can be recovered
from properties of constant genus zero maps. The prepotential also determines the metric
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3. Direct Integration of the Refined Holomorphic Anomaly Equations

(3.2.4) on the moduli space as [30]

1
Gii= —Tmr . (3.4.7)
€o

3.4.2. Determining the higher genus sector

As discussed in section the unrefined free energy at genus one F(O1 (¢, m) takes in
general the form Wthh simplifies in this case to

FO — flog < wi| Au®® Hm é) , (3.4.8)

where the integration constants ag, a; are fixed as in (3.3.2)) by constant genus one maps.
It is convenient for the integration formalism to rewrite the holomorphic part of the metric
G,z in terms of Eisenstein series

1 E
FOU — = jog | 28 Ay2a0 . A4.
hol T p u Hm (3.4.9)

The function F(19(¢,m) is holomorphic, compare also to and its form follows from
its behavior at A =0 as

1 )
F(170) — ﬂlog(AubO Hmlbz) . (3410)

To determine the constants by, b; one requires regularity at infinity and needs information
about the vanishing of a few low degree BPS numbers.

The higher F(™9) with n 4+ g > 1 have the general form [30]
3g+2n—3

n 1 n
Flg) — e Z X5pU9) (u, m). (3.4.11)

Here the non-holomorphic generator X is given by

% = @lwm) By(r)Ea(r). (3.4.12)

g2(u,m)  Eg(7)

With F5 we denote the non-holomorphic second Eisenstein series

~ _ 3
EQ(T, T) = EQ(T) — m . (3413)
We note that we choose A in (3.4.5)) so that
E6 93
— = 27 . 3.4.14
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3.4. Elliptic curve mirrors and closed modular expressions

The proof of (3.4.11)) proceeds by using (3.4.14)) and (3.4.4) and the Ramanujan identities
%Ez = (B3 — Ey) ,

12
%ELL = %(EQEA,L — Es) , (3.4.15)
B = 3(E2Bs — E]) ,
to derive . La )
U
d:ﬁzX §g—t(AX +BBX +C), (3.4.16)
T —aaAX+3),
with
9 1 2 9214
A= 1(292%93 — 3930492), B = 5(92%92 — 18930,93), C= ek (3.4.17)

For any family of curves this gives a description of the ring of quasi-modular forms
in which the holomorphic anomaly equation can be integrated. It is convenient to
rewrite the refined holomorphic anomaly equations in terms of the generator X. One first
notices that whole anti-holomorphicity of the free energy is inherited from E5 which allows
to re-express )
d_ 3o d (3.4.18)
At 2775 dE,

and accordingly the anti-holomorphic derivative of the free energies may be written as

dF(m9)
dEy

20, F9)(C)~1 = 24 (3.4.19)

The ring of almost quasi-modular forms is represented as (C[Eg, Ey4, Eg). The holomorphic
limit 7 — oo which implies ;12 — 0 establishes an isomorphism onto the ring of quasi
modular forms C[Es, E4, Es]. In this limit also the covariant derivative D; gets identified
with the usual derivative. The refined holomorphic anomaly equations may therefore be

re-expressed as

24

oF (1.9) _ go(u) %[ du 2 92 pr(ng—1) N diu@F("»Q*l)
0X  g3(u) By L\ dt ou? dt2  Ou
<du) 2 o~ OF(mh) g p(n—m.g=h) }

dt ou ou

(3.4.20)

m,h

As discussed in [30] one can deduce inductively that the r.h.s. of (3.4.20) is a polynomial
of X of maximal degree 2(g + n) — 3 and a rational function in (u,m) with denominator
A2(9+n)*2(u, m). Equation (3.4.20) can also be used to integrate the holomorphic anomaly

efficiently up to the polynomial p,in’g) (u,m), which is undetermined after the integration.

This ambiguity is fixed by comparing to the refined Schwinger Loop calculation (3.3.12)) as
described previously.

3.4.3. Fixing the holomorphic ambiguity

In order to perform calculations one needs good coordinates at the conifold locus. These
are obtained by choosing the normal coordinate, i.e. the right coordinate is given by the
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3. Direct Integration of the Refined Holomorphic Anomaly Equations

discriminant
Uecon = A . (3.4.21)

This establishes in particular a map form the large radius coordinates to the conifold coor-
dinates. The discriminant A is in general a polynomial in the large radius coordinate uy,
and the mass parameters m; giving only closed expressions for the conifold variables if its
degree is equal or less than fourE However, as the m; are valid in the whole moduli space,
one can always obtain uy, as a power series in the m; and ucop-
Analogously to the discussion for the large radius, one obtains the vanishing period t. at
the conifold again from evaluated in u¢on, which reads
te = Cotieon + O(uZon,m;),  Co € C. (3.4.22)

con’ 1

The un-determined constant Cjy is also fixed by matching with the expansion (3.3.12)).

15In practice two.
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4. Geometry of del Pezzo Surfaces and Toric
Mirror Symmetry

In this chapter we discuss some geometrical background material. We start with a brief
review of the geometry of del Pezzo surfaces and the half K3 and their algebraic realizations
in section[d.1} Afterwards we turn to the Batyrev construction of toric mirror pairs in section
As the main concern of the present thesis are non-compact Calabi-Yau geometries, we
present two ways towards non-compact mirror symmetry in section These are given by
either embedding the local geometry into a compact one by constructing an elliptic fibration
over it or a direct toric construction. Finally, in the last section we present a method
to efficiently compute the mirror curves of all two-dimensional toric Fano varieties.

4.1. The geometry of del Pezzo and half K3 surface

By definition of a rational surface hgo = h1o(S) = 0, hence the arithmetic genus xo =
> hio = 1. The Hirzebruch-Riemann-Roch theorem gives for the arithmetic genus and the
signature o = b;r — by

1=0(5.05) = [ ch@s)td(s) = [ () = 35 [ &)+ eals).

S

1 1
o = /p1(5)=/6%—202, (4.1.1)
3Js 3Js

respectively. Blowing up increases the Euler number x(S) and the second Betti number
bo(S) by 1. From x(P?) = 3 and the first equation of follows k = [ ¢ =9 —n,
a quantity often called the degree of the del Pezzo surface. Further from by(P?) = 1 and
o(B,) =1 —n it follows that the middle cohomology lattice

A = Hy(B,,7) (4.1.2)
has signature (1,7). Let h denote the hyperplane class in P? and e; the exceptional divisors
associated to the ¢'th blow-up, then the intersection pairing “” is defined by the non-
vanishing intersections h? = —e? = 1. The anti-canonical class is

n
K =c1(By) =3h— > e, (4.1.3)
i=1

so that again k = K 123n =9 —n, i.e. the positivity of Kp, restricts the number of blow-ups

to n < 9. Let us denote by A’ C A the sub-lattice orthogonal to ¢;(B,,)

N={zeAlxz-K=0}. (4.1.4)
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4. Geometry of del Pezzo Surfaces and Toric Mirror Symmetry

“.»

The intersection form is negative on A’ and since all coefficients in K are odd it has
even intersections. The determinant is equal to the degree 9 — n, so for n = 8, A’ is the
unique even self-dual lattice of rank 8, the Eg lattice and for n = 9 it becomes the Exs lattice.
Similar one can see that for n = 2,...,8 the lattice A’ corresponds to the root (or co-root
lattice) of the exceptional Lie algebras as follows

degree=9-n]9 8 7 6 5 4 3 2 1[0 | (4.15)
G - — A A x Ay Ay Ds Eg E7 Eg|Es
The simple roots are given by o = e; — es for n = 2 and for the case n > 3 as
a;=e —ey1, 1=1,...n—1, anp =h—e1 —ey —e3. (4.1.6)
It is also convenient to introduce the weight lattice
N = A/(KZ), (4.1.7)
so that the pairing on A yields a perfect pairing
NN 7. (4.1.8)
Further the center of E,, is given by
Zo_p ~N"JN" . (4.1.9)

In addition, P! x P! is a del Pezzo surface with Ay = I'"! the hyperbolic lattice. For us it
is natural to include examples in which ¢;(B3) is only semi-positive, which we call almost
Fano varieties. These are numerically effective, but not Fano, as it is discussed e.g. in
section 15.4 of [64] for the Hirzebruch surface F5. This is notion also used in [74]. Another
important generalization is to the half K3, also denoted by %K 3 := By that has the lattice

1
A <2K3> =Tb x Eg . (4.1.10)

To each del Pezzo surface BB,, one can associate an elliptic pencil
{aCy +bCo} € P? x P! (4.1.11)

of sections C7, Cy of the canonical sheaf of P? with 9 — n base points. The base point free
pencil for By defines a rational elliptic surface fibered over P!, which is isomorphic to By as
can be seen by projection to the first factor. Hence the %K 3 is a rational elliptic surface.
If all base points of the elliptic pencil are blown up these (—1)-curves e; become sections
of the elliptic surface and the corresponding Mordell-Weyl group is a free abelian group of
rank 8 [97]1]

MW = ZS X Weyl(Eg) (4.1.12)

while the torsion part is the Weyl group of Eg [98]. Indeed, the Weyl group of E,, acts
already on the cohomology of B, [98] and beside becoming the Mordell-Weyl group of the
rational elliptic surface in the last blow-up, it is also extended to the affine Weyl group of

'Rank eleven Mordell-Weyl groups have also been constructed by Néron [96].

o4



4.1. The geometry of del Pezzo and half K3 surface

Eg on the full cohomology of the $K3 [35].

In families of del Pezzo surfaces the action of the Weyl group can be generated explicitly
by deforming S to a singular surface so that the vanishing cycle corresponds to a simple
root a. By the Picard-Lefshetz monodromy theorem the monodromy in the moduli space
around the point where the cycle a € Hs(S,7Z) vanishes, generates a Weyl reﬂectiorﬂ on the
hyperplane defined by o« = 0, i.e. on any cycle § € Hy(S,Z) with non-trivial intersection
with o the monodromy action is S,(8) = 8 — (8- a)a. For the $K3 the intersection of
the irreducible components of the singular fibers are given by Kodairas classification with
affine intersection form and the corresponding monodromies generate Es.

In order to explicitly specify the action of the Weyl group Eg on the moduli parameters,
denote the “volumesﬂ’ of exceptional P'’s by m; and the modulus of the elliptic fiber
emerging in the ninth blow-up by 7. Then the Weyl group is generated by the reflexions

m; < my, for any pair (i, j),
m; < —my, for any pair (i, j), (4.1.13)

1 8
My == g Y My,

which defines the Weyl group of Eg. For the affine Eg there is an additional infinite shift
symmetry

m; — m; + 2Ty

’ ‘ ‘ (4.1.14)

m; — m; + 2moyT .
Here & = (a1, . .., ag) is an element of the root lattice of Eg. Recall that the latter is defined
as the sub-lattice of R® whose elements have either all integer or half-integer entries, such
that the sum of all entries adds up to an even integer. In addition, there is an SL(2,Z)
symmetry acting on the fiber modulus

T —T7+1,

1 . - (4.1.15)
T — 7 m — T

making the affine characters Jacobi forms with 7 being their modular parameter and m

a tuple of elliptic parameters. The ring of these forms relevant for the direct integra-

tion approach of our refined holomorphic anomaly equation (6.2.11)) is summarized in ap-

pendix

4.1.1. Algebraic realizations

The D5, Eg, E7 and Eg del Pezzo surfaces can be represented by the zero locus of two
quadrics in P4, the cubic in P, the quartic in P3(1,1,1,4) and the sixtic in P3(1,1,2,3). By
use of the adjunction formula the Euler number can be calculated to be 8,9, 10 and 11 while
c1(S) = (O_w; — > dig)h = h. Here w; denote the weights, d; are degree(s) of the defining
polynomial constraints and h is the hyperplane class of the ambient space. Generic anti-
canonical models for higher degree del Pezzo surfaces cannot be realized as hypersurfaces

2For ADE singularities these inner automorphisms generate the Weyl group. Singularities corresponding to
non-simply laced Lie algebras are obtained by a suitable outer automorphism action acts on the classes
in the Hirzebruch-Jung sphere configuration, e.g. by monodromy in a family, see [I2I] for review. In this
thesis we only consider simply laced singularities.

3The e; do not lie in the Kihler cone and the “volumes” can formally be negative for flopped P'’s.
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4. Geometry of del Pezzo Surfaces and Toric Mirror Symmetry

or complete intersections. E.g. the degree six A; x As del Pezzo is a determinantal variety
in PS and the degree five A4 del Pezzo is given by five linear quadrics in P5 [69)].

Finding these algebraic realizations is closely related to the problem of constructing am-
ple families of elliptic curves £ with d rational points @;, ¢ = 1,...,d, i.e. such that &
is embeddable in some (weighted) projective space P"(w).The construction of the ample
families of elliptic curves proceeds as follows. Assume the embedding exists, consider the
bundle £ = O(Z? Q:) over & and match mL = Kpn(,) so that a trivial canonical class
is obtained. The ideal of the relations of the sections in m/L, which has according to the
Riemann-Roch theorem § = h%(mL) = deg(mL) sections, defines the desired embedding of
€ into P"(w). To be explicit call z, k = 1,...,d the sections of the degree wy, line bundles
Ly, of P"(w). We can assume that zj, vanishes at @); (in general d < n + 1 with the strict
inequality for weighted projective space), so that deg(mL) =m_, w,.

Let us discuss two concrete example given by the case of an elliptic curve with two and
four sections. We consider first the line bundle associated to two sections £ = O(P + Q).
According to Riemann-Roch we expect to find 2n sections of H(nL). Call the sections of
HO(L) v,w. They give rise to three sections v?, w?, vw so that we get an additional section

x. Iterating this procedure one finds

HO(L) v, w
HY(2L) v, w? vw, x
HY(3L) v3, w3, v?w, vw?, ve, we
HO(4L) % w, v3w, v*w?, vw?, vie, wle, vz, 22 (4.1.16)

For n = 4 we find nine sections - note that these precisely coincide with the monomials of
polyhedron 13 - although only eight are expected. Therefore one concludes that there has
to be a relation which gives a homogeneous quadric in P(1:12)

3

apv* + ajw* + asvPwv® + agw® 4+ aw® + asv®x + agw’s + arvwz + agx® = 0. (4.1.17)

Let us also quickly discuss the case of four sections for which the line bundle reads £ =
O(P+ Q+ R+ T). and call the four sections r,s,t,u. Accordingly H°(2£) has eight
sections, but we know actually ten 72, s%,t2,u?, rs,rt, ru, st, su, tu, implying two relations
between them. Therefore we conclude that the elliptic curve is given by two quadratics in
P3. These can be brought into Weierstrass normal form as described in [T18].

It is easy to see that the case d = 1 requires weights w = (1,2,3) and one gets m = 6,
0 = 6 and the seven sections of 6L are represented by the monomials of polyhedron 10 of
figure 1 made explicit in figure 4. d = 3 requires m = 3, 3L = Kpe has degree § = 9, leading
to one relation among the ten sections, the monomials of degree three in x1, x2, x3, i.e. the
monomials of polyhedron 15 and the embedding is the cubic in P2, For d = 5, m = 2 and
§ = 10 one gets five linear independent quadrics in P* and d = 6 has m = 2 § = 12 i.e. nine
conditions in P°.

The anti-canonical divisor defines for all Fano varieties of dimension d a Calabi-Yau
manifold X, of dimension d — 1, while as discussed O(—Kp) — B defines a non-compact
Calabi-Yau of dimension d 4+ 1. In the del Pezzo case the anti-canonical bundle in S is
of course an elliptic curve £. If we use the above model for the algebraic realization it
allows d rational points. The anti-canonical model determines the local mirror geometry of
O(—K 5) — S.
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4.2. The Batyrev construction

4.2. The Batyrev construction

In this section we review Batyrev’s construction [84] of families of mirror symmetric Calabi-
Yau manifolds using toric geometry that is based on the notion of a reflexive pair of poly-
hedra.

4.2.1. Toric Fano varieties and non-compact Calabi-Yau spaces

The d-dimensional toricE] Fano varieties are most easily classified by d-dimensional reflexive
polyhedra. Toric almost del Pezzo surfaces are given by reflexive polyhedra in two dimen-
sions, which are depicted in figure 1, where also the reflexive pairs (Ag, A%) are indicated.
The anti-canonical class is only semi-positive if there is a point on one edge of the toric
diagram, otherwise positive and ample. In particular the polyhedra 1,2,3,5,7 correspond to
toric del Pezzo surfaces, by the construction explained below.

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16

AN

XZ

Figure 4.1.: These are the 16 reflexive polyhedra in two dimensions, which build 11 dual
pairs (Ag, A%). Polyhedron k is dual to polyhedron 17—k for k =1,...,6. The
polyhedra k = 7,...,10 are self-dual. The points are labeled counter-clockwise
with the one right to the origin with label 1. The origin has label 0.

Let I" be a lattice and denote by I'r = R ® I'. The dual objects are denoted by I'* and
I'; and
(,):I'xI'™ —17Z (4.2.1)

denotes the pairing. A d-dimensional lattice polyhedron Ay, is given as the convex hull of
points N = {v(¥ € T'}, such that 0 € N and span N = T'g. The dual polyhedron A% is
defined by

Ay ={y eTg|(y,z) > -1, Ve € Ag}. (4.2.2)

A pair of polyhedra (Ag, A}) is called reflexive, if both are lattice polyhedra.

4.2.2. Constructing toric ambient spaces

Given a pair of lattice polyhedra, one associates to them a family of mirror symmetric
Calabi-Yau manifolds as follows. A triangulation of Ay defines a toric fan ¥ ,. Any point

We refer to [99} [IT5] for a general background in toric geometry.
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4. Geometry of del Pezzo Surfaces and Toric Mirror Symmetry

in Ay defines a one-dimensional cone of ¥, which gets identified with a divisor D;. Also
choose for each such ray a coordinate Y; whose vanishing defines D;. Next one finds a
basisE] l; of relations among all integer points of [(Ag). The toric (ambient) space Pa, is
now defined by

b (C\E(l)l\ZAd
Ad = Hom(Agy_1(Pa),C*) "

Here A4_1(Pa) denotes the Chow group of Po and the homomorphism group is given by

(4.2.3)

Hom(Ag_1(Pa),C*) = (C*)™*4a1F2) 50 A; 1 (PA,)tors - (4.2.4)

The last factor denotes the torsion part, that arises e.g. from Aj-singularities within P .
The action of this group on the coordinates reads as

Y; = Yi(p (4.2.5)

The Stanley-Reisner ideal Z depends on a triangulation of Ag and consists of all loci of
intersections of divisors D;, N---N D;, for which the corresponding points vi; are not on a
common triangle.

The same construction of a toric ambient space also applies to the dual polyhedron.

4.2.3. Constructing mirror families of Calabi-Yau manifolds

Given a toric ambient space constructed as discussed in the previous section, one can con-
struct a compact Calabi-Yau as a section of the anti-canonical bundle. This can be con-
structed as follows [93]

Q= OXA; (DA;), DA:; =Di+...D,, (4.2.6)

where D; are the divisors corresponding to the coordinates Y; and its global sections are
given by

#(4) (k)Y
H(Xa+,0x,, (Do) = @D %" ) (4.2.7)
sDens k)

Using the adjunction formula one can construct a family of Calabi-Yau manifolds as follows

(A)—1
(1) x(k)
= Z a; X; = Z a; H Yk< v g (4.2.8)
i=0

v(HeA vr(k)

The coefficients a; redundantly parametrize the complex structure moduli of X . Points in-
side co-dimension one faces of A can be excluded from the summation, as the corresponding
monomials can be removed by the automorphism group of Pax. Analogously the mirror
manifold X* can be defined as a hypersurface

War = Z aYi= Y a]]X; XSO g (4.2.9)

v e A* v(k)

®To be more precise, one has to choose a basis of the Mori cone which is the cone of all effective curves.
See e.g. [182] for computational details.
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4.3. Non-compact mirror symmetry

Instead of constructing Calabi-Yau manifolds as hypersurfaces in toric ambient spaces, one
can also construct Calabi-Yau manifolds directly as toric spaces. The condition for a toric
variety to be Calabi-Yau is equivalent to requiring that all generators lie in one common
hyperplane. This already shows that toric Calabi-Yau manifolds cannot be compact as
compactness requires the fan to cover the whole lattice.

An important class of non-compact Calabi-Yau manifolds is given by the anti-canonical
bundles O(—KpAd> over toric varieties Po, associated to polyhedrons Agz. The former
ones are torically constructed by embedding Ay in a (d + 1)-dimensional lattice by sending
v 5 = (1,0®) and considering the convex hull of the points (9.

Note however that it is not necessary that Ay is a reflexive polyhedron. In fact any max-
imally triangulated convex polyhedron can be embedded as above in a (d + 1)-dimensional
lattice and gives rise to a non-compact Calabi-Yau manifold. Eventually one has to crepantly
resolve the resulting Calabi-Yau manifold which happens when the points 7@ do not span
the full lattice. Note that the corresponding diagrams of these Calabi-Yau manifolds may
have an arbitrary number of inner points, which is physically interesting as this geometri-
cally engineers higher rank gauge groups.

There are two ways to define the mirror of a non-compact Calabi-Yau. The first one
globally embeds the local geometry into a compact Calabi-Yau space. In this case the
Batyrev construction is applicable. Practically this means that one constructs an elliptic
fibration over the local geometry whose fiber is decoupled to recover the local geometry.
The second way is to directly construct a non-compact mirror geometry which is given by
a conic C? bundle over a punctured Riemann surface [I83]. This Riemann surface, also
referred to as the mirror curve, is obtained as a section of the elliptic fibration in the first
construction [66, [I0I]. We summarize both approaches in the following subsections.

4.3.1. Local mirror symmetry as a limit of compact mirror symmetry

As the main focus of this thesis lies on threefold computations and moreover the virtual
dimension of the moduli space of stable pairs is only zero in dimension three (compare also
the discussion in section [2.2.1] and (2.2.7])) we restrict the discussion to the embedding of
P INE into compact Calabi-Yau threefolds. This corresponds to the embedding of a two-

dimensional polyhedron AZ* into a four-dimensional reflexive polyhedron Aj. This gives
rise to the following pair of reflexive polyhedra (A}, A4), which are constituted by the
convex hull of the points

vi € A} v € Ay
vi™ Z/JF
Vs I/JF . (4.3.1)
0...0 0...0
: AsF : AF
0...0 0...0

Here one considers all points I/JF * € A% and defines

sij= Wi, vi*)+1€N. (4.3.2)
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4. Geometry of del Pezzo Surfaces and Toric Mirror Symmetry

Also we have rescaled AP — s,; AP in ([1:3.1]) which implies in general that the polyhedron
sijAQB contains more points than AQB . In general, one obtains a fibration of toric spaces
X5, — Xy associated to two fans ¥ and Y/ if there is a map ¥ — ¥/, such that any face
o C X gets mapped into a face o/ C Y. Let us discuss how this applies to our construction.
In the following we restrict ourselves to A and rename s;;Ap to Ap. First of all one has
an exact sequence

0 —Tp—TI—ITp—0 (4.3.3)

where I'z and T'p refer to the sub-lattices associated to Al" and AZ. Note that AP is the
image of a projection of Ay along the fiber direction. This establishes a fibration

Pa, — Pps (4.3.4)

whose generic fibers are P INE Accordingly, the hypersurface Was = 0 becomes an elliptic
fibration whose generic fiber is defined by a section of the anti- canomcal bundle in IPAF
The non-compact model is obtained by scaling the volume of the elliptic fiber to 1nﬁn1ty
[101].

4.3.2. Local mirror symmetry without a compact embedding

Here we describe the second approach to compute the local mirror symmetry [101} 183]. The
starting point is the basis of relations I; of the diagram described above, which correspond
to the generators of the Mori cone, i.e. the dual of the Kahler cone. The vectors Q¢ can
be used to construct the invariant coordinates

k+3
= (~1)9 JT 2% (4.3.5)
In general the mirror geometry is given by
k+3
wrw™ = H = Zm, (4.3.6)

Using the relations (4.3.5) one can eliminate the variables x; and obtains a conic bundle
over C* x C* which is given as

F=wtw™ — H(z,y, 24) =0, x=e" y=ce". (4.3.7)

The fiber degenerates over the locus H = 0 which defines a non-compact Riemann surface
(with punctures). It is important to discuss this geometry in some more detail. First of all
one notices that the holomorphic three-form gets inherited from C* as

_dwt Adx Ady

T (4.3.8)

The homology of this local Calabi-Yau manifold can be thought of as followsﬂ Compact
cycles correspond to compact cycles in the Riemann surface which get filled up to a surface D
that carries an S'-fibration over it which degenerates at the boundary, so that one altogether

6See also [198] 200] for a nice discussion.
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4.4. Constructing the mirror curves of two-dimensional toric Fano varieties

obtains an S3. Non-compact cycles take the topology of a three-ball. Using Cauchy’s
theorem one first integrates out the fiber and reduces the integral to period integrals of a
meromorphic one-form [66] over the Riemann surface.

: 1
A/B A/B D y

wtxy x
(4.3.9)
Here we have denoted the symplectic basis{Z] of the middle homology of the Calabi-Yau by
A/B and that of the Riemann surface by a/b.
For toric varieties the Picard Fuchs equations can be explicitly evaluated by making use
of the Dwork-Griffiths reduction method and expressed in terms of the charge vectors Q¢

as [101]
D.= [ o2 - [ o= (4.3.10)
Q¢>0 Q<0
These differential equations are also referred to as the GKZ system and can be solved using
the Frobenius method. First one calculates the so-called fundamental period [101]

1

i) = Z @ " 43.11)

from which all other solutions may be calculated. One finds explicitly one constant solution

9 =w(z,0)=1 (4.3.12)
and a number of simple logarithmic solutions

100
- 2mi Opt “

' ol ,,—o- (4.3.13)

These solutions give rise to the so-called mirror map at large radius. In particular one finds

% = 2™ L O(t;) (4.3.14)
which implies that the limit z; — 0 corresponds to a large volume of the i*" generator of

the Mori cone. Finally, combinations of higher derivatives

1 0 0 "
(2mi)™ Dp™i " Dpin

tail e Oy —

- (4.3.15)

make up the remaining solutions to the Picard-Fuchs equations. Note that the actual
number of double-logarithmic solutions is in the case of local Calabi-Yau threefolds given
by the genus of the mirror curve.

4.4. Constructing the mirror curves of two-dimensional toric Fano
varieties

In this section we construct the mirror curves of the anti-canonical bundles of the two-
dimensional Fano varieties following the procedure in We take the tenth polyhedron

" Assuming that it exists.
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A(10) as A3l ie. A = conv{(1,0), (=1,2), (—1,-1)} and for vi™* = (—1,-2). Since
A3F s self-dual, AL = conv{(1,0), (—1,2), (-1,—1)} and VJF = (—1,-2), so s;; = 6. The
mirror of the del Pezzo in the base must occur as a specialization of the constraint .
Due to the form of A we can always find a triangulation that leads to an elliptic fibration,
not necessarily a smooth and flat one. However for the discussion of the complex deforma-

tions of the mirror geometry, this is good enough. Denoting the coordinates associated to
(0,0,-1,-1), (0,0,2,—1)and (0,0, —1,1) by y, x and z, Wa, is realized in the Tate form

Was =92 + hi(X'g)zyz + ha(X/g)yz — (2 + ho(X'5)222% 4 he(X'5)25). (4.4.1)

In the mirror geometry the restriction is given by y = x = 0 implying z # 0 because of the
form of the Stanley-Reisner ideal and hence the constraint

Wa- = 20 (X75) =0 (4.4.2)

implies hﬁA,j3 (X'3) = 0. Further note the possibility of rescaling z which leads to the afore
mentioned C*-identification X/; ~ puXp, with p € C*. Secondly the scaling is only
due to the global embedding and the corresponding refinement of the lattice of A’ w.r.t to
A can be undone in the local case by an étale map

Bsiy + (X Xpay) = (X7 ot XpA L) - (4.4.3)

Hence the mirror geometry to O(—Kp,. ) — Kpy ) is simply given as the Newton polynomial

H(X) = hj: (Xp) =0 (4.4.4)

of A3B itself.

We define therefore the coordinates of Newton polynomials of A*P for the biggest three
polyhedra in which all other polyhedra are embeddable. These numbers of polyhedra are
16 yielding the most general cubic in P?, 13 for the most general quartic in (P(1,1,2) and
15 for the most general bi-quadratic in P! x P!. The Newton polynom is defined by
letting v*() run over AB* and v*() over the corners of the dual polyhedron AB and the
coordinate ring is subject to (4.4.3]). This yields the coordinates as indicated in figure

Using the remaining scaling of the above projective spaces we can write
H(X,Y,d") = hj, (X,Y,d") (4.4.5)

as an inhomogeneous equation. Note that there as many independent a; as there are
relations between the points on A*5. So in two dimensions we can gauge away three a;.
The formalism does not depend on the existence of a global embedding and in particular
A*B must not be reflexive. However for reflexive polyhedra the corresponding elliptic curves
can be readily brought into Weierstrass form using simple transformation algorithms such
as Nagell’s algorithm, which is very useful for further calculations and will be summarized
in Appendix Moreover the Mori cones and triangulations have been calculated. These
data will be used to relate the parameters a; in the Newton polynomials to the Kahler
parameters. The upshot is that the compact part, i.e. the elliptic curve, of the mirror to
the local del Pezzo geometry is the anti-canonical class in the del Pezzo surface defined by
the Newton polynomial of A% which fixes a choice of the automorphism group.

It follows from the above and the general discussion in sections and and that
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Figure 4.2.: All 16 reflexive polyhedra can be embedded into this diagram.

the mirror curves to toric del Pezzo surfaces have one complex structure parameter called u
and [(A) — 4 mass parameters called m;, corresponding to the canonical class of del Pezzo
and the e;-curves respectively. If more then three points are blown up, the del Pezzo surfaces
have in addition to the Kahler structure moduli, complex structure moduli and the toric
description by the reflexive polyhedra with {(A) —4 > 3 holds only at a special fixed value
of the complex structure. This is not a problem for the goal to describe the full Kahler
structure moduli space of the del Pezzo surface by the elliptic curve as long as hy 1(S) <7
(the bound comes simply from polyhedron 16 which has the maximal I(A) = 10), because
Kéhler and complex structure moduli decouple in N = 2 theories. Above hy1(S) > 7 i.e.
for the Eg and E7 del Pezzo we find torically no mirror in which all masses can be turned
on.
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5. Refined BPS Invariants of Toric
Calabi-Yau Geometries

In this chapter we apply the methods of chapters [3] and [] to compute the refined BPS
invariants of toric Calabi-Yau manifolds using the direct integration procedure. We start
with the massless D5, Eg, E7 and Eg del Pezzo surfaces in section These results are
checked by using standard B-model techniques in section Then we proceed to toric
del Pezzo surfaces in section [5.3] and toric almost del Pezzo surfaces, i.e. geometries with
blow-ups at non-generic points in which also includes a mass deformation of the Eg
surface. This discussion follows closely [I]. We end this chapter by presenting a geometry
that has a genus two mirror curve in

As discussed in section our formalism for geometries with a genus one mirror curve
distinguishes v € M = P'\ {py,...,p,} as the complex modulus of the family of curves,
defining the monodromy of C, from the “mass” parameters m = {my,...,my,}, whose
number ranges between 0 < ny < 6 for the toric (almost) del Pezzo surfaces and between
0 < ny < 8 for the general del Pezzo surfaces.

These masses enjoy various interpretations in the different physical context. They are
masses of matter in various representations in Seiberg-Witten theories with one Coulomb
parameter, they are interpreted as non-renormalizable deformations of [p, g] 5-brane webs
[75], as Wilson lines in the E-string picture, as bundle moduli of the dual heterotic string
in the F-theory geometrization [74] or as positions of [p,q| 7-branes in the brane probe
picture, compare also the discussion in chapter [§ They are related to Kahler parameters
of the del Pezzo surface, which are obtained for the generic del Pezzo surfaces by linear
transformations in the homology lattice from the volume af the hyperplane class in P?
and the volumes of the exceptional divisors. Indeed for the Seiberg-Witten limit we have
spelled out the connection between mass and Kéhler parameters in the examples ,
(5.3.32)), (5.3.37)), (5.4.6) and (5.4.12). Besides that we discuss the matching between mass
parameters and Kéahler parameters explicitly for the example B3 in appendix

For the almost del Pezzo surfaces, see definition after , the m; can be related by
rational transformations to the Kéhler parameters. Examples for these rational transfor-
mation occur first for the Hirzebruch surface F» in (5.3.34) and ((5.3.36) D These transfor-
mations are necessary, because the exceptional divisors are not in the Kéahler cone. In all
applications there are additional “flavor” symmetries acting on the mass parameters, which
makes it natural to group them in characters of the Weyl group.

5.1. The massless D5, E;, E; and Eg del Pezzo surfaces

In this section we discuss the massless higher del Pezzo surfaces. In this one parameter
family one sums over all classes A’ of the del Pezzo surface, by setting the corresponding
Kihler classes to t; — 0, i.e. ¢; = e’ = 1. Since the Weyl group of the corresponding Lie

'For other geometries they can be found in 45'4'3L I5.4.5D7 q5.4.14l I5.4.15[) and .
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algebra acts on A’ we expect to find the states organized in the dimensions of the Weyl
orbits. Physically the specialization corresponds to setting the mass parameters in the five-
dimensional theory to zero. We will denote 8 € Ho(M,7Z) simply by the positive integer d,
the degree of the holomorphic maps.

5.1.1. The E; del Pezzo surface

According to the discussion in section the massless Eg can be obtained from the poly-
hedron 10 with all mass parameters on the edges set to zero. This is simply done by setting
in (see table) all parameters to zero except ma = mg = mg = 1 while keeping 4.
The right large complex structure variable u = ~1% is found based on the analysis of the
u

Mori cone given in (5.4.19). Then we get after a rescaling g; — \ig; with A\ = 18u7/3

g2 =27ut, g3 = —27ub(1 — 864u). (5.1.1)
so that near u = 0, we get % = 1 4 60 + 13860u + 4084080u> + O(u?). The j-function

1
O 1728u(1 — 432u)

J (5.1.2)
identifies this as the special family whose monodromy group is classic and has already been
discussed in [I14]. As a consistency check we can also take the curve (A.2.1]) and turn off all
the Wilson lines by setting the x;(0) to the values of the dimensions of the weight modules.
Let us define the Dynkin diagram of the affine Eg as

3
0 8 7 6 5 4 3 1
O L @ L @ L]
1 2 3 4 5 6 4 2

where we denote by the bold numbers the Coxeter labels. The smaller numbers give
simply an ordering of the basis of Cartan generators and the basis for the weights. Let us
denote by w; the weight of the classical Lie algebra with a 1 at the ith entry and wqg the
trivial weight. We record the dimensions of the corresponding weight modules

x1(0) =3875, x2(0) = 147250, x3(0) = 6696000, y4(0) = 6899079264,

x5(0) = 146325270, x6(0) = 2450240, x7(0) = 30380, xg(0) =248 . (5.1.3)

Specializing (A.2.1) gives indeed the same family as can be seen by comparing the j-
functions.
For the BPS states N;ILJR at d = 1 one gets:

25:\2jr | O |1
0 248
1 1
d=1
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5.1. The massless D5, Eg, E7 and Eg del Pezzo surfaces

It is obvious that the adjoint representation 248 of Eg appears as the spin N&,o: which
decomposes into two Weyl orbits with the weights w; 4+ 8wyp. 1. e. we are counting exactly
the BPS numbers of the [p, g]-string configurations, which are relevant for the gauge theory
enhancement in F-theory, see also the discussion in section Note that the contributions
of different Weyl orbits come in general from curves with different genus. In this way
also the higher spin invariants fall systematically into Weyl orbits of weights of Eg. E.g.
3876 = 1 + 3875, where the latter decomposes in the Weyl orbits of wi + Tws + 35wy.
The multiplicities of the Weyl Orbits are encoded in the solution of the %K 3 model by the
formula , where we report the dimension of some lower Eg Weyl orbits in equation
(16.3.3]).

2j2\2jr | 0 | 1 2 |3
0 3876
1 243
2 1
d=2

At d = 3 we see the decompositions into representations 4124 = 1 + 248 + 3875, 34504 =
14 248 4 30380, 34504 = 1 + 248 4+ 30380, 151374 = 1 4 248 + 3875 4 147250 and 30628 =
248 4+ 30380 while for higher degree the geometric multiplicities of the Weyl orbits become

2i.\2jr | 0O 1 2 3 1 5 16
0 30628 151374 248
1 4124 34504 1
2 1 248 4124
3 1 248
1 1
d=3

bigger with the lower spins farer away from the maximal spin, still it obvious how the states
decompose into Weyl orbits, e.g. 7726504 = 2+ 9 x 248 + 6 x 3875 + 6 x 147250 + 669600.

25t \2Jr 0 1 2 3 4 5 6 7 8 9 10
0 3480992 7726504 212879 248
1 185878 1209127 3632614 38876 1
2 38876 251755 1030753 4373
3 248 4373 39125 217003 249
4 1 249 4373 35000 1
5 1 249 4125
6 1 248
7 1
d=4

5.1.2. The E; del Pezzo surface

The massless E7 del Pezzo corresponds to the polyhedron 13 with all parameters on the
edges set to zero. Again this is simply done by specializing the Weierstrass form (A.1.15))
to

1
a=1 my=1 ms=1 u=—7, (5.1.4)
(—u)3
while setting all other parameters to zero. Again the inverse quartic root identification of
u = ( 1)1 can be predicted from the Mori cone vector [ = (—4,1,1,2). It could be also
—a)4
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obtained by firstly requiring at large radius ¢(u) ~ log(u) and at the conifold tp(u) ~ A.
This also fixes the —1 in , in fact that t(u) = log(u) — 12u + 210u? + O(u?) and
secondly knowing that genus zero curves exist at d = 1.

Relative to 1) we have to scale the g3 and g3 by A = 18iu3 yieldin

g5 =27ut(1 —192u), ¢ = 27uS(1 + 576u) (5.1.5)
and the j-function as

o (192u—1)3
©1728u(64u 4+ 1)2

Jb (5.1.6)
It is well-known that massless theories can be formulated on isogeneous curves [89]. These
curves are not distinguished by their Picard-Fuchs equation, neither for the holomorphic
nor the meromorphic differential, but they are distinguished by a choice of a relative factor
k € Ny in the normalization of the a- and the b-cycles. As pointed out in [89] this exchanges
the two cusp points — corresponding to the large radius and conifold points — of the curves,
but is not a symmetry of the N = 2 theory neither of the topological string. In the context
of the del Pezzo surfaces the existence of isogeneous curves has been discussed in [IT11]. It
finds a natural interpretation in terms of the center of E,, given in as follows. Since
the Picard-Fuchs equations depend only on the linear relations among the points in the
polyhedra, the polyhedron 4 with one mass at the edge of the corner set to zero will lead
to the same Picard-Fuchs operator. Now with the Weierstrass form obtained by embedding
polyhedron 4 into polyhedronﬂ 13 by setting all coefficients to zero except

1
(@)

a1=1, as=1, ms=1 u= , (5.1.7)

NG

we can precisely understand the relation between the two geometries. With A = 18u? we
get now

g5 =2mut(48u + 1), g5 = 27ub(72u + 1) (5.1.8)
and the j-function as
: (48u +1)3
= 5.1.9
I8 T 1728u2(64u + 1) (5.1.9)
so that the Zs transformations
1
Zo :u— —— —u, ZQ:ijjs, Lo . Ts < 2Ty (5110)

64

exchanges as in [89] the conifold with the large radius point and identifies j, <> js and
rescales the U(1)-coupling. However to get integral charges for the matter representations,
or equivalently integral Kahler classes, one has to choose the curve corresponding to the big
polyhedron.

Note that the last relation in can be already seen from the fact that A = 14 64u
appears quadratically in the denominator of j,. The story is analogous for the Eg group
with the big polyhedron being polyhedron 15 and the small polyhedron being polyhedron
1. So we conclude that the volumes of polyhedra P, and P; the are related to the center of

2The labels b and s refer as big and small to the size of the polyhedra used to define the geometries.
30f course this family can be also realized as special cubic by embedding polyhedron 4 into polyhedron 15.
That does not change the analysis.
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5.1. The massless D5, Eg, E7 and Eg del Pezzo surfaces

the groups, or the volumes of the fundamental cell in the lattices A’ and A” as

Vol(P,)  Vol(A”)
Vol(P,)  Vol(A) (5.1.11)

and the existence of the self-dual polyhedron 10 is a consequence of the self-duality of the
Eg lattice. We further notice that the j-function of the massless E7 curve of

, (tes — 36)°
es — 5.1.12
TET = (1728 (s — 52) (5.1.12)
is not very naturally related to jy(up) or js(us)
1 52 — T68uy
- 19 - — =——7 5.1.13
Ues g’ Ues 1+ 64u, ( )

Let us agree on the Dynkin diagram of E; in the following conventions

[N]

2
7 6 5 4 3 1 0
[ @
1 2 3 4 3 2 1

x1(0) =133, x2(0) =912, x3(0) =8645, x4(0) =365750, x5(0) = 27664,
x6(0) = 1539, x7(0) = 56 .
(5.1.14)
From either the big or the small polyhedron we get the following refined BPS invariants.
Again there are the Weyl orbits for curves in different genera which combine in simple
representations of E7.

I 2\2jr |0 1 |2 20\2%jr ] 01| 2 |3
2 L(\fj R 506 0 133 0 56 912
1 1 1 56
d=1 d=2 d=3

We note that there is a periodicity with the degree mod 2 in the contributions of the BPS
states with highest spins. In even degree we always find for the highest spin the trivial and
the adjoint representation 133 in the Weyl orbits w; + Twg of Er, while in odd degrees we
find the 56 representation in a single Weyl orbit. This is a consequence of the nontrivial
center of Er , which is reflected on the square root of the line bundle Q for the E~
case.

At d = 3 the 912, wo 46wy representation appears and again we find the behavior that the
higher degree stable pair invariants decompose in a simple fashion into representations and
hence Weyl orbits. The systematic can again be understood form the solution of the %K 3
and formula . The relevant dimensions of the Weyl orbits for the E5 = Ds, ..., E7
groups are summarized in table

E.g. at d = 4: 8778 = 8645 + 133, with 8645 decomposes as ws + bwg + 22wy + 77wy and
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1673 = 1539 + 133 4+ 1 with 1539 = wg + 6wy + 27wy.

2i\2jr | 0 | 1 2 3 1 5 16
0 1673 8778 1
1 134 1673
2 1 133
3 1
d=4

At degree d = 4 we have the following decomposition 1024 = 912 + 2 x 56, 7504 =
4 x 1539 4+ 912+ 2 x 133+ 3 x 56 + 2, 8472 = 5 x 1539 + 5 x 133 + 2 x 56, 36080 =
2766445 x 1539+ 5 x 133456 and 93688 = 3 x 27664 4 8645+ 1539+ 3 x 13342 x 56 + 1.

2j2\2jr | 0O 1 2 3 1 5 6 7 ] 8
0 6592 36080 93688 9683
1 968 8472 36080 56
2 56 1024 7504
3 56 968
1 56
d=5
25.\2JR 0 1 2 3 4 5 6 7 8 9 10 11 12
0 225912 650050 1062065 54419 133
1 10451 73839 289109 650184 13588 1
2 1807 13855 75512 234691 1807
3 1 134 1808 13855 61924 134
4 1 134 1808 12048 1
5 1 134 1674
6 1 133
7 1
d=26

5.1.3. The E¢ del Pezzo surface

As we mentioned before, we specialize the polyhedron 15 to the massless case by setting all

coefficients in (A.1.9) to zero except of

1
mg=1, ms=1, mg=1, u= 13 (5.1.15)
With A = 18u5 we get
g2 = 27ut(1 — 216u), g3 = 27u’®(1 + 540u — 5832u?) (5.1.16)
hence the j-function of the I'y(3) curve.
1 —216u)?
( v (5.1.17)

PTI98 + 270)3

Similar the isogeneous I'(3) curve is obtained by considering the small polyhedron 1 by
setting ag = 1, mg =1, my = 1 and v = #, which yields with the same scaling A,
g2 = 27u*(24u + 1) and g5 = 27u’ (216u? + 36u + 1) so

(1 + 24u)3

= — 5.1.18
I8 = 7179863 (1 + 27w) (5.1.18)
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5.1. The massless D5, Eg, E7 and Eg del Pezzo surfaces

and the relating data between the isogeneous curves are

1
Zg:u»—>—2—7—u, Lo : jp <> Js, Zo:Ts 4> 3Tp.

Note that the massless Eg curve of

es (Ues — 18)3(ues +6)
TE6 = 1798 (ues — 21)

is again not completely naturally related to jy/s(up/s)

6 L 21 — 162,
Ues = —0— —, Upg = ————
es Us’ es 1+ 2bub
0
1
2
2
6 5 4 3 1
[ 4 \ 4 @
1 2 3 2 1

We record the characters according to the above basis of weights
x1(0) =27, x2(0) =78, x3(0) =351, x4(0)=2925, x5(0) =351,

The low degree spin invariants fall in these representations.

— — 25i\2r 10 1] 2 |3
2j.\2jr | 0 | [2jc\2jr [O] 1 ]L(\) IR ; =
0 27 0 27
1 1
d=1 d=2 s
GN\Gr 10 1 2] 3 | 4
0 27 351
1 27
d=4

(5.1.19)

(5.1.20)

(5.1.21)

x6(0) =27
(5.1.22)

Note that the periodicity in which the adjoint representation appears is now the degree

d modulo 3 as expected from the center of Eg.

The first splitting representation that appears is the 378 = 351 + 27 where 351 splits in
the Weyl orbits w3 + 5wg and further 1755 = 5 x 351, see (6.4.3)) and table

2\2jr | 0 [ 1] 2 | 3 1 5 ] 6
0 27 378 1755
1 27 378
2 27
d=5
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2j\2jr O 1 | 2 3 1 5 6 7 89
0 730 3732 8984 78
1 79 308 3732 1
2 1 79 730
3 1 78
4 1
d=6
2i.\2jr | 0 1 2 3 4 5 6 7 8 9 10 | 11
0 2133 10584 30240 47439 2133
1 378 2889 12717 30240 105
2 27 405 2889 10584 27
3 27 405 2484
1 27 378
5 27
d="17

5.1.4. The D; del Pezzo surface

Finally we discuss the case of the Dy surface which can be obtained from the polyhedra
2 (small) and 15 (big). We consider again the massless limit by the following choice of
coefficients and redefinition of u

2 (small). (5.1.23)

All the other mass parameters vanish. Accordingly, one obtains the respective Weierstrass
normal forms

g2 = 27u* (2560 + 16u+1),
g3 = —27ub (4096u3 + 384u* — 24u — 1) , big polyhedron, (5.1.24)

1 16
¢ = 27<2++16)u6,
u u

1 24 12
g3 = 27| =+ —+ 120 _ 64 ) u”, small polyhedron. (5.1.25)
w o ou? o w

In both cases we have performed a rescaling with
A= 18u3 (5.1.26)

in order to arrive at the respective expressions for go and g3. Finally the j-functions are
given as
(2562 + 16u + 1)° (1662 + 16u +1)°

_ _ 5.1.27
1728:2(16u +1)2 ° 7° 7 17280 (16u + 1) (5.1.27)

Jb =
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5.1. The massless D5, Eg, E7 and Eg del Pezzo surfaces

In contrast to the previous cases (Eg, E7, Eg) we observe a different behavior concerning
the exchange of the conifold locus and the large radius point

(256u — 224u + 1)’

1 ) ) ) )
Zo:ur— —u——, Zo:jy <> Jb, jsHj;:— ZQ:TSH4T;.

16 1728u(16u + 1)* 7
(5.1.28)
Instead the j-functions of the two polyhedra are related by the map
16u — Hv1 141
R 6u — (8u + 1)v/16u + 1 + ' (5.1.29)

32(16u + 1)

We end the discussion by comparing the curves to the massless D5 curve given by Sakai and
Eguchi. This is given by again setting the characters to the dimensions of the fundamental
representations in (A.2.8). The Weierstrass data of this curve are given by

! (u+4)? (u® — 8u — 32), g3

=3 u+4) (u - 12u® — 24u +224) , (5.1.30)

92 = ﬂ<

and the j-function reads
3
jes (32ug, + 8ues — 1)
Ds ™ 1728ul, (48u2, + 8ues — 1)

(5.1.31)

In contrast to the previous cases, this curve is not connected to any of the two previous
curves by a bi-rational coordinate transformation.

The Dynkin diagram of Ds

leads to the following dimensions of the weight modules

x1(0) =10, x2(0) =45, x3(0) =120, x4(0) =16, x5(0)=16. (5.1.32)

We see the periodicity with respect to the degree is now modulo four and the adjoint
representation of D5 appears for the first time at d = 4. The representation 45 falls in
the Weyl orbits wo + 5wg. The Weyl orbit of ws is 40-dimensional and gets contributions
only from genus zero curves, while the w; get contributions from a genus two curve, whose
leading contribution is at spin [1/2,2].
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2j:\2jr | O 2jr\2jr | 0 | 1 2jt\2jr | O | 1 | 2
0 16 0 10 0 16
d=1 d=2 d=3
2Nz | 0112 3 |4
0 1 45
1 1
d=4
2\2r 01 23] 4 |5
0 16 144
1 16
d=>5
2.\2r 101 112 3 45 6 |7
0 10 130 456
1 10 130
2 10
d=6
20210111 2 3] 4] 5 6 7 1 8 |9
0 16 160 736 1440 16
1 16 176 736
2 16 160
3 16
d=17
27:\2jr | O 1 2 3 4 5 6 7 8 9 10 11 | 12
0 311 1345 3431 4726 257
1 46 357 1602 3431 46
2 1 46 357 1345 1
3 1 46 311
4 1 45
5 1
d=38

5.2. An alternative approach to the massless cases

Alternatively we use the Picard-Fuchs equations, the Yukawa couplings, i.e. the usual B-
model methods, that also apply in the compact cases. As discussed in section [2.2.6] the
complex geometry of the mirror manifolds are described by the Picard-Fuchs differential
equations [32]

2
(02 + o2 [ [ (0 +1 - ai))ez/ Q=0 (5.2.1)
i=1 i

where z is the complex structure modulus in the mirror manifold and 6, = 20,. a1, as and
co are classical constants of the the Calabi-Yau manifolds. ¢g is a normalization constant for
the complex structure parameter z such that ¢t = log(z) + O(z) around z ~ 0 corresponds to
the Kéhler modulus in the large volume limit. The vectors @ = (a1, as) satisfy a; +ag =1
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CY ]PQ ]P)l X ]P)l D5 E6 E7 Eg
-16 16 | 27 | 64 | 432
1 4 3 2 1

€o

ol S]

Table 5.1.: The constants ¢y and k for the Calabi-Yau models.

and are given as follows for various one-parameter families of Calabi-Yau manifolds. We
consider

11 11

2. - “ 1 1., »_ (2 2 (22
P< . af(g,g), P'xP': a (2,2), Ds: @ (2,2),
12 13 15
E¢: a=(=, = Er: da=(-,- Eg: d=(=,-). 2.2
6 a (373)7 7.4 (474)7 8 a (676) (5 )

The E,, (n = 5,6,7,8) del Pezzo surfaces can be represented as complete intersections
of degree (2,2) in P*, a degree 3 hypersurface in P3, a degree 4 hypersurface in weighted
projective space P3(1,1,1,2) and a degree six hypersurface in P3(1,1,2,3). In these cases
the normalization constant ¢y can be computed as ¢g = (], df") /(I w}”j) where d; are
the degree(s) of hypersurfaces or complete intersections, and w; are weights of the ambient
projective space (see also the discussion in section . The constant is ¢y = 27 for the
P2 model and ¢y = —16 for the P! x P! model.

The prepotential F(%0)(t) is determined by the Picard-Fuchs (PF) equation (5.2.1)) from
the fact that the mirror map t(z) and derivative 8; F(*0)(t) are solutions to the PF equation
besides the constant solution. The normalization of the prepotential is fixed by the classical
intersection number k as F(00)(t) = —#&¢3 4. ... The intersection number can be calculated
by the formula x = ([[; d;)/(I[; w;) in the E, models. The numbers are x = 1 for the P?
model and k = 1 for the P! x P! model. We list the constants ¢o and « for the Calabi-Yau
models in Table .11

We discuss next the genus one amplitudes F(1:0) and F(®1). The F1.O) amplitude is
holomorphic while the amplitude F(Y has a holomorphic anomaly which is determined by
the genus one holomorphic anomaly equation . Both amplitudes have logarithmic
cuts for the discriminant A(z) = 1+ cpz whose coefficients are determined by the genus one
gap boundary conditions at the conifold point A(z) = 0. Furthermore, it turns out that
the amplitudes also contain a logarithmic piece log(z). We can write the amplitudes as

o g(AG) — 9 log(2)
24 ’
FON —%log(ﬁzt(z))—%(log(A(z))—l—c(o’l) log(2)), (5.2.3)

where we use the constants ¢(19 and ¢(%1) to denote the coefficients for log(z) terms in the
refined amplitudes. We determine the constants for the Calabi-Yau models and list them
in Table 5.2

The three-point Yukawa coupling and the Kéahler metric in the moduli space are given

up to an anti-holomorphic factor by

K

Copp = —
222 23(1—1-602)7

Gz~ Ot (5.2.4)
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CY [P2[PIxP![D; | Eg | Er | Eg
A0 |1 2 s 91011
O | 7 7 4 13211

Table 5.2.: The constants ¢(19) and ¢(®1 for the Calabi-Yau models.

The Christoffel connection in the holomorphic limit T'Z, = 9;2(8?t) is not a rational function
of z. There is a relation with the propagator which satisfies (3.3.7) 0:5%* = CZ?,

Iy, =-C...5% + f., (5.2.5)

where f, is a rational function of z since the anti-holomorphic derivatives d; of both sides
are the same. For the one-parameter models we simply denote the propagator as S = S%*.
The rational function f, is a holomorphic ambiguity that we can choose such that the
propagator S has a nice behavior near the special singular points in the moduli space

76a1 +5 _ Co
62 6(1 + coz)’

f.= (5.2.6)
where aq is the constant in and cp is the normalization constant in table With
this choice of ambiguity f., the propagator S is regular at the conifold point z = —%. Near
the orbifold point 2~ ~ 0, the propagator generically scales as S ~ 2% and we have chosen
the constant (6a; + 5) in f, to cancel the leading z® term so that the scaling behavior is
less singular near the orbifold point as S ~ z2. The cancellation can be seen by noting that
the flat coordinate scales as t ~ 2z~ near the orbifold point z~! ~ 0, and accordingly the
Christoffel connection scales as I'Z, ~ —(a; + 1)z~! and cancels the leading term in f,.
The derivative of the propagator is constrained due to as

D.S = —C...5% + f(2), (5.2.7)

where the covariant derivative reads D.S = (8. + 2I'%,)S. The holomorphic ambiguity f(z)
is a rational function with a simple pole at A(z), and it can be fixed by computing S and
I'%, in the holomorphic limit.

The propagator S is the only an-holomorphic component in the higher genus amplitudes,
and the generalized holomorphic anomaly for the refined theory is

n g
s F™9)(8, 2) = %[DzF(”’Q*U + > > D.Fme)p, plrmrnomo], (5.2.8)

n1=0g1=0

where the first term on the RHS is defined to be zero if g = 0, and the sum in the second
term does not include the two cases ny = g1 = 0 and ny = n, g1 = g. Since the derivative
of the propagator forms a closed algebra as seen in equation , the higher genus
amplitudes F(™9) with n 4 g > 2 are polynomials of the propagator S and the coefficients
of the polynomials are rational function of z.

The holomorphic anomaly equation determines the S-dependent part in the higher genus
amplitudes F(™9) but not the S-independent holomorphic ambiguity which is a rational
function of z and we can denote as fo(n’g) (z). To further fix this function we consider the
boundary conditions at the special points in the moduli space, the large volume point z ~ 0,
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5.2. An alternative approach to the massless cases

the conifold point z ~ —% and the orbifold point z ~ oo.

The behaviors near the large volume point and the conifold point are universal for all
models. The amplitude F(™9 and the ambiguity fén’g )(z) approach a constant O(z") near
the large volume point. The leading constant term in the conventional unrefined theory is
the constant map contribution in Gromov-Witten theory. This constant does not affect the
calculations of the refined GV invariants which only contribute to the world-sheet instantons

of positive degrees, and here we will not determine the constant for the refined theory.

Near the conifold point, the amplitude F("9) satisfies the gap condition F' (n:9) ~, W
D

+ O(tY), where the tp is the flat coordinate near the conifold point and scales like tp ~
z + é, compare also the discussion in section Accordingly the ambiguity scales as

fén’g ) (z) ~ W and the gap conditions fix 2(n+g¢)—2 constants in the holomorphic

ambiguity fén’g)(z).

The boundary conditions near the orbifold point z ~ oo are more tricky, and needed to
be classified into several cases, similar to the situation studied in [106].

For the P2 model, the higher genus amplitude F(™9) is regular at the orbifold point. Since
we have chosen the propagator S to have a nice scaling behavior S ~ 22 at the orbifold
point, there is no singularity at the orbifold point from the S-dependent part in F(9).
Therefore the holomorphic ambiguity fén’g)(z) is also regular at the orbifold point, and we
can write an ansatz

£m9) () = g(niH L (5.2.9)
0 =0 (1 + Coz)k

The gap condition fixes the 2(n + g) — 2 constants zy for k = 1,2,--- ,2(n + g) — 2, and
we do not need to fix the constant xp. So in this model we can in principle compute the
refined topological string amplitudes to any genus and extract the corresponding refined
GV invariants.

For the other five models, the amplitude F(™9) is singular at the orbifold point but is less
singular than m, where t, is the flat coordinate near the orbifold point and scales as

to ~ 27, where a is the fractional number in (5.2.2). So the ansatz for the ambiguity is

(ng) 2(n+g)—2 o [2a1(n+g—1)]
n7g k

= E — 4 E . 2.1
o k=0 (14 coz)k k=1 e (5210

In these cases that are similar to the P? model, the conifold gap condition fixes the 2(n+g)—2
constants zy, for k =1,2,--- ,2(n+ g) — 2. However we still need to fix the [2a1(n + g — 1)]
constants y; in order to solve the refined topological string amplitudes (up to a constant
.TQ).

For the P! x P! model, there is also a further gap condition at the orbifold point similar
to the conifold point which implies that F(™9) ~ W + O(t9). Since only even powers

of t, appear due to the leading scaling behavior ¢, ~ z_%, this provides n 4+ g — 1 boundary
conditions which exactly fix the constants y, with k =1,2,--- ,(n+g¢g—1). So in this model
we can also in principle compute the refined topological string amplitude to any genus.
For the remaining E,, (n = 5,6, 7,8) models, there is no nice boundary condition at the
orbifold point to fix the constants y; in . Here we can use the nice behavior of
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refined GV invariants at the large volume point to provide boundary conditions to fix these
constants. It is often the case that some low degree refined GV invariants ngL g vanish
at a given genus gr,gr. If we have computed the refined GV invariants ngL for all the
genera g7, +gr < n+g, gr < n and up to degree d < [2a;(n+g—1)], either by the B-model
method or by their vanishing property, then we would have enough boundary conditions to
fix the constants y, with k =1,2,--- | [2a1(n+g—1)] in fén’g)(z) in and would have
solved the refined amplitude F(™9 as well. Using this technique we can solve the refined
topological string amplitudes to some finite but not arbitrary high genus.

Using the B-model techniques we compute the refined topological string amplitudes to
some higher genus and we fix the complete refined GV invariants up to some finite degrees
for the various models. We list the results in the tables 5.1.4l - [A. 41l The refined GV
invariants for the local P? and P! x P! models have been computed before in [30, [108]. Here
we also include them for completeness. The blank elements in the tables represent vanishing
GV invariants.

We discuss some salient features of the refined GV invariants. For degree d which is
a positive integer as an element in Hy(M,Z), there is a non-vanishing positive integer
n?Lij = ﬁgjL’sz at the top genus (2jr,2jg) = (g?p ,g%’p ). All higher genus invariants
vanish so the non-vanishing GV invariants form a rectangular matrix, and we find that the
left top genus is always less than the right top genus gtLOp < ggp . For a Calabi-Yau model,
the top genus of higher degree is always larger than that of the lower degree, i.e. we always
find ¢} (d) > ¢} (d — 1) and ¢i¥P(d) > ¢iP(d — 1).

In the basis of integers nd the GV invariants do not generically vanish if the genus

pair lies in the rectangular friegt];ix i.e. gr < gto and g < gg’p So we can determine the
top genus (gL ,g%op) as the smallest integer pair such that ¢ 417410 Ngg%opﬂ = 0. The
Vé?imshlng of j GV invariant ngL gr = 0 implies that its higher genus neighbors also vanish
g +l9r = ngngR-ﬁ-l =0.
However in the j-spin basis nzl jn» there is furthermore a large number of vanishing GV
invariants nj jrn inside the rectangular matrix 2j;, < gtLOp and 2jp < gg’p . The genus pairs

of these non-vanishing integers follow certain patterns as we go up in higher degrees. More

precisely, suppose at degree d — 1 we find n;lL_/l2 an/2 # 0, then for the corresponding genus
top top

pair (g7, 9%) = (9 + 977 (d) — 9P (d— 1), gr + g1" '(d) ~gg" (d 1) at degree d, we always
find that the GV integer is also non-vanishing n? 9, /2,92 # 0. On the the hand, if the
R

d—1
9L/2.9r
= 0 also happens at the higher degree d.

integer n /2 vanishes, it is also usually but not always the case that the vanishing

d
"y, /2.9%/2
The non-vanishing GV invariants seem to cluster together, but no two non-vanishing

GV invariants are next neighbors to each others. More precisely, we define the distance as
|9z, — 97|+ |gr — 9| between two GV invariants n L /2.9n/2 nd n ! J2.gl )2 We find that the

distance of a non-vanishing GV invariant n? to its nearest non-vanishing neighbor

9L/2:9R/2
is almost always 2. Only two exceptions occur in the P? model where the distance with the
nearest non-vanishing neighbor is 4.

With the B-model method we can extract the GV invariants in the basis ﬁgL gr from the
refined topological string amplitudes. We find that by utilizing the pattern in the j-spin
basis, we do not need to solve all non-vanishing ng gp nside the top genus rectangular
matrix in order to ﬁx the complete GV invariants. It is still necessary to compute a number

of non-vanishing 7 ngL gr, from the B-model which is larger than the number of non-vanishing
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5.3. The toric del Pezzo surfaces

n;?lL,jR in the j-spin basis. However, since we do not know a priori the number and the
positions of the non-vanishing n;lLJ»R before we find that the solution, we usually need
to compute the B-model to a few more genera higher. In practice, we find that we can

usually fix the complete GV invariants when we compute the refined amplitudes F(.9)

up to the total genus n + g a little bigger than the left top genus gg)p . We consider a

solution for the GV integers n;lL, jp that passes non-trivial consistency checks, if the number
d

9r.gn Obtained from the B-model is larger than the number of

non-vanishing integers nfL jp 10 the solution.
9.

of non-vanishing integers 7

5.3. The toric del Pezzo surfaces

In this section we discuss the calculation of refined BPS numbers of the toric del Pezzo
surfaces Fy, P2 = By, By, By and Bs as well as an example for an almost Fano variety,
namely F5 which has only semi-positive first Chern class.

An important observation is that the GKZ-system that can be easily determined
from the toric diagram can be reduced to a single ordinary differential operator depending on
only one variable v and some mass parameters m;. The above discussed mass parameters
correspond in this context to trivial solutions of the Picard-Fuchs equationd’] We have

determined this differential operator for the cases Fy (5.3.15)), P? (5.3.9), By (5.3.28)) and
B, (A.2.26).

As discussed in section [3.4] a crucial ingredient for the computation is the Weierstrass
normal form of the mirror geometry that can be obtained by embedding the toric diagram
into either one of the polyhedra 13, 15 or 16, see also the discussion in[£.4] This procedure
is explicitly demonstrated for the embedding of the toric del Pezzo surfaces in the picture
below and is the starting point for the subsequent discussion. Following the procedure
described in section we have determined the free energies for the first genera. In the
following we just discuss the important steps to set up the calculation and mostly restrict
ourselves to just pointing out new phenomena when passing from one geometry to another.

2
R YEI O xyz

m

Figure 5.1.: Here we depict the polyhedral embedding of By, . .., B3 into polyhedron 16. The
Weierstrass form of the general Newton polynom to polyhedron 16 is calculated
in Appendix Al.
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Figure 5.2.: The polyhedron 1 with the modulus 4.

5.3.1. O(—Kp:) — P?

We start by providing the data of the Mori coneﬂ

Vi 1
D, 1 0 0| -3
Dy 1 1 1 (5.3.1)
Do 1 0 1 1
Ds 1 -1 -1 1
This gives us the invariant coordinate
a1a2a3 1
z= = —. (5.3.2)

u3 3

We set a1 = as = ag = 1 and denote the complex modulus by %. Note that the coordinate
z is small at the large radius point, whereas the coordinate % is small at the orbifold point.
However, from the point of view of embedding the toric diagram of interest into either one
of the polygons 13, 15 or 16, it more natural to use the coordinate %. As we proceed with
blowing up P? we will always use this coordinate and finally pass to the small coordinate
1/u® where « has to be suitably determined.

As explained above instead of starting like in [66] with and eliminating X; by
(4.3.5)) we solve this equations more geometrically by embedding A* into polyhedra, so that
the Newton polyhedron solves immediately the above constraints

XY? 4+ YZ2+ X*Z+0XYZ=0 (5.3.3)

and yields the affine elliptic mirror curve H(X,Y) by setting Z = 1. By Nagell’s algorithm
its Weierstrass normal form is given by

2 = x?’—i—%(—%ﬂ—fﬁ)x%—%(—216—36&3—116). (5.3.4)

It is easy to show that the period integrals fw A over the meromorphic differential

d
A= log(x);y, (5.3.5)

which describe the closed string moduli fulfill the differential equations ¢ = 1, ..., # moduli

“1.e. these solutions take the form of a linear combination of logarithms of the variables.
®The Mori cones of all two-dimensional reflexive polyhedra have been determined in [T10].
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5.3. The toric del Pezzo surfaces

20 o
IT 2 - I] o /Azo. (5.3.6)
1>0 1M <o K

The a;, i = 1,...,# points are subject to symmetries of the geometry and can be ‘gauge’-

fixed to the variables z; using a;0,;, = lz(k)zk(‘)zl. In the case at hand there is just one Picard
Fuchs equation (5.3.6) which has third order

L, =03 +320(30+1)(30 + 2), (5.3.7)
where 6 denotes the logarithmic derivative zd%, s.t. (5.3.7)) reads in terms of z
L, = (1+602)0, + (32 4+ 1082%) 92 + (2% + 272%) 92, (5.3.8)

Recall that the solutions to this differential operator give the periods at the large radius
point. As already discussed above, it will often more natural to use the coordinate @, in

which (5.3.8)) takes the form
Loy = 105 + 3% 0F + (27 + 4°) 05, (5.3.9)

The corresponding solutions give the periods at the orbifold point.

We end the discussion of P? by writing down the prepotential up to degree 7 in @1,
denoting Lg = Li(Q’f), compare also ([2.4.11])

F = class + 3L; — 6Ly 4+ 27L3 — 19214 + 1695L5 — 17064Lg + 188454L7. (5.3.10)

The refined invariants have already been calculated in [30] and indirectly in [108]. We list
a few for reference with the blow-up cases. The connection to our solution of the %K 3 is

given by (6.4.3)) and table

5.3.2. O(—Kp) = F

With the two-parameter model given by the polyhedron 2, we discuss two perspectives of

Figure 5.3.: The polyhedron 2 with the choice of the mass parameter m and the modulus
U.

getting the mirror and performing the calculation of the BPS numbers. The first starts
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d[jr\jr [0 3132337495563 728 179 J1035115122137
1l 0 1
2[ 0 1
3 0 1
1
i 1
40 11 1
1
3 111
2 1
3
§ 1
500 1 112 2 2 1
: 1122 3 2 1
1 11 2 2 2 1
3 11 2 1 1
2 1 1 1
5
5 1
3
6 0 113264 8 5 7 2
3 12356 9 9 10 7
1 11337 71 9 9
3 113 4 7 7 10
2 11 3 4 7 6
s 1 1 3 3
3 1 1 3
7
u 1
4
9
2
5
; ; 11395979511 ,13~15 17 19 21 23 25 27

Table 5.3.: Non-vanishing BPS numbers N¢

JL.JR

of local O(—3) — P2 up to d =T.

with the Mori cone vectors, which correspond to the depicted triangulation in figure (5.3))

Vi @)

D, 1 0 0]-2 -2
D 1 1 1 0
Dy 1 0 1| 0 1
Dy 1 -1 0| 1 0
Dy, 1 0 —-1| 0 1

(5.3.11)

Following (4.3.6) and eliminating coordinates by (4.3.5)) and the C*-action on the Y; we

write the mirror curve in the remaining coordinates x,y as

z z
H(x7y):1+x+;1+y+f:0,
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where the z; are defined as in (4.3.5). The Picard Fuchs equations (5.3.6) become in the
case at hand with 6; := Zidizi
L0 = 63 —2(6; + 0, — 1)(261 + 265 — 1)z

2
1
LO) = 63 —2(0; + 0y — 1)(201 + 202 — 1)z, . (5:3.13)

Let us come to the discussion of the mass parameter. To make contact with the latter one
finds that at z; = 0 one has a constant solution and two solutions, which are linear in log(z;)
and one solution, which is quadratic in log(z;). As the two linear logarithmic solutions
one finds t; = log(z1) + X(z1,22) and to = log(z2) + X(z1, 22) determining the Ké&hler
parameters of the PY’s. Here ¥(21,22) is the same holomorphic transcendental function.
This suggests to change variables and introduce z = z; and M = log(z1) — log(z2). The
latter is a trivial solution. This is expected, as for a general Riemann surface the number
of A- and B-cycles corresponds to the number of non-trivial logarithmic respectively double
logarithmic solutions. Therefore we expect to find in all considered examples only one non-
trivial logarithmic solution, while the other ones will have an interpretation as deformation
parameters. In fact, we can be a bit more precise with the example at hand. Denote by C
and Cy the two classes of P!’s respectively and by D the class of P! x P! which corresponds
to the double logarithmic solution. It is easy to check from the data of the Mori cone that

#(C1N D) = —2 = #(CyN D). (5.3.14)

Therefore the class C; — Cy has no compact dual as it has no intersection with D.

We now consider the differential left ideal generated by (5.3.13)) up to homogeneous degree
three in differentiations w.r.t. z and M. In this ideal one can eliminate all differential

operators involving derivatives w.r.t. M and end up with a third order differential operator
in z determining all non-trivial solutions of (5.3.13|)

L= (60(m—1)"22—18(m+1)z+1)d, + 2 (80(m — 1)222 — 32(m + 1)z + 3) 92+
Z2(16(m —1)%22 —8(m+ 1)z +1) 93.
(5.3.15)
Here we understand m = e now as a deformation parameter. Setting m = 1 imposes
an identification of the complexified Kahler parameters t; = to globally in the quantum
moduli space. This leads to the diagonal model with S = P! x P! as base, discussed in

section (|A.4.1). In particular (5.3.15) restricts for m = 1 to (5.2.1) with the appropriate

parameters cg = 16 and a; = %,ag = %

M

Instead of computing the mirror curve case by case via the [ (k) vectors, the elliptic mirror
curve is simply associated to the reflexive polyhedron as its Newton polynom, i.e. the
coordinates of the points determine its positive exponents. In Appendix A we provide the
Newton polynom of the biggest polyhedra so that all polyhedra can be embedded in at least
one of them and provide the Weierstrass form for them. In this approach it is only necessary
to specialize the general Weierstrass forms and to eventually rescale the g; — ¢; A’ to ensure
that the closed string period has the right leading behavior. Note that according to
the [ vectors the right choice of large complex structure coordinates we get from is

m 1
= — == — 5.3-16
a=y s (5.3.16)

so that it is immediately clear that z1 /20 = m and @ — oo is the large radius point.
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In the P! x P! case we can use the polytop for the cubic or the bi-quartic, the choice does
not matter. Let us re-define u = # = 23. Then we get

g2 = 27u* (16u* (m? —m+1) —8u?(m+1) + 1),

g3 = —27ub(—14+12(1 +m)u? — 24(2 + m + 2m?)u* + 32(2 — 3m — 3m? + 2m?)u’) .
(5.3.17)
This yields a j-invariant

(16 (m2 —m + 1) @ — 8(m + 1)a+1)°
m2at (16(m — 1)%2a? — 8(m + 1)a + 1)

j= (5.3.18)

At the large radius we require t(u, m) = log(u) + O(u, m) and near the single zeros of A,
te(u,m) = ze(u, m) +O(22(u, m)), which fixes the scaling (3.4.5). We have calculated F(9)
at the conifold to impose the gap condition. Other interesting limits are the Seiberg-Witten
limit )
2=y exp(—4€2u), 2z — €Al (5.3.19)
in which (308 23
3A* —4u

| = 5~ 5.3.20

I T 97AR (AT — 2 (53:20)
becomes the j-function of the massless SU(2) Seiberg-Witten curve compare (5.4.1) and
the Chern-Simons limit discussed for the refined case in [27].

We define a single-valued variable near the large radius as
Qr=e" =u+ 0’ m), (5.3.21)

which is easily inverted to u(Qf). From Kéhler parameters of the two Pl’s we define
Q; = €' and get the relation Q; = Q2 and m = @Q1/Q2, which allows us to obtain for all
expressions defined in section the large radius expansion in terms of ;. The coefficients

in 1 3.3.10) are given by ag = 7,a1 = %,bo =—2and b = —1.

We have calculated the spin invariants and found the following series

N(L@ _ 1 if jp=0,jr= % +d (5.3'22)
JLIR 0 otherwise
Up to di + do < 7 the refined invariants are reported in Table
5.3.3. O(_KBl) — 81
The Mori cone is given by
i W — () 1@ =)
D, 1 0 0 -2 -1
Dy 1 1 0 1 0
Dy 1 0 1 0 1 (5.3.23)
Dy |1 -1 0 1 -1
Dy 1 -1 -1 0 1
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(di,do) |jr\jr |0 5152237435463 70817910
2,2) | 0 11
1
3 1
2,3) | 0 112
1
i 11
1 1
2,4) | 0 112 2
1
i 11 2
1 11
3
3 1
2,5) | 0 112 2 3
3 11 2 2
1 1 1 2
3
3 11
2 1
3,3) | 0 1133 4
3 123 31
1 1 2 3
3
3 11
2 1
(3,4) | 0 113476 7 1 1
3 124 6 8 2
1 125 6 7 1
3 1 2 4 1
2 1 2 3
5
5 11
3 1
Table 5.4.: Non-vanishing BPS numbers N;gljf) of local O(—2,—2) — P! x P!,

=1}

Figure 5.4.: The polyhedron 3 with the choice of the mass parameter m; and the modulus
.

The invariant coordinates are

(5.3.24)
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In our choice for the mass parameter we obtain from the embedding
XY?*+YZ?*+ X?Z+aXYZ+mXZ* =0 (5.3.25)

and its Weierstrass normal form is given by

1
P = x3+ﬁ<—24ﬂ—ﬂ4+8112m— 16m2>x

1
+2—16< — 216 — 36a° — 4 + 144am + 12a*m — 48u°m? + 64m3) . (5.3.26)

As in the P! x P! case, there is a trivial solution to the Picard Fuchs equation that reads
1 = log(z1) — 2log(z2) = 3log(m). (5.3.27)

The third order differential operator is given in the case at hand as

L = (—12m?® +9a — 18ma* + 8m?*@?)d + (—108m — 128m* + 144m?a + 2742
—64m3a? — 52ma® + 24m?a*)02 + (=9 + 8ma)(—27 + 16m® + 36mi
—8m2a? — @® + ma)o3 . (5.3.28)

We followed the same logic as in the previous section to get the large radius expansion
and obtain the spin invariants. Note that this equation reduces to the one for the P? base
in the blow-down limit m = 0. We note that the discriminant reads

A =1—1—8mia?® + 36m1a> — my (27 — 16my)a’ . (5.3.29)
The prepotential is given as

F = class + LO,l - 2L1,0 + 3L1,1 + 5L2’1 — 6L272 + 7L371 — 32L3,2 + 27L373 + 9L471
—110L4 2 + 286L4,3 — 19214 4 + 11L5 1 — 288L5 2 + 1651L5 3 — 3038L5 4 + 1695L5 5
+13Le1 — 644L6 2 + 6885Lg 3 — 25216L¢ 4 + 35870Lg 5 — 17064L¢ ¢ .

(5.3.30)
Again we have denoted Lg = Li3(Q®). Generally N ]dLl ’;-1; = 0 for d; < d2 and again there is
an infinite series of spin invariants that can be given in a closed form [108]
1 if jp=0,jr=d
N R JIL = IR = (5.3.31)
JLIR 0 otherwise
Up to di + do < 7 the refined invariants are reported in Table
The Seiberg-Witten limit for [F; is
1
21 — Zexp(—Qﬁe%l), 2 — eIAY (5.3.32)

5.3.4. O(—KFQ) — F2

We consider the two-parameter model given by the polyhedron 2 with the Mori cone vectors,
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(di,do) |jr\jr |0 31325324958 6371283 910
22 | 0 1
3,2 ] 0 11
1
: 1
42 ] 0 112
1
1 11 1
1 1
(5.2) | 0 112 2
1
1 11 2
1 11
3
3 1
43 ] 0 11 21 1
: 122 1
1 11
3
3 11
(53) ] © 11 335 3 2
: 124 55 1
1 12 4 3 1
3 1 2 3 1
2 11
5
2 1

Table 5.5.: Non vanishing BPS numbers N2 of local O(-2,-1) = Fy.

JL-JR

Figure 5.5.: The polyhedron 4 with the choice of the mass parameter m and the modulus
.

which correspond to the depicted triangulation

v; 1D = () 12) = )
D, 1 0 0 -2 0
D, 1 1 0 1 0
D, 1 0 1 0 1 (5333)
Ds 1 -1 0 1 -9
D, 1 -2 -1 0 1

Here we observe a new phenomenon namely a point on the edge, which corresponds to
an almost Fano surface. The large structure coordinates are

m 1
zZ9 =

= . (5.3.34)

s

We cannot take simply a ratio between the two coordinates to get the non-dynamical pa-
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rameter m. Let us define as before u = %, then we find by specialization of (A.1.10) for
the appropriate rescaled g;

g2 = 27u* ((1 — 4mu)? — 48u?),

5.3.35
g3 = —27u® (64m>u® — 48m*u? — 288mu® + 12mu + 72u* — 1) ( )

which defines ¢¢. Let us denote the Kahler parameter of the base ¢ and the one of the fiber
by ti. As usual we also denote Q1 = e/ and Q2 = e2. Then we find

14+ Qo
T -
Q3

So typically for the almost del Pezzo surfaces we find one transcendental mirror map u(ts)
involving an elliptic integral and rational mirror maps for the mass parameters on the
edges. The latter fact is simply due to the fact that the geometry on the edges is a rational
geometry involving only Hirzebruch sphere trees of resolved ADE singularities. In fact in
the toric case just A,-singularities. One way to obtain the rational mirror map is to solve
the Picard-Fuchs equations explicitly, see for this specific example also [176].

1
tr=Q¥Qy, m= (5.3.36)

Now remarkably the spin invariants N 5 j, are the same however with a shift [I01] in the
classes so that Ndffdb(pz) — N desde

ds.d
P = N5 (Fo) and le{ij(Fg) =0 for df < dp.
The Seiberg-Witten limit for F5 is

1
a =g exp(—2€%1), 2o — €'AL. (5.3.37)

5.3.5. O(—Kg,) — Bs

m,

m,

Figure 5.6.: The polyhedron 5 with the choice of the mass parameter mi, ms and the mo-
dulus .

The Mori cone is given by

Vi @ B)
D, 1 0 0]-1 -1 -1
Dy 1 1 0] —1 1 0
Dy 1 1 1 1 -1 1 (5.3.38)
D; |1 0 1] 0 1 -1
Dy 1 -1 0 0 0 1
Ds 1 0 -1 1 0
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The invariant coordinates are given by

1
=R =12 (5.3.39)
u umso U
The mirror curve reads
XY2 4 YZ*+ X2 Z+aXYZ +mXZ* + meX2Y =0 (5.3.40)

and the Weierstrass normal form is given by

1
y2 = 224+ 12 ( — 240 — @* + 8aPmy — 16m% + 84%mgy + 16mimg — 16m%)x
1
+%( — 216 — 36a° — a° + 144amy + 12a*my — 48a*m? + 64m3 + 144amsy
+120Ymy — 2402myma — 96m3my — 48u%m3 — 96mim3 + 64m3). (5.3.41)

Also in this case a third order differential operator can be constructed. Note however, that
in order to derive it one needs to take into account five [ vectors out of which only three
are linearly independent in order to make the ideal of differential operators close. This is
due to the fact that linear dependent relations can give rise to further linear independent
differential operators. The full differential operator may be found in appendix

Denoting as usual Lg = Li3(Qﬁ ), the prepotential is given as

F = class + Loo1 + Lo,1,0 — 2Lo,1,1 +3L1,1,1 —4L121 +5L122 — 6L1 32
+7L173,3 — 8L1’4,3 + 9L1’474 — 6L272,2 + 35L273?2 — 32L273?3 — 32L274,2 (5342)
+135L27473 — 110L274,4 + 27L37373 — 400L37473 + 286L37474 — 192L47474 .

Note that there is a symmetry between the first and the third entry, so that we have omitted
redundant terms.

5.3.6. O(—Kz,) — Bs

This is the maximal still generic toric blow-up of P2 and is represented by the polyhedron
7. The Mori cone vectors, which correspond to the depicted triangulation are given below

my

Figure 5.7.: The polyhedron 7 with the choice of the mass parameters mj, ms, m3 and the
modulus .

89



5. Refined BPS Invariants of Toric Calabi-Yau Geometries

vi W @ Gy @ B 6)
D, 1 0 o/-1 -1 -1 -1 -1 -1
Dy 1 1 0| —1 1 0 0 0 1
Do 1 1 1 1 -1 1 0 0 0
Ds 1 0 1 0 1 -1 1 0 0 (5.3.43)
Dy 1 -1 0 0 0 1 -1 1 0
Dj 1 -1 -1 0 0 0 1 -1 1
Dg 1 0 -1 1 0 0 0 1 -1
One finds the mirror curve
XY2 4+ YZ2 4+ X*Z +0XYZ +miXZ* + moX?Y +m3Y?Z =0 (5.3.44)
and the Weierstrass normal form
2 3 1 2 2 2 ~
y© = 4dx° + E( — 16m7 + 16mimao — 16m3 4 16mims + 16mams — 16m3 — 24

—2mymymaii + 8my 2 + 8mayii? + 8maii — a4)

1
516 ( — 216 + 64m3 — 96m3mg — 96mym3 + 64m3 — 96mims — 48mymams

—96m3ms — 96mim3 — 96mam3 — 216m3mam3 + 64m3 + 144my i + 144moai
+144msi + 144m3momsii + 144mym3mat + 144mymomia — 48m3a°

—24mymaii® — 48m30? — 24mymai® — 24momat® — 48miu® — 3643

—36mymamsi® + 12myat + 12moa® + 12maat — 116) . (5.3.45)

In this case the Mori cone is not simplicial, but we will find a choice of these vectors,
which truncates in the correct way to all possibilities of embedding all lower blow up cases
into this model. This is only possible by using one non-integer combination of the Mori
vectors [ = 1372 (12+1) — 12i42)) as well as 1@ = 12), () = @) and I = (). The
corresponding large complex structure variables are

1 1 1
—, 23 = R4 =

Z]1 = mimams, 22 = = .
miu mol msu

(5.3.46)

We can also calculate the ring of intersection numbers for the choice of basis of curves
defined by 1) and the dual divisors J; as

R = J12 + J1Jo + J1Jg + JoJs + J1Js + Jody + J3J4. (5.3.47)
With this informations the instantons can be calculated following [I01]. Alternatively, we
can specialize either polyhedron 15 or 16, redefine % — u = 1/% and rescale g; — A'g; with

A = 18u*. Then we obtain the mirror map (3.4.4)) as

w= Qi+ (14+m)Q3 +2m3Q} + (1 — my +m? — 3m2)Q} + O(QY). (5.3.48)
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5.4. Almost del Pezzo surfaces

Here we have defined Q; = e! = (Q1Q2Q3Q4)%. It follows from (|5.3.46|) that

= @@Q0T L (@QsQa)1 | (QiQ:Q0)% (5.3.49)

2 2 2
Q3 Q3 Qf
This defines the large radius variables and allows to extract the BPS-numbers directly from

the curve. For example we list here the prepotential up to multi-degree 16 in the instantons.
With the notation Lg = Liz(Q”) we get

F = class+ Looo1 + L1001 —2L1,01,10 +3L11,11+ 302111 —4L2 1,12+ 5L2122

sLyty bty y byt )Ly 4y

—6L2222 + 503122 — 6L31,23 + 731,33 — 36L3 222 +35L3 223 — 32L3 233
+27L3333 + TLa133 — 8L41,34 + 904144 —6Ls222+ 35L4223 — 3204224
—160L4233 + 135L4 234 — 11004244 + 53114333 — 400L4 334 + 28614344
—192L4 444 -

(5.3.50)

Note that there is a symmetry in the last three entries, so that we present only the 3, which

are ordered w.r.t these entries.

5.4. Almost del Pezzo surfaces

In this section we discuss some toric almost des Pezzo surfaces which correspond to blow-
ups of the Fy geometry and can be embedded into polyhedron 16. They are physically
interesting as they correspond to the five-dimensional SU(2) Seiberg-Witten theories with
Ny =0,1,2,3,4 matter multiplets in the fundamental representation. The Seiberg Witten
curves with Ny < 3 are given by, see e.g. [77] (also for the Ny = 4 case)

Ny
y? = (2% —u)? — AN [+ miv) (5.4.1)
=0

Four-dimensional Seiberg-Witten theory corresponds to the limit R = % — 00. The geom-
etry O(—Kp,) — F» corresponds to one of the five-dimensional realizations of the SU(2)
Seiberg-Witten theory with Ny = 0. Its limit in the moduli space of complex structure

moduli was already given in ([5.3.37)).

Figure 5.8.: The polyhedron 6 with the choice of the mass parameters mi,ms and the
modulus .
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5. Refined BPS Invariants of Toric Calabi-Yau Geometries

The Mori cone vectors for this model are

Vi 12 B)
D, 1 0 0|-1 -1 0
Dy 1 1 -1 0 0 1
Dy 1 0 1| 1 0 1 |. (5.4.2)
Ds4 1 -1 0] -1 1 0
Dy 1 -1 -1 1 -1 1
Ds 1 0 -1 0 1 -2

From this we get the large volume variables

1 1
y 2= m1~m2, 23=—5. (5.4.3)
1

21 = =
umo U m

1 1
In this case we define Q; = Q7 Q2Q)3, so that the transcendental mirror map is

u=Qr —miQ} +2m2Q} + (=3 +m)Q; + 0(Q7) . (5.4.4)

The rational mirror maps are

21 Q1 Qs

= 3= —. 5.4.5
w0+ QQ T U@y (545)
The Seiberg-Witten limit is given by
2 sw 1 2 2 sw sw 3.3
z1 = (exp 23m] 6) ) 2= 5 exp (—236(236u +mj )) , 23 =M€ . (5.4.6)

The first rational Gromov-Witten invariants follow then from a suitable specialization of

the biquartic curve (A.1.22)) as

F = class+ L10,0+ Loji,o —2L1,10 + Lo — 20111 +3L121 —4L221 +5L231
—6L331 + TL341 —8Lyun1 +9Lys1 —10L551 + 110561 — 12L66,1 + 13L6,7,1
+5L27372 — 6L37372 - 6L27472 + 35L3,472 — 32L474,2 — 32[/3,5,2 + 135L47572
—110L57572 — 110[4476,2 + 385[/5,6,2 — 288L67672 — 288[/5,7,2 + 7L3,473 — 8L4’473
—32[/375,3 + 135[14’573 — 110L57573 + 27L37673 — 400[/4,6,3 + 1100L5’673 + 286[;47773
+9L47574 — 10L57574 — 110L476y4.

(5.4.7)

Next we blow it up once more to get a model with three masses. The new feature we

Figure 5.9.: The polyhedron 9 with the choice of the mass parameters mi, ms, m3 and the
modulus .
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5.4. Almost del Pezzo surfaces

want to discuss here is a non-simplicial Mori cone in a model with rational mirror maps

v W2 @) @) 6)
D, 1 0 0]-1 -1 0 -1 -1
Dy 1 1 -1 0 0 1 -1 1
Doy 1 0 1 1 0 1 0 1
Ds 1 -1 0| -1 1 0 0 O (5-4.8)
Dy 1 -1 -1 1 -1 1 0 0
Ds 1 0 -1 0 1 =2 1 0
Dg 1 1 0 0 0 1 -1
The four large volume coordinates are redundantly given by
1 1 1
2l = ——, 22 = m1~mg’ 3= =, 4= M, Z5 = = . (5.4.9)
uUms U U U ums

These coordinates fulfill the following non-trivial mirror maps Q; = (Q1Q2Q3Q4Q5)% and

_ Q@ o0am_ G s Q5 o
(1+Q3)?" z  Q(1+Q3) = Qu(1+Q3) D= mmmn ?;?1516)

To extract the Gromov-Witten invariants from the specialized curve we can solve
the masses mi,mg, mg as well as @y either for Q1,Q2,Q3, Q4 or Qo, Q3, R4, Q5, which
corresponds to two chambers of the non-simplicial Kéhler cone, which are symmetric under
the exchange of @1Q2 < Q4Q5 and moreover specialize for Q4 = Q5 = 0 to the previously
discussed model. In view of the symmetry we list only the invariants for Q1, @2, Q3, Q4

zZ3 =

F = class+ Lg,0,0,1 + Loo,1,1 + Lo,1,00 + Lo,1,1,0 — 2Lo,1,1,1 + L1,0,0,0 — 2L1,1,0,0
—2L111,0+3L1130,10 +3L1210 —4L1211 —4L1221 +5L12922+5L1321
—6L1322 —4L2210+5L2211+5L2221—6L2222+5L2310—6L2311
+5L2320—36L2321—6Lo420—6L3310+ 7L331,1—6L3320+ 7L341,0
(5.4.11)
Again it is quite interesting to know the Seiberg-Witten limit. We define 2y = 2120 and

obtain

1 1 1
z1 = iexp(—Zem‘i”w)7 zf = Zexp(—4e2usw), 23 =A%? 2y = §exp(26m§w) . (5.4.12)

We finally discuss a model with a simplicial Mori cone, which can be symmetrized like in
the last case to the full D5 del Pezzo.

m3

Figure 5.10.: The polyhedron 8 with the choice of the mass parameters mj, ms, m3 and the
modulus 4.
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5. Refined BPS Invariants of Toric Calabi-Yau Geometries

The Mori cone vectors determine the large volume variables

i @ B3 @

D, 1 0 0 0 -1 0 -1

D1 1 1 -1 1 0 0 0

Do 1 0 1 0 0 0 1
D3 1 -1 1 0 0 1 -1 (5-4.13)

Dy 1 -1 0 0 1 -2 1

Djy 1 -1 -1 1 -1 1 0

Dg 1 0 —1] -2 1 0 0

These read in terms of the m; and @
1
21=—5, 2= m1~mg’ z3 = mg, Z4 = ~m—2 : (5.4.14)
my U ms ums

1
With @Q; = Qf (Q2Q3Q4)% we see as before that the variables z; are not independent
transcendental functions of the K&hler parameters rather one has the following relations

Q1 214+ Q1)Q2 Q3

TTUTQY T BT Urer

(5.4.15)

F = class+ Lo,0,01 + Lo,o,1,1 + Lo,1,00 + Lo,1,1,0 — 2Lo,1,1,1 + L1,1,00 + L1,1,1,0
—2L1311 — 201210 +3L121,1 +3L1221 —4L1222 —4L1321 +5L1322
+5L1332 —6L1333 —6L1432+ TL1433+ TL1aa3—4L2321+ 502322
+5L2332 —6L2333+5L2421 —6L2422+5L2431 —36L2432+ 3502433
—6L24492—6L2531 +35L2532—6L3432—6L3531-

(5.4.16)

5.4.1. A mass deformation of the local Eg del Pezzo surface

Let us consider the polyhedron 10. The Mori cone vectors, which correspond to the depicted

Figure 5.11.: The polyhedron 10 with the choice of the mass parameters mi,mo, ms and
the modulus .
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5.4. Almost del Pezzo surfaces

triangulation are given below

v @ B3 @
D, 1 0 O 0 1 0 0
Dy 1 1 0 1 0 0 0
Dy 1 0 1|-2 1 0 0
D3 1 -1 2 1 -1 1 0 (5-4.17)
D, 1 -1 1 0 1 -2 1
Ds 1 -1 0 0 0 1 -2
Dy 1 -1 -1 0 0 0 1

With the indicated mass parameters of the three non-renormalizable modes and the para-
meter @ the Mori vectors determine the large volume B-model coordinates

1 mi1ms9 ms mo
zZ1 = 5 zZ9 = - , 23 = 3 Z4 = —5 - (5.4.18)
my u my mg

The anti-canonical class of the Eg del Pezzo corresponds to an elliptic curve, which in turn
has the following Mori vector

le =310 + 612 +41® 4 2A® =" g,10) . (5.4.19)

This equation implies that z. = uiﬁ = 23282322 is the correct large volume modulus for

this curve independently of the masses. By specializing the expression in Appendix A.8 as
myp = 0,me = 1,my = 1,mg = 1,mg = ma,ms = 0,a1 = 0,a2 = my,a3 = m3,u = % and
scaling g; — \'g; with A = 18u* we get

go = 27u4(24m1u3 — 48mout + 16m§u4 — 8msu? + 1),
g3 = 27u8(216m3u’ + 12mgu®(—12miu? + 24maou® — 1)+ (5.4.20)
36miu® — 72maout — 64m3u’ + 48m3u* — 864u’ + 1).

The scaling is chosen so that j—; = 14 2msu+0O(u?) and ¢(u, m) becomes the logarithmic
solution t(u, m) = log(u) + O(u) at infinity z. = 0, which corresponds to % ~ q ~ uS. Hence
we get as the transcendental mirror map u = @Q; — m3Q} + O(Q}), with Q; = (Qe)% =

2 1
VQ1Q2Q3 QF . The non-transcendental rational mirror maps are

Q1 14+ Q4+ Q3Q4 =0 14+ Q3+ Q3Q4
(1+Q2)%’ (14 Qs+ Q3Qu)2 ™ Y1+ Qi+ Q3Q0)?

21 = zZ3 = Qg (5.4.21)

The existence of these rational solutions for the mirror maps can be proven from the
system of differential equations that corresponds to the Mori vectors listed above. With the
knowledge of these rational solutions the system of differential equations can be reduced to
one third order differential equation in uw parametrized by the m;.

Such rational solutions exist for the differential operators associated to Mori vectors
describing the linear relations of points on an (outer) edge of a toric diagram. One can
understand their existence from the fact that this subsystem describes effectively a non-
compact two-dimensional CY geometry, whose compact part is a Hirzebruch sphere tree,
which has no non-trivial mirror maps.
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5. Refined BPS Invariants of Toric Calabi-Yau Geometries

This defines the Kéhler parameters of the A-model geometry and relates them to the
coordinates u, m;. This allows to extract the BPS invariants for this mass deformation of
the Eg curve.

5.5. Solving the topological string on C3/Z;

So far only toric Calabi-Yau manifolds that are realized as the anti-canonical bundle over
a Fano surface have been considered. While one expects no obstacle in carrying out the
direct integration procedure, there are some interesting points that deserve attention. In
analogy to the direct integration procedure based on the j-function of the elliptic curve, one
can ask the question how the situation looks like for geometries whose mirror is given by a
genus two Curveﬁ These are characterized by three so-called Igusa invariants. We consider
the example C3/Zs, which has for other purposes also been studied in [206-208] and use
the Fourier expansion of these invariants to compute the complex structure moduli. It is
demonstrated that the free energy at genus one can be written in terms of Siegel modular
forms. The results of this section are based on [105].

5.5.1. Genus two curves and lgusa invariants

A genus two curve can always be brought into hyperelliptic form which can be shown using
the Riemann Roch theorem. (Less rigorously one notices that the dimensions of the moduli
space of hyperelliptic curves and genus two curves coincide.)

y? = vz’ — vzt + v — vgz? + vaz —vs, wv; € C. (5.5.1)

A natural question is under which conditions two genus two curves being already in hy-
perelliptic form are equivalent. Given a genus two curve in hyperelliptic form (5.5.1) one
associates with it a set of invariants that is given as

A = 40vgvs — 16v1v3 + 603,

B = 3001}81}31}5 — 801}81}2 — 180vgviv2vs + 4vgviv3vy + 361}01}%1)4 — 121}01)27)% + 481;:131)5
—12vivgvy + dviv3,

C = 2250upv902 + 160005 v3v4v5 — 320v5v; — 900vEviv: — 1860v3v1v2v4vs — 640v3V V3Ys
+64v8v1v302 + 3301}%1}%1}31}5 + 1761}81}%1}2 + 261)81)21}%1}4 — 36v8@§ + 6161}01):13114@5
—|—492U0’U%1121)3’U5 + 2611011%1)2112 + 28’0011%1)32,@4 — 198v0vlv§’v5 — 2381}01)11)5031)4
+ 760010205 + T20v3v4 — 24vvsvs — 160viv3vs5 — 36v103 + 60V v3vs + T6VI V3V

—2411?1}% — 21vvdvy + 8@%2}%1}%,

1

D = A (5.5.2)
Here A denotes the discriminant of the curve. These invariants have degree two, four,
six and ten and coordinize P(1-235) Inhomogeneous coordinates are given in terms of

6 Apart from conceptual reasons, the study of the direct integration of genus two mirrors is propably needed
in order to understand the B-model geometry of the M-string |76} 218].
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5.5. Solving the topological string on C3/Zs

A, B,C, D as

BC' AB? B B?
D’ ~ D BT Dpr
These invariants A, B, C, C’, D have an expansion in terms of the generators of the ring
of Siegel modular forms Ey, Eg, x10, X12 as [204, 205]

(5.5.3)

A= —8%, B=4E,, (' =4Es, D= —2%y,. (5.5.4)
10

5.5.2. The geometry and its mirror

We start by discussing the A-model geometry that is given as the resolution of the orbifold
C3/Zs.

0 0 1] 1 =3 « P2
1 0 1|-2 1 «+ F3
2 0 1] 1 o0
0 1 1]0 1 (5.5.5)
-1 -1 110 1
T
P} P}

By investigating the scaling relations, one easily sees that the divisor obtained by setting
xo to 0 is given by a P? while one obtains a F3 from z; = 0.

4

Figure 5.12.: The picture on the left shows the A-model geometry, which is the resolution
of C3/Zs. On the right the dual diagram is shown. Upon thickening its lines
[210], one obtains the Mirror curve which has genus two.

The toric diagram (5.5.5)) provides us with the moduli

~ XoXo X1 X3Xy

z1 = , 2 = 5.5.6
=% =5 (5.5.6)
The constraints can be easily solved by the following choice of coordinates
2 5 2%y 2 2
Xo=ayz, X1=zz%y, Xo=z12—, X3z=vy"2, Xq=uz" (5.5.7)
z
In these coordinates it is easy to write down the mirror curve in hyperelliptic form
y? = —dxd 4+ 2t + 2232 + 2222123 + 2223 + 22125 + 2245 (5.5.8)

97



5. Refined BPS Invariants of Toric Calabi-Yau Geometries

From this one easily deduces the discriminant
A = 2562723 (14 2729 + 31252723 + 427 (4 + 12520) — 21(8 + 22523)) . (5.5.9)
In addition, one finds the following Picard-Fuchs operators

El = (@1 — 3@2)@1 — Z1 [(2@1 — @2)2 + 2@1 — @2] s
Lo = (@2 — 2@1)@% — 22 [(@1 — 3@2)3 — 3(@1 — 3@2)2 + 207 — 6@2] ,
L3 = @1@% + 2122 (@1 — 3@2) (2@1 — @2) (@1 — 309 — 1) . (5.5.10)

5.5.3. Extracting the complex structure moduli from the mirror

We compute the dependence of the period matrix

T = <Tﬂ Tl?) (5.5.11)

T2 T22

from the moduli 21, zo. We denote ¢1 = exp(711), g2 = exp(722), 7 = exp(712). To start one

finds that the Igusa invariants are given as

9(1 + 2425 + 24002723 — 821 (1 4 2522) + 27 (16 + 44025 — 8023))
(—1+21(4+402))

zy = 27(1+ 3622+ 21625 — 722125 (197 4+ 170022) — 122 (1 + 372 + 22823)

r1 =

)

+1227(4 + 15529 + 98823) + 1625 (—4 — 16525 — 87625 + 1760z§))/( — 1+ 24+ 4022))3 ,

- —2432023(1 + 2725 + 31252323 + 422(4 + 12523) — 21 (8 + 22522)) (55.12)
s = 5.
4(—1+z(4+ 4Oz2))

Using the Fourier expansion in of the absolute Igusa invariants one finds accordingly

qi1(21,22) = —25 + 2125 + 4525 — 2225 — 602125 — 151225 + O(2°),
@221, 22) = 2025 + 162925 — 52028 + O(2Y),
r(21,22) = —z9— 32129 + 15252 — 132829 + 202125 — 27925 + O(2*).  (5.5.13)

5.5.4. Periods and free energies at genus zero and one

At the large radius point one finds five solutions

wg = 1,
! 20 5 560
tf = —(log(zl) 4221 4+ 220 4+ 322 — 1525 + 223 462122 + 25 + O(z ))
27 3 3
1 3
2 = %(10‘%(22) — 21— 62— §Z% + 4523 — Fiie 182125 — 56025 + 0(24)) 7
! ! 423 193
B _ - ( 1 2.4 B - 2 103 3
o= 27ri( QIOg(ZQ) + X>og(z2) + =221 — 920 — 427 + 32120 + —— 1 278”7
17, s )
—32720 — — 2123148623 + Oz )) ,
L3 1522 5023
tﬁg = %((5 log(z1) 4 521 + 5 L 3 1 ) log(zl)) + xLA log(z2) + 421 + 32
14123 328z} 30522 148623
8 — a1z - 4Z2 + 9z1 + 222 + Zglz2 T3 24 (9(24)) : (5.5.14)
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5.5. Solving the topological string on C3/Zs

After introducing the monodromy invariant variables Q; = e>™ one obtains the mirror

maps

21(Q1,Q2) = Q1—2Q7 +3Q% —2Q1Q2 + 6Q3Q2 +5Q1Q3 + O(QY),

2(Q1,Q2) = Qo+ Q1Q2+6Q%+10Q1Q32 +9Q3 + 0(QY). (5.5.15)
As described in in [2.2.6] one finds the prepotential
3 .43 3,42 1 2 1 43 1 45
ol ol B plite e Q1+ 3Q2 4Q1 +4Q1Q2 3 @3
2 244
—5- Q7 +3Q1Q2 — 10Q1Q3 + =3 + 0(QY). (5.5.16)

Denoting K;; = 0,404 F (0.9) one observes
i

1 = —Kij1+6K12—9K9 +c11,
Too = —4K11 +4K12 — Koo+ a2,
Tio = —Ki1+T7K19 —3K9 + ci2, (5.5.17)

with ¢;; € C. This result can be explained as follows. On a compact Riemann surface one
could choose a symplectic basis, such that the B - periods would be just given as

0 0,0
tp = @F( 0) (5.5.18)

and therefore

B

— )

o _ 9 0 5.5.19
K N T (5:5.19)

On a non-compact Riemann surface it is in contrast not possible to find a symplectic basis
and the just discussed relation is not expected to hold anymore. One finds the Yukawa
couplings

9 — 1721 + 423 + 24329 — 5402125 + 2252729

Rz1z1zl = 523A )
1

_ 3 — 1421 + 827 + 8129 — 40521 29 + 3252729

Rz12120 = 52222A )
1

- 1—82 + 162% + 2729 — 2102129 + 4002’%22

/lezgzg == 5212%A b

_ 2 — 1621 + 3227 + 920 — 952129 + 30027 22

feamz = 523 A '

(5.5.20)
With the help of a few known BPS numbers of the local P? model the unknowns in (3.3.4))
can be determined and one finds the refined free energies at genus one

39 38

1 1 39 _ 1
(1,0) — -3,-2 o1 _— _ ~ 5 5 - -
F 54 log (Azl N ) F 13 log <Azl 2y ) +3 log (det(G”)) . (5.5.21)
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5. Refined BPS Invariants of Toric Calabi-Yau Geometries

1,2 1 1 7 129
FOO) - = —gtf — Et’; — 6@1 + §Q2 7@1 + Q1Q2 Q
1 7 65 589
— @1+ gQIQ2 - —QlQ% Q3 +0@QY),
3 2
(0,1) - _= A . - N2
F 2075 15 Q1+ 12Q1+3Q1Q2 8Q2
23
-jEQ?+ZQﬁh—gQﬁ%—~§Q§+O«fy (5.5.22)

By using the Fourier expansion of the Eisenstein series one finds that the free energy can

be expressed as
1 C'FE,
o _ - ( 6 )
F b log (B ) X10 (5.5.23)

We list the BPS invariants in the appendix [A.5]

5.5.5. The propagator

In order to determme the higher genus free energies, we first calculate the propagators by
solving (|3 . The ambiguities A;, f, f can be found in appendix The propagator

reads 11( ) 12( )
(5 (z1,22) S(21,22
S = <521(21722) 522(21,22)> (5.5.24)

where the components are explicitly given as

58427 233627 772729 58323z

s = - 35 + & 17 + T — 4zizy 4 62325 + O(25),
20082129 17182229 1412122 10642222
glz — 2551 2 _ 851 2 + 171 2 _ 171 2 19, 1,22 182122 + O(z )
2 1134222 2637223
S”::_%+4§§@—%%~f§ﬁ+mé+owy (5.5.25)

It holds that S'2 = S2!. According to this has to transform like a vector-valued
almost modular form of weight two. The fact that it fulfills two over-determined systems of
equations provides evidence that one can give a meaningful interpretation to vector-valued
second Eisenstein series of genus two.
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6. The Refined BPS Invariants for the Half
K3

In this chapter we discuss the computation of the refined stable pair invariants of the
massless as well as massive half K3 surface. We start by reviewing the refined Gottsche
formula as well as the unrefined modular anomaly equation due to Hosono, Saito and
Takahashi. A presentation of the massless half K3 geometry in which only the moduli of the
base and the fiber are realized is included. This discussion provides important background
material for the computation of the refined BPS invariants of the massless half K3 surface
in section This includes in particular a proposal for a refined version of the modular
anomaly equation. The results of the massless half K3 get generalized in section where
we consider all moduli of the half K3. In this case, the refined BPS invariants are not only
classified by the respective degree in the fiber and base classes but also with respect to
the Weyl orbits of the remaining moduli. This gives some insight into the structure of the
refined BPS invariants of the massless half K3. Finally, we use the results of the massive
half K3 to compute the refined BPS invariants of the remaining del Pezzo surfaces by taking
suitable decoupling limits and blow-downs in section The presentation follows closely

[l

6.1. The refined Gottsche formula and the unrefined HST
recursion relation

A Hilbert scheme Hilb?(S) of g points on a smooth surface S is given by S®9 divided by
the permutation group Sym?Y. In other words, it corresponds to the choice of g points that
may be counted with multiplicities.

The Gottsche formula [100] describes the generating function for the Poincaré polynomials
of the Hilbert scheme of g points on a complex surface S. It reads as follows

i P(SY ) = T] > (1+ > 1gm) ) (1 4 gy tlgm)hr(9) .
= o (1 —y n—2qn)b0(5)(1 _ anqn)bg(S')(l _ y2n+2qn)b0(S)
(6.1.1)
This enjoys an interpretation [122] as the partition function of b1(.S) chiral fermions and
bo(S) + b2(.S) chiral bosons, whose oscillators are in addition also labeled by the SU(2)

Lefshetz charge js. In particular for y = —1, one obtains the important limit
S = 2
— (9] _ e(s) _ 4
D e(sher = [T —a™)" RE (6.1.2)
g=0 m=1

where ¢e(.5) denotes the Euler number of the surface S.
If bo(S) = 1 and b1 (S) = 0 the Gottsche formula can be refined [34], see also [29], in that
sense as it serves as the generating function for the Poincaré polynomials with respect to
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6. The Refined BPS Invariants for the Half K3

the SU(2)1, x SU(2)r Lefshetz decomposition, i.e. one assigns to the oscillator a_j not the
diagonal representation (b2(S) + 1)[0] + [1] but instead the representations

11
b2(S) [0,0] + [, ] . (6.1.3)
2°2
The refined Gottsche formula reads explicitly
Gs(quLayR) = ZP(S[Q}ayLayR)qg
g=0
_ ﬁ 1
2 (U= (yryr)" a1 — (yryr)" ™) (1 — (yryr)gn)t2(9)—2
1
6.1.4
T e )~ w0 (014
and can be expressed in terms of Betti numbers as
JL JR
G%(q, YL, yR) Z N G D A O S 7/ [ S 7 S A (6.1.5)
d=0jr,jr k=—jL k=—jr
Here jr,jr denote the SU(2) spins and n? denote the refined Betti numbers of the

Hilbert scheme of d points on S. Formula can be used to extract the refined Betti
numbers of the half K3. The results are hsted in table |A These results have already
appeared in [29].

We continue by a review of the (unrefined) recursion relation by Hosono, Saito and
Takahash{'| (HST) for the massless half K3, following [34] (see also [103]) and also using
their notation. We start by considering a realization of the half K3 surface where only the
moduli corresponding to the base and the elliptic fiber are realized. This can be constructed
by considering a compact Calabi-Yau manifold X given as a hypersurface inside the ambient
space Fy x P2. Coordinizing P? by [21 : 22 : 23], the base and fiber of F} by [u; : ug] and
[ug : ug) respectively, the Calabi-Yau manifold X may be written as

93.3(zi, w1, u2)u3 + f31(2i, w1, ug)uj =0, (6.1.6)

where the subscript refers to the degree in the variables z; and u1,us. Indeed, by setting
us to zero, one obtains a half K3 geometry. The positive classes in Ha(X,Z) are generated
by the following divisors in X

H={x=0nX, F={uy=0}NX, D={u=0}nX. (6.1.7)

One also observes that the intersection of F' with the half K3 surface By gives the class of
the elliptic surface within By. This relates to the basis of H2(By,Z) in section

61,...69,h (618)

'n fact contributions into this direction have already appeared before, e.g. [31].
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6.1. The refined Géttsche formula and the unrefined HST recursion relation

as follows?
H=h, F=3h-) e¢. (6.1.9)

We consider the limit of infinite volume of the fiber class P! which corresponds to taking
the local limit of X. In this limit, only the Gromov Witten invariants of curves contained
in the half K3 By survive. Also, we denote the corresponding Kéhler moduli to the divisors
in by tm, tp and introduce ¢ = e?™H_ p = ?™F  We also need some notation
concerning the genus g Gromov-Witten invariants Ny (/) of class € Hy(Byg,Z). Denote by

oo oo
Ngzdzn = Z NQ(B)? Zg7n(q) = Z Ngvd7nqd7 Fg(q’p) = Z Zganpn * (6'1'10)
d=0 n=0

(8,H)=d
(B, F)=n

There are closed expressions for some of these generating functions. In reference [32] it was
found that

Zoy = q% O, (t, 3t)

’ n'?(q?)

The Eg theta functiorﬂ is defined in (6.3.1). It is amusing to interpret the factors [177].
From a mathematical point of view the Eg symmetry is traced back to the Weyl group,
while the factor n'? comes from the twelve singular fibers of the elliptic fibration. In fact,
when turning on the remaining mass parameters of the other blow-up divisors each of them
gives rise to a section of the elliptic fibration that are governed by the Mordell Weyl group
Eg. The physical interpretation in the E-String picture is relegated to section 8.1

v=(1,...,1,-1). (6.1.11)

Furthermore, it was conjectured by [34] that the generating function takes the following
form

Zgn = Pagron—2(¢, Eo, B4, E)(Z0,1(q))" - (6.1.12)

Here Pyy192,—2 is a almost modular form of weight 2g + 2n — 2 and ¢ denotes the funda-
mental solution (4.3.11)) of the Picard-Fuchs equations at the large radius point. Note in
particular that is does not become constant but is instead given by

(1 +3n)

¢($e> = nzzoanxg Ap = m . (6.1.13)

This displays the fact that the half K3 is not rigid within X and gravity does not completely
decouple. Z, , is subject to the following recursion relation

-1
0Zyn 1 < n(n+1)
= S ) sls —n)Zy o Zgrn—s + — " Zg1n- (6.1.14)
g'+g'=g s=1
In order to determine the amplitudes recursively using (6.1.14)) one also needs to fix an
integration constant at each step. The following observation [32] yields some boundary
conditions. Consider a curve of the class

Cg =dH — ajep — - — ageg. (6115)

2Strictly speaking, we mean the restriction of H and F to Bo.
3 Again, for convenience, we review here the results by [34], which use a different notation than we do in
the rest of this thesis.
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6. The Refined BPS Invariants for the Half K3

One easily computes using the intersections in [4.1]

(Cy F)=3d—> ai,  galCq) = (d_UQ(d_Q) —Za’(a;_” (6.1.16)

i=1

The last quantity computes the arithmetic genus. Together these two formulae provide
combinatorial vanishing conditions on some N, 4, that can serve as boundary conditions.
E.g. one finds that for d < § No, 4 has to vanish.

6.2. Refined BPS invariants for the massless half K3

In this section we want to show how a generalized version of the modular anomaly equation
(6.1.14]) can be used to compute refined BPS invariants. From now on we make a little
change of basis. We parameterize base p and fiber f according to

9
P = eg, f:3h—Zei, (6.2.1)
i=1

and denottﬂ a general class by 8 = nyp + df. Instead of the class of h, we consider the
class of a sectiorﬁ of the elliptic fibration given by eg The main effect of this basis change
is that one has to substitute ¢® + ¢ in the above formulae (6.1.10)), (6.1.11), (6.1.12) and
the prefactor 72 by 24 in the recursion relation . Also the weight of the modular
forms is now given by 6nj +2(g+n) — 2 and the vanishing condition below (6.1.16))
becomes that Ny p, 4 for d < ny,.

It was shown in [24] 29] [34] that the partition function of refined BPS invariants with
wrapping number ny = 1 take a particularly simple form

€1 + €9
G(er,€2,9) = Es(0)G™ (¢, y,yr),  yr/r = exp ( 5 ) : (6.2.2)
Here the generating function is related to the refined BPS invariants as
00 o Jr JR
iL+2jr, Pt k kY, d
Glersena) = 32 37 (1P Bt (S SS gl (6a)
d=0JL,jr k=—jr, k=—jg

The reason for this is that the moduli space of such genus g curves takes a particularly
simple form. These wrap the elliptic fiber over g points in the base. Choosing a connection
on them corresponds by T-duality to picking a point on the fiber as well such one is naturally
led to the problem of picking g points on the elliptic surface. In addition, the Mordell Weyl
group accounts in the massless case for the factor F4. This can be used to extract the
refined BPS numbers and was already done in [29]. We cite the results in table Note
that the results for the diagonal class d 4+ f are the same as for the massless Eg del Pezzo
surface. Indeed, the sum of the fiber and base class realizes the anti-canonical class of the
del Pezzo surface after performing a flop transition as discussed in [8.1.4]

4Note that in the refined case the genus g splits into the pair (n,g). Therefore we denote in the following
the wrapping number of the base by ny.
®Note that also the class of a positive section eg + f appears in the literature, see e.g. [103].
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6.2. Refined BPS invariants for the massless half K3

As the curves with wrapping numbers n, = 1 cannot be affected by multi-cover contri-
butions, there is an easy relation to the refined free energy

g(€1, €2, q)
F = . 6.2.4
(€1 €2:9) = TR (G ) sinh () (6.24)

Building up onto the results of [34] one can show that

1 00
q2Ey(q) 1 Bok  on | ok

Flere2,q) = Tl exp[- S Eon(q)]. 6.2.5
(€1,€2,q) n2(q) eren exp| = 2k(2k)!(€1 + €5 ) Ear(q)] ( )

The Eisenstein series Eoi for k > 2 are modular forms of SL(2,Z) and can be written as
polynomials of E4 and Eg. E5 is quasi-modular, and we can easily see the modular anomaly
equation for F'(e, €2, q) with respect to E from the above formula,

d+6

Op, log(F (€1, €2,q)) = 51

(6.2.6)

where we have used the Bernoulli number By = %. Our modular anomaly equation provides
a refinement for the modular anomaly equation in [34] for the class p + df.

We can decompose the topological string generating function as in ([2.4.19)),

—+o00
Fle,e2,9) = Y (e1+€2)*(e162)9 ' F™9(g), (6.2.7)

n,g=0

where F(0:9) are the conventional unrefined amplitudes. It is easy to see from (6.2.5) that
the genus zero amplitude is

1
2 Fy(q)
FO0 () = L2429 6.2.8
@ n*2(q) (628)
and the higher genus amplitudes divided by the genus zero amplitude %g;((g)) are quasi-

modular forms of weight 2(n + g). We can write down some explicit formulae at low genus

Fy Fy 5E2 + E,
F(Ozl) f— 7F(070) F(LO) — _7F(070) F(072) — 27}7(070)
12 ’ 24 ’ 1440 ’
5E2 4 2F 5E2 4+ 2F
) _ _%041:(0,0)’ 7(20) _ %F(om' (6.2.9)

The modular anomaly equation (6.2.6) can be written more explicitly for the higher genus
amplitudes as

1 1
8E2F(n79) — 7F(n79—1) _ ﬂF(n_Lg)’ (6210)

12

where the term F(9~1 is defined to be zero if ¢ = 0, and similarly for F("=19) if n = 0.
We note that this modular anomaly equation seems quite different from the one we used
before (3.3.1). It would be interesting to elucidate the connection.

It is a natural question how the modular anomaly equation (6.1.14]) by HST generalizes to
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6. The Refined BPS Invariants for the Half K3

the refined case. There are two hints. Obviously it has to reduce to the unrefined recursive
relation in the corresponding limit. Also one knows due to (|6.2.10f) the refined recursion for
case np = 1. A natural proposal for a refined modular anomaly equation is therefore

n

n g b—l
O, Fm9m) = 1 Z Z Z s(ny — s)F(11:9159) pn=n1,9=g1,np=5)
24

n1=0g1=0 s=1

+nb(nb + 1)F(n»9—17"b) _ M

o0 24F(”_1’9’”b). (6.2.11)

Here F(9m) are the refined topological string amplitudes with wrapping number n; on
the base, as appearing in the generating function

oo
F = Z (€1 4 €2) 2" (e1e2)9~ L2 tomo p(9:m0) () (6.2.12)

n,g,mp=0

where t;, is the Kihler modulus of the base P!, and ¢ = *™7 is the modulus of the fiber.
We have guessed the factor 5% in the last term in (6.2.11)) by trials and tested by higher

genus calculations, which we discuss below. Analogously to (6.1.12)), is conjectured that
(%)"bF(”’g’”b)(q) are quasi-modular forms of SL(2,Z) of weight 6ny, +2(g +n) — 2, i. e.
polynomials of the Eisenstein series Fs(q), F4(q), E¢(q), so that the partial derivative with
respect to Fs is well defined.

As already mentioned, our proposal reduces to the HST modular anomaly equa-
tion in the unrefined case of n = 0, which can be further reduced by setting g = 0 to
the genus zero equation studied earlier in [38]. The generalizations to more elliptic Calabi-
Yau manifolds have been studied recently in [82, 110]. The genus zero prepotential with
base wrapping number n; is also equivalent to the partition function of topological N = 4
U(np) super Yang-Mills theory [31].

We can solve the higher genus refined amplitudes recursively in n, g, n, by integrating
the refined holomorphic anomaly equation. The integration constant is a polynomial of
E4(q) and Eg(q), and needs to be fixed by some boundary conditions. Here we will not
use the gap conditions at the conifold locus, because it would require a careful analysis
of the moduli space, which is quite complicated in multi-parameter models. Instead, we
will utilize the boundary conditions due to vanishing GV invariants. We have mentioned

before that if a GV integer vanishes ﬁgL,gR = 0, then the higher genus neighbors also

B _ ﬁﬁ
gL+1,9r 9gL.9r+1

GV invariants vanish ﬁnfbp 0 if ny > d, compare also (6.1.16)), except for the case of
ny = 1,d = 0 where we have ﬁg,a = 1. The property was used in [38] to fix the integration
constants for the genus zero modular anomaly equation.

vanish 7 = 0. In addition, at genus zero it is also known [32] that the

In the special case of n, = 1 studied previously, the integration of the modular anomaly
equation by fixing the integration constants by vanishing GV invariants leads to a nice
A-model type formula , related to the refined Gottsche formula The A-model
type formulae are exact to all genera, and are rather convenient for extracting the complete
GV invariants nfb in for a fixed homology class 8. Here in the general case with wrapping
number ny > 1, the A-model type formula is currently not available and therefore B-model
calculations need to be done in order to extract the BPS invariants recursively.

We are able to compute the refined topological string amplitudes to some high genus n+g
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6.2. Refined BPS invariants for the massless half K3

and some high wrapping number ny, and we can extract the complete refined GV invariants
to some high degree for the base n; and fiber. We provide some refined amplitudes F(™:9:7)
for low genus n + g and wrapping number n, > 2. The genus zero amplitudes [38] for
ny, = 2,3 are

E
F0,02) _ 77(;1)24 2711(]5231 + 2Fs), (6.2.13)
3
: E
pO03) o T 54 p2E2 4 916, By Fg + 1093 + 197E2).

n(q)36 15552

The genus one amplitudes for ny, = 2,3 are

1
FO12) = . (5)2 17155 10ESES + 9B} + 24 B> Eu Fg + 5E3), (6.2.14)

q 1
F(102) _ — @(4E§EZ + 7E3 + 8EyF,Eg + 5E7),

g T8E3E3 + 209E,E} + 360E2E2Eg + AT2E3 Eg + 439E, B, E2 + 80E3

FO.13) _
n(q)36 62208 ’
F0.03) _ q? SAE3ES + 235E,E% + 216 E2E2Eg + TT6E3Eg + 287E, EyE2 + 160E3
— n(q)36 124416 '

The genus two amplitudes for n, = 2 are

022 _ 4 190E3E? + A17E2E3 + 540E3 By Eg + 356 B3 Eg + 225 2
n(q)** 207360 ’
P12 _ 4 25E3E3 + T9E,E} + 60E5E Eg + 122E3Eg + 50E, E2
n(q)** 34560 ’
7(202) q 10E3E? + 3TEyE} + 20E5E,Eg + T6E3 Eg + 25FE2 E7 (6.2.15)
n(q)%* 69120 ' o

We list some results for refined BPS invariants for n, > 1 in the tables [A.4] and
The diagonal classes ny(p + f) correspond to the homology classes with degrees d = n; in
the one-parameter Eg del Pezzo model, and we check the matching of the corresponding
BPS integers for the diagonal classes ny(p + f) with those in section Our results
demonstrate the compatibility of the refined version of the HST modular anomaly equation
we proposed in @ with the refined version of the BCOV holomorphic anomaly equation

, see also (5.2.8' .

In two special cases, namely the genus zero case n + g = 0 and the case of wrapping
number ny = 1, it is clear that one can in principle solve the refined topological strings to
all orders in the other directions, i.e. to all orders in n in the case of n4+g¢g = 0 and all orders
in n, g in the case of n; = 1. It is tempting to wonder whether the vanishing conditions for
GV invariants are sufficient in principle to fix the topological string amplitudes to all orders
in both n 4 g and n,. Unfortunately this is not the case, even for the unrefined case n = 0.
The integration constant for the modular anomaly equation for F("9"%) is a polynomial of
E, and Eg of weighted degree 2(n+g)+6n,—2, so the number of unknown constant we need

%} for odd n + g + ny, or by [W] for even n + g + ny,.

On the other hand, we can also estimate the number of vanishing GV invariants 7,7, ;;df

to fix is given by |
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6. The Refined BPS Invariants for the Half K3

for given ny, gr,gr. It is clear that the GV invariants vanish for d < n; since the genus
zero invariants already vanish ﬁgf’op i _0ifd < np. Based on arguments from algebraic
geometry, e.g. in [24] [106], we know that the left top genus for the diagonal class nyp + ny f

goes like quadratic power ng for large nyp, and this is also confirmed by our explicit results.

The GV invariant ﬁnglg);f ) would not vanish if the total genus g7, + gr scaled as quadratic
power ng at large np but was smaller than the left top genus. In this case we would have just
ny vanishing GV invariants ﬁgf’op U from d = 0,1,---,np — 1, but the number of unknown
constants could be of the order of the quadratic power n% at large np. So eventually the
boundary conditions from vanishing GV invariants would not be enough to fix the (refined)

topological string amplitudes at large genus.

In fact, we can be a little more precise and show that the situation regarding fixing the
ambiguity for the diagonal classes ny(p+ f) is not better or worse than that of the Eg model.
This is rather surprising because in the case of the Eg model we have utilized the conifold
gap condition which is very powerful in fixing the holomorphic ambiguity, while in the half
K3 model we do not use the conifold gap condition. In the Eg model, we have [%]
unknown constants in the holomorphic ambiguity in F(™9 due to the singularity at the
orbifold point. Suppose for the genus g1, + gr = n+ g we can fix the (refined) GV invariants
ﬁgth up to degree d — 1, then in this case the number of conditions from GV invariants
minus the number of unknown constants is d — 1 — [%]. On the other hand, for the
refined amplitude F(™9™) with ny, = d in the half K3 model, based on the discussions in the
previous paragraph, we can easily check that the number of conditions from GV invariants
minus the number of ambiguous constants is up to 1 basically 3(d—1— [%]), i.e. one
half of that of the Eg model. So we see that the boundary conditions from GV invariants
become insufficient to fix the ambiguity at about the same time for the Eg model and for
the diagonal classes in the half K3 model.

These arguments indicate that the vanishing of BPS invariants in the two-parameter half
K3 model should imply the conifold gap conditions in the one-parameter Eg model. It would
interesting to understand this point more carefully.

6.3. The massive half K3

Based on the experience from the studies of higher genus terms in the Nekrasov function
for SU(2) Seiberg-Witten theory with Ny = 4 fundamental flavors or with one adjoint
hypermultiplet in [30], we may hope that the mass deformation provides more boundary
conditions for fixing the ambiguity comparing to the massless theory. There is one crucial
difference with the studies in [30], where the mass parameters are not moduli parameters,
and there is no enumerative geometric interpretation of the refined amplitudes in terms of
the BPS invariants. In the present case, the mass parameters represent Kahler moduli of
the Eg part of the half K3 surface, and are part of the geometry of the moduli space. The
refined BPS invariants have extra labels in terms of the corresponding wrapping degrees
which are Weyl orbits of the Eg lattice. In the mirror geometry, the mass parameters appear
as polynomials in the Seiberg-Witten curve in [30], and in the present case they appear in
exponential or trigonometric functions. This point was explained in [62].
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6.3. The massive half K3

We will need to use the theta function of the Eg lattice I'g

4 8

1
N . .9 Lo b )
O(m,7) = Z exp(miTwW* + 2mim - W) = 5 Z H O (my,7), (6.3.1)
wel'g k=1j=1
where m = (mqy,ma, - ,mg) are the Eg mass parameters. 60x(m,7) is the ordinary Ja-

cobi theta function and we provide the conventions in appendix The theta function
O(m, ) of the Eg lattice is a power series in ¢ = €?™7, and from the well-known trans-
formation properties of Jacobi theta functions, one can check that it has the following
transformation behavior under a SL(2,7Z) transformation

ct+d

—

m at +b

RS d)4
CT-I-d’CT-i-d) (e7 + d)” exp!

O( )O(m, 7). (6.3.2)
We see that except for the modular phase, it has modular weight four under the SL(2,7)
transformation. Furthermore, in the massless limit 7 = 0, the theta function ©(m,7) is
simply the E4 Eisenstein series.

One can easily see that the Eg theta function is invariant under a Weyl group
actionﬁ on the mass vector m since the lattice I's and the norm of a lattice vector are
invariant under the action.

The Weyl orbit of a lattice vector consists of the lattice vectors generated by acting all
the elements of the Weyl group W (Eg) on the lattice vector. We can classify the Eg lattice
points into classes of Weyl orbits. It is clear that the lattice vectors in the same Weyl
orbit have the same norm. We denote by O, the Weyl orbit whose elements w have norm
square - W = 2p and which has order |O, x| = k. Since the Weyl orbits of the same norm
usually have different numbers of elements, the notation should not cause any confusion. It
is known that some low Weyl orbits are given as follows

00,1, O1240, O22160, 036720, O4,240, Os17280, O5,30240

Og.60480, O7,13440, O7,69120, Os 2160, Os,138240, 9 240, O9,181440,

01030240, O10,241920, O11,138240, O11,181440, O12,6720, O12,483840,
O13,13440, 013 30240, O13 483840, - - - (6.3.3)

We see that the lattice vectors with norm square 0, 2, 4, 6, 10, 12 consist of a single Weyl orbit
respectively, while the lattice vectors with norm square 8, 14, 16, 18, 20, - - - fall into multiple
orbits. Any Weyl orbit O, can be multiplied with a positive integer n and generates
another Weyl orbit with the same order 0,2, = {nw| @ € Op}.

The Eg theta function (6.3.1) can be written as sums over Weyl orbits

O(m,q) = Z q° Z exp(2mim - ), (6.3.4)

Op’k ’u_)'Eop’k

where ¢ = €?™7. We will see that the (refined) topological string amplitudes in the massive
half K3 model are constructed from the Eg theta function, and can be also written as sums
over the Weyl orbits. The refined BPS invariants are labelled by the class nyp + df and the

Weyl orbit O, %, and denoted as n’*” +df,Op.i

inin . We can compute the refined amplitudes in

5The Weyl group of Eg is explicitly described in
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6. The Refined BPS Invariants for the Half K3

terms of refined BPS invariants with the formula and by summing over the homology
classes 8 = (npp +df, Op ). As in the massless theory we denote the refined amplitudes by
F(”’g’”b)(q7 m) as appearing in the generating function in . The arguments ¢ and m
represent the Kahler moduli of the fiber class f and Weyl orbits.

In the massless limit, the sum over a Weyl orbit O, , is simply the order |0, | = k. So
the refined BPS invariants in the massless limit can be computed from the more general
massive invariants by

(n@bpﬂ-df massless Z k- nbpﬂ_dﬂopy]C . (635)

JLSJR jLJR

First we consider the case of wrapping number n; = 1. In this case the refined Go6ttsche
formula is still available as in the massless theory. We can simply replace the Eisenstein
series F4 with the theta function ©(m,7) for the generating function in in the
massless theory

Gle1, €2,9) = O, ¢)GP* (g, y1, yR)- (6.3.6)

Using the formula for the Eg theta function (6.3.4), we find

JL Jr
B k k
G(e1,€2,9) ZZ Z 12+ 2m (nBoyd Z 2 ( Z y2F)
d=0Opk jL:JR k=—jp k=—jr
xq™? N " exp(2mirii - 1) (6.3.7)

u”)e(?p,k

We can then extract the refined Gopakumar-Vafa BPS invariants similarly as in (6.2.3))
for the massless theory, with the additional sum over Weyl orbits

0 JjL JR
—+df,O. k k
Glerea,q) = DY > (=D)PeHHrlrCEnE Ny Yy
d:OOp,kjLajR k=—jr k=—jr
xq? Z exp(2mim - o), (6.3.8)

UHJEOP,]@

where the sums over jr,, jr are over non-negative half integers. To extract the BPS integers,
we first use the formula to write the Gottsche product G5 (q,yr,yr) in terms of the
refined Betti numbers of the Hilbert schemes which have been computed in table and
which we denote here by (nt)?L’ jr With the superscript By to avoid confusion with other
BPS invariants.

Comparing and , we find the BPS invariants in terms of the refined Betti
numbers

p+df,Op i
JLJR

= (nB9)d_P for p<d (6.3.9)

JLJR?
p+df Op k

’]R
We see from the formula (6.3.9)) that the refined BPS invariants anr jj;’ Pk are identical

for the homology classes with the same d — p. Furthermore for a class p + df, the refined
BPS invariants vanish if the square length for the Weyl orbits are sufficiently large. The

and it is understood that n; = 0 in the case of p > d.
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6.3. The massive half K3

Weyl orbit with maximal length and non-vanishing BPS invariants will be called the top
Weyl orbit(s). Here the top Weyl orbit for the class p + df is the orbit Og .

As a check of the formalism, we can compute the refined BPS invariants for the half
K3 model in the massless limit using the formula and the Weyl orbits , in
terms of the refined Betti numbers in table [A.2] The results agree with those from direct
calculations in table This is simply due to the fact that the Eg theta function ©(m, q)
is the Eisenstein series F, in the massless limit.

Similarly as in the massless theory, we can write down the genus zero amplitude for n, = 1
by setting y;, = yr = 1 in the Go6ttsche product

1,
F(0,01) _ q20(m, q)
n(q)*?

The formulae for the refined higher genus amplitudes and the modular anomaly equation

for ny = 1 are the same as in the massless theory in (6.2.9)), (6.2.10)).

Now we consider the case of wrapping number n; > 1. The higher genus refined amplitude
with an n function factor (%)”bF (m.9:7) has modular weight 2(n + g) + 6ny — 2 as in
the massless theory. However, the modular ambiguity is not simply a modular form of
SL(2,7Z). Instead, the modular ambiguity can be written as a linear combination of level
ny Eg characters, and the coefficients are mass-independent modular forms of T';(ny,) [31].

There is a convenient way to write the ansatz for the refined amplitudes. It is known
that there are nine Weyl invariant Jacobi modular forms of the Eg lattice, which can be
constructed from the Eg theta function (6.3.1)), see e.g. [116]. The nine Jacobi forms are
denoted by A1, Ay, Az, Ag, A5 and Ba, B3, By, Bg. Here A} = ©(ni, 7) is simply the Eg theta
function and we provide the detailed formulae for the other forms in appendix All
the characters of the fundamental representation of the higher level Eg algebra can then
be written as polynomials in A,, and B,,, where the generators A,, or B, contribute an Eg
level number n. For example, at level one there is only one polynomial A;. There are three
polynomials A%, Ay, By at level two, five polynomials A%, A1 Ay, A1 By, Ag, Bs at level three,
and ten polynomials at level four.

(6.3.10)

The Jacobi form A, has modular weight four and B,, has modular weight six, and they
are simply the Eisenstein series F4 and FEjg in the massless limit. Together with the quasi-
modular forms Fs, Ey, Eg of SL(2,7Z) which are independent of the mass parameters and
have Eg level number zero, we have all the ingredients for constructing the refined ampli-
tudes.

It is natural to guess that similarly as in the massless theory, the scaled refined amplitude

12
with 7 function factor (%)”b F(9m) can be written as polynomials of the nine Eg Jacobi

forms A,,, B, and the SL(2,Z) quasi-modular forms Fy, Ey4, Eg, and it has Eg level number
np and modular weight 2(n + g) + 6ny — 2. We find that this is true for level n, < 4.
)12

(qT)"bFWg’””) is not exactly a modular

However, for level n, > 5, the scaled amplitude (~
form, but a rational function of modular forms with the powers in E4 as the denominator.
For example for the case of ny = 5, we check that a denominator of F, is sufficient and the
scaled amplitude E4(M\/);)”bF(”797”b) is again always a modular form, i.e. can be written
as a polynomial of A,, B, and FE,.

In any case there is only a finite number of unknown constants in the ansatz for the
amplitude. There is no further algebraic relation among the generators for generic mass

parameters, so that the expression for a refined amplitude is unique. The FEs-dependent
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6. The Refined BPS Invariants for the Half K3

part of the amplitudes is determined by the refined modular anomaly equation we proposed

in (6.2.11]). We can further fix the modular ambiguity by vanishing conditions of the refined

X ) . . af,0
BPS invariants. Here the vanishing conditions are ng,bé? Ok _ 0 for d < ny, except for

the case ngjooo’l =1.

The generators A, and B,, are sums over Weyl orbits, similarly as the theta function of
the Eg lattice in (6.3.4]), as can be seen using their formulae in appendix On the other
hand, the refined amplitudes are polynomials of the generators, and in order to extract the
refined BPS invariants from the amplitudes, we must write the refined amplitudes as sums
over Weyl orbits as in the general formula . So we need to decompose the product

of sums over Weyl orbits into a sum of the sums over Weyl orbits as

( Z 627ri7ﬁ-u7)( Z em‘m.w) _ Zml Z 2 (6.3.11)

wWeO, wWeO, i weo;

where m; are non-negative integers for the multiplicity in the decomposition. It is straight-
forward to compute the decompositions of the Eg Weyl orbits. The product with the
zero-length orbit is trivial Oy, ® Og1 = O, . Here we provide some decompositions for
the low orbits

O1210 @ O1210 = 240-0Op1 B 56 - O1,240 B 14 - O2.2160 B 2 - O3,6720 B O4,240,
022160 ® O1240 = 126 - O1,240 © 64 - O22160 D 27 - O3,6720 D 8 - O4,17280 D O5,30240,
022160 @ O22160 = 2160 - Og 1 @ 576 - O1,240 D 280 - O3 2160 © 144 - O3 6720
©126 - Oy,240 © 70 - Oyg,17280 D 32 - O35 30240 D 10 - Op 60480
@2 - O7 69120 D Os 2160,
O36720 @ O1240 = 56 - O1,240 D 84 - 022160 D 54 - O3,6720 D 56 - O4.240 D 28 - Oy,17280
®12 - O5 30240 D 3 - Og 60480 & O7,13440,
O3.6720 ® O22160 = 756 - O1,240 @ 448 - 022160 @ 270 - O3,6720 @ 168 - Oy, 17280
®92 - O5.30240 D 48 - Op 60480 D 27 - O7,13440 © 21 - O7 69120
DT - Og,138240 © Og,181440- (6.3.12)

We mention an identity for the order |O,, r,| = k1 and related multiplicities. Denote by

mP3 k3

o Ko ko the multiplicity of the Weyl orbit O, r, in the decomposition of the product
of the orbits O, 1, and O,, ,. We can fix an element in O, 1., subtract from it all the
elements in O, r,, and check which orbits the subtracted vectors belong to. We find an
one-to-one correspondence of the elements in Oy, , with all multiplicities of the orbit O,

in the decomposition of O, 1, with another orbit

3,k3

N
1Op1ea| = Z mgik?;m,/@’ (6.3.13)

Opz yko

which is valid for any two orbits Oy, r, and O, k..

Different Weyl orbits with the same norm can be distinguished by their multiplicities in
the decomposition of the product of two orbits. For example, we can see in in the
decomposition of O3 g720 ® O2 2160, that the multiple orbits O, ;, in the cases of p = 4,7,8,9
appear with different multiplicities.

We find that the vanishing conditions of the refined GV invariants over-determine the
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6.3. The massive half K3

modular ambiguity at low genus. The redundancy provides non-trivial tests of the consis-
tency of the refined modular anomaly equation and the refined amplitudes with
generic mass parameters. As an example of an explicit check, we find that if we change
the factor of 54 in the last term in , there would be no solution at genus two to the
modular ambiguity that satisfies the vanishing conditions.

We provide some low order formulae for the refined amplitudes. The genus zero results
have been written down in [3I], we also include them here for completeness. The formulae
in terms of the Jacobi forms A,, and B,, are simpler than those in terms of the Eg characters
originally presented for genus zero case in [31]. The genus zero formulae are

FOSD = _‘17724 [4E2A? + 3Es Az + 5E4Bs),
3
2003 _ ﬁ[mzﬁ]@g — 54A3F, + 135A1 By Es Ey + 1354, Ay B2
+28A3F3 + 225A1BoEg + 81 A1 Ay By Eg — 28 A3 E2]. (6.3.14)

Some higher genus formulae are

P02 _ _#.7724[414%3 + 4A2E, + 5By By Ey + 3A2E2 + 5By Eg + 3A2 By E),
FO12 = L [10A2E2 4+ GAZE, + 15ByEy By + 3AyE2 + 5B, Fg + 9Ay Ey Fg)
= T 15 184 2Lu2 14 244 2456 22 L6,
3
F.03)  _ *ﬁ;,wb“i’b@ + 18A3FyEy + 135A1 BoESEy + 630A1 By E3

+189A1 Ay By EF — 160B3E; 4 28 A3 By By — T2A3Fg + 3154, Bo By Eg
+81A1 Ay E5Eg + 378A1 Ay E4Fg 4 160B3 E3 — 28 A3 o B2,
3

q2
FO13) _ W[?M?EQ — 54A3Fy By + 225A, BoESEy + 360A, Bo B2
+297A1 Ay BBy — 80B3E; + 56 A3 Eo B3 — 24A3Eg + 495A1 By Es Fg
+135A41 A2 B2 Fg + 216 A1 Ay By Eg + 80B3 E2 — 56 A3 o B2, (6.3.15)
F202) — mpoﬁ@ + 44A2F9Ey + 25 BoE2Ey 4 65BoE? + 30 Ay By B2
+48A2F¢ + 50ByF2Eg + 15A3E5 Eg + 39A5 B4 F),
FOLY fm[soAfES + 98A2E, By + T5B3E2Ey + 105B2E2 + 60 Ay By E2
"1
+76A2FEg 4 100ByEy Fg + 45 A2 F3 Eg + 63 Ay F, E),
F022) — W[BSOA%E% + 564A2EyEy 4 675By BBy + 315ByE3 + 270A2 By B3
1)
+208ATEg + 450 B2 B2 Eg + 405 A2 E5 Eg + 189 Ay By Eg). (6.3.16)

In the massless limit the Eg Jacobi forms simplify as A,, = E4, B, = Eg, and these formulae
reduce to the ones previously obtained in (6.2.13)), (6.2.14]) and (6.2.15)).

We list the refined BPS invariants for the case ny = 2 in the tables and [A7] We see
that the top Weyl orbit O, . for the class 2p + df is p = 2d — 2. This is easy to understand
from the formula (6.3.4]), which shows the Weyl orbits with maximal norm in the coefficient
of ¢ are Oyqy, in the level two Eg characters ©(2m,27), ©(m, 5) and O(r, 71), which
appear in the formulae for the Jacobi forms Ay and Bs. Our explicit results further show
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6. The Refined BPS Invariants for the Half K3

that the contributions of the Weyl orbits Oaq and Oaq_1 ) vanish, so that the top Weyl
orbit turns out to be Oz4_2 ;. Another interesting feature is that the refined BPS invariants
are similar for the classes 5 = (2p+df, Op ) with the same value of 2d—2 —p. In particular,
the refined BPS invariants have the smallest top genus, and are exactly identical for the
top Weyl orbits p = 2d — 2. The exact identifications gradually disappear for classes with
higher values of 2d — 2 — p.

Some refined BPS invariants for the cases n, = 3,4 are listed in the tables [A.8 and [A.9]
We find that the general empirical formula of the top Weyl orbit O, for the class nyp + df
reads

ny(np + 1)

s L (6.3.17)

p = npd —

Below the top Weyl orbit, the refined BPS invariants n’ " +df,Op,

JL.JR
for some homology classes with small non-negative values of nyd — w +1—p. However,

* may still completely vanish

there is at least one Weyl orbit O, ;. at each integer p < nyd — W +1, where the refined
BPS invariants do not completely vanish.

The non-vanishing refined BPS invariants at the top Weyl orbit have the top genus pair
(9L, 9Rr)"P = (0,np — 1). Furthermore, the top genus pair for the classes with non-vanishing
BPS invariants increases exactly at the same place as we lower the Weyl orbit. So the top
genus pair for the class (nyp + df, Op 1) with non-vanishing BPS invariants is

np(np + 1)

5 +1=p)(L,1)+ (0, —1). (6.3.18)

(9L, 9Rr)"" = (npd —

These formulae should come from the algebraic geometric properties of holomorphic curves
in the half K3 surface.
Again as in the ny = 1 case, we can reproduce the results for the massless theory of the

half K3 model in tables and using the formula (6.3.5)), the Weyl orbits (6.3.3) and
the more general refined BPS invariants in tables [A.6] [A.7], [A.§ and [A.9] of the massive

theory.

It is clear that in the massive theory it is easier to fix the modular ambiguity than in
the massless theory. For example, for the case of genus n + ¢ = 1 and n, = 1, there is
one modular ambiguity in the massless theory which is proportional to Eg, but there is
no modular ambiguity in the massive theory since there is no Eg level one holomorphic
modular form of weight 6.

We discuss whether the vanishing conditions are sufficient for fixing the modular ambigu-

ity in more detail. We have used the vanishing conditions ngbop TAFOpk _ () for d < ny (with
the exception ng’ég %! = 1). Surprisingly it turns out that there are also vanishing conditions

available even for arbitrarily large fiber degree d, due to the the empirical formula for the top
Weyl orbits (6.3.17)). For a level n; Jacobi modular form which is a polynomial of the gen-
erators A, and B,, one can check that the highest Weyl orbit appearing in the coefficient of
¢ has the half norm square p = npd. The sum of the form ¢? Zweow 2™ with p = npd
is non-vanishing in the Jacobi form for infinitely many fiber degrees d. For n; > 1, this is
higher than the top Weyl orbit with non-vanishing BPS invariants according to our formula
6.3.17). So the vanishing of the BPS invariants n?i’?;df’op’k =0 for p > mpd — w +1
should impose constraints on the ansatz for the level n; refined topological amplitudes for
these fiber degrees.
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6.4. Flow to the del Pezzo models

However, one can construct a certain ansatz for the modular ambiguity at level ny > 2,
such that the sums of the form ¢? e2™0 1 do not appear for all degrees d and Weyl
np(ny+1)

2

weop’k,
orbits with p > npd — + 1. For example, we can consider the case of n, = 2 and
genus n + g = 3. The modular ambiguity is a Jacobi form of level n, = 2 and weight
16, multiplied by the factor of W. The level 2 forms Ag, By and A2 can be written in
e2m where the Weyl orbit p < 2d. We can look
1)

. .. qE:-E
at an example of a modular ambiguity s

terms of sums of the form qd Zweop .

Ay ~ gqAs. Due to the extra factor of ¢,
now the modular ambiguity gAs is written as a sum of the form ¢¢ Zweop . 2™ where
p < 2d—2. So this ambiguity cannot be fixed by the vanishing conditions of BPS invariants

due to the top Weyl orbit formula ((6.3.17]).

6.4. Flow to the del Pezzo models

One can take some limits of the mass parameters and flow from the Eg model to E,, (n =
5,6,7) models [62]. We consider the diagonal class 3 = (d(p + f),Op) where the base
number ny equals d, and denote the parameter ¢ as the combined Kéahler parameter of the
base and fiber classes. We have discussed that the Eg model is simply the massless limit
of the diagonal classes in half K3 model. For the E,, (n = 5,6,7) model, one performs the
following scalings of ¢ and the mass parameters

q*>627r(8—n)/\q’ m; = iN+p, (j=mn,--,7),

mg — —i(8 —n)A+ p. (6.4.1)

The refined amplitudes of the half K3 model consist of sums over the Weyl orbits of the
Eg lattice of the form Zzﬁeop,k qte?™ @ T flow to the E, model, we keep only the terms
which are independent of the scaling parameter A under the scaling (6.4.1). We denote by
(’)E"’ the subset of the Eg Weyl orbit O, j, whose elements satisfy the condltlon

OFp o (i € Opul 3wy — (8 m)uws — (8 m)d ) (6.4.2)

j =n

This condition is also compatible with multiple cover contributions in the refined topological
amplitudes, namely if a lattice vector o € (’)E"’ then it is also true that rw € OE”’rd for
any multi-covering positive integer r.

To compare with the results in section we further take the massless limit for the
remaining mass parameters y — 0 and m; = 0 (j = 1,--- ,n—1). The sum over the subset
OEZ’d of the Eg Weyl orbit is then simply the order, i.e. the number of elements of the
subset. Similar to the formula , we can compute the refined BPS invariants for the
E,, models by the formula

Z O] P DO (6.4.3)

JLJR ]L WJR

It is straightforward to check the elements in the Eg Weyl orbits and to compute
the subset Op"’d for various degrees d and E, models. We list the data for the orders of
the subset for some low orbits and degrees for the D5, Eg, Ey models in the table [6
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6. The Refined BPS Invariants for the Half K3

We can then compute the refined BPS invariants for the E, models using the formula
(6.4.3)), the orders of the Weyl orbits in table and the refined BPS invariants for the
diagonal classes n, = d for the Eg model in tables[A.6] [A.7] [A.8land [A.9] We reproduce the

results in the corresponding tables for D5, Eg and E; up to d < 5 in section
En,

We note the following inequality for the element w0 in (’)

(8 —n)%d* = Zw] —nws)® < O 14+ @8-n))(_w})
< 2(8 —n)(9—n)p. (6.4.4)

Therefore the orbit must satisfy p > ( n) )2 , otherwise the subset (’) ”’ would be empty.
This is also confirmed explicitly by the data in table [6.1] Furthermore the top Weyl orbit
with non-vanishing BPS invariants is p < <4 1) +1 for the diagonal classes n, = d according
0 (6.3.17). So the argument in the sum 111 the formula for the E,, model - ) is only
non-vanishing for the Eg Weyl orbits O} in the range (28(;73?)2 <p< d(d U 11 for the half
square length p of the orbit.

We can also flow to the P! x P! and P2 models. For the P! x P! model, we set n =1 in
the subset of the Eg Weyl orbits

Of,lkxp @ = {@ € Opyl Zwy — Twg =17d }. (6.4.5)

7=1

As the point @ lies in the Eg lattice, the sum Z?Zl w; is an even integer and w; is an

integer or half integer, we see that OP “Phd s an empty set for odd degree d. The formula

p
for the refined BPS invariants is modified to depend on only even degree invariants
from the half K3 model

Pl xpl 2d +1),0p,
(n] M P xPt = Z’O . ]LZ-JR 1Opik, (6.4.6)

We also list the data for |(9;lj <P d| for even d in table and reproduce the results for
d =1,2 in table 1] in appendrx 1l Similarly as for the E,, models, we find that the
argument in the sum is non- varushlng in the range 7d2 <p<2d®—d+1.

For the P2 model, the subset of Weyl orbits is defined as
5 7
Og),k’d = {0 € Opl ij —wg = 84 }. (6.4.7)
j=1

We also list the data for ](’) P 4/ in table The refined invariants from the half K3 model
only contribute when the degree d is d1v1s11e by 3

+),0
5, in) Z (oA . (6.4.8)

Similarly as in the other models, the argument in the sum (6.4.8)) is non-vanishing in the

range 4d?% < p < w + 1. Our results for the massive half K3 model are available for
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6.4. Flow to the del Pezzo models

d \ orbits | Qo1 | O1,240 | O2 | O3 | Oay | Oy | Os | O6k | Oty | Orks | Osiey | Osiy
1 0 16 176 640 0 1296 2416 | 4336 976 4960 0 8272
2 0 0 10 140 16 576 1052 | 2710 508 2704 176 6336
3 0 0 0 0 0 16 176 640 208 1088 0 2416
4 0 0 0 0 0 0 0 1 6 40 10 320
5 0 0 0 0 0 0 0 0 0 0 0 0
The D5 model
d\ orbits | Op1 | O1240 | O2k | Os | Oaier | Oaks | Osk | O6k | Oty | Otk | Ok | O s
1 0 27 270 891 54 1944 3564 | 5724 1350 7560 432 12096
2 0 0 27 270 27 864 1998 | 3564 972 4752 270 8640
3 0 0 0 1 2 72 414 1260 434 1944 144 4032
4 0 0 0 0 0 0 0 27 54 216 27 864
5 0 0 0 0 0 0 0 0 0 0 0 0
The Eg model
d\ orbits | Qo1 | O1240 | O2 | O3 | Oaiey | Oaes | Os | O6ke | Oy | Orky | Osiky | Osiio
1 0 56 576 1512 0 4032 | 5544 | 12096 1568 12096 0 24192
2 0 1 126 756 56 2016 | 4158 7560 1512 10080 576 16128
3 0 0 0 56 0 576 1512 4032 1512 4032 0 12096
4 0 0 0 0 1 0 126 756 56 2016 126 4032
5 0 0 0 0 0 0 0 0 56 0 0 576
The E7 model
d \ orbits | Qo1 | O1,240 | O2 | O3 | Oaey | Oaky | Osk | O6 | Oty | Ok | Osiy | Osikg
2 0 0 2 84 0 422 784 2184 420 2380 0 5266
4 0 0 0 0 0 0 0 0 0 1 2 42
6 0 0 0 0 0 0 0 0 0 0 0 0
The P! x P! model
d \ orbits | Qo1 | O1240 | O2 | O3 | Oaey | Oaks | Os | O | O7 ey | Orks | Ok | Osikes
1 0 0 0 0 0 1 56 420 168 728 70 2296
2 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.1.: The orders of subsets |(’)§,’€d

The P? model

for X = Dj,Eg,E7,P! x P!, P? models. Here
ki = |Op,| are the orders of the Eg Weyl orbits available in (6.3.3), and we sort them by
increasing order in the case of multiple orbits with the same norm.
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6. The Refined BPS Invariants for the Half K3

checking only the d = 1 result in table [5.3]in section [5.3}

We can check the top genus pairs for the refined BPS invariants n] jp using the formulae
6.4.3), (6.4.6) and (6.4.8) for the del Pezzo models. Using the general top genus formula
E for the massive half K3 model and specializing to the diagonal classes n, = d, we

find that the top genus pairs for n]L jp are realized at the smallest integer p for which the

orbit Op,k is non-empty, where X = D5, Eg, E7, Eg, P! x P!, P? represents the del Pezzo
models. We have discussed all the models except Eg, for which there is no constraint for
Weyl orbits and the lower bound is simply p > 0. From our discussions we find the top
genus pairs for various models

([ — 9)(1,1) + (1,d),  for the D5, Eq, B, Eg models,
(92,98)"P =4 (L] -d)(1,1) + (1,2d),  for the P! x P! model, (6.4.9)
((d D(d~ )7 d(d+ )), for the P2 model.

The formula agrees with all results in the corresponding tables that can be found in section
for the groups Ds, Eg, E7 and Eg, in section for the group P? and in section
for the diagonal P! x Pl-model.

Furthermore, we can now explain certain patterns for the refined BPS invariants at the
top genus for the del Pezzo models from the general formulae , and .
One can observe in the just cited tables that the top genus refined invariants follow a
periodicity of 9 —n for the E,, (n = 5,6,7) models and a periodicity of two for the P! x P!
model, while the top genus numbers are always 1 for the Eg and P? models. The top genus
numbers in the Ds;, Eg, E7 models are exactly the dimensions of the smallest irreducible
representations of the groups SO(10), Eg, E7.

We observe from the tables[A 6] [A.7] [A.§] [A.9 that for the massive half K3 model, the top
genus invariants are always 1. So the patterns for the del Pezzo models should come from
the orders of orbits |(9§,;d i (16.4.3[) and 46.4.8[), or |(’);f,’€2d| in for the
X = P! x P! case. According to (6.3.18) we should consider the lowest Weyl orbits which
have the largest top genus. In the following we will assume that the top genus numbers
from the massive half K3 models for the lowest non-empty orbits are always 1, so the top
genus number for the del Pezzo models is simply the order of the lowest non-empty orbit,
or their sum if there are multiple non-empty lowest orbits with the same length. With this
assumption for the massive half K3 model, we explain the patterns and compute the top
genus numbers case by case.

For the Eg model there is no constraint therefore the lowest orbit is simply Op 1, and the
top genus number is always |Op 1| = 1.

For the E; model, we have discussed that according to the 1nequahty - ) the lowest
orbit (’) 7’d for degree d is achieved for the smallest integer p > d . We discuss the situation
accordmg to the divisibility of d by 2.

1. dis an even integer. In this case the norm square of the lowest orbit is L? = 2p = d2
There is a unique lattice vector W € (’);sz, which is @ = (0,0,0,0,0,0, g, g) and
the order is ), |(’)£;§’d| = 1. So the top genus number is 1.

2. dis an odd integer. In this case the norm square of the lowest orbit is L? = 2p = %.

There are two classes of the lattice vectors W € O;]Z’d. Firstly, we can use (w7, wg) =

(%, —g):i:(%, %), and all w; (i =1,2,---,6) are 0 except one of them is 1 or —1. There
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6.4. Flow to the del Pezzo models

are 2 -6 -2 = 24 elements in this class. Secondly, we can use (wr,ws) = (4, —4), and

the w; (1 =1,2,---,6) are either % or —s5 Wlth an odd number of them being positive
to satlsfy the Eg lattice condition. This class contributes 32 elements. In total we find
Dok |(9p | = 24 + 32 = 56, which is exactly the top genus number for odd degrees

observed in the tables for E; in subsection [5.1.2

For the Eg model, the lowest orbit OEG’ of degree d lies at the smallest integer p > %2.

We discuss the situation according to the remainder of d divided by 3. We successfully
derive the top genus numbers in tables for Eg in subsection for all cases.

1. d = 0 mod 3. In this case the norm square of the lowest orbit is L? = 2p = 2§2

There is a unique lattice vector w0 € OEG’ , which is @ = (0,0,0,0,0, ‘;, g, 2d %), and

the order is ), |OE6’ | = 1. So the top genus number is 1.

2. d = 1 mod 3. In this case the norm square of the lowest orbit is L? = 2p =

2 . — .
72513*4. There are several classes of the lattice vectors w € ng’d. Firstly, we can

set (wg, wy, wg) = (%, %,—%d) — %(1,1,1), and the other w; (i = 1,2,---,5) being
0 except one of them is 1 or —1. There are 10 such vectors. Secondly, we look at
(we, wy, wg) = (g, g, —%) + £(1,1,1), the other w; (i =1,2,---,5) are &3 with even
number of them positive. There are 16 such vectors. Finally there is the vector with
(we, w7, wg) = (g, %l, —%) + %(1, 1,1) and all other w; =0 (i = 1,2,---,5). In total
we find 3, |OF% 4] =10+ 16 + 1 = 27.

3. d =2 mod 3. The norm square of the lowest orbit is also L? = 2p = %. This case

is similar to the case of d = 1 mod 3. By completely similar reasoning we also find

>0 =21,

For the D5 model, the lowest orbit OD5’ of degree d lies at the smallest integer p > %.

We discuss the situation according to the remainder of d divided by 4, and find complete
agreement with the pattern in table

. d = 0 mod 4. In this case the norm square of the lowest orbit is L? = 2p = %.
There is a unique lattice vector @ € (’)IE)Z’ , which is @ = (0,0,0,0, ff, i, %, —?:Td), and
the order is ), |O£,5§’ | = 1. So the top genus number is 1.

2. d = 1 mod 4. In this case the norm square of the lowest orbit is L? = 2p =

There are two classes of the lattice vectors @ € OEZ’d. Firstly, we can set

(ws, wg, w7, wg) = (%,%,%,—%‘i) - %(1,1,1,1), and the other w; (i = 1,2,3,4) are
0 except one of them is 1 or —1. There are 8 such vectors. Secondly, we look at

(ws, we, wy,wg) = (%, %, %, —34—‘[) +1(1,1,1,1), the other w; (i = 1,2,3,4) are +1 with

odd number of them positive to satisfy the Eg lattice condition. There are 8 such
vectors. In total we find >, |(9D5’ =8+ 8 =16.

3d>+5
=1

3. d = 2 mod 4. The norm square of the lowest orbit is also L? = 2p = %j‘*. Firstly,
we find 2 vectors in the orbit with (w1, ws, ws, ws) = (0,0,0,0) and (ws, we, wy, wg) =
(%,%,%,—%d) + %(1,1,1,1). Secondly, we consider (ws,wg, w7, wsg) = (%,%,%,—3721),
the other w; (i =1,2,3,4) are :t% with even number of them positive to satisfy the Eg
lattice condition. There are 8 such vectors. In total we find >, ]O;i’d| =2+8=10

in this case.
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6. The Refined BPS Invariants for the Half K3

4. d = 3 mod 4. The norm square of the lowest orbit is also L? = 2p = ?’d%{’. This case

is similar to the case of d = 1 mod 4. By completely similar reasoning we also find
|0y = 16.
For the P! x P! model, the lowest orbit (’)ﬁ;xplgd
p > %. If d is even, the norm square is L? = 2p = %‘2. There is a unique lattice vector
in the orbit @ = %(1, 1,1,1,1,1,1,—7). If d is odd, the norm square is L? = 2p = 7d227+1.
There are 2 lattice vectors @ = %(1,1,1,1,1,1,1,—7) + %(1,1,1,1,1,1,1,1). This agrees

with the top genus numbers, which are 2 for odd degrees and 1 for even degrees in table

A41l

Finally for the P? model, the lowest orbit (’)}:iﬁ’d of degree d lies at the smallest integer

of degree d lies at the smallest integer

p > 4d%. The norm square of the lattice vectors is L? = 2p = 8d?. There is a unique vector
W= (d,d,d,d,d,d,d,—d) in the orbit, implying that the top genus numbers are always 1.
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7. Basic Concepts of F-Theory

In the first chapter of this second part, we discuss some basic background material in F-
theory, such as its interpretation as the strong coupling regime of Type IIB string theory
and its relation to M-theory and the Heterotic string.

7.1. F-theory as the strong coupling regime of Type |IB

It is well-known that type IIB string theory possesses an SL(2,Z) symmetry that maps
the strongly coupled regime of the theory to a different weak-coupling description. More
precisely, given the axiodilaton 7 = Cy + gis and the two-form fields Bs, C5 coupling to the
fundamental as well as to the D1 string, the theory is conjectured to be invariant under

Cs AN Cy ar +b a b
<BQ> ~ (Bé) =M <32>, T axa \e d) € SL(2,Z). (7.1.1)

Classically, the symmetry group would be SL(2,R), but this gets broken to SL(2,Z) due to
D(-1) instantons. This symmetry leads in particular to the notion of [p, g]-strings which the
usual F-string transforms into after applying a general SL(2,Z)-transformation. These have
an interpretation as bound states of fundamental and D1-strings. Analogously, one is lead
to consider (p,q)7-branes and in general a [p, ¢]-string is allowed to end on a (p, ¢)7-brane.

That these states have to enter the discussion is also clear from a different perspective.
The axiodilaton profile around a usual D7-brane is givelﬂ by
1

T(z) = 5 In(2) (7.1.2)

and passing once around the brane with an F1-string will transform it by

M= (é 1) . (7.1.3)

This has among others two immediate consequences. First of all implies that one
is inevitablyﬂ taken out of the weak coupling regime where the perturbative description of
type IIB string theory is valid. Also the profile cannot hold globally as it implies a negative
string coupling constant far away from the brane and diverges close to it. While the profile
gets corrected by the presence of other 7-branes far away from this brane, this picture breaks
down close to the 7-brane where the weakly coupled 1IB description becomes valid. In fact
we discover corrections that render the profile finite from the F-theory side when discussing
the gauge coupling function of seven-branes from the F-theory perspective in section [9}
The general idea of F-theory [I1] is to geometrize the SL(2,Z) symmetry by considering
it as the group of large diffeomorphisms of an auxiliary torus which is fibered over the

'This is simply the fundamental solution for a co-dimension two point source.
2 Apart from the case of local tadpole cancellation, compare the discussion of the Sen limit.
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7. Basic Concepts of F-Theory

space-time and encodes a non-perturbative profile of the string coupling constant. Loci,
where the fibration becomes singular, are identified with the positions of 7-branes. The
easiest setup is in eight dimensions which corresponds to a compactification of F-theory on
an elliptically fibered K3 manifold. The base of this is fibration is given by a P! and locally
the fibration read$’]

v =23+ f(2)x + g(2). (7.1.4)

Here z denotes the coordinate on the base and f and g are sections of O(8) and O(12)
respectively. The discriminant
A =27g* + 4f3 (7.1.5)

has accordingly 24 zeros which describe the positions of 7-branes. At such a zero the
j-function

, 4(241)3
i(z) = <A) (7.1.6)
becomes singular and via its Fourier expansion
1 .
jQ)==+T44+..., q=¢"" (7.1.7)
q

one also finds at a single zero of the discriminant that

T = % In(z). (7.1.8)
This setup describes generically 24 seven-branes distributed among the S? which from the
type IIB perspective can be argued for by noting that each seven-brane gives rise to a
deficit angle of §. An easy monodromy argument also shows that not all seven-branes
can be considered as D7-branes at the same time. In fact measuring one D7-brane charge
with a loop on P!, the charges of the other 23 7-branes have to sum up to —1. When one
moves zeros together, which physically corresponds to forming brane stacks, one obtains
higher singularities that give rise to SU(N), SO(N) as well as exceptional gauge groups. The
respective gauge group can be read off from the Kodaira classification of singularities
[137].
Roughly speaking the following happens. The resolution of these singularities introduces
a Hirzebruch-Jung tree of P'’s that intersect as the negative of the Cartan matrix of the
corresponding ADE group. These correspond to Cartan generators of the gauge group
while the roots are given by M2-branes wrapping these P!’s that become massless when one
blows down this configuration in order to re-obtain the corresponding singularity. It was
even before the birth of F-theory shown by Schwarz [I59] that M2 branes that wrap (p, q)-
cycles of a torus compactification of M-theory gives rise to [p, g]-strings after performing a
T-duality transformation.

In higher-dimensional F-theory compactifications one obtains in general singularities over
divisors and the classification of possible singularities is still a subject of current research,
e.g. [16I]. In particular, it becomes possible that different discriminant loci of
intersect which leads to an enhancement of the singularities and in addition to the generation
of matter (co-dimension two) and Yukawa couplings (co-dimension three) [160].

3Note that we use different conventions than in (3.4.1)) which are however more common to the F-theory
literature.
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7.2. Embedding F-theory into the web of string dualities

order (f) | order (g) | order (A) | singularity
>0 >0 0 none
0 0 n An—l
>1 1 2 none
1 >2 3 Ay
> 2 2 4 Ay
2 >3 n+6 Dyis
> 2 3 n+6 Dpta
>3 4 8 Eg
3 >5 9 Er
>4 5 10 Ex

Table 7.1.: The Kodaira classification of singular fibers. Here f and g are the coefficients
of the Weierstrass normal form, A is the discriminant as defined in ((7.1.5)) and order refers
to their order of vanishing at a particular zero.

7.2. Embedding F-theory into the web of string dualities

Unfortunately, there is no microscopic description of F-theory which could be used to com-
pute the effective action upon compactifying on Calabi-Yau manifolds. Besides its high
conceptual relevance, it is therefore important to understand how F-theory is connected to
other string theories in order to perform such computations. In the next two sections we
briefly review the two most important dualities, namely M-/F-theory duality and Heterotic
F-theory duality.

7.2.1. M/F-Theory duality

The bosonic part of the eleven-dimensional supergravity action that constitutes the low-
energy approximation of M-theory is givenE] by

sy — —27r/ IR*1+1GuN*Ga+ H5C3NGiNGy—27 CsAXg+ Y Sy (7:2.1)
Miy k

Miy

where locally G4 = dCj5 is the field strength of the M-theory three-form Cs, and Xg is a
fourth order polynomial in the Riemann curvature of the eleven-dimensional space-time.
The last term includes the coupling to M2-branes with action S{f/{z- The G4 field strength,
the curvature Xg, and M2-branes can serve as sources in the C'5 equations of motion

dxGy=1Gi NGy — X+ > _6®(2h), (7.2.2)
k

where §(8) (%) is an eight-form current localizing to the world-volumes 2% of the M2-branes.
To make contact with F-theory, one compactifies down to nine dimensions on a two-torus
with metric

ds?; = 2 ((dm +71)% + ngy2> + ds3. (7.2.3)

4We omit in general dimensions for actions in this thesis. Compare also to appendix A for the conventions
used.
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7. Basic Concepts of F-Theory

We identify the x-direction as the M-theory circle while a T-duality is performed along the
y-direction. To identify the axiodilaton one recalls that the circle connection corresponds
to the C] field in type ITA and gets T-dualized into the Cj field, while the ITA coupling is
related to the radius of the M-theory circle, see [47] for a detailed calculation:

: 4
T=Cot ——, dsipp—=—(da®)? + (dz")? + (da?)® + bs g2 4 ds3, . (7.2.4)

g11B v
The F-Theory limit corresponds to taking the volume v to zero which shows that in this
limit one obtains as expected a ten-dimensional compactification. Higher-dimensional com-
pactifications are obtained by fibering this duality over a base manifold B,, i.e. they have
to be performed on an elliptically fibered Calabi-Yau manifold. Although the main idea is
simple, there are in general many subtleties in this limit. We do not want to discuss this
issue here at length but point out two important examples. Typically one is interested in
F-theory on singular Calabi-Yau manifolds as these engineer gauge theories. In contrast,
M-theory is only well defined on smooth manifolds and therefore one has to first resolve
all singularities. However, in the F-theory lift the blow-down is necessarily taken and the
Coulomb branch cannot be approached from the F-theory side. Also, in order to compute
the effective action of an F-theory compactification [I38] down to 2n dimensions, it is not
possible to extract the data of the 2n-dimensional action directly, but one has to compactify
this further on a circle and compare this with the corresponding M-theory compactification.
In addition, one has to identify on both sides the limit in the moduli space that corresponds
to the F-theory lift.

We continue the discussion with supersymmetric backgrounds for M-theory compactifi-
cations on general Calabi-Yau fourfolds. In order to specify a consistent background, one
not only needs to specify a compactification geometry but also a background flux G4 be-
ing supported on homologically non-trivial cycles. Supersymmetric compactifications on
Calabi-Yau fourfolds have been investigated in detail in [I40] and a non-trivial background
was found in which allows for an internal Calabi-Yau geometry Y times a flat space R(1)
and a background flux for the field strength G4. We follow this discussion as it will be
quite relevant for the discussion of the F-theoretic derivation of the 7-brane gauge coupling
function in section [d

4 and

The metric in the presence of such flux has to include a non-trivial warp factor e
is given by

ds(QH) = e_Anm,dx“dx” + eA/anl;dyadng , (7.2.5)

with g,; being the metric on the Calabi-Yau manifold Ys. The warp factor only depends
on the coordinates y?, 7" of Y;. The non-trivial field strength G4 splits into a contribution
with three flat indices (G4)uvpm and an internal G4-flux G4 with indices only along Yj.
Supersymmetry implies that the background component of G4 with flat indices is determined
by the warp factor

(Ga)pwpm = €upOme>? (7.2.6)

where the derivative is taken with respect to the internal coordinates. The equations ([7.2.6])
and ([7.2.2) require that the warp factor has to fulfill the Laplace equation

Ay, (e342) = v, (5G4 A Gs — Xsly, + 25(8)(25)) ) (7.2.7)
k

where Ay,, *y, is the Laplacian and the Hodge-star evaluated in the Calabi-Yau metric g,;.
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7.2. Embedding F-theory into the web of string dualities

The last term in needs to be included if the background contains M2-branes which
fill the non-compact space-time R(®>1) and are pointlike in Y;. There are further constraints
by supersymmetry and the equations of motion on the background flux G4. It can be shown
that G4 has to be self-dual and primitive,

*y, G4 = Ga, JNGy=0, (7.2.8)

where J is the Kahler form on the fourfold Yj.

Let us stress that for compact geometries the Laplace equation implies a non-
trivial consistency condition when integrated over Yy. This is the famous M2-brane tadpole
condition

x(Ya) 1

= — N, 2.
51 5 Y4g4/\g4~l— M2 (7.2.9)

where x(Yy) is the Euler number of Yy, and Ny is the number of space-time filling M2-
branes. The condition (7.2.9)) together with (7.2.8) implies that in a compact setting the
corrections due to Xy leading to x(Y4) in ([7.2.9)) are crucial to find supersymmetric vacua
with G4 flux.

7.2.2. Heterotic/F-theory duality

Heterotic F-theory duality [36] [83] conjectures that F-theory compactified on an elliptically
fibered K3 surface is equivalent to the Eg x Eg Heterotic string compactified on a torus. Let
us start with the Heterotic side by considering the moduli of this compactification. There
are two moduli coming from the torus and in addition there are sixteen further moduli
coming from Wilson lines on the torus. These parametrize the moduli space

Muet = SO(18,2,Z)\SO(18,2)/SO(18) x SO(2) x R (7.2.10)

which is just the moduli space of the sixteen-dimensional Heterotic lattice extended by
two further pairs of compact dimensions of Lorentzian signature (1,1). The last factor
parametrizes the string coupling constant.
On the F-theory side the K3 is described by an elliptic fibration over a P!, coordinized
by z, which reads
v =23+ f(2)x +g(z2). (7.2.11)

As this fibration should have generically 24 singular fibers one obtains 9+13 parameters out
of which 3+1 can be deleted due to the SL(2,Z) invariance of the base and a rescaling of
the equation, which gives eighteen parameters in total which are in fact also parametrized
by [36]. Here the half-line factor gets identified with the size of the base.

To match the moduli it is useful to turn off all Wilson lines on the Heterotic side leaving us
with two moduli and the full Eg x Eg symmetry. On the F-theory side the elliptic fibration
is accordingly specialized to the two moduli curve

y? =23 +azte 4+ (20 + B0+ 27). (7.2.12)

According to table this has indeed an Eg singularity at z = 0 and it is easy to check that
this is also the case for z = co. Moreover, if one makes the K3 degenerate by taking the limit
a, 3 — oo while keeping the ratio a/3? fixed one obtains a constant coupling constant
all over the base except near to the two poles. Technically what happens in this limit is
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7. Basic Concepts of F-Theory

that the K3 degenerates into a chain of three surfaces. The two end surfaces are found to
be half K3 surfaces that intersect both with an elliptic scroll, i.e. the product of a rational
curve with an elliptic curve. This is called the stable degeneration limit [36] 162] 163]. On
the Heterotic side the torus also degenerates by becoming very large, while the complex
structure becomes identified with that of the elliptic curve on F-theory side.

Heterotic/F-theory duality in six dimensions

Heterotic/F-theory duality in six dimensions is basically established by compactifying the
eight-dimensional duality over a common P!, i.e. one compactifies F-theory on a K3-fibered
threefold, where the K3 is itself elliptically fibered and the Heterotic string is compactified
on an elliptically fibered K3 as well. In the following we denote by 21 and z2 the coordinates
of the base ]P’; and fiber IP’} respectively. Globally, these have to glue together to a Hirzebruch
surface F,,. On the Heterotic side anomaly cancellation demands that

(V) = ea(Tks) (7.2.13)

where V' denotes the Heterotic gauge bundle and accordingly, one has to turn on 24 in-
stantons. It was found in [36], that the distribution of these instantons among the two
Eg-bundles corresponds to (12 + n,12 — n). A good starting point to match the moduli
on both sides is assume point like instantons. The elliptic fibration of the threefold can
accordingly be written as [36 [83]

4 6
=2+ ) fem(z)z Fe 4 ) greon(z1)287F (7.2.14)
k=—4 k=—6

Here the subscript denotes the degree of the polynomial with the convention that those with
negative degrees vanish. The extension of this local description to a global one demands
that the two P'’s have to fiber as a Hirzebruch surface F,. This explicit form makes the
structure very transparent, one easily sees that one has for fixed z; a K3 which is itself
elliptically fibered. Moreover, one observes that the generic singularity is destroyed at
zeros of fs_nk(21), which corresponds just to the location of the instantons. Giving these
instantons a finite size corresponds to blowing-up the base.

We do not delve deeper into the discussion here, but refer to the beautiful original expo-
sitions [36} B3] or the review article [139].
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8. Counting Non-Perturbative States in
F-Theory

In this chapter we discuss two interesting physical applications of the refined BPS invariants
within F-theory which are given by the F-dual description of the E-string in section and

[p, q]-strings in section

8.1. Counting refined BPS states of the E-string

In this section we show that the refined topological string is able to count BPS states
of the E-String and to predict their space-time spin and gauge theory quantum numbers.
We start by reviewing some aspects of the construction of the E-string. Afterwards, we
discuss (unrefined) BPS state counting via the Green-Schwarz string description in six and
five dimensions and also in the dual F-theory setup. Finally, we explain how the refined
topologcial string considerably improves the understanding of BPS states of the E-string.

8.1.1. Zero-sized Heterotic instantons

We consider the Heterotic SO(32) string compactified down to six dimensions on a K3
surface. Anomaly cancellation demands in the absence of M5-branes that

c2(V) = c2(Tks) (8.1.1)

where V' denotes the Heterotic gauge bundle which implies that one has to turn on 24
instantons. If one of these instantons shrinks to zero size [41], space-time develops a deep
throat in which one obtains a diverging dilaton - irrespectively of its profile outside the throat
- and in addition an SP(1) =& SU(2) gauge enhancement giving rise to hypermultiplets in
the representation (32,2) under SO(32) x SU(2). If all instantons shrink within one point
one obtains an SP(24) enhancement. As there is no vector multiplet moduli space in six
dimensions, the dynamics is completely governed by the Higgs effect.

In contrast, the effect of a zero-sized instanton in the Eg x Eg Heterotic string cannot
be understood by the Higgs effect as the representations of Eg are too large compared to
the dimension of a single Eg instanton which is 29. Instead the Eg case is governed by a
six-dimensional tensionless string [39, 40]. This can be inferred by noticing in a first step
the following chain of dualities [90]

Het Eg x Eg/S' ~ M-theory/I x S' ~ Type IA/I < Typ 1/5* 2 Het SO(32)/S*. (8.1.2)

In particular, one notices that a Heterotic SO(32) instanton is mapped to a D5-brane in
the dual Type I theory. As the D5-brane carries SU(2) Chan-Paton indices [4I], one also
recovers here the (32,2) hypermultiplets, coming from D5-D9 open strings. In addition,
the D5-D9 system is via T-duality equivalent to the D0-D4 system whose moduli space is
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8. Counting Non-Perturbative States in F-Theory

known to have two branches: On the Coulomb branch the D0O-brane is separated from the
D4-brane while in contrast the DO-brane has dissolved into flux on the D4-branes on the
Higgs-branch.

The upshot of a careful analysis of these dualities is, that the analogon of this process in
Heterotic M-theory is an M5-M9 brane configuration with a M2-brane stretching between
them. This induces a string, called E-string, in the world-volume of the M9-brane which
becomes tensionless, once the M5-brane approaches the M9-brane and corresponds to the
pointlike Heterotic Eg x Eg instanton. Also in this case the M5-brane can dissolve into a
finite-sized instanton.

It is crucial to note that this rather simple chain of dualities is based on the additional
compactification on a circle. However, once compactified on a circle, the two Heterotic
theories share a common moduli space anyway. It is therefore not apriori clear that the
five-dimensional analysis can be lifted to a six-dimensional picture. To give one example,
after the circle compactification, one obtains the (16,2) hypermultiplet from the Heterotic
SO(32) theory, but the decomposition of the representations of Eg under the subgroup
SO(16) do not provide a fundamental representation of SO(16). These states cannot be
there in the six-dimensional Eg x Eg theory and only arise after the compactification.
These issues were carefully analyzed and a consistent six-dimensional picture was provided
in [39].

Their analysis also showed that the low energy field content of the E-String is governed
by the eleven-dimensional supergravity in the bulk, super Eg Yang-Mills theory in ten
dimensions on the fixed point, a tenSOIEI as well as a hyper multiplet, the reduction of the
world-volume U(1) field of the two-brane, an Eg level one current from the boundary of the
two-brane on the nine-brane and anomaly cancellation finally suggests that there is nothing
coming from the intersection of the two-brane with the five-brane.

8.1.2. The E-String in six and five dimensions

So far, no Lagrangian description is known to describe the physics of the E-string. A first
step towards unraveling its nature can be done by carefully understanding its BPS spectrum
which was initiated in [32] (see also [65]). As the quantum field theories based on strings
are not well understood, it is useful to consider the situation compactified on a circle, where
one can again analyse particles. There are two ways to attack this problem: The first
one uses a Green-Schwarz description of the six-dimensional exceptional string which gets
compactified on a circle. This can be used to compute parts of the partition function of the
E-string. The second way approaches the problem using Heterotic/F-theory duality. These
dualities are compactly summarized in figure [8.1

In a nut-shell the analysis of the five-dimensional theory reveals the following. It exhibits
different phases which are parameterized by the string tension. In the first phase, both, the
excitations of the wrapped and of the un-wrapped E-string are massive. Due to a quantum
mechanical effect the tension of the wrapped string is smaller than that of the un-wrapped
string and one approaches a point where the wrapped string becomes tensionless, while the
unwrapped string has still positive tension. After this transition point, the tension of the
wrapped string becomes formally negative and one finally hits a second transition point,
where also the un-wrapped string becomes tensionless. At this point one obtains a whole
tower of massless particles interacting with the tensionless string.

!This disappears when the five-brane gets stuck on the 9-brane as its multiplet hosts the scalar that
describes the transverse motions.
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Heterotic on K3 F-theory on CY
e [-string o dual e D3 on P!
e M5 — instanton e blow-down
comp. comp.
Heterotic on K3 xS* M-theory on CY
e E-string e M5 on dPg
lual
e BPS-particles |<——> e M2 on P!
e two phase tran- e two phase
sitions transitions

Figure 8.1.: The description of the E-string in six and five dimensions using Heterotic/F-
theory duality.

This is geometrically reflected in F-theory as points in the moduli space where first only
a two-cycle vanishes and afterwards a four-cycle collapses and together with it all possible
curves inside this divisor. In the next two sections we elaborate on this picture and finally
present how the space-time spin content and quantum numbers of the BPS-particles are
encoded in refined stable pair invariants.

8.1.3. The Green-Schwarz string

It was argued in [32] that the degrees of freedom of the E-String are governed by the Green-
Schwarz string in six dimensions. Its degrees of freedom consist of a left-running Eg current
algebra and right-moving spinor of O(4) and the external four bosonic oscillators

%,0)@(0,1). (8.1.3)

4(0,0) & ( 5

As it is easier to count the particle states one compactifies the six-dimensional string on
a circle of radius R giving rise to light stringy and particle states in five dimensions. The
mass of a BPS state is given by

M = | +mRT

: (8.1.4)

where T is the string tension and n, m denote the momentum and winding quantum number
respectively. The partition function for the states with m = 1 reads

-1 R n n Oes(q)
q nz:%d( N IR (8.1.5)

where the exponent twelve reflects four space-time oscillators and eight internal ones coming
from the lattice. g, (q) organizes the summation over the lattice momenta and is defined
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8. Counting Non-Perturbative States in F-Theory

in (A.3.3). This implies that the degeneracies

d(0)=1, d(1)=252, d(2)=5130,... (8.1.6)
When an instanton shrinks to zero size the Eg symmetry is expected to be restored at least
locally and therefore the BPS states should be classified by their Eg as well as their space-
time quantum numbers. Whereas one finds at level zero a hypermultiplet in the trivial

representation of Eg, the momentum number n = 1 gives the following field content

[248;4(0,0) o (;,0> D (0, ;>}+[1;4 @;) o <1;) o <;1) o (0, ;) = (;(22]7)

All these states are generically massive, except if one allows for a negative tension, which
gives a whole tower of massless states. The interpretation of the latter gets clarified once
one passes to the dual F-theory description, which is the subject of the next section.

8.1.4. The F-theory perspective

From the F-theory perspective, the transition of a M5-brane into a zero-sized instanton is
reflected by performing a blow-down from F; to P? in the base of the elliptic fibration. As
previously discussed, the tower of massless states comes from a shrinking four-cycle, which
is in the case of an Eg instanton a dPg del Pezzo surfaceﬂ An elliptically fibered Calabi-Yau
three-fold with basis F; can be constructed using the Batyrev method described in[4.3.1] If
one chooses an Eg fiber, one finds for the dual polyhedron A*

1) (F (FP)

0 0 0 0 0 0 0/]-6 0 0

—2 -3 1 0 -2 -3|0 1 0

As -1 0 -2 -3/ 0 1 -1
9 _3 0 1 -2 -3/ 0 0 1 (8.1.8)

1 -1 -2 -3/ 0 0 1

0 Aqo 0 0 -2 -3/ 1 -2 -1

0 0 1 0/]2 0 0

o 0 0 1]3 0 0

Here Asg and Ajg are the two-dimensional polyhedra from figure [4.1

This is also a toric

realization of the compact model for the half K3 discussed in but with a different
ambient space to realize the elliptic fiber. The Mori cone is spanned by the elliptic fiber
class E with Kéhler class kz and charge vector {€), the base of F| given by [(F r ), and I(F" i)
denotes the charge vector of the fiber class D of F} (which is also the base of the half K3)
where we denote the Kéahler class by kp. Next one performs a flop transition by which one
enters the extended Kéhler cone [32] [36 37]. The basis for the new Kéahler cone is given
by 1D = (&) 4 (F ) which corresponds to the canonical class of the dPg del Pezzo surface,
12 = —1(FY) which belongs to the flopped curve and finally () = J(FF) —i—l(FlF), which is the
hyperplane class of P2. Technically speaking the elliptic fibration has a section in the first

2For general reasons, a four-cycle that shrinks at the boundary of the Kihler cone of a Calabi-Yau manifold
to zero must be a del Pezzo surface, if the shrinking surface has no singularities on it. Moreover, the
condition, to have a shrinkable curve within a Hirzebruch surface restricts n to be a divisor of four. See
[36] for the discussion of the other cases.
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phase which gets flopped out in the second phase such that one obtains an elliptic pencil
with one base point, i.e. a dPg surfacd’|

Via the M /F-theory duality, the compactification of the E-string on a circle is better de-
scribed by the compactification of M-theory on the elliptically fibered Calabi-Yau threefold,
where the F-theory lift corresponds as usual to taking the volume of the elliptic fiber to
zero. It is interesting to see [32], how the above described geometry reflects the fact that
there is just one phase in six dimensions, namely when the E-string becomes tensionless,
but two phases in five dimensions, when either a particle or the tensionless string becomes
light. In fact, in the first geometrical phase it is not possible to blow down the del Pezzo
surface without blowing down the elliptic fiber at the same time - this is only possible in
the second geometrical phase. However, this distinction makes no sense in six dimensions
as the fiber acquires necessarily zero volume. This is illustrated in figure 8.2

V=0 A KE
flopped K3 phase
phase

Figure 8.2.: There is just one phase transition in six dimensions, but two in five dimensions.
V' denotes the volume of the four-cycle.

Finally, one can make quantitative contact with the Green-Schwarz description of the
tensionless string by the identification

1
kp = —, kp = RT. 8.1.9
F79R b (8.1.9)
and use the Gromov-Witten invariants to count the states that correspond to a certain
winding and momentum number. One finds for the dPg geometry the following genus zero

Gromov Witten invariants [32]

dg 0 1 2 3
dp
0 480 480 480
1 1 252 5130 54760
2 -9252  -673760
3 848628

First of all one notices that the results for the winding number one perfectly match with
the results from the Green Schwarz string in (8.1.6). Furthermore, the Gromov-Witten
invariants predict 252, —9252,... massless states. However this counting can be at best
an index as negative integers appear and moreover there is no obvious decomposition into
Eg-representations. In the next section we show how the refined BPS invariants resolve this
problem.

3See e.g. [32] for models with multi-sections that lead to lower del Pezzo surfaces.
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8. Counting Non-Perturbative States in F-Theory

8.1.5. Refined stable pair invariants solve the problem

It turns out that all this information is stored within the refined BPS numbers. For conve-
nience we recall the results of the massless dPg surface from section One finds e.g.
for the multiplicities d = 1, 2 of the canonical class

2j1\2jr | 0 |1
0 248
1 1

d=1 Ny, =252

2j.\2jr | 0] 1 2 [3
0 3876
1 248
2 1

d=2 Noo = —9252

The result for d = 1 perfectly matches with once we tensor with the two hyper-
multiplets from the right-running ground state. The second table gives a prediction for the
spin and Eg-representation content. Note that is explains in particular the negative count-
ing from the Gromov-Witten invariants. If the refined spin quantum numbers are indeed
to be identified with the space-time quantum numbers of the massless E-String states the
sum over all dimensions of the Eg (Weyl group) representations weighted by the dimensions
of the corresponding spin representations has to give back the Gromov-Witten invariants
which is true by construction of the refined string.

As already noticed in [32], already at the first level one obtains an additional light grav-
itino state and it is obvious that the higher level states give rise to light even higher spin
states. We therefore have a quite concrete proposal for the spectrum of a conformal higher
spin theory of type recently analyzed in [911 [92].

We close by discussing one little issue. These BPS states have been counted by performing
calculations at the large radius point while the E-String states appear at the conifold locus
where the del Pezzo shrinks. It can therefore not rigorously be proven that these states are
stable in this limit. However as shown in section the spectrum at the conifold point
is identical to that at the large radius point due to the self-duality of the Eg-lattice, which
underlines the claim that we have indeed found the spectrum of the tensionless string!

8.2. Counting [p, q]-strings using refined invariants

The aim of this section is to argue that the refined BPS invariants contain some information
about [p, ¢]-string states within F-theory. The reason for this is the following chain of
observations. It is well-known that F-theory on certain orbifolds - most notably 7%/Zs has
a type IIB description with constant coupling. In these cases one can identify the [p,q|-
strings easily. Moreover, if one places a D3-probe brane near one fixed point of the latter, this
system has an interpretation as SU(2) Seiberg-Witten theory with four fundamental matters
transforming under the flavor group SO(8). In addition, it is possible to identify [p, ¢]-strings
as geodesics in the base which is matched with the BPS state condition in Seiberg-Witten
theory. Finally, it can be argued, that the geodesic condition is also equivalent to having a
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8.2. Counting [p, q]-strings using refined invariants

lift to a holomorphic curve into F-theory compactification geometry. But these curves are
counted by the refined BPS invariants.
In the following discussion we review these aspects and draw finally our conclusion.

8.2.1. The Seiberg-Witten description of the Sen limit

The Sen limit [I67] describes F-theory in the background, which is specified by the following
Weierstrass normal form ((7.1.4])

f=ag®, g=¢°, A=’ +27)¢% o=

)

4
(z — zi). (8.2.1)

=1

The j-function (7.1.7]) therefore only depends on «, which allows for a globally constant

coupling that can be tuned small to make contact with type IIB string theory. Moreover,

there is a monodromy around each of the four z; given by

(_01 _01> (8.2.2)

which shows that the base of the elliptic fibration is given by 72/Zs and in addition the
action on the fields can be identified with the transformation (—1)fZ . Q such that this
setup gets identified with a type IIB orientifold compactification on 72 modded out by
(—=1)fr.Q-Zy. As usual, Fy, and © denote the left-running fermion number and the world-
sheet parity operator respectively. An inspection of the Kodaira table yields that at
each fixed point there is a SO(8) gauge group. In addition, this setup is dual to type I
theory by T-dualizing both circles of T2.

In a next step we consider the neighborhood of one fixed point z; and put a D3-brane,
which is un-effected by the SL(2,Z) action, into this setup. We display how the relevant
objects are extended into the various directions in figure This (8,9)-plane is now

20t [ 223 [t [a® [ a8 27 [ 28] 2
O7T | x| x| x| x| x| x| x| x
D7 | x | x| x| x| X | x| x| X
D3| x| x| x| X

Figure 8.3.: Extension of the O7, D7 and D3 brane into the various directions.

identified [164] with the moduli space of SU(2) Seiberg-Witten (SW) theoryf!| with four
flavors and flavor group SO(8). The position uy of the D3-brane gets identified with the
expectation value of the SU(2) adjoint scalar. Indeed, if the D3-brane is at the origin,
it can be identified with a D5-brane in the dual type I setup which carries SU(2) Chan-
Paton factors. Moreover, the positions u; of the D7-branes correspond to the masses of the
fundamental matter multiplets that arise from open strings stretching between the D3- and
the D7-branes. These make up for four points of the singularities of the torus fibration, while
the other two zeros correspond to the quantum-mechanical splitting of the classical SU(2)
enhancement point into a (0,1)-monopole and a (1,-1)-dyon. In general, the (p, ¢)-type of
the string encodes the charge in SW theory.

“See the original papers [19] or [87, [88] for a nice review.
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8. Counting Non-Perturbative States in F-Theory

A crucial observation is that the BPS condition in Seiberg-Witten theory is equivalent to
the condition of being a geodesic in the basis of the elliptic fibration [166]. In general the
mass of a BPS state in Seiberg-Witten theory is given by

mpy = pa(z) + qap(z) + ) miSi|. (8.2.3)

Here z is the gauge invariant coordinate, a(z) and ap(z) are a symplectic pair of periods of
the SW curve while m; and S; denote the bare masses and global U(1) charges carried by
the BPS state respectively. If a BPS state becomes at @ massless, one obtains

mS = |pa(u) + qap(u) — pa(@) + gap(@)| . (8.2.4)
On the other hand the tension of a [p, g]-string is given by
1
—Ip+qm| (8.2.5)
T2

N

where as usual 7 = 7 4 it and 1/72 is identified with the string coupling constant. The
mass of a [p, g]-string stretched along the curve C' is accordingly given by

Tp,q =

6
1
mpa = [ 1n(r? T[w =) (o + gl (8.2.6)
i=1
The formula (8.2.4) resembles (8.2.6|) by proving that [166]

da=n(r)?*[[(w—w)"1=,  dap=rda. (8.2.7)

8.2.2. Generalizations

This easy picture needs to be extended. In general, [p, ¢|-strings are not sufficient [43-46] to
explain gauge enhancements on strongly coupled 7-brane stacks. Instead, these are traced
back to string junctions which are bound states of [p, ¢]-strings. These string junctions are
created analogously to the Hanany-Witten effect when a [p, g]-string crosses the branch cut
of a (r,s)7-brane. In the M-/F-theory picture a [p, g]-string is lifted to a complex curve
that wraps a mixed class in fiber and base. It was investigated in [127, 128] under which
conditions string junctions which are eventually bound to [p, g]7-branes can be lifted to
holomorphic curves in the total space of a complex two-dimensional elliptic fibration £. In
fact this is possible if certain stability conditions are fulfilled. The latter can be translated
in easy intersection conditions on the holomorphic curves, e.g. that holomorphic curves are
required to have positive intersection. Moreover, it was shown that the geodesic minimality
in the base is equivalent to the condition that the lifted curve is holomorphic. Altogether
one finds that string junctions have to obey the following rules

e J.1 String junctions are configurations of [ g ] -strings ¢ = 1, ..., N, which meet in a
i
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single point, subject to a non-force condition

i[ﬂizo. (8.2.8)

i=1

e J.2 Two [p, g]-strings can end on each other iff they are compatible

[p] A[p] = pigr — qipr = £1, (8.2.9)
q 1; q 1y

the sign depending on the orientation of the corresponding cycle in H(E,7Z). 3-
junctions are BPS configurations iff (8.2.9) holds for each pair [127].

e J.3 Each [p, ¢]-string line emerging from the junction can end on a [p, ¢] 7-brane, where

v = [g] € Hy(&,7Z) shrinks.

8.2.3. Counting [p, q]-strings in the half K3

The half K3 surface arises in the stable degeneration limit of F-theory compactifications and
we claim to be able to provide some insight into the corresponding BPS states corresponding
to [p, q]-strings. As we have seen in the previous discussion these correspond to lifts of
geodesics in the base to holomorphic curves in the total space with components in the fiber
and base. The homology of the massless half K3 is precisely spanned by the base class b
and fiber class f and we find e.g. for the lowest diagonal class b + f, where es recall the
result for convenience in table that the 248 splits according to formula and the

2j:\2jr | 0 |1
0 248
1 1
d=1

Table 8.1.: The splitting of the lowest diagonal class of the half K3

Weyl action into 240 4+ 8. This is precisely the gauge content of the adjoint representation
of Eg which should be established by the [p, g]-strings. In addition, the refined invariants
in the diagonal classes of the half K3 are precisely those that correspond to multiples of
the canonical class of the dPg del Pezzo surface. The latter is associated to a Seiberg-
Witten curve [59, [63] (A.2.1)) with eight mass parameters that enjoy an Eg-flavor symmetry.
Setting all these mass parameters to zero, one simply obtains an elliptic Eg singularity,
while turning on the masses breaks the flavor group accordingly. In addition, it was argued
in [I78], that the probe brane picture also extends to the strongly coupled F-theory setups
where no Lagrangian description exists. It is therefore tempting to identify the Eg flavor
symmetry of the Seiberg-Witten theory with the Eg gauge symmetry of the F-theory setup
and to conclude that the mass parameters correspond to the position moduli of the seven-
branes. All this provides some evidence to assume that the excitations of the [p, ¢]-string are
encoded within the (jr,, jr) spin content. As discussed in section the flavor symmetries
of the system can be used to modify the Q-background [129] which results in shifts in the

137



8. Counting Non-Perturbative States in F-Theory

association of mass and spin. A further analysis is therefore needed in order to clarify the
matching of BPS state and space-time spin values.
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9. The Sevenbrane Gauge Coupling Function
in F-Theory

So far we have counted non-perturbative objects in F-theory which were constituted by
[p, ¢]-strings and the dual description of E-string excitations. These calculations were pos-
sible since the considered states are protected by holomorphicity against the decay in the
strong coupling regime. In this chapter we change to some extent gears and consider four-
dimensional effective actions with A/ = 1 supersymmetry. These also contain protected
terms which have only a holomorphic dependence on the moduli. Such terms are given by
the superpotential and the gauge coupling function, see [130] for a review and references
therein. They do not receive corrections beyond the tree- respectively the one-loop level in
perturbation theory and one therefore expects that they can be computed in a controlled
way. While the superpotential of N' = 1 effective actions (of F-theory) has already been con-
sidered quite extensively [I3IHI35], not much is known about the gauge coupling function
so far.

We focus in particular on the F-theory reproduction of corrections to the 7-brane gauge
coupling function that arises in the N' = 1 effective action of Type IIB orientifold compati-
fications. While this quantity can be derived in the latter setup from the reduction of the
Chern-Simons respectively the Dirac-Born-Infeld action including o’-corrections, only the
leading term given by the volume of the wrapped divisor in the orientifold can be easily
reproduced within F-theory. We show that the subleading flux corrections to the 7-brane
gauge coupling functions can be reproduced in a warped compactiﬁcation[ﬂ The warp fac-
tor takes into account the backreaction of G4-flux, M2-branes and curvature as discussed
in section [7] and modifies the Kaluza-Klein reduction ansatz. Taking this into account,
we are able to reproduce the weak coupling corrections and perform first steps towards a
computation beyond the weak coupling regime. The following discussion follows closely [2]
and is organized as follows.

We start with a review of the gauge coupling on a stack of D7-branes in Type IIB in
section As a crucial ingredient we present the AN/ = 1 effective action in terms of linear
multiplets in section that we compactify on a circle to three dimensions in section
This is necessary to compare to the three-dimensional theory obtained from the
warped compactification of M-theory on a fourfold with G4-flux as reviewed in section
We embed k D6-branes as multi-center Taub-NUT spaces into M-theory in section
and compactify on S by constructing an infinite periodic array of multi-center Taub-NUT
TN® in section In section we turn to the calculation of the 7-brane gauge
coupling. Then we determine the leading gauge coupling on a general compact fourfold in
section We extend the M-theory reduction to include a back-reaction of the G4-flux
on the three-form reduction ansatz in section With these preparations we derive the
full flux-corrected gauge coupling in section We first obtain the real part from the
back-reaction of the G4-flux on the warp factor that we determine as a closed expression on

!See also [125] [126] for the derivation of F*-terms in F-theory compactications on K3 with constant string
coupling constant.
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TNg° and then for the imaginary part by taking into account the altered reduction ansatz
for the three-form that we also explicitly determine.

9.1. Motivation: D7-brane gauge coupling function

In this section we discuss the aspects of the four-dimensional effective theory on a stack of
D7-branes in a weakly coupled orientifold compactification. We first recall in section
the expression of the D7-brane gauge coupling function as determined by a reduction of
the D7-brane action. In section we perform the reduction to three dimensions. This
three-dimensional result will be later useful to compare to the F-theory gauge coupling
function derived via M-theory.

9.1.1. D7-brane gauge couplings in 4d: Calabi-Yau orientifolds

We begin by recalling the basics from the computation of the four-dimensional D7-brane
effective action in Type IIB N = 1 compactifications on a Calabi-Yau orientifold By = Z3/o
with O7-planes [141] 146]EI Here Z3 denotes the Calabi-Yau threefold covering space of the
orientifold B3 that is obtained by modding out an holomorphic involution ¢ : Z3 — Z3. For
appropriately chosen involution the fix point locus of ¢ is a holomorphic divisor Dp7 that
supports the O7-orientifold planes. The divisor Dp7 has to be homologous to —8 times the
divisors S in Z3 wrapped by the D7-branes due to tadpole cancellation.

String theory on the orientifold is specified by the orientifold action @ = Q(—1)fL¢o act-
ing on the fields, with € being the world sheet parity operator, and Fj, the left-moving
fermion number. The spectrum of orientifold invariant states together with the twisted
sector states, that can be matched with the open string degrees of freedom, determine the
physical spectrum. To obtain the four-dimensional effective theory, all massless fields both
of the bulk and the D7-brane have to be expanded in zero-modes that are counted by ap-
propriate cohomology groups. Then these expansions are inserted into the ten-dimensional
Type IIB supergravity and eight-dimensional D7-brane effective action, that are dimension-
ally reduced to four dimensions by integration over the internal directions and keeping only
the orientifold invariant terms, to obtain the A/ = 1 effective four-dimensional action.

Let us outline the gauge sector of this effective theory focusing on a stack of k D7-branes
with an eight-dimensional U(k) gauge theory on RGYD x S, If the divisor Sy, has a non-
trivial topology, one can consider flux configurations F for the field strength Fp; on the
D7-brane. More precisely, we split in the Kaluza-Klein ansatz the D7-brane field strength
as

Fpr=F+F = (FO+ FO1 + (F' + FOT; + (FA + FYTa (9.1.1)

where F' = dA+ A A A is the U(k) field strength in the four-dimensional effective theory,
and F is a background two-form flux on the D7-brane divisor S},. The field strength
Fp7 is a general element in the adjoint of U(k), that we have expanded in the generators
Ta = (1,T;,T4) of the adjoint. Here T = (T},1), i = 1,...,k — 1, are the k Cartan
generators of U(k) =U(1)xSU(k), while T4 denote the generators associated to the roots
of SU(k).

In the absence of flux F it can be shown by a straightforward reduction of the D7-brane

2See [95), 147, [148] for a similar derivation of the dual D5- respectively D6-brane effective action.

140



9.1. Motivation: D7-brane gauge coupling function

worldvolume action using the expansion (9.1.1)) that the kinetic term for F' takes the form

s = —27r/ 1Refap FAN#FP + LImfap FA A FP (9.1.2)
D7 My

in the conventions (A.6.3)) of appendix Here f 45 denotes the gauge coupling function

that is a holomorphic function of the chiral fields in the N = 1 effective theory, and has

adjoint indices A, B. The adjoint indices arise as we will show soon from the two traces

Cuap = TT(TATB) , éAB = %STr(TATBTcTD) FEAFP , (9.1.3)
Sp

where FC are the fluxes localized on the internal part Sy, of the D7-brane and sTr(.) denotes
the symmetrized trace defined as the sum over all permutations o,

S 1 - - - -
ST(TuT1eTp) = > (T Tos) Toie) To(p)) - (9.1.4)

In the case at hand the chiral superfields are given by the the axiodilaton 7 = Cy + ie~?,
the combination G* = [;, C — 7B5 and the Kéhler moduli [146]

T, :/ L(JAJ =By ABy) +i(Cy— Cy A By + 3CoBy A By) | (9.1.5)

where Y,, D, denote a homology basis of odd curves respectively even divisors in Zs
w.r.t. the involution o. The Kahler form on Z3 is given by J, while C, denote the R-R
p-forms, and B is the NS-NS B-field. For simplicity we have frozen out the position and
Wilson line moduli of the D7-brane and refer to [141] for the open string corrected chiral
coordinates.

In order to proceed we will need to recall some additional facts about the D7-brane theo-
ries following [141], 149, [I50]. In particular, one finds that in the weak coupling description
the gauge group is actually U(k) =SU(k)xU(1). However, if the D7-brane and its orientifold
image are not in the same cohomology class on Zs, one finds that a geometric Stiickelberg
term is induced which renders the overall U(1) massive. More precisely, the moduli G*
are gauged due to the geometric Stiickelberg coupling, and ReG*® is eaten by the overall
U(1) which thus becomes massive. The mass of the massive vector multiplet containing
the U(1) and ImG* is of the order of the Kaluza-Klein scale. In the following we will make
the simplifying assumption that for each stack of D7-branes there is exactly one G* which
becomes massive together with the overall U(1). While a detailed derivation of the effective
action would require to actually integrate out this massive vector multiplets, we will in the
following mostly drop it in our consideration. In other words, we will consider an SU(k)
gauge theory and no G* moduli.

Given these preliminaries we are now in the position to display the gauge coupling function
fap for a stack of D7-branes. This generalizes the results given for a single D7-brane [141].

Using the traces ((9.1.3]) one ﬁndslﬂ

fag = }(64TaCuap — it Cag) (9.1.6)
= fUT)Cas+ A5 (7).

3We have set 2ra’ = 1 in the following.
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where dg are the coefficients in the expansion of S = 63D, in a homology basis of orientifold-
even divisors. Note that the general N' = 1 effective action with the gauge coupling
is not a standard N/ = 1 action due to the presence of the flux correction in .
These fluxes actually break the gauge group in the eight-dimensional world volume theory
of the D7-branes. To make this more explicit we display the action splitting into a flux-
independent and a flux-dependent part as

2
FD7

s = —271'/ LRefCTr(F A #F) + SImf¢ Te(F A F) (9.1.7)
My
+ SRefiF FAN«FB + SImfir FANFP

Clearly, a standard N/ = 1 action can be found if the fluxes are zero and the gauge group
is completely unbroken. A second possibility is to consider the breaking of the group, for
example by moving the D7-branes apart on Z3. Then one finds a standard A/ = 1 action for
a gauge group U(1)*. For completeness we will summarize the result in this phase. Later
on we will T-dualize the D7-branes to D6-branes which can then be moved apart in the
T-dualized direction.

Assuming that we can move the D7-branes apart on different internal cycles in the same
class [Sp]. The gauge coupling function can be given for each individual brane labeled by
I =1,...,k. Fluxes are now only located on each separate D7-brane, which is reflected
in the structure of adjoint indices. Indeed, in evaluating C;; and C;; from we use
the basis E; = diag(0,...,0,1,0,...,0) with 1 at the I-the position that is related to the
Tr = (T3,1) by a basis transformation. We then readily evaluate as

- 1
Cry =917, Cry = 55]J5KL51K FEANFE = 551J7”LI, (9.1.8)

Sy,

where we exploited that the E; commute to evaluate the symmetrized trace sTr(.). Here F!
denotes the internal flux on the Ith D7-brane. The numbers n! characterize the topology
of the gauge configuration on the I-th brane. They are related to the integral instanton
number k! of the U(1) on the I-th brane as n! = —87%k!. Using these results the gauge
coupling function on the I-th D7-brane is given by

fr=13008T, —idrn'). (9.1.9)

As we will see in section [9.3|for the comparison of the D7-brane action with the M-theory
fourfold compactification it turns out to be convenient to dualize certain scalars into form
fields. More precisely, we replace in four dimensions the chiral multiplet containing the
complex scalars T, with a linear multiplet containing the bosonic fields (L%,C$). Here L
are real scalars dual to the real part ReT, and the imaginary part Im7, is dual due to
its shift symmetry to a two-form C$. It will then be crucial to follow the terms involving
fap through the dualization. As outlined in detail in appendix this procedure dualizes
the classical coupling Im f¢(7)Tr(F A F) in into a modification of the field strength
strength H$ of C$ by the Chern-Simons form wcg to Tr(F A F),

HG = dC§ + $08wes,  wes=ANdA+ZANANA. (9.1.10)

The complete dual action as given in (A.7.6)) of appendix then contains all terms in
(19.1.7)) except the term involving Imf¢(7T") which is replaced, together with the kinetic term
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for the ImT,, by a kinetic term for H*. Of course all other fields that do not couple to
ImT,, like 7 and ReT,, or its dual L% are unaffected. For the later comparison to M-theory
it is important to keep in mind the Kihler potential K for L® and 7 obtained by Legendre
transformation of K (7|T") as

K(7|L) = K + L* ReTy, = log(tL*L° LK o3,) — log(T — 7). (9.1.11)

9.1.2. Dimensional reduction to three dimensions

In this subsection we discuss the circle reduction of the four-dimensional effective action
of a D7-brane in an orientifold compactification to three dimensions. The final result will
later be compared to the M-theory reduction on a Calabi-Yau fourfold when restricted to
the weak coupling limit. It is important to stress that the M-theory reduction is performed
on a smooth geometry at large volume. In the three-dimensional effective theory this yields
a gauge theory on the Coulomb branch. In 4d F-theory compactified on an extra circle new
terms in the effective theory are generated due to the necessity to integrate out massive
vector multiplets containing the W-bosons and charged chiral matter multiplets [54, [151].

In the D7-brane picture we consider a reduction on a circle of circumference r. Moving
on the Coulomb branch is achieved by giving the scalars in the three-dimensional vector
multiplets a vacuum expectation value. In order to make this more precise we make the
following reduction ansatz for the four-dimensional fields,

2 40 40 .2 40
gpg + T°ALA) 12 A
ﬁl/ = ( - r2 A0 e ,r2q ) A= (A3 - AOCaC) . (9'1'12)
P
Here A3 and ( are a three-dimensional vector and a three-dimensional scalar both trans-
forming in the adjoint of the gauge group G. The Coulomb branch is obtained by giving ¢
a vev, and splitting

U(k) — U, A — Al ¢ = ¢t (9.1.13)

where I = 1,...,k runs only over the Cartan generators 77 of U(k). In this split one can
now evaluate the traces (9.1.3). By the basis change to the F; = diag(0,...,1,...,0) the
traces can be written, by the same calculations leading to (9.1.8)), as

C[J:6[J y CNIJ: %(5[J7‘LI s (9.1.14)

where we used the numbers n! introduced before. The couplings of the gauge-fields are thus
encoded by
fry=3CHT, —ikrorm!y,  Cf =06%C1s . (9.1.15)

Note that this breaking has a natural interpretation in the T-dual picture, where the T-
duality is performed along the reduction circle. In this duality the D7-branes become
D6-branes localized on points of the reduction circle. The Coulomb branch corresponds to
moving the D6-branes apart. The ¢! can then be reinterpreted as positions on the circle.

Since we are reducing an A/ = 1 supersymmetric action in four dimensions, we obtain an
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action with A/ = 2 supersymmetry in three dimensions. It can be brought into the form
SG) = o7 /M _%Rg *1— RaBdMa A *dMP + %RAEdéA A #dE>
3
+LIK A FANFE + FA A Tm(Kp,dM9), (9.1.16)

where one has to perform the Weyl-rescaling g,, — 7’2gpq to the Einstein-frame metric, and
to make the following identifications,

R=r2, N = (R,R¢T, AN = (A0, AT, (9.1.17)

with A = 0,1,...,k. Here, the M¢ collectively denote four—(ili}nensional chiral multiplets.
The three-dimensional kinetic potential K depends on M?%, MY as well as ¢} and reads

K =K(M,M) +log R — %Ref[J(M)glg‘] : (9.1.18)

where K (M, M) is the four-dimensional Kihler potential evaluated for the three-dimensional
fields. This kinetic potential contains also the gauge kinetic function since the third com-
ponent of the four-dimensional vectors have become scalars &/ in three dimensions as is
obvious from .

Let us be more concrete by reducing the four-dimensional action with linear
multiplets. Since we are considering not only chiral and vector multiplets, but also linear
multiplets containing CS', the form of the kinetic action in three dimensions we will obtain
will be different from E| Incorporating two-forms we specify the reduction ansatz
for C§ such that

Hy — (FY+ i Flyndy, (9.1.19)

where we introduced the field strength F* = d.A% in three dimensions. Physically this means
that the fields T, of which ImTs = §¢T,, constitutes the leading part of the D7-brane gauge
coupling, will occur after dualization into two-forms and dimensional reduction as vectors
in three dimensions. Plugging that into the action and performing a Weyl rescaling
G — 1“29#,, we integrate out the circle coordinate y to obtain

§®)

o pa o /M Kop(Fe + Y08, Py A x(FP + 107 TR
3

—o=Refry(F AxF7 +de! Axde”) — Tmfi<d¢! A F7(9.1.20)

where we used the kinetic potential with the four-dimensional Ké&hler potential
. As one can easily check this matches the structure anticipated in which
is supplemented by additional terms involving the vectors F'* contributed by the linear
multiplets. The terms to determine f;; are:

(1) the kinetic term FY A *F” to determine the complete Refr;,

(2) the mixed terms FT A +F® to determine the classical part of Imf;; proportional to
ImT,,

(3) the term d¢! A F7 to obtain Tm fiux,

“However, we note that an action including linear multiplets can be brought in the standard form using
duality of vectors and scalars in three dimensions.
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9.2. M-theory compactifications and Taub-NUT geometries

Let us close this section by commenting on another choice of Cartan generators for U(k
which naturally appears in M-theory. This choice is associated to the split U(k) = SU(k) x
U(1) and yields the trace Cry in (9.1.3) as

Cij=Cij, Co=k, Cio=0, (9.1.21)

where 4, j = 1,...,k — 1 label the Cartan generators T; = E; — E; 1 of SU(k) and Cj; is the
Cartan matrix of SU(k). Decoupling the overall U(1) of Ty = 1 in U(k) as in [149, 150], the
classical part of the three-dimensional gauge coupling function splits for the Cartan
U(1)’s of SU(k) as

fij=1C5 T, O8 = Cy0% . (9.1.22)

It was this coupling which was found in [I38] in a dimensional reduction of M-theory on a
resolved Calabi-Yau fourfold. We will recall this reduction briefly in section [9.3.2

9.2. M-theory compactifications and Taub-NUT geometries

In order to understand the gauge kinetic function of 7-branes in F-theory, we have to extend
the Type IIB effective action discussed in the last section away from the weak coupling limit.
This is achieved by considering F-theory as a limit of M-theory with G4-fluxes.

It was shown in section that the G4-background flux induces a non-trivial warp
factor. We will show later on that this back-reaction corrects the gauge coupling function.
Since we will be interested in the gauge dynamics of one stack of 7-branes it will be necessary
to introduce the dual local M-theory geometries. For a stack of k& D7-branes the form of
this local M-theory geometry can be inferred via string duality. First we note that in
compactifying Type IIB on a circle one can T-dualize the D7-branes into k& D6-branes.
These D6-branes lift in M-theory to the geometry of Kaluza-Klein monopoles. Since the
metric and cohomology of Kaluza-Klein monopoles in M-theory is just given by a Taub-
NU'IE] space T'Ny with k indicating the number of monopoles, we can explicitly analyze
their local geometry in subsection

Having introduced the multi-Taub-NUT spaces we discuss in subsection a further
compactification on a circle on which one can perform a T-duality to the F-theory setup. The
resulting geometry will serve as a local model of the singular elliptic fibration of the M-/F-
theory fourfold Y; with a 7-brane located on a divisor S}, in the base. The compactification
of the Taub-NUT geometry is achieved by considering an infinite chain of Kaluza-Klein
monopoles with period a, denoted T'N:°, and later considering the quotient. Technically,
this process involves a resummation of certain divergent infinite sums in the corresponding
metric.

9.2.1. Kaluza-Klein-monopoles: TN-spaces in M-theory

In this section we like to identify local geometries in Y, which would correspond to D6-
branes at weak coupling. Note that our geometries Y; will be elliptic fibrations in which
such a weak coupling limit can be performed. The D6-branes are located at the points
where the elliptic fiber pinches. In particular, a D6-brane will wrap the divisors S}, in the
base Bj if the elliptic fiber pinches over this divisor. Clearly it is very hard to evaluate the

5This name is due to Taub and Newman, Unti and Tamburino (NUT), but can also be traced back to nut
at the origin which is the terminus for an isometrical fixed point introduced by Hawking.
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9. The Sevenbrane Gauge Coupling Function in F-Theory

warp factor equation (|7.2.7)) for the full geometry Y. To proceed we therefore will focus on
a local model denoted as )4 which arises in a patch of Yj near Sy,.

Before considering the periodic case with an additional circle let us first recall some
classical facts about the origin of D6-branes in M-theory. The D6-brane lifts in M-theory
to a Kaluza-Klein monopole that is a solution to eleven-dimensional supergravity [152].
Roughly speaking, this monopole solution is an asymptotically locally flat circle fibratio
over R? with degeneration loci at a point in R3. The asymptotic circumference of the circle
fibration will be denoted by ra, and corresponds to the Type ITA string coupling

ma _ TA
=—. 9.2.1
gS 27T ( )
In the weak coupling limit o — 0 the M-theory setup reduces to the Type ITA string with
a D6-brane located at the point where the monopole circle pinches.
We will directly consider the case of multiple Kaluza-Klein monopoles since we will need

to consider periodic arrays later on. The solution with k Kaluza-Klein monopoles will be
denoted by T'Ng. The metric of T'Ny, is given by

1

o7t + U)?+Vdi? (9.2.2)

2
dsty, =
where t ~ t + 75 is a periodic coordinate on a circle S! of circumference ry = 47m with
m being the mass of the Taub-NUT solution. The flat part of TN}, is R? with coordinates
7 = (v,y,2). The one-form U on R? is the S! connection. In this metric one has the
functions

s3dU; = —dV7y, (9.2.3)

— —

k k
V=14+> 'V, U=> U, V= :

i=1 =1 |7 =71l
where 77 denote the positions of the k monopoles, and 3 is the Hodge star in R3. We
denote this space as T'N,. We see that the circle fibration degenerates at the k points 77
in R3. Note that one has to use two patches around each monopole in order to obtain a
globally well-defined connection U;. Furthermore, one has to have the same mass m for
all monopoles in order to get a smooth solution. The multi-center solution T'N; admits k
anti-selfdual two-forms locally defined by

Vi

1
Q[:dm:md<v(dt+U)—UI>, I=1,.. k. (9.2.4)

It is straightforward although technically involved to check that

QrAQy =01y, (925)
TN

as was noted in [I53] and is shown in detail in appendix

Let us comment on the topology of T'Np. One can introduce the following real two-
dimensional subvarieties of T'IV;, defined as

S;={(t,7)]3p €[0,1] s. t. 7= (1—p)7 + pFis1}, i=1,....,k—1. (9.2.6)

5The geometry approaches an S*-bundle over S? x R at infinity in R®.
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9.2. M-theory compactifications and Taub-NUT geometries

These subvarieties are indeed closed two-cycles by noting the degeneration of the S'-fiber
at the position of the monopoles which gives them the topology of a sphere S? = P
The generators Sy, ..., Sk_1 span the second homology of T'N, that is thus given by Z*~1.
Furthermore these surfaces intersect each other as the negative Cartan matrix Cj; of Ay
which matches the fact that these geometries give SU(k) gauge theories [I54]. To see this
one notices that S; and S;, @ # j, intersect each other exactly once if and only if i =
j — 1 but with reversed orientation. To find the self-intersection of .S;, deform the base
curve generically, which intersects the old one precisely at 7; and at 741 this time with the
same orientation resulting in the self-intersection two. If we add the cycle Sy connecting
71 and 7, that is minus the sum of the S;, we obtain the Cartan matrix of affine Aj_q.
This is consistent with the fact, that TNy is for generic moduli the resolution of an Aj_1-
singularitym In summary Hy(T Ny, Z) is isomorphic to the weight lattice of Aj_.

The Poincaré dual of Hy(T Ny, Z) is given by ngct(TN &, Z), the second cohomology with

compact support. Hence it is isomorphic to Z*~! and its generators are given by [155]
w; = Qz — Qi+1 . (927)

These fulfill the following conditions, see appendix [A-§]

/ w; /\(;)j = —Cz'j, / L:)j = —Cz'j. (9.2.8)
TN, S

K3

This concludes our discussion of the space T'Ny. It will be crucial in a next step to generalize
these geometries to have infinitely many centers in order to describe periodic configurations.

9.2.2. S'-compactification of TN;: TN;°-space in M-theory

Our goal is to to eventually describe 7-branes F-theory and to derive their gauge coupling
function. At weak Type IIB string coupling the corresponding D7-branes T-dualize to
D6-branes localized on a circle, which we termed the B-circle. In order to describe this
situation in M-theory we consider an infinite array of Kaluza-Klein monopoles separated
by a distance rg in the z-direction of R? introduced in . To effectively compactify
this z-direction on a circle we mod out the relation z ~ z + rg. This is analogous to the
geometries considered in [144} 156] 157].

We first introduce the metric structure on the infinite array denoted by T'N7° in the
following. This space is obtained as follows. We first consider the special situation of TN
with centers located in the (z,y)-origin but separated along the z-coordinate in by
a distance z;. This implies that we take the vectors 77 in of the form

71 =1(0,0,z1) , 0<z<rB. (9.2.9)

Next we periodically extend this space to TN ° in the z-direction with period rg. The
metric for such a configuration still takes the form

1

ot + U)? 4+ V2, (9.2.10)

2 —
dSTN;;o =

"Indeed if all monopoles approach each other the area of the S; vanishes and the space develops a Zy_1-
singularity. To see this one expands the metric along the lines as was done for the case of the single
monopole. The configuration which arises by squeezing all monopoles together corresponds to a monopole
of charge nm which equippes ¥ with a periodicity of %’ what shows the desired deficit angle.
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9. The Sevenbrane Gauge Coupling Function in F-Theory

where V is a harmonic function on R? except at the points 77 and U a connection one-form,

k k
V=1+> Vi, U=>Us. (9.2.11)
=1
Since we consider an infinite array V7, Uy are of the form
TA 1
_ A , x3dUp = —dV; . (9.2.12)
% VP2 + z—l—ETB —27)2 4w b B¢

where rp = 4wm, Z* = Z\{0}, and p = \/x? + y2. The first term in V7 is just the potential
of a periodic configuration of monopoles along the z-axis with spacing rg. The second term
in V7 is a regulator which ensures convergence and can be modified by any finite constant.
This metric is also called the Ooguri-Vafa metric, that was initially constructed in the
analysis of the hypermultiplet moduli space of Type II string theory [144]. To see that the
metric defined with V and U in is smooth for finite and different z; # z;
for I # J one notices that locally near the singularities of V' the space looks like that of
one single Kaluza-Klein monopole which is known to be smooth. For our later discussion
it will be crucial to introduce the rescaled coordinates

L or==, == =L (9.2.13)

t=1+1, F=5%41, =341 (9.2.14)

To obtain a better understanding of the regularity and the physical meaning of the solu-
tion one has to perform a Poisson resummation of V' and U [144] 145]. The details of the
calculations are relegated to appendix Finally we may then write

e (i) - S ()
R LeZ*
_2:;3 (1og (%) 9 Z; Ko(21p8) cos(2mb(5 — 21))) , (9.2.15)

where A is a constant which can be chosen arbitrarily in the regularization of (9.2.12]). E|
The function Ky(x) is the zeroth Bessel function of second kind. Let us note that V; satisfies

the Poisson equation

A3V = ——2 6(2 — 21)8(p)8(p) | (9.2.16)
B P

where As = Bpg +1 5 8 5 + 12 8@2 + 622 is the Laplacian in cylinder coordinates. One can also
perform a Poisson resummatlon for U, as we do in appendix[A.9] finding up to an ambiguity

8In appendix we have fixed 1/A = e with vy ~ 0.577 denoting the Euler-Mascheroni constant.
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9.2. M-theory compactifications and Taub-NUT geometries

of an exact form

Uy = %( —1-20-2)+2ip Y sign(0)E, (27rp|6|>e2“‘<5—21>)d¢
LeZ*
- —% (1 +2(5 - 21) +4p > Ky (2mpl) sin(2m( — 2])))d<p . (9.217)
>0

for 2; < 2 < z1 + 1, where ¢ = arctan(y/z), and K; is the first Bessel function of second
kind. In the first term in this expression we have included an integration constant Z; which
arises when solving . Note that this form is gauge equivalent to U with leading
term given by Ur = Z2(pg + ¢)dZ + ... by the gauge transformation by d(Zy). It will
turn out below that it is important for the F-theory interpretation to define the full circle
connection U in this gauge reading

k r

U= 5-rale + o)d? - ﬁ <2ﬁz K1(2mpe) sin (27m6(2 — 21)))d¢. (9.2.18)
£>0

Here we introduced an integration constant ¢g. As we will show next this choice of inte-

gration constant is required when matching the local geometry with an asymptotic elliptic

fibration required in F-theory and equivalently for the identification of the three-dimensional

RR-form Cy = kyyg.

For completeness we note that also the definition of the two-forms €2; can be extended to
TN.°. They are given by

1 ./V
OF = gy = —d(—l(dt Y U) - U[). (9.2.19)
ra \V
As demonstrated in appendix these forms still satisfy

/ Q?o A Q?]o = -1, *49?0 = —Q?o s (9.2.20)
TN

where the Hodge-star x4 is in the T'Ng° metric (9.2.10). In addition, we introduce the
generalization of the forms introduced in in (9.2.7) to the geometry TN.°,

wiT = — O, . (9.2.21)

As on the the Taub-NUT space TNy we expect them to generate the second cohomology
with compact support ngct (TN:®,Z) and to be dual to the connecting P! between z; and
z;+1 of the resolved Ay_q singularity. In particular, the intersections are given by the Cartan

matrix Cj; as in ((9.2.8).

To close this section, let us now discuss the limit of large p, which means that we are
moving away from the centers of the monopoles. In this limit one can expand

Ko(z) ~ ,/%e*, z>1, (9.2.22)

so that the terms involving the Bessel functions in (9.2.15) and (9.2.17)) are exponentially
suppressed as e 27l — ( for large p. Since the z; are the positions in the z-direction with
period rp this is equivalent to smearing one Kaluza-Klein monopole along the z-direction
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9. The Sevenbrane Gauge Coupling Function in F-Theory

in the base R? to obtain a new isometrical direction’] One can then use this isometry to
gauge away two components of the connection U keeping only the component Us in the
z-direction. We therefore obtain the approximate potential and gauge connection

B k ra p _k .
V=15l (K> LU= oralp+eo)dz, (9.2.23)

up to leading order in rg. Clearly, this means simply that we have dropped the exponentials

in (9.2.15)) and (9.2.18). In the limit (9.2.23)) we can rewrite the metric (9.2.10) as

1
dst oo ~ V((dt + U.dz)? 4+ V2d2?) + V(dp® + pde?) | (9.2.24)

where the coordinates have periods (t,z) = (t + 74,z + rp). In the next step we show that
this is simply a two-torus bundle over the (p, ¢)-plane with metric

2 Vo n 2\2 2 722 2
ds® = m((dt + Rer d2)” + (Im7)°d2 ) + dSipse s (9.2.25)
where vg is the volume of the two-torus fiber. The rescaled coordinates ¢ and 2 with
integral periods were introduced already in ((9.2.13]). Note that this torus structure is
present due to the careful choice of boundary conditions, involving the constant g only, in
the determination of (9.2.23). Comparing (9.2.24]) and (9.2.25)) volume of the torus fiber is
given by

Vo = TATB - (9.2.26)

The complex structure of the torus-fiber at a fixed point u = pe® in the (p, ¢)-plane, is
given by

_k (B k AN k u
m(u) = 5—(po+ ) + l<§ 5 log (K)) =7+ 5 log (X) . (9.2.27)
Furthermore, the condition dV = — % dU ensures that 7 is a holomorphic function in wu.

Recalling the discussion in the introductory section[7], we thus obtain precisely the expected
monodromy of the the axio-dilaton in an F-theory with & D7-branes at u = 0. We identify
the background value 7 = Cy + ig; ! as

1
Co=—keo,  gs= 2. (9.2.28)
21 ™8
We also introduce the notation
1 1 p)
- i1 (f) . 2.2
71(u) = 5+ p0) — i log (£ (9:2.29)

That the right-hand side of the equation carries no index is explained by the fact that we
have neglected the subleading corrections.
For completeness and later reference we list the leading parts of the anti-selfdual two-form

Q. Inserting (9.2.23) and (9.2.27) into (9.2.19)) we obtain

I R
e = Im” (di + Rerd?) — Rerydz, % — dn3°. (9.2.30)

mr

9In the picture of point particles in R? this corresponds to a charged wire extended along the z-axis.
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9.3. 7-brane gauge coupling functions in warped F-theory

For the case of just one monopole we reproduce (in cohomology) the model discussed in
[47] to describe a local 7-brane geometry.
00 B 1 n 5 o] oo
N> = ———(dt + Rerd2), Q% = dn™. (9.2.31)
ra ImT

As a next step one would have to construct the forms wi® = Q7; — Q2 as in (9.2.21]).
However, having neglected the subleading corrections depending on the z-coordinate the
forms w® would vanish identically for the forms (9.2.30). In other words, if we want to
localize fluxes or gauge fields along the forms w;* it will be crucial to include the non-trivial

z-dependence in (9.2.15)).

We conclude by interpreting the geometric meaning of the subleading exponential sums
in and . Approaching p = 0 where the fiber torus degenerates, we note
that the leading term of V does not “know” about the position of the degeneration of
the fibration of the A-circle on the z-direction. The corresponding degenerated torus that
arises from the leading term only, i.e. the metric , merely looks like a very thin tire.
However, the degenerated torus that arises from M-/F-theory should look like a torus that
pinches at a point only, so that the pinched torus forms a P!. These two different pictures
of the degeneration of the torus are called the “differential geometric” and the “algebraic
geometric” degeneration in reference [162]. Including now the exponential corrections in
V and U, however, localizes the A-cyle degeneration and thus the torus degeneration at
the point z = 0 on the B-cycle, which reconciles the differential and algebraic geometric
pictures.

9.3. 7-brane gauge coupling functions in warped F-theory

In this section we turn to the computation of the gauge-coupling function of a stack of
7-branes in F-theory by using the dual M-theory. In order to do that we first recall some
basics about F-theory on singular elliptically fibered Calabi-Yau fourfolds with an Aj_4
singularity along a divisor S, in sectionm This setup leads to an SU(k) gauge theory in
the effective four-dimensional theory, and has a weak coupling limit introduced in section
In section [9.3.2] we use the map of F-theory to a dual three-dimensional M-theory
compactification on a resolved Calabi-Yau fourfold to compute the leading gauge coupling
function as in [I38]. In order to include the corrections due to brane fluxes we perform
a refined but local reduction in section and include a non-trivial warp factor and a
back-reacted M-theory three-form as introduced in section [9.3.3l The resulting correction
to the D7-brane gauge coupling can be matched with the weak coupling result of section
9. 11

9.3.1. The effective action of F-theory

As briefly discussed in [7] the special subloci of the base of the fibration Bs where the dis-
criminant A of the elliptic fiber vanishes indicate the presence of objects charged under 7.
These loci geometrically describe divisors in Bs over which the elliptic fiber becomes singu-
lar. In Type IIB string theory these divisors are wrapped by (p, ¢)7-branes. The particular
type of fiber degeneration leads to different monodromies of 7 around the discriminant loci
that encode the type of (p, ¢)7-branes and the gauge groups on these branes. As an example
we consider a singular Y with an Aj_; singularity in the elliptic fiber over a divisor Sy, C Bs
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9. The Sevenbrane Gauge Coupling Function in F-Theory

which describes a stack of k D7-branes on Sy. In other words we consider the split of the
class [A] of the discriminant as

[A] = E[Sy] + [A"], (9.3.1)

where [A'] is the residual part of A wrapped by a single complicated 7-brane. While A’
might intersect S}, the new physics at these intersections will not be of crucial importance to
the discussion of this work. We will mainly focus on a local model near S}, and concentrate
on the back-reaction of the flux on the geometry. In this local model we introduce a local
complex coordinate u such that Sy, is given by v = 0. In the vicinity of S, we have the local
behavior

§71(b) far away from the D7-branes

() = a% b = () = { 9.3.2)

—1277 log(u) near the D7-branes

where we have used that j(7) ~ e~2™7 for large Im(7). This is precisely the naively expected
dilaton in the neighborhood of a D7-brane in perturbative Type IIB theory. As was already
briefly mentioned in section [7| I, one has to resolve Yy to obtain a smooth geometry Ya,
on which one can Kaluza-Klein reduce eleven-dimensional supergravity ([7.2.1)) in order to
derive the couplings in F-theory. Geometrically this yields £ — 1 new exceptional divisors
D; in Yy resolving the Aj_1 singularity over S,. We denote the Poincaré dual two-forms to
D; by w;. The Kaluza-Klein reduction of M-theory to three dimensions requires to expand
the Kéhler form J of Yy, as well as the M-theory three-form potential C3 into harmonic
modes. Explicitly, one has E

J

V
C; = AO/\wo—i—Aa/\wa—i-Ai/\wi,

= Ruwo+ L%, + Ew; (9.3.3)

where V is the volume of the Calabi-Yau fourfold f/4. Here we have included the two-form wy
Poincaré dual to the base B3, and the two-forms w, Poincaré dual to divisors D, = 7~ 1(DP)
inherited from divisors D of the base. The coefficients (R, L%, &%), and (A4) = (A%, A%, A?),
with A € {a, 0,7}, are real scalars and vectors in the three-dimensional effective theory.
In the F-theory limit to four dimensions, the vector multiplet with bosonic components
(R, A%) becomes part of the four-dimensional metric, and one identifies

R=r}, (9.3.4)

where rp is the circumference of the circle on which the T-duality to Type IIB is performed,
and V is the volume of 574. The vector A is the Kaluza-Klein vector in the four-dimensional
metric as in (9.1.12)). The vector multiplets with bosonic components (L%, A%) lift to com-
plex scalars T, in the F-theory limit, just as in appendix [A77] Finally, the vector multiplets
with bosonic components (£, A?) lift to four-dimensional U(1) vector multiplets gauging
the Cartan generators 7T; of the four-dimensional SU(k) gauge group as in section

In order to proceed further in the discussion, let us recall the behavior of the fields in the
F-theory lift. The latter is given by the vanishing of the fiber volume and the blow-down

ONote that we restrict to Calabi-Yau fourfolds with hz’l(Y4) = 0, such that no extra scalars arise from Cj.
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map from Yy to Yi. To make this more precise we introduce the following e-scaling [138]

. /[: .
TB — €TB , R+ R, = % — e2/3¢t L* =2L%p, (9.3.5)

where the scalars L% do not scale with € but are identified with a factor two with the

Type IIB variables L{jz used in appendix E Note that the Type IIB string coupling is

given by gi'™® = r, /rg as can be inferred by using the T-duality rules applied to the Type

IIA coupling (9.2.1). Since g''™® should not scale in the F-theory limit, we find that also

S
ra +— €ra. We note in addition that this identification of the string coupling perfectly
agrees with from M-theory on T'N.®.
We can thus give a diagrammatic summary of the limit we will consider. Recalling all
identifications from M-theory on TNX in section

0 na _ TA s _ TA
= N = — 5 = — B 936
v TATB s o s B ( )
we consider the following limits:
M-theory on T' Ny, F-limit 10d F-theory
ra, rg finite 000 g. - finite
glA =0 glB—0

Type IIA in 9d F-limit weakly coupled 10d II1B
ra finite, g2 ~ 0 v0—0 giB ~ 0.

Understanding the geometry and the physics of the four corners of this diagram is essential
for the calculations of the corrections to the gauge kinetic function in section [0.3.4]

It is important for us to also follow the space T'N.° through the M-theory to F-theory lift.
In fact, since the space T'Nj corresponds in Type ITA to k parallel D6-branes, the space
TNg° yields an infinite array of periodically repeating parallel D6-branes. The periodic
coordinate in section was 2z = z + rp, which we normalized to have integer periods by
setting £ = z/rp. In the z-direction the monopoles are separated by distances z11 — z;,
where z; are the locations of the £ monopoles. Without loss of generality we will take in
the following z; = 0, setting the location of the first monopole to be the origin. We identify
the blow-up modes ¢' in (9.3.3) with the normalized differences as we will later justify in
section as

& =rp(zip1 — ) - (9.3.8)

In the F-theory limit € — 0 the vanishing of the ¢! requires to also moving the centers on
top of each other by sending z;11 — z;, i.e. one has to send z; — 0.

9.3.2. Leading 7-brane gauge coupling functions

In this section we recall how the classical volume parts of the 7-brane gauge coupling
function can be derived in F-theory via M-theory. This derivation only involves topological
methods and can therefore be treated in a rigorous global picture of a compact Calabi-Yau
fourfold Y. We return to a local analyis when deriving the corrections to the gauge-coupling
function in section [9.3.41
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Let us note that the field strength of C3 given in (9.3.3)) is given by
Gi=FANwa=F  Nwo+ F* ANwa + FP Aw; . (9.3.9)

In this expression F4 = dA# are the field strengths of the three-dimensional U(1) gauge
fields. The three-dimensional effective action is computed by inserting the expansion (9.3.9))
into the eleven-dimensional supergravity action . Since we are interested in the
leading flux-independent gauge coupling function we assume here that the metric is not
warped by demanding that the warp factor e*4/2 in is constant, and we set the
background flux G4 = 0. Here we are interested in the reduction of the kinetic term of Gy,
and derive

Skin’ = /G4 NGy = 27?/(2 , Gas FA N +FP (9.3.10)

where in the second equality we have performed a Weyl rescaling of the three-dimensional
metric g3 — V2¢() in order to bring the action into the Einstein frame, and introduced
the metric Y
Ga = 1) wA N *wpg , wA = (wo, ws, Wq) - (9.3.11)
4
In the following we compute the metric G 45 explicitly and discuss the matching with
in order to read off the gauge-coupling function.

In order to compute the metric G5 explicitly we need some information about the in-
tersections of the various forms wy. We define K g5cp = ff’4 wAg ANwp Awe Nwp. Due to
the elliptic fibration structure one has K.z, = 0. In addition we have w; A wg = 0 in
cohomology. We will need the following non-vanishing intersectionﬂ

Koasy = %/Cagv, Kijag = —%Czj Kasy CZj = Cl-jC” , (9.3.12)

where C;; denotes the Cartan matrix of G as above in section We recall that in the
M-theory reduction the complex coordinates are given by

T, = g/ JNINT+i | Cs (9.3.13)
[e3 Da
= VKapy (L°L'R — CLLPEE) +ipa + ... (9.3.14)
where we have used (9.3.3)). Using the intersections (9.3.12)) one evaluates H
Ca lo]cfcﬁ}gk:gl
Gij = RReT + Gap éz e (9.3.15)
Gia = gaﬂ chel + (9.3.16)

where the dots indicate terms which are of higher power in R. Inserting these expressions

1We note the additional factor of % in in the definition of the intersection numbers K that was
included in [I50] to identify with the intersections of the orientifold geometry Bs = Z3/O in the upstairs-
picture.

128t rictly speaking, a precise match requires a coordinate redefinition of the L® with a term proportional
to CF¢" ¢ /R as in reference [I51]. We will omit this here for simplicity. The factors can be fixed by
matching the terms which are unaffected by this shift.
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into ((9.3.10) we find the action
S = —27r/ga5(Fa—R15"C%Fj)/\*(F5—R1§ngFj)+L&%ijReTaFi/\*Fj. (9.3.17)

Comparing this action with we infer that the leading gauge coupling function is
simply given by
fij = 3CAT, = 1CTINP (9.3.18)

where we recall from that we have to identify T,, = %TSHB. Note that this expression
agrees with the weak coupling result if we drop the correction term @, containing
the flux. It will be the task of the final subsection to also reproduce this correction.

Let us conclude this section by noting that the expression can also be directly
inferred from an M-theory kinetic potential K. It was shown in [I50] that for an elliptic
fibration it takes the form

KM = log (5 RLOLOL Kagy — S/ CHL L Ky + .. ). (9.3.19)

and can be obtained from a Kéhler potential given by KM = —3logV via a Legendre
transform. If one Taylor expands (9.3.19)) around the F-theory point in moduli space with
small £ one finds

CoKapy L LY
2Kapy RLOLPLY

KM =log (45 L*L° LY Kop,) + log(R) — gl (9.3.20)

with K, the intersection numbers (9.3.12)). Comparing this form with the general expres-

sion ([9.1.18)) of a three-dimensional kinetic potential one confirms the identification (9.3.18))
of the classical gauge coupling function.

9.3.3. On dimensional reduction with fluxes and warp factor

In this subsection we discuss the dimensional reduction of M-theory with a warp factor and
background four-form fluxes G4. Our main focus will be on the modifications arising in the
reduction of the M-theory three-form. Our results will extend the discussion in [136].

Let us now perform the reduction including the warp factor. For simplicity we will
not include higher curvature corrections and mobile M2-branes in the supergravity action
. We will focus on the terms involving G4 only, i.e. the kinetic terms and the Chern-
Simons term. For the M-theory three-form Cj itself we make the reduction Ansatz

Cs = AAN@A+ B(MT) | (9.3.21)

where @4 are two-forms and f is a three-form on Y;. The fluctuations are parameterized
by three-dimensional vectors A# and scalars M>, which change the geometry of Y;. To
restrict to the case of massless vectors A* we demand in the following

dog=0. (9.3.22)
We introduce the three-forms 95
= —. 3.2
fr= s (9:3.23)
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The three-form [ is only patchwise defined, since we demand that in cohomology dgf
encodes the topologically non-trivial background flux G4. This yields the field strength

Ga=FANG4+dME A\ By + Gy . (9.3.24)

On next inserts the expressions (9.3.21)) and (9.3.24)) in the 11d supergravity action
5(11) 9 1 1
Gy — 2T ZG4 A xGy + ECg NGy NGy, (9.3.25)

using the warped metric (7.2.5). In order to bring the Einstein-Hilbert term into the
standard 3d from one has to perform a Weyl rescaling with the warped volume

Vi = / SATNTNTNT . (9.3.26)
Yy

As a result one finds the 3d action [[3]

S§) = 2 | GUsFAARFD 4+ dgydME A sdMN 1V, x1 (9.3.27)
Ms

—l—%@ABAA/\FB—{—dAEA(MEdMA/\F'A) .

We discuss the various terms appearing in this action in turn. Firstly, there is the kinetic
term for the vectors A with coupling

V - -
Gl =2 | 20 A . (9.3.28)
4 Vi
Note that in contrast to (9.3.11)) a warp factor appears in the integral. By solving the warp
factor equation (7.2.7) we will later show that this induces a flux correction to the gauge
coupling function. The term involving dy;, is a correction to the kinetic term of the scalars
M?*. Tts explicit form reads
1
A = vl B, A *0a , (9.3.29)

w JYy

where we have performed a Weyl rescaling and the Hodge star refers to the unwarped
metric, i.e. this term happens to be independent of the warp factor. Moreover, there is the
well-known 3d potential V,, introduced by the background flux Gy.

The terms in the second line of arise from the reduction of the 11d Chern-
Simons coupling. The term proportional to © 45 is a three-dimensional Chern-Simons term
with constant coefficient © 45 = fY4 Gy N @A N wp. Depending on the index structure this
Chern-Simons term either induces a gauging for non-trivial 6, in the dual 4d F-theory
compactification [I38, 150} [168], or for ©;; generated at one loop by the four-dimensional

13Note that the reduction of the Chern-Simons term is complicated by the fact that the M-theory potential
C3 appears without derivatives. We suppress terms of the form 8 A 9,4 8s which are manifestly not
gauge invariant. Terms of this type appear in Chern-Simons couplings for D-branes and it would be
interesting to interpret them. These terms can be computed explicitly in our example and vanish for the
derivatives w.r.t. the M we study.
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9.3. 7-brane gauge coupling functions in warped F-theory

chiral matter [54]. Finally, the last term in ({9.3.27)) contains the coupling

L[
dasa = —4/ WA PBs A PBa - (9.3.30)
Yy

We will later show that coupling induces a flux correction to the imaginary part of the
F-theory gauge coupling function.

9.3.4. Calculation of corrections to the gauge kinetic function

Finally we are well equipped in order to derive the correction to the gauge kinetic function
induced by a non-trivial background flux G4. We will show that these corrections match
in the weak coupling limit the well-known corrections to the gauge kinetic function due to
D7-brane flux.

The basic idea to compute the corrections to the real part of the gauge coupling function
(19.3.18)) is to derive the gravitational back-reaction of the fluxes on the warp factor in M-
theory via . This computation requires an explicit knowledge of the metric on the
M- /F- theory fourfold Y,. We describe the elliptic fourfold Y, — Y; with a resolved SU(k)
singularity in the elliptic fibration locally in the vicinity of the resolved singularity by the
local geometry constructed in section [9.2.2

Vi=Sy x TN, (9.3.31)

Here S, is that divisor in the base B3 of the elliptic ﬁbratiorﬂ Yy with the SU(k)-fiber sin-
gularity. T'NZ° is the periodic chain of multi-center Taub-NUT spaces with metric ,
that locally describes the normal space in Y to the resolved singularity over Sy,. As discussed
in section the metric on T'N;° is known and governed by the function V' = 1—1—2’;21 Vi
and the gauge connection U of respectively .

In a brane picture in Type IIA and IIB or F-theory, the compactification of M-theory on
Vs describes the Coulomb branch with U(1)* gauge symmetry of the 3-dimensional gauge
theory from k parallel space-time-filling 6-branes or T-dual, fluxed k 7-branes wrapping
Sy, x M3 respectively Sy, x ST x MgEL where S' denotes the circle in the basis of Taub-
NUT TN, R? x S'. In this picture we also introduce the localized G4-flux in M-theory.
This flux is identified with two-form flux ! of the I-th 6-brane on Sy, or its T-dual 7-brane
that is valued in the U(1) gauge group of the corresponding brane. It can be embedded into
the Cartan sub-algebra of the enhanced gauge group U(1)xSU(k) by defining new fluxes
Fland Fi,i=1,...,k—1, as

Ay o o T -y T o Ly S (9.3.32)
where m = 2,...,k — 1. The flux on ), is thus of the form

Go=F AP =F A+ FO N> QF, (9.3.33)

We focus here on SU(k)-singularities only in co-dimension 1 in Bs, i.e. Sy, is the full internal world-volume
of the wrapped branes in a D-brane picture.

15Note that the flux on the 7-brane is T-dual to the separation of 6-branes on S*, i.e. has one leg on M3
and one leg on S*. It breaks U (k) — U(1)* and is not to be confused with the fluxes F* introduced next

in (9.3.33).
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where the second equality can be checked easily using (9.3.32) and where I =1,...,k and

i =1,...,k — 1. Recall that w® = Q° — Q% are two-forms on T'Ng° which have been

introduced already in (9.2.21]), and satisfy fTNoo W A w}” = —Cjj. Note that these forms
k

should be identified with the blow-up forms w; appearing in in the global embedding.
Note that the two-form in the expansion with FV is trivial in cohomology in TN, °» which
matches the fact that the corresponding diagonal U(1) in the enhancement to gauge group
U(k) is massive and frozen in the effective theory.

Corrections to the real part of the gauge coupling function

We first calculate the correction to the real part of the gauge coupling function from the
back-reaction of the G4-flux (9.3.33)) on the warp factor. We find this corrected warp factor
analytically for the full metric on the local geometry ), with fluxes G4. Qualita-
tively, the corrected warp factor then modifies all integrals over the internal space Y4, in
particular , and thus corrects the gauge kinetic function.

The warp factor equation ((7.2.7)) on ), is given by
Ay4€3A/2 = *y4(%g4 VAN g4), (9.3.34)

where on the right hand side we have only included the background flux G4 and dropped
the remaining terms in . In general the precise expression of the the two-forms Fl
on Sy, will induce a non-trivial behavior of the warp factor on Sy,. However, for simplicity
we will neglect the non-trivial profile of FLon Sy by averaging over S}, as

. . 1 A - n!
FIANFN, =6l — [ FIAFT =57 9.3.35
< >Sb VSb Sb VSb ( )

where Vg, = % J s, J A J for J denoting the Kéhler form on Sy. Note that we additionally
assumed that the off-diagonal elements I # J vanish identically. In the brane picture the
numbers n! are then related to the instanton numbers on S, in the U(1) of the I-th brane,
respectively, as discussed below . Similarly we average over the dependence of the
warp factor ¢*4/2 on S}, by integrating the right hand side of the warp factor equation
(9.3.34)) over the S},. Then we obtain an equation between four-forms on TN ° reading

nt

d d 3A/2 —
g ae 2VSb

QF ANQF, (9.3.36)
where d and *4 denote the exterior derivative respectively the Hodge star on TN °. In order
to solve the warp factor equation ((9.3.34) we first evaluate

2 1%, Vy 2 Vi Vy

0® A QP = —Vd(—) A (dt +TU) A d(—) - ——Vd(—) A d(—) (9337
I J =l v (dt +U) A =3 % = v a0\ v, ( )
where we used the relation %3dU; = —dV; and #4dV; = —(dt + U) A %3dV; where the latter
follows from (|A.9.24)) and the orientation on T'/N;° specified there. Then it is straightforward

to show that (9.3.36)) is solved by

I

34/2 n Vi
BA/2 TV (7 - VI> : (9.3.38)
b
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where we made use of A3V; ~ §(z — z7) on the three- dimensional base of the Taub- NUT
geometry T'N.° as well as

L(z=25,p=0)=0d1,. (9.3.39)

The integration constant in (9.3.38)) is chosen to be 1 to reproduce the unwarped casem
With this convention the boundary behavior of the warp factor is analyzed as follows. First
we introduce a cutoff M “at infinity” in the p-direction so that

Viljepy =0, €32 =L (9.3.40)

Indeed, this behavior at large p is necessary to glue the local model )V, into a compact Calabi-
Yau fourfold Y;. Then we evaluate the warp factor on the locus Z; := (p = 0,2 = 2;) of
one monopole in T'N2°. We obtain the warp factor

1 1

. 2, QTE\Vst( +KZ;£I ©)|z, 2r§vsb[”( +KZ# K)+ IK%:I K1),
— 1 J J K R

A [n +K§](n +n)Vily, | (9.3.41)

which is finite since the potentials Vi are regular at Zyfor K = J. This result is expected
since in the one-monopole case the warp factor at the position of the 6-brane should only see
the localized flux n” on that brane and fall off to 1 at distances p far away from the brane.
However, we see from that in the case of k monopoles, besides this back-reaction
of the localized flux n” on the same 6-brane at Z; the gravitational back-reaction of the
localized fluxes n® from different branes, K # .J, also affects the warp factor at Z; with a
suppression factor Vi | 7,

Now we are able to calculate the gauge coupling function. This is carried out by con-
sidering the kinetic term corrected by the warp factor in the general metric ansatz
. Following the same logic as for the flux G4 in we include a three-dimensional
field strength in the expansion of G4 as

Gi=F'AQP+G=F N+ F'NY QF + G4, (9.3.42)
J

where I = 1,...,k and ¢ = 1,...,k — 1. Then, the three-dimensional gauge fields are
embedded into U(k) as

F=F0 4 pm_ ol F'=F'4+ F!, A A (9.3.43)

for m = 2,...,k — 1, which is completely analogous to . The three-dimensional
kinetic term for £ is evaluated in the warped background as in section and contains
the warped metric . Focusing on the warped metric in the local fourfold Y; we
obtain
Gty = %“’ 420 A %y, QF = —% / A20% A QF (9.3.44)
Va TN

18Tn general the precise linear combination of the two solutions to the homogeneous equation d 4 dg = 0
we have to add has to be determined by global boundary conditions on e34/2.
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which is the corrected version of . Here we used that the Hodge star on ), acts as
%J 2%, and in addition the anti-selfduality of Q7°. Noting that the forms €27° are
constant over S}, we readily integrate out the Kéhler form to obtain a volume factor Vg, .
Then we read off the gauge coupling function Ref;; simply as the coefficient of the kinetic
term F! AxF7 in from which we see that we have to take into account an additional
factor of —2R = —2v°/V,,. In addition we note that the Type IIB volume ReTs = 2Vs, .

Since the warp factor only appears linearly in (9.3.44) we insert the solution ({9.3.38]) for
34/2 .
e to obtain

Re f1j = —2”—091” = 1y9ReT6ry — UOnK/ (VI%—V )Q°°/\Q°° (9.3.45)
1J = Vo IJ — 1 SorJ 47% TN % K T s 0.

where we used the property (9.2.20]) of the €27 on the first term to obtain the proportionality
to d7J.

We immediately recognize the first term in as the leading part of the gauge
coupling function (9.1.15)) on the Coulomb branch of the three-dimensional gauge theory.
The second term in ((9.3.45)) already resembles the real part of the flux induced contribution
Re f}:{}‘x to the gauge coupling respectively . We obtain the final expression for
the gauge coupling function by evaluating the integral in (9.3.45)) over the local geometry
TNg°. However, instead of evaluating this in general, which is hard due to complicated
integrand, we focus on the weak coupling result g5 ~ 0. For small g, as discussed rigorously
in appendix we can use the localization property

1 .
QFANQT — —g&ﬂi(ﬁ)d(é — zr)dt Ndp N de N dz (9.3.46)

in local coordinates 2 on the quotient R/Z = S!. Then we evaluate the integral in ([9.3.45))
as

flux v g VI% 00 o _ 1 3A/2
RefIJ = _Fn — = Vi )7 /\QJ = *51]UOV§b(e — 1)
TA TNISO \%4 2 ZI
1
= g9 Yors[nirp + Z (nirp + nf(IB)VK|ZI] ; (9.3.47)
K#I

where we used the evaluation of the warp factor (9.3.41)) in the last equality and the basic

v

relation % = g5 ! following from (9.3.6). Moreover the remaining integrals over ¢ and ¢

yield a factor 1 respectively 27. In addition we identified the flux number nk 5 = 2nf due
to the orientifolding as noted already in (9.3.5)).

We note, that in the result for Re fﬁ‘;" that we obtained by dimensional reduction
of the D7-brane effective action to three dimensions we only see the first term in (9.3.47)
proportional to n!. However, this is perfectly consistent recalling that Vi ~ gs, cf. (9.2.15)),
which reveals the corrections proportional to Vi in as one loop corrections to
the gauge coupling frj. These are not visible in the string-tree-level D7-brane effective
action obtained in section More precisely the corrections are suppressed by gs and the
separation |Z; — Zi| between the branes as

Is

Vielg, = 2 (==
K’ZI 4 |2A:]—?3K‘

— 2y = (1 = [1 — 2xcl) — (1 + |21 — 2xc) ) (9.3.48)
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where we used and introduced Euler’s constant v = 0.577216. .. as well as 1(z) de-
noting the digamma function. The function () is well-defined except at € {0, —1,—-2,...}
and since 0 < |27 — Zx| < 1, the composition ¥ (1 — |27 — 2k|) is finite E We note, how-
ever, that this implies that the corrections in diverge as m in the case that
the branes move on top of each other Zx = Z;. Intuitively this is clear since the integral
(9.3:36) calculates formally the self-energy E = [ ¢odV of charges in three dimensions by
identifying e34/2 with the electric potential ¢ and Q7 A Q7 with the charge density o.
Thus, by using the approximation we formally calculate the self-energy of a point
charge, that is infinite. However, the self-energy i.e. the integral is regularized in

M-theory by the smooth forms €27° that smear out the charge density p.

Corrections to the imaginary part of the gauge coupling function

In this final section we calculate the flux-induced corrections to the imaginary part of
the gauge coupling function. These corrections originate from the 11-dimensional Chern-
Simons term C3 A G4 A G4 with an altered reduction ansatz in the presence of a
non-trivial flux G4. Following the logic of section the dependence of the new three-
form B(M?>) on the moduli M* of the compactification geometry is crucial to obtain the
coupling d s in . It is a Chern-Simons term in three dimensions and is identified
with the reduction of the topological term Tr(F A F') of the four-dimensional gauge theory
to three dimensions in . We demonstrate this identification and the reproduction of
the right flux correction to the imaginary part of the gauge coupling and obtain a perfect
match in the weak coupling limit where we reproduce the flux correction ~ n! in
to the D7-brane gauge coupling.

First we have to identify the appropriate form for the three-form S that we defined in
as the Chern-Simons form of the flux G4 = dgf. From the expansion and

recalling Q3° = dyn; we make the ansatz
B=F" Ani(po,2) (9.3.49)

where we indicated the moduli dependence of 5 on the angle ¢y and the position of the
k periodic monopoles £ = (Z7) through the one-forms n;. From this it follows that the
relevant terms in the three-dimensional action (9.3.27)) take the form

S > ox / (droyx Cod2™ A B + drgee,2"dCo A FT) (9.3.50)
M3

where we identified the RR-axion %cpo = (Cy as before in the definition of the axio-dilaton

(19.2.28) and set wy = Qr as in (9.3.42)). Then the coupling d;c,x is given by

o 0B

1 0o 1, J¢JL 00

dicox = -1 /?4 07 /\780O N 95K =—4qn 1) /TNoo QF AN Ocynr N Oz - (9.3.51)
k

Here we replaced the compact fourfold 17 by our local geometry ), that by its direct product
structure Vy = Sy, x T'N° allowed us to pull out the integral of the flux over S;,. We note
that the two terms in ((9.3.50)) are equal, up to a term proportional to d(dICOK)COéKFI, by

"Tn contrast the Poisson re-summed Vi in (9.2.15) diverges at p = 0, though, since Poisson re-summation
breaks down for p = 0 and (9.2.15) is not valid at p = 0.
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partial integration and by virtue of the antisymmetry of drc,x in the last two indices. In
general this can yield further subleading correction to Imfr; that we ignore in the following.

In order to show that (9.3.50) reproduces the flux correction to the imaginary part of
the gauge coupling we have to evaluate (9.3.51). This is a lengthy but straight forward
calculation. Omitting the details we obtain up to exact forms the result

1 V[V Vi, Vi
QrA\OcynL N0z .y = 3 [_‘}]<§_5KJ>QL/\QI—V]}§QJ/\QI

—i-QEVK <VJ — 5KJ> ZQ[/\QS (9.3.52)
S

|4 Vv

B VL Vs (Vi Vi o .
e () AV — —=A dt d d d
riVV(V K")( Ty V) Apaphdp hdz,

where we ommited the superscript *° for brevity. In the derivation we first recall from
that U = raCodz and evaluate Oc,nr = %di that follows from . Thus
we can drop all terms in Q%° A 0;,.m; which are proportional to dZ. Next we plug in the
definitions for these forms and formally calculate the derivatives in local coordinates. We
note that due to the dependence of V; and Uy in (9.2.15)), (9.2.17)) on only the combination
(2 — 21) we can write

agKV[ = —0rg0: V1, agKU[ = —0r10:U7 . (9.3.53)

Next we write the relation *3dU; = —dV7 in local coordinates for the p-component U}p of
Uy as

T‘B/A)apAV[ = agUf, TBﬁagV[ = —(%Uf, (9.3.54)

which is of course in perfect agreement with (9.2.15)), (9.2.17), to recast every term in
as a function of derivatives of V; and V' multiplying the top-form dt A pdp Adp AdZz.
Then we perform partial integratwns ignoring boundary terms, until every single partial
derivative acts only on fractlons . Comparing to (9.3.37)) in local coordinates,

O A QP = —27;%‘/ [aﬁ(“f)aﬁ(“/j) n 62(‘3)83(“/}])] dt A pdpAdp N ds (9.3.55)

where we used *4dp = —p(dt + U) Adp ANd% and x4dz2 = —p(dt + U) Adp A dp exploiting the
vierbein formalism (|A.9.24)), allows us to obtain the first two terms in (9.3.52). However,
partial integration in addition produces a term

s VL Vi (VK

v
2Vl —5KJ>A3<V>dt/\pdp/\d<p/\dz (9.3.56)

Applying As = *3d *3 d we obtain the last two terms in (9.3.52) and the mixed terms with

derivatives acting on different terms can be rewritten using

o Vi Vi
ZQ A QS VdV/\(dt+U)/\>k3d<V> TAVdV/\*4d<V) (9.3.57)

and x4dV; = —(dt + U) A #3d Vs yielding the third term in (9.3.52)).
With the result (9.3.52) we can now evaluate the coupling drc,x in (9.3.51). According
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to (9.1.15)), (9.1.20]) and (9.3.50)) it is related to the imaginary part of the flux correction to

the the gauge coupling function in the Coulomb branch of U (k) as %Im f?}x if we identify

1

sr=¢r = (9.3.58)

2
B

Again we focus on the extraction of the weak coupling behavior gs; ~ 0 where the integral
(19.3.51)) for d;c, x can be evaluated explicitly. We recall first the limit (9.3.46)) and note that
the potentials V', Vi obey the Poisson equation ((9.2.16). As in the evaluation of the real

part (9.3.47) we then replace all four-forms in (9.3.52)) by delta-functions and by integration
we just have to evaluate the different pre-factors at points. Then only the second and third

term in (9.3.52)) contribute yielding njéjL%‘/vKQ] AQp — —6rn! respectively

ViVk (V.
nJ5JL LK< J

I 1 I
% v 5KJ> ;Q[/\Qs —0rK [TL +n ;VS|ZI]+(51K_1)TL VK|ZI , (9.3.59)

where it is important for the latter formula to separately consider the cases I = K and
I # K and to split the sum over J into J # I and J = I. Thus we obtain the imaginary
part of the flux correction to fr; as

Im f1* = 2d;c,x = —1Co [5U(3n513+2 > niVily,) +2nisVil,, (51J—1)} . (9.3.60)
K#I

where we used as before the definition Z; := (p = 0,2 = 2;) and the relation nf o, =2nk.
Note that the structure is similar to the real part however a precise matching requires to
keep all terms, most importantly those related to the terms in by partial integra-
tionlEL in the reduced action . We emphasize that we not only obtain the expected
flux correction to the imaginary part of fr; in but also subleading corrections pro-
portional to gs via V; ~ gs. These corrections are analogous to the to those of the real part
in and are accordingly identified as one-loop corrections that are absent in the strict
weak coupling limit and in particular in the the tree-level result of the D7-brane
gauge coupling. Using the finite expression for V| 7, We can predict some of this
leading loop correction.

Summary

Let us summarize the results of this chapter. Using a dual M-theory description, we have
computed corrections to the four-dimensional effective action of F-theory which were in-
duced by G4-flux. The latter encodes the 7-brane flux and backreacts onto the geometry.
This results on the one hand side in a non-trivial warp-factor and in a modification of the
Kaluza-Klein reduction ansatz on the other hand side. To investigate the backreaction we
have considered an analytic model of the local neighborhood of the 7-brane geometry which
is in M-theory given by an infinite chain of Kaluza-Klein monopoles. This enabled us to
obtain closed expressions for the warp factor and the M-theory three-form. These closed
expressions were used to show that the warp factors induces quadratic flux corrections to
the real part of the gauge coupling function while the imaginary part is traced back to the

18Tn particular the factor 3 in (9.3.60)) arises precisely by partial integration and should be canceled by the
omitted terms in ((9.3.27) that are also obtained by partial integration.
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modified M-theory three-form. The dependence on the position moduli on the type IIB
circle was crucial in this discussion. These corrections were shown to reproduce the known
Type 1IB weak-coupling expressions while they further modify the 7-brane gauge coupling
away from the weak coupling limit.
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10. Conclusion and Outlook

In the first part of this thesis, we have determined the refined BPS invariants of local del
Pezzo surfaces and the half K3 surface using multi-pronged approaches, such as the refined
holomorphic anomaly equations, modularity and the refined modular anomaly equations. In
the second part we discussed three applications to compute corrections and non-perturbative
effects in F-theory compactifications, which are constituted by E-strings, [p, ¢]-strings and
flux-corrections to the 7-brane gauge coupling function. While the first two topics rely
on the results obtained in the first part, the third one is derived from an analysis of the
backreacted geometry due to Gy4-flux.

We have systematically calculated the refined BPS invariants of local del Pezzo surfaces
and the half K3 surface using various techniques. The first method we have used applies
if a toric description of the del Pezzo surface is available, which is generically the case for
the geometries Fyp and up to three blow-ups of P2, as well as for (almost) del Pezzo surfaces
with blow-ups at non-generic points. The formalism enjoys a high degree of universality
and is based on the Weierstrass normal form of the elliptic mirror geometry together with
a meromorphic differential. This mirror curve depends on only one complex structure mo-
dulus and additional non-normalizable mass parameters. The latter possess trivial or at
least rational mirror maps and effectively allow for the reduction of an n-parameter to a
one-parameter problem, which e.g. is demonstrated by the fact that the GKZ system is
reduced to one differential operator of third order. While one has in general to solve a
system of at least n Picard-Fuchs equations in order to obtain the periods, we make use of
the fact that there are closed expressions for the periods of an elliptic curve which can be
directly obtained from the data of the Weierstrass normal form. In addition, this formalism
also drastically simplifies the finding of good conifold coordinates and allows to perform the
direct integration procedure up to high order. Here we used the gap condition in order to fix
the holomorphic ambiguity. In addition, we spelled out the limits in the complex structure
moduli space that correspond to five and four-dimensional Seiberg-Witten theories. This
exemplifies the fact that our framework is due to its analytic nature applicable everywhere in
the moduli space. Besides providing the refined stable pair invariants for the toric del Pezzo
geometries, these calculations also serve as a consistency check of the refined holomorphic
anomaly equations that have a local B-model interpretation but miss a rigorous derivation.

Next we went on and considered the massless and massive half K3 surface which serves as a
master geometry encoding all other del Pezzo surfaces as certain limits. In order to perform
these calculations, we used the fact that the generating function for refined invariants that
wrap the base of the half K3 only once is basically given by the refined Gottsche formula.
In addition, we proposed a refinement of the modular anomaly equation. In this case the
boundary conditions were fixed by using geometric constraints on the structure of the refined
invariants and the restricted structure of the ring of Jacobi modular forms. The finding
of the refined BPS invariants of the half K3 can be seen as a highly non-trivial check of
the refined modular anomaly equation. In fact, we were also able to show by comparison
to the results of different massless del Pezzo geometries that the refined modular anomaly
equation is compatible with the formalism of the refined holomorphic anomaly equations.
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10. Conclusion and Outlook

By performing suitable flop transitions and blow-downs we were able to derive the refined
stable pair invariants of the non-toric del Pezzo surfaces. Besides that, we demonstrated
how the physical spin decomposition reflects the beautiful group theory of the exceptional
groups that govern the homological structure of the del Pezzo surfaces.

Furthermore, we have performed first steps to extend the above formalism based on the
Weierstrass normal form to mirror curves of genus two. We discussed the geometry C3/Zs
and derived the period matrix from the Fourier expansion of the Igusa invariants which
provide the analogue of the Weierstrass normal form for genus two curves. Notably, we
were able to rewrite the free energy at genus one in terms of Siegel modular forms of genus
two and checked the existence of a vector-valued Siegel modular form that has according
to the formalism by [33] to transform with weight two, i.e. serves as a candidate for an
extension of the definition of the second Eisenstein series to genus two.

In the second part of the thesis we discussed diverse applications of these results to F-
theory. In particular, we were able to show that the refined stable pair invariants count
the massless excitations of the tensionless string. These arise, if a dPg del Pezzo surface
collapses within the compactification geometry. By comparing to the results obtained by
[32] we could explain the space-time spin of these excitations as well as their splitting into
representations of Eg. This is based on the fact that the refined stable pair do not average
over the five-dimensional spins in contrast to the Gopakumar Vafa invariants, but are even
able to resolve the Weyl orbits of curves inside the geometry.

Also we provided some evidence that the refined BPS invariants are able to count the
massless vector bosons that generate the (microscopic) gauge theory sector in F-theory.
Additionally, the refined BPS invariants are assumed to count infinite towers of massive
BPS states which are present in the geometry of non-local 7-branes. This proposal is based
on the observation that flavor and gauge group get exchanged in the probe brane picture.
Moreover, in the probe brane picture it is possible to identify [p, ¢]-strings with BPS states
of Seiberg-Witten theory which in turn correspond to geodesics in the base that can be
lifted to holomorphic curves under certain conditions. The latter are precisely counted by
the refined stable pair invariants. However, we also pointed out that a further analysis is
required in order to match the spins of the refined stable pair invariants with the physical
quantum numbers of the [p, g]-string.

Independently from the refined BPS state counting we discussed the derivation of the
7-brane gauge coupling function within F-theory by investigating the backreaction of Gy-
flux onto the geometry. This backreaction was responsible for a non-trivial warpfactor as
well as for a modification of the Kaluza-Klein reduction ansatz. To explicitly evaluate this
backreaction, we considered the dual M-theory set-up and constructed a local, analytical
model of an A,-singularity. This was used to explicitly solve the warp factor equation
and the M-theory three-form field. The dependence of these quantities on the directions
of the Type IIB cycle that gets decompactified in the F-theory lift was crucial in this
discussion. The warp factor and the modified three-form field were proven to be responsible
for quadratic corrections in the 7-brane flux to the gauge coupling function. These were
shown to reproduce the known weak coupling result but also display further corrections
that become important away from the weak coupling limit.

There are many directions this work could be continued into.

It would be very interesting to extent the techniques presented here in order compute
more corrections within F-theory compactifications. While it would clearly be desirable
to get a consistent picture played by the refined stable pair invariants in the counting of
(the excitations of) [p, ¢]-strings, it would also be very interesting to explore whether the
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backreaction computations can be used to also extract other known type IIB corrections
such as curvature terms on the 7-branes.

Apart from concrete physical applications, it would also be attractive to improve the un-
derstanding of some conceptual questions. Topological string theory enjoys many dualities
to other theories, such as Chern-Simons theory, Matrix models, ABJM theory [67, [68], to
name a few examples. The investigation to which extent these can be lifted on the refined
1eve]E| is certainly an exciting question.

It would clearly also be desirable to explore how the formalism of the refined holomorphic
anomaly equations together with its proposed local B-model interpretation connects to
the other approaches to refinement such as the fluxbrane picture [216] or the world-sheet
description proposed by [217]. A much more difficult question is to ask whether one can
give any meaningful interpretation to the refinement on compact Calabi-Yau manifolds.
While the additional U(1)z symmetry is not present on compact Calabi-Yau manifolds one
does not expect the refined partition function to be an index. However, it might be that
one could evaluate these invariants for a fixed complex structure and control the jumping
by some kind of ”wall-crossing” phenomena. One application of this program would be an
extension of the refined OSV conjecture of [80] to the compact case.

'For the first two theories, some progress has already appeared in [81].
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A. Appendix

A.1. The general Weierstrass forms for the cubic, the quartic and
the bi-quadratic

In this section we discuss the Weierstrass normal forms corresponding to the curves that
are associated to the polyhedra 13, 15 and 16 in figure This is turn corresponds
to determining the Weierstrass normal form of a general quartic, bi-quadratic and cubic
curve respectively. The corresponding algorithms are well-known in the literature. We
briefly present them here for convenience and completing the discussion. The respective
coefficients are translated as follows

Curve U | a | ag | a3z | my | mo | m3g | my| ms | mg | mr | ms
Cubic S¢ | S5 | s3 | sg | Ssg | So s7 | S10 | S1 | s - -
Quartic l7 lg lg Iy lg - I3 l5 - lo I R

Bi-quadratic | ai1 | a2 | ao1 | aio | a21 | a12 | ago | a2 | - | - | - | a2

A.1.1. The Weierstrass normal form of cubic curves

We consider a cubic curve in projective space P? = {[z : y : z]} that is given by

0 = sl:r3 + 32x2y + s3xy2 + 34y3 + 353622 + SerYyz + 37y22 + 383622 + 39y22 + 310z3

= Fi(z,y)+ Fa(x,y)z + F3(x, y)22 + 5102°. (A.1.1)

The algorithm that brings this curve into Weierstrass normal form is called Nagell’s
algorithm. We review only the most important steps here and refer to the literature [118)]
for an extensive discussion. By a coordinate transformation x — x + p, we can achieve that
s10 = 0. Without loss of generality we assume that sg # 0. We define

€; = E(Sg, —58). (A.1.2)
Next, the coordinate transformation

(x—392—§y,y+882—§a:> ifes £0

(A.1.3)
(x — S9y,y + ssx) ife3=0

(z,9) H{

is applied in order to map the rational point to the origin. Having brought the curve into
this form, it is re-written as

2 f3(1,6) + &' f(L,8) + fi(1,6) =0, t =y, (A.1.4)

where the f; denote the homogeneous parts of degree i. The solution to this quadratic

169



A. Appendix

equation is given by

_ _fé(lvt) + \/g

§= f5(1, )% —4f5(1, 1) f1(1,1). Al
2f§(1,t> ) f2( ’ ) f3( ) )fl( ’ ) ( 5)
One zero of § is given by ty = —sg/sg. By introducing
1
t=1y+ —, (A.1.6)
T
one obtains a cubic polynomial
p =T, (A.1.7)

which is easily brought into Weierstrass normal form

Y2 =4X3 - X —g3. (A.1.8)
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A.1. The general Weierstrass forms for the cubic, the quartic and the bi-quadratic

Its explicit form in terms of the coefficients s; reads

1
12

—48818%88 + 168%8% — 4882848% — 48543%39 + 2483555689 — 8325%59 — 16598557589

Y2 = 4x3 <3§ — 8858%87 + 163%5% + 2454855688 — 8838(2588 — 1653555758 + 2459565758

424515657589 — 1659535889 + 14451548859 + 168%83 — 48818383 — 488%85810

+144s95485510 + 24525356510 — 216515456510 — 485%87810 + 144818387810>X

1
316 <sg — 12858%87 + 483?)3%3% — 643%3? + 3684858%88 — 12333%38 — 144343%363738

+24S3S5S%S7Sg + 36828%8758 + 96333%3%38 — 1443235363358 — 72313%3338
128851555555 + 216535255 — 1445354555653 + 48535252 — T259545252 + 9655555752
—144323485873% — 14432838637s§ + 864313436375’% + 2163%3%3% — 57681838%8%
—64s353 + 28859535455 — 864515555 — 7254525259 + 3653555059 — 12525059
+288$4s§’)5759 — 144838%868789 + 2432353%5759 + 3651323739 + 96528%8%89
—1445155565359 — 14433343%3839 — 1445%55563839 + 7208254855658S9 + 2452533%3839
—6485154535859 + 48595355575859 — 1296515455575859 — 1445%56575859
+720515356575859 — 1445152535859 + 9652535359 — 5765%545%59 + 864515354.9%59
+2165§s§53 — 5765254.9%53 — 1448283858683 + 8648184858683 + 488%3%33
—7281838%83 + 968%858783 — 1445133555733 — 1445152565753 + 2165%5%53
+9653535855 — 57651535855 + 8645150545555 — 645555 + 28851505355 — 864575455
—864333?810 + 86433343%36310 — 723%353%310 — 6483234353%310 + 36323332310
—1—540318432»810 — 5763%3%37310 + 86482848%87810 + 7205283555657510
—1296s1545558657510 — 723%3(2537310 — 64881838%87810 — 5763%353%310
+864$1$3858%810 + 86481323633310 — 8648%8%810 + 2888%8588810
—12965953545558510 + 388851335558510 — 144525%3658510 + 8643%345658510
—12965153545658510 — 1445%838788810 + 86451533738310 — 12965159545758510
—14452535559510 + 8643%343559310 — 12965153545559510 — 1445%538689810
+864818§S659510 - 12965152848689810 + 2888%8789810 - 12965152838759510
1-388857545759510 + 216555357 — 864515557, — 864555455, + 388851 5253545%0

—58323%333%()) : (A.1.9)

A.1.2. The Weierstrass normal form of quartic curves
We start by considering homogeneous quartic curves [I118] in P(112) that have the form

0 = lp* + 1opPq + 13p° ¢ + lupg® + lsq* + lep®r + lrpgr + lsg°r + lor?. (A.1.10)
By setting ¢ = 1 we obtain the affine part, which reads after a change of coordinates

V2 =Upt + Lp® + 3p? + lap + 15. (A.1.11)
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The constant term can be eliminated by shifting p — p + a, a being a root of (A.1.11]).
After applying the final coordinate transformation

v 1
Ve 5, D = (A.1.12)
p p
the curve is takes the form of a cubic
v+ arzy + asy = 2° + asx® + asx + ag, (A.1.13)

where the a; can be expressed in terms of [; as

2 ~ o~ ~ o~
4 gy = 2\/&2, as = —4lsly, ag = asas. (A.1.14)

Iy I
4l

Vi

Nagell’s algorithm can be applied to this form and one finds the Weierstrass normal form

a)p = ag = C —

1
Y2 = 4x° - o (z% — 8lgl21g + 161212 + 48151219 — 241415171y + 813121y + 16131611y — 24121718lg

1
148111219 4 161315 — 48191413 + 192lll5l§)X =56 <l$ — 12lgl31g + 48121212

—GALZIS + 7215121219 — 3614161319 + 12131319 — 288151318lg + 144141217151y — 2413161315l
—36lal31slg — 961312121 + 1441516171219 + 7211121219 — 28811161319 + 216121213
—5T6l3151215 — 1441314161713 + 864155161713 + 48131213 — T21al41213 — 5761151213
19613161513 — 144la14l6lsl3 — 1152111511813 — 144la13l7181% 4 8641114171513 + 216131313

—BT614 131213 + 641315 — 2881131415 + 864111315 + 864131513 — 2304511315@) . (A.1.15)

A.1.3. The Weierstrass normal form for a bi-quadratic curve

We follow the discussion in [119] and consider a general homogeneous bi-quadratic curve p
in P! = {[s: ]} x P! = {[v: w]}.

0 = a0052w2 + alostw2 + a0182vw + a20t2w2 + ajistvw + a0282v2 + a21t2vw
+aygstv? + agt?v?. (A.1.16)

The affine part of p reads in the chart s =1,w =1

0 = agy + aiot + agrv + aspt® + a11tv + apev? + agt>v + agatv® + aget’v? . (A.1.17)
We denote by
2
. . 2 . . . .
Az(p) - (Z Szt2ilai1> — 4<szt277’ai0) (Slt271ai2> (A.1.18)
=0

the discriminant with respect to the second variable (v, w). The discriminant with respect
to the first variable Aj(p) is defined analogously. To proceed we need to introduce some
more notation. Consider a homogeneous quartic in two variables (xg, x1)

f = apx] + dayzo + 6agada? + dazaiz, + asr. (A.1.19)
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Next we introduce the so-called Eisenstein invariants of (A.1.19) which are projective in-
variants under the action of GL(2,C) and defined as

D = a0a43a§—4a1a3,
E

apa3 + afas — agazas — 2a1a2a3 + a . (A.1.20)
It can be shown that the coefficients gs, g3 of the Weierstrass normal form are given as

92 = D(A2(p)), g3 =—E(A2(p)). (A.1.21)
The general Weierstrass form of a bi-quadratic curve is finally found to be

1
12

2 2 2 2
+24a01a11a12a20 — 48(100(1126120 + 16&026120 + 24(102(110&11&21 — 8a01a11a21

2 3 4 2 2 2 2
Y = 4X (au — 8&10&11(112 + 16&10(112 — 8a02a11a20 — 16a02a10a12a20

2 2 2
—16ap1a10a12a21 + 24apoaiiaizazr — 16apiag2az0a21 + 16a5;a5; — 48appap2as;

2 2 2
—48ap2aigaze + 24ap1aipaiiaz — 8agpaiiaze — 16agpaipaizazs — 48ag azpas:

1
— % <a?1 — 12a10a111a12

2 2 2 3 3 4 2 3
+48a10a11a12 — 64a10a12 — 12a02a11a20 + 24&020,100,11&12(120 + 36@01(1110,12@20

+224a00a02a20a22 — 16a00a01a21a22 + 160/%0@%2))(

+96a02a%0a%2a20 — 144@01a10a11a%2a20 — 72@00(1%1@%2@0 + 288a00a10a:1)’2a20
+48a%2a%1a%0 + 96@%20,10@12@%0 — 144a01a02a11a12a§0 + 216@%10,%2@%0
—576&00@020,%2&%0 — 64&820,%0 + 36@026”0&?1@21 — 120,01@‘111(121 — 1440,02&%0&110,12@21
+24a01a10a%1a12a21 + 36@00&?1a12a21 + 96&01@%061%2&21 — 144(100@10&11@%26121
—144ad,a10a11a20a21 + 24agiagealyazoas + 48a1ag2a10a12a20a21

—144a, a11a12a20a21 + 720a00a02a11a12a20a21 — 144agoaoiaiyasoast
+96a01a(2)2a§0a21 + 216@32a%0a%1 — 144ap1agza10a11a3, + 48a(2)1a%1a§1
—72a00a02a%1a%1 + 96a31a10a12a§1 — 144aooa02a10a12a%1 — 144a00a01a11a12a§1
+216a30a%2a%1 + 96a(2)1a02a20a§1 - 576aoga32a20a%1 - 64a31a§’1 + 288a00ao1 ag2ai,
—72@02@%00,%1@22 + 36(101@10(1?10,22 — 12a00a4111a22 + 288&02@?0a12a22
—144a01a%0a11a12a22 + 24a00a10a%1a12a22 + 96@00@%(]&%20,22 — 576a%2a%0a20a22
+720a01a02a10a11a20a22 — 7208,y azoasz — 480agoao2ai; azoass — 144ad,atparsasoass
—960a00a02a10a12a20a22 + 720400001011 a12a20a22 — 576a8)aT5a20a22
—576a%1a02a%0a22 + 2112&00@%20,%0&22 — 144@01@02@%“121@22 — 144a%1a10a11a21a22
+720a00a02a10a11a21a22 + 24a00a01 a3, a21a22 + 48agoagi a10a12a21ass
—144adya11a12a21a22 + 288ad aspazi azs — 960ag0an ap2a20a21 a2 + 96agoag; az az
—576a30a02a%1a22 -+ 216(1(2)161%0&%2 — 576@00&02&%0(132 — 144&00(101(110&11&%2

2 2 2 2 2 2 2 2 2
+48a00a11a22 + 96@00@10@12@22 - 576@00@01@20@22 + 2112@00@02@20@22

+96a3,a01a21a355 — 64a80a§’2). (A.1.22)
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A.2. Some more details on del Pezzo surfaces

In this appendix we discuss some further interesting aspects of del Pezzo surfaces. In
particular, we concentrate on the relation to the E,-curves that are considered in [63]
starting with the Eg-curve.

A.2.1. E, -curves as Cubic curves

The Eg-curve has been given in [63]
2 3 1 2 Es 50 Eg Es Eg
2 = Az +( S+ (5 — 22 +1550)2 + (= 70} + 257 — 12

4 8
+1840x5® — 115010) @ — gxf“sxl + o 1824 — 112x5® 4 4 lE — 4y b

3
+680X$8 - ?ng 55— 50744x B + 2399276)30

it (e W (M L
_%Soxgs N 5046215)a (- gx?gﬁg B KOXES B, 58366 B %XES N %XI:;]S
+%X§’S - @X% + %XES X5® + 39296x5® — 7126733792)# + (934 Xy
—%x?ngS + 738xE8x8E 5 — 2703736 X - %x?sx? +2630x5"° — 52x5° + 4x5®
—416x5® + 16X 5 xg® + 25880x5° — %x?gx? — @X? + 107263286
287X1 XEEXTE + %x?gx?% — 1065X 7" x)® + TSX?SXESS gx?gxgs + %X?S
X6* — gx?gx]?g - 490><1 X§E 5" — %ﬁx?sx? + &;mx?s — X5°X5"

5;2 XBEXE® — 59482x b — ?xgsng* + 1880\ E® + 4x e — 232y Es 4 §X6 X5®
+11808xg® — %10 5 \E® — 460388 5" 12376 XEEXES XSS + 2053492ng X5
+@ s 1091057493 (A.2.1)

We have denoted the characters of E,, by
Xem = Z e (A.2.2)

VER;

R; denotes the representation with highest weight being the ith fundamental one and m
takes values in the C-extended root space and have an interpretation as Wilson line pa-
rameters. In particular if all the masses are zero the x; become just the dimensions of the
corresponding weight modules given in . Starting from the Eg-curve, one obtains suc-
cessively the E,-curves whose maximal singularity is an E,-singularity. Fur this purpose,
one decomposes the characters of E,, into representations of

B, — En_1 x U(1), (A.2.3)
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factors out the U(1) part L and finally takes the leading part in L. For the present case of
Eg the scaling relations are explicitly given as

E E E E E E E E
(X187X287X387X487X587X687X787X88)
— (L2, LPxST, LAy, LOXYT, Lo, Lixg ™, L35, L?),
(@, z,y) — (L, L?x, L3%y), L — co. (A.2.4)

Accordingly one finds the E7-curve

1 . 2 50, . .4 8
o= et (- it (507 = )8+ (267 - 12¢7)d - o+ 5
28
+4X§7 4x‘g‘7 — g)x
1 . 1 47, 1 . 2 0 1
—ore (g ) (GxaT +3xT) 8+ (= x-S X
11 196, 2 10 5 8
36+ ) T (= 0T = 5T+ AT 16X ) a4 oo T T
28 B 4 BB, 4 B E, 40 g B, B 20 g E
9 X1'X1 §X17><37 + §X17X67 - §X17 XXz — §X37 +4xy”
8§ 136
= — A2.5
as well as the Eg-curve
2 3 Loy, 2 m-2 Fe\ ~ o Ee 4 Be R
L 6, 1 B4 L Eey-3 2 g B, 1o omg , 11 gey oo
gl T gt (3+ 6X26)“ +(- X" X1+ 3xs" + §X66)“
2 . 8 4 4
(G = 330G T XX T X T~ XX A XX
(A.2.6)

The Eg-curve can be mapped onto the general Weierstrass normal form of the cubic (A.1.9))
provided one chooses a different gauge. Instead of setting three of the inner points of the
one-dimensional faces to 1, which is convenient for the description of local P? and its blow-
ups, one has to set the coefficients of the monomials 23, y3, 2% to —1. The characters Y;
may then be written in terms of a1, as, as, mi, mo, ms as follows

X1 = maai+ miaz + maas,
X2 = —3—mimams+ mia; + meas + msas — ajazas,
X3 = —m%mg — m%mg — mlmg — 2moa1 — 2msas + mimsaias — ala% — 2mjas
2 2
+maomsaias — ajasz + mimaazas — a20a3,
_ 3 3 3 2 2.2 2 3
X4 = 9—m7—m5—m3— bmiar — mimamaal — mym3sa; — 2mamsai — ay

—6moag — mlm%mgaz — m%m%ag + mimeaiay — 2m§a1a2 — 2m1m3a%

—mga%a% — ag — m%m%ag — bmsas — m1m2m§a3 — 2m§a1a3 + mimsaias
2 2 2

—2miagas + mamaagas + mimamsa1aza3 — M1a]a203 — Maa1a0503

—2mymaa3 — maata3 — maajasa3 — myaia3 — aj,
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X5 = —mlm% — m%mg — QOg — 2maa; — 2myag + mamaaias — a%ag — 2maas

2 2
+mimeaiaz + mimsazas — a3a3 — a1dsz,

X6 maay + mzaz +mias. (A.2.7)

Repeating the above procedure one finds the Ds-curve

1 . 2 . .4
Vo= 4w3+(—Eu4+§x?5u2+2X2D"’u—§X?5x?5+4x?5—4>$
I 6, 1 poa, L p g A1 2 p p 1 p,_y Ds 2 D5 Ds\~
TR T T AR O Gl D P I 2 R Ll CO R PR L
4 8 4
+§X]135 + EX?5X?5X?5 —X5°X — §X11)5X?5 +4x1°, (A.2.8)
the E4-curve
2 3 Ly 2 B B~ Ei 4 B Es
y° = 4z +(—Eu +§X1 U+ 2x5 "+ 4xs _§X1 X1 )x
L 6, 1 poa 1 g3 1 g 2 p g2 2 B, Eu\-~
el T T e+ (30 — )+ (4 e
8 4
o XX =X g o A (A.2.9)
and finally the Fs-curve
2 3 Ly 2 By Es ~ Bs 4 By By
y° = 4dx +<—EU +§X1U+2X2 U+4X3 _§X1 X1 )33
I 6 1 gy, L pos 1 g 2 g g2 2 By By
ol Tt gxe’ +(§X33—§X13X13)“ Xl
4 5. 8 r. B :
_§X1E5X3E3+ﬁXfJX1E5X1E3_X§3X§3+4' (A.2.10)

The case of the Fj3 is distinguished in the following sense. It is the last curve that is
toric, but it is the first curve for which the identification of the orthogonal complement to
the canonical class inside the homology lattice can be identified with the root lattice of FEs.
In the following we illustrate this correspondence explicitly. As a first step we recall the
toric data of Bs, i.e. the generators of the Mori cone and make the identification
of points in the toric diagram with divisors explicit. Note that we omit the non-compact
direction, i.e. we are not considering the CY geometry here, but just its base for simplicity.
Therefore curves and divisors are the same in this case.

OOT @ [®] @ 1] ©® Divisor Class |

-1 —1 -1 —1 -1 —1

-1 1 0 0 0 1 e1

1 ~1 1 0 0 0 h—el—es

0 1 -1 1 0 0 e

0 0 1 -1 1 0 h — €2 — €3

0 0 0 1 -1 1 e3

1 0 0 0 1 ~1 h—eil—es

’ €1 ‘h—el—eg‘ €9 ‘h—eg—eg‘ €3 ‘h—el—eg‘

here we have denoted by h the hyperplane class in P2 and by e1, es, e3 the classes of the
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A.2. Some more details on del Pezzo surfaces

three blow-up divisors.

As it was already explained in the discussion in the main text, the Mori as well as the
Kahler cone are non-simplicial. It is sufficient for our purposes to only search for a dual
basis of the first four generators [V, ..., 1(4). The dual generators read in terms of h, e1, €2, €3

Generator | Dual generator

€1 h—€1—63
h—€1—62 h—€3

€9 h—eg
h—62—63 €3

The Kéhler form enjoys accordingly an expansion
J=wvi(h—e1 —e3)+va(h —e3) +v3(h —e2) + vyes. (A.2.11)

The moduli are given by the relations corresponding to the ()

ajas mimes a1a9 moms
log(vl)szm’ log(ve) = oy log(vg,):a—mQ, log(vg) = s (A.2.12)

where we have used the leading mirror map at large radius. Using this, one easily computes
the volumes of a divisor D as

vol(D) = /D J=J-D. (A.2.13)

and obtains explicitly

vol(h) = log(vivavz), vol(e1) =log(vi), vol(ez) =log(vz), vol(e3) = log (U;T) :

(A.2.14)
For convenience we recall explicitly the homology of the Bs surface. The orthogonal

complement of the canonical class of B3 reads
K=-3h+e+e+es. (A.2.15)
The simple roots of Bs are given in terms of divisors as
a1 =e1—ey, Qy=e€y—e3, az3=h—e —ey—e3. (A.2.16)

Note that the roots intersect precisely as the Cartan matrix of As x Ay

-2 1 0
aioy=(1 -2 0|. (A.2.17)
0 0 -2

From these one can determine the corresponding fundamental weights V; which are defined
as

av
22— =6 & o-Vi=—0i;. A.2.18
o - o J ;- Vj J ( )
One obtains
1 1 1
V1:§(261—62—63), V2:§(61+62—263), V3=—§(—h+61+62+€3)- (A.2.19)
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Acting with the roots on the highest weights, one can work out the representations. E.g.
taking V; as the highest weight, one obtains the fundamental representation of As which
consists out of the following weights

vy = Vl, Vo = Vl — Qq, V3 = Vl — ] — Q9. (A.Q.?O)

By pairing the roots (that are still given in terms of divisors) with the Kéhler form and
exponentiating the result, one can work out the characters of the representation and compare
with (A.2.2)). For V; one obtains

W=

1 1
(ala3m2m3)§ <a1a2m1m3>* i (a2a3m1m2)§
)

X1 + 2 2,2
a2m1 a3m2 ajms
am 3 am 3 a2m2 3
e M TR T e R T 21 3
a2as31mi11mMmsy ajagmmims ajasmsaoms
a1a2a3 1 aijaza3z |1
o = (o) Th g (R (A.2.21)
mimaoims mimaims

We obtain a matching of the curve (A.2.10) with (A.1.9), with my4, ms, mg vanishing, pro-
vided we make the following identification

1 1 1
ay — —, ay+— —, a3r—» —. (A.2.22)
ma meo ms

In this case the characters read explicitly

X1 =
X2 =

1
X3 = ———— +tmimams. (A.2.23)
mimaoms

Note that this is just one possible identification, e.g. the identification

1 1 1
ay — —, ay+— —, a3r— —. (A.2.24)
mo ms3 mi
leads to the characters of the complex conjugate representation. We conclude by noting
that the identification on the level of Wilson line parameters mq, mq, M3 is given as
ms3 my 1 -

M1 = —, M2 M3 = Mi =", (A.2.25)

m1 ml mimams ’
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A.2.2. The third order differential operator for B,
The third order differential operator for By is given by

L = (—12m? +12myma + 16mimy — 12m3 — 12m3m3 — 12m3m3 + 16mim3 + 16mimy

—32mim3 + 16m3m3 + 9a + 24mImai + 24mim3a — 32mimia + 56mim3a

4 2 3~2

—32mimai — 18mya? — 18ma@® — 4mimat® — 68m3im3a? — 4mimia S

— 4m‘11m2u
—4m3m3u® + 8m3 a3 + 36mimat® + 8m3u> + 28m3mia’ + 28mIm3ud + Smimaud
—16mimai? — 16mym3a* — 16mimia* + TmIm3a°)0s + (—108my — 128m]
—108mq + 64m3my — 264mim3 — 192mim3 + 64mym3 + 128mim3 — 128m;
+128m3m3 — 128m¥my — 192m3m3 + 256mSm) — 128mim$ + 144m2 i
+450mymg + 288mimai + 144m3i + 240m3m3i + 240m2m3a + 288mimiaa

+288mymait — 320mimat + 288mimia + 274° — 64m3u® — 384m2myi?i

—384mym3a? — 336mimia® — 64mau® — 240mim3a® — 336mimau? — 64mimaui

—64mim3a® — 52my 0> — 52mae@® + 112m3maa® + 172mIm3a® 4+ 112mym3a3a

+112mimia® + 112mimsa® + 24mia* + 100mymou® + 24m§ﬂ4 + 12m3miata
+12mIm3at + 24mimiat — 46mImaud46mymia® — 46m3m3u° + 21m3Im3a’)o2
+(=9 — dm3mg — 4mym3 + 8my i + 8mail + SmIm3i — Tmymai®) (=27 + 16m3a

—24m3my — 24mym3 + 16mim3 + 16m3 — 32mim3 + 16m3m3 + 36m, 0 + 36maid

—16m3mai + 64m3m3a — 16mym3i — 8mia® — 46mymeti® — 8m3a? — 8m3miata
—8m%m%ﬂ2 — @+ Sm%mgﬂg + 8m1m%ﬂ3 +miat + mott + m%m%ffl — mlmgﬁS)Gg .
(A.2.26)

We note the limits B; and P? in the case of one respectively two vanishing mass parameters.

A.3. Jacobi and Siegel modular forms

In this appendix we summarize some information on Jacobi and Siegel modular forms which
are needed for the main discussion.

A.3.1. Weyl invariant Jacobi modular forms for Eg lattice

Our convention for the theta functions are

),

- — Z "exp[mim(2n + 1)] exp[miT(n + 5

neL

Oa(m,T) = Z exp[mim(2n + 1)] exp[mitT(n + %)2],

nez

Os(m, 1) = Z exp(2mimn) exp(miTn?),
neZ

Os(m, 1) = Z(—l)" exp(2mimn) exp(mwiTn?). (A.3.1)
nez
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A. Appendix

We use the notation 6;(7) = 6,(0,7) for the massless theta functions. We define a modular
form h(T) as

h(T) = 09(27)02(67) + 05(27)03(67) = 1 4 6q + 6¢° + 6¢* + 12¢" + O(¢°),  (A.3.2)

where the parameter is ¢ = €>™7.

The nine Weyl invariant Jacobi forms can be written in terms of the theta function of
the Eg lattice

4 8
1
O(m,r) = Z exp(miTw? + 2mim - ) = B Z H O (my, 7). (A.3.3)
welg k=1j=1

We also introduce the notation g, (7) = ©(0, 7). The formulae read as follows

A = O(m,T), Ay = O©02m,T),

A, = ﬁ[(@(nm,mnége(mf;kﬂ, n=235,
By = —((6s(r)" + 6a(1))O(2, 27) — o(6a(r)* + O5(r) )00, )
L (6:(7) — Ba(r) )00, jln
By = %[h()@3m37’ kﬁ: (T ,¥)L
By = o[0a(2r)*0(4r 47) — o 0u(2r) 02,7 + ) - 415;;92(7 yepm, T,
B = in(rye (6,67 hgl)zki)@(m?”;?’k)—;;)hf‘g"“)?@(r,%;k))
_3.164Zh(7—;_k)2@( 7rzk) (A3.4)

A.3.2. Siegel modular forms of genus two

In this section we introduce the basics of Siegel modular forms of genus two. See also
[201H204] for further reference.

The Siegel upper halfplane is denoted by
={rec®?|r" =7, Imr >0} (A.3.5)

on which the homogeneous modular group I'y = Sp(4,Z) operates by

— (At + B)(CT + D)_l, (é g) € Sp(4,7). (A.3.6)

The quotient &5 by this action is called the Siegel fundamental domain Fo = FQ\GQ. A
Siegel modular form of weight w is a holomorphic function f : &9 — C, such that for all
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A.3. Jacobi and Siegel modular forms

7€ Gy and vy €Iy

f(yr) = det (CT + D)wf(r), v = <g lB)> (A.3.7)

holds. The space of all Siegel modular forms of weight w is denoted by M,,(S2). As (3 i)

is contained in 'y, any Siegel modular form f admits a Fourier expansion which reads
f =" a(T) exp(2mi Te(TT)). (A.3.8)
T

Here the summation is over all half integer matrices T € %ngz which have integer diagonal
elements. Next we introduce the Siegel operator @, which is a map M,,(S2) — M, (S1)

and is defined by

. T 0
@f—tg%of<0 it)’ TeH, teR. (A.3.9)
The elements of ker ® are called cusp forms. For w > 4 we define the Eisenstein series by
Ey(r) = det(Cr+ D)™". (A.3.10)
C,.D

The summation is over all inequivalent bottom rows (C’ D) of elements of I'y. A clas-
sical theorem by Igusa states that the space of Siegel modular forms of genus two has a
representation as

M = C[Ey, Eg, ®10, P12, P35] / { @35 = R}, (A.3.11)

Here E4 and Fg denote the Eisenstein series of degree four and six, while the cusp forms
are given as follows

43867

_212'35.52.7-53(
131 - 593

C213.37.53.72.337

dyg = E4Es — Eyo) (A.3.12)

(3D

(3%-7°E} +2-5°E3 — 691F)») (A.3.13)

R being a polynomial in Ey4, Fg, ®19, P12 [204].

Fourier expansion of Eisenstein series of genus two
In this subsection we want to discuss how to compute the Fourier coefficients of Eisenstein

series. We start by introducing some terminology.

e Let d be a square-free integer and consider the field extension K = Q[vV/d] of the
rational numbers. The discriminant of K is given as

= {d ifd=1 (mod4) (A.3.14)

4d if d = 2,3 (mod 4)
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e The Mobius function p: N — {—1,0,1} is defined as follows

1 if n is a square-free, positive integer with an even number of prime factor

S

u(n) = ¢ —1 if n is a square-free, positive integer with an odd number of prime factors

0 if n has a squared prime factor
(A.3.15)

e The divisor function o (n) with = € C is defined as

or(n) =Y _d*. (A.3.16)

dn

e A Dirichlet character is a function x : Z — C with the following properties
1. There is a k € Z, such that x(n) = x(n + k) for all n
=0 ifged(n, k) > 1
{;é 0 ifged(n, k) =1
3. x(mn) = x(m)x(n)
In particular, a Dirichlet character y is a group homomorphism (Z/ (kZ))* — C*.

Vice versa, any character of the unit group of Z/(kZ) extends to a Dirichlet character
by setting x(n) = 0 for n & (Z/(kZ))"

2. x(n)

e A Dirichlet L-function associated to a Dirichlet character is given by

L(s,x) = i ng), Re(s) > 1. (A.3.17)
n=1

e Given a prime p, the Kroneckersymbol (%) is for a € Z defined as

1, if a is a quadratic rest modulo n

<a> = { —1, if a is not a quadratic rest modulo n (A.3.18)

P 0, ifa =0 modn

For general n € N with prime factorization n = pi* .. .pZ’“ one puts ( ) = (l)l’1 e (—

a
n p1
Note that (H) is a Dirichlet character modulo n.

b/2
%szz be positive semi-definite. Denote D = b*> — 4ac < 0 and let Dy be the discriminant
of Q(V/D). Then the Fourier coefficient a(T) is one, ifa =b=c =0 and

Theorem. (e.g. [209]) Let E,, be an Eisenstein series of weight w, T = ( a4 b?) €

—2w

B Y dva(D/d?) (A.3.19)
d|gcd(a,b,c)

otherwise. Here By denotes the kth Bernoulli number and « is defined by o(0) = 1 and

1

D)= 52w

C(w—1,D). (A.3.20)
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A.3. Jacobi and Siegel modular forms

Here the Cohen function C' is defined by

C(s —1,D) = Lp,(2 — s) Zu(d)(%)ds—%gs,g(f/d), D=Dof%.  (A3.21)

daf

In this expression, ¢ denotes the Dedekind zeta-function and Lp, ts the Dirichlet L-series
associated to the character (D—O)

Explicit Fourier expansions for Siegel modular forms of genus two

In the following we give the explicit Fourier expansions of the generators of the ring of Siegel

modular forms at genus two where we use the notation ¢; = e

E4(q17 q2, T)

Es(q1,q2,7)

X10(Q1, q2, 7“)

X12(Q1, q2, 7‘)

1’1(111,(12,7‘)

xz(Qu(D,T)

$3(Q1» q2, ’l")

— 627r1’r12 .

211
N T

i
= e2mit2e

q2

1+ 240q; + 240gz + 2160q7 + 302401q> + 2160g3 + 240172 | 1344012
T T

+13440q1 gor + 240q1gor® + 672045 + 18144047 + 181440q¢1 ¢35 + 672045

2 2 2 2
+30240 L2 + 30240832 + 1382401 1 13824012 113824007,
+138240q1g3r + 30240¢2qor? + 30240q1457% + . .., (A.3.22)

1— 504g; — 504qs — 16632¢% + 166320¢; g2 — 16632¢2 — 504‘1% + 44352%

+44352q1 gor — 504q1qar? — 12297645 + 3792096¢2q2 + 3792096415 — 12297645

2 2 2 2
+166320 L2 1 166320122 1 21288061192 4 2128806 L2 + 212889642407

T T T T
1212889641 g3r + 166320¢7 qor? 4 166320q1 g3 + . . . | (A.3.23)
1 atee  @d3 g | 44iee | A 1
1L — 90205 — 90102 1 2 1 2 1
g1tz = 94192 =9 + 55 + 55 v T, T, 1 nar

1 1

+4q3qor + 4q1q§r + =@ qor? + fq1q§r2 + ..., (A.3.24)

2 2

5¢ie2 | 5045 | a2 22¢i2  22q143 (

5
—q1ga — 11¢7gs — 11q165 + 2 A.3.25)

6 6 6 r2 12r 3 r 3
1 22 22 5 5
+EQ1L]2T - gngw - nggr + EQ%QQTQ + 6¢]1Q§7’2 +. (A.3.26)

9 + 10368¢; + 10368¢2 + 7651584¢% + 1650585641 q2 + 7651584¢% + 3456%
q192
7“2

—216r — 238680q17 — 174078936¢%r — 238680q2r — 382465152q1 gor
—174078936457 + 345612 4 4188672q1 1% + 3277494144¢%12 + 4188672¢21>
+7253463168¢1 qor? + 3277494144¢37° + . . . | (A.3.27)

—27 — 34992q; — 34992¢s — 25824096¢> — 2293142441 g2 — 258240962

q1492

q2 q1 q2 q2 q2
+10368 + 3456—; — 216 — 2386801 — 216-= — 5080322 — 2386802
T r r r r T

q192
'

2 2 2
2138491 _ 349908192 _ 9138492 4 97091 | 910764 8L 1 97222 | 653184
r2 r2 r2 r r r

2

191076422 1+ 972 + 91076447 + 63559566062 + 910764qor + S38T81568¢, gor
T

+635595660¢57 — 2138472 — 20015424¢;7 — 141646430164¢%1% — 20015424472

—23598639792q1 gor* — 1416464301643 + .. . | (A.3.28)
753 243 525123
— g+ T% + 22 gy - 3411T2001000% + .. (A.3.29)
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A.4. The BPS invariants for the half K3 and the diagonal classes
of P x P!

Here we list the BPS invariants for the half K3 and the diagonal P x P!,

A.4.1. The diagonal P x P! model

2j2\2jr | 0 | 1 2i\2jr |0 | 1] 23 2i\2jr |0 [ 1] 2345
0 2 0 1 0 2
d=1 d=2 d=3
2iL\2jr |0 [ 12345678
0 1 3
1 1
d=4
2i\2jr |0 1]2[3[4[5][6]7[8]9[10] 11
0 2 2 6
1 2 2
2 2
d=5
2i\2jr |0 | 1] 2[3[4[5]6|7[8[9[10]11]12[13] 14 ] 15
0 1 3 5 7 10
1 1 1 5 7 1
2 1 4 5
3 1 3
1 1
d=6
2iL\2jr |0 [ 1] 2[3[4[5]6] 7 [ 8] 9 [10]11 121314151617 18
0 2 2 8 10 18 16 22 2 2
1 2 1 10 14 20 18 1
2 2 4 12 14 18 2
3 2 1 10 10 2
1 2 1 8
5 2 2
6
d="1

Table A.1.: The GV invariants n?L ., ford=1,2,--- 7 for the local P! x P! model

»J
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A.4.2. The massless half K3

S G\r | 0 1] 2
2\2n 2“(\)2“ g ! 0 45
0 1 - - ; 9 1
d=0 1 —

— 2j1\2j 0] 1234
2j0\2jr | 0 | 1 23 ng IR i 5
0 201 1 ; 555 :
L o4 2 9 55
2 L 9 3 1 9
3 1 . :
d=3 d=4
— 2j2\2] 0 1 2 3 [ 4[5]6
2t\2jr | 0 1 2 |3 1415 JLS = 8785 264 1
0 2727 55
1 1036 10 L 3764 64
2 264 1091 10
2 55 264 1
. m = 3 64 265 1
1 1 10 55
1 1 9
= - 5 1 9
6 1
d=5 d=6

Table A.2.: The refined Betti numbers n;lL’jR ford =0,1,---,6 for the half K3 surface

— 2i2\2jr | 0O 1 ]2
27.\27r 2“})2“ 228 L 0 4125
0 1 1 249
1 1 5 -
d=0 d=1
d=2
201 \2jr 0 ! 2 |3 2]L>)2JR 2170501 : 2i9 -
0 35001 1
- 5 1 39375 1
5 - 519 2 249 4375
3 - 3 1 249
4 1
d=3 i
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Table A.3.: The GV invariants n?+%

JL

s$JR

2i.\2jn 0 1 2 3 1[5
0 1097127 4375
1 256876 250
2 4375 39624 1
3 250 4375
] 1 249
5 1
d=5
25.\2jr 0 1 2 3 1 5 |6
0 4791745 30624 1
1 1354004 4624
2 39624 261251 250
3 1624 39625 1
4 1 250 4375
5 1 249
6 1
d=6

ford=0,1,---,6 for the local half K3 model

Table A.4.: The GV invariants n?L’“Z;df for ny = 2 and d = 2,3, 4,5 for the local half K3 model

186

2j.\2jr | O 1 2 3 4 |5
2j.\2jr | 0 | 1 2 [3 0 186126 249
3876 1 4124 38877 1
248 2 249 4373
1 3 1 249
=2, d=2 4 !
nb:2, d=3
2jr\27r 0 1 2 3 4 5 6 |7
0 3884370 39374 1
1 225003 1287378 4623
2 43499 260503 250
3 249 4623 39623 1
4 1 250 4375
5 1 249
6 1
ny = 2, d=4
2i.\2jr 0 1 2 3 1 5 6 7 8
0 52369748 1357878 4375
1 5171499 22839873 300624 250
2 1587254 6304873 44248 1
3 39624 304749 1397006 4625
4 4624 44248 261498 250
5 1 250 4625 39625 1
6 1 250 4375
7 1 249
8
ny = 2, d=5
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Table A.5.: The GV invariants ™" for

model

JL.JR

A.4.3. The massive half K3

QjL\2jR 0 1 2
25\2jn 01 0 22\2jr [ 0] 1 3
0 1 1 1 0 36
8= 2p+2f, O22160), B = (2p + 2f,O01,240), L
(2p + 3f,04,17280), (2p + 3f,0O3,6720), 2 1
(2p + 4f, Os,60480), (2p + 4f, 0s,30240), B = (2p + 2f,00,1),

(2p + 5f,0s,138240)

(2p + 5f,O7,69120),
(2p 4+ 5f,0713440)

(2p + 4f,O04,240)

(np,d) = (3,3),(3,4), (4,4) for the local half K3

187

25 \27r 0 1 2 3 4 5 |6
0 30628 151374 248
1 4124 34504 1
2 1 248 4124
3 1 248
4 1
ny,=3,d=3
2jr.\27r 0 1 2 3 4 5 6 7 8 |9
0 3694119 11393622 252004 249
1 1434130 4880618 43498 1
2 39125 295005 1286881 4623
3 4622 43747 256377 250
4 1 250 4623 39374 1
5 1 250 4374
6 1 249
7 1
ny = 3, d=4
2i.\2jr 0 1 2 3 4 5 6 7 8 9 [10
0 3480992 7726504 212879 248
1 185878 1209127 3632614 38876 1
2 38876 251755 1030753 4373
3 248 4373 39125 217003 249
4 1 249 4373 35000 1
5 1 249 4125
6 1 248
7 1
ny = 4, d=4
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2ji\2jr [0 ] 1 [2]3 2j:\2jr | 0 | 1 2 134
0 163 1
0 38
1 8 52
1 1 9
2 1 2 1 9
2 + 3f,0 3 1
75, R Gl B = (2p + 3f,01,240),
(2p  +  4f,04,17280), ) s
(2p + 5f,06,60480) (2p + f, O3,6720),
o (2p +  5f,0530240)
0 606 9 0 619 9
1 44 237 1 1 a7 510 il
2 9 53 3 ) =
3 1 9 3 : -
4 1 7 .
B = (2p+ 3f,00,1), (2p + 5f,O4,240) B=02p+4f,022160), (20 + 5f, Ou,17280)

Table A.6.: The GV invariants nfL in for the classes 8 = (npp + df, O, ) with ny = 2 and
d < 5 for the massive local half K3 model

2j.\2jr | 0 1 5 T 3 74171576
0 2116 54
1 215 952 10
2 62 261 1
3 1 10 55
1 : 5
> 1
B=02p+4f,01,240), (2p+5f,O3,6720)
2jL\2jr | 0 1 2 3 T T 5 T6T7
0 6690 254 1
1 843 3378 63
2 299 1063 10
3 9 63 263 1
4 1 10 55
5 : 5
0 1

B=(2p+4f,Oo,1)
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272\2jr | 0 1 2 3 [ 4 [5]6]7
0 6717 256 1
1 859 3395 64
2 304 1068 10
3 9 65 265 1
4 1 10 55
5 1 9
6 1
B=(2p+5f,022160)
20\2r | 0 1 2 3 4 5 718
0 19999 1043 9
1 3067 11132 318
2 1267 3897 65
3 55 326 1096 10
4 10 65 265 1
5 1 10 55
6 1 9
7 1
B =(2p+5f,01,210)
2\2jr |0 1 2 3 1 5 6 [ 789
0 56468 3798 55
1 10059 34113 1344 10
2 4694 13033 328 1
3 264 1389 4046 65
4 64 328 1098 10
5 1 10 65 265 1
6 1 10 55
7 1 9
8 1

Table A.7.: The GV invariants n”°

2j1\2jr

2

0

1

B = (3p+3f,Os17280)
(Bp + 4f, O7.69120)
(3p + 5f,010,241920)

B=(2p+5f,00:1)

continued from table

JL.JR

25t\2jr | 0 | 1 2 3| 4
2\2r [0 1]2]3 0 7 30

0 1 6 1 1 8

1 1 2 1

B8 = (3p + 3f,036720) B = (3p 4+ 3f,022160)
(Bp + 4f,0660480) Bp +  4f,0530240)
(Bp + 5f,09,181440) (Bp  +  5f,0s2160)
(B3p + 5f,0s,138240)
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2i\%jr | O J1] 2 |3 |45 2\r | 0] 1] 2 [3 4] 5
0 36 119 1
0 37 129 1
1 8 43
1 10 46
2 1 8
2 1 9
3 1 3 I
B=Bp+3f,01,240), (3p+4f,O4,240),
’ ’ =Bp+4f,O4, , Bp+5f,0
(3p N 5, Or.15110) B=Bp+4f,Os17280), (3p+5f, Or,69120)
2502z ] 0 | 1] 2 | 3 [4]5]6 2502z ] 0 | 1] 2 | 3 [4]5]6
0 148 414 8 0 156 473 9
1 44 184 1 1 58 205 1
2 1 8 44 2 1 10 52
3 1 8 3 1 9
4 1 4 1
B = Bp + 3f,00.1) B = (Bp + 4f,036720), (3p + 5f, Os,60480)

Table A.8.: The GV invariants n

iR for some classes 8 = (3p + df, Op ) with d < 5 for
the massive local half K3 model

— 252z 0112 3 4[5
25:\2jr | O | 1| 2 ZJL(\)QJR 0 1 2 ;’ 4 0 23
0 1 1 : 1 1 7
B = (4p + 4f, O769120), 2 1
‘ — (p + 4f,0 7
(4p + 5f,011,138240) h (4p 1, Os.04s0) B = (dp + 4f, 05, 30240),

4 5,0
(4p + £, O10,241920) (4p +  5f, O 181410)

QjL\ZjR 0 1 2 3 4 516 QjL\QjR 0 1 2 3 4 5 6
0 35 84 1 0 36 92 1
1 8 35 1 1 9 37
2 1 7 2 1 8
3 1 3 1
B8 = (4p + 4f,O4240) B=Ap+4f,Os17280), (4p+5f, Os,138240)

2jL\2jR 0 1 2 3 4 5 6 2][,\2]3 0 1 2 3 4 5 6 7
0 148 318 8
0 37 102
1 7 50 154 1
1 1 9 38
2 1 9 43
2 1 9
3 T 3 1 8
4 5f, O, 1 !
= + s
g (4p 1, Os.2160) B = (4p + 4f,036720), (4p + 5f,0713140)

Table A.9.: The GV invariants nfLJR for some classes § = (4p + df, Op 1) with d = 4,5 for

the massive local half K3 model
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A.5. Data for C3/Zs;

In the following we give the data for the ambiguities (compare ([3.3.7)) of the propagator

and

11
1

12
1

22

1

11

2

12
2

2 11
> ’ A2 =
172’1 3422

(A5.1)

1=

= 325125 (5098564 486846322 + 14746848427 — 14811792023 + 4356000021

+14375782825 — 128802340521 25 + 323473930027 25 — 121632300023 2
—108900000027 25 + 16643070023 — 1438762500zlz§ + 11443500027 22
+1796498437527 22 — 820631250021 22 4 4920750025 — 4920750002, 25

—6682500002223 + 1234406250022 23 + 296156250007 ZQ) (A.5.2)

= 653250 (40041114 — 269282402z + 44555026427 — 4720392023 4 4356000021

+112333942825 — 790189690527 25 + 1369548805027 25 — 27582300027 22
—40837500027 25 + 1151127450z§ 747407250021 22 — 1461766500027 22
+10615335937523 22 — 1408443750021 23 + 29524500025 — 21323250002, 25

—90213750002% 23 + 5596593750025 23 + 2152406250002 22) (A.5.3)

2

130050021
+87776754032 — 4270817853021 22 + 4981985430027 25 + 704192700025 25
427225000027 25 + 7822024200z§ 316057950002 25 — 16864726500027 22
+53721900000023 22 — 1996256250027 25 4+ 177147000025 — 787320000021 25

—7053075000027 23 + 1968300000002 25 + 1445006250000 zQ) (A.5.4)

(314459289 — 14375623522, + 165152814427 — 73992023 + 435600002

—_— (16679528 — 1781364642, + 62991936827 — 75876384023 + 871200002}
32512522

+8287235129 — 10626871852 25 + 456746310027 22 — 493774350027 25
—35392500002 25 + 3785940025 — 45022500021 25 + 89794500027 23
+955996875027 25 — 3868762500021 25 + 1640250025 — 2095875002 25

1822500002223 + 313031250023 23 + 39656250002 22) (A.5.5)

650250 (14621188 — 1600692442, + 58418192822 — 73315584025 + 871200002

+439406451 2, — 463481668521 25 + 158588618502225 — 171621810002{&22
—21780000002% 25 + 32174415022 — 30791137502122 + 2111557500222
4711406250023 22 — 1061313750002 22 + 9841500028 — 9841500002, 23

—13365000002223 + 2160843750025 23 + 271687500002 22) (A.5.6)
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z9 .
22 = m(104928138 7708349847z + 160315668822 — 816447840z + 8712000022

+2925891801 25 — 223898374352; 25 + 4889242060027 25 — 2384055600025 22
—816750000z7 25 + 2607341400z§ — 176126400002, 25 — 2403108000027 23
+27052425000023 23 — 1735751250007 25 + 59049000025 — 42646500002, 25

—1804275000027 25 + 13648500000023 25 4 3984187500002 zQ) (A.5.7)
= 7( — 8049 + 4817221 — 6060427 — 1320027 — 22137325 4 13964852, 27
12752, A
—198852527 25 — 20625023 20 — 10935023 + 6682502 22 4 15187502722 — 956250023 22)
(A.5.8)
o= 555074 (5319922 — 17327221 25 + 11212427 25 + 1320025 25 + 146067323
—523003521 25 + 386452527 23 + 41250027 25 + 65610025 — 21870002, 25
—131625002% 25 + 202500002122> (A.5.9)
iy = A ( — 2258 4 164142, — 2292827 — 2640023 — 6231625 + 51799521 25
1098800272, — 3645023 + 3240002, 23 — 379687523 22> (A.5.10)
. 1
A = —— (17733 — 10602421 + 13376822 + 2640025 + 48689125 — 306522021 2
255021 A
+436955027 25 + 41250025 20 + 21870022 — 133650021 25 — 303750027 22
+20250000le2) (A5.11)
fly = EIEETN (424421 — 3725227 + 9430425 — 5280027 — 146972, 25 + 15266527 2,
—47235027 25 + 82500027 22 — 121502125 + 1417502725 — 2625002} 25 — 84375021 22)
(A.5.12)
. 1
i, = 5505 E (2936 — 2018821 + 2057627 4 5280025 + 7049725 — 58486521 2o
+119510027 2 + 7290023 — 648000z1z§) : (A.5.13)

Any other combination of indices follows by symmetry.
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A.5.1. The Gopakumar Vafa invariants

Here we list the refined Gopakumar Vafa invariants that can be read off from the prepotential (3.4.2))
and the refined free energies at genus one (|5.5.22)).

dy 0 1 2 3 4 5 6 7 8
do
0 3 -6 27  -192 1695  -17064 188454 ~2228160
1 2 4 10 64  -572 6076 -7T1740 909760  -12146622
2 0 3 12 91  -980 12250  -166720 2394779  -35737460
3 0 5 12 108 -1332 18912  -280440 4632120  -76306398
4 0 7 -24 150 -1808 26983  -443394 7665776  -136440800
5 0 9 56 204 -2082 42005  -689520 12254816  -227540162
6 0 11 -140 675 -5992 76608 -1192644 20764870  -386343036
7 0 13 -324 1738 -13550 158814 -2322056 38750866  -703362386
8 0 15 -686 4732 -33552 359808 -4954570 79050699  -1387505216
di 0 1 2 3 4 5 6 7 8
d2
0 -4 35 -386 5161 -74368 1117672 -17319898 274571953
1 1 -4 45 -750 13174 -235148 4227874 -76326692 1381543835
2 0 -4 46 -900 19554 -420472 8861756 -183661746 3754800426
3 0 -20 46 -944 23394 -578872 13923300 -325336476 7413730499
4 0 -56 164 -1370 29417 -750734 19452681 -494871808 12281325148
5 0 -120 643 -3602 51118 -1121972 28252291 -735181136 19077844392
6 0 -220 2522 -11456 121392 -2132580 47798426  -1186598986 30575571450
7 0 -364 8526 -41314 340762 -4920912 95935665  -2184901598 53716745464
8 0 -560 24835 -154752 1078545 -12985696 220762885 -4561068642 105019097003
d 0 1 2 3 4 5 6 7 8
da
0 0 0 -10 231 -4452 80948 -1438086 25301295
1 0 0 0 -18 576 -13968 305244 -6329628 127275876
2 0 0 0 -24 896 -25636 650852 -15418734 349139480
3 0 0 0 -28 1152 -37032 1056780 -27964428 701652588
4 0 0 0 -30 1407 -48966 1515448 -43561508 1185905652
5 0 0 9 -66 2061 -68908 2174157 -65084016 1863846681
6 0 0 68 -280 4500 -119124 3489856  -102704154 2969225052
7 0 0 300 -1410 13413 -261576 6617379  -181806634 5100476481
8 0 0 988 -6760 48183 -695664 14702120 -365286402 9681953781

Table A.12.: GV invariants at genus 0 (top), (1,0) (middle), (0,1) (bottom).

193




A. Appendix

A.6. Conventions of A/ = 1 actions and dimensionful constants

For reference in the main text, let us briefly introduce our conventions for the four-dimensional
N =1 effective action used in this work. The action takes the general form

1 1 _ o1 1
S/(é)zl = — /R(S 1)(_§R*1—KMNVMMA*VMN—iRefABFA/\*FB—§1mfABFAAFB_*V) .

K
(A.6.1)
Here we introduced the four-dimensional graviational constant, the four-dimensional Ricci-
scalar R, a number of chiral superfields with scalar components M* that are the coordinates
of the Kahler manifold of scalar fields with Kahler metric K,y = 81\/1?;% and a number
of vectormultiplets with field strengths F4 with gauge kinetic function f4p of the chiral
multiplets M. By x we denote the four-dimensional Hodge star operator and V is the

scalar potential that consists of the F-term and D-term scalar potential, V = Vp + Vp for
v = 1
Vi = e (KMNDyWDyW = 3|W[*), Vp= §Ref_1ABDADB. (A.6.2)

We introduced the superpotential W that is a holomorphic function of the chiral superfields
MM as well as the N' = 1 covariant derivative Dy; = O + Kas

In the course of deriving this action from String/M-/F-theory it is furthermore useful to
introduce our conventions for the String, ten- and eleven-dimensional Planck scale as well
as their relation to the D7-brane tension and the four- and three-dimensional Planck scale.
These conventions were originally used in [150]

-2

2 3
K11 = Rip = Ry

=hy?=2m=py=Tr. (A.6.3)

A.7. Linear multiplets and gauge couplings

Let us begin with the dualization of the chiral multiplets with complex scalars T, into linear
multiplets. More precisely, if ImT,, has a shift symmetry it can be dualized into a two-form
C$, which together with ReT,, forms the bosonic components of a linear multiplet [169]. To
actually perform the dualization we collect all terms involving ImT,. First we turn to the
kinetic terms for the T,. These are determined by the four-dimensional K&ahler potential
[146]

K = —log(t — 7) — 2log(V(T + T)), (A.7.1)

where V is the volume of the Calabi-Yau threefold Z3, which considered as a function of Ty,

is independent of 7,7. The metric for all complex scalars M; = (7,Ty) is given by K; =
82
anéMj
mixing terms between T, and 7.
Next we note that in (9.1.7) the imaginary part ImT,, also appears in front of the theta-
angle term Tr(F A F') in the non-Abelian gauge theory. In this case we perform a partial
integration and write

K. We note that the structure of K at this order implies that there are no kinetic

4 2 2w
0 o = —5 [ ImT, T(FAF) =T | S§dImTa Awes . (AT.2)
My My
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A.7. Linear multiplets and gauge couplings

which holds up to a total derivative, and we have defined
wes =ANdA+2ANANA. (A.7.3)

One can now eliminate G, = dImT,, in favor of its dual dC5. We formally achieve this by
adding the Lagrange multiplier

@

Wo=or [ Gandcs. (A.7.4)

My

and eliminate G, by its equations of motion. First we evaluate the equations of motion
yielding B
Gs=—1KDTBxHY,  H§=dCS + L6wcs (A.7.5)

where we have introduced the modified field strength H§. Then we rewrite the relevant
effective action including (9.1.2)), (A.7.2)) and (A.7.4) in terms of G, = dImT, and eliminate
Go by using (A.7.5). Inserting this into the above action we obtain

S = 2n|  KasHS§ AsHS + LKOPdReT, A #dReTy — Kordr A xdr
’ M4

— AR FAAFE — ARefagFA N +FP . (A.7.6)

In order to bring the kinetic term for C§ in the canonical form we have in addition used the
Legendre-transformed dual Kéhler potential of (A.7.1)) given by [146)]

K(7|L) = K + L* ReT, = log(: L“L° LK 3,) — log( — 7) (A.7.7)
for the Legendre-transformed dual variables

oK Ve oK
LOé = — = — Ta = —
dReT, v e Lo

(A.7.8)

that was defined in [146] to dualize the real part ReT, of the Kahler moduli to the scalar
component of~ different linear multipletSE Essentially we exploited here the basic relation
KTaTﬁ = —%K @B which is an immediate consequence of the general relations of Legendre

transformations (A.7.8)).

We conclude the discussion of the four-dimensional effective action by noting that C$ has
to also transform under a non-Abelian gauge transformations A — A+dA of the vector fields
as C§ — C$ — £63Tr(A F) to ensure invariance of H§ introduced in (A.7.5). Furthermore,
the field strength H$ obeys the Bianchi identity dH§ = %5@ Tr(F AF).

LThis is not to be mixed up with the dualization of the imaginary part ImT,, performed in this section. In
particular, the two-forms D$ [146] forming the linear multiplet together with the L* are different from

the two-forms C2 defined in (A.7.4).
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A.8. Details of T' N,

In this appendix we review some details of the geometry of multi-center Taub-NUT space,
T Nj. We start with the discussion of one monopole, T'N;. The metric is given as

1
ds2n = ldt+ U)?+Vdi*, (A.8.1)

where t denotes a periodic coordinate on an S! and 7=(z, y, z) three-dimensional Cartesian
coordinates on R3. The circle is non-trivially fibered over R3. The function V and the
Sl-connection U are related by

x3dU = +dV7 (A.8.2)

where *3 denotes the Hodge star operator on the base R? with standard orientation. The
+-sign will lead to a self-dual respectively anti-selfdual two-form €2 as introduced below in
(A.8.6)). Note that the closedness of dU requires V =1+ V; to be harmonicﬂ (A.8.2)) is
solved by

A U=+

_ A TA(_ 4. AyTdy—ydr A
Vl_4ﬂ'|ﬂ’ 47‘('( )

G B

w2 +y? 4w

where we have also introduced cylindrical coordinate with |7] = \/p? + 22 for p € Ry,
¢ € [0,27], z € Ry. ry can be thought of as the charge of the monopole, but more
importantly in our context is its interpretation as the circumference of the S'-fiber at
infinity, as discussed below. We note that the term Fdp in U is an integration constant,
that is not fixed by the condition *x3dU = £dV; but by the condition of smoothness of U,
i.e. the absence of a Dirac string. Indeed, the one-form U in is only a local one-form
representing the global connection of the Dirac monopole in a coordinate patch. To see this
note the presence of the Dirac string, that is the locus where the local expression U is not
well-defined. In cylindrical coordinates since dy is not well-defined at p = 0, in order to
have a well-defined one-form containing dy its pre-factor has to vanish on the locus p = 0.
However the pre-factor of dy in the one-form U in vanishes only on the positive
z-axis for the choice of integration constant —1 and U is ill-defined on the negative z-axis.
This is precisely the Dirac string. Thus, U is only a local one-form well-defined only on the
positive z-axis and one has to introduce at least one further patch and with another local
one-form that is required to be well-defined on the negative z-axis. Thus, one introduces
the two patches Us and the corresponding connections denoted U* reading

(—1+ %)d% (A.8.3)

U, = {(rne2)]0<zt: UF=+2(1+——dyp,
4m P2 + 22
U- = {(rg,2)|2<0}: U =+2¢ : (A.8.4)

\/m)d(P?

that differ only by the integration constant in the dyp-component. They are related by the
gauge transformation UT = U~ F 52dp. In particular we note that U * vanishes precisely
on the positive (negative) z-axis and thus can be glued together to form a smooth global
gauge connection.

47

2 Actually we consider fundamental solutions V with AV; = §3(7) in the distributional sense.
3We note the spherical symmetry of the one-monopole configuration with U = +72 (=1 + cosf)dy in
spherical coordinates. We use cylinder coordinates to prepare for the discussion of appendix
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A.8. Details of T Ny,

Consequently, in order for the metric to be gauge invariant, i.e. the term dt + U to be
globally defined, the coordinate ¢t has to compensate this gauge transformation and cannot
be globally defined either. Thus we have to introduce two coordinates t* on U4 that are
related by the gauge transformation

TA
27

where the sign 4+ again refers to the choice in and we inferred the periodicity of ¢ as
¢ is identified modulo 27 [I70]. Thus we see that the parameter 5 sets the circumference
of the S' at infinity, |7] — oo, as the potential V' — 1 in the metric (A.8.1)). It is important
to emphasize that only with this circumference we have a globally well-defined S'- fiber
radius.

th=t"+ ¢ = t~t+ra, (A.8.5)

Next we comment on the smoothness of TNy, where we assume x3dU = +dV; for this
paragraph to avoid confusion. In fact the singularity of V' at the origin is just a coordinate
singularity. In spherical coordinates one can expand the metric around the origin
using V' ~ V; and the coordinate transformation ¢* = ||, ¥ = —74(¢) + ¢) to identify
it near the origin as the flat metric on R* iff 4 has period 47. This metric is obviously
smooth. We note that in the case of multiple monopoles TN, discussed next, the space
is still smooth for generic positions of the & monopoles, however, develops a deficit angle
27 /k, i.e. locally becomes R*/Zy, for k coincident monopoles.

We conclude the analysis of the T'N; geometry by analyzing its (co)homology. Depending
on the sign in (A.8.2)) TNy admits a selfdual (sign +1) respectively anti-selfdual (sign —1)
two-form that is locally given by

1 /W
Q=dy=—d(Hdt+U) - U). A8.6
= —d(y(dt+U) (A.8.6)
As the one-form U is not globally defined as pointed out in (A.8.4)), the one-form 7 in turn
is not a global form and thus {2 is not a globally exact form. On the two patches Uy the
two local one-forms denoted 1™ are given by inserting U* defined in (A.8.4) into (A.8.6)
yielding
+_ 1 /(N +
n=—|—=dt+U)-U" ), (A.8.7)
ra \V

where we used that the term dt 4+ U is a global one-form by virtue of (A.8.5). It further

holds the normalizationfd

/QAQ—iL (A.8.8)

4The sign of the Q2 can be obtained for any (anti-)selfdual Q since QAQ = £QA*Q, but J QA *Q positive
(negative). We can also switch between a self-dual and anti- selfdual form by changing the orientation
on R3,
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Furthermore we note the limitP]
1 -
QANQ — j:2—5(p)5(z)dt NdpNdp Ndz, for rpA —0, (A.8.10)
T

where we have introduced a new coordinate £ by ¢ = t/rx. That identifies Q A Q as the dual
of the origin in R? for r5 — 0.

The results of the one-monopole geometry carry easily over to the multi-center case,
denoted T'INj. For this one makes the multi-center ansatz

V=1 Vi, U= U Vi dUr = dV] A8.11
+Z I Z o Vi= 47T|r prr e L L T ( )

where 77 denote the positions of the k¥ monopoles. The connection U is defined as the sum
of gauge connections U; constructed for each monopole I along the lines of . To
write down an expression for the connection U in local coordinates is a bit subtle due to the
dependence of the integration constant in dV; = x3dU; on the choice of coordinate patches
covering T'Nj. As in we have use two patches around each of the k monopoles with
corresponding local one-forms UIi in order to avoid a corresponding Dirac string. Placing
the I-th monopole at the origin, we identify UIjE = U? as defined in . Then, in
writing down U = ), Ur at a given point on T'N}, we have to decide for each connection
Ut separately to either use the local one-form UIJr with integration constant —1-dy or U
with 1 - dp. Thus, adding up the respective integration constants of the U; the integration
constant in the local expression for U can take any value between —k-dy and k-dp depending
on the point on T'Ny. [f]

In contrast, the combination dt 4+ U is again unique since it is globally well defined by
virtue of the condition around each individual monopole. This then implies that in
order to get a smooth solution all monopoles have to have the same charge ra.

The multi-center solution T'Ny admits k two-forms locally defined by

1V
Or = diy = ad(v(dt YU - UI) , (A.8.12)

where the two different signs in *3dU; = +dV; yield (anti-)selfduality. They obey the
relation

/ Qr ANQy = =+675. (A813)
R3x.S1

5To prove that we use the following mathematical statement. Let (fj)jen be a sequence of positive functions
defined on R", s.t. fRn fi(x)dz = 1V j. Furthermore f; converges uniformly to zero on any set 0 < a
< |z| < 1/a, for any a > 0, then f; — ¢ in the distributional sense. This can be seen by recalling that
uniform convergence means convergence in the maximum norm and it is easy to see that

s = s (A.8.9)
[7lefac0] (|F] + 72)3  (a+ 72)3 J 8.

which establishes the desired result.

5To illustrate this further, let us define a patching of TNy by drawing k two-dimensional planes in R®
through each of the k monopoles so that no other monopole is contained in the same plane. For each
monopole this defines a partial order by what we call “above” and “below” the corresponding plane in
R? and we accordingly assign UE‘L =~ %, Then for every point in TNy we know whether it lies above or
below the I-th plane and can thus write down the local expression for U by adding up the integration
constants F1 of the individual U;t.
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Indeed, we can choose coordinates such that the I-th monopole is centered at the origin
and that the two-plane z = 0 does not contain a different, K-th monopole, K # [ m
This allows us to identify V; and U; with the one-monopole connection of TNy in (A.8.3).
Then we introduce spherical coordinates and the coordinate patches of and identify
U;E = U®. Since the coordinate patches Uy are just the upper and lower halfspaces of
R3, z < 0 respectively z > 0, they share, though with opposite orientation, the common
boundary H given by

H={(r,p,z=0)}. (A.8.14)

By virtue of Stokes’ theorem we may pull the integral of any exact form to this boundary
H. Then we evaluate (A.8.13)) taking into account the opposite orientation of H,

1
/Q[/\QJ:/ (T];r—n;)/\QJ = :|:/ —dp ANQy (A.8.15)
StxH Stle27T
o q 00
- i// LI ACING L) R

where we first used with and then integrated dt over S}. In the last step
we exploited that V/V vanishes at p = 0o, as V' — 1 while V; — 0, and vanishes at p = 0
as well except when Vj; = V; yielding V;/V = 1, since the pole Vi — oo cancels precisely
the pole V — oc.

We note that the area of the two-cycles S; spanning Ho(T N, Z) introduced in

reads .
Ti+1 1 1
/ volg, = / / VeV 72 = rplf — Tiga] (A.8.16)
S; St J7;

The forms @; = € - Qi41, e =1,...,k — 1, spanning its Poincare dual fulfill the following
conditions

/(:Jl‘ A @j = :ECZ']', / wj = :ECZ'j , (A.8.17)

K3

again depending on (anti-)selfduality of €2;. The first statement is clear due to (|A.8.13]).
For the second one we calculate
Tig1
. (A.8.18)

Vi
wj = N = Nj+1 = | =
/Si ! /asi ! ! (V ﬂ

A.9. Details of TN;*

a1 Vj+1

V

_
Ti

The metric of infinitely many Kaluza-Klein monopoles placed with equal spacing rg along a
straight line in R3 is again of the from . Moreover due to the cylinder symmetry of the
setup it is convenient to introduce cylindrical coordinates p = \/x2 + y2, ¢ = arctan(y/x)
and z being a coordinate on the axis along which the monopoles are aligned. After forming
the quotient z ~ z 4+ rg we denote this space by T'N7°. The potential V reads

. TA ! A
V=1+ (Z N/ eER T ZrBMl)' (A.9.1)

LeZ LeZ*

"We demand that the plane z = 0 contains no other monopole although both Q; and 7; are well-defined
at ¥ = 7rxk.
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We note that V' is now a harmonic functiorﬁ on R? x S' due to the periodicity along the
z-axis. Thus we can view the geometry of T'N7° as a single Kaluza-Klein monopole on
R? x S!, treated as an image charge problem on R3. The last term in is a regulator
that assures the convergence of the sum. Note that the precise form of the regulator
can be modified by any finite constant. The corresponding connection U = ) ; Uy with
x3dUs = dV7 is given on the patch z € [0,rp][ as

TA z—frp
U=—|-1+ dyo, A9.2
A7 ( Z\/p2+(z—€r]3)2> v ( )

LEZ

where —1 - dp is a choice of integration constant so that U is regular on [0,rg[. In fact,
treating T'NT° as an image charge problem there is a Dirac string for every monopole at
77 = (0,0,¢rp) as in appendix Again dy is ill-defined for p = 0 and so is U unless the
coefficient of dy vanishes. Evaluating U in at p = 0 we have chosen our regularization
such that for z € [0,rp],

—frg
Z\/,0 +

(z — brp)?

= Z sign(z — frg) =1 (A.9.3)
=0 l

and U = 0, i.e. well-defined. However, when considering for instance z € [rp,2rp[ we
evaluate, in the same regularization ) ,sign(z — ¢rp) = 3 and the one-form U in is
ill-defined. Thus, we introduce patches U,,, n integer, that cover the z-axis in increments of
rg and local one-forms U™,

B ‘ n  TA z—4{rp
Z/{n_{<p79072)‘nTB§Z<(n+1)TB} . U _47r<_1_2n+z 2 _ )2) dQD

The U™ are well-defined on U, and related by the gauge transformation U+ = U™ — sadp.
In other words, when crossing the lines z = nrp from below (above) we have to change
the integration constant in the local one-form by —2dp (+2dp). It is important to note,
that U in descends to a one-form which is well-defined along the whole S* of the
compactified z-direction, z ~ z + rp.

In order to get a better understanding of V' and U we perform a Poisson resummation of
these two quantities. Recall that a Poisson resummation relates a function f of period one
and its Fourier-transform f(k = [% f(x)e 2™ dy via [I58]

> FR)eTR =" f(a+ k). (A.9.5)

keZ keZ

The Fourier-transform of f(z) = 21 = is f(k) = 2Ko(2mpk), which is the zeroth modified

Bessel function of second kind and shows the following asymptotic behavior near zero,

N

1
Ky(x) :—logg—’y, x— 0, 7—]\}gnoozg—logN, (A.9.6)
k=1

8 Again we have A3V = §*(7) in the distributional sense.
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where v is the Euler-Mascheroni constant. We now plug f(z) = 22 L_ with p= £

and 2 = = as well as fk) = 52 Ko(27plk|) into (A.9.5) and obtain

47T7’B (Z \/ﬁ gezz* g’)
% (Z Ko(2mp|e])e*™ ™ + Ko (0) — Z%) (A.9.7)

LeZ* £>0

vV =

The right hand side contains two divergent terms, Ko(0) and >, %. We therefore have
to take a suitable limit to get a finite result by considering and calculating, using (A.9.6)),

N N .
TA .. 21 pH 1 TA 1 p
1 (K - 7) - I ( log 22 — ) - log(2),
QWTBNE)IIOO 0( N ) ;E QWTBNE)IIOO OgN T 26 27’(7“]3 Og(A)
(A.9.8)
where A comprises all constants including an eventually shift in the regulator term. For the
concrete regulator in (9.2.11)) we have A = 1/(me??). Finally we obtain

TA p . .
V=1t 15— (log £-2 3 Ko(2mpl)cos(2n(2) ).
+ o 2 JFIET m 2 i) =13y (085 2 Ko(2mpOycos(2m 9)
(A.9.9)
Similarly one can also perform a Poisson resummation for the connection U, which is given
by

U=-2 (A.9.10)

CYEEES piu LN

for 0 < 2 < 1. Using that the Fourier transform of f(Z) = \/% reads f(k) =
pP+2

2ipsign(k) Ky (27p|k|) we can perform a Poisson resummation for the connection as well,
finding naively

U:l§<—1+%ﬁ2}gﬂ@Kﬁ%ﬂak%W)w. (A.9.11)

47
LET

Note that the contribution £ = 0 is again ill defined. We recall that
1
Ki(x) ~ —, r < 1L (A.9.12)
x

This enables us to regularize the ¢ = 0 contribution, i.e. sign(¢), as

(14 2mil2) —ip— (1 — 27rz'€2)) — 3. (A.9.13)

lim 1( 1
1o\ "o ol

We finally obtain

U= —% (1 +2:4+4pY) K1(2ﬂﬁ€)sin(27r£2))d<p . (A.9.14)
>0

Note that this is cohomologically equivalent by adding a term proportional to d(Z¢) and
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dy yielding
_r

U27r

o TA ~ NN ~
od2 + o ( — Qp; K1(27Tp€)sm(27r€z)>d<p . (A.9.15)

As in the non-periodic case, one can easily generalize to the multi-center case T'N.°.
We restrict ourselves to the case that all monopoles are located at ([) =0,z = 21)

I=1,....k’
i.e. we consider k periodic chains of monopoles that are shifted among each other. The
corresponding re-summed potentials and connections are given for I = 1,...,k and 2 €
(21,21 + 1] by

v, = A (10g Py > Ko(2mpl)cos(2ml(z — :21))) (A.9.16)

21y A ’

£>0

TA PN A~ Ao\ e A

Ur = ~in <1 +2(2—-21)+ 4,02 Ky (2mpl)sin(2ml(z — 21)>dg0, (A.9.17)
£>0

that obey x3dU; = —dV7. Generalizing the patches of (A.9.4) to k& monopoles as
U (D) ={(p,p,2)In+ 21 <zZ<Zr+n+1}, (A.9.18)

we can construct local one-forms Uj for other values of Z by changing the integration
constant by £2. In direct analogy with (A.9.4) they read on U, (I) as

U = =720+ 20+ 2(2 = 2) + 45 K1 @mpl)sin(2rt(2 - &) de (A.9.19)
>0

Analogously to (A.8.12)) the space TN ° also exhibits k anti-self-dual two-forms given by

o _ oo L Vi
I —dm—md<v(dt+U)—U[>. (A.9.20)

The expression for the local one-forms n; depends on the coordinate patches U, (1), i.e. the
value of Z, through the dependence of the U} in on the coordinate patch. The
local one-forms are denoted 7}. The combination (dt 4+ U) for U = ) ; Uy is again globally
defined by appropriately defining local coordinates t.

We would like to check that the relation
/Q?o A QZO =017 (A.9.21)

still holds in the periodic case. First we center the I-th monopole at the origin (p, ¢, 2) = 0.
Then we use as in the one monopole case the exactness of Q7° on the patches U, (1)
of . Since we eventually work on the quotient Z ~ Z+1 we integrate over the interval
z € [0,1], but have to keep in mind that the integration constant in Us jumps by —2dyp
when 2 — 1 from below. As mentioned earlier the boundaries of 2 € [0, 1] representing S*
are simply

H={(p,p,2=0)}, (A.9.22)

with opposite orientation, respectively. We readily perform the pullback of the integral by
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Stokes theorem as

1
/QI/\QJ :/ (n}—m?)AQJ:/ 2—d<pAQJ
SIxH SixH «T
1V
= // L1
Stl 0 TA V V =0

Here we used the local expression (A.9.19)) and (A.9.20) to evaluate 77} — n? ~ 2dp in the
second equality and exploited the behavior of V;/V at p = 0,00 as for TNy to obtain the

last equality.
We conclude by representing any metric of the form (A.8.1)) in terms of Vierbeins e; [170]

= —8;7. (A.9.23)

e’ = \}V(dt +U), e =VVdd', i=1,23. (A.9.24)
Vierbeins make it particularly easy to evaluate the Hodge star x4 on Taub-NUT with any
number of monopoles by specifying the orientation by the volume form as € A el A e A e3.
Then it is straightforward to check for instance the (anti-)selfduality of Q; respectively Q7°

noting that

Qr = (1 £ %) (%dU - dU1> . (A.9.25)
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