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An error occurred during the production process. In equation (4), there are two integral signs, but only the first
should be present. The e2∣ ∣ (with absolute value bars on both sides of the electron charge symbol ‘e’) should be to
the left of the integral sign.Hence, the printed equation
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Abstract
Magnetic effects on free electron systems have been studied extensively in the context of spin-to-
orbital angularmomentum conversion. Using a quantum field theory framework, we derive a similar
relationship in the non-relativistic limit for the energy of electronswithmomentumdirected along the
axis of a spatiotemporally constant, weakmagnetic field. For a single electron the expectation value of
themaximum energy shift, which isfixed by our defined chirality index of the electron state, is
computed perturbatively tofirst order as∼15%of the electron restmass. This effect is orders of
magnitude larger than that predicted by the quantummechanical Zeeman shift.We then show, in the
low-mass approximation, an analogous conversion between energy and chirality for a systemof free
electrons and suggest possible experimental tests of this phenomenon in electron states encountered
acrossmultiple physics disciplines.

1. Introduction

After repeated inconclusive attempts to polarize free electrons following the theoretical developments by Bohr,
Pauli, Dirac, and others in the 1920s, a team led byCGShullfinally confirmed positive detection of the free
electron polarization in 1942 [1]. Recently, the effects of amagnetic field on the free electron spin have been
computed [2] in the framework of quantumfield theory (QFT), suggesting potential applications for spin-to-
orbital angularmomentum conversion in spintronic devices and electron vortex beams [3]. Originally
considered in the context of the Schrödinger equationwith phase vortices, analysis of the scalar Klein–Gordon
andDirac equations [4] has shown that such beams carry intrinsic orbital angularmomentumwith quantized
helicity that behaves similarly to the spin of amassless particle, even for non-relativistic electrons. Thework
described in this paper ismotivated by the rich history in condensedmatter and particle physics of extending
quantummechanical results by application ofQFT. Taking the field nature of fundamental particles into
consideration can produce drastically different theoretical predictions thatmay explain exotic quantum
phenomena atmany scales. In particular, our studymakes use of the fact that inQFT spin is precisely defined at
the outset as a function of the quantumfields, rather than arising in quantummechanics as an ad hoc addition to
the orbital angularmomentum. Starting from the expression of the spin = =


( ) ( )S S S S S S S, , , ,1 2 3

23 31 12 in
terms of thefields, withψ(x) a function of the four-vector =

( )x xx ,0 , we have

ò y g g y= ( ) ( ) ( )†S d
i

x x x
2

, 1ab a b

and the complete expression for the spin shift caused by the time-independentmagnetic field [2] is given by

ò rD = ´
    ∣ ∣ [ ] ( )S e dx A , 2A E

where

A is themagnetic vector potential and r y gy=

 †
E

i

me
. Here g g g=m ( ),0 are the conventional gamma

matrices in theWeyl (chiral) basis.
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2. Background

The purpose of the present letter is to compute the analogous effect on the energy of a free electron state.With
this aim, we shall begin from the explicitlyHermitian expression for theHamiltonian of a free electron, given in
terms of the four componentsψ1,ψ2,ψ3,ψ4 of the electron fieldψ(x):

* * * * * *

* * * *
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where ¶ = ¶ ¶ = ¶ ¶m
mx x andme is themass of the electron. It is clear above that the implied summation over

p indexes the three spatial components only. The introduction of an electromagnetic potential =m


( )A A A,0

willmodify the freeHamiltonian following the conventional Dirac prescription ¶  ¶ -m m m∣ ∣i e A . Keeping
only those terms tofirst order in the components ofAμ, wefind the energy shift due to the electromagnetic
potentials:
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where r y= å = ∣ ∣j j0 1
4 2 and e is the charge of the electron.

In this letter, wewill only be interested in themagnetic shift produced by the vector potential

A.While our

equation (3) is derived from a Lagrangian density that ismanifestly covariant from the beginning, our ensuing
results will not all bewritten in a covariant form. Indeed, becausewe have restricted our scope to the
contributions frommagnetic fields only, several equations belowwill not bemanifestly covariant. The shift
derived from the electric fields ( = -


E A0) is thus not included.However, in the non-relativistic limit (NRL),

whereψ1,ψ2?ψ3,ψ4, the expression for themagnetic shift becomes particularly simple:

 òD = -
   ∣ ∣ · ( )e dx A s2 , 5A NRL NRL

where

sNRL is the spin current in theNRL. The spin current is defined generally as the quantity whose integral

gives the spin vector itself, ò=
  
S dx s , and its components are given by
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A relevant feature of the obtained result is that such amagnetic energy shift is different fromwhat onewould
expect from a quantummechanical description. As is well known, this expression—called the Zeeman effect—
can bewritten for an electron as a scalar product between the electron angularmomentum


J and themagnetic

field

B . For the contribution coming from the electron spin


S , wewould have in quantummechanics

 mD = -
  · ( )g B S , 7A Zeeman s B

where gs≈2 is the gyromagnetic factor and m = ∣ ∣e m2B e is the Bohrmagneton.One can see a faint
resemblance between equation (7) above and theQFT expression of equation (5), with roughly a replacement of
themagneticfield


B with themagnetic potential


A and likewise of the spin


S with the spin current


sNRL.

We nowwant to compute the expectation value of the energy shift in equation (5) in a specific one electron
state. Consider for simplicity the statewithmomentum


k along the z-axis and defined as a linear combination of

the two spin eigenstates with complex coefficients:

l lY ñ =  ñ +  ñ+ -
  

∣ ( ) ∣ ∣ ( )k k k, , , 8

where the spin eigenstates are given by

 ñ = ñ  ñ = ñ 
 

 ∣ ∣ ∣ ∣ ( )† †k E a k E a, 2 0 , , 2 0 , 9
k k

with = +


∣ ∣E m ke
2 2 and the state normalization fixed according to the prescription of Peskin and Schroeder

[5] as
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k
s are the creation and annihilation operators obeying the anticommutation relations
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s rs3 . The normalization of our single electron state follows immediately after

equation (10):
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The starting expression for the expectation value of the energy shift is
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To compute it, one needs to introduce the Fourier transforms of the electronfields, limiting the expressions to
only those containing the fermionic creation and annihilation operators:
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The fermionic spinor fields †u u,s s follow the conventional choice of basis [5] in spin-z eigenstates, such that

= - + = + - 
 

( ) ( ) ( ) ( ) ( )u k E k E k u k E k E k, 0, , 0 , 0, , 0, . 14z z z z

To simplify the integration over the vector potential

A, we have assumed that its components can be

approximated by their average values á ñ á ñ á ñA A A, ,1 2 3 over the integration volume so that they can be extracted
from the integral as numbers. This volume, inwhich these components are nonvanishing, isfixed by the scale d
of the experimental apparatus used to generate themagnetic field.

3. Results

Thefinal expression for the energy shift in our single electron state is given by
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This expression can be comparedwith the corresponding one obtained in [2] for themagnetic Sz shift:
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Fixing in theCoulomb gauge = ´
  
A B x1

2
and assuming the spatially constant, staticmagnetic field to be

oriented entirely along the z- axis, wefind thatA3=0. Equation (15) therefore reduces to the terms
proportional to á ñA1 and á ñA2 . Using characteristic values for a veryweak barmagnet of 3×10−4 tesla (3 gauss),
an experimental apparatus of dimension d=1meter, andNRL electronswith g = - =-( )v1 1.0012 1 2 , we
obtain  áD ñ∣ ∣ 0.080 MeVA NRL , just slightlymore than 15%of the electron’s restmass.Wefind this estimate
a good validation of the perturbative expansion employed, which only retains themagnetic field tofirst order.

In the equations abovewe have allowedλ+ andλ− to be in general complex, but the energy and spin shifts
due to the vector potential are always real.With á ñ =A 03 , we obtain the following relationship between the
energy and spin shift expectation values:

áD ñ = áD ñ
∣ ∣

( )m

k
S

2
. 17B NRL

e
B z

2

z z

Itmay be askedwhy the results for the energy and spin shifts above are not gauge-invariant. Admittedly,
equation (17) only holds true for a spatiotemporally constantmagnetic field oriented entirely along the z-axis
(see discussion after equation (16)), and in theNRL.However, with this constraint, adding a constant vector
potential to change only theA1 andA2 components would not change the result from equation (17), inwhich
both energy and spin shift expectation values are proportional to the same factor that is a function ofA1,A2, and
the spin polarization coefficients (see equation (16)).Working in theCoulomb gauge, andwith the constraint
above, we find that the vector potential is only dependent on the z-component of themagnetic field and the
dimensions of the experimental apparatus overwhich the field is effective. This requirement ensures that the
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physically realizablemagnetic field is the operationally significant quantity in the calculations, and thisfield
(B=∇×A) does not change under an arbitrary gauge transformation (  + LA A ). Beyond that, it is
important to recall the admonition byAharonov andBohm, in the closing of their seminal work on the physical
effectiveness of electromagnetic potentials [6], that further development of a nonlocal theory is necessary, in
which the electron interacts with a fieldwithin afinite volume. That is precisely the case we have before us.

Amajor result of our calculation, given the introduction of a staticmagnetic field oriented along the z-axis, is
that both energy and spin changes induced by such a field for our special single electron state with complex
coefficients are proportional to the same quantity

* * * *l l l l l l l l- = ++ - + - + - + -( ) ( ) ( ) ( ) ( )R I R I . 18

We shall call this quantity the chirality index in ourQFT-based treatment of free electrons, for reasons that will
become clear. In classical relativistic field theory, one starts from the definition of a chiral transformation [5] and
identifies chirality as the property of how an object changes under parity (ormirror) transformations. If under
these operations the object changes, it is said to be chiral. In the usualQFT approach, there are knowndefinitions
of chiral operators that are based on the g g g g gº i5 0 1 2 3 matrix andwhich act on so-called right-handed and
left-handed spinors.

There exists in the low-mass limit a correspondence equating the expression for chirality to that of
helicity:


 



⟶ ·

∣ ∣
( )S k

k
, 19

m Ee

where

S is the spin defined by the Paulimatrices for a particle withmomentum


k . Our discussion of chirality

will start from the assumption of a definitionwhich reproduces the identificationwith helicity from
equation (19). Onemay rightfully askwhywe can use such an identification between chirality and helicity when
we have derived our results in theNRL. Indeed, just as the non-relativistic Pauli equation interlocutes between
the non-relativistic Schrödinger equation and the fully relativistic Dirac equation [7, 8], we shall consider the
intermediate case of a free electron system in theNRLwhose energy is sufficiently larger than its restmass (but
not so large as to be relativistic), according to the numerical estimatesmade above. Therefore the low-mass limit
may be applied as a reasonablefirst approximation.Having accepted the low-mass approximation for free
electrons, we obtain the following expression for the chirality in the case of an electronwithmomentum
=


( )k k0, 0, z :

 = ( )S . 20k zz

To verify the reasonableness of our definition in equation (20), we have computed the expectation value ofkz
in

the state Y ñ


∣ ( )k of equation (8). This is done using the Fourier expansions of the electronfields given in
equations (13), fromwhichwe obtain


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Wecan conclude that, in the chosen definition, á ñkz
satisfies the intuitive understanding of chirality as a

difference between the squaredmoduli of right-handed and left-handed spin polarization coefficients of the
electron state.

4.Discussion

Wehave now in aQFT framework an operative calculational tool, in terms of the fieldsψ and y, for the chirality
kz

and for the energy of the electron state. For amagnetic field along the z- axis, the result for the average
magnetic effect on the chirality of electron state (8), in our approximations, is identical to the computed Sz shift
of equation (16): áD ñ = áD ñ SA k A zz

.Most notably, we can say that under these conditions themagnetic effects
on the chirality and on the energy of free electrons are proportional to the same intrinsic electron property that
we defined as the chirality index. An immediate consequence of equations (17) and (20) is that there exists a
special quantity of our considered systemwhose expectation value remains constant upon introduction of the
magnetic field:

 D - =
⎛
⎝⎜

⎞
⎠⎟ ( )m

k2
0. 22B NRL

e

z
k

2

z z

We say that there appears to be chirality-energy conversion in the systemunder the effect of a staticmagnetic field
that is similar to the spin-orbital angularmomentum conversion predicted inQFT [2] and confirmed
experimentally [9–11].
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Another possible way of interpreting equation (22) is to see it as an indicator of a specialmagnetic symmetry
of the free electron system. To extend our analysis, we consider the case ofN free electrons, eachwith the same
energyE. It seems to us reasonable that amagnetic fieldwould act independently on each of theN electrons.
Therefore, for each jth electron, onewouldfind the following expression, where theNRL is implied:

 áD ñ = áD ñ ( )k

m

2
. 23B k j

z

e
B j2z z z

It is then possible to definemean values for the systemof free electrons,

 
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å

å
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N
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1

1
, 24

B k sys
j

B k j

B sys
j

B j

z z z z

z z

such that by using equation (23)we obtain the following analogous relation for the entire collection:

 áD ñ = áD ñ ( )k

m

2
. 25B k sys

z

e
B sys2z z z

If it is possible tomeasure the energy shift of free electrons induced by amagnetic field, one immediately derives
from equation (25) aQFTprediction for the change in chirality of the system,which could also be experimentally
measured. Thuswewould be able to test the validity of our theory.

5. Conclusion

Wehave shown in this letter that a quantumfield theoretic analysis of the energy of a free electron spin state
predictsmagnetically induced energy shifts orders ofmagnitude larger than the quantummechanical Zeeman
effect. Further, we have derived a specialmagnetic symmetry we call the chirality-energy conversion of free
electron systems, when themagnetic field is oriented along the axis of the chosen spin eigenstate. Such a
symmetry can allow us to probe chiral and achiral states in diverse free and quasi-free electron systems, and to
experimentally relate the change in chirality of these states to their energy shifts after the introduction of an
externalmagnetic field.

A key question that remains to be considered is the possible relevance of our results tomacroscopic states in
quantumoptics, condensedmatter, and biological physics, where collections of free or quasi-free electronsmay
be described in the formalism above. Indeed, though the description of suchmacroscopic states is complex,
recent experimental studies [12] indicate that electrons transmitted through chiralmoleculesmay befiltered
according to their spin state. Furthermore, it has long been known that a sensitive dependence exists between the
chirality of crystals and low-energy fluctuations introduced by perturbing the crystallization solution [13].

Such sensitive relationships between biological function and chirality of the underlying spin state are
manifest with both free and bound electron states. Several articles since 2005 have reported effects of weak
magnetic fields on the rate of enzymatic synthesis of adenosine triphosphate [14] and reactive oxygen species
[15] by theflipping of electron spins in a quantum-coherent fashion.We have shown theoretically [16] that
palindromicDNA complexes of defined chirality conserve parity and are essential to the symmetric recruitment
of energy by certain enzymes for the formation ofDNAdouble-strand breaks. These evidences all point to the
existence of an elaborate hierarchy of order connecting the spin states of electron systems tomanifestations of
chirality-energy conversion atmultiple physical scales. Our group of dedicated colleagues has already started
pursuing experimental verification of this hypothesis.

Acknowledgments

Thismanuscript wasmotivated by discussionswithCVerzegnassi of theUniversity ofUdine and of the
Association forMedicine andComplexity (Trieste, Italy). His insights were essential to its development.

Data accessibility

Thiswork does not have any experimental data.

5

J. Phys. Commun. 2 (2018) 111002



Competing interests

Wehave no competing interests.

Author’s contributions

PK completed all derivations and calculations, with numerical estimates, andwrote the paper. The author gives
final approval for publication.

Funding

PKwould like to acknowledge support from theUS–Italy Fulbright Commission and theWholeGenome
Science Foundation.

ORCID iDs

PKurian https://orcid.org/0000-0002-4160-6434

References

[1] DarrigolO 1984Hist. Stud. Phys. Sci. 15 39–79
[2] Kurian P andVerzegnassi C 2016Phys. Lett.A 380 394–6
[3] BliokhKY, BliokhYP, Savel’ev S andNori F 2007Phys. Rev. Lett. 99 190404
[4] BliokhKY,DennisMR andNori F 2011Phys. Rev. Lett. 107 174802

BliokhKY andNori F 2012Phys. Rev.A 86 033824
[5] PeskinME and SchroederDV1995An Introduction toQuantumField Theory (Reading,MA: Perseus)
[6] AharonovY andBohmD1959Phys. Rev. 115 485–91
[7] Dirac PAM1928Proc. R. Soc. Lond.A 117 610–24
[8] Foldy L L andWouthuysen SA 1950Phys. Rev. 78 29–36
[9] GrilloV et al 2015Phys. Rev. Lett. 114 034801
[10] Karimi E et al 2012Phys. Rev. Lett. 108 044801
[11] GuoG-Y,Maekawa S andNagaosaN2009Phys. Rev. Lett. 102 036401
[12] KiranV,Cohen SR andNaamanR 2017 J. Chem. Phys. 146 092302
[13] KondepudiDK, KaufmanR J and SinghN1990 Science 250 975–6
[14] Hore P J 2012Proc. Natl Acad. Sci. USA 109 1357–8
[15] UsselmanR J et al 2016 Sci. Rep. 6 38543
[16] Kurian P,DunstonG and Lindesay J 2016 J. Theor. Bio. 391 102–12

6

J. Phys. Commun. 2 (2018) 111002

https://orcid.org/0000-0002-4160-6434
https://orcid.org/0000-0002-4160-6434
https://orcid.org/0000-0002-4160-6434
https://orcid.org/0000-0002-4160-6434
https://doi.org/10.2307/27757542
https://doi.org/10.2307/27757542
https://doi.org/10.2307/27757542
https://doi.org/10.1016/j.physleta.2015.11.002
https://doi.org/10.1016/j.physleta.2015.11.002
https://doi.org/10.1016/j.physleta.2015.11.002
https://doi.org/10.1103/PhysRevLett.99.190404
https://doi.org/10.1103/PhysRevLett.107.174802
https://doi.org/10.1103/PhysRevA.86.033824
https://doi.org/10.1103/PhysRev.115.485
https://doi.org/10.1103/PhysRev.115.485
https://doi.org/10.1103/PhysRev.115.485
https://doi.org/10.1098/rspa.1928.0023
https://doi.org/10.1098/rspa.1928.0023
https://doi.org/10.1098/rspa.1928.0023
https://doi.org/10.1103/PhysRev.78.29
https://doi.org/10.1103/PhysRev.78.29
https://doi.org/10.1103/PhysRev.78.29
https://doi.org/10.1103/PhysRevLett.114.034801
https://doi.org/10.1103/PhysRevLett.108.044801
https://doi.org/10.1103/PhysRevLett.102.036401
https://doi.org/10.1063/1.4966237
https://doi.org/10.1126/science.250.4983.975
https://doi.org/10.1126/science.250.4983.975
https://doi.org/10.1126/science.250.4983.975
https://doi.org/10.1073/pnas.1120531109
https://doi.org/10.1073/pnas.1120531109
https://doi.org/10.1073/pnas.1120531109
https://doi.org/10.1038/srep38543
https://doi.org/10.1016/j.jtbi.2015.11.018
https://doi.org/10.1016/j.jtbi.2015.11.018
https://doi.org/10.1016/j.jtbi.2015.11.018

	1. Introduction
	2. Background
	3. Results
	4. Discussion
	5. Conclusion
	Acknowledgments
	Data accessibility
	Competing interests
	Author’s contributions
	Funding
	References



