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§_~]. AS was pointed out by Yang and Lee, 1 the distribution of zeros Zl, 

z2,..., z M of the grand partition function 

~(z) = 1 + ~M ZN(~,T) zN = [M N=I j : l ( 1  - z / z j )  [ZN: partition function] (1) 

for a system of interacting particles in the complex z (activity) plane 

in the limit of ~ (volume) + ~ is connected with the equation of state 

[p =p(p), p: pressure, p: density] and condensation; p/kT =lim[~+~] (I/~)- 

• InH~(z), p= (i/kT)z dp/dz. It is one of the interesting problems of sta- 

tistical mechanics to obtain the distribution of zeros for a given sys- 

tems. However, for continuous gases such calculations are difficult be- 

cause of the complicated character of their partition functions. Hemmer 

and Hauge 2 et al. have attempted to obtain the distribution of zeros for 

some continuous gases, starting from the equation of state. 

§_22. In this lecture, we first derive equations of state from some exam- 

ples of distribution of zeros. We assume that in the limit of ~÷~ the 

zeros are distributed on the circle of radius a with centre at the origin; 

the distribution function for zeros is denoted by @(8) [8 being the argu- 

ment of a point on the circle] and we have @(-8) =@(8) and 2f~ @(e)d8 = 

limit+m] (M/~). Example ( i ) :  @(e)= (e/4~)(2-cose). Example ( i i ) :  g(B)= 
(0/8~){3+ (~- e)sine-2cose} (0~ e ~ ) .  Example ( i i i ) :  @(e) = ol/e (0~ e~a), 
= 0 (~ < 8 < 8), =e(~- B)-l(i/2- I) (8~8~), where 0 < ~ < B < ~ and 0 < 2~ 

[i + {(~- 8)/a]tan(8/2)/tan(a/2)] -I In these examples, the density p as a 

function of z is given by (3.10), (3.12), (3.15) of reference 3, respec- 

tively, and p(z) (and its analytical continuation) is shown in Fig. 1 (i), 

(ii), (iii), respectively. The equation of state is expressed by OP-P'L. 
4,5 

In (ii), the condensation point P is an "analytical" singularity (.); 
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in (i) and (iii), P is a "non-analytical" singularity (+) .4'5 In (i) and 

(ii), the function representing gas and the function representing liquid 

are different analytic functions ( -- and ) ; in (iii), they are 

different branches of one and the same analytic function. Thus, by giving 

some examples of distribution of zeros, we can see various types 5 of ana- 

lytical behaviour of the functions describing condensation; (i), (ii), 

(iii) belong, respectively, to types (d), (c) , (b) defined in reference 5. 

~3. Next we show the non-uniqueness of the derivation of the distribution 

of zeros from a given equation of state. For example, if all zeros are at 

one point -d on the negative real axis [case (i)], the equation of state 

(on the positive real axis) is given by W(z)[~p/kT] = cln{(z + dud} [from 

(i)]. The same equation of state is obtained, (ii) by distributing the 

zeros uniformly on a circle C with centre -d and radius Y 

r0' (iii)bY distributing the zer°s uniformly inside the i ~  / 

circle C, or (iv) by distributing the zeros on the imag- 

inary axis with distribution function g(y) = cd/z(y 2+ d2). i0 x 

[In case (ii), W inside C is given by another analytic ~ Y  k 

function ~=const = cln(ro/d) ; in case (iii) , W/inside C 

is not an analytic function; in case (iv), W when Re z < 0 

is given by another analytic function ~= cln{(d-z~d}.] 
FIG. 2 

There are infinitely many possibilities of distribution 

of zeros leading to the same equation of state [e.g. Fig. 2]. To obtain 
• 6 

a unique distribution of zeros, we make the following assumptlons: 

(i) The zeros are distributed on lines at most (not over domains). 

(ii) The zeros are so distributed that one can make as far-reaching ana- 

lytical continuation of W(z) as possible from the positive real axis to 

the upper half and to the lower half of the complex z plane. 

According to these assumptions, case (i) will be realized for the given 

equation of state W(z) = cln{(z +d)/d}, since in this case the analytical 

continuation of W(z) is the most far-reaching. The validity of these as- 

sumptions will be discussed in the future. For the present we can only say 

that they are based on a philosophical principle: "Nature likes economy." 

~4. On the above assumptions, we derive the distribution of zeros for 

gases obeying Tonks' equation of state [p = kT/(p -I - b)] and van der Waals' 

equation of state [(p +ap2) (p -I - b) = kT] , i.e. for one-dimensional systems 

of hard rods with no attraction and with infinitesimal attraction of in- 

finite range, which are the only examples of continuous gases for which 

the equation of state is exactly obtained. 7 We construct the Riemann sur- 

face of the function W(~)[~p/kT], and derive the "field plane" (i.e. the 

part of the Riemann surface covered by our analytical continuation), and 

from it we determine uniquely the line of zeros as "jumping line", across 
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which we jump from one Riemann sheet to another and the real part of W(z) 

is continuous. The distribution function 

g(s) = (1/27) CdVR/dS - dVL/dS) (2) 

for zeros on the line is calculated, V R and V L denoting the values ap- 

proached by the imaginary part of W(z) from the right and left sides of 

the line, respectively (s is the length of an arc on the line). Note that 

a jumping line is different from a branch cut, across which the function 

is analytically (smoothly) continued from one sheet to another. The fol- 

lowing figures show the Riemann surfaces [where E (i.e. z =-l/e) , Pl, P2, 

P3 and O (i.e. z = 0) are branch points] and the field planes [where bold 

lines represent jumping lines (i.e. zero lines) and usual lines represent 

branch cuts]. (In Figs. 4a, 5a, 6a the infinitely many sheets concerning 

O are omitted.) In Fig. 4b, K is the point of intersection of the zero 

line and the positive real axis; thus K is the condensation point. 
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2" For Tonks' equation (from which Z =We W, with b =i) we confirm Hauge- 

Hemmer's results 2 by our method of argument (Figs. 3a, 3b). For van der 

Waals' equation, from which we have (on putting ~--a/b2kT) 

W= p/(l_p ) _ap2, z= {p/(l-p) }exp{p/(l-p) -2~p} (with b=l), (3) 

we obtain 6 the equation for the zero line enclosing the origin at low 

temperatures (cf. Figs. 4a, 4b) 

r=ae-a[l - a-l+ (-1/2 + 82/2)~ -2 + (-5/6 + 382/2)a -3 

+ (-43/24 + 2182/4 - 84/8)e-~ + (-529/120 +22982/12 - 6184/24)~ -5 

+ (-8501/720 + 113182/16 - 36384/16 + 86/16)e -6 + O(e -7) (4) 

+ {~ - i + 82~ -I + (1/3 + 282)~ -2 + (5/3 + 582) e-3}e-acose + O(~-4e -a) ] , 

and the distribution function for zeros on this line 

g(8) = (27) -le-le~ [l + (-2 - 82/2)~ -2 + (-37/6 + 82/2)~ -3 

+ (-103/8 + 4782/4)~ -4 + (-2681/120 + 39582/6 - 24184/48) ~ -5 

+ (-29807/720 + 697382/24 - 202784/48- 12186/32)~ -6 + O(e -7) 

+ {-2a + 7~ -l+ (79/2 - 282)e -2 + (501/8 - 4782 + 384/2)~-3} • (5) 

• e-~cos8 + {_@-i _ 4~-2 + (-33/2 + 82)~-3}8e-esin8 + O(e-4e -~) ] , 

and the distribution function for zeros on the part of the negative real 

axis between -~ and H at low temperatures 

g(x) =-x-lq -2 [i + 2q-llnq - 3q -I + 6~q -2 + 3q -2 (inq)2 + (_llq-2 + 24aq-3)inq 

+ (6 - 2)q-2 _ 38~q-3 + 40~2q-4 + 4q-3(inq) 3 + (_25q-3 +60~q-4) (inq)2 

+ {(35 - 4~2)q -3 - 214~q -4 + 240a2q-5}inq + (-i0 + 25~2/3)q -3 

+ (138 - 20~2) ~q -# - 388~2q -5 + 224~3q -6 + 0{~-4 (in~) 4}] , (6) 

with q---in (-x) + 2~. Calculations are also made 6 for the critical temper- 

ature T (cf. Figs. 5a, 5b) and for high temperatures (cf. Figs. 6a, 6b). 
d 

From these calculations we may conclude that the existence of repulsions 

between particles leads to distribution of zeros on part of the negative 

real axis, whereas the existence of attractions causes distribution of 

zeros on a curve (open or closed) crossing the negative real axis, and 

brings about condensation when the curve is closed to cross the positive 

real axis; these features might hold for the general systems of interact- 

ing molecules. 
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