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Abstract

We study a new mechanism for hadronic helicity flip in high energy hard exclusive
reactions. Its fundamental feature is the breaking of rotational symmetry of the hard
collision by a scattering plane in processes involving independent quark scattering. An
important role is played by “chirally-odd” light-cone valence wave functions which carry
non-zero orbital angular momentum and yet are leading in the high energy limit. There is
no substantial suppression of the helicity violating process compared to helicity conserving
ones as the momentum transfer Q? is increased over the experimentally accessible region
1GeV? < Q? < 100 GeV?2.
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1 Introduction

The theory of hard elastic scattering in Quantum Chromodynamics (QCD) has evolved
considerably over many years of work. A well-known procedure using the“quark-counting”
diagrams has been given by LePage and Brodsky!). A consequence, and direct test, of the

factorization defining this mechanism is the hadron helicity conservation rule:
A+Ap=Ac+Ap, (1)

where the A;’s are the helicities of the participating hadrons in the reaction A+ B — C+D. In
general, the sumofthe helicitiesofhadrons going into a reaction equals the sum going out, when
one uses the quark-counting factorization. The fact that this rule is badly violated in almost
every case tested leads one to suspect that another power behaved process causing helicity
flip is present. In fact the “independent scattering” subprocess, introduced by Landshoff, is
actually the leading process at very high energies.

We have shown? that the independent scattering mechanism predicts high-energy helic-
ity non-conservation. Adopting a transverse position space formalism introduced by Botts
and Sterman®, we show that the details rest on non-perturbative wave functions that should
be measured rather than calculated. These wave functions measure non-zero orbital angular
momentum not taken into account by short distance expansions. We argue that the novel
factorization properties of independent scattering processes cannot practically be reduced to
the same ingredients used in the quark counting scattering. In any case, it is not necessary to
flip a quark helicity: the new mechanism proceeds unimpeded in the limit of arbitrarily small

quark mass and perfect chiral symmetry in the hard scattering.

2 Wave functions

In general, quark wave functions themselves are not particularly restricted in orbital angu-
lar momentum content, even in the high energy limit. For example, in the pseudoscalar meson

case there are four wave functions allowed by parity symmetry,
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where P,’s are functions of the light-cone momentum fraction z of the valence quark and of the

’Paﬁ(x>bT; P)

quark spatial separation b7. The Pi,-term scales with the same power of the “big” momentum
pt as the Po,-term, which is an SO(2) s-wave. Since the P;,-term has a by factor, which can
be written in terms of br ; £ ibr y, this term carries one unit of orbital angular momentum. In
terms of power counting, then, the m = 0 and m # 0 amplitudes can be equally large.

In the case of vector mesons, isolating the dominant high-energy tensors which contain one

power of the large scale p*, we get for a longitudinally polarized p

P(z,brip,h = 0) = (Pop + P [#.41]) (3)
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and for a transversely polarized one
P(a,br;p, || = 1) = (Po¢n, Al + Prenbrp+ Pilgn, Albr + Paenbr[p,hr]) - (4)

Let us stress that wave functions are not objects to be derived in perturbation theory, but
instead represent the long-time non-perturbative evolution proceeding inside a hadron. The
non-perturbative Hamiltonian of QCD does not conserve spin and orbital angular momentum
separately, but instead generates mixing between orbital and spin angular momentum. Thus
if a non-zero orbital angular momentum component somehow enters the hard scattering - and
this is a crucial point - then the long-time evolution before or after the scattering can convert
this angular momentum into the observed hadron spin. Because it is not necessary to flip a
quark spin in the hard interaction, such a mechanism is totally consistent with the impulse
approximation of perturbative QCD.

The challenge in high energy hadron scattering is therefore to find those large Q? processes
in which non-zero orbital angular momentum enters, or in other words, to find those which are
not “round”. It turns out that in any treatment relevant to current energies the independent
scattering process is not “round” but instead “flat”, showing an extreme dependence on the

scattering plane.

3 (? Dependence of Helicity Non-conservation

Here we are concerned with the leading order description of helicity violating terms. Thus,
we will consider Por-type and P.-type amplitudes on an equal footing. A crucial step is to
elaborate a factorized form for the scattering amplitude, regarding radiative corrections. While
the factorization of Ref. 1) does not apply, it is trivial to generalize the results of Ref. 3) to
the case of the helicity-violating Dirac projections. A leadingapproximation to the soft region
rearranges these corrections to obtain the following expression:

V2Q
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where the hard amplitude ¢ and t’ are evaluated at respective scales z@ and (1 — z)@ which
are assumed to be large (Q = \/ﬁ) Large logarithmic corrections to the process, with the
coexistence of the two scales ) and 1/b, are resummed in U, in such a way that P() is a soft
object, i.e. the non perturbative object necessary to connect short and long range physics. To
evaluate the integral defined in Eq. (5), we approximate the Sudakov factor by its dominant

expression at large @

InzQ/A InbA
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U(z,6,Q) ~ exp—cln N [ln( T bA ) 1+lnIQ/A}+(zH1 z), (6)
withc=4i#:32/27forn]:3.
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The helicity conserving hard amplitude is

(11")4 256g* s(s? — 3tu) + t2u?(s® — tu)
ao =\ & 1

6/ z2z2s? s 2u? (7)

there are no b' or ° terms, due to the odd number of 4 matrices. The first potentially helicity

violating term is the amplitude a,, containing a b* factor, which is found to be

4 4 402 _ 43,3

wer () B0
Insertingthe hard parts a; in Eq.(5), we get a value A;(Q, 0) and perform theratioof amplitudes
R2 = A3/ Ao. Results for our computation are displayed in Fig. 1. Normalizing arbitrarily the
ratio to 1 at /s = 2GeV and 8 = 90°, we observe that R, decreases by a factor between 7 and
10 from /s = 2GeV to 20GeV. This is not much suppression. We have shown? that various
effects are likely to wash out even this suppression; this is represented by the shaded area in

Fig.1. The angular dependence of R, is simply given by the ratio az/a.

5 10 15 30 /5 (GeV)

FIG. 1: The energy dependence of the R, ratio (thick line) and its naive 1/Q? behavior (thin
line). The shaded area indicates theoretical uncertainty. The ratio is normalized to unity at 2 GeV.

We are now able to consider an helicity violating process, namely nn — prpg. It is easy
to verify the vanishing of the hard amplitude using the s-wave components of the external
mesons. The first non zero term is a 4> hard amplitude M, and the computation leads to

(Zr.)“ 128g* ,, [16(3s? — Ttu)
2232422 3

M (mm — prpR)

P A AP
6 Pl Poo — ?POWPIp

+

t3 3
8—3—1:PgrP0p'P2p = 16(s” ~ 3tw)PoxP1xPo,Ps,

t3u3 t%u?

3l
A PLPyPoy + 4(s = Btu + — — 2?)?’3,7’3’,} - (9)

+

This amplitude M, has to be supplemented by U (Eq. (6)) and integrated over b and z.
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Although this combination involves several unknown objects, notice that the angular de-
pendence varies from one component to another. Therefore, it may be possible to analyze the
contribution to helicity violation processes from different wave functions and use this informa-
tion to deduce properties of the wave functions.

The energy dependence of this double helicity violating process at accessible energies can
be derived as discussed above. The naive 1/Q? factor is replaced by a milder suppression, due
to the details of the independent scattering mechanism supplemented by Sudakov effects. At
very large energies a Q=110 ratio is obtained.

Including baryons is a necessary but quite intricate further step. The helicity density
matrix of the p meson produced in mp — pp is a nice measure of helicity violating components.
Experimental data?) yield p,_; = 0.3240.10, at s = 20.8Ge V2, 6car = 90°, for the non-diagonal
helicity violating matrix element. Without entering a detailed phenomenological analysis, we
may use our results via the following line of reasoning. Assuming that the presence of the third
valence quark, which is not subject to a third independent scattering, does not much alter the
results, one views p,_; as coming from the interference of an helicity conserving amplitude like
7m — prLpr with a double helicity flip amplitude like 7m — prpr. We then get an energy

dependence for this matrix element similar to the one of R, in Fig.1.
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