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§1. As was pointed out by Yang and Lee,l the distribution of zeros 2,

Boreess By of the grand partition function
= - M N _ M _ i o .
Bolz) = 1'F2N=1 Ly, a" = Hj:l(l z/zj) (2, partition funetion] (1)

for a system of interacting particles in the complex z (activity) plane
in the limit of © (volume) = « is connected with the equation of state
[p=p(p), p: pressure, p: density] and condensation; p/kT = lim[Q-«=] (1/Q)-
-lnEQ(z), p={1/kT)z dp/dz. It is one of the interesting problems of sta-
tistical mechanics to obtain the distribution of zeros for a given sys-—
tems. However, for continuocus gases such calculations are difficult be-
cause of the complicated character of their partition functions. Hemmer
and Hauge2 et al. have attempted to obtain the distribution of zeros for
some continuous gases, starting from the equation of state.

§2. In this lecture, we first derive equations of state from some exam-
ples of distribution of zeros. We assume that in the limit of Q-+« the
zeros are distributed on the circle of radius a with centre at the origin;
the distribution function for zeros is denoted by g(8)[8 being the argu-
ment of a point on the circle] and we have g(-8) =g(8) and 2{; g(8)dé=e
= 1im[0+w] (M/9). Example (i): g(8) = (e/4m) (2 - cosB). Example (ii): g(8)=
(e/8m) {3 + (7~ 08)sind ~ 2cos8} (0 <6 <w).Example (i1i1): g(8) =er/a (0SB <a),
=0(a<8<B), =clr-8)"Y(1/2-2) (B<6<m), where 0<a<B<T and 0 <2A g
[L+{(r- BV&}tan(B/Z)/tan(a/Z)]_l. In these examples, the density p as a
function of z is given by (3.10), (3.12), (3.15) of reference 3, respec-
tively, and p{(2z) (and its analytical continuation) is shown in Fig. 1 (i),
(ii), (iii), respectively. The equation of state is expressed by OP-P'L.

In (ii), the condensation point P is an "analytical® singularity (.);q’5
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in (i) and (iii), P is a "non-analytical” singularity (+). In (i} and

(ii), the function representing gas and the function representing liquid

are different analytic functions ( and -=--- ); in (iii}, they are
different branches of one and the same analytic function. Thus, by giving
some examples of distribution of zeros, we can see various type55 of ana~-
lytical behaviour of the functions describing condensation; (i), (ii),
(iii) belong, respectively, to types (d), (c¢), (b) defined in reference 5.
§3. Next we show the non-unigueness of the derivation of the distribution
of zeros from a given equation of state. For example, if all zeros are at
one point ~-d on the negative real axis [case (i)], the equation of state
{on the positive real axis) is given by ¥W{z) [Ep/kT] = eln{{(z + d)/d} [from
(1)1. The same equation of state is obtained, (ii) by distributing the

zeros uniformly on a circle C with centre ~d and radius Y
ry, (iii) by distributing the zeros uniformly inside the

circle ¢, or (iv) by distributing the zeros on the imag- R

inary axis with distribution function g(y) = ed/m(y*+ d?). 0

[In case (ii), W inside ¢ is given by another analytic
function %f=const==cln(r0/d); in case (iii}, ¥ inside C

is not an analytic function; in case (iv), W when Re z <0

is given by another analytic function ¥=cin{(d - a)/d}.]
There are infinitely many possibilities of distribution FIG. 2
of zeros leading to the same eguation of state [e.g. Fig. 2]. To obtain
a unique distribution of zeros, we make the following assumptions:8
(1) The zeros are distributed on lines at most (not over domains).
{i1i) The zeros are so distributed that one can make as far-reaching ana-
lytical continuation of W(z) as possible from the positive real axis to
the upper half and to the lower half of the complex z plane.
According to these assumptions, case (i) will be realized for the given
equation of state W(z) = e¢ln{(z +d)/d}, since in this case the analytical
continuation of W{z) is the most far-reaching. The validity of these as-
sumptions will be discussed in the future. For the present we can only say
that they are based on a philosophical principle: “Nature likes economy.”
§4. on the above assumptions, we derive the distribution of zeros for

gases obeying Tonks' equation of state {p==kT/(p"l-b)] and van der Waals'

1~—b) =kT}, i.e. for one~dimensional systems

equation of state [(p~*ap2)(0—
of hard rods with no attraction and with infinitesimal attraction of in-
finite range, which are the only examples of continuous gases for which

the equation of state is exactly obtained.  We construct the Riemann sur-
face of the function W(z) [Zp/kT], and derive the "field plane" (i.e. the
part of the Riemann surface covered by our analytical continuation), and

from it we determine uniquely the line of zeros as "jumping line", across
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which we jump from one Riemann sheet to another and the real part of W(z)
The distribution function

gls) = (1X2W)(6V8/ds-—dVL/ds)

for zeros on the line is calculated, VR and VL denoting the values ap-
proached by the imaginary part of W(z) from the right and left sides of

the line, respectively (g is the length of an arc on the line). Note that
a jumping line is different from a branch cut, across which the function

is continuous.
(2)

is analytically (smoothly) continued from one sheet to another. The fol-
[where E (i.e. z=~1/e)}, Py, Py,

lowing figures show the Riemann surfaces
Py and O (i.e. z=0) are branch points] and the field planes [where bold
zero lines) and usual lines represent

lines represent jumping lines (i.e.
branch cuts]. (In Figs. 4a, 5a, 6a the infinitely many sheets concerning
K is the point of intersection of the zero

0 are omitted.) In Fig. 4b,
line and the positive real axis; thus K is the condensation point.
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§5. For Tonks' equation (from which z==WeW, with p=1) we confirm Hauge-
Hemmer's results2 by our method of argument (Figs. 3a, 3b). For van der
Waals' eguation, from which we have (on putting o = a/b2k7)

W=0p/(1~p) =ap>, z=1{p/(1-p)Yexp{p/(1-p) - 20p} (with p=1), (3)

we obtain® the equation for the zero line enclosing the origin at low

temperatures (cf. Figs. 4a, 4b)

r=ae %[1-a" 1+ (-1/2+0%/2)a" 2+ (-5/6 +387/2)a”°
+ (43724 +2168%/4 - 8%/8)a™" + (-520/120 + 229082 /12 - 618" /24) 0>
+ (-8501/720 + 113162 /16 - 3636% /16 + 6°/16)0 % + 0(a™ ") (4)
+{a-1+02a"t+ (1/3+26%) a7 %+ (5/3+506%)0 2le %cosb +0(a e )],

and the distribution function for zeros on this line

g(8) = (2m Yo e (14 (-2 - 0%/2ya 2 + (-37/6 + 87 /2)a"®
+ (~103/8 + 478%/8)a™" + (~2681/120 + 3958°/6 - 2416"/48) a”
+ (-29807/720 + 697382 /24 - 20270% 748 - 1218%/32)0 % + 0(a™ )
+{-2a+7a 1+ (7972 -20%) 0”2 + (501/8 - 4762 + 36" /2) 0”7}

24 (-33/2+6%) 0 tee %sins +0(a e ™1,

5

{5)
e e %cos8 + {-a"t - 40~

and the distribution function for zeros on the part of the negative real
axis between -« and H at low temperatures

1 2 2

g(z) =214 2[1+2¢ Ying - 3¢" L + 6aq™? + 3g7 % (Ing) ? + (-11q" % + 240" %) 1ng
+(6 =121 % - 38ag"° + 40027 + 4073 (1ng) ® + (-25¢7% + 60ag ") (1ng) ?
+{(35 - 412y ¢"% - 2140g" " + 240a%g % }1ng + (-10 + 2572/3) ¢~

+ (138 - 20m%) ag™ " - 38807975 + 2240% 7% + 0™ (1nw) 11, (6)

with ¢ 2 1n(-z) + 2a. Calculations are also made® for the critical temper-
ature Tc {cf. Figs. 5a, 5b) and for high temperatures (cf. Figs. 6a, 6b).
From these calculations we may conclude that the existence of repulsions
between particles leads to distribution of zeros on part of the negative
real axis, whereas the existence of attractions causes distribution of
zeros on a curve (open or closed) crossing the negative real axis, and
brings about condensation when the curve is closed to cross the positive
real axis; these features might hold for the general systems of interact-
ing molecules.
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