

Modeling Type Ia supernovae with explosions in white dwarfs near and below the Chandrasekhar mass

Friedrich K. Röpke

*Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik and
Heidelberger Institut für Theoretische Studien Heidelberg, Germany*
E-mail: friedrich.roepke@h-its.org

Florian Lach and Sabrina Gronow

*Zentrum für Astronomie der Universität Heidelberg, Astronomisches Recheninstitut and
Heidelberger Institut für Theoretische Studien Heidelberg, Germany*

Stuart A. Sim and Fionntan P. Callan

*Astrophysics Research Center, School of Mathematics and Physics, Queen's University Belfast,
Belfast BT7 1NN, Northern Ireland, UK*

Christine E. Collins

*Astrophysics Research Center, School of Mathematics and Physics, Queen's University Belfast,
Belfast BT7 1NN, Northern Ireland, UK and
GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany*

The progenitor evolution and the explosion mechanism of Type Ia supernovae remain unexplained. Nonetheless, substantial progress has been made over the past years with three-dimensional hydrodynamic simulations of different scenarios. Here, we review some recent work pertaining to the leading paradigms of modeling: thermonuclear explosions of white dwarf stars near and below the Chandrasekhar mass limit. We discuss implications of the different explosion channels and their predictions of observables.

Keywords: Type Ia supernovae, thermonuclear explosions, white dwarf stars, numerical simulations

1. Introduction

Despite substantial progress in theoretical modeling and numerical simulations over the past years,¹ our understanding of the physical mechanism of Type Ia supernovae remains incomplete. This has two main reasons. (i) The progenitor systems from which these explosions arise have not been identified, and therefore the initial conditions for the explosion simulations are uncertain. (ii) Modeling the explosion stage itself is a severe multi-scale multi-physics challenge and relies on assumptions and approximations. Some of these approximations could be mitigated with multi-dimensional hydrodynamical simulations. They form a cornerstone of a consistent modeling pipeline that follows a progenitor model over explosion and nucleosynthesis to the formation of observables. By avoiding tunable parameters, such a modeling pipeline facilitates a direct comparison of model predictions with astronomical data.

This allows for conclusions to be drawn on the validity of the assumed progenitor scenarios. In the following, we describe the application of this modeling pipeline to two different explosion scenarios.

2. Explosion models

Ignoring the fascinating but complex and still enigmatic evolution of progenitor systems of Type Ia supernovae, the main question to simulations is how to set up the state of the white dwarf at the onset of explosion. The two fundamental choices, a configuration close to the limit of stability, the Chandrasekhar mass, and a white dwarf below that mass limit, imply different explosion scenarios.² The compact structure of a near-Chandrasekhar mass object causes high densities of the material ahead of the thermonuclear burning front³ if it propagates as a supersonic detonation. The products of such an explosion, almost exclusively iron group elements, are inconsistent with observations of Type Ia supernova. To produce the required intermediate mass elements detected in their spectra, burning has to start out as a subsonic deflagration in a white dwarf close to the Chandrasekhar mass. After some time of pre-expansion of the star, the burning front may turn into a supersonic detonation. In a sub-Chandrasekhar mass white dwarf, in contrast, the densities are lower and allow for the required intermediate-mass elements to be produced in a detonation.

For both scenarios, the actual ignition of the burning remains uncertain and is difficult to resolve in multidimensional hydrodynamic simulations.⁴ Therefore, simulations often start out with an assumption on the triggering of the explosive burning.

3. Near-Chandrasekhar mass explosions

Sets of simulations have been carried out to test the impact of initial parameters on the outcome of explosions in near-Chandrasekhar mass white dwarf stars. Testing the ignition configuration⁵ revealed that the number and spatial distribution of ignition sparks is the most important parameter for the strength of the deflagration. Few and asymmetrically distributed sparks lead to an incomplete disruption of the white dwarf. With very many ignition kernels (that are less likely to be realized in nature^{4,6}), a complete unbinding of the star becomes possible, but the mass of ^{56}Ni produced is too low to explain the brightness of normal Type Ia supernovae. A detonation may form later and enhance the thermonuclear burning,⁷ but here we restrict our discussion to cases where the flame propagation remains subsonic throughout.

Pure deflagrations in near-Chandrasekhar mass white dwarfs have been discussed as a model for the subclass of Type Iax supernovae.⁸ An open question, however, remains: Can deflagrations in Chandrasekhar-mass white dwarfs cover the entire range of objects in this class, including the very faint events? To explore this,

we have carried out an extended systematic study of three-dimensional hydrodynamic explosion simulations⁹ varying the distance of single-spark ignitions from the stellar center, but also other parameters such as the central density of the white dwarf at the onset of explosion, its metallicity, its carbon mass fraction, and its rotation state. This suite of models shows that it is well possible to decrease the ^{56}Ni production and thus the brightness of the modeled events to values that would match the faintest members of the Type Iax supernova class. However, inconsistencies were discovered, too. The faint events evolve to quickly in brightness. All models fall onto a strong correlation between the produced ^{56}Ni mass and the total eject mass. This correlation does not match observations and none of the initial parameters was able to perturb it significantly. For the brighter models, however, reasonable matches with observations were found. Previous claims of chemically layered ejecta structures¹⁰ based on the “abundance tomography” method contradict the picture of Type Iax supernovae originating from deflagrations in Chandrasekhar-mass white dwarfs. Because of the intrinsic instabilities of subsonic flame propagation, such a scenario would predict well-mixed ejecta. Recent forward-modeling,¹¹ however, finds that the predictions of such models may still be consistent with observations.

Improvements in explosion modeling and – in particular – in the treatment of non local thermodynamic equilibrium (NLTE) effects in the radiation transfer calculations are needed to settle the question of whether deflagrations in Chandrasekhar-mass white dwarfs can explain at least the brighter Type Iax supernovae. Given the failure to model the faint events in this framework, it seems possible that not all members of the observationally-defined class of Type Iax supernovae pertain to the same physical explosion mechanism.

4. Sub-Chandrasekhar mass explosions

Explosions of white dwarf stars below the Chandrasekhar mass are an appealing model because they seem to reproduce important observational trends.¹² The question, however, is how such inert objects trigger a detonation. A classical model is that of double detonations: A helium shell is accreted on top of a carbon-oxygen white dwarf. Once massive enough, it triggers a shell detonation that initiates a secondary detonation of the carbon-oxygen core. If the helium shell is not too massive, its products do not strongly impact the observables and the match with data from normal Type Ia supernovae improves.^{13–16}

We have recently explored the mechanism of triggering of the secondary core detonation and the impact of the shell detonation products on predicted observables in an extended sequence of three-dimensional hydrodynamic simulations.^{17–19} This study identifies different possibilities for the core detonation initiation depending on the mass of the helium shell and the carbon-oxygen core. Although a reasonable match is obtained in the predicted observables with observational data, some shortcomings remain. These include too red spectra and too wide variations of the lightcurve width-luminosity relation with viewing angle. Some of these deficiencies

can be attributed to approximations in the treatment of NLTE effects in radiation transport,¹⁶ but the mismatches may also call into question the explosion model itself.

5. Imprints on nucleosynthesis yields

Apart from comparing to optical observables, another approach to discriminate between and assess the validity of Type Ia supernova explosion models is by their imprints on the nucleosynthesis yields.²⁰ An important difference between near- and sub-Chandrasekhar mass explosion models is the production of manganese.²¹ In explosive carbon burning, it can only be produced in (super-)solar ratio to iron if the densities are sufficiently high to allow for normal freeze-out from nuclear statistical equilibrium. This is the case for explosive burning in the cores of Chandrasekhar-mass white dwarfs. Alpha-rich freezeout, as occurring at lower densities in explosions of sub-Chandrasekhar mass objects, destroys the mother nucleus of ^{55}Mn , ^{55}Co , by proton captures. This produces additional ^{56}Ni at the expense of manganese. Therefore, it was concluded that a substantial fraction of Type Ia supernovae has to originate from the Chandrasekhar-mass explosion channel so that these objects can drive the manganese-over-iron trend in galactic chemical evolution towards the solar value. Our new double-detonation sub-Chandrasekhar mass explosion models,^{19,20} however, show that additional manganese can be produced in the helium shell detonation. This lowers the fraction of Chandrasekhar-mass models needed to explain the galactic chemical evolution of manganese.

6. Conclusions

Three-dimensional hydrodynamic simulations help to avoid tunable parameters in the modeling of different explosion scenarios for Type Ia supernovae. The optical observables derived from such models via nucleosynthesis postprocessing²² and radiative transfer calculations can be exposed directly to observational data. For the time being, however, the discriminative power of this approach is insufficient to identify a valid model for normal Type Ia supernovae. All considered scenarios have some advantages and some shortcomings. The reason may simply be that the correct scenario has not yet been found. Sub-Chandrasekhar mass explosions are a promising model, but in the double detonation mechanism they still fail to match some important observational properties of Type Ia supernovae. Similar explosions can, however, also be triggered by mergers of two white dwarfs.^{23–26}

A similar situation is encountered with deflagrations in near-Chandrasekhar mass white dwarf stars. While this model looks promising for explaining brighter members of the Type Iax supernova class, its fainter end cannot be reproduced.

To ultimately settle the question of the origin of Type Ia supernovae, constant improvement is required in the explosion modeling as well as in the treatment of radiative transfer predicting the optical observables. Alternative observables that

may help to discriminate between models include the nucleosynthesis yields discussed here, but also spectropolarimetry data,^{27–29} the search for surviving companion stars in the double degenerate progenitor model³⁰ and imprints of different explosion scenarios on the forming supernova remnants.^{31,32}

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 138713538 – SFB 881 (“The Milky Way System”, subproject A10), by the ChETEC COST Action (CA16117), and by the National Science Foundation under Grant No. OISE-1927130 (IReNA). FL and FKR acknowledge support by the Klaus Tschira Foundation. FPC acknowledges an STFC studentship and SAS acknowledges funding from STFC Grant Ref: ST/P000312/1. The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by providing computing time on the GCS Supercomputer JUWELS³³ at Jülich Supercomputing Centre (JSC). Part of this work was performed using the Cambridge Service for Data Driven Discovery (CSD3), part of which is operated by the University of Cambridge Research Computing on behalf of the STFC DiRAC HPC Facility (www.dirac.ac.uk). The DiRAC component of CSD3 was funded by BEIS capital funding via STFC capital grants ST/P002307/1 and ST/R002452/1 and STFC operations grant ST/R00689X/1. DiRAC is part of the National e-Infrastructure.

References

1. W. Hillebrandt, M. Kromer, F. K. Röpke and A. J. Ruiter, Towards an understanding of type ia supernovae from a synthesis of theory and observations, *Frontiers of Physics* **8**, 116 (April 2013).
2. I. R. Seitenzahl and D. M. Townsley, *Nucleosynthesis in Thermonuclear Supernovae*, in *Handbook of Supernovae*, eds. A. W. Alsabti and P. Murdin 2017, p. 1955.
3. F. K. Röpke, Combustion in thermonuclear supernova explosions, in *Handbook of Supernovae*, eds. A. Alsabti and P. Murdin (Springer, March 2017) pp. 1185–1209.
4. A. Nonaka, A. J. Aspden, M. Zingale, A. S. Almgren, J. B. Bell and S. E. Woosley, High-resolution simulations of convection preceding ignition in Type Ia supernovae using adaptive mesh refinement, *ApJ* **745**, p. 73 (January 2012).
5. M. Fink, M. Kromer, I. R. Seitenzahl, F. Ciaraldi-Schoolmann, F. K. Röpke, S. A. Sim, R. Pakmor, A. J. Ruiter and W. Hillebrandt, Three-dimensional pure deflagration models with nucleosynthesis and synthetic observables for Type Ia supernovae, *MNRAS* **438**, 1762 (February 2014).
6. C. Byrohl, R. Fisher and D. Townsley, The intrinsic stochasticity of the ^{56}Ni distribution of single-degenerate near-Chandrasekhar-mass SN Ia, *ApJ* **878**, p. 67 (June 2019).
7. I. R. Seitenzahl, F. Ciaraldi-Schoolmann, F. K. Röpke, M. Fink, W. Hillebrandt, M. Kromer, R. Pakmor, A. J. Ruiter, S. A. Sim and S. Taubenberger, Three-dimensional delayed-detonation models with nucleosynthesis for Type Ia supernovae, *MNRAS* **429**, 1156 (February 2013).

8. S. W. Jha, *Type Iax Supernovae*, in *Handbook of Supernovae*, eds. A. W. Alsabti and P. Murdin 2017, p. 375.
9. F. Lach, F. P. Callan, D. Bubeck, F. K. Roepke, S. A. Sim, M. Schrauth, S. T. Ohlmann and M. Kromer, Type iax supernovae from deflagrations in Chandrasekhar-mass white dwarfs, *arXiv e-prints*, arXiv:2109.02926 (September 2021).
10. B. Barna, T. Szalai, W. E. Kerzendorf, M. Kromer, S. A. Sim, M. R. Magee and B. Leibundgut, Type Iax supernovae as a few-parameter family, *MNRAS* **480**, 3609 (November 2018).
11. M. R. Magee, J. H. Gillanders, K. Maguire, S. A. Sim and F. P. Callan, An analysis of the spectroscopic signatures of layering in the ejecta of type Iax supernovae, *arXiv e-prints*, arXiv:2110.12294 (October 2021).
12. S. A. Sim, F. K. Röpke, W. Hillebrandt, M. Kromer, R. Pakmor, M. Fink, A. J. Ruiter and I. R. Seitenzahl, Detonations in sub-Chandrasekhar-mass C+O white dwarfs, *ApJ* **714**, L52 (May 2010).
13. M. Fink, F. K. Röpke, W. Hillebrandt, I. R. Seitenzahl, S. A. Sim and M. Kromer, Double-detonation sub-Chandrasekhar supernovae: can minimum helium shell masses detonate the core?, *A&A* **514**, p. A53 (May 2010).
14. M. Kromer, S. A. Sim, M. Fink, F. K. Röpke, I. R. Seitenzahl and W. Hillebrandt, Double-detonation Sub-Chandrasekhar Supernovae: Synthetic Observables for Minimum Helium Shell Mass Models, *ApJ* **719**, 1067 (August 2010).
15. D. M. Townsley, B. J. Miles, K. J. Shen and D. Kasen, Double Detonations with Thin, Modestly Enriched Helium Layers can Make Normal Type Ia Supernovae, *ApJ* **878**, p. L38 (June 2019).
16. K. J. Shen, S. Blondin, D. Kasen, L. Dessart, D. M. Townsley, S. Boos and D. J. Hillier, Non-local Thermodynamic Equilibrium Radiative Transfer Simulations of Sub-Chandrasekhar-mass White Dwarf Detonations, *ApJ* **909**, p. L18 (March 2021).
17. S. Gronow, C. Collins, S. T. Ohlmann, R. Pakmor, M. Kromer, I. R. Seitenzahl, S. A. Sim and F. K. Röpke, SNe Ia from double detonations: Impact of core-shell mixing on the carbon ignition mechanism, *A&A* **635**, p. A169 (March 2020).
18. S. Gronow, C. E. Collins, S. A. Sim and F. K. Röpke, Double detonations of sub- M_{Ch} CO white dwarfs: Variations in Type Ia supernovae due to different core and He shell masses, *A&A* **649**, p. A155 (May 2021).
19. S. Gronow, B. Côté, F. Lach, I. R. Seitenzahl, C. E. Collins, S. A. Sim and F. K. Roepke, Metallicity-dependent nucleosynthetic yields of Type Ia supernovae originating from double detonations of sub- M_{Ch} white dwarfs, *arXiv e-prints*, arXiv:2103.14050 (March 2021), submitted to *A&A*.
20. F. Lach, F. K. Roepke, I. R. Seitenzahl, B. Côté, S. Gronow and A. J. Ruiter, Nucleosynthesis imprints from different Type Ia Supernova explosion scenarios and implications for galactic chemical evolution, *A&A* **644**, p. A118 (December 2020).
21. I. R. Seitenzahl, G. Cescutti, F. K. Röpke, A. J. Ruiter and R. Pakmor, Solar abundance of manganese: A case for near chandrasekhar-mass type ia supernova progenitors, *A&A* **559**, p. L5 (November 2013).
22. I. R. Seitenzahl, F. K. Röpke, M. Fink and R. Pakmor, Nucleosynthesis in thermonuclear supernovae with tracers: Convergence and variable mass particles, *MNRAS* **407**, 2297 (October 2010).
23. R. Pakmor, M. Kromer, F. K. Röpke, S. A. Sim, A. J. Ruiter and W. Hillebrandt, Sub-luminous type ia supernovae from the mergers of equal-mass white dwarfs with mass $\sim 0.9m_{\odot}$, *Nature* **463**, 61 (January 2010).
24. R. Pakmor, M. Kromer, S. Taubenberger, S. A. Sim, F. K. Röpke and W. Hillebrandt, Normal Type Ia supernovae from violent mergers of white dwarf binaries, *ApJ* **747**, p. L10 (March 2012).

25. R. Pakmor, M. Kromer, S. Taubenberger and V. Springel, Helium-ignited violent mergers as a unified model for normal and rapidly declining type Ia supernovae, *ApJ* **770**, p. L8 (June 2013).
26. K. J. Shen, S. J. Boos, D. M. Townsley and D. Kasen, Multi-Dimensional Radiative Transfer Calculations of Double Detonations of Sub-Chandrasekhar-Mass White Dwarfs, *arXiv e-prints*, arXiv:2108.12435 (August 2021).
27. M. Bulla, S. A. Sim, R. Pakmor, M. Kromer, S. Taubenberger, F. K. Röpke, W. Hillebrandt and I. R. Seitenzahl, Type Ia supernovae from violent mergers of carbon-oxygen white dwarfs: Polarization signatures, *MNRAS* **455**, 1060 (January 2016).
28. M. Bulla, S. A. Sim, M. Kromer, I. R. Seitenzahl, M. Fink, F. Ciaraldi-Schoolmann, F. K. Röpke, W. Hillebrandt, R. Pakmor, A. J. Ruiter and S. Taubenberger, Predicting polarization signatures for double-detonation and delayed-detonation models of Type Ia supernovae, *MNRAS* **462**, 1039 (October 2016).
29. M. Bulla, Z. W. Liu, F. K. Röpke, S. A. Sim, M. Fink, M. Kromer, R. Pakmor and I. R. Seitenzahl, White dwarf deflagrations for Type Iax supernovae: Polarisation signatures from the explosion and companion interaction, *A&A* **635**, p. A179 (March 2020).
30. K. J. Shen, D. Boubert, B. T. Gänsicke, S. W. Jha, J. E. Andrews, L. Chomiuk, R. J. Foley, M. Fraser, M. Gromadzki, J. Guillochon, M. M. Kotze, K. Maguire, M. R. Siebert, N. Smith, J. Strader, C. Badenes, W. E. Kerzendorf, D. Koester, M. Kromer, B. Miles, R. Pakmor, J. Schwab, O. Toloza, S. Toonen, D. M. Townsley and B. J. Williams, Three Hypervelocity White Dwarfs in Gaia DR2: Evidence for Dynamically Driven Double-degenerate Double-detonation Type Ia Supernovae, *ApJ* **865**, p. 15 (September 2018).
31. G. Ferrand, D. C. Warren, M. Ono, S. Nagataki, F. K. Röpke and I. R. Seitenzahl, From Supernova to Supernova Remnant: The Three-dimensional Imprint of a Thermonuclear Explosion, *ApJ* **877**, p. 136 (Jun 2019).
32. G. Ferrand, D. C. Warren, M. Ono, S. Nagataki, F. K. Röpke, I. R. Seitenzahl, F. Lach, H. Iwasaki and T. Sato, From Supernova to Supernova Remnant: Comparison of Thermonuclear Explosion Models, *ApJ* **906**, p. 93 (January 2021).
33. Jülich Supercomputing Centre. (2019). JUWELS: Modular Tier-0/1 Supercomputer at the Jülich Supercomputing Centre. *Journal of Large-Scale Research Facilities* **5**, A171.