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Background



What is ICARUS

 |CARUS stands for. “Imaging Cosmic And
Rare Underground Signals”

 |tisa Time Projection Chamber (TPC)
detector, which means that it uses a
uniform electric field to drift charged
particles through liquid argon to create a
3D image of particle tracks

* |tis designed to study neutrinos and
their interactions with matter
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Far Detector of Short-Baseline Neutrino Program

* |carus has served as the far detector in the
Short-Baseline Neutrino Program (SBN)

e |t sits 600 meters from the Booster Neutrino
Beam Target Hall
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Motivation and Purpose



Purpose

6

No detector is perfect, so it is important to quantify this

Neutrinos are so difficult to detect that this is especially true
for ICARUS

There are simulation data and experimental data

The ratio of these data sets quantifies the differences
between the Monte Carlo simulation and the experiment

This information can be used to gain insight into detector-
related uncertainties

£& Fermilab
4/12/24 Kevin Smith | Detector Related Uncertainties in ICARUS



Wire Planes in MicroBooNE
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lonization electrons drift in the applied
electric field until they reach the three
sense wire planes located at the anode

The drifting charged particles induce
signals on induction planes (0 and 1)

The particles directly contribute to
collection wire plane (2)

The collection plane wires are aligned
vertically, and the induction plane wires
are oriented at £60 degrees from the
vertical of the collection plane
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Liquid Argon TPC

Sense Wire Planes

012 Plane 1 wire waveforms

Plane 2 wire waveforms t
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ICARUS Detector Layout

Wire planes Cathode Induction 1
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[1] Icarus layout
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ICARUS Geometry

* The variables used to analyze the geometry are X, Y, Z, 6, and ¢

e O isthe hit’s angle of the drift direction, X, relative to the wire plane's
relative Z direction

e (isthe hit’s angle of the plane’s relative Y and Z directions

* To understand detector related uncertainties, it is helpful to look at
the different wire planes throughout the geometry of the detector as
they each receive signals differently
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Use of Cosmic Rays

Vertical (y)
Direction

* Neutrinos are the goal;
however, cosmic rays

help analyze the detector ACPT ACPT
itself ke o
muon muon
 Cosmic rays are far easier
to detect and provide a Anode Cathode
source of unbiased data Drift Direction ()
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Results



Histograms of Data and Simulations

 Various histograms were made of the data for the positional
variables for each of the TPCS, cryostats, and planes

« Below is data histogram (left) and MC histogram (right) for
plane 0, east tpc, and east cryostat
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Hit Selection

 Additionally, plots were filtered by whether or not the hits
crossed an anode or cathode, as those hits have more
accurate timing information
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2D Histogram Ratios

» The data/mc histograms were summed by plane and
processed to combine bins such that there are
enough data points in each bin and so there are no
empty points (leads to divide by zero in ratio)

* Then the ratio is taken (Data/MC)
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Phi (wire plane anale) vs Amplitude Ratios

Phi vs. Amplitude Induction Plane 1 Ratio (Data/MC)
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Phi vs Full Width at Half Max (FWHM) Ratios

Phi vs. FWHM Induction Plane 1 Ratio (Data/MC)
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Phi Profiles

* The average of the ratios and the errors were found using
ROOQOT’s TProfile with error propagation

d)VS. Amplltude Data/MC Profile Averages ¢ vs. FWHM Data/MC Profile Averages
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Theta (drift direction angle) vs Amplitude
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Theta vs. FWHM

19

4/12/24

FWHM

FWHM

FWHM

Theta vs. FWHM Induction Plane 1 Ratio (Data/MC)

70

60

50

40

30

0 (radians)

Theta vs. FWHM Induction Plane 2 Ratio (Data/MC)

0 (radians)

Theta vs. FWHM Collection Plane Ratio (Data/MC)

0 (radians)

Kevin Smith | Detector Related Uncertainties in ICARUS

2% Fermilab



Theta Profiles

0 vs. Amplitude Data/MC Profile Averages 0 vs. FWHM Data/MC Profile Averages

1%} 2 -
-g 1.3— —— Plane 0 = 13 —— Plane 0
© - =5 1
o L o -
- — Plane 1 ko] - — Plane 1
0} B 0} L
o - o
© 10 —— Plane 2 o o —— Plane 2
St S 12
< | x L
s =
S I =
= - - = P -
- e~~~ ™+ v e = T+ Tt e T T T T e — e - e |
S e e ~ o . e - T e
g 11 e e 11—
< *‘ e *,‘-“-- - ] —
P T e - — B L -
|+ - g - T T T - —— N AR - . e — -
— — . —= — - P e SRS RE e —_ —_—
e e e e e e e e e s R e - e - TR ——— | S e e o —————— e s
09— 0.9—
1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1
0.8 0.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.2 0.4 0.6 0.8 1 1.2 1.4
0 (radians) 0 (radians)

£& Fermilab
20 4/15/24 Kevin Smith | Detector Related Uncertainties in ICARUS



X vs Amplitude

X vs. Amplitude Plane 0 Ratio (Data/MC)
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X vs. FWHM

X vs. FWHM Plane 0 Ratio (Data/MC)
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X Profiles

X vs. Amplitude Data/MC Profile Averages X vs. FWHM Data/MC Profile Averages
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Projection of 3D Histograms
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The 3D histogram of Y vs. Z vs. Amplitude was also analyzed

The ratio of the Amplitude projection is below due to it being 2D instead of 3D

Z vs. Y vs. Amplitude Plane 0 Ratio (Data/MC)
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Conclusions

» Detecting Neutrinos is difficult, so it is important to
understand the detector being used

« Cosmic rays provide a valuable source of data for detector
analysis

» Using experimental cosmic ray and simulation data, ratio
functions depending on the geometry of the detector were
developed

* In the future, these ratio functions can be processed to alter
the simulation waveforms to quantify detector-related
uncertainties
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