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Abstract
ThePoisson equation hasmany applications across the broad areas of science and engi-
neering. Most quantum algorithms for the Poisson solver presented so far either suffer
from lack of accuracy and/or are limited to very small sizes of the problem and thus
have no practical usage. In this regard, our previous work (Robson in 2022 IEEE Inter-
national Conference on Quantum Computing and Engineering (QCE), 2022) showed
a proof-of-concept demonstration in advancing quantum Poisson solver algorithm
and validated preliminary results for a simple case of 3× 3 problem. In this work, we
delve into comprehensive research details, presenting the results on up to 15×15 prob-
lems that include step-by-step improvements in Poisson equation solutions, scaling
performance, and experimental exploration. In particular, we demonstrate the imple-
mentation of eigenvalue amplification by a factor of up to 28, achieving a significant
improvement in the accuracy of our quantum Poisson solver and comparing that to
the exact solution. Additionally, we present success probability results, highlighting
the reliability of our quantum Poisson solver. Moreover, we explore the scaling per-
formance of our algorithm against the circuit depth and width, demonstrating how
our approach scales with larger problem sizes and thus further solidifies the practical-
ity of easy adaptation of this algorithm in real-world applications. We also discuss a
multilevel strategy for how this algorithm might be further improved to explore much
larger problems with greater performance. Finally, through our experiments on the
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IBM quantum hardware, we conclude that though overall results on the existing NISQ
hardware are dominated by the error in the CNOT gates, this work opens a path to
realizing a multidimensional Poisson solver on near-term quantum hardware.

Keywords Poisson equation · Poisson solver algorithm · Quantum circuit · Quantum
algorithm · Quantum error mitigation

1 Introduction

The Poisson equation is a second-order partial differential equation widely used in
various fields of science and engineering. In general, in order to solve the Poisson
equation numerically, projection methods such as collocation, spectral, and boundary
element methods as well as finite-difference methods [2] are used. The core of these
methods is to approximate the solution of the Poisson equation as the solution of
a linear system. However, since the dimension of the linear system obtained from
the discrete Poisson equation is generally very large, solving such a system demands
much computational time. Therefore, the Poisson equation is a problem well suited
to quantum computing, a faster and more powerful computation paradigm [3] than
classical computing.

A series of quantum algorithms [4–23] have been developed to solve linear equation
systems, which have shown significant speedups over their classical counterparts.
Recently, variational quantum algorithms (VQAs) [24–27], which have already shown
some promise for use on so-called noisy intermediate-scale quantum (NISQ) devices
[28], are adopted to solve the Poisson equation [19, 20]. From the experimental point
of view, while VQAs-based approaches have some advantages, such as generally using
relatively shallow quantum circuits or requiring fewer quantum measurements, they
still have challenges in optimizing a set of parameters, especially on larger problems
[19]. In addition, instead of producing the direct solution of the Poisson equation, these
methods rely on an expectation of certain observables limiting them to be coupled
with other general problems and thus may have a limited use case. A non-VQA-based
iterative method for the HHL algorithm [12] has been proposed to solve linear system
of equations in Ref. [21]. Even though they obtained a more accurate solution by
increasing the number of iterations with the same number of measurements, they still
have challenges in improving the error convergence speed compared to the state vector
calculations. However, in the context of the quantum circuit model, Cao et al. [22]
first used the original HHL algorithm [12] to solve the Poisson equation. Later, our
co-author Wang et al. [23] pointed out a bottleneck of Cao’s algorithm which was the
cost associated with the function used for controlled rotation. It was later reformulated
by Wang et al. reducing its cost from O(m4) to O(m3), where m is the number of
qubits of input register. Cao’s and Wang’s approaches are reviewed in Appendix A.

Even though these past works, including Cao’s and Wang’s methods, improved the
quantum algorithm and circuit for the Poisson solver, they still either suffered from
lack of accuracy and/or were limited to demonstrating only a very small size of the
problem, and thus, their practical usage is limited. Some of these works focus on
minimizing the error in their approaches or in the overall solutions without directly
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presenting the actual or direct solution of the Poisson equation [19–21], or some others
appeared to suggest the feasibility of their methods on quantum hardware without even
clearly discussing or validating their works on any hardware [19, 20].

Our previous work [1] serves as an initial outline of our research on the quantum
Poisson equation solver. It presents a proof-of-concept demonstration of our quantum
Poisson solver algorithm and validates preliminary results for a simple case of 3 × 3
problem. Here we delve into comprehensive research details, presenting the results on
up to 15× 15 problems that include step-by-step improvements in Poisson solutions,
scaling performance, and experimental exploration.

Specifically, by solving different sizes of problems, this paper demonstrates the
advancement of our algorithm for solving the Poisson equation in several aspects: (1)
Improve the precision of phase estimation by increasing the accuracy of the eigenval-
ues. Unlike the previous approach [23] where only the integer part of the eigenvalues
was encoded, we implement non-truncated eigenvalues through eigenvalue amplifi-
cation. We will see that this has a clear impact in drastically reducing the error in the
solution of the Poisson solver and compare that to the exact solution; (2) The rotation
angles are calculated with full accuracy, which is also essential for ensuring the over-
all accuracy of the solution; (3) We present and analyze success probability results,
highlighting the reliability of our quantum Poisson solver; (4) Without compromis-
ing any accuracy of the algorithm, during the run time, our implementation uses an
optimized number of qubits representing the rotation angles. We also optimize the
CNOT gates usage, which is one of the primary sources of error in an experiment;
(5) Solutions of the Poisson equations with larger problem size to 7 × 7 and 15 × 15
are demonstrated. In fact, our implementation with dynamic allocation of qubits in
different segments of the algorithm ensures easy adaptation of this method for solv-
ing real-world problems; (6) Additionally, we explore the scaling performance of our
algorithm against the circuit depth and width, demonstrating how our approach scales
with larger problem sizes. We also offer a multilevel strategy for how this algorithm
might be further improved to explore much larger problems with greater performance;
(7) The possibilities and difficulties of implementing the algorithm on real quantum
hardware are discussed for the first time. This also includes experimenting with the
circuit mapping, error mitigation, etc. on the NISQ devices and presenting a vision
for near-term hardware; (8) Finally, the algorithm is implemented using the Qiskit
package [29], which would bring advantages for practical use. We believe all these
aspects are necessary to advance the study of quantum Poisson solvers.

We also want to make it clear that in this work our main focus is to demonstrate the
advancement of our hybrid algorithm that accurately simulates the Poisson equation
with realistic problem sizes and explore the experimental feasibility of those problems.
In particular, we aim to push the scalability of our proposed Poisson solver to larger
practical problems on both simulators and real quantum devices. While testing these
problems, we also identify the key limiting factors against applying the algorithm to
large problems and implement some optimization methods in terms of the number of
qubits and gates. We explain that with the current state of the technology, it is difficult
to realize a complete quantum description of the algorithm due to its high resource
costs. However, we discuss pathways to further improve this hybrid approach in both
simulation and experimental environments.
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For demonstrating the circuit, we present both simulated and experimental results,
discuss the sources of errors, and eliminate them. The Matrix Product State (MPS)
simulator is used for simulation, and the experiment is done on IBM’s ibmq_manila
and ibmq_brooklyn quantum backends [30]. We examine the measurement error mit-
igation on a small system and also discuss how the overall results of the Poisson
equation on the currently available quantum hardware are dominated by the error in
the CNOT gates.

We have extended the existing algorithm from Wang et al. beyond a single proof
of concept to a fully dynamic, scalable body of work that can be used for numerous
applications in mixed computing algorithms. Wang’s QRUNES [31]-based machine
instructions have been abstracted to more usable Qiskit functions, allowing us to
perform fine-tuning of different register sizes so that we can identify key areas of
inaccuracy and compare qubit tradeoffs. This is important because the primary limiting
factor in accuracy is the total number of qubits in the circuit, and qubits are at a premium
in NISQ hardware. Our code is readable and easily usable, allowing a true “black box”
approach to be taken to solving the most computationally intensive part of Poisson
applications.

The paper is organized as follows. In Sect. 2, we adopt the finite- difference method
to discretize the Poisson equation to obtain a linear system. In Sect. 3, we describe
the quantum algorithm and circuit design for each module and our algorithm in detail.
In Sect. 4, we explain the algorithm improvement and circuit optimization. We show
simulated results of different sizes of problems and their improvements, and we dis-
cuss more about algorithm scaling and success probability in Sect. 5. In Sect. 6, we
demonstrate our improved quantum circuit for the Poisson solver on IBM quantum
hardware and discuss error mitigation. Finally, we conclude our works in Sect. 7.

2 Overview of the problem

The goal of this work is to implement an efficient quantum algorithm solving the
multidimensional Poisson equation with boundary conditions. Let us consider the
Poisson equation defined in an open bounded domain � ⊂ �d , where d is the number
of spatial dimensions.

− ∇2v(x) = b(x), x in � (1)

v(x) = 0, x on δ� � = (0, 1)d (2)

where δ� is the boundary of � and b(x) is a given smooth function representing
different problem applications, such as charge or velocity distribution. One way to
solve this problem is to discretize � to N ′ = N + 1 grid points in each dimension,
where N is an exponent of base 2. The solution v(x) is a vector of (N − 1)d entries.

In this work, we focus on the one-dimensional Poisson equation with Dirichlet
boundary conditions. Using the central difference approximation to discretize the
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Fig. 1 Overall circuit representation of the algorithm for solving the one-dimensional Poisson equation. The
numbers of qubits of registersA,E, andBare l,m, and n, respectively.Herem = i+ f , where i and f number
of qubits in reg.E hold the integer and fractional parts of the eigenvalue. |ω j 〉 is the angular coefficient

evolved from the approximated eigenvalue |λ j 〉, the output of the QPE. The input |b〉n = ∑2n−1
i=1 bi |i〉 is

prepared and stored in register B

second-order derivative, Eq. (1) can be converted to finite-difference form as
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We now have the N − 1 linear equation system, i.e., A|v〉 = |b〉 to be solved. Here
A is a Hermitian matrix, and due to the zero boundary condition, its dimension is
(N − 1) × (N − 1), and the mesh size h equals 1/N .

The eigenvalues of A are λ j = 4N 2sin2( jπ/2N ), and its corresponding eigenvec-
tors are u j (k) = √

2/Nsin( jπk/N ) [32].
The best classical algorithms for solving this problem run polynomially withmatrix

size [33], so the run time increases exponentially with the dimension of the problem.
In this paper, a quantum algorithm is used to produce a quantum state representing the
normalized solution of the problem. Since this technique runs in polylog time, the curse
of dimensionality can be broken. Thus, we can solve the linear system of equations
based on the HHL algorithm [12]. Our algorithm exploits properties of matrix A to
efficiently implement the HHL algorithm by simulating the unitary operator ei At .
Though we are presenting an algorithm for the one-dimensional Poisson equation,
this can be easily extended to the d-dimensional case [19, 23] as

A(d) = A ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
d

+I ⊗ A ⊗ I ⊗ · · · ⊗ I + · · ·

+I ⊗ · · · ⊗ I ⊗ A. (4)
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Fig. 2 Overall circuit for quantum phase estimation (QPE) that uses both integer and fractional parts of the

eigenvalues through reg.E.U2k represents the unitary operator of exp (i2π A/2m−k ). QFT† represents the
inverse quantum Fourier transform

with the exponential A(d) expressed in the form

ei A
(d)t = ei At ⊗ ei At ⊗ · · · ⊗ ei At︸ ︷︷ ︸

d

. (5)

So, the quantum circuit simulating ei A
(d)t is just the parallel execution of the circuit

simulating ei At along the d dimension. In the following sections, we will focus on the
one-dimensional Poisson equation.

3 Quantum algorithm and circuit design

The overall circuit diagram of our algorithm for solving the one-dimensional Poisson
equation is presented in Fig. 1 [1, 23]. As the figure shows, the algorithm consists
of three stages: phase estimation, controlled rotation, and uncomputation. Its circuit
diagram has three main registers—reg.B, reg.E, and reg.A.

• Reg.B is used to encode the coefficients of the right-hand side of Eq. (1). Its
number of qubits is n = 	log(N ′)
, where N ′ is defined in Sect. 2.

• Reg.E is used to store the approximated eigenvalues of matrix A. Its number of
qubits is m = i + f , where the first i = 2n + 2 qubits hold the integer part and
the remaining f qubits the fractional part of the eigenvalue.

• Reg.A is used to store pre-calculated angular coefficients for the controlled rotation
operation. Its number of qubits is chosen to be l ≥ m.

In this work, we assume that the input state |b〉 of reg.B is prepared as
∑

i bi |i〉,
where bi is the value on the right-hand side of Eq. (3), and |i〉 is the computational basis
[34]. That is, the input |b〉 contains the prerequisite state vector, the problem that we
are trying to solve, which we then entangle with the approximated eigenvalues λ j on
reg.E. The output of the algorithm thus is a quantum state that encodes the solutions of
the Poisson equation as probability amplitudes on reg.B. Thus, this circuit is a process
of quantum state preparation, with the output written as |v〉 = A−1|b〉 = ∑

i αi |i〉,
where αi is the value of the solutions of the Poisson equation after normalization.
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We will now discuss a few key steps of the algorithm.

3.1 Phase estimation

Through the quantum phase estimation (QPE) circuit shown in Fig. 2, we estimate the
eigenvalues of the discretized matrix A and entangle the states encoding the eigenval-
ues with the corresponding eigenstates [35]. We will now discuss how the quantum
states evolve through the QPE section of the circuit. The initial state of reg.E and
reg.B is

|0〉⊗m |b〉 =
2n−1∑

i=1

bi |0〉⊗m |i〉 =
2n−1∑

j=1

β j |0〉⊗m |u j 〉. (6)

where |i〉 is the computational basis and |u j 〉 is the j th eigenvector of matrix A. Then
the Hadamard gates across reg.E prepare a uniform superposition state, which the
sequence of controlled U 2m operation evolves as follows:

2m−1∑

k′=0

(|k′〉〈k′| ⊗Uk′
) · 1√

2m

2m−1∑

k=0

|k〉 ⊗
2n−1∑

j=1

β j |u j 〉

=
2n−1∑

j=1

β j

⎡

⎣ 1√
2m

2m−1∑

k=0

e2π i
λ j
2m k |k〉

⎤

⎦ |u j 〉. (7)

Note that the state in the square bracket of Eq.7 is simply the output of the quantum
Fourier transform acting on the state |λ j 〉, so after the application of the inverse Fourier
transform the states evolve to

∑2n−1
j=1 β j |λ j 〉|u j 〉. This entangles the eigenvalues |λ j 〉

with the eigenstates |u j 〉 from reg.B.
Though there are methods [36, 37] available for simulating the time evolution

of ei At , Wang et al. take advantage of using specific properties of the tri-diagonal
matrix A to reduce the complexity of the algorithm. They first decompose the unitary
operator ei At with a Hermitian matrix S (S being an orthogonal matrix composed of
the eigenvectors of A) and then diagonalize it via the sine transform, and finally use
phase kickback [38] to operate it on the state |b〉. We adoptWang’s approach for phase
estimation; its detailed circuit composition is available in Ref. [23].

3.2 Phase verification

An eigenvalue problem involving an arbitrary unitary operator A and its eigenvector
|v j 〉 and eigenvalue λ j satisfies A|v j 〉 = λ j |v j 〉. Using this, we can verify the correct-
ness of the QPE part of the circuit. In fact, this would also implicitly verify the phase
kickback operation, which, through the controlled U operations (in Fig. 2), entangles
the eigenvalues of matrix Awith the eigenstates associated with the input in reg.B.We
can think of reg.B as containing the problem we are trying to solve for the HHL algo-
rithm. Each eigenvalue of matrix A is associated with an eigenvector, so the first way
to perform the verification is to input the individual eigenvectors as the input to reg.B
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and then measure reg.E before the controlled rotations. For example, a Qiskit simula-

tion with A(3 × 3) in Eq.3 acting on its eigenstates |v j 〉 =
(

1√
2
1

)

,
( −1

0
1

)
,

(
1

−√
2

1

)

produces the eigenvalues λ j = 9, 32, 54 in binary (using only the integer part for sim-
plicity) with 100% probability; this is shown in Fig. 3 (a-c). Further, for any input with
an arbitrary combination of eigenvectors, for example, |v〉 = 1

2 |v1〉+ 1√
2
|v2〉+ 1

2 |v3〉,
theQPE circuit produces the combination of the eigenvalues with correct probabilities,
as presented in Fig. 3d.

3.3 Controlled rotation

After the phase estimation
∑2n−1

j=1 β j |λ j 〉|u j 〉 is obtained on regs.B and E, we perform
the linear map taking the state of |λ j 〉 to (1/λ j )|λ j 〉. This process consists of two
parts: calculating the rotation angular coefficients and performing the controlled Ry

operation. The probability amplitude of 1/λ j can be produced by implementing the
controlled Ry rotation, that is, Ry(2θ j )|0〉 = cos θ j |0〉 + sin θ j |1〉, where the rotation
angle θ j can be expressed in terms of λ j as

sin θ j = 1/λ j , (8)

which can be rewritten as

cot θ j =
√

λ2j − 1, θ j ∈ (0, π/2). (9)

Taking θ j = ω jπ , Eq. (9) becomes

ω j = 1

π
arccot

(√
λ2j − 1

)
, ω j ∈ (0, 1/2), (10)

where ω j is the rotation angular coefficient. In this hybrid approach, we prepare ω j

classically and encode them into the circuit.
For an angular coefficient state |ω j 〉 in reg.A, the binary representation can be

written as ω j = ω j1ω j2 · · · ω jl = ∑l
k=1 2

−kω jk . Then, using Ry(2θ j ) = e−iθ j Y , the
Ry rotation can be expressed as [39],

Ry(2ω jπ) = e
−i(

l∑

k=1

ω jk
2−k )πY

=
l∏

k=1

e
−i

ω jk
2k

πY =
l∏

k=1

R
ω jk
y (

π

2k−1 ). (11)

where ω jk are the control qubits in reg.A. For a given k, if the bits of ω jk for all j are

zero, then the corresponding R
ω jk
y operation has no effect on the Ancillary register.

This allows us to further optimize the circuit by removing any control qubits with bit
ω jk = 0 from reg.A. This is further discussed in the next section.
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Fig. 3 Verification of the QPE section of the circuit. Panels a–c show that for a given eigenstate of A(3×3),
the QPE produces the corresponding eigenvalue with 100% probabilities. Panel d shows that inputting the
combinations of eigenstates with arbitrary weights produces eigenvalues with similar weights

The workflow used in this work follows several steps and is presented in Algo-
rithm 1.

Algorithm 1: Quantum Poisson Solver
Data: Input state

∑
i bi |i〉 in reg.B. For QPE, assign a number of qubits for the integer and fractional

parts of |λ j 〉 in reg.E. Also, assign the initial number of qubits for reg.A for |ω j 〉
Result: Get the solution |v〉 = A−1|b〉 in terms of probability amplitudes
Algorithm Start:

1. Prepare the initial quantum state:
∑2n−1

j=1 β j |0〉⊗m |u j 〉
2. Use QPE algorithm on regs.B and E. This algorithm applies several Hamiltonian simulations of

U = ei At with t = 2π 1
2n 2

k , k = 0, ..., n−1, to reg.B and entangles the eigenvalues λ j of matrix

A in reg.E with the eigenstates |u j 〉 in reg.B. The system has now the state:
∑2n−1

j=1 β j |λ j 〉|u j 〉
3. Apply the controlled rotationwhich consists of twoparts: preparing the rotation angular coefficients

|ω j 〉 in reg.A and performing the controlled Ry(2ω jπ) operation on the ancillary qubit
4. Uncompute QPE and |ω j 〉 operations on regs.A, E, and B
5. Measure the ancillary qubit. If the measurement of the qubit results in state |1〉, the algorithm

successfully transforms reg.B into the solution |v〉 = A−1|b〉 = ∑2n−1
j=1 β j

1
λ j

|u j 〉. Otherwise,
the algorithm has to be restarted

6. Take a repeated number of trials for a good sampling
7. Take the sum of individual successful states |vi 〉 and derive final probability amplitudes as√

vi /
∑

i vi
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4 Algorithm improvements, circuit optimization, and challenges

Wang’s method has already reduced its complexity to O(m2) qubits and O(m3) opera-
tions [23]. After implementing the algorithm as a quantum circuit, we look for options
for further improving it so that even with a limited number of qubits on the quantum
hardware, we are able to more accurately solve the Poisson equation for a realistic
problem size, i.e., with a larger matrix A. Below, we discuss some shortcomings of
the existing approaches and the ways we improve them:

4.1 Eigenvalue amplification

The first source of inaccuracy in the existing algorithm [22, 23] is the truncation of
the eigenvalues of matrix A in the phase estimation. Wang’s implementation uses only
the integer eigenvalues of the A matrix, presumably in order to save qubits. As more
qubits become available in quantum devices, however, we can improve accuracy by
using non-truncated values. Therefore, we extend the algorithm by taking into account
both the integer and fractional parts of the eigenvalues. This is done by amplifying
the eigenvalue by a factor of 2 f , which shifts the decimal point of the binary λ j

to right by an integer f . For example, for a given λ j = 10111.11011011101011,
with no amplification, 24 amplification and 28 amplification, the circuit carries λ j =
10111, 101111101, and 1011111011011, respectively. Essentially, when we include
fractional part for the eigenvalue, we are encoding a bitshifted/amplified eigenvalue
that is still an integer but contains bits of the fractional part. Thisway, byusing a large f ,
one actually includes more bits of the fractional part of the eigenvalue, and the shifted
position of the decimal point of the eigenvalue is adjusted by a normalization factor
2− f in the controlled Ry operation of the circuit to match. Due to the dynamic nature
of our code, we are able to experiment using any number of bits on the eigenvalues,
taking a more accurate representation of the critical matrix A for our computation.

4.2 Rotation angular coefficient accuracy

The second source of inaccuracy is in the calculation of the rotation angular coeffi-
cient. The previous method [23] omitted the subtrahend 1 under the square root in
Eq. (10); we instead include it. Additionally, we retain full accuracy in the calculation
of the rotation angular coefficients by using the full eigenvalues. Furthermore, our
implementation allows us to dynamically expand the number of qubits to represent
rotation angular coefficients with higher accuracy. Finally, we are able to use the opti-
mum number of qubits based on the convergence of the error in the solution, which is
discussed in the next section.

4.3 Optimize the number of qubits used for rotation angles

Whilewe initially presented a rotation on all bits of reg.A, in practice, this is not neces-
sary. In Eq. (11), if the bits ofω jk for all j are zero for a given k, then the corresponding
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R
ω jk
y operationhas no effect on theAncillary register. In otherwords, if there is no infor-

mation conveyed on a given qubit in reg.A by any of the rotation angular coefficients,
then we can safely omit that qubit and its rotation without impacting the results. Intu-
itively, this makes sense as the controlled rotations do not happen if a given control bit
is 0. Imagine a case where our ω j = 0.0000100110, 0.0000001010, 0.0000000101.
The first four qubits, as well as the sixth qubit, are 0 for all ω j , so the respective
Ry(2−1π), Ry(2−2π), Ry(2−3π), Ry(2−4π), and Ry(2−6π) rotations never happen.
We have no need to include these controlled rotations nor the qubits in reg.A that they
correspond to. This allows us to further optimize the circuit by removing any control
qubits with bit ω jk = 0 from reg.A. As a result, though at the beginning we chose
l ≥ m qubits for reg.A, after the circuit optimization, the register has fewer than l
qubits.

4.4 Optimize CNOT gates usage

The rotation angular coefficient allows us to entangle the prepared state on reg.E with
the controlled rotation on reg.A. This is achieved with multi-controlled multi-target
(MCMT) gates controlled on the binary expansion of the eigenvalues on reg.E. How-
ever, MCMT gates transpile to many CNOT gates, which carry significant errors into
the experiment. We want to minimize the number of controlled bits in this operation.
At the end of the phase estimation, the qubits of reg.E are entangled; thus, the phase
information can be accessed through fewer qubits in reg.E. This allows us to control
our encoding of the rotation angular coefficients on only the unique most significant
bits of reg.E. For example, in the 3 × 3 case, if our eigenvalues are 9, 32, 54 (taking
only the integer part for simplicity), then their binary encodings are 001001, 10000,
110110, respectively. It is then evident that the two most significant bits of the binary
encodings are enough to differentiate between different eigenvalues: 00, 10, and 11.
Controlling the angular rotations on only these two qubits allows us to reduce the
number of CNOT gates in the circuit significantly.

4.5 Classical versus quantum approach to rotation angular coefficient

Preparing the angular coefficient state |ω j 〉 (see Eq.10 here) using a quantum circuit
presented in Ref. [23] has a cost that grows exponentially with the problem size.
This proves to be a challenge because the current state of the simulator, and quantum
hardware supports a limited number of qubits. Therefore, though from a theoretical
standpoint, the quantum approach to |ω j 〉 is appealing, from a practical standpoint
its classical treatment is the viable option. This is particularly true because our main
goal is to scale the Poisson solver to realistic problem sizes, which requires us to
appropriately allocate computational resources.

Therefore, in this work, we pre-calculate ω j classically and encode them into the
circuit. These two steps of the workflow are already fast and for large number of w j ’s;
the total processing time can be significantly reduced by parallelizing them over j on
CPU or GPU hardware and thus avoids exponential processing time growth on large
problems. Please note that this computation is required only once, independent of the
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Fig. 4 (Left) Comparison of the Matrix Product State (MPS)-based simulated solution of the Poisson
equation with exact and existing QRUNES [23] solutions for a 3 × 3 problem size. (Right) The relative
error in QRUNES and MPS simulated outputs with respect to the exact result

Fig. 5 (Left) Step-by-step improvement in MPS-simulated solution by using accurate rotation angular
coefficients ω j and encoding them into up to 16 qubits on reg.A. (Middle) relative error in the improved
MPS-simulated solutions with respect to the exact result. (Right) relative errors at the level of individual
states

number of repeated shots, and we make the process substantially more efficient by
dynamically calculating it for any problem size.

However, even within this hybrid approach, dealing with very large problems, e.g.,
encoding 108 values of ω j for a 108 × 108 matrix, would be challenging. Such a
large problem would make the circuit depth prohibitively large from an experimental
standpoint. Amultilevel solution to this problem is discussed in the subsequent section.

5 Simulated results and discussions

Weconstructed our algorithm in the Python programming language using IBM’sQiskit
package [29]. This allowed us to create our circuit in a modular fashion as well as use
some of Qiskit’s abstractions, such as the MCMT gate and simple implementations of
quantum Fourier transform.

To the best of our knowledge, previous work has not included the simulation of
a solution of the one-dimensional quantum Poisson equation beyond a 3 × 3 matrix
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A. However, here we present the simulation of solutions of much larger problems,
that is, for larger sizes of A. In fact, we will present that our algorithm and its circuit
representation are capable of dynamically controlling problem size in NISQ devices.
For simulation, we use IBM’s Matrix Product State (MPS) simulator since it supports
a relatively large number of qubits (up to 100) necessary for presenting the circuit
for larger problems while also maintaining reasonable accuracy. In this section, we
analyze the source of error in the solution and accordingly demonstrate step-by-step
improvements in the algorithm that secure higher accuracy in the solution.

Reproduce existing results As shown in Fig. 4 (left), we first produce the solution
of a 3 × 3 problem with |b〉 = 1√

2
|01〉 + 1

2 (|10〉 + |11〉) being the right-hand side of
the Poisson equation. In order to compare this with the existing QRUNES results [23],
we use their same inputs, that is, only the integer part of λ j and the approximated ω j

encoded on 10 qubits of reg.A. Notice that in Fig. 4 (left), we show the vertical axis
starting from 0.4, so that even any tiny differences in the heights of the histograms are
clearly visible. Though our MPS-based simulated solution shows an excellent agree-
ment with QRUNES, there are some discrepancies compared to the exact solution. To
analyze further, the accuracy of our MPS-based result is depicted using the relative
error in the MPS solution with respect to the exact result and here the relative error,
e. g. , for MPS, is defined as ‖Exact − MPS‖2/‖Exact‖2 [40] and shown in the right
panel of Fig. 4. Relative errors in both QRUNES and MPS are virtually equivalent.

Improvements in results To improve our MPS-based result presented above and
have a better agreement with the exact solution, we made the following two improve-
ments: First, we used the accurate formula for ω j given in Eq. (10); then, we encoded
these values in up to 16 qubits on reg.A. The results are shown in the left panel of
Fig. 5, which displays the gradual improvements in the solutions as compared to the
exact result. The improvements in solutions are clearly visible through the relative
error presented in the middle panel of Fig. 5, and its right panel explicitly shows the
components of those relative errors.

Next, we extend the problem size to 7 × 7 with |b〉 = 1
4 (|001〉 + |010〉 + |011〉 +

|100〉) + 1
2 (|101〉 + |110〉 + |111〉) and further investigate the effects of using a more

precise ω j by increasing the number of qubits in reg.A. As clear in Fig. 6, improve-
ments in the solutions and reduction in the relative errors resulted as the qubit number
increased from 12 to 20. The relative error of the 7 × 7 problem with ω j encoded in
16 qubits is about 0.88%, which is about 9 times larger than that of the 3×3 problem.
This is understood by the fact that the error due to the truncated eigenvalues λ j used in
phase estimation plays a major role here. This is because a larger problem requires a
larger number of controlled-U operations (see Fig. 2), resulting in more error accumu-
lation. The overall accuracy of the results is relatively similar when using 16 and 20
qubits; thus, we chose to fix ω j at 16 qubits as we investigated further improvements
to the solutions.

To further reduce the error discussed in the previous paragraph, we used eigenvalue
amplification (as discussed in Sect. 4.1)with a factor of 2 f where f takes the value 0, 4,
and 8. A larger f includes more number of bits in the fractional part of the eigenvalue
and thus retains more accuracy in the solution. The effects of eigenvalue amplification
on the 7×7 problem are shown in Fig. 7, which confirms the significant reduction to the
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Fig. 6 Effects of increasing the number of qubits on the rotation angular coefficients ω j on a 7×7 problem
size. (Left) Exact solution with the MPS result simulated by encoding ω j on different numbers of qubits
of reg.A. (Right) Relative errors of the left panel results with respect to the exact solution

Fig. 7 Effects of eigenvalue amplification on a 7×7 problem size. (Left) Comparing solutions with varying
levels of eigenvalue amplification while using 16 qubits for ω j . (Right) Drastic reduction in relative errors
of the solutions on the left panel with respect to the exact result

relative error when we use eigenvalue amplification. At 28 amplification, the relative
error is 0.18%, a 5-fold improvement in accuracy compared to using no amplification.
We are confident that a higher amplification factor ( f > 8) would further reduce this
error.

To confirm the robustness of our algorithm and its accuracy in solving the Poisson
equation for practical problem sizes, we present the solution for a 15 × 15 problem,
including its exact result, in Fig. 8. For an arbitrarily chosen input state |b〉 (see Table 1
for its expression), the overall solution is encouraging. The relative error with respect
to the exact result again quickly goes down as we apply eigenvalue amplification and
increase its amplification factor.

Success probability Analytically, the success probability (SP) of themeasurement is
determined by the eigenvalue distribution and their levels of accuracy.As can be seen in

the state before themeasurement, i.e., |0〉⊗∑2n−1
j=1 β j |u j 〉

(√
1 − C2/λ2j |0〉+C/λ j |1〉

)

(C being a normalizing constant) [12], the SP is determined by the summation of the
squares of reciprocals of eigenvalues. So the values of SP using the truncated (i.e.,
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Fig. 8 Solution of a 15×15 problem size. (Left) Comparing the solutions with different levels of eigenvalue
amplification (with a fixed ω j of 16 qubits) and exact result. (Right) Significant reduction in the relative
errors with respect to the exact result

Fig. 9 Success probability of obtaining the desired state on 7× 7 and 15× 15 problem sizes. Here (a), (b),
and (c) correspond to the cases presented in Figs. 6, 7, and 8, respectively. The arrow line in (b) and (c)
indicates the steady improvements in success probability toward their respective analytical values with the
increase in eigenvalue amplification

integer) eigenvalues of 3×3 and 7×7 problems are 1.367% and 1.337%, respectively
(SP is greater than 1 asC = 1 is considered here). However, on the simulation side, we
compute the SP by dividing the number of trials with correct output by the total number
of repeated trials and then multiplying the factor by 100 [41]. When no eigenvalue
amplification is used, compared to the analytical SP of 1.367% on a 3 × 3 problem,
we computed an SP of 1.103%, which is very close to the number 1.120% reported
by Wang et al. [23]. On the 7× 7 problem, as shown in Fig. 9a, the SP appears to vary
between 0.818% and 0.826%, but without showing any steady movement toward its
analytical value 1.337% as more accurate |ω j 〉’s were used by increasing the number
of qubits in reg.A. This suggests that the SP is more sensitive to the other dominant
source of error that involves the truncation of eigenvalues used in phase estimation.
Therefore, controlling such error requires using eigenvalue amplification. Figure9b,
and c shows the SP on 7 × 7 and 15 × 15 problems plotted with different levels of
amplification. As expected, both figures confirm the steady improvements in the SP
rightly proceeding to their analytical values 1.154% and 1.122% (those calculated
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using the exact eigenvalues), respectively, with higher levels of amplification. Though
we have no doubt that a higher amplification factor ( f > 8) would further improve the
SP approaching it to its respective analytical value, we are unable to fully characterize
the reason for two different variation trends of SP shown by the dotted arrow in Fig. 9b
and c. In both cases, though we have taken a large number of trials (1.2 million for
each), theoretically, a 15 × 15 problem requires a polynomially greater number of
trials than that of a 7 × 7 problem as required by the relation of κ with N (the size of
the discretized matrix A). In practice, one could still add more trials to the 15 × 15
case, but doing that only might not fix the problem. This is because, theoretically,
both the amplification factor f and the number of trials need to be infinitely large to
ensure an accurate and reproducible solution. To resolve this two-factor constraint, in
the scaling section, we discuss a plan to extend our algorithm by combining it with
an iterative method [21]. This will further optimize the number of qubits required for
eigenvalue amplification with a higher f , resulting in achieving a converged solution
using a relatively lower number of trials.

Also, as κ grows, matrix A becomes more and more difficult to invert, and the
solutions become less stable [12]. Furthermore, the basic error of the solutions caused
by the central difference approximation is related to the condition number as κ =
O(ε−2α) (ε being error andα being a smoothness parameter), and therefore, an additive
preconditioner [42] may be used to reduce κ .

Summarizing the input and output In Table 1, we present all the problems we
discussed so far, along with each input state |b〉 and Poisson solution |v〉. Note that
the relative errors shown in Table 1 gradually increase with the problem size. This
may be explained by the fact that even a small inaccuracy in the encoded eigenvalues
would cause the accumulation of a larger amount of error due to the extra controlled-U
operations required for larger problems. Therefore, an optimum solution of a larger
problem would require using an even higher amplification factor f , which ensures
more number of bits (0 and 1) of the fractional part of the eigenvalues to be taken into
account for this computation. In the current implementation, though it is possible to
pre-set the value of f , one may not want to do that. Instead, it is desirable to increase
f until the convergence of the solution with the desired accuracy is achieved. Also,
for all of our simulations, even though we use angular coefficients encoded to a fixed
number of qubits (16), encoding them to a higher number of qubits would certainly
improve the accuracy of the solution.

Algorithm scaling and further improvement direction Compared to Cao’s algorithm
[22], Wang’s method reduces the cost of the problem by one order, from O(m4) to
O(m3), by performing the controlled rotation ofHHLusing the arc cotangent function,
meaning the rotation angles are prepared directly from the eigenvalues instead of their
reciprocals. While the theoretical complexity of the algorithm is discussed in Ref.
[23]; in this work, we focus on both computational and experimental feasibility.

On the computational aspect, we not only ensure better accuracy of solutions that
are lacking in the existing approaches [12, 22, 23] but also successfully demonstrate
the scaling of the problem to larger matrices. Within our implementation, our code-
base dynamically generates optimized circuits for any given size of the problem. The
practicality of the algorithm is demonstrated through the scaling performance of prob-
lems for up to 31 × 31 (see Fig. 10). During runtime, we recorded the total number
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of qubits used and the circuit depth on the basis of elementary gates after the circuit
decomposition. As shown in Fig. 10, though the circuit depth grows exponentially as
the problem size increases, the number of qubits scales linearly, which is encouraging.
This is because, for an existing simulator or quantum hardware, relatively the total
number of qubits is more critical factor than the circuit depth.

However, one may also point out that the exponential increase in the circuit depth
may require a longer coherent time, which indeed is still a challenge to increase from
the technological development point of view. Also, the exponential growth of the cir-
cuit depth may have a similar effect on the time complexity of the algorithm. The
circuit depth issue and the overall scaling can be further optimized by: (1) Optimally
mapping the logical to physical qubits when compiling quantum circuits onto hard-
ware with restricted connectivity by trading off circuit depth and gate count [43]. We
have already implemented this and discuss more about it later in the experimental
section; (2) Combining our algorithm structure with an iterative method [21] would
further optimize qubit usage, especially for the eigenvalue expression, while improv-
ing the computational speedup by requiring fewer repeated measurements. In fact, our
algorithm is well suited for coupling with an iterative solution process, which would
ensure even higher accuracy in results; and (3) Adapting a circuit knitting technique
[44–47], which allows partitioning of large quantum circuits into subcircuits that fit on
smaller devices and then knitting the results back together using a classical computer.
Although there is some overhead associated with the knitting process, it would open
a path to explore massive problems, including multidimensional ones. In our current
implementation, due to the full circuit being processed in a single quantum processor,
the section of the workflow is relatively slow, especially on large problems. Circuit
knitting would require locating processing bottlenecks through profiling and accord-
ingly distributing the tasks on multiple quantum processing units (QPUs), ensuring
the tasks’ parallelism with load balancing, which would result in the speeding up of
the whole computation. In fact, this is the path IBM takes in realizing their near-term
hardware development by combining multiple QPUs [48–50] through circuit knitting
techniques.

If we extend this to d dimensions, the main difference would be the Hamiltonian
simulation for ei A

(d)t , which can be parallelized across d (see Eq.5). Therefore, for
the multidimensional case, the complexity of our algorithm still grows linearly. This is
encouraging as the cost of any classical algorithm solving the d-dimensional Poisson
equation grows exponentially with d. The linear cost of the quantum algorithm makes
it ideal for experiments solving the d-dimensional Poisson equation on near-term
quantum hardware and achieving exponential speedup in terms of d.

6 Circuit demonstration on quantum hardware

Qiskit allows for easy circuit optimization and the running of circuits on IBM’s quan-
tum hardware [29]. Their ibmq_manila and ibmq_brooklyn systems containing 5 and
65 qubits, respectively, [30] are used to run our circuit experiments. These systems
support only the CNOT, I , Rz ,

√
X , and X gates, so any other gates used must be com-

piled down to these basic components, for example, the MCMT operation is compiled
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Table 1 One-dimensional Poisson equation, i.e., A|v〉 = |b〉’s inputs and solution states, and relative errors
in the solutions for different sizes of problems

Size of A Input States, |b〉 MPS-Simulated
Poisson Solution,
|v〉

Relative Error (%)

3 × 3 1√
2
|01〉 + 1

2 (|10〉 +
|11〉)

0.553|01〉 +
0.673|10〉 +
0.490|11〉

0.0899

7 × 7 1
4 (|001〉 + |010〉 +
|011〉 + |100〉) +
1
2 (|101〉 + |110〉 +
|111〉)

0.184|001〉 +
0.323|010〉 +
0.418|011〉 +
0.473|100〉 +
0.484|101〉 +
0.409|110〉 +
0.248|111〉

0.1839

15 × 15 1
4 (|0001〉 + |0010〉 +
|0011〉 + |0100〉 +
|0101〉 + |0110〉 +
|0111〉 + |1000〉 +
|1001〉 + |1010〉 +
|1011〉 + |1100〉) +
1
2 |1101〉 +
0.000|1110〉 +
0.000|1111〉

0.080|0001〉 +
0.152|0010〉 +
0.209|0011〉 +
0.258|0100〉 +
0.297|0101〉 +
0.322|0110〉 +
0.340|0111〉 +
0.344|1000〉 +
0.337|1001〉 +
0.319|1010〉 +
0.292|1011〉 +
0.257|1100〉 +
0.208|1101〉 +
0.139|1110〉 +
0.070|1111〉

0.5825

Fig. 10 An optimum number of qubits is used for constructing the circuit representing the Poisson solver
algorithm. (Left) How the resources, that is, the number of qubits, scales with the size of the problem. The
scaling is shown with varying levels of amplification. (Right) The circuit depth with the size of the problem
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to CNOT gates. The circuit transformation is performed using Qiskit’s transpiler [51]
with samplings that ensure a minimum depth of the optimized circuit.

One crucial part of experimenting with circuits on physical hardware is finding the
optimal mapping of virtual qubits to physical qubits on the hardware [43, 52–55].
Qiskit does this automatically via stochastic mappings of virtual to physical qubits
and offers different levels of transpilation for circuit optimization. We experimented
with multiple levels of optimization, conducting stochastic searches of mappings in
an effort to find an optimal mapping for our circuit. Our final circuit was scholastically
sampled over 1500 times to find such an optimalmapping.However, aswewill discuss,
the accuracy of our experiments was ultimately limited by the accumulated error of
the large number of CNOT gates required in our circuit.

6.1 Measurement error mitigation on |b〉

The current state of quantum hardware presents many challenges, particularly the
short coherence time and accumulation of noise in experiments [56]. In addition, on
physical devices like IBM’s ibmq_manila or ibmq_brooklyn, different pairs of qubits
have different CNOT error rates, which also affects the ultimate accuracy of the system
asmany qubits are directly entangledwith other qubits usingCNOT gates in the course
of an experiment [30]. Therefore, it makes sense to first set up a small system with a
limited number of CNOT gates and to experiment on that.

Additionally, there are two more purposes for this experiment: (1) Setting up a
test model with the exact input state used in the full circuit for the 3 × 3 problem
(corresponding to Figs. 4 and 5), from which we get an estimated error related to the
measurement part of the algorithm, and (2) Determining how much of that measure-
ment error may be mitigated through the existing model and how the error associated
with the relatively small number of CNOT gates affects the overall result.

Based on the available options for experimentation, we first investigate errors using
a simple noise model generated from the properties of real device ibmq_manila from
the IBM Quantum [30] and mitigate those errors on the measurement qubits [57–60].
To estimate the amount of error in our actual circuit, it was enough to use a test cir-
cuit involving only the input/output state |b〉 (those acting on reg.B) where we do the
measurement. A diagram of the circuit is shown in the top panel of Fig. 11. Following
the circuit transformation through the transpiler for ibmq_manila, the circuit decom-
poses to a number of basis gates that includes 2 CNOT gates and a few single qubit
gates. We experiment with the circuit on ibmq_manila with and without mitigating
errors on both measurement qubits and compare those results with theMPS-simulated
result. The results with two optimization levels 0 and 3 are shown in the bottom-left
panel of Fig. 11. While there are some noticeable differences in probability for some
states, the overall result appears to improve with the error mitigation and for higher
levels of transpiler optimization. This is clearly evident in the bottom-right panel of
the figure, where it shows the relative error with respect to the simulation. It confirms
that to reduce the error in the experiment significantly, it is not enough just to tune the
optimization levels; error mitigating is also essential on the NISQ hardware.
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We want to mention that while this experiment does not completely represent the
full circuit of the Poisson equation solver, we believe that it offers us a projection as to
what one could expect if NISQ or near-term hardware could support the experiment
of the full circuit. Our experimental results of this test system project a significant
reduction in the relative error in the measurement part of the circuit, hence indicating
the possibility of mitigating a similar magnitude of error on the full system.

6.2 Effects of CNOT error on the experiment of 3 × 3 problem on quantum
hardware

One measure of the fidelity of quantum systems is in terms of their CNOT error rates,
that is, the accuracy of individually entangled bits when performing a two-qubit CNOT
gate [61, 62]. The average CNOT error on the ibmq_brooklyn system is 8.094e-2; in
other words, they have an accuracy of about 0.92. Thus, we can estimate the overall
accuracy of the experiment based on the final number of CNOT gates transpiled from
the more abstract circuit, approximated by 0.92c where c is the final number of CNOT
gates after transpilation. Ultimately, every Toffoli gate, as well as more complex gates
such as MCMT, is transpiled into many CNOTs. After a series of transformations
using different levels of transpiler optimization, our best circuit for the 3× 3 problem
required roughly 5.5k CNOT gates. Unfortunately, this number is quite large given
the experimental fidelity of current NISQ devices. As a result, the accumulated errors
of the CNOT-gates result in the washing out of the experimental accuracy, which
contributes to the artifact of a nonzero contribution for the |00〉 state (see the figure in
Ref. [1]). In general, experimenting with the circuit on different IBM hardware would
end up with similar results, as the best CNOT accuracy on any system is less than
0.99. Therefore, the CNOT error rate appears to be the most dominant bottleneck
in realizing the algorithm on NISQ hardware. This experiment helped us pinpoint
this key limiting factor of the NISQ device. In spite of the instrumental difficulties
involving the CNOT errors, for the first time, we showed that such a full circuit can
easily bemapped (logical to physical gates) and experimented on the existing quantum
hardware.

7 Conclusions

We have successfully demonstrated several crucial improvements and optimizations
essential for scaling the Poisson Solver to larger problem sizes within a hybrid algo-
rithm. By identifying two major sources of error accumulation in the algorithm, one
in the phase estimation involving truncating eigenvalues and the other related to the
accuracy of the rotation angular coefficients, we were able to build a circuit implemen-
tation that was dynamically tunable with respect to those two sources of inaccuracy.
Adding accuracy to the eigenvalues through eigenvalue amplification yielded the best
improvements and proved to be necessary when expanding to larger, unsolved prob-
lem sizes. Not only did we perform more accurate computations with these amplified
eigenvalues, but we also were able to achieve a higher success probability on every sin-
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Fig. 11 Measurement error mitigation of the simplified circuit built out of 3 × 3 problem. (Top) Quantum
circuit built using the input state |b〉 = 1√

2
|01〉 + 1

2 (|10〉 + |11〉) of the 3 × 3 problem. (Bottom left)

The MPS-simulated result is compared with the experimental result from the noisy IBM’s ibmq_manila
device and after mitigating the error on the measurement qubits. Results are shown with the optimization
levels 0 and 3 of transpiler. (Bottom right) The relative error in the experimental results with respect to
MPS-simulated result

gle circuit than previously possible with truncated eigenvalues. We presented results
on significantly larger problem sizes than previous works, as well as improved accu-
racy on existing problem sizes. These accuracy improvements also translated to the
larger problems we demonstrated.

Clearly, our algorithm represents an advancement in accuracy and usability and
more closely represents what will be put into real-world applications of this theory in
the near future. Scalability is a critical step toward breaking the curse of dimensionality
that currently plagues solving the Poisson equation, and our multilevel optimized
circuit alleviates many of the pressures holding this technology back by dynamically
controlling the problem size and register size of crucial segments of the algorithm.

While we were successful in demonstrating our advancements to the Quantum
Poisson Solver on a simulator, current quantum hardware proved to be too error-prone
to provide accurate results [56, 63, 64]. In spite of that, wewere able to demonstrate the
improvements in the experimental result on IBM’s ibmq_manila device by mitigating
error on themeasurement qubits on a simplified circuit built out of an exact input/output
state of a 3 × 3 problem and including a small number of CNOT gates. Ultimately,
the accumulated error of the large number of CNOT gates required in the full circuit
for the Poisson solver, in conjunction with the number of qubits necessary for larger
problems, was the limiting factor in our exploration. However, this work has laid
the foundation for advanced algorithms that will become usable in the near future
as hardware improvements continue. As we see the arrival of more accurate systems
with lower CNOT error rates, our algorithm will become usable in larger and more
practical problems.

123



  209 Page 22 of 26 K. K. Saha et al.

We have also discussed a vision of how the problem size can be further extended
while managing the circuit width and depth at a level suitable to the current technol-
ogy. In this regard, we have prescribed multilevel solutions, including combining an
iterative framework as proposed by Saito et al. [21], in order to ensure even higher
accuracy in results with fewer repeated shots while requiring an optimum number
of qubits. Encouraged by the industry’s near-term hardware development roadmap
(such as IBM’s upcoming quantum-centric supercomputing hardware [48], for exam-
ple), we proposed partitioning large circuits through circuit knitting techniques and
then running the subcircuits on multiple QPUs in parallel. This would allow us to
explore significantly larger problems, including multidimensional ones, with greater
computational speed-up.

Appendix A: Reviewing Cao et al. [22] andWang et al. [23] works

In the context of the quantum circuit model, Cao et al. [22] first used the original
HHL algorithm [12] to solve the Poisson equation. Later, our co-author Wang et
al. [23] pointed out a bottleneck of Cao’s algorithm where the controlled rotation
is implemented by the arc sine function evaluation. In other words, the bottleneck
comes from the process of performing a linear mapping from state |λ j 〉 to λ−1

j |λ j 〉,
where λ j represents the eigenvalues of a matrix of the linear system of equations.
More precisely, after having the eigenvalue state |λ j 〉 by phase estimation, Cao et al.
evaluate the reciprocal state |1/λ j 〉 through the Newton iteration method, after that
the binary state of |1/λ j 〉 is converted to the probability amplitude 1/λ j through the
controlled Ry rotations with the angle of θ = arcsin(1/λ j ), where the arc sine function
is evaluated by the cut-and-try method. Since the cost of calculating the sine function
is O(m3) where m is the number of qubits of input register, then the evaluation cost
of the arc sine function is O(m4) [23].

Wang’s approach resolved the bottleneck of Cao’s algorithm and developed a quan-
tum fast Poisson solver with complete and modular circuit representation. First, they
proposed a new way of implementing the controlled rotation in the HHL algorithm.
That is, they introduced a method in which they take the state |λ j 〉 to λ−1

j |λ j 〉 directly
without passing through the |1/λ j 〉 state. In this process, they adopted a novel method
called qFBE (quantum function-value binary expansion) to evaluate the arc cotangent
function [65, 66]. With this method, they reduced the cost of the problem from O(m4)

to O(m3). Second, they developed the inverse qFBE method to compute the cosine
function in order to simplify the Hamiltonian simulation subroutine of HHL, mak-
ing the circuit design easier and more modular. Finally, they also exploited quantum
algorithms for solving the reciprocal and square root operations using the classical
non-restoring method [67]. By developing a new way of implementing the controlled
rotation within HHL and quantum circuits for solving the Poisson equation, they not
only reduced the algorithm’s complexity but alsomade the circuit complete and imple-
mentable. However, in reducing the cost and complexity of the quantum circuit, Wang
et al. truncated both the eigenvalues of the matrix and the rotation angular coefficients.
As a result, numerical errors are accumulated, and eventually that compromises the
accuracy of the solution of the Poisson equation.
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