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Abstract: In this thesis, we study aspects of scattering amplitudes, half-BPS operators

and Yangian Invariants in N' = 4 super Yang Mills.

We begin by exploring the geometry of Wilson loop diagrams. The Wilson loop in
supertwistor space gives an explicit description of perturbative superamplitude integrands
in NV = 4 super Yang-Mills as a sum of planar Feynman diagrams. Each Feynman
diagram can be naturally associated with a geometrical object in the same space as the
amplituhedron (although not uniquely). This suggests that the geometrical images of
the diagrams would give a tessellation of the amplituhedron. This turns out to be true
for NMHV amplitudes, however we prove that for N>MHV and beyond this is not the
case. Specifically, we show that there is no choice of geometric image of the Wilson loop

Feynman diagrams that gives a geometric object with no spurious boundaries.

We then move to investigate a set of half-BPS operators in N’ = 4 super Yang-Mills which
are appropriate for describing single particle states of superstring theory on AdSs x S%; we
refer to these as single particle operators. They are defined to have vanishing two-point
function with all multi-trace operators, and so correspond to admixtures of single- and
multi-traces. We find explicit formulae for these operators and their two-point function

normalisation. We prove that single particle operators in the U(N) gauge theory are



single particle operators in the SU(N) theory, and show that at large N these operators
interpolate between the single trace operator and the sphere giant graviton. A multipoint
orthogonality theorem is presented and proved, which as a consequence enforces all
near-extremal correlators to vanish. We compute all maximally and next-to-maximally
extremal free correlators, and provide some explicit results for subsets of two- and three-

point functions for multi-particle operators.

Finally, we calculate the N?MHV Yangian invariants for A' = 4 SYM in amplituhedron

coordinates, and see that some have suggestively simple forms.
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Chapter 1

Introduction

1.1 Introduction

Quantum Field Theory (QFT) is a very important part of the tool kit for any theoretical
physicist due to its broad ranging applications that extend from condensed matter physics
to particle physics and beyond. One of the biggest revolutions in theoretical physics in
the last few decades is the AdS/CFT correspondence, a conjectural relation between
string theory on a d + 1 dimensional Anti-de-Sitter space and a conformal quantum field
theory living on the d dimensional boundary [1-3]. The discovery of this correspondence
intimately connected two of the most important unsolved problems in theoretical physics;
how to understand non-perturbative gauge theory, and how to quantise gravity. The
most remarkable aspect of the conjecture, and also the property that makes it extremely
difficult to prove, is the strong-weak nature of the duality. The strongly coupled gauge
theory is dual to the weakly interacting stringy physics and vice versa. Therefore, the
strongly coupled regimes of both theories, which otherwise would have been very difficult
to probe, can be studied by investigating the weakly coupled regime of the dual theory and
then using the dictionary provided by the correspondence to move back to the theory of
interest. For a thorough review of AdS/CFT and its many applications see for example [4].

Perhaps the most successful and most studied example of the correspondence is in d = 4
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dimensions, where the maximally supersymmetric CF'T known as N’ = 4 super Yang-Mills

is conjectured to be dual to type II1B string theory on AdSs x S°.

In order to define the Yang-Mills theory we require two parameters: the coupling gyy and
the rank N of the gauge group (where this thesis will include both U(N) and SU(N)). It
was shown by 't Hooft [5] that in the limit where the number of colours, N, of the gauge
group becomes large and the 't Hooft coupling A\ = g2, is kept finite, a huge amount

of simplifications occur. This limit where N — oo is known as the “planar” limit.

The simplified nature of ' =4 SYM allows for interesting and unexpected physical and
mathematical structures to be uncovered, and it is often regarded as a toy model to more
realistic theories. Therefore, the study of links between N' = 4 SYM and its gravity dual
remains at the forefront of current research today. It is hoped that this will lead to enough
of an understanding of four-dimensional quantum field theories in general that properties
of more realistic theories, that otherwise would have been far more difficult or impossible
to explore, will be uncovered. This thesis will restrict to explorations of different aspects
of N =4 SYM, particularly in the planar limit, though we will indicate how one or two

of our results are consistent with the relevant results on the gravity side in Chapter 4.

A particularly important set of mathematical objects in any field theory is the set of scat-
tering amplitudes. They are interpreted as the “probabilities” for a particular interaction
to occur and are a key ingredient in the cross sections used by particle colliders. The
ability to compute scattering amplitudes using Feynman rules derived from a Lagrangian
was one of the earliest successes of quantum field theory. However, the calculations very
quickly became intractable as the number of diagrams to compute increased very rapidly
with the number of particles involved in the interaction. Moreover, many cancellations
of the individual terms led to huge simplifications of the final result. The example often
quoted that never ceases to be extremely impressive is the reduction of the 2-to-4 gluon
amplitude result from six pages [6] to a single line [7]! Furthermore, this result only
required slight modifications to give the 2-to-n gluon amplitude; unthinkable from the

Feynman diagram point of view. The remarkable simplicity of the final expression heavily
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indicated that whilst correct, the Feynman diagram approach was not an efficient method

for calculating scattering amplitudes, and led to an explosion of progress in understanding

scattering amplitudes on a more fundamental level.

Many techniques, broadly referred to as “on-shell methods”, were then discovered that
could be used to calculate scattering amplitudes without having to deal with the presence
of the massive gauge redundancies present in the Feynman diagrams. The concept
of “generalised unitarity” [8-10] was developed, which allowed for the evaluation of loop
integrals that were previously inaccessible (see for example [11] and the references therein).
New recursion relations were developed, including BCFW [12,13] and CSW [14] recursions,
which enabled the computation of amplitudes of four points and more starting from three-

point amplitudes, which were fixed purely by Poincaré invariance.

As amplitudes were becoming more well understood, unanticipated symmetries were found
including dual superconformal symmetry [15-18]. The massive amount of symmetry led
to the discovery of a remarkable duality between scattering amplitudes and Wilson
loops [19-24]. In fact, this duality turned out to be a triality between Wilson loops,
scattering amplitudes and correlation functions [25,25-28]. It was then understood that
the dual superconformal symmetry paired with the standard superconformal symmetry
of N'=4 SYM to form a full “Yangian” symmetry [29]. The duality between amplitudes
and correlators has led to some astounding results. For example, the duality was used
along with techniques in graph theory to calculate the 4-point amplitude to an impressive
ten loops [30]. Furthermore, it is projected that any scattering amplitude for any n with
any helicity structure at any loop order may be extractable from the four-point correlator.

This was successfully tested up to seven points and two loops [31].

For the purposes of this thesis, however, we will take advantage of a different aspect of
the triality: the duality between amplitudes and Wilson loops. The duality was first
conjectured by Alday and Maldacena at strong coupling [19], and was later understood in
a very geometrical way via a “fermionic T-duality” [32,33]. This maps a gluon scattering

process to the expectation value of a polygonal Wilson loop with cusps and light-like
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edges determined by the gluon momenta (see [34] for a review). The duality was also

observed at weak coupling by Drummond, Korchemsky and Sokatchev [20], for a specific
set of helicity configurations known as MHV amplitudes. On space-time, the conjecture
has been checked for a number of examples. It was shown using anomalous conformal
Ward identities conjectured in [35] and proven in [36] that the finite part of the 4— and
5—point Wilson loop can be fixed (up to an additive constant), and the functional form
is in agreement with the BDS conjecture [37] for the finite part of the n-point MHV
amplitude when n = 4,5. The Wilson loop/MHV amplitude duality has also been tested

for arbitrary n at one loop in [21], and up to two loops at n = 6 [38—40].

Reformulating the Wilson loop in twistor space led to the conjecture that the full super-
amplitude (with arbitrary external helicities) is related to a supersymmetric, holomorphic
version of the Wilson loop in twistor space [23]. The conjecture has been proven at
the level of the loop integrand [22,41]; this thesis shall exploit this duality and remain

restricted to the level of the integrand.

One of the most remarkable discoveries in recent years was the underlying Grassmannian
structure of planar N/ = 4 [42-46], which resulted in a fundamental reformulation of
our understanding of scattering amplitudes. Previously, locality and unitarity were con-
sidered guiding principles, but understanding the Grassmannian structure moved these
to emergent properties of the overarching principle of positivity. These considerations led
to the discovery of the “Amplituhedron” [47,48], a geometric object whose boundaries
were determined by the requirement of positivity. Scattering amplitudes are related to
the Amplituhedron by calculating differential forms on the boundary of the object. This
geometric picture has been used to obtain a large amount of all-loop data at the level of
the integrand [49,50]. Whilst we too will be focussing on the integrand in this thesis, it
is worth noting that recently connections to the symbol alphabets, which are properties
of the final (integrated) amplitudes, have been made [51-54]. Furthermore, whilst we will
be focussing on (planar) A = 4, positivity has allowed the discovery of hidden structures

in several other contexts, including the associahedron in bi-adjoint scalar field theory,



conformal field theory, effective field theory and ¢? theory.

In this thesis we will not only be concerned with amplitudes, but other objects of N’ = 4
SYM known as operators and correlators. In general, the matching between the two sides

of the AdS/CFT duality is dependent on two things [2, 3]:

1. The energy of an AdS state must match the scaling dimension of a CFT local
operator (we can use CFT local operators rather than states due to the operator-

state correspondence).
2. The correlators of the AdS states and CFT local operators must agree.

In general, the correlators are very hard to calculate explicitly, however in the planar
limit things once again become more straightforward. Here, only the leading term in
the 't Hooft expansion survives, meaning only planar Feynman diagrams contribute. In
fact, concrete results to all orders in A can be calculated using powerful mathematical
techniques due to the integrable nature of SYM in this limit [55]. A review of integrability

as it relates to the AdS/CFT correspondence can be found in [56].

It is much more difficult to study the correspondence when allowing for sub-leading terms
in the 1/N expansion or at finite N. However, restricting to a special class of operators
known as the %—BPS operators, that are annihilated by half of the sixteen Poincaré
supercharges in the theory, allows for more concrete results to be found even at finite N.
It is of utmost importance to be careful when considering which operator in the CFT is
dual to which state on the string side. Chapter 4 of this thesis shall investigate this issue

for the particular example of the single particle.

Having outlined some of the extensive structure that planar N = 4 SYM exhibits, the
context has been set for the work about to be presented here. We will now outline the

main themes that will be covered in the rest of this thesis.

1.1.1 Outline of the Thesis

The thesis shall be structured as follows:
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- In Chapter 2, we shall present a very brief introduction to some of the technical machinery

that may be useful for the remainder of the thesis. This will include a very brief venture
into N = 4 super Yang-Mills and various ways of representing the external momenta
involved in scattering processes, as well as an introduction to various properties of the

symmetric group S, which will come in to play in Chapter 4.

- In Chapter 3, we look to determine if twistor Wilson loop diagrams provide an expli-
cit triangulation of the amplituhedron, or any geometric region for that matter. Via
the Wilson loop - amplitude duality, twistor Wilson loop diagrams (WLDs) split the
amplitude into well defined pieces. The expression associated to each diagram is given
by Feynman rules which we shall state, then we will show that each expression has a
natural interpretation on the same space in which the amplituhedron lives. Each term
has spurious poles which cancel algebraically in the sum over all diagrams to give the
amplitude integrand. Therefore, one would expect that the geometric interpretations of
these terms would leave no spurious boundaries when glued together. If this were true,
the WLDs would give a very explicit tesselation of the amplituhedron. We will show that
the diagrams do in fact give a tesselation at NMHV, but for higher helicity values there

is no way to glue together the regions to end up with no spurious boundaries left over.

The work in this chapter is based off of published work given here: [57].

- In Chapter 4, we look to investigate a set of half-BPS operators which are appropriate
for describing single-particle states of superstring theory on AdSs x S°. We refer to these
as single particle operators, and they are defined to be the operators that have vanishing
two-point functions with all multi-trace operators. We find explicit formulae for these
operators and their two point normalisation, then look to give a number of explicit results
for their free theory correlators; this will include all maximally and next-to-maximally
extremal free correlators. We shall also show that at large N the single-particle operator

naturally interpolates between the single-trace operator and the sphere giant graviton.



The work in this chapter is based off of published work given here: [58].

- In Chapter 5, we give a short description of N>MHV Yangian invariants for N' = 4 SYM.
Tree-level amplitudes can be written as a linear combination of Yangian invariants, which
is one of many uses of them. The invariants are very important objects, and a complete
understanding of their properties would be useful. As a small first step, we present all
N2MHV Yangian invaraints mapped to amplituhedron coordinates, where it is hoped it

will be easier to examine their structure more carefully.

- Finally, in Chapter 6 we summarise the main results of the thesis and describe future

work that would be interesting to explore.

We will provide a brief, though slightly more tailored, introduction at the beginning of
Chapters 3,4 and 5 on the themes relevant specifically to that Chapter, as well as any

more background knowledge that may be useful.






Chapter 2

Review of Concepts

2.1 The N =4 Supersymmetric Yang-Mills

Lagrangian and Field Content

N = 4 supersymmetric Yang-Mills theory in four dimensions is a very special theory;
the g-function vanishes, therefore the conformal invariance is preserved in the quantum
regime. The symmetry groups of the theory include the conformal group SO(2,4) which
is then uplifted to the super-conformal group PSU(2,2|4), as well as a global R-symmetry
SU(4)g ~ SO(6)g that rotates the charges.

The field content of A' = 4 super Yang-Mills consists of six real scalars ¢, four fermions
Ar and a gauge field A,. The scalars transform in the fundamental representation of of
the SO(6) R-symmetry group, while the fermions transform in the fundamental of the
SU(4). All of the fields are forced to transform in the adjoint representation of the gauge
group by the extended supersymmetry; in Chapter 4 we shall consider both U(N) and

SU(N) gauge groups.

Though we do not look to explore this in too much detail, we state the NV = 4 SYM
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Lagrangian [59]:

0 - . 2
L=Te (JFWF™ + 3 FuF® + (D)D) + L 16, #1[61, 6

872

+ 200arog DAL — g (20) X ¢ M)+ 9(20) Xar |6, 3] ).

(2.1.1)

The notation for the Lagrangian is as follows: F,, = 0,4, — 0,4, + ig[A,, A,] is the
field strength, with F#” corresponding to the Hodge dual defined as FH = %e‘“’p”F -
The covariant derivative is given by D, = 0, — ig[A,], g is the coupling strength and
(), (ii)” are related to the Clifford Dirac matrices that relate scalars in the SO(6) R-
symmetry representation to their equivalent SU(4) symmetry group counterpart. Finally,
o, = (I, 01,09, 03) denotes the two by two identity matrix and the Pauli matrices, with

a,a=1,2.

One can rescale the gauge field to trivially remove the coupling dependence from the
covariant derivative: A, — g~'A,. This also results in the coupling dependence of the
field strength completely factoring out, giving %F wH — ﬁF w M. Substituting this

into (2.1.1) allows the Lagrangian to be rewritten as the “on shell” Lagrangian.

In supersymmetric theories, the on-shell degrees of freedom are balanced between bosons
and fermions. In N' = 4 SYM we have eight bosons and eight fermions, which can be
assembled into one on-shell superfield ®(p, n) by introducing the Grassman odd parameter

n! with R-symmetry index I = 1,2, 3, 4:

1 1 - 1 _
O(p,n) =G +n'V; + 577177J¢1J + §€IJKL77[77J77K\I’L + EEIJKLT]IT]JT]KT]LG . (2.1.2)

The dependence on the external momenta p is contained within G, U, ¢7y, UX and G~
which represent the positive-helicity gluon, positive-helicity fermions, scalars, negative-
helicity anti-fermions and negative-helicity gluon respectively for a total of 1+4+6+4+4+1 =

16 particles in this multiplet.
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2.2 Scattering Amplitudes in Planar N =4 SYM

Scattering amplitudes in planar SYM exhibit many beautiful mathematical properties,
some of which were named briefly in the introduction. Generally an amplitude will involve
some integration, which is often very non-trivial. For the considerations of this thesis,
however, we shall restrict ourselves to the integrand only, i.e. before the integration is
performed. The triality mentioned in the introduction holds at the level of the integrand,
which will be particularly important for Chapter 3 of this thesis. The part of the integrand
of the amplitude that is not dependent on the helicity of the particles involved are functions

dependent on the momenta, p,.

An n-point (planar) super-amplitude can be expanded over the Grassmann variables n!

with particle number a = 1,...,n, giving
./4 = An;Q —+ An;g + ...+ An;n72, (221)

where each term A, is a homogeneous polynomial in n’ of degree 4k, with (n,)* = n’.
Before going any further, it is useful to introduce the spinor-helicity formalism, where we

write the external kinematic data as

0_ .3 1 2
; Do — Pqg _pa—i_lpa . ~.
Pa(0u)™ = =Pa =N (2.2.2)
—pa—ip; Pt e
where ¢ = —¢€45 are the anti-symmetric epsilon tensors with o € {1,2},& € {i,2}.
Let Aff)k represent the [-loop n-particle N¥MHV super-amplitude. The supersymmetric
generalisation of the Parke-Taylor formula is given by [60]:

5 (S A2RE) 8% (S0 Ao
(12) ... (n1) ’

A, — (2.2.3)

where (ab) = e,5A%)\; and the second delta function is a Grassmann delta function that

ensures conservation of supermomentum.

It is often convention that the super-amplitude is divided through by the MHV tree-level

super-amplitude Agg given by (2.2.3), which roughly speaking subtracts eight powers of
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7 off of each partial amplitude leading to

A

A= Ao+ Ana + ...+ An_a, (2.2.4)

with the standard normalisation fln;o = 1. Once again, the A are all homogeneous
polynomials in ! of degree 4k. Each term in this sum is then further expanded over loop

variables

Ange = alAY, (2.2.5)

=0

where we have now dropped the ’hat’ notation for A with the understanding that when
amplitudes are referred to in this thesis they will be divided by the tree level MHV
super-amplitude. We refer to the expression As)k as the [-loop integrand of the amplitude.
It can written as some combination of rational functions dependent on the momenta
multiplied by Yangian invaraints:
! !
Agl?k = Z Cink;i(naapla . pn) X I]( )<p17 s 7pn+l>- (226)
ij

Notice that the rational functions Z are dependent on the external momenta and all loop
momenta for a fixed [. Furthermore, the 17 dependence lies within the k£ degree Yangian
invaraints R, meaning they act as generating functions for different helicity configurations

of the superparticle given by (2.1.2).

When studying amplitudes in A" = 4 SYM, one often focusses on the gluon amplitude.
The n-particle N¥MHV gluon amplitude refers to the interaction between (k +2) negative
helicity gluons and (n — k — 2) positive helicity gluons. The simplest case corresponds to
the k = 0 case, known as the MHV gluon amplitude (see (2.2.3)). The highest value of k
that results in a non-trivial gluon amplitude is known as the anti-MHV amplitude, or the
N"*MHV = MHV amplitude. The amplitudes involving all positive helicity gluons, or
all bar one positive with one being negative, vanish by the supersymmetric ward identities;
as do their parity conjugates [61,62]. Whilst it may seem odd at first glance that only
gluon amplitudes have been considered, they can in fact be used to get the full super-

amplitude using the superparticle expansion given by (2.1.2). The supersymmetric Ward
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identities relate all particle amplitudes that have the same order of  dependence [62]. For
example, at n® (before dividing by the tree-level MHV amplitude), the n-particle MHV
gluon amplitude involving two negative gluons (~ n'n?) with the rest positive gluons

2,22 2

(~ n°) is related to an MHV amplitude with four scalars (~ n°n?n?n?) and (n—4) positive

gluons.

Finally, since most of this thesis will be concerned with N =4 SYM in the planar limit,
it is worth noting one final simplification. In the planar limit, one can fix an ordering
of the external momenta and calculate the “colour-ordered amplitude” corresponding to
this ordering, then find the full tree level super-amplitude by summing over all non-cyclic
permutations of the external momenta:

Al = g2 S T (TP T ) Al (pRoS) L phoo) (2.2.7)

0€Sn [ ln

Here, A, = £1 gives the helicity of particle a, g is the coupling. Therefore, it makes sense
to choose the canonical ordering 1,...,n. For more information on this, or any topic
introduced in this section, the interested reader should refer to for example [61,62] and

the references therein.

2.3 Super Momentum Twistors and Bosonisation to

Amplituhedron Coordinates

In this section we introduce the so-called “momentum twistors” [63,64], provide conven-
tions and review some of their basic properties. We then uplift to include supersymmetry,
and show how to bosonise these super-momentum twistors to write them in “amplituhed-

ron coordinates” [47,63].
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2.3.1 Momentum Twistors and Supermomentum Twistors

Momentum twistors are defined in terms of dual coordinates x;, defined by

aYa — ad — ol ac
NN =Pt = —

7 Y

(2.3.1)

where \; and ); are the usual spinor-helicity variables and p¢® are four dimensional null
momenta. Multiplying (2.3.1) by \;, gives zero on the left hand side, leading to the

following (bosonic) incidence relations:
x?d)\ia = x?fl)\ioz = M?a (232)

where i = 1,...,n labels the particle number and o € {1,2},& € {i,2}. Momentum
conservation in dual momentum coordinates is manifest. This can be visualised as a
null polygon with the x; as the vertices, constructed by arranging the external (null)
momenta head-to-tail (see Figure 2.1). There is a conformal symmetry that acts on the

dual momenta known as the dual conformal group, which was shown to be a symmetry

of planar N =4 SYM [15-17] and ABJM theory [65-67].

Bosonic momentum twistors are then defined by taking each pair A and p¢ and organising

them as four-component projective vectors, z{‘:

= (Af‘,u?) € C*, (2.3.3)

where A € {1,...,4} are indices in the fundamental representation of the dual conformal
group, SU(4). Using the incidence relation and (2.3.1) one finds that the x coordinates

satisfy the incidence relations

_ AFHE = A

ac 7

“ G-ty

x (2.3.4)

where (i — 1i) = eag)\?fl)\f . These incidence relations can be derived by identifying two

adjacent momentum-twistor points with a single space-time coordinate,

27 N, = 15 D VRN T (2.3.5)
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and combining them in the following way:

Ay = N = (AN — APy Nig) = (i — i) 2, (2.3.6)

giving (2.3.4).

Under the little group scaling of \; — t;\;, the relations in (2.3.5) imply that p; — t;u,,
meaning that the momentum twistors undergo a uniform rescaling 2/ — t;z/. Therefore,
the momentum twistors are defined projectively. Momentum twistors have some very nice
properties; not only do they solve the momentum conservation constraint, but they also

solve the on-shell constraint.

Z1
7 Z;
1 ™
: e
./' Z3
.\ y ‘.’ ¥ Memasiine

-----

Figure 2.1: The relation between momenta p; and the dual momenta
x;, and an indication of the transformation to momentum
twistors z;.

The incidence relations (2.3.4) imply that a point in dual momentum space, x;, corresponds
to a line in momentum twistor space, [z;_1z;]. Therefore, a null polygon in momentum

space can be mapped to a polygon in momentum twistor space as illustrated in Figure

2.1.1

The momentum twistors can be used to define the natural dual-conformal invariant as

the determinant of the square matrix whose columns are any four unique momentum

Tt is worth noting that loop variables in z space also correspond to lines which do not intersect with
any other lines in momentum twistor space.
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twistors:

(igkl) = det [z2;2,21] = eABCDzZAzJszCzZD. (2.3.7)

The expression generalises to higher point brackets upon adding supersymmetry then
bosonising; this will be discussed below. These invariants are related to the dual space via
2

w7 = (x; — x;)* = (i — lij — 1j). Furthermore, this four bracket can be used to express

the linear dependence of any five momentum twistors as a generalised Schouten identity

2z (jklm) + (cyclic in 4, j, k,l,m) = 0. (2.3.8)

In order to extend these momentum twistors to supersymmetric theories, in analogy to

(2.3.1), we define dual super momenta as

¢t = N = 07, — 67, (2.3.9)
with 6,,1 = 6#;. The momentum twistors can now be uplifted to super-momentum
twistors,

zi = (M pds0l - n) = (5xd) e, (2.3.10)

where A = 1,...,4 and I = 1,...,4 are four component bosonic and fermionic indices
respectively, which we combine to form the eight component index denoted by A =1, ..., 8.
The coordinates x! are Grassman-odd, and hold the necessary properties for defining the
superconformal invariant that will be discussed below. Now we have incidence relations
for the bosonic coordinates given in (2.3.2) and an additional set of relations for the

fermionic components of the super-momentum twistors:
02" Niow = 021, N = X1 (2.3.11)

Furthermore, by equating the same superspace point to two super-momentum twistors
xF =09 N and x| = 091)\;_1,, in a similar way to (2.3.6), we end up with a fermionic

equivalent of (2.3.4):
NiaXi—1 = Aic1aXi
(i — 14)

0, = (2.3.12)



17
Beyond the MHV sector, superamplitudes can be written in terms of dual superconformal

invariants [16]. At NMHV, the dual superconformal invariants are known as R invariants

[64], and are defined as follows

(X (k) - X (kL)
[i7ktm] = Giklm) (klma) (Imig) (mijk) (ijkl)’ (23.13)

where the delta function in the numerator is a fermionic delta function. The BCFW
representation of the tree level n-point NMHV amplitude can be written in momentum
twistor space as

1
MNMEV — 3 > [Lii+ 155 + 1] (2.3.14)
2%

The CSW representation of the same amplitude [43,68] is obtained by replacing the
seemingly special point “1” in this formula with a general momentum twistor, Z2; — Z,.
A toy example of these two representations is illustrated in Figure 3.2 and is discussed
in the surrounding text. Furthermore, the general supermomentum twistor Z, will be

discussed more in Chapter 3 when Wilson loops are introduced.

2.3.2 Bosonisation of Supermomentum Twistors

It will be useful to switch to “bosonised superspace”, where we will refer to the bosonised
supermomentum twistors as being written in “amplituhedron coordinates”. We provide a

brief description of this process here following [47,63].

To begin, we introduce a particle-independent fermionic variable ¢, where p = 1,..., k
and [ =1,...,4 is an R-symmetry index. The ¢ variables are then contracted with the
Grassmann odd yx variables of the supermomentum twistors to give Grassmann even
variables &7 = x!¢%. The range of the p index is dependent on the helicity structure
of the superamplitude. For N*MHV amplitudes, p = 1, ..., k, therefore bosonising this

superspace maps from the dimension (4|4) momentum supertwistors to purely bosonic



18
vectors in 4 + k£ dimensions:

C44 _, itk

(2.3.15)

It is worth noting that the amplituhedron space itself is a subset of Gr(k, 4+ k), hence why
we often refer to these bosonised supermomentum twistors as being in “amplituhedron
coordinates”. Using this map allows for non-trivial superconformal identities to become
manifest in generalised Schouten identities (see (2.3.8)). Bosonising the momentum
twistors is an essential step before being able to associate a geometry to the Wilson loop

diagrams that we will introduce in Chapter 3.

We look to see how bosonising the NMHV amplitude (2.3.14) allows us to write it in
a very simple way, which can be related to the volume of a polytope. Rewriting the

R-invariant [ijklm] by introducing a fermionic four indexed variable ¢y,

[atgo 0% (X (ktm) + -+ + X1, (igkl))

(jklm) (klmi) (Imij) (mijk) (ijkl) (2.3.16)

where ¢* = []; ¢7. A fermionic delta function satisfies the identity 6°1*(6) = 6*, therefore

the numerator of (2.3.16) becomes
¢*0% (X! (jklm) + - - + xi, (ijkl))
= ¢* (X[ (Gkim)" + -+ X0 (igkl))
= P1020304X; XiXi X (jklm)4 + o 4 PLd2d3Pa X X X o Xom <ijk5l>4
= (¢ xi (jklm) — ¢ - x; (iklm) + ...)*. (2.3.17)

For NMHV amplitudes & = 1, so bosonising the supermomentum twistors gives

74 = (5 xder) € C°, (2.3.18)

where A = 1,...,5 labels the bosonic singlet that the supermomentum twistor has now

been mapped to. With this we define the five bracket

(ijklm) = det [Z:2; Zu 20 Zo) - (2.3.19)
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Expanding this determinant along the bottom row gives precisely (2.3.17), therefore the

R-invariant can be written as the dual conformal ratio

(ijkim)*
(igkl) (7kIm) (klmi) (Imij) (mijk)

[ijklm] = (2.3.20)
The bosonised coordinates can be generalised to arbitrary helicity by the map (2.3.15),

and the following (4 + k)-bracket can be defined:

(iriz...ikya) = det |2, Zi,... Z; (2.3.21)

s

As a further example of how these coordinates can be useful, the MHV n-point tree level

superamplitude has the following very simple form in amplituhedron coordinates:

(12..n)*

A(O)n;n74 = (1234) (2345) ... (n123)°

(2.3.22)

2.4 Mathematical Preliminaries: Permutations and

Partitions

In this section, we look to introduce some mathematical tools that will be very useful in
particular for Chapter 4. The use of permutations has been a significant technical step
in allowing the explicit construction of operator bases and the calculation of correlators.
Here we look to give a brief overview of some of the tools that we will make use of in

Chapter 4 when constructing our own bases of 1/2-BPS operators.

2.4.1 The Symmetric Group

The symmetric group, S, is the group of permutations of n objects. The elements of this
group are often written in cycle notation, for example (123) is the reshuffling of the labels
1—2,2—3,3— 1. The Young diagrams with n boxes provide a nice way of labelling

the representations of the symmetric group S,. If \; denotes the length of row ¢, the set
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of possible Young diagrams consists of all diagrams which satisfy Ay > Xy > -+ \,, >0,

with >, \; = n. Therefore, there is a one-to-one correspondence between the possible
partitions of n and the set of row lengths of Young diagrams {);}. The Young diagrams

associated to the representations of S, Sy, S3 and Sy are shown in (2.4.1).

s, L]
Sy D:‘ E

| (2.4.1)

Sy: L[] [

Sp: LLLTT L

2.4.2 Conjugacy Classes of S,

Letting o € S, the conjugacy class, [o], is the set of elements in S, related to o by
conjugation:

o] = {p €8S, :7p7 ' =0 for some T € Sn}. (2.4.2)

Conjugation does not change cycle structure of the permutation, therefore the conjugacy
class of ¢ is just the set of all permutations with the same set of row lengths. For example,

the conjugacy class of (12)(34) € Sy is

[(12)(34)] = {(12)(34), (13)(24), (14)(23) }. (2.4.3)

Note that the inverse of an element of S, has the same cycle structure as the element,
therefore o~ € [o]. The conjugacy classes of S, are in one-to-one correspondence with the
partitions of n, and further we will see shortly they are also in one-to-one correspondence

with the %—BPS operators of N =4 SYM.

It is straight forward to work out the size of the conjugacy class that an element o € .S,

belongs to, which we shall label ([0, 4.]|- If all cycle lengths are distinct, i.e. n =
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¢ + ...+ gn with ¢; # ¢, the size of the conjugacy classes are simply L If there

i=1 %

are multiple cycles of the same length, i.e. some ¢; = ¢; in the partition of n, then these
cycles are interchangeable and we have to divide by this symmetry. To deal with this
case, let A1, Ao, ..., A, be the distinct cycle lengths of the permutation o and kq, ko, ..., k,

ki _ 1tm

by the number of cycles of each of those lengths respectively, such that [T;_; \;* = [T,

and >%_; kjA; = p. Therefore, the number of elements in a conjugacy class labelled by

{q1...qn} is given by
p!

R (2.4.4)
i R

0. aml| =

Note that the denominator is in fact the size of the symmetry group, Sym(o), the subgroup

of S, that preserves o under conjugation.

2.4.3 Dimension of S,

As noted above, the Young diagrams constructed using p boxes label the representations
of S,. For example, the diagram with p boxes in the first row labels the one-dimensional
trivial representation, and the diagram with p boxes in the first column labels the other

one-dimensional irreducible representation, the sign representation.

Labelling a Young diagram by (7, c¢) where r is the row coordinate and ¢ is the column
coordinate, the hook length of a box h(r, ¢) is obtained by summing the number of boxes
to the right and the number of boxes below, plus 1 for box (r, ¢) itself. The Young diagram

with row lengths (4, 3,2, 2) is shown in (2.4.5), labelled with the hook lengths of each box.

311

(2.4.5)

716
5|4
312
211

The dimension of the representation R of the symmetric group is dependent on the hook

lengths of the associated Young diagram. Let dg[S,| be the dimension of representation
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R of S,. The dimension is given by

n!

dR[SP] B H(T‘,C)GR h(’/’, C) 7

(2.4.6)

where the product in the denominator is over all hook lengths of the Young diagram. For
example, the dimension of the representation associated to the example in (2.4.5) is given

by

11!
dia32,2)(S11) = T 6354329 1, 320. (2.4.7)

2.4.4 Characters

Representations can be associated to matrices known as representing matrices. There are
many different ways of constructing these matrices, e.g. for the symmetric group there
are the natural and semi-normal representations constructed in [69] to name only a few.
The character of a representation is the trace of its representation matrix. It is a constant

on conjugacy classes of the group, and as such is known as a class function.

When finding an explicit formula for the single particle operators discussed in the next
section, the characters of interest will be those of the symmetric group. The characters

of Sy, S3 and S, are shown in their character tables in Table 2.1.
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Sz | () (12) (123)
Sy | () (12)

ool 11 1
M| 1 1

2 0 -1
3t @ 1 -1 1

Sy

~~

) (12) (12)(34) (123) (1234)

LI
H-
M2 0o 2 1 0
;

Table 2.1: The character tables of S, 53 and S;. The labels along the
top indicate the conjugacy classes, o4, 4,,, of the symmetry
groups, and the left column gives the Young diagram associ-
ated to the representation, R, in question. The main body of
the tables give the characters xr(0g,. 4. )-

Of particular importance will be the characters of all conjugacy classes in any ‘hook
representation’, which are the representations that can be associated to hook-shaped
Young diagrams: all non-zero rows but the first have length one and all non-zero columns

but the first have height one. For example, the only non-hook representation in Table

2.1 is the S4 representation associated to the Young diagram . Although an explicit

formula for this set of characters is unknown, they are neatly packaged in character
polynomials which have a generating function defined in [70] and discussed further in [71].

See Appendix B for a short description of the generating function.

For completeness, we give two orthogonality relations for the characters of the symmetric
group. Firstly, for 0,09 € 5,,, summing the product of characters of these elements over
the representations .S, gives

!

Z XR(Ul)XR(Uz) =

5 ([o1] = [02]). (2.4.8)
P o]
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Secondly, for representations R, S of S,, summing over the elements of S, gives

> Xr(0)xs(0) = nldgs. (2.4.9)

oSy

2.4.5 Weights of U(/N) Representations

Young diagrams can be associated to U(NN) representations as well as S,, representations.
Irreducible representations of GL(N) are labelled by Young diagrams with at most N
rows, but arbitrary number of columns. Representations of the subgroup U(N) C GL(N)
are the same and are also irreducible. For example, some representations of U(2 are given

by

Ue: 1 0 [ H L oo - (2400

where the first representation is the trivial representation that maps every element of
U(2) to the same complex number. For more details on U(N) representation theory
and its relation to the symmetric group, the interested reader is encouraged to see for

example [72,73].

Once again, let each Young diagram be labelled by (r,c) where r is the row coordinate
and c is the column coordinate. The weight of each box is given by N — i + 7, e.g. for

the example diagram we considered in (2.4.5), the weight of each box is given as follows:

N |N+1|N+42[N+3

N-1| N [N+1

(2.4.11)

The dimension of the U(NN) representation R is given by the product of the weights

divided by the product of the hook lengths,

(2.4.12)
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For the example in (2.4.11), the dimension would be given by
N2(N —1)*(N + 1)3(N — 2)*(N + 2)(N — 3)(N + 3)

daz22(U(N)) = 351329 . (24.13)

Another quantity that will come in useful for later considerations is the product of the

weights by itself. Denoting this quantity fg,

fm= 11 (N—z'+j):Zw (2.4.14)

(i.4)€R dr ()

2.4.6 Power Set

The final object that will prove useful when writing an explicit formula for the single
particle operators is the power set. The power set is the set of all subsets of a set S,
denoted by P(S), which includes the empty set and the full set S itself. For example, let

S = ({3,2,1}); the power set is given by
P({3,2,1}) = {{}, {1}, {2}, {3}, {2,1},{3,1},{3,2}, {3, 2, 1}} (2.4.15)

Furthermore, let s € P(S). Then |s| denotes the number of elements of the subset s and
¥(s) denotes the total of all the elements in s, ¥,¢s5;. For example, for s = {3,2,1} (a
member of P in (2.4.14)) we have |s| = 3 and X(s) = 6.






Chapter 3

The Twistor Wilson Loop and the

Amplituhedron

3.1 Introduction

The amplituhedron provides a beautiful description of perturbative superamplitude in-
tergrands in N = 4 SYM. Inspired by the polytope structure of the six point NMHV
scattering amplitude, first described by Hodges [63] then developed by Arkani-Hamed et
al [74], Arkani-Hamed and Trnka interpreted the integrands of amplitudes in the planar
theory as generalised polyhedra in positive Grassmannians called amplituhedra [47,48]*.

The tree amplituhedron Af{f, with & + m < n, is defined as the image of the positive

Grassmannian GrT(k,n) of k-planes in n dimensions into Gr(k, m + k). The positivity
here dictates that all maximal (k X k) minors are non-negative. The map is induced
by the n x (k 4+ m) matrix of bosonised external kinematic data, Z# with i = 1,...,n
(see section 2.3), where all of the ordered maximal minors must also be positive. The

amplituhedron is given by the set

AN Z) ={Y € Gr(k,k +m) : YA = CoZi for C € Grt(k,n)} (3.1.1)

1A second definition of the amplituhedron was elucidated in [75]; a topological definition directly in
momentum-twistor space defined using sign-flip conditions on sequences of twistor invariants.



28
with A=1,....,k+mand a =1, ..., k. The case of m = 4 is of most interest to physics,

as it provides a geometric basis for the computation of scattering amplitudes in N' = 4
supersymmetric Yang-Mills (SYM). The spaces involving the m = 4 amplituhedron are
mostly what will be considered in the rest of this chapter (aside from the toy model

discussed in the next section which corresponds to m = 2).

Before moving on, it is worth noting that the amplituhedron is a well-defined and in-
teresting mathematical object for any m. The m = 1 amplituhedron can be identified
with the complex of bounded faces of a cyclic hyperplane arrangement [76]. The m = 2
amplituhedron has a very beautiful combinatorial structure and has been well studied over
the last few years [75,77-81]. In fact, despite mostly being thought of as the toy-model
for the m = 4 case, the m = 2 amplithedron has its own applications in physics. The
m = 2, k = 2 amplituhedron governs the geometry of scattering amplitudes in the ‘MHV’
sector of N'=4 SYM, and the m = 2 amplituhedron for general k has connections with

the NMHYV sector (and geometries of loop amplitudes) [82].

The scattering amplitude can be related to the canonical form of the m = 4 amplituhedron;
a differential form with logarithmic singularities on the boundary and no singularities in
the interior. 2 Therefore, one must consider how to calculate this canonical form. One
way to construct it, which in principal is completely general and straightforward, is by
finding a triangulation of the amplituhedron and summing the canonical forms of all
of the pieces. Triangulating the subspace amounts to finding a non-overlapping set of
(4k)-dimensional cells in Gr*(k,n); there have been a number of recent studies relating

to this, for example [81,83-86].

Although early polytope interpretations involved considering amplitudes via twistor
Wilson loop diagrams (WLDs), the amplituhedron itself instead arose from consider-
ing the BCFW method of obtaining amplitudes. However, the WLDs seem to lend
themselves very naturally and directly to a geometrical interpretation; in this chapter we

wish to look again at the relationship between WLDs and the amplituhedron. Previous

2To see how the definition can be extended to include loops, see [47].
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work examining the connection between them includes [87-89], where in particular the

latter illustrated that the WLDs give a natural description of the physical boundary of the
amplituhedron. Here, we examine whether it is possible to use the WLDs to define a tes-
sellation of the amplituhedron, or further a tessellation of any “good” geometrical region.
We define a good geometrical region as a region that contains no spurious boundaries,

only physical boundaries that correspond to poles of the amplitude.

It should be highlighted here that we make no assumptions about positivity, convexity,
or any particular specific form for the geometrical shape that could correspond to the
WLDs. Our assumptions are only that each WLD can be assocated with a region of
amplituhedron space in such a way that the canonical form of that region gives back the
WLD. As we will see, each WLD contains spurious poles which geometrically correspond
to spurious boundaries. We wish to give an answer to the following question: is it possible
to associate a geometrical region to each WLD such that all spurious boundaries glue
together correctly (locally) pairwise with those of other diagrams so that the union of all

regions leaves no unmatched spurious boundaries.

The chapter will be organised as follows: in section 3.2 we will give a brief description of
Wilson loop diagrams and show how to naturally associate a volume form in Gr(k, k + 4)
(the space in which the amplituhedron lives) to a WLD, in section 3.3 we show that each
WLD can be associated with a tile in the tessellation of the amplituhedron, but in section
3.4 prove that for higher MHV degree this is not possible. More concretely, we prove
that there does not exist a set of tiles whose canonical forms correspond to WLDs that
glue together to form a geometry with no spurious boundaries. Firstly, however, we shall
introduce the toy model which will prove a useful starting point for the considerations of

the rest of this chapter.

This chapter is based off of work completed in [57]. Work completed at the same time
dealing with the same problem using a different approach was discussed by Agarwala and

Marcott in [90].
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3.1.1 Toy Model: polygons in P>

Many of the most important points in this chapter can be illustrated using the n-point,
k = 1,m = 2 amplituhedron introduced in [47], corresponding to the space of convex
polygons in P%, complex projective space, with n vertices labelled by Z! € P? [ =1,2,3.
We drop the label I for ease of notation where it is clear that it is implicitly still present.
To map from the polygon X to an algebraic expression for its ‘amplitude’ integrand
Q(X), we associate a canonical form to the geometry. The canonical form is defined
as the differential volume form with logarithmic divergences on the boundary, and no
divergences inside it. In general, the canonical form for a given geometry is not easy to
obtain directly [84], however they have the helpful property that the volume form of the
union of (non-overlapping) geometries gives the sum of the volume forms for each. For
example, the volume form of the quadrilateral constructed by taking the union of the two
non-overlapping triangles X; and X5 is given by by the sum of the canonical form of the
two triangles i.e. Q(X; U Xy) = Q(X;) + Q(X3). This property gives a simple means of
obtaining the canonical form for a polygon; triangulate it and sum the canonical form for

each triangle.

Consider a triangle in P? with vertices Z, Zo and Zs. The interior of the triangle (region

I in Figure 3.1) is the collection of points of the form

Y = 6121 + CQZQ + C3Z3

=a/y+bZy+ Zs a, b>0 (312)

where in the second line we use the GL(1) invariance of the triplet (¢; ¢y ¢3) to write

a= 2—;, b= % The canonical form in these coordinates is simply given by
da db
Q(AD) = 3.1.3
(A = <22, (313)
which can be written in a co-ordinate independent way as
Y d?Y) (123)
Q(A) = < ) {123) (3.1.4)

(Y12) (Y23) (Y31)’
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Here (123) is the determinant of the matrix made by having Z;, Z» and Z3 as its columns,

and one can easily get from (3.1.4) to (3.1.3) by plugging in the definition of Y above.

Moving on to the next simplest polygon, the quadrilateral with vertices 2, Z5, Z3 and Z,4
(see the right hand side of Figure 3.1) can be triangulated into two adjacent triangles with
vertices 2y, Zo, Z3 and Z1, Z3, Z,. The triangles have two co-dimension one boundaries
each that are proper boundaries of the quadrilateral, and share a co-dimension one
boundary that is not a boundary of the quadrilateral; the line [Z;Z3]. This is referred to
as “spurious”; the canonical form of each triangle has a log divergence on this boundary,
Y — aZ 4+ BZ3. To calculate the canonical form of the quadrilateral we sum the forms

of the two triangles:

0 (AL — (123)* (Y d?Y) (134)* (Y d?Y)
( )_<Y12> (Y23) (Y31)  (Y13)(Y34) (Y41)
((123)* (v'34) (v41) — (134)* (Y12) (Y23)) ,
- (Y12) (Y23) (Y34) (Y41) (Y 31) (Y ). (8:.1.5)

Adding and subtracting (123) (143) (Y'34) (Y'12) from the numerator and using the fol-

lowing relations

(124) (1Y'3) = (12Y) (143) + (1Y4) (123) ,

(3.1.6)
(342) (31Y) = (341) (32Y) + (312) (34Y) ,
we can re-write (3.1.5) as
o () - ((Y'12) (234) (341) + (Y'34) (123) (412)) v @), (517)

(Y12) (vY23) (v'34) (Y 41)

which is in agreement with the canonical form for the quadrilateral calculated in [84]. We
see in summing the canonical forms of the two triangles that the spurious pole cancels out
and the resulting form indeed only has log divergences on the boundary of the quadrilateral

itself.

A unique canonical form is associated to each polygon, however the reverse is not true;
multiple geometries can have the same canonical form. For example, there are four

inequivalent geometries in P? that are associated with the canonical form (3.1.4), given
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Figure 3.1: Figures illustrating polygons in P? represented as a disc
where opposite points of the disc are identified. In Figure a)
we illustrate the fact that there are four triangles I, IL, IIT, IV
all of which have the same three vertices Z;, Zy, Z3 and all
having the same canonical form (123)?/({Y12)(Y23)(Y'31)).
In Figure b) we see a region (shaded area) which has
the same canonical form as the quadrilateral [Z;Z,757,],
(123)2/({(Y12)(Y'23)(Y'31)) + (134)2 /({Y 13)(Y'34)(Y'41)) but
which does not represent a good geometrical region as it has
spurious boundaries.

by the sets {Y : Y = aZ; + bZy + Z3} for the four possible pairs of signs of a and b
ie. (a,b>0), (a>0,b<0), (a<0,b>0) and (a,b < 0). These sets of points simply
correspond to the four inequivalent triangles in P? with vertices Z;, Z,, Z3, as illustrated

in Figure 3.1.

A necessary condition to ensure a good geometrical region given by a union of tiles is the
spurious boundaries of each tile match pairwise with those of other tiles. As we saw above
for the simple example of the triangle, given a canonical form the geometry associated
to it can only be defined up to sign choices; it is not unique. However, if we are given a
canonical form as a sum of terms containing spurious poles that cancel in the sum and
look to assign a geometrical region to each term, this can not be done independently per
term. The algebraic cancellation of spurious poles should correspond geometrically to a

matching of the corresponding spurious boundaries.

We look again to the quadrilateral to illustrate these points. In (3.1.5) - (3.1.7) we showed
that the canonical form can be written as a sum of the forms of two triangles, each with

a spurious pole which cancels when summed. Geometrically this corresponds to a union
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of two triangular tiles Y, = aZ; + bZy + ¢Z3 and Yy = dZy + eZ3 + fZ4 for some choice

of signs for a,b,c,d, e, f € R. To isolate region I on the right hand side of Figure 3.1 we
take a,b,c > 0 and we look to see what implications that has on the sign choices for d, e

and f. Taking both Y7 and Y3 to the co-dimension one boundary [Z; Zs],

Yilp—o = aZy + ¢Zs, (318

YVQ‘f_m = le + €Z3.

In order to obtain a good geometrical region, the two triangles must match pairwise
on this boundary. For this to happen we see from (3.1.8) that the pairs a,d and c,e
must have the same sign. Therefore, d,e > 0, and we have illustrated that signs for
the geometrical region associated to each term in the canonical form of the quadrilateral
cannot be decided independently if we want to match spurious boundaries. This does
still leave two possible geometries corresponding to f > 0 and f < 0. For completeness,
if we wish to get the inside of the quadrilateral depicted in Figure 3.1, one can use the

fact that Y5 lies to the right of the line [Z1Z3] to get:

The Z; are convex, so (Z;Z;Z) > 0 for all cyclically ordered Z;, Z;, Zj,, therefore f > 0.
The right hand side of Figure 3.1 shows the quadrilateral: the good region discussed
above is the interior of Z;...Z,. The shaded region (I UII) has the same canonical form
but is not considered a good geometrical region as it has spurious boundaries. Region 11
would correspond to e < 0 (and d, f > 0), which was not allowed from the matching of

spurious boundaries in (3.1.8).

There are two natural ways to triangulate a polygon, both of which are illustrated in
Figure 3.2. The first, triangulating from one vertex of the polygon, has a natural higher

dimensional analogue that is given by BCFW recursion for tree-level NMHV diagrams.

Remarkably, for the planar N*MHV amplitude/Wilson loop, the WLDs split the amp-

litude into well-defined pieces. Each term can be naturally associated with a volume form
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Z1 ZQ Zl Z2

Z Z, Zs Zy

Figure 3.2: Two possibilities for triangulating a polygon. BCFW gives
a generalisation of the left hand side, whereas WLDs give a
generalisation of the right hand side. (for NMHV).
on the Grassmannian Gr(k, 4 + k); the space in which the tree level m = 4 amplituhedron
lies. The volume forms each have physical poles corresponding to the physical boundary
of the amplituhedron [89], and spurious poles which cancel in the sum. This strongly
suggests that the WLDs could correspond to a tessellation of the amplituhedron, with
the canonical form of each tile corresponding to a WLD. Importantly, if this is true, the
WLDs would give a very explicit tessellation of the amplituhedron. This idea will be
explored in the rest of the chapter. In fact, the intuition described above seems to be
correct for the tree-level NMHV case. NMHV twistor Wllson loop Feynman diagrams
naturally give a higher dimensional analogue of the second way of triangulating a polygon
by introducing an additional vertex Z, and triangulating to that (see the right hand side

of Figure 3.2). However, we find that beyond NMHV this does not seem to be the case.

3.2 WLDs and Volume Forms

There have been numerous studies looking into very interesting duality relations between
three naturally gauge invariant objects in planar N = 4 SYM; scattering amplitudes, cor-
relation functions and Wilson loops. The MHV gluon scattering amplitude A, (p1, ..., pn)

was shown to be dual to a Wilson loop W,,(z1, ..., x,,) defined on a lightlike contour [19-21],
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by identifying the cusp points x; of the Wilson loop as the dual momenta of the particle p;

(see section 2.3). The correlation functions G,, = (O(x1)...O(x,,)) of local gauge invariant
operators O(z) were shown to be dual to Wilson loops, and therefore to amplitudes, in

the light like limit lim,z, 23,22, G, =W, [25,91]. The former, [22-24], and the lat-

Ji+1—0
ter, [26-28], both have supersymmetric generalisations. We utilise the amplitude/Wilson
loop duality here in order to write the amplitude as a sum over twistor Wilson loop dia-
grams, each of which have an associated integral expression with spurious poles that cancel

when summed. These expressions will then be mapped to volume forms in amplituhedron

coordinates which we will attempt to give geometrical meaning to.

In this section, we provide a brief description of Wilson loops in N = 4 Super Yang Mills
in super-twistor space and define the related Wilson loop diagrams. We will then show
how to map the expression that arises from a WLD to a volume form in Gr(k,4 + k), the

same space in which the amplituhedron lives.

3.2.1 Planar Wilson Loop Diagrams in N =4 SYM

The fields of N = 4 SYM can be described by a superfield A, a (0, 1)-form on supertwistor
space (see for example [92,93]). It has an expansion in the fermionic twistor variables x4,

~ 1 1 1
A= g™+ yMa+ §XAXB¢AB 4 §€ABCDXAXBXC¢D i EGABCDXAXBXCXDg_a (3.2.1)

where ¢ and 1 are the eight fermions, the antisymmetric ¢ are the six scalars and ¢*
are the positive and negative helicity gluons. These are precisely the on-shell degrees of

freedom for N'= 4 SYM. The twistor action of N'=4 SYM is given by

S[A] = -

™

/D3|4ZTr <A NOA+ §A AAN A> +q° /d‘*'% log det ((9+A) |x)
(3.2.2)

where g% is the Yang-Mills coupling, (5 + .A) |x restricts d + A to the projective line X

in twistor space,which corresponds to the point (z,0) in spacetime, and the integration

measure is over complex projective space D*1Z = L dZ7 dZ7 dZ¥ d*y. The first
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term in the action is equivalent to holomorphic Chern-Simons theory [93,94], and the

second term describes the interacting non self-dual part.3

To obtain the Feynman rules in twistor space, one can impose an axial gauge by choosing
a reference twistor Z, and insisting that the component of A in the direction of Z, is zero,
ie. Z,-A=0. The cubic term in (3.2.2) is zero since imposing this gauge reduces the
number of components of A from three down to two, and the first term, the kinetic term,
defines a propagator. This is known as the CSW gauge and was first introduced in [14].
The log det term can be Taylor expanded, where in this gauge each term corresponds to
an MHV amplitude. This can be expressed in twistor space and gives a Feynman diagram
formalism for amplitudes known as the “MHV diagram formalism”. For a more detailed
description of the twistor action (3.2.2) and the expansion hinted at here, see [96] and

the references therein.

The Feynman diagrams can also be used to calculate the expectation value of the polygonal
holomorphic Wilson-loop in supertwistor space, with vertices being the supertwistors
Z,...2, € C*. In the planar theory, this is equivalent via the Wilson loop/amplitude
duality to n-point superamplitudes. We refer to these diagrams as Wilson loop diagrams
(WLDs), and are what we are interested in going forward. Below we will discuss the
Feynman rules for these diagrams. We do not look to derive these here; for their derivation

see [23,97,98].

At tree level, the Feynman diagrams consist simply of propagators whose two ends lie on
the Wilson loop contour. In the planar theory, diagrams are only valid if we can draw
all the propagators inside the Wilson loop without crossing. The N*MHV Wilson loop is
the sum over all such diagrams involving k propagators; see Figure 3.3 for an example of

a diagram contributing to the 8-point N*MHV amplitude.

3To see motivation for the form of the log det interaction term from twistor-string theory we refer the
interested reader to [92,95]
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Figure 3.3: Example of a Wilson loop diagram which contributes to the
8-point N*MHV amplitude.

To each propagator from edge [Z;Z;11] to [Z;Z;11] we assign the (4|4) delta function:

Zi1 Z;

S J = 54|4(CLZi+bZi+1+CZj+de+1+Z*)

Zi Zi (3.2.3)

We then integrate over the complex integration variables associated with each end of the

propagator, with a measure determined by all the propagators ending on the same edge

a1 py a2 by Am-1C by 19m C by _ / da1 dbl N dam dbm
S b1<a1b2—b1a2) Ce (am,lbm—bm,lam)am

(3.2.4)

In Figure 3.4 we illustrate these rules with two examples; firstly an example of a diagram
contributing to the NMHV six-point amplitude and secondly one contributing to the

N2MHYV six-point amplitude.
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ZB 24 Z5 Z4

i day dby dey ddy dfy dgy dhy

[ da il;g;dd54l4 (aZ1+bZs+cZ4+d 25+ Z,) arbigihier(cifi—dier)d
x U (a1 Z14b) Zyt+c) Z3+d1 24+ Z,)

x W) (e1 Z3+ f1 Z4+ g1 Zs+h1 26+ 2,

Figure 3.4: Examples of Feynman diagrams in twistor space that contrib-
ute to the 6-point NMHV / N2MHV amplitude with their
corresponding expressions following the rules given.

At tree level, when both propagator ends lie on the same edge or adjacent edges, the
expression reduces to zero. Using this construction (with further rules for loop diagrams),
it was shown the all-loop integrand at MHV can be written in dlog form, meaning the
integrand is just a product of exterior derivatives of logarithms of rational functions.
Beyond the MHYV sector, it was shown that the integrand is in dlog form multiplied by
delta functions [99,100]. Writing the integration measure in dlog form makes associating
a geometrical region to it particularly natural, as we will see below. For the remainder of

this chapter, we shall focus only on the tree level integrand.

3.2.2 Volume Forms in Amplituhedron Space from WLDs

The Wilson loop diagrams are originally defined in supertwistor space, C4*. In order to
see whether the WLDs provide a tessellation of the amplituhedron, we need to somehow
interpret them in the space in which the amplituhedron exists, Gr(k,4 + k). We show
below that they have a very direct interpretation as volume forms in this “amplituhedron

space”.
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Following their description in the previous section, we saw that all N¥MHV WLDs have

the general form
/ Que (a5) 4D (C (a;).2)  [WLD. (3.2.5)
The variables in (3.2.5) are defined as follows,

e a;: the 4k coordinates, four for each of the k propagators of the WLD.

o Z: the external particles in supertwistor space, organised as the rows of an (n +

1) x (4]4) matrix.

o Qi (a;): the integration measure. A 4k-form consisting of a product of terms of the

form (3.2.4).

o UM (C (a;).2): the k delta functions, one for each propagator, written as a
k x (n 4+ 1) matrix of the coordinates, C(a;), acting on the external supertwistors

Z.

We now look to interpret (3.2.5) as a canonical form in the amplituhedron space. This

can be done straightforwardly via the map
QY) = WUp(a;)) Y =0C(a;).2 € Gr(k, k+4). (3.2.6)

The coordinates are now reinterpreted as coordinates in Gr(k,k + 4), and the Z here
is the (n + 1) x (4 + k) matrix with each row corresponding to an external momentum

supertwistor now bosonised in the way described in section 2.3.

We once again turn to the two examples in Figure 3.4 to illustrate this point. For the

NMHV diagram, the volume form in amplituhedron space can be read off:

[ dadbdedd 5414 (47 b7, 4 e Z,+d 254 Z.) [WLD]
1
Q = dadbdedd Y = aZ+bZy+cZy+dZs+7Z, € C° [Amplituhedron Volume form]

(3.2.7)
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This volume form can be covariantised to be written in a coordinate independent way as

Y d4Y V(21237075 7,)
(Y 212324 Zs\WY Za 24 25 Z)Y ZaZis 2 TA WY Zs 2, 21 ZaWY 7 70 Do Z4)

(3.2.8)
where the angle brackets denote 5 x 5 determinants.

For the N2MHV example on the right hand side of Figure 3.4, the WLD can be mapped

to a volume form in the amplituhedron space by

[ dardbr dey ddy dfy dgr i 5(818) (1, . Z) [WLD]

aibigihiei(c1fi—dier)dr

!

_ day dby dey ddy dfy dgi dh _ :
O = o (et L Y =C.Z € Gr(2,6) [Amplituhedron Volume form)]

(3.2.9)

where Z = (2, 2,,... Z¢, Z,)T are the external supertwistors (together with Z,) viewed

as a 7 x (4]4) matrix,

aq b1 C1 dl 0 0 1
C) = e Gr(2,7) (3.2.10)

0 0 e fi i M 1

and similarly Z = (Z,... Zs, Z.)T are the external bosonised supertwistors (with Z,)

viewed as a 7 X 6 matrix.

3.3 NMHYV amplituhedron from WLDs

Now that we can map the Wilson loop diagrams to a volume form in the amplituhedron
space, we can take a look to the NMHYV case. We show that the volume forms associated
to each term in the expansion of the amplitude in terms of WLDs do indeed give a good
tessellation of the amplituhedron. The spurious boundaries from each diagram all match
(locally) pairwise with spurious boundaries from other diagrams, thus they can be glued
together to give a good geometrical region. This is perhaps not surprising since NMHV

WLDs were involved in the original polytope interpretation of amplitudes [63, 74].
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3.3.1 Cancellation of spurious poles in NMHV WLDs

The n-point NMHV amplitude in the twistor Wilson loop description is given by a sum
over all diagrams with a single propagator attached to any two edges of the polygon. The
diagram with a propagator which has ends attached to the edges [Z;Z;+1] and [Z;Z;4]

can be associated to the volume form in Gr(1,5)

_ dadbdedd

0= bod Y = aZi+bZi\+cZj+dZ 0+ 7, € C°. (3.3.1)
aoc

Writing this in a coordinate independent form as in (3.2.8) gives
Y YW ZiZis1 2251 2,
YZ2iZi1 Z;Zi0)(Y Zi1 23 21 ZY 252501 2o Zi)\Y Zj1 223 Zia Y ZiZi Zia Z5)
(3.3.2)

The full NMHV amplitude is given by summing over all positions of the ends of the

propagator,

Q= (Y d'y)
«3 (ZiZi1 22511 2,)"
YZiZi112;Z5:0)Y Zi1 Z; 251 Z)(Y Z; 2511 20 Zi) (Y Zj1 2. 2 241 )Y 2,2 2311 Z;)

1<j

(3.3.3)

where requiring ¢ < j comes from the fact that the diagrams are invariant under the

swapping of the two propagator ends.

Looking at (3.3.1), it is clear that the spurious poles for each WLD arise when any one of
a,b,c,d — 0. There is another pole present when a, b, ¢,d — oo simultaneously, however
this is a physical pole of the amplitude and does not cancel in the sum over the diagrams.
From the point of view of the WLDs, the spurious poles occur when one end of the
propagator approaches a vertex. However, this spurious pole is cancelled when the WLD
is added together with a neighbouring diagram, where the propagator approaches the

same vertex but from the adjacent edge. This is illustrated in Figure 3.5.

Algebraically this cancellation is straightforward, but for completeness we shall show it
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Z,

Figure 3.5: Spurious poles occur when the propagator end reaches the
vertex. It is cancelled by the adjacent diagram.

Zj +2

explicitly for the diagrams in Figure 3.5. Using the rules from section 3.2.1, the integrals

associated to the two diagrams are

da1 dbl dCl dd1

— 4|4 .
I(DL> / a1b101d1 0 (CL Z)
and
. da,g dbg dCQ dd2 414
T (Dg) = / e (O 2).

The corresponding 1 x (n + 1) C matrices are given by

CL:< al bl PR Cl dl O 1),

C’R:<... ag by -+ 0 ¢y dy --- 1),

(3.3.4)

(3.3.5)

(3.3.6)

(3.3.7)

where the entries explicitly written out in both matrices are the 7,2+ 1,7,7+ 1,7+ 2 and

n + 1 entries, with all other entries being 0.

The spurious poles being discussed here occur when ¢; — 0 and dy — 0, and the claim

more precisely is that in summing the two diagrams the residues at these poles precisely

cancel

ResZ(Dy) + Cll%g%I(DR) = 0.

c1=0

(3.3.8)
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Evaluating the two residues gives

day dby dd
Res1(D1) = /aclzllhlclll54|4 (@12 + 0121+ di 240 + Z.), (3.3.9)
das dby d
53%1(1)3) = — / 61212()220202(544 (QQZZ' + b22i+1 + C2Zj+1 -+ Z*) s (3310)

where we have expanded the product of C';, and Cr with Z respectively. Each entry of
the two matrices can now be compared directly, and an appropriate change of variables
can be done from as, by, c5 to aq, by, d; as dictated by matching entries of Cr to those of

C'r,. Therefore, we end up with

dCLl dbl dd1 dCLl db1 dd1 4
— oM (a1 2+ b Z; i\ Z; Z)=0 3.3.11
/( arbids arbid, ) (1 Z;+ 01 Zip1 +di 2541 + Z,) ( )

and (3.3.8) is satisfied.

It is worth mentioning a special case of this type of spurious pole which occurs when

the propagator lies between next-to-adjacent edges, see Figure 3.6. Naively, it looks

Ziv3 Zita Zivs Zita

L

Zito i Zito :

v 7 ¥ Fi
Zit1 Zi Zin1 Z;
D; Dp

Figure 3.6: A special case of the spurious pole cancellation that occurs
when the propagator ends are on next-to-adjacent edges, and
one propagator end moves to the vertex closest to the other
end.

like D} does not have a partner diagram that when summed with would cancel the

spurious pole that occurs in the limit where the propagator end reaches the vertex Z; .
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Following previous considerations, the partner diagram would have propagator ends lying

on adjacent edges, but this diagram vanishes. Instead, it pairs with the diagram with
propagator ends on edge [Z;11Z;12] and [Z;132;14], illustrated by D% in Figure 3.6. The

expressions for this pair of WLDs are given by

day dby deq ddy
a1bycidy

das dby deo dds
asbocady

I(DIL) = / 54|4 (CllZi -+ blziJrl + Clzlqrg + d12i+3 -+ Z*> s (3312)

(D) = [

S (a3 21 + 0y Zis + 2 Zis + daZis + 2.,  (3.3.13)
and the relation for this special case is given by

Res Z(D}) + E{e%I(DjQ) =0. (3.3.14)
i

a1=0

3.3.2 Spurious boundary matching

There is a natural geometrical interpretation of the NMHV amplitude as a union of tiles,
each giving one of the terms in (3.3.3) as its canonical form. This corresponds to
Y = aZi+bZis1+cZi+dZ i+ Z, 5 a,b,e,d > 0} C Gr(L,5) . (3.3.15)
,J
It should be noted that the variables (a, b, ¢, d) used to describe the geometrical region in
(3.3.15) are the same variables given by the WLDs, (3.3.1). The WLD integration is over

complex space, however here the variables are restricted to a subspace of the real line.

If (Z,Z;2,2,Z,,) > 0 for all cyclically ordered Z;, Z;, Zy, Z}, Z,,, corresponding to the
Z’s being convex, then (3.3.15) provides a tessellation of the amplituhedron as defined
in [47]. This is the higher dimensional generalisation of the triangulation of the polygon
in the toy model illustrated on the right hand side of Figure 3.2. In fact, this defines a
good geometrical region, meaning one without spurious boundaries, even for non-convex

choices of external kinematic data Z;.

Motivated by the toy example discussed around Figure 3.1, it is interesting to determine
how unique this region is. Any choice of signs for the variables a, b, ¢, d in each tile will

associate the same canonical form to each WLD. However, as we saw for the quadrilateral,
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choosing arbitrary signs for each tile independently could lead to a geometrical region

which still has spurious boundaries left over even though the spurious poles in the sum
of the corresponding canonical forms do cancel. Imposing that this cancellation of poles
has a corresponding geometric meaning as a matching of spurious boundaries gives a

correlation between the sign choices for the geometric image of the tiles.

To begin exploring whether other good geometrical regions can be determined from the
canonical forms of the WLDs, let us consider a particular tile corresponding to the WLD
with a propagator from edge [Z;Z;+1] to edge [Z;Z;4+1]. The most general geometry giving

(3.3.1,3.3.2) as its canonical form is
{Y = CLSiZi+bSi+1Zi+1+CSij+de+1Zj+1—|—Z* La, b, C, d Z 0}7 (3316)

where s;, 5,41, 55, 5j41 = £1 are four arbitrary sign choices. Recalling the location of the
spurious poles discussed in the previous section, the associated spurious boundaries arise
when any one of the four coordinates a, b, c¢,d — 0 (while a physical boundary occurring
when simultaneously a, b, ¢,d — o0). Focussing on the spurious boundary a — 0, and
motivated by the fact the related spurious pole cancels by summing with a neighbouring
diagram, this boundary must match the boundary when b — 0 of the adjacent diagram
with a propagator from edge [Z;11Z;42] to edge [Z;Z;11]. Defining arbitrary signs for the

neighbouring diagram, s;_,, si,,, 5}, 8j,; = £1, we have

{Y =as;Z;+bs;11Zi1+cs;j Zi+dsj 1 Zj+Z, - a=0,b,¢c,d > 0}
= (3.3.17)
{Y = asi 1 Zig1+bsi o Zivotcsi Zi+dsi  Zi+ 2. 2 b=0, a,¢,d > 0}.
This boundary matching mimics the spurious pole cancellation in Figure 3.5 and sur-
rounding discussion. Comparing the two regions and imposing that these two spurious
boundaries match, we find a set of consistency conditions on the sign choices of the two

tiles:

o o o
Sit1 = Siy1, S =S5 Sip1 = Sj. (3.3.18)
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So, the signs associated with each vertex for different diagrams must be the same. Of

course, very similar considerations can be applied for the other spurious boundaries that

occur when b,c or d — 0

One can continue this discussion for the spurious poles of all NMHV diagrams, moving
the propagator around the edges of the polygon and fixing signs by comparing expressions
similar to (3.3.17) at each step. In doing so, we see that the region
U{Y = CLSZ‘Zi—i-bSH_lZi+1+CSij+d8j+1Zj+1+Z* ; a, b, C, d Z 0} C Gr(l, 5) (3319)
i3
is the most general geometry matching the WLDs that has no spurious boundaries, which
can be obtained by assigning a fixed sign s; = +1 to each vertex Z;. This is equivalent
to considering the original amplituhedron with all positive signs but flipping the sign of
the external Z’s. Note that at most one choice of signs for the Zs can correspond to a

convex shape).

Naively, one may think that a more general possibility could have existed, consisting of
assigning two sets of fixed signs per vertex rather than one, corresponding to one set per
propagator end. However, in starting from one diagram and moving the propagator round
the polygon, matching spurious boundaries as you go, eventually the same diagram is
reached that you started on with the propagator ends switched. This reversed propagator
has to correspond to the same geometrical region as the original, therefore the two sets

of signs must in fact be equal to each other.

To complete the discussion of spurious boundaries for the NMHV case, it is worth double
checking that this general geometrical region (3.3.19) is consistent with the special case of
spurious pole cancellation illustrated in Figure 3.6 and the discussion around it. For this
particular example, the geometry associated to the diagram with a propagator between
edge [Z;Z;11] and edge [Z;12Z;, 3] should match along the spurious boundary that occurs

when a = 0 with the diagram with a propagator between edge [Z;11Z;12] and edge
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[Zi+37Z;+4] along the boundary that occurs when d = 0. We get
{Y = QSiZi+b8i+1ZZ'+1+CSZ'+2Z¢+2+dSi+3Zi+3+Z* , 4= O, b, C, d > 0}
— (3.3.20)

Y = asij1 Zip1+bsi0Zipo+csip3Zips+dsiaZipat+ 2, ; d =0, a,b,c > 0},

and see that indeed the spurious boundaries do match for this special case too, even for

the general choice of signs.

3.4 N:MHV

Having discussed how to obtain a “good” geometry from the WLDs for NMHV, we now
look to the next highest helicity degree. We will begin by discussing new spurious poles
that occur at N2MHV, and show how they cancel algebraically. We will then prove that
beyond NMHV the WLDs cannot be glued together to form a geometry without spurious
boundaries. To do this, we show that this is no set of sign choices for the coordinates
of each tile that is consistent with the pairwise matching of spurious boundaries. Note,
by pairwise matching we mean locally; there could by more than two diagrams involved
in the matching of a spurious boundary. In fact, we will see this during the discussions
that follow. In order to illustrate the argument we will focus on the case of n = 6 in the

coming sections, however we emphasise that the argument is easily generalised to all n.

3.4.1 Cancellation of spurious poles in N2MHV WLDs

To begin, we consider the algebraic cancellation of spurious poles for N2MHV diagrams.
The discussion from Section 3.3.1 involving the spurious pole that occurs when a propag-
ator end approaches a vertex still holds for any MHV degree. However, from N?MHV
a new spurious pole occurs; now that we have more than one propagator, there is the
possibility that two propagator ends come together, which produces a pole in the in-

tegral of the WLD. Unlike the previous type of pole, there is an interesting three-way
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cancellation that occurs when the three related diagrams are summed. We show how

this cancellation works algebraically, and use this as motivation later when attempting
to associate geometries to the WLDs (see [98,101] for previous work also describing this

mechanism).

To illustrate how the three-way cancellation works, we look to the specific set of example

diagrams in Figure 3.7. Using the rules from section 3.2.1, the integrals associated to the

Z 2 Z — 2 Z 2

Zg Z3 Zg Z3 Zg Z3

Figure 3.7: Three diagrams each having a new type of spurious pole
occurring when the propagator ends touch. In the sum of
the three diagrams, however, this pole cancels. Note that
although this is drawn at six points for illustrative purposes,
the cancellation only depends on the three sides taking part
and can be directly repeated at n points.

diagrams under consideration are

dCL1 dbl dC1 dd1 d61 df1 d91 dh1
arbigihier(efi — diey)dy

da2 dbg dCQ dd2 d€2 dfg dgg th
Cadagahaba(ag fo — baea)es

(D)) = / 5E® (0, . 2) (3.4.1)

(D) = / 59 (0, - 2) (3.4.2)

and
da3 dbg ng ddg d€3 df3 dgg dhg

sE8 (Cy - 2), 3.4.3
asbses f3cs(dsgs — hscs)hs (Cs- 2) ( )

1(Ds) :/

with the C' matrices in the above delta functions given by

ap by ¢ dp 0 0 1
o= , (3.4.4)

0 0 e fi ;i 1
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as by 0 0 ¢ dy 1
=" 7 SR (3.4.5)

es fo g2 hy 0 0 1

a3 b3 0 0 ¢3 ds 1
Cy=|" " R (3.4.6)

0 0 e f3 g3 hs

Each expression clearly has a pole at the point corresponding to the propagator ends

—_

coinciding (i.e. ¢1f; = dye; for the first case, ayfo = byesy for the second and dzgz = hscs

for the third).

The claim is that in summing the diagrams, the residues at these poles precisely cancel:

Res Z(D1)+ Res ZI(Ds)+ Res Z(D3)=0. (3.4.7)

c1fi=dier as fa=bzes d3gs=hscs

In order to show this, it is useful to change variables in the following way:
(e1, 1) = (v, 1) (€2, f2) = (B, €2) (93, h3) = (7, €3)
er=acy, fi=adi+e ex=pPay, fa=p0b+e gs=rc3+es, hy=ds

The spurious poles in question now occur when €y, €5,e3 — 0. Substituting these new

variables into the integrals corresponding to the WLDs currently being examined gives

da1 db1 dCl dd1 dgl dhl do d61

RegZ(Ds) = Res [ &9 (Cy - 2
6128 ( 2) Elgg a1b101d1g1h1a61 ( ! )
da1 db1 dCl dd1 dgl dhl do
— @ (o - 2 4.
/ alblcldlglhla (C1| 1=0 ) ’ <3 8)

da2 dbg dC2 ddg dgg dhg dﬂ d€2 6(8|8) (CQ ) Z)

ResZ(D,) = Res/

e2=0 €2=0 azbaCadagahaBes
dCLQ db2 d02 dd2 dgz dhg dﬁ
= SC® (Cyleymo - 2 3.4.9
/ azbycadagahn ( 2‘ ° ) ( )

and

da3 dbg ng ddg d€3 dfg d")/ d€3
azbscsdzes fzyes
_ / da3 db3 dC3 ddg d€3 dfg d76(8|8)
azbscadses f3y

5(8I8) (Cs- 2Z)

ResZ(D3) = Re% —/

e3=0 €3=

(Cleso - 2) . (3.4.10)

The measure in each expression is now simply the dlog of all the variables. The associated
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C matrices in the delta functions become

a by ¢ d 0 0 1
Cile=0 = : (3.4.11)

0 0 ac, ady g1 hi 1

(45} bQ 0 0 Co dg 1
Coley=0 = (3.4.12)

Bas Bby go hy 0 0 1

and

as b3 0 O C3 d3 1
C3ey=0 = : (3.4.13)

0 0 e fz3 yez vdz 1

In order to compare the three C; € GR(2,7), we must introduce a change of parameteriz-

ation. Utilising the GL(2) invariance, we make the following change of basis for Cy and

037
0 1
Cl = Cy (3.4.14)
=B 1
-3 1-8
and
- _1
Ch=1"" TG (3.4.15)
0 1

The three matrices Cy, CY) and C are now of the same form, meaning they have zeros and

ones in the same entries and variables in the others:

a b h 0 0 1
L = Paz PBby  go 2 ’ (3.4.16)

o= I 1 . (3.4.17)
0 0 es fz3 qe3 vydz 1

We continue in a similar way to the simpler spurious pole discussed in Section 3.3.1 by
comparing each entry in C% and C} directly to the equivalent entry in C;. We make a

change of variables for C?, and C} to the variables of C as dictated by matching entries:

a2 et B aSh ema,  —(1-a) (3.4.18)

1 1 (0%
hy — dy Co — a0 doy — mhl
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as — a%al by — a%bl ez —
ch - ! ! y—=1—a. (3.4.19)
fs—ad  c3— ﬁgl dz — ﬁ}h

Substituting these new variables into the residues of Z (D,) and Z (D5) and taking the

sum of all three integrals gives

/ d(Ll dbl dCl ddldgl dhl da

arbicidigihy

1 1 1 8|8 —
<a+ o a(l_a)>5< B -2)=0. (3.4.20)

Therefore, we have shown that (3.4.7) is satisfied.

It is worth emphasising here again that this calculation generalises to similar residues
for all n. Furthermore, the propagator ends do not have to be spaced as symmetrically
around the polygon as in Figure 3.7; the three way cancellation works in the same way for
almost all sets of three edges that one could choose to have the propagators of the triplet
of diagrams end on. There is, however, a special case when the propagator ends opposite
to those coming together on the same edge sit on adjacent edges. For an example of such

a diagram, see D) in Figure 3.8. The diagrams that one would naively expect to cancel

Zg Z3 Zg Z3 Zg Zs

Figure 3.8: Three diagrams which when summed cancel the spurious
poles illustrated by the arrows on each diagram. This is a
special case of the three way cancellation.

with D) in a three-way cancellation would have a propagator between adjacent edges,
which is zero. However, there does exist a different three-way cancellation involving D)
and D} depicted in Figure 3.8 in the limits given by the arrows. We do not need to

consider this special case to prove the mismatching of geometries of the N>MHV WLDs
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discussed in the next section, therefore we leave the proof of the spurious pole cancellation

to Appendix A.

We now look to interpret the general three-way cancellation, (3.4.7), geometrically. Map-
ping the integrals to canonical forms via the rules discussed in section 3.2.2, we will see
that there is a three-way pairwise matching of the corresponding spurious boundaries.
However, we will show that there is no way to assign geometries to the canonical forms
such that when glued together they are consistent with both the three-way cancellation

and the simpler spurious pole cancellation discussed in section 3.3.1.

3.4.2 Spurious Boundary Matching for N°MHV

To each N2MHV WLD, we wish to associate a geometrical subspace of Gr(2,6) such then
when glued together all spurious boundaries match pairwise (locally) with those of other
diagrams. This may not be a sufficient condition to ensure a geometry with no spurious
boundaries remaining, however it is necessary. The coordinates chosen in the previous
section, for example (3.4.8), give a dlog form for the measure. Therefore, generalising
from the NMHYV case discussed in section 3.3.2, we expect assigning a geometry to a
given WLD corresponds to making those coordinates real and assigning signs to them.
Taking D; in Figure 3.7 as an example and using the coordinates chosen in (3.4.8), one
geometrical region (corresponding to one choice of signs) that can be associated to this

canonical form is
{Y =C1.Z : a;>0, by>0, d;>0, ;>0, g:>0, h;>0, o > 0, ¢, > 0}
- (3.4.21)

{Y = C’lZ : CL1>0, b1>0, c1 > 0, d1>0, €1>O, g1>0, h1>0, f1€1 > €1d1}
with C} given in (3.4.4).

Perhaps unsurprisingly given previous discussion on the toy example and NMHYV case,
this region is not unique; other sign choices for the variables can be chosen to give another

region with the same canonical form. There are sixteen allowed sets of sign choices
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altogether. One must be careful here as the propagator ends that are on the same edge

cannot cross; the geometrical region must respect this. The eight allowed possibilities for
the parameters of these ends, ¢q, d1, e1, f1, can be seen in the following way. Choosing signs
s1, 89 for di and ey gives four of the possibilities immediately. However, we also require
(c1.f1 — erdy) > 0: this splits each of the four cases into two disconnected regions given
by ¢1, fi > 0 and ¢4, f; < 0, giving the expected total of eight cases. These cases can also
be read off directly from the parametrisation of the WLD if one considers the parameters
being real instead of complex. For the ends not to cross we need either 0 < i—i < Z—i or
€1

0< < - Choosing signs for dy, e; gives the same eight cases as above.

In order to start our investigation of a possible geometrical region of N?MHV WLDs, we
look to the geometric interpretation of the three way cancellation described in the previous
section to give some insight. To do this, we compare the C' matrices in the appropriate

limit after they have been rotated to match entries with each other, i.e. Cy,C}, C}, given

by
ag bp ¢ d 0 0 1
Cilo=0 = (3.4.22)
0 0 acy ady ¢1 by 1
Bas [by g h 0 0 1
Chlomo=| "5 7 77 (3.4.23)
hy — —Bes —pd
0 0 % % 75 15 1
Csles—0 = : (3.4.24)
0 0 e3s fz ez vdz 1
We have o = - and a@ = 1 — v at points where the regions touch. Using this as

1-8

motivation, we choose signs (positive or negative) for «, 5 and « such that locally a, 5(«)
and v(«) share boundaries pairwise. There are two different cases that arise from this

consideration:

1. One of the variables is positive and the other two negative. Without loss of generality

we consider a > 0, 3,7 < 0.

2. «, 8 and ~y are all positive.
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The two cases are illustrated in Figure 3.9.

0 0
| |
|
|
a(y)
Q a(f) Q
/ AN 1 1
/ AN / AN
00 a(y) o0 a(B)

Figure 3.9: The two possibilities for three way boundary matching. We
plot the range of a on a circle from [—o0, 00| passing through
0 and 1. Black is the range of « in diagram D1, in red that of
a(f) in Dy and in blue the range of a(y) in D3. We see there
is always a local pairwise matching of the three diagrams in
both cases. In Case 1 D2 and D3 each only overlap with D1
and not with each other. For Case 2 all diagrams overlap the
other two.

We look to examine both of these cases separately. Though the considerations will continue
in slightly different ways, we will see the end result is the same for both; there is no way
to match spurious boundaries for the three-way cancellation that is consistent with other
spurious boundary matching (similar to those dealt with in Section 3.3.1) and gives a
geometrical region with no spurious boundaries left unmatched when all tiles given by

the WLDs are glued together.

Case 1: a >0, <0and v<0

Looking at Figure 3.9a, C; and CY should overlap when 0 < o < 1 whereas C} and Cj
should overlap when 1 < o < co. At the points where the regions overlap we also need all
other variables to match; in particular, this fixes the signs of the variables for the second

two diagrams in terms of the first. Defining

Sgn<a1) = S, Sgn<b1) = S2, SgH(Cl) = S3,
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Sgn(dl) = 84, Sgn(gl) = S5, Sgn(hl) = Se¢, (3425)

and comparing (3.4.23) and (3.4.24) to (3.4.22), we end up with a matrix of signs for C

and Ci:
—s1 —S9 s3 s4 0 0 1
sg1(C)]ez=0 = : (3.4.26)
0 0 S3 S4 S5 Sg 1
S1 S S3 S4 0 0 1
sen(C)y0 = . (3.4.27)
0O 0 s3 s4 —s5 —sg 1

Undoing the GL(2) transformations, we end up with matrices giving signs for each entry

of the original C' matrices:

S1 S22 S3 5S4 0 0 1

sgn(C’l)|€1:0 = s (3428)
0O O s3 s4 S5 sg 1

—S81 —89 0 0 S5 Sg 1
sgn(C2)|e,=0 = : (3.4.29)

S1 S s3 sS4 0 0 1

S1 S 0 0 —S5 —Sg 1
SgIl(C3)|63:0 = . (3430)

0 0 S3 54 S5 Sg 1

Given a set of signs for (', the three way cancellation fixes the signs of all entries of Cy
and C}3 for this choice of signs for a, 8 and . Crucially, despite the signs being derived by
looking at their values at the spurious boundary, the signs remain unchanged inside the
region away from the boundary. The only subtlety occurs with those entries depending

on ¢;. We look to D; in Figure 3.7 to illustrate this subtlety, with corresponding matrix

(3.4.22).

In dealing with the three way cancellation above, we fixed signs for all variables of C'y
except for €1, as it was set to zero in the limit of the propagator ends coming together.
However, away from this boundary its sign must be taken into account. In order to assign
a geometrical region to this WLD, that has a canonical form given by the dlog form in

the first line of (3.4.8), we must have a definite sign for ¢;. Letting s, = £1 be the sign
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of €1, we focus on the entries of C; corresponding to the side with two propagator ends on

it, away from the boundary but still using the information from the three way boundary

matching considered above:

/ !
C1 d1 53C1 S4d1
3 4\ _ _
(c3,cf) = = , / nE (3.4.31)
er fi sgacy  sqady + S €]

Note that here ¢}, d}, €} > 0, s3c} = c1, s4d] = dy, € = s, €; and we still have o > 0 as
dictated by the three way spurious boundary matching. There are two possibilities to

consider,

S3 54
Se, =84 sgn ((ci’, c‘ll)) = , (3.4.32)
S3 54
3 54 / 1
€ < a'd
S3 54
Se, = —S4:  sgn ((c?, c‘f)) = (3.4.33)
83 54
€ > a'd].
3 —54

From the discussion under (3.4.21), we saw that the condition (c¢if; —ejd;) > 0 put
certain constraints on what the signs of c¢1,dy,e; and f; could be. In particular, there
were eight cases that satisfied this condition. Additionally, this case of the three way
cancellation, with a > 0, determined that ¢; and e; had to be the same sign. The matrices

of signs which satisfy both conditions are

(3.4.34)

with s = +1.% Relating s3 and s4 in (3.4.32) and (3.4.33) splits the two possibilities for

4These matrices give four out of eight of the cases which satisfy (c1fi1 — eid1) > 0. The other four are

(s S>and<s _s>fors::|:1.
-5 s —s s
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sgn ((c‘;‘, c‘f)) into another two, for four in total:

S3 53
€ < O./dl
Sz S3 S3  S3
Se; = S4 = S3¢ s Seg = —S8S4 = —S83:
S3 S3 S3 S3 ;
€1 > ady,
S3 —S8S3
(3.4.35)
S3 —S3
€ < Oédl
S3  —S3 S3  —S3
Seg = S84 = —S83 ¢ s Seg = —S84 = S3 ¢
53 753 S3 —S3 p
€1 > ady.
83 S3

The matrices coloured red do not match either of the cases in (3.4.34), therefore are not
consistent with (c; f; — ejdy) > 0. Each variable associated to the diagram D; must have
a definite sign to give a geometry that has the dlog form (3.4.8) as its canonical form,
therefore s, = —s4 = s3 and s, = —s4 = —s3 are not viable as they do not satisfy the
necessary conditions for the whole region of the chosen sign for ;. We also do not obtain
a valid set of signs for s., = s, = —s3, therefore not only do we find that s., = s4, but

also s4 = s3.

Similar considerations can be applied to Cy and C5 to find out valid sign choices away
from the spurious boundary associated to the three way cancellation. For Cs, we look in

particular to columns one and two:

(05} bg —Slaé —Sgbll
(c3s€3) = = . (3.4.36)
es fa s168'al  s98'b) + se,€h
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Similarly to (3.4.35), the four cases relating s.,, s; and s, for Cy are given by

—S1 —85q )
e, < B'Y,
-5 -5 S1 S1
Seg = S2 = S1¢ s Seg = —S2 = —S81¢
o o 51 T4 ! ﬁ/b,
€y >
2 25
1 —41
—51 51 / B/b,
€, <
2 2
—S1 S S1 —S1
Seg = S22 = —S81¢ s Seg = —S2 = S1¢
S1 —S1 —51 S1
/ 173,/
€, > ['l.
2 2
S1 S1
(3.4.37)

Comparing to the valid sign choices given in (3.4.34) and footnote 4, the red matrices in
(3.4.37) do not satisfy asfo — baes > 0. Therefore, for €5 to be valid in the whole region

of its chosen sign we must have s., = sy = —s7.

Finally, for C'; we concentrate on columns five and six:

C3 dg —8563 —Sﬁdg
(c5:¢) = = . (3.4.38)

g3 hs S5V g5 + Ses€y Sy Py
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The four cases relating s, s5 and s¢ for C5 are given by

% 7% / /]
€3 <7
3 3
—S5 955 55 S5
Ses = S5 = S6 - s Seg = —S5 = —S6 -
Sy S5 —85 —S5
/ !
€3 >74g
3 37
—S5 55
— % 55 / ! !
€3 <793
— S5 S5 S5 —Ss5
Seg = S5 = —S6 - 3 Seg = —S5 = S6 -
S5 795 —S5  Sj
/ ’ ot
€3 > ' g5.
3 3
—8 —35s
(3.4.39)

For this case, we must have ds3gs > c3hs for the propagator ends not to cross in Ds,
so the valid sets of signs are given by (3.4.34) and footnote 4 with the two columns
swapped. Therefore, for €3 to be valid in the whole region of its chosen sign we must have

Sey = S5 = —Sg.

Substituting the three conditions found above,
Sey =S4 =83, Sey = S2 = —S1, Se3 =S5 = —S6, (3.4.40)

into sgn(C;), (3.4.28) - (3.4.30), leaves

st —s1 s3 s3 0 0 1
sen(Cy)=| 77 (3.4.41)
0 0 S3 S3 S5 —Sjp 1

—5 s 0 0 s5 —s5 1
sen(Cy) = T (3.4.42)
S1 —81 S3 S3 0 0 1
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S1 —81 0 0 — S5 S5 1
sgn(Cs) = . (3.4.43)
0 0 S3  S3 S5 — S5 1
These matrices give sets of signs for C; relating to the WLDs in Figure 3.7 that are
consistent with the matching of the spurious boundary associated to case 1 of the three-

way cancellation, while ensuring that the propagators do not cross each other. These

signs are valid not only on the boundary, but also away from it.

Now, we look to see if the sign choices for Dy, Do, D3 are consistent with the consecutive
matching of the other type of spurious boundary occurring when propagator ends approach
vertices. We will see that the set of signs is in fact not consistent; the problem comes down

to the difference in signs in the top row of (3.4.42) to those in the top row of (3.4.43).

Consider starting with diagram D, in Figure 3.8 and moving the propagator defined
by the second line in C5 around the Wilson loop clockwise until it reaches a diagram
equivalent to D3. We match spurious boundaries in a similar way to section 3.3.2; at
each vertex, the whole matrix of signs in the relevant limit must match. The signs of the
top row, corresponding to the propagator left fixed, must remain the same. Under this

sequence of moves we get

—S81 51 0 0 S5 —S8p 1
sgn(Cy) — , (3.4.44)
0 0 s sy st sz 1

where the primed variables here represent new signs not yet fixed in the process. °

Comparing this new matrix to sgn(Cjs), (3.4.43), one can see immediately that the signs
on the top row are different regardless of what the primed signs in the bottom row become.
Therefore, the signs found from the matching of the three-way spurious boundary are not
consistent with the mathcing of the boundaries obtained by following the propagators
round the Wilson loop polygon. The WLDs cannot be glued together to form a geometry

without spurious boundaries with this choice of «, # and 7.

°In fact, we do also require sj = s3 and s/, = s3 by the pairwise matching of consecutive spurious
boundaries. However, this is not necessary for the continuation of the argument.
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Case 2: o,53,7v>0

We now consider the second possibility for having pairwise matching boundaries, illus-
trated on the right hand side of Figure 3.9, with «, 8,7 > 0. Looking at the Figure, C';
and C) should overlap when 1 < o < oo and 0 < f < 1 and C; and Cf should overlap
when 0 < @ < 1 and 0 <y < 1. Now there is an additional overlap between C, and C%

when 1 < f<ooand 1 <7 < oo.

At these overlaps, the entries of the rotated matrices (3.4.22-3.4.24) must be equal.
Defining the signs of the C variables as previously, (3.4.25), this means the signs of the
entries of Cf and (5, must be the same as those of C in the region where they overlap
with C (i.e. 0 <8< 1,0 <~y < 1). However when (3, > 1 some of the entries changes
sign due their dependence on [ or . Thus the signs of the entries of the rotated C

matrices are as follows:

S1 S S3 S84 0 0 1

sgn(Cy) : (3.4.45)
0 0 S3 S4 S5 Sg 1
0<a<oo
sgn(C’é): S1 S9 S3 s4 0 0O 1 | S1 So  S3 Sa 0 0 1
0 0 S3 S4 Sy Sg 1 0 0 —S83 —S84 —S85 —Sg 1
0<p<1 1<fB<o0
(3.4.46)
s1 82 s3 s4 0 0 1 -8 —S3 —s3 —s4 0 0 1
Sgn(Cé): 1 2 3 4 7 1 2 3 4
0 0 S3 S4 S5 Sg 1 0 0 S3 S4 S5 Sg 1
0<y<1 1<y<oo
(3.4.47)

Now, even before rotating C’, and C% back, there is a clear problem. Looking at the
matrices in 3.4.46 and 3.4.47 for 1 < § < oo and 1 < 7y < 0o, the matrices do not overlap
as they should. Matching diagram Dy with D; correctly and D3 with D; correctly fixes
the signs of the respective C' matrices in a way that is incompatible with Dy, and Dj

matching.

Therefore, there is no valid three way boundary matching for this case.
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3.5 Concluding Remarks

We have shown that it is not possible to consistently assign a subspace of Gr(k, k + 4),
amplituhedron space, to each WLD consistent with its canonical form and pairwise
matching of all spurious boundaries. Therefore, WLDs cannot be used to tessellate
the amplituhedron, or in fact any other subspace, without spurious boundaries. This
is somewhat surprising since they do have certain properties which seem promising:
WLDs do have a natural, though non-unique, interpretation as subspaces in Gr(k, k + 4)
and they do sum to give the amplitude. The situation is similar to the toy example
shown in Figure 3.1 where region I and II clearly have canonical forms which sum to
give the quadrilateral with no spurious poles, but there are spurious boundaries left
unmatched in the corresponding geometrical interpretation. For the simple example of
the quadrilateral we could of course choose a more sensible set of signs to give a tessellation
of the quadrilateral with no spurious boundaries left, but we have shown that for the

N2MHV WLDs and beyond this is not possible.

Despite only showing this for the N? MHV case, it is quite clear that the proof holds for
higher helicity. One simply needs to add the extra propagators away from the three way
cancellation and recycle the same argument as given here. As stated before, showing this
for six points was only to easily illustrate some examples - the argument clearly holds for
any number of particles. Furthermore, although we have focussed only on tree level here,

it would be very surprising if the situation improved when moving to loop level.

One might hope that although the WLDs do not tessellate the amplituhedron that they
may instead give a nice tessellation of the squared amplituhedron [75,88] which has a
more direct definition and for which there are 2* copies of most diagrams. However,

having attempted to make this consistent it does not seem to be the case.

Although the WLDs cannot provide a tessellation of the amplituhedron, they do still give
a very concrete and suggestive “tessellation” at the level of the canonical form. It seems

likely that this property generalises for more positive Grassmannians, and may prove
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useful in their further mathematical study. Despite not giving a “good geometrical region”

it may still be interesting to further understand the WLDs geometrically; studies in this

direction have begun, see for example [102,103].






Chapter 4

Single Particle Operators in N =4

Super Yang-Mills

4.1 Introduction

The AdS/CFT correspondence, originally conjectured by Maldacena, describes a remark-
able relationship between two sets of theories; on one side are the theories of quantum
gravity formulated in terms of string theory, and on the other side are a type of quantum
theory known as conformal field theories [1-3]. Perhaps the most noted successful con-
firmation of the correspondence is the relationship between the half-BPS sector of N =4
SYM in four dimensions and IIB string theory on AdSs x S°. String states in the latter
theory are related to gauge invariant operators in the former and AdS amplitudes are
related to correlators of gauge invariant operators. Half-BPS operators are particularly
interesting as their quantum numbers are not renormalised, and certain (extremal) cor-
relators are protected from renormalisation. Therefore, they can be computed in the free
theory then taken trivially to strong coupling. These correlation functions at large N can
then be compared to a gravitational equivalent via the AdS/CFT correspondence (see for

example [104-107]).

The correspondence has been used to reconstruct information on strong 't Hooft coupling
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phenomena in gauge theory from semiclassical physics in AdS. For example, the operators

dual to single particle operators, which will be the main focus of this chapter, are expected
to vanish as the charge of the operator exceeds the number of colours N. From the
gravity side, as the angular momentum of a particle moving on the S® increases, the
point-like graviton expands into a D3-brane wrapping an S® C S°, [108] which cannot
grow bigger than the size of the S®. This is the basis of the stringy exclusion principle
(originally proposed in [109], see for example [110, 111] for further discussion). More
recently, the correspondence has been used successfully in the other direction; analytic
bootstrap techniques on the CFT side at strong coupling have allowed for more concrete
investigations of perturbative quantum gravity. For example, one-loop quantum gravity
amplitudes in AdS have been obtained by computing O (ﬁ) corrections to strong coupling

correlators in SYM [112-116].

In order for these investigations to be precise, and to properly account for the operator
product expansion (OPE) at tree level and one loop, it was necessary for the gauge
theory operators dual to single-particle supergravity states to be defined carefully. These
operators are half-BPS operators, therefore are protected. However, due to the degenerate
nature of the space of half-BPS operators, only in the planar limit can single particle
operators be identified as the well known single-trace operators Tr (¢?), where p is the
charge (these will be introduced in more detail below). The single trace operators were
already known to receive O (%) corrections from multi-trace operators [117-119]; in
fact, the first order double trace corrections have recently been worked out directly
from supergravity [120,121]. However, the non-perturbative natrue of the AdS/CFT
correspondence heavily indicates that a non-perturbative definition should exist for the
states dual to single particles, i.e. one which remains valid for all N. Such a definition

was formulated in [122]:

Single-particle operators are half-BPS operators which have vanishing two-point

functions with all multi-trace operators.

(4.1.1)
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Up to normalisation, the above definition fixes the single particle operators uniquely as a

sum of the single trace operator and multi-trace operators with pre-factors dependent on
N. This definition of the operator has already been necessary for correctly determining
the one-loop O (ﬁ) supergravity correlators of operators with charges higher than four.
For example, arbitrary charge correlators in position space were studied in [115] and

(22pp) correlators were calculated in Mellin space in [116].

The purpose of this chapter is to explore the properties of the single particle operators
defined above, find explicit formulae for them and calculate various correlation functions
involving them. We will begin by introducing the trace basis, as well as some properties
of half-BPS operators in N =4 SYM. We will then proceed to introduce two more bases
of half-BPS operators, the dual basis and the schur polynomial basis, both of which we
will refer to when writing an explicit formula for our single-particle operators. This will
act as a brief review of concepts required to understand the rest of the chapter, and allow

us to set up notation.

4.1.1 Half-BPS Operators in N =4 SYM and the Trace Basis

Here, we will very briefly review some properties of half-BPS operators in N = 4 SYM.

For a more thorough description see [4] and the references therein.

The half-BPS operators are built from the 6 real scalars, X;, in the Yang-Mills theory
which lie in the (0,7, 0) representations of the SU(4) ~ SO(6) R-symmetry group. These
are the symmetric traceless representations of SO(6) that correspond to Young diagrams
with one row of length [. They include single trace operators, where the trace is taken over
the gauge indices of a tensor product of the real scalars, and products of these forming
multi-trace operators. The %—BPS stress-tensor supermultiplet contains the protected
half-BPS operators Tr(¢?), the stress tensor and the (on-shell) chiral Lagrangian of the

theory.

In order to make sense of these operators, it is useful to introduce the SO(6) ~ SU(4)
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null auxiliary variables Yz, where null enforces Y - Y =0 and R =1,...,6. The R-index

coincides with the SO(6) R-symmetry index. The single trace operators are then defined
as follows;

Tyx) =Tro@? ;  6(X,Y) =Y ga(X), (4.1.2)

where the variables Y have been used to project the elementary field ¢ onto the
symmetric traceless representation. Therefore, a single insertion point x; corresponds not

only to a space-time coordinate X;, but also an SO(6) vector Y%,

In this chapter, the U(N) theory will be particularly useful due to its simplicity, however
the bulk AdS theory is describing the SU(N) part of the theory.! When working with
the SU(N) gauge group, we will denote the scalar field as ¢(z) = ¢¥(X,Y) = YEyr(X),

where now the Y are traceless.

To compute correlation functions in free field theory we use elementary propagators. The
conformal structure of the theory dictates that the two point function of two scalar fields
is given by

(Ga(@)on(y)) = —2—, (4.1.3)
(z —y)

where the indices a, b run over the adjoint representation of the gauge group and g, is
the inverse of g% = Tr (Y“Y”), the bilinear invariant. For the rest of the chapter we
will only be interested in the group structure of the correlator, therefore we will drop the
spacetime dependence. Taking the gauge group to be U(N) or SU(N), the propagator

takes the form

(07(X1, Y1)9( (X2, Y2)) = 667912 U(N) (4.1.4)

WG (G ) = (0007 = 00t ) o SUM), (4L5)

LA U(N) gauge theory is equivalent to a free U(1) vector multiplet times an SU(N) gauge theory up
to Zy identifications. It was shown in [123] that the U(1) part of the gauge group is a singleton field
related to the centre of mass motion of the branes (the interested reader is encouraged to see [124] and
the references therein.
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where
Y)Y,
(X1 — X)°

The correlators above can be related by substituting % = ¢ — ¢! /N, into (4.1.5), giving

g12 = (4.1.6)

S, U\ __ S s it v vV W £S5V 1 S SU
(Wrps) = (61 = 8204/N) (04 — 6 /N) ) = 6367 — =070 (4.1.7)

We will use the following notation to denote the single trace operator of charge p:
U(N): Ty(z)=Tr(¢(x)P) SU(N): Ty(x)=Tr(v(x)P), (4.1.8)

where the gauge group will be specified if it is not obvious from the context. It is worth
highlighting that for the SU(N) gauge group the field is traceless therefore there does
not exist a single trace operator for p = 1. In addition to the single-trace operators 7,

we obtain half-BPS operators from products of the form

Loy (@) =Ty, (x) ... T, (x), PL> .. > > 1. (4.1.9)

The scaling dimension of the multi-trace operator T), .. is given by (p; + ...+ p,,). Of

course, for the case of m = 1 reduces to the single trace operator.

We can write these operators using permutations of the symmetric group S,,.

Ty (€)
T,TS | (12)
T2T, | (12)(34)
TyT2 | (123)
TyTy | (123)(45)
TT, | (1234)

Ts | (12345)

Table 4.1: Table showing the 1/2-BPS operators of weight 5 in the trace
basis for a U(N) gauge group on the left, with a represent-
ative of the conjugacy class each corresponds to on the right.
For SU(N) the field is traceless, therefore only 7375 and Tj
survive.
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Taking the set of weight five operators as an example and letting o € S5, with p1,...,pn

denoting the lengths of the cycles of o (X1, p; = 5),we write

T (06(2)) = Tp,..pn () = 01, 012, 01, 01 O - (4.1.10)

For example, if 0 = (12)(345) we get the operator
G 07 0idrs = TsTo (4.1.11)

One can see that the trace structure is only dependent on the cycle structure of the
permutations; for example, the permutation (12)(345) gives the same trace structure as
(14)(235). Therefore, the multi-trace operators in the U(/N) gauge theory are in one-to-one
correspondence with the conjugacy classes of the permutation group S,,. Table 4.1 shows

the correspondence between multi-trace operators of weight 5 and the conjugacy classes

Of S5.

Since the fields v are traceless, the correspondence for the SU(N) gauge theory is between
multi-trace operators and conjugacy classes of S,, with no cycles of length 1, e.g. for
the weight 5 example above there is an operator corresponding to the conjugacy class
with elements (12)(345) and (12345) (see Table 4.1). Letting p(n) denote the number of
conjugacy classes of .S,,, the number of conjugacy classes that do not contain a 1-cycle is
p(n) — p(n — 1), since each element with a 1-cycle can be decomposed into a 1-cycle and

an element of S,,_;.

We refer to the basis of half-BPS operators made of all possible T, . (z) as the trace
basis, and for the remainder of the chapter will denote the basis elements with the symbol
1}, where p stands for a partition of p. A correlation function of operators in the trace
basis will have the schematic form
(T (1) T, (@) = 3 T8 Costoprma (V) (4.1.12)
{bi;} ©J
where b;; counts the number of propagators from insertion point ¢ to j, and {b;;};<; is the

collection of these bridges labelling the propagator structure. The corresponding colour
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factor is given by C{bij}:&'~~@(N)'

4.1.2 Other Bases of Half~-BPS Operators

Other than the trace basis, there are two other bases of the half-BPS operators that
will be useful to be familiar with; the schur basis and the dual basis. Here we give the
definition of these two bases, we state group theoretic formulae for them and illustrate

some of their basic properties.

Schur Basis

A beautiful orthogonal basis for all half-BPS operators in the U(N) theory was given
in [125] in terms of Schur polynomials, where by orthogonal we mean the operators

diagonalise the two point function.

The Schur polynomial basis is defined as a sum of the trace basis operators discussed in
section 4.1.1 over the elements oy, ,,, € S, weighted by the characters of o, . in the

representation R of S,

Xa(6) = - > (o) Te (99) (11.13)

‘o€ES)

As mentioned in section 2.4.3, the representations R of S, can be labelled by Young
diagrams with p boxes. Therefore, the operators in the Schur polynomial basis can also
be represented by these Young diagrams. Therefore, the number of Schur polynomials of
weight p is equal to the number of partitions of p. The representation R also corresponds
to a representation of U(N).? For a unitary matrix U, the character of U in representation

R is given by xr(U) defined by (4.1.13).

The correlation function of two Schur polynomials calculated in [125] is given by

(Xr(8")xs(0)) = drs fr, (4.1.14)

2This is a consequence of the fact that if V is the fundamental representation of U(N), U(N) and S,,

have a commuting action on v &™. For more details see for example [72].
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where fg is defined in (2.4.14). Finally, we can invert the relation between the Schur

polynomials and trace basis operators. Multiplying (4.1.13) by yg(7) and summing over

the representations R we have

= Tr(r¢), (4.1.15)

where to get to the second line we have used the orthogonality relation (2.4.9). The
third line follows from the observation that the only terms in the sum over elements that
survive from line two are those that have ¢ in the same conjugacy class as 7, of which

there are |[7]| terms.

The Schur polynomials have some very nice properties, including that they automatically
truncate with N, since a U(N) Young diagram with height larger than N vanishes. One
can see this very easily by noticing the dimension of the representation R of U(N),
(2.4.12), will be zero if the number of boxes in the first column surpasses N. Therefore,
this set of operators automatically satisfies one of the properties expected as a result of
the AdS/CFT correspondence. However, the basis does not project onto an orthogonal
basis for SU(N); indeed, the operators are not even linearly independent in the SU(N)

theory.

Dual Basis

In [126] a non-orthogonal but linearly independent basis of all SU(N) half-BPS operators
was defined. This basis was later identified as the dual to the trace basis in [127] via the
metric defined by the two point function, and a group theoretic expression for this basis

was given:

1

Epr.pn () = M Y XR(Opp)XR(O) L= =D (4.1.16)
y2 RFp fR
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where |0, ]| is the size of the conjugacy class given labelled by the cycle lengths p; ... p,

(see (2.4.4)), the sum is over the representations of S, labelled by Young diagrams with
p boxes and weighted by fr defined in (2.4.14). Here, xg(0p,. p,) is the character of
Opy..pnil R and xgr(¢) is the Schur polynomial discussed in the previous section. These

are operators &, (with p; > ... > p,) which obey

Epropm (@) Ty g (12)) = ) = ), (4.1.17)

0 otherwise.

In other words each element of the dual to the trace basis is orthogonal to (i.e. it has
vanishing two-point function with) all elements of the trace basis but one, and we then
normalise it to have unit two-point coefficient with this element. This can be seen

straightforwardly by substituting (4.1.15) and (4.1.16) into the two-point function:

<fp1--~pm($l)TQ1 qn($2) = Up;o‘pn J Z XR Op1...pn ZXS Oq;.. Qn)<XR(¢T)XS(¢)>

Rl—p Skp
[7p1...p, ]l
- plilp Z XR(O—pl-npn)XR(o-ql,,,qn)
p: Rp
= 5p1q1 Ce 5pm<In7 (4118)

where the second line uses the diagonal nature of the Schur basis (4.1.14) and the third
line uses the orthogonality relation (2.4.8). The delta functions in the final line simply
impose that the elements of S, being considered must be in the same conjugacy class.

We will refer to the basis given by the &,, . as the dual basis.

-----

By definition, the change of basis matrix from the dual to the trace basis is simply the

two point function:

Epr.pn (T) = Z (prpnlaram) Tar...qm (T) (4.1.19)
{a1..am}tp
where the sum is over all partitions of p, that is all sets of integers ¢ > --- > ¢,, such

that ¢1 + ... + ¢, = p. Using (4.1.16) with (4.1.14), one finds the two-point function of
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operators in the dual basis to be

| o 1 n | | g, 1 m |
<§p1...pn§q1...qm> = [ pp|p ] [ qp 4 Z I - XR Jpl pn)XR(Uq1 qm)
C R R (4.1.20)

p=p1+...+vppn=q1+...+qm -

The considerations above have mostly been for a U(N) gauge theory. However, in [127]

it was shown that for SU(N) fundamental field ¢ and U(N) fundamental field ¢,

5p1---pn(¢) = gpl---pn(ﬁé)v (4-1-21)

with ¢ = ¢ — M and p; > 1 forallt=1,...,n, n > 2. As a consequence of this,
the correlator of two members of the SU(/V) dual basis must be the same as the U(N)

correlator,
(Eproopn (V)E01.00 (V) = (Eprpn (D)E01...00 (0)), (4.1.22)

which is given by (4.1.20).

We will see soon that the single particle operators are in fact a subset of the dual basis
operators with a different normalisation (though they were not interpreted as single
particle operators when defined), specifically the operators &,, ,, where n =1 correspond

to the SPOs. The dual basis as a whole is a more general basis of operators.

4.1.3 Summary of Chapter

The focus of the chapter will be to unpack the basic definition of the single particle
operator given in (4.1.1) and explore the properties of this basis. The first result explored
here is obtaining explicit formulae for the multi-trace components of the single-particle
operators and examining some of their nice properties. Then, we will study some of their
correlators and show that compared to the single-trace basis, the single-particle operators
have a number of very surprising and nice properties. This is slightly counter-intuitive at
first, because now we have to deal with an admixture of single and multi-trace operators,

but nevertheless it is true in many ways, as we will demonstrate.
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One of the nice properties of SPOs is the operators in the U(NN) theory and the SU(N)

theory are very closely related. In fact, writing the SPOs in terms of the trace basis,
the operators in the SU(N) theory are found simply by setting all 7} to zero. Since
the elementary field, ¢, in SU(N) is the traceless part of the elementary field, ¢, in
U(N), Indeed, in the U(N) theory the single-particle operators of charge greater than
or equal to two must be orthogonal to all multi-trace operators involving any Tr(¢), and
this automatically makes them the SU(N) operators. To formalise this statement we
introduce the SU(N) projection on the space of the U(N) operators, and show that the
U(N) single-particle operators belong to the SU(N) subspace, which is orthogonal to
the span of multi-trace operators in which at least one trace is Tr(¢). It follows that
correlators of U(N) single-particle operators are equal to correlators of SU(N) single-

particle operators.

Another nice property of the single-particle operators is that they automatically vanish if
the charge of the operators exceeds the number of colours N. This should be contrasted
for example with the single trace basis which does not vanish, but rather decomposes
into complicated linear combinations of products of lower trace operators. In [128], (sub)-
determinant half-BPS operators were defined as duals to these sphere giants (discussed
briefly in the introduction) and later these particles were associated with the completely
antisymmetric (single column Young diagram) Schur polynomials [125]. At large N we
find that the single-particle operators with charge close to N do indeed approach these

(sub)-determinant operators.

The rest of the chapter will be organised as follows:

e In section 4.2 we discuss the details of the multi-trace admixture which defines the
single-particle operators. We first give explicit examples at low charge, and then we
use group theory techniques to obtain a general formula, valid for any single-particle
operator of any charge p. Our formulae allow us to study the ‘shape’ of the operator

in the large N limit, and in particular to see explicitly the interpolation between
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the single-trace and the sphere giant as a function of p (see section 4.2.3). Moreover,

we will be able to compute the two-point function normalisation exactly.

 In section 4.3 we uplift the defining two-point function orthogonality to a multi-point
orthogonality theorem, which in turn implies vanishing of a large class of diagrams
in correlators. We call these near-extremal n-point functions, where extremality will
be defined as a measure of how much the diagram is connected w.r.t. the heaviest
operator (see (4.3.11)). This is the first instance of hidden simplicity of multi-point
single-particle correlators versus the single-trace correlators, and very interestingly,

a similar feature was noticed on the (super-)gravity side in [129].

o Insection 4.4, we consider the first non vanishing correlators, and we study maximally-
extremal (ME) and next-to-maximally extremal (NME) n-point functions. Both are
simple. The ME correlators are computed by trees and two point functions. The
NME are mostly computed by weighted sums of ME correlators, which we know in
general. When we compute these correlators by using Wick contractions techniques
on the trace basis, the combinatorics is hard in the intermediate steps. Instead, the
final result is way much simpler. We provide more evidence about this mechanism

mentioning also the case of NNME three-point functions.

Most of the work here is based off of published work in [58]. I contributed at least in
part to all sections being presented in this thesis. Section 5 as well as most of Appendix
B and all of C from the paper are not present in this thesis as that was the work of my

collaborators; I had no part in it.

4.2 Single-Particle Half-BPS Operators (SPOs)

The simple definition of the SPOs given in [122] was the following:

Single-particle operators are half-BPS operators which have vanishing two-point
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functions with all multi-trace operators.

In this section we will make this definition more precise, find explicit formulae for the
operators in terms of the trace basis, the eigenvalues of the operators and the Schur
polynomials, and provide some examples in each of the three bases. We then show two
important properties of the SPOs; one, SPOs interpolate between single-trace and giant
gravitons, and two, that the operators are the same in U(N) as SU(N). Finally, we
show the explicit formula for their two-point functions, and make some comments on the
possibility of extending from single-particle operators to an orthogonal basis of multi-
particle operators. For the most part we shall ignore the space-time dependence, since it
is the colour factor we are most interested in; the space-time dependence can usually be

reconstructed straightforwardly after the fact.

4.2.1 Definition of SPOs and Low Charge Examples

The AdS/CFT correspondence maps the spectrum of operators in N = 4 super Yang-Mills
theory to the spectrum of IIB superstring theory on the AdS; x S5 background. The
superstring can be found in unexcited states (giving the IIB supergravity multiplet) or
excited states. The half-BPS operators correspond to the supergravity states and their

multi-particle products.

In the natural basis of scattering states, the multi-particle states should be orthogonal to
single-particle ones. A key observation, though, for the purposes of the discussion here is
that the trace basis of half-BPS operators is not an orthogonal basis with repect to the

inner product given by the two-point functions. In general,
(Tp(21) Tyy..qn(22)) 70 n =2, (4.2.1)

In order to align with the AdS/CFT intuition, a prescription was given in [115,122] for
identifying the relevant half-BPS operators O, that correspond to single particle states.

The definition simply states that the operators are those which are orthogonal to all
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multi-trace operators,

Single particle operators = {O: (O,(x1) Ty, 4. (22)) =0, (n>2)}. (4.2.2)

It is worth noting that this in turn implies that if we associate multi-particle states with
multi-particle operators given as a product of single particle operators, then the single
particle operators are orthogonal to the multi-particle states, i.e. (O,(21)[Oy, --. Oy, ](22)) =

0.

In our normalisation, O, coincides with the single-trace operators T}, up to multi-trace
admixtures, i.e. the operators take the form

Op=T,+ >  cppTpyp, 1n>2 (4.2.3)

{p1..pn}rp

where > | p; = p. The coefficients can be calculated using (4.2.2) for the two-point
function of (4.2.3) with each T}, ,. to get a linear system of equations that can then
be solved for the ¢’s. Each multi-trace contribution is suppressed at large N, and the
single-particle operators reduce to the single-trace operators in the strict large N limit.

However, the novelty of the SPOs described above is precisely the fact they determine

the appropriate multi-trace admixtures.

For gauge group SU(IV), the single trace operator and the single particle operator coincide

for p = 2, 3 since there are no multi-trace operators for these charges,
0, =1, forp=2,3 SU(N). (4.2.4)

In terms of supergravity states the p = 2 case corresponds to the superconformal primary
for the energy-momentum multiplet which is dual to the graviton multiplet in AdSs. The
p = 3 case is the first Kaluza-Klein mode arising from reduction of the IIB graviton

supermultiplet on S°.

On the other hand, for gauge group U(N) the single trace operator 77 is not zero; the
trace of the fundamental scalar does not vanish. Therefore, unlike for SU(N) there is

one operator of weight one; @O; = T;. Furthermore, at weights two and three there are
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multi-trace operators that involve T}, specifically T7; for weight two and T5,Ti1; for

weight three, for which our single particle particle operator is defined to be orthogonal
to. Therefore, they have multi-trace contributions:
Oy =T, —+Tn
U(N). (4.2.5)
O3 =T5— 3T + =T
The additional terms compared to the SU(N) operators (4.2.4) simply project out the
trace part of the fundamental scalar ¢ and so the SU(N) and U(N) operators in fact

coincide.

For p > 3, we have the first non-trivial admixtures in SU(N) as well as U(N), which can
be verified using the propagator (4.1.5). This was discussed in [122], with some previous

discussion in [117,119,130]. For example, the single particle operator for p = 4 is given

by

2N% -3
04 == T4 - mTQQ SU(N) 5 (426)

where the coefficient of the double-trace contribution determined from the orthogonality

condition (O4Ts,) = 0.3 In the U(N) theory, the SPO with p = 4 has further contributions

involving T7. It is given by

(2N? — 3) 10 4 5
Oy=Ty— o Tyt Ty — — Ty =~
=T N 22+N2—|—1 21— 573 NV 1)

T U(N), (42.7)
where the coeffcients are determined by demanding orthogonality with all higher trace

operators Tao, Th11, T13 and Tiq17.

We see that the SU(N) operators can be found from the U(N) operators by imposing
Ty = 0. This pattern continues for p > 4; we give the next couple of cases to illustrate
this,

5 (N2 —2) Ty

:T—
Os =15 N (N2 +5)

+Us, (4.2.8)

30ther attempts at finding this combination can be found in [131].
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(BN* —11N? +80)T33 6(N —2)(N +2)(N?+5)Tys  7(N?—7) Ty
Os =T — - +

N (N + 15N2 1 8) N (N + 15MV2 1 8) N I5NT 8 T
where
Z/{ _ 15 (N2 — 2) T221 + 5 (3N2 + 8) T311 . 35T2111 14T11111 . 5T41 (4 2 9)
° T N2(NZ+5) N2(N2+5)  N(N2+5)  N2(N2+5) N 7

1o = 2N = DN+ )Ty | 21 (N2 +11) Ty 42(2N2 = 5) Ty
T NY4+15N?+38 NY+15N2+8 N (N*+15N2?+ Q)
56 (N2 + 5) T3111 1267ﬁ21111 42jﬁllllll 6T51

- - - . (4.2.10
N(N4+15N2+8)+N4+15N2+8 N (N*+ 15N2 +8) N ( )

The full expressions for O5 and Og above give the U(N) operators. To reduce to the
SU(N) operators, the contributions denoted by U5 and Uy are imposed to vanish. The
reduction from U(N) single particle operators to SU(N) operators by setting 77 = 0 is

true in general; we shall show this in 4.2.4.

4.2.2 General Formulae for SPOs

So far we have uniquely defined SPOs, up to normalisation, as operators orthogonal to all
multi-trace operators and showed some examples for the U(N) and SU(N) gauge groups.
We now look to give explicit formulae for these single particle operators. In fact, we will
give three different explicit formulae; one in terms of products of traces, one in terms
of eigenvalues of the elementary fields ¢, and a third in terms of the Schur polynomials

discussed in section 4.1.2. The plan will be the following:

o In section 4.2.2 we will give a formula in the trace basis, which is perhaps the most
familiar basis. This formula is very non-trivial, and uses powerful group theory
techniques to resolve for the expansion of the SPO in terms of multi-traces. We

quote it here :

Op(l') = Z qu ..... P - (:r) (42‘11)
{q1,--.gm}Fp
., o Hatn---qm” Z <_1)|s|+1(N +1- p)p*E(S)(N +Dp— 2(5))2(8)

..... e (p— 1)! SEP{q1ysqm}) (N>p - (N +1-— p)p
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The group theory data consists of P({q1, - .., ¢n}), the powerset of the traces T, ..,

then |s| is the cardinality of s and X(s) = Y ,.c,s; (see section 2.4.6). Finally,
[0 ]| 18 the size of the conjugacy classes of o with length cycles ¢ .. . ¢, given

by (2.4.4).

o In section 4.2.2 we give a much simpler formula, directly in terms of the eigenvalues

Ex(z;) of the elementary fields ¢,

M=

Op(x) = )_ di(p, N)Ep(2) () (4.2.12)

B
Il

—DM'p (N —p+ 1), 1(p — D
(N)p_ (N_p+1)p

—~

dk(p> N) =

o Finally, in section 4.2.2 we give another simple formula in terms of the Schur
polynomials introduced in section 4.1.2:

0, = S dulp. N 6], (42.13)
5 _ i1 (N—=k+p+1)_1(N—p+1),_4
di(p, N) = p(p=1)(=1) V), = (N—pr1),,

where we note that only Schur polynomials of hook representations appear.

If we consider half-BPS operators to be symmetric functions of the eigenvalues of the
scalar matrix ¢;, we see the three bases introduced above all correspond to well known

bases for symmetric polynomials:

Trace basis «— Power sum symmetric polynomials
Eigenvalue monomials «<— Monomial symmetric polynomials

Schur polynomial operators <— Schur polynomials,

where the second correspondence is true after eigenvalue monomials are summed over per-
mutations. There are a number of well known formulae relating three bases of symmetric

polynomials on the right hand side known as Newton identities. It would be interesting
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to explore these relations in the context of the bases of single particle operators on the

left hand side.

Formula in terms of a product of traces

In section 4.1.2 we described a linearly independent basis of half-BPS operators known as
the dual basis, and gave group theoretic formulae for them and their two point functions
introduced by Brown in [127]. They were operators defined to be orthogonal to all
elements of the trace basis bar one; see (4.1.17). The dual field §, of the single trace
operator T}, satisfies

(1) Ty g (72)) =0,  n>2. (4.2.14)

In fact, this corresponds precisely to our single particle operators, O, (see (4.2.2)), there-
fore the single particle operators must be equal to the dual field §, up to normalisation.

Since O, = T),+ multi-traces, (4.2.14) and (¢,T,,) = 1 we find
<£p0p> =1, (4'2'15)

hence
_ an r) — gp(@
&ple) = d  Opx) ey (4.2.16)

We look to use the change of basis matrix from the dual to the trace basis given in
(4.1.19) for &, to find an explicit formula for the multi-trace admixtures for the single
particle operator. We need the two-point function of two dual basis elements given in
(4.1.20) for &, ,, = &. The conjugacy class corresponding to the single index dual
basis operator consists of a cycle of length p, of which there are (p — 1)! possibilities
meaning |[o,]| = (p —1)!. Furthermore, for this conjugacy class we observe that only hook

representations have a non-vanishing character. More specifically,

(—=1)"==1 R = hook YT of height hg
o) = (12.17)
0 otherwise,
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where by “hook YT” we mean that the representations R that are associated to hook-

shaped diagrams: Young diagrams that only have boxes in the first row and first column.

Substituting this information into (4.1.20) gives

1 1
: Re€ hooks

which are the coefficients of the multi-trace operators in ,. In all of the many cases we
have explored, we have observed that this sum over hook representations is given by the

following explicit formula:

_ 1|[0q1--qm]| 1 (_1)\s|+1

(& &aram) = :
P Sq1..q P p! p—1 seP({qXL:..,qm}) (N +1- Z(S))p,l

(4.2.19)

where the notation corresponds to the group theoretic tools introduced in section 2.4.6.

An important special case of (4.2.19) is the case m = 1 giving the two-point function of
the dual of the single trace operator. In this case the sum is over just two elements since

P({p}) = {{},{pr}}  The expression (4.2.19) thus simplifies to

1 1 1 1
(&p&p) = 1 <<N+1_p)p1 — (N+1)p1> : (4.2.20)

Finally, inserting (4.1.19), (4.2.19) and (4.2.20) into O,(z) = f&i’é?) gives an explicit

expression for the single particle operator as a sum of multi-trace operators

Op(m) = Z C(Il,-wQMTQIme(x) (4'2'21)
{g1..gm}+rp
with coefficients
(€p Earam)
C’ LoGm — > SHL-Hm
B (& &p)
_lowall 5 (—1)ls- ( 1 1 )
P=D" cepmgy NV H1=2())pr \(N+1=p)py (N+1)p
—DEFYN 41— ), s (N -y 5
I ) Gl )P P\ 2 ) RS
@ =D erarramh (N)p = (N +1=p)y

where the size of the conjugacy class is given by (2.4.4). The second equality is more

useful computationally and is obtained by multiplying and dividing by (N + 1 — p)ep_1
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and using the identity

(N+1—p)ap
(N+1—2%(5))p-1

= (N+1=p)ps(N+p—2(s))s) - (4.2.23)

Therefore, we have arrived at an explicit formula for computing the coefficients Cy,. ...
allowing us to write the single particle operator of any p in the trace basis. Very nicely,
this formula is explicit in p and {¢i, ..., ¢n} and depends only on the group theory data

associated to such a partition.

The value of m splits the single particle operator into different trace sectors. In Appendix
B we provide some examples for generic {q; ...¢,} when m = 2 and m = 3, i.e. the

double trace and triple trace sectors respectively.

Formula in terms of eigenvalues

The single single particle operator can in fact be written in a much simpler way when
expressed directly in terms of the eigenvalues of the adjoint scalar ¢7, which we will label
z1, 29, ...,2n. Before we write down the explicit formula we introduce the monomial
symmetric polynomials, my(z; ... 2n):

my(z1,...,2n) = Y zi\”/(l)zgal(z) e z])\\,”l(N), (4.2.24)
o'eSN

4This is unlike the formula given by Brown for the dual basis, (4.1.16), which requires the input of
additional information, namely the value of the character xgr(o4,. g, ). A coefficient in (4.2.21) can be
calculated by only knowing the partition of p corresponding to the trace structure of the multi-trace
operator the coefficient in question multiplies.
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where the \ is short hand for (Ay,..., Ay) with Ay > Ay > ... > Ay, and the sum is over

all distinct permutations of (A1, Aa, ..., Ay). Some examples of these polynomials include:

m(1,1,1) (217 22, 2’3) = Z1%2%3,
3.2 3.2, 3.2, 3.2, .3.2 3.2
m(3,2,0) (21,22, 23) = 2725 + 2723 + 2521 + 2523 + 2327 + 2323,
3 3 3 3 3 3 3 3 3
M(3,1,0,0) (21, 22, 23, 24) = 2122 + 2723 + 2724 + 2521 + 2523 + 2520 + 2321 + 2320 + 232

3 3 3
+ 24z + 220 + 2523,

(4.2.25)

It will be useful to introduce the sum over all monomials indexed by a partition of p in k
parts, which we label E, ;:

Ep,k(Zb e ZN) = Z m[ql’...v%ozv_k](zl, e ZN). (4226)

q1+-.-+qr=p
12q22>...qx>0

The most obvious example of (4.2.26) is Ep1(21,...,2n8) = 20 + ...+ 28 = T,. Some

other examples include

Ep(z1...28)=21...2p+ ...

(4.2.27)
Eio(z1...2n) = (o + .. )+ (2322 +..)
We find that the single-particle operators can be written as °
p
Op = > di(p, N)E, () , (4.2.28)
k=1
where the coefficient dy(p, N) is
—D)Mp(N—p+1),_1(p—1 -1
i V) = (]\]f))( — (]6 - )i ligp . (_l)k(N(p— k ﬁi) 1 o
v P Hl - me,
(4.2.29)

Note that interestingly the coefficient of a monomial in this formula only depends on the

number of different eigenvalues appearing in the monomial and not on any other details

5More precisely, in all of the many cases we explored, we always find that this formula is valid.
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of the monomial.

Formula in terms of Schur polynomials

Finally we consider the SPOs written in terms of the Schur polynomial formula. In section
4.1.2 we saw a group theoretic formula (first introduced in [127]) for the dual of the trace
basis in terms of the Schur polynomial basis, xr(¢). The formula, (4.1.16), is:

0- 1- n
Epropn = i |Z F XA ) XRIO] (4.2.30)
p' R}—p

The relation between the dual basis operators and single particle operators, (4.2.16),
together with the observation about characters of cycle permutations, (4.2.17), therefore
gives an explicit formula for SPOs directly in terms of the Schur polynomials of Hook

Young diagram of height £ with p boxes in total.

The Young diagrams are R}:

—p—k —
1
R =[p—k+1,1"1=|*
!
and the operator is
p ~
O, = > _d(p, N)xrr[¢] (4.2.31)

k=1

where
~ B  (N=k4p+1)k—1 (N—p+1),—k
di(p, N) = p(p—1)(~1)* ), (v pi D),

(p—1) (N=k+p+1)y p

— ()
p+N (N—k+1)1— CErra

= (—)F (4.2.32)

The last expression is a simple rewriting, to be compared with the one in (4.2.29).
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Examples of SPOs in all three bases

It is useful at this point to consider the single particle operators for some low charges,

and show their representation in the three bases we just constructed.

For Oy,
Oy =T, — %Tn
O, = (1\7]\71)E271 _ %EZ? (4.2.33)
O,y = (NIGI)XRf - (NJI)XRg
For 03,
O3 = %Tm — %Tzl + 13
Oy= W2 WWnp | g (4.2.34)
O3 = %X@ _ (N—2]3[(2N+2)XRg + (N+1]3,(2N+2)X3g
For Oy

2N2-3
O, = ]<V(N2+1))T22 + N2+1T211 (N2+1)T1111 T31 + T

_ (N=3)(N=2)(N—-1) 4(N-3)(N-2) 20(N-3) 120
04 = N(N2+1) By — N(N2+1) Lo+ N(N2+1)E43 N(N2+1)E474

_ (N=3)(N=2)(N—-1) (N=3)(N—2)(N+3) (N—=3)(N+2)(N+3) (N+1)(N+2)(N+3)
04 - N(N2+1) XRl - N(N2+1) XR + N(N2+1) XRé - N(N2+1) XR%

(4.2.35)

A feature of the expansion of the single-particle operator O, in the Schur basis is the
homogeneous degree in N of its coefficients w.r.t. the partitions of p, i.e. the different

basis elements.
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4.2.3 SPOs interpolate between single-trace operators and

giant gravitons

The single particle operators, which have a definition directly in N' = 4 SYM, involve
protected operators and are thus non-perturbative. As was anticipated in the introduc-
tion, the definition was strongly motivated via the AdS/CFT correspondence on the
supergravity side by certain properties of KK modes on AdS; x S° [117-119]. In this
section, we shall investigate how the single particle operator behaves at large N as we
vary p. This has been well understood in the gravity dual [108,128], therefore we use this
analysis to provide some further evidence that our SPOs should be identified with the

single-particle half-BPS excitations of AdSs x S°.

Recall that the regime of validity of the gravitational description of N' = 4 SYM is
the regime in which NN is the largest parameter. The correspondence of the single-trace
operators with the KK spectrum in the strict large N limit is a very well known fact.
We will now show that the single particle operators do in fact become the single-trace

operator in this limit.

The most direct way to see this is using the formula in terms of eigenvalues given by
(4.2.28) and (4.2.29). In this formula p is explicit and held fixed in the limit. Using the

Stirling approximation, namely n! ~ v/27mn (%)n for n — oo, we find

di(p,N) (=) Tlp+k—1]
di(p, N) ~ Nk I'[p]

as N — oo. (4.2.36)

For k > 1 the contribution is suppressed. As described below (4.2.26), the terms with
k = 1 are precisely 20 + ... + 2k i.e. the single trace term. Therefore, in the large N

limit we have
O, — Tp+0(1/N) (4.2.37)

as expected.® The agreement of the multi-trace admixture in the 1/N expansion can be

6Though not as direct, one can see this from the formula for SPOs in the trace basis, (4.2.21)
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tested from supergravity computations in [117-119], and more generally is consistent with

the OPE (discussed in [115]).

In a slightly different line of consideration, drawing inspiration from the work of Myers
[132], giant gravitons were predicted on the gravity side when increasing charge p, [108].
The observation was that for increasing angular momentum, equal to the charge p, the
type-I1B graviton becomes less pointline on the sphere, and grows into a D3 brane
wrapping an S% embedded in S°. However, the radius cannot grow to be greater than the
S, which provided the constraint p/N < 1. We will show now that the single particle
operator matches with the picture described above; it cuts off if p > N with both p, N
finite, and becomes a giant sphere graviton in the large N limit with p ~ N. In particular,
we will see it matches with the operator proposed to be the dual of the spherical D3 brane

in [128].

Firstly, consider the charge p of the single-particle operator increasing such that eventually
it exceeds the number of colours N. As p > N, the single trace operators become linear

combinations of multi-trace operators. However, the single particle operators vanish:
0,=0 ; p> N. (4.2.38)

This is very easy to see in the explicit examples given in (4.2.33), (4.2.34) and (4.2.35).
This can be explained from the original definition of SPOs; single particle operators are
by definition orthogonal to all multi-trace operators. For p > N there are only multi-trace
operators, therefore the single particle operators must be orthogonal to all operators and
so must vanish. This is one very evident way in which the behaviour of our single particle

operators is very different from the single trace operators.

Finally, we consider the behaviour of the single particle operators in the regime in which

p=N—p with p, N > 1 and p’ > 0 fixed. (4.2.39)

and (4.2.22), too. Each term in the sum of Cy, . is O(N), however the alternating sum provides a
cancellation at each order in N for a total of m cancellations. Therefore, we end up with O (1 /N mfl),
in agreement with the considerations of the large N limit in the eigenvalue basis.
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To do this, we shall consider the behaviour of coefficient di(p, N) from the eigenvalue

basis in (4.2.29) normalised with respect to d,(p, N):

T(—k+n+1C(k+p—1)

) _ (_q)k-p
=(-1* I2p— DI'(n—p+1)

(4.2.40)

Introducing the variable k' = p — k > 0, the giant graviton regime is found when £’ is

small. Substituting this into (4.2.40) gives

wI2p—1—=K|T[1+p + F] ‘
I'[2p — 1I'[1 + p/] ’

D) = (—1) K=p—k>0 (4241

For small &', D(K") ~ O (1 / (2p)k'), and since p ~ N at leading order, the E), ;, coefficients
are power-law suppressed in the large N limit, apart from the coefficient of £, , which

becomes the dominant term. Therefore, we obtain 7

N—p+1
1
0, = (=)P*p <1+p> E,,+O1/N) ; p,N>1andp— N fixed,
N

(4.2.42)
where the pre-factor comes from the limit of d,(p, N). Therefore, the single particle

operator becomes proportional to the sub-determinant operator £, .

The sub-determinant operators were originally proposed in [128] to be duals to the D3
branes studied in [108]. We have seen above that the single particle operator becomes
precisely the sub-determinant operator in the limit (4.2.39). Furthermore, since the sub-
determinant operator corresponds to the totally antisymmetric Schur polynomial, the
giant graviton limit localises the single particle operator onto the single column Schur

polynomial, as is expected from [125].

4.2.4 SPOs in U(N) are SPOs in SU(N)

As we saw for the low charge examples in (4.2.5), (4.2.7) and (4.2.8), the single particle

operators in the U(N) and SU(N) gauge groups are very closely related. In particular,

"For values of k' — N we probe the contribution of other E, ; in the sum (4.2.28), since k — 1. In
this limit D(k') ~ /TN 1/24p ¢ =2N1082 therefore their contribution is exponentially suppressed, and we
can localise the sum on Ej, ;.
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despite the elementary fields of the two theories, being different in general, the U(N)

SPOs represented in the trace basis give the SPOs in the SU(N) theory simply be setting
T; to zero. This suggests that SPOs in U(V) are SPOs in SU(N); here we look to make

this statement more rigorous.

Let ¢ and ¢ label the fields of the U(N) and SU(N) theories respectively. The field 12

is the traceless part of the field ¢,
0’ = 6" — ;0o (4.2.43)
For any operator O[¢] in U(N) we define the SU(N) projection as the map,
I: 0l¢] — Ol¢] = Olv(o) (4.2.44)

The operator O[gb] is then a new operator in U(N). As an example, we show how the

SU(N) projection map works for the operator O[¢] = Tr(¢?):

= (61— onot) (o1 - i)

S AT isrv_irsu Lsurv
- ¢r¢s N¢r65¢v N 55r¢u+ N25r¢ués¢v
1
= Tr(¢?) —— Tr(¢) Tr(o). (4.2.45)
——— N
O[¢]

More generally we find that an operator projected using the map (4.2.44) takes the form
Ol¢] = O[¢] - [110[¢]] . Ty = Tr[g)] (4.2.46)

for some operator O[¢]. Notice that in treating ¢ and ) as formal variables, O[¢] is the

leading term in the % expansion of O[gb]

Since the field 1) is traceless, the projection of any U(N) operator made of products of
traces that has 77 in the product will be 0, with all other projections giving something
non-zero of the form (4.2.46). Therefore, the map Il : O — O decomposes the space of

U(N) operators into Im(Il) & Ker(Il), where all operators in the kernel are of the form



[T10[¢]].

We now look to calculate the two-point function of an operator O[¢] with an operator in

the kernel of the projection, specifically

<O($1) [110)(z2))u(ny - (4.2.47)

The operator O[gb] is constructed from only the traceless part of ¢;. By applying Wick’s
theorem to compute (4.2.47), there will always be a contraction between one of the fields
in O(wl) and T7(x2). Using the U(N) theory propagator given by (4.1.4) on this particular

contraction we get

(W (21)Ti(x2)) = (D7 (21) @ (22)) — 507D (@1) Pt (w2))
1
=0 — —0N 4.2.48
s 0 (12.43)
= 0.
Therefore, any operator O[¢] constructed from only the traceless part of the field ¢ is

orthogonal to any operator involving the trace as a factor, [T70].

Single particle operators in U (V) were defined to be orthogonal to all multi-trace operators,
meaning they must be orthogonal to operators of the form [T} O] Therefore, single particle
operators in U(N) automatically live in the SU(N) subspace. It is now possible that
SU(N) single particle operators give the U(NV) single particle operators. The only thing
that remains to be checked is the U(NV) inner product restricted on the SU(N) subspace
is the same as the inner product of the SU(N) theory. To do this we calculate the two
point function of two elements of ¥ (¢) using the U(N) propagator

O @ = (01— karor) (o = hover)) = o —kesay. (4249)

This gives precisely the SU(N) propagator defined in (4.1.5).

Therefore, we conclude that U(N) single-particle operators are SPOs in SU(N)

0y Mgl = O;YNMy]  p=2 (4.2.50)
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and any correlators of SPOs of charge 2 or higher computed in either U(NN) or SU(N)

will be identical. This result manifests the well known feature of the free part of N' = 4
SYM in the context of AdS/CFT, that the U(1) part of the gauge group U(N) decouples

and only the SU(N) remains in the interacting theory.

4.2.5 'Two-point Function Properties

From the discussion of single particle operators in the trace basis (see section 4.1.1), we
found that the normalisation of the two-point function of single particle operators is given
by the inverse of the two-point function of dual basis elements. Letting R, denote the

N-dependent colour factor we have

1

(Op(@1)Op(a2)) = Rygiz 5 (&la1)&(22)) = 591 (4.2.51)
P
where we saw from (4.2.20) that R, takes the form
1 1 -
R,=p*(p—1) - : (4.2.52)

(N=p+1)p1 (N+1)

The single particle operators vanish when N < p, therefore we would expect R, to have
zeros at N =1,...,p — 1. Furthermore, since it is symmetric in N — —N it would be
expected that it contains explicit factors of (N? —r?) for r = 1,...,p — 1, rather than

just (N —r). This property of R, can be made manifest by writing it in the form

R . 2 _ 2
R, = 0.(N) E(N ), (4.2.53)

where @,(N) is a polynomial of degree (p —2) in N. The first few cases of ), are given



94

below:
Q2(N) =1
Qs(N) =N
Qi(N) =1+ N?
(4.2.54)
Qs(N) = N(5+ N?)
Qs(N) =8+ 15N% + N*
Q7(N) = N(84 +35N? + N*)
We observe that a general formula for Q),(V) takes the form
@p—2(N) = (N L)pmr = (NPt (4.2.55)

p(p—1)

One can make the N — —N symmetry fully manifest by using rising factorials (Poch-
hammers) and lowering factorials:

p—1

P=zx+1)(z+2)...(x+p—1)=[[(x+k)
- (4.2.56)
xﬂzm(x—l)(x—Q)...(:c—p—i—l):U(m—k),

where we introduced the labels 2P for the Pochhammer and z2 for the falling factorial.

We find

(N—1)2=Y(N + 1)P~T

(N +1)p T — (N—1)e=L

R,=p*(p—1) (4.2.57)

In the form (4.2.57) it is clear that R, is the simplest possible rational function of N2
with the above zeros and of order O(N?) at large N.
4.2.6 On Multi-particle Operators

So far we have concerned ourselves only with the single particle operators. They alone,
however, do not give a complete basis of half-BPS operators in the theory. To complete

the basis, we extend to the multi-particle basis by taking arbitrary products of the single
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particle operators:

Multi-particle basis of weight p : {(’)p1 Oy, zn:pi =p, P1>pP2> ... > Py > 0},
. (4.2.58)
where the second condition avoids over-counting of operators. The U(N) multi-particle
basis can be labelled by partitions of the integer p, while the SU(N) basis can be labelled
by all partitions that do not involve p; = 1. The normalisation is automatically consistent
with the single particle operator, in the sense that the multi-particle operator labelled by

D1y .-+, Pn is of the form

Oprrpn =0y, ...0p, =T, ,, + multi-trace admixtures. (4.2.59)

The multi-trace admixtures all have the same number of traces as T}, ,, or higher.

A similar uplift can be done going from the single trace operators to the full multi-trace
basis. However, the traces over-count the operators of a given weight. In particular, any
T, with p > N is not an independent operator in U(N) or SU(N), yet it has non-trivial
two point functions with other operators. The multi-particle basis does not have this issue.
For p > N there are only multi-trace operators (as the single-trace operator becomes a
linear combination of multi-trace operators), therefore by definition the single particle
operators are orthogonal to all of these operators, hence must vanish. Remarkably, this
feature is automatically implemented in the two-point function normalisation given in

(4.2.57).

A very nice feature of the Schur polynomial basis of [125] is that it is both complete
and orthogonal for all half-BPS operators in the U(N) theory. Whilst the single particle
operators are by definition orthogonal to the multi-particle operators, the multi-particle
basis (4.2.58), is not orthogonal. However, unlike the Schur polynomial basis, the multi-
particle basis has the advantage of being a basis for both SU(N) and U(N) depending

simply on whether O, is included or not.

To obtain an orthogonal basis of the multi-particle operators one can of course simply
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implement the Gram Schmidt procedure. The idea is as follows: start with an ordered

list of basis elements, leave the first element unchanged, and run over the rest in order
by adding linear combinations of all previously considered elements such that the new
element is orthogonal to all previous ones. As an example, for the charge six operators

the trace basis operators could be ordered in the following way

(Th11111, Tor111, Too11, 3111, Too2, Tso1, Turn, T3, Tao, Ts1, 1) U(N)

(T2227T337T427T6) SU(N) (4260)

Performing Gram-Schmidt orthogonalisation (with respect to either the U(N) or SU(N)
two-point function) in the order from left to right would provide an orthogonal set of
operators. Assuming the single-particle operator should be found as part of this procedure,
it makes sense to have Tg last in the ordering as this corresponds directly to the definition
of the SPO. However, it is not clear if there is a canonical choice for the ordering of the
other operators. Inspired by the SPO, it would be very natural to define two-particle
operators as those which are orthogonal to triple traces and higher. This would give
a natural ordering of trace basis elements from highest number of traces to the lowest.
However, doing so still leaves ambiguity within each trace sector; even at weight six, the
double trace sector has three operators T3, Tyo, T in the U(N) theory and two Ts3, Ty o

in the SU(N) theory, and it is unclear if there is a canonical choice.

Assuming the single-particles are fixed so provide a starting point for organising an order-
ing, a completely equivalent way of obtaining the same orthogonal basis is to start with
the dual basis, list the operators in reverse order, and perform Gram-Schmidt orthogonal-
isation. This process yields exactly the same orthogonal basis up to normalisation. Using

the weight six operators to illustrate this as above,

(&6, E51, €2, €335 €115 E301,5 E292, E3111, Eo2115 E211115 E111111) U(N)

(€65 €2, €33, 222) SU(N) (4.2.61)

In the first approach the operator with the most traces Ti11111 (or Ta29) remains unchanged
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whereas the single-particle operator is the most complicated from the point of view of the

trace-basis. In the second approach, the opposite is true; the single particle operator is
&p, and an operator labelled by a partition with increasing length becomes more intricate
from the point of view of the £ basis. In the end, the most intricate of such operators, a

linear combination of all dual operators, must equal Tj1111 (or Thos).

We leave the task of extending the single-particle operators to a full orthogonal basis to a
future work. Perhaps an AdS/CFT understanding of multi-particle KK modes will help

us figuring out a canonical way to fix the multi-particle states in N'= 4 SYM.

4.3 Multipoint Orthogonality

In the previous section we obtained explicit expressions for the SPOs. Given that the
single particle operator is constructed from all single- and multi-trace operators, one
would expect such a rich structure would lead to very complicated multipoint correlation
functions. In particular, one would assume that they are much more complicated than
multipoint single-trace correlation functions. However, this expectation turns out to be
too naive. In this section, we look to describe one unexpected simplification of multipoint
correlation functions; we will prove that the defining two-point function orthogonality
uplifts to a multipoint orthogonality theorem. This in turn implies that a large class of

diagrams vanishes.

Multipoint Orthogonality Theorem. Consider any diagram contributing to a half-
BPS correlator that has a single particle operator O, connected to two sub-diagrams,
with the sub-diagrams themselves disconnected from each other. Any propagator structure

consistent with this type of diagram has a vanishing colour factor. This statement holds

for both U(N) and SU(N) free theories.

We will consider n operators; one will be a weight p single particle operator O, r operators

labelled by g, ..., g will form one sub-diagram and the remaining operators labelled by
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Gri1s - - s @n—1 Will form another sub-diagram which will be disconnected from the other

(but connected to O,). These consist of diagrams with any propagator structure, which
we will label Fpjq, . 4. ,, that become disconnect upon removing O,; therefore, they have

the shape of a dumbbell, depicted in the image below:

|
fplﬂ%;l:l T { ) 1 |

. (4.3.1)

The inside of the two orange circles are two sub-diagrams, which could each have very
complicated propagator structures themselves but do not connect to each other in any
way. There will, though, be bridges between O,(x) and points in each sub-diagram. The

multipoint orthogonality theorem then states:
Folgrgn = 0. (4.3.2)

Note that T, stands for any half-BPS operator (single trace, multi-trace, or any combin-

ation of the two) with total charge ¢;.

It is worth considering how the charge of O, compares to the sum of the rest of the
charges. If we were considering a two-point function (or more generally, if there were no
propagators between operators in the sub-diagrams) then the sum of the ¢ charges would
equal p. However, the assignment of ¢i,...,¢,_1 can be such that

1 n—1

5 (—p + ; qi> k>0 (4.3.3)
and still the diagram disconnects on the removal of O,. This becomes possible for a
multipoint function because there can be k£ > 0 Wick contractions distributed among

either Ty, (z1) ... Ty, () or Ty, (wr41) ... Ty, (¥n-1) (though not between the two sets),

which would not affect the diagram disconnecting upon the removal of O,(x).
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We will now look to prove the multi-point orthogonality theorem. Though it would be

very interesting to have a combinatorial proof of the theorem, the combinatorics which
lead to (4.3.2) are generally very hard. In section 4.3.1 we use an alternative route to
provide a proof. Then in section 4.3.2 we give examples of how the theorem can be used
to give some interesting results for multipoint correlation functions. In particular we will
show that near-extremal n-point functions, defined by the constraint £ < n — 3, vanish.
We will then present some consequences of this property through a couple of explicit

examples.

4.3.1 Proof of the Theorem

The goal of this section is to show Fpj4, 4., = 0, where F is a fixed propagator structure
depicted schematically in (4.3.1). We will see that we can decompose F' into sums over
products of smaller propagator structures. We will show that each term will contain an

extremal three-point function, which will be proven to be zero, therefore F will be zero.

To begin with, we focus only on the right hand side of the diagram. Consider Wick

contractions of the fundamental fields of O,(x) and Ty, .,

(@r41) -+ Ty, (¥n—1) consistent
with the propagator structure Fpjq,. g, ,. Since the number of bridges going between O,
and the sub-diagram on the right hand side is fixed and less than p, some of the fields
in O, will remain unlinked. This will result in a new half-BPS operator of lower charge

(than p), say R, inserted at x multiplied by some propagators. This would result in:

Op(2) O Tyme

di' I — ‘l

ng]J Z OE Tﬂ(x) — { ) v‘ coo I'

RFR \\ Tanl ® /’
(4.3.4)

Here, the sum is over all partitions of R, the charge of the new operator that we have

decomposed into a basis of half-BPS operators; the trace basis. The product [] gfljij gives
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the propagator structure factored out®, and C'g are some coefficients which we will discuss

below.

Substituting (4.3.4) into the original diagram calculation, we now have

‘Fp‘qil---anl = Hgldj” Z Cﬂ X I’I 7 \:.

E"R \ ~ Tq /

(4.3.5)

The Cf are still unknown; we now look to calculate them. Consider operators T (z') at
some auxiliary location 2/, where R’ is a partition of R, that we use to bridge with the

remaining fields of O,(x) on the left-hand side of (4.3.4). Graphically this gives

T&(l‘/> Op(l’) /// T(Ir+1 [ ] \\\

dl] / ara-1i ‘l

[Tgj > Cr(Tp(@)Tg(z)= @ O ; .

RLRER ) Tqu. //,
ST (43.6)

This gives a set of equations for Cr which can be solved by inverting the matrix of two-
point functions. The coeflicients C'r can therefore be computed using a similar dumbbell
diagram to F but with the left hand side replaced by the operator T (") multiplied by
the inverse of the two-point functions (T (2")Tr(x)). These two-point functions are given
by g, which can be factored out, multiplied by the colour factor Cggr. The proof does

not rely on this explicit structure, therefore we will keep using the notation (T (2")Tgr(z))

amb
8Here d;; counts the number of propagators between insertion points x; and x;, and g;; = ?;(TIT)Q)
i J
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for clarity. Replacing the coefficients Cg in (4.3.5) we get

Fplgrans - -

Soe Ty N\ Tm Tw O O Tyne
1 - 1 -
.o —0 o——— :
R, RFR T ! \ T !
R ® qr y <TET&>_1 k. n-1 9 y
(4.3.7)

A similar discussion can be repeated to decompose the propagator structure of the right-
hand side of (4.3.7) further. Introducing the operators 7y, and T}, and following similar
reasoning to that given above, we conclude that the original propagator structure given

by (4.3.1) can be written as

Fplg--.qn_l = - e

// L4 Tﬂ \\‘ TE T& Op Tg TL I/ TQT-H.
> X e . e=0—e = -
LLFLRRFR 0T, 4 (TrTR) (TpTL) R S
(4.3.8)

We have shown that we can decompose the full propagator structure Fp,. 4,_, into a

sum of a product of smaller propagator structures multiplied by the inverse of two-point
functions. The crucial propagator structure in each term in the sum is the middle three-
point function (O,TgTy/). There are bridges between all fundamental fields in Tgr, Ty
and O,, with none going between the two 1" operators. Unlike the original dumbbell of
(4.3.1), there can be no internal propagators within the structures connected to the single
particle operator, i.e. p = R+ L. Therefore, this three-point function is extremal. To

complete the proof, we are left to show that any extremal 3-point function with an SPO

at the point with largest charge vanishes

(Op(21)Tg(22)TR(73)) =0 5  p=Q+R. (4.3.9)

This is in fact a direct consequence of the definition of the single particle operator. Since
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there are no propagators running between operator Tg and Tk, the three point function

can be directly related to the corresponding two-point function obtained by bringing the
points 2 and 3 together. Therefore,
R
(01T) = (22 (0,{TaTa)) =, (4:3.10
Q o Q
where the final equality is reached by using the fact the single particle operator is defined

to be orthogonal to all multi-trace operators.

Therefore, we have shown that any propagator structure involving @, which becomes
disconnected on removing O, vanishes, thus concluding our proof of the multipoint

orthogonality theorem.

4.3.2 Vanishing Near-Extremal Correlators

The remainder of this chapter will mostly be dealing with the calculation of n—point
functions involving the single particle operators. Before we do so, it is useful to introduce
what we will refer to as the degree of extremality, given by k. Let p be the largest charge,

and ¢, ...,q,_1 be the other charges. The degree of extramilty is defined as

n—1
k=3 (—p + > qi> : (4.3.11)
i=1
This should be familiar from (4.3.3) of the last section.

The n-point correlator (O, Ty, . . Ty ) is zero for k < 0 purely by considering the SU(4)
symmetry. Extremal (k = 0) and next-to-extremal (k = 1) correlators were shown to
all be non-renormalised in [107, 130, 133-135], and a nice diagrammatic interpretation
of the non-renormalisation for the simplest case of two-point functions was given in for

example [136,137]. Related to this quantity, the concept of “near-extremal” correlators

was introduced in [129]. These are n-point correlators that satisfy the following condition

near extremal correlator: E<n-3. (4.3.12)
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For n = 3, only the extremal correlators (k = 0) are considered near-extremal by this

definition. For n = 4 the extremal and next-to-extremal correlators are considered near-
extremal, and for n > 5 the correlators that satisfy (4.3.12) go beyond even extremal and

next-to-extremal functions.

We make the following claim:

Near-Extremal Correlators Vanish. Any near-extremal SU(N) correlator in free

theory, where the largest charge operator is a single-particle operator, vanishes, i.e.

(Op(@)1g (1) .. T4y (Tp-1)) = 0 E<n-—3. (4.3.13)

In the U(N) theory, a similar statement can be made but with the caveat that it is true

only for connected correlators.

As usual, T}, stands for any halt-BPS operator with total charge ¢;. We remark that any
refers to any single- or multi-trace operator or any combination of these. A corollary of

this is that any near-extremal correlator involving only SPOs vanishes.

(Op(2)O4 (21) ... Oy, 1 (Tn-1)) =0 k<n-—3. (4.3.14)

To prove (4.3.13), we will argue that every diagram contributing to the near-extremal
correlator has a dumbbell shape, so the same propagator structure as in (4.3.1). This will

mean every diagram gives a zero contribution, therefore the correlators are equal to zero.

Proof. Let us begin by showing that there are not enough propagators between the Tp,
operators to connect all of them together. The total charge of these operators is given by
> q; = 2k + p, meaning that there are 2k 4 p propagator ends connected to them. We
know that p of the ends must come from propagators bridging between O, and the Tj,,
therefore there are a total of k propagators between the T, themselves (which accounts
for the 2k + p — p = 2k remaining ends). The minimal case that would allow all Ty, to be
connected to each other is if they were connected in a chain with one propagator between

each; i.e. kK =n — 2. However, from near-extremality we have k < n — 3, therefore there
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are not enough bridges between these operators; we would need at least two more points.

This is true for both SU(N) and U(N).

Since the topology of O, ()T, (1) ... Ty, ,(2,-1) is such that it is not possible to connect
all T, a connected diagram would have to take the form of the dumbbell as in (4.3.1).
Therefore, all connected diagrams for these correlators are equal to zero by the multi-point

orthogonality theorem described in the previous section.

The only possible exceptional case could be when the diagram is made of two disconnected
pieces i.e. one of the ends of the dumbbells is on its own completely. This would evade the
vanishing property of the full dumbbell diagrams. For concreteness, let us say without loss
of generality that Ty (x1)...75 (2,) is disconnected from (’)p(a:)Tgr+1 (@1) ... Ty ~1(@n-1),
for some value of . We now look to investigate when the propagator structure can be
disconnected in such a way. The number of propagators between the fields of the disconnec-
ted piece of the diagram, i.e. between T (x1) ... Ty (x,), is given by 35 (31_, ¢). For the

T,

other part of the disconnected diagram, the number of bridges among the T, Un1

Qra1s 0

which are not connecting with O, is
1 n—1
I{JR: —|—pr+ Z q; | - (4315)
2 i=r+1
We assume that this part of the diagram remains connected upon the removal of O,,
otherwise it would have a propagator structure like in (4.3.1) which would automatically
give zero. For this to happen, the operators Ty, with ¢ =7 +1,...,n — 1 would have to
all be connected to each other. The minimal way this could happen is they form a tree,

which would require kg > n — r — 2 propagators.

From the near-extremality condition we have

1 n—1
k= 3 <—p +3 qi> <n-3. (4.3.16)
=1

Substituting (4.3.15) into (4.3.16) we find

1 T
52 <n=3—kp<r—1 (4.3.17)

=1
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where the last inequality comes from using kg > n — r — 2. Focussing on the first part of

the inequality and the last, for this to be satisfied then at least two of the ¢; must equal
one. For SU(N) this is not possible since there are no charge one operators, therefore
there are no disconnected diagrams of the form being considered here. For the U(N)

theory, however, this is a possibility.

We conclude that all SU(N) diagrams (and connected U(N) diagrams) contributing
to near extremal correlators have a dumbbell shape as in (4.3.1) and therefore equal
zero. Thus, we have proven the statement made above regarding vanishing near-extremal

correlators.

Further Corollaries

A useful corollary of the vanishing of near-extremal correlators occurs for lower point
correlators, say m-points, which are not near extremal but have a number of multi-trace

operators.,

(Op(@)Ty (1) . Ty (Tm1)) k=3(-p+> @) >m—3. (4.3.18)

Say r of the operators are multi-trace operators. We can think of (4.3.18) as the limit
of an n > m point correlator, with specific propagator structure such that there are
no propagators inside any of the multi-traces. The maximum value for n is achieved
by putting all parts of the multi-traces on fictitious points. If we let [(¢g;) measure the

number of parts of g;, then
m<n=(m-r)+> lq) (4.3.19)
i=1

If & < n — 3 then the original correlator, (4.3.18), vanishes as it can be thought of an

n-point near-extremal correlator.

As a simple example of the above corollary, consider the three-point function between O,,
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Ty, and Ty,

if 3@ such that [(¢;) >2and k<1 = (Op(x)Ty, (x1)Ty,(z2)) = 0. (4.3.20)

The correlation function is zero because one can always think of the three-point function

as the limit of a near-extremal higher point function, which we have shown vanishes.

A further example is the following:

if 3isuch that I(g;) >2andk<m—2 = (Op(2)Ty (1) .. Ty, (Tm-1)) =0

(4.3.21)

There are many more possibilities that arise from this corollary. In particular, in the
above examples we have only considered one of the multi-trace operators being split,
however multiple of the operators could be split if they have a multi-trace structure. We
do not make an exhaustive list here, but point out that a consistent way of determining
if a correlator falls into one of the vanishing near-extremal cases is to fully split the
multi-trace operators up to consider the full n-point function, calculate the extremality
k using (4.3.11), then see if it satisfies k¥ < n — 3. If this inequality is satisfied, then the
n-point correlation function is zero, which in turn implies the original correlation function

with multi-trace operators is zero.

4.4 Exact Results for Correlators of SPOs

In the last section we proved that all near-extremal correlators of SPOs, defined by (4.3.12),
vanish. In this section, we explore correlation functions beyond the near-extremal sector,
and look to give exact results for some of these correlators of single particle operators.
Furthermore, we shall see some interesting results for correlators for the multi-particle

basis.
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4.4.1 Maximally-Extremal (ME) Correlators

The next set of correlators beyond the near-extremal sector are those of the following

form:

(0p(2)Og (1) ... Og_ i (1)) 5 k=n—2 ; k=3(-p+>_ ) (4.4.1)

We will refer to these correlators as Maximally-Extremal (ME). For now we shall focus on
the SU(N) theory, though it is worth keeping in mind that correlators of SPOs of charge
two or higher are equal in the SU(N) theory and the U(XN) theory, as we saw in section
4.2.4.

There will be two notions of extremality referred to in this section; though they will often
refer to the same correlators, we would like to make it clear to the reader what each refers
to. It is worth emphasising here that the term "Maximally-Extremal’” does not refer to a
specific value of k for all n; it is the name given to the set of n-point correlators which
have the lowest possible value of k such that they do not give a vanishing result (which
is given by k = n — 2). For example, the ME three-point functions have extremality
k = 1, therefore are often referred to as next-to-extremal three point functions. The
ME four-point functions have extremality k = 2, therefore are often referred to as next-
to-next-to-extremal four point functions. Within this section, we will use the term
"Maximally-Extremal” when discussing the general set of correlators satisfying &k = n — 2,

but upon fixing an n we will refer to the correlators as ‘next-to’* extremal, or N* extremal.

To begin we will look at the three-point ME functions, which will provide a useful simple

example before giving a formula for the n-point ME functions.

3-point Functions

As mentioned in the previous section, 3-point ME functions have k = 1, therefore we also

refer to them as next-to-extremal (NE) three-point functions. In order to compute them,
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notice first that

(Op(2) Oy, (21) Oy, (2)) = (Op(2) Ty, (21) Ty, (22)) P=q+q—2, (4.4.2)

In order to get to the right hand side we have simply expanded O,, and O,, in terms of
the trace basis. One would expect three-point functions involving multi-traces to also be
present, however if £ = 1 then by the results of section 4.3.2 n-point functions with n > 4
will be zero. Therefore, we are left only with the leading term in the expansion of the

single particle operators.

Since we are dealing with NE three-point functions, the propagator structure will take

the form:
T

q2

OO : (4.4.3)

where the thicker lines indicate the potential of having multiple propagators, and the
thinner black line indicates a single propagator between T, and Ty,. The single propagator
indicates there is a single Wick contraction to do between x; and z5. If at the same time

the two insertion points are brought together, we obtain the result,

limg, q, Tr(p(xq). . ... o(x1)) Tr(od(z2). .. .. O(12)) = Tr(p(xs). . ... d(xa)) + ...

(4.4.4)
In general, the right hand side of (4.4.4) would contain all the contributions of an OPE
of scalars. However, keeping in mind the three-point function we are calculating, we
will contract all of these terms with the half-BPS operator O,. Therefore, by the two-
point orthogonality with multi-traces that defines the single particle operator, any term

other than the single trace does not survive. There are ¢;q» ways to perform this Wick
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contraction, so from (4.4.2) we arrive at

<Oqu1Tq2> = Q1Q2<OPTP> . (4-4-5)

Finally, once again from the definition of the single-particle operator, we have that

<Opr> = <Op0p>-

Putting all of this together we find a very simple explicit formula for next-to-extremal

three-point functions:
<OPOQ1O<12> = q1QQ<OpOp> ) P=q1+q —2, (4.4.6)

with the colour factor of the two point function given by (4.2.52).

n-point Functions

We now look to go beyond 3 points, and consider the ME n-point functions of single

particle operators.

Similar to the three-point case in (4.4.2), we can replace all of the operators apart from
the one with the largest charge with the leading term of its expansion in the trace basis

i.e. with single trace operators,

(Op(2)Og, (1) -+ O,y (@n-1)) = (Op(@) Ty (1) - - Ty (1)) 5 k=n—2
(4.4.7)

Again, the contributions that would occur from the multi-trace admixtures of the single-

particle operators that have been expanded out are zero by the results of 4.3.2.

The connected diagrams that give non-vanishing contributions must remain connected
upon removal of the charge O,, otherwise we would end up with a zero case described in
4.3.2. To be Maximally-Extremal, there must be n — 2 propagators between the n — 1
T,, operators, meaning for example there cannot be more than one propagator between
any pair Tg,, T;,. The number of propagators, in fact, is just enough to connect the 7s

together as a tree graph. We show two five point examples below to clarify this idea,
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(4.4.8)

In the first case, the tree we refer to above consists of 7, connected to T,,, T,, and T,.
This is the maximum number of propagators that could have come off of 7,,. In the
second diagram the tree consists of Tj, connected to Ty, and T}, and T, connected to

T,,.

So, the propagator structures contributing to an ME n-point correlator (4.4.7) contains a
sub-propagator structure which is a tree, 7. To each tree one can associate a sequence of
length (n — 3) called the Priifer sequence, which uniquely labels the propagator structure
of the tree linking the (n — 1) T}, operators. Using the structure of the trees associated
with Priifer sequences, one can show that the pairwise computation of Wick contractions

represented by the trees can be given by

IWIT] Iﬁqi(%— .. (g —di+1). (4.4.9)

Here d; corresponds to the number of propagator ends within the tree structure that
connects to operator 7,,. We shall provide more details about this point of view in

appendix D.

By performing the Wick contractions leaf by leaf on the tree as dictated by the Priifer
algorithm, and by bringing the insertion points together at each stage, we can use the
same argument given in section 4.4.1 to argue that in the end gluing together the T},s
will result in a single trace operator 7, together with higher trace terms. However, the
higher trace terms will not contribute in the full ME correlator as they will be limits of

near-extremal functions. Therefore, the entire connected part of the ME correlator can
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be written as a sum over trees, with the full sum multiplied by the two-point function

(0,0,) to give:

<Op(x)0q1 (371) U an_1 ($n—1)>00nnected = <(9p0p> ( Z |W[7—]| T(g)> ) (4410)

trees T
where the sum is restricted to d; > 1 and '~} d; = 2(n — 2). Here |WI[T]| is given by
(4.4.9) and T (g) gives the corresponding spacetime structure. 7 (g) is constructed by
n—1 _gi—

multiplying [T g, % by Il ;1 9ij where the second product is over pairs of insertion

points connected by propagators dictated by the propagator structure of 7.

Note that the counting of trees of n — 1 points is well studied, and given by Cayley’s
formula:

(n—1)""3 . (4.4.11)

Finally, many trees correspond to the same arrangement of degrees d; wherei =1,... n—1.
Therefore, many of the trees will have the same value of [W[T]|.? This degeneracy is

counted by the multinomial coefficient given by

(n—3)!

m . (4.4.12)

Disconnected Contributions

The maximally extremal (ME) correlators can have disconnected contributions even in
the SU(N) theory. To see what the disconnected pieces look like, we can use similar
reasoning to that given in (4.3.17) and the discussion around it. We give the argument

here for completeness.

Without loss of generality, we shall say that r of the (n — 1) T}, operators form one of the
disconnected pieces, and the other piece contains O, 71,1, ...,T,—1. Upon the removal
of O,, the rest of T,41,...,T,-1 must remain connected, otherwise we would get a near

extremal diagram which we showed in 4.3.2 is equal to zero. The minimal way for this

9Tt is interesting to note, therefore, that a tree is not specified uniquely by giving the number of
propagator ends that reach each point. It is only unique when the configuration of bridges is also
specified.
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to occur is for the other operators to be connected like a tree diagram themselves. This

would lead the number of bridges between these operators, and not O, to be

1 n—1
kr==|-p+ > @|>n—-r-2 (4.4.13)
2 i=r+1

The condition imposed by looking at Maximally-Extremal correlators is
1 n—1
k—2<—p+2qi> =n—-2. (4.4.14)
i=1
Therefore, using (4.4.13) with (4.4.14) we get
1 T
§;qi:n—2—k33r. (4.4.15)
The final inequality, specifically looking at % 71 ¢ < r, indicates that the only way
for disconnected propagator structures to give non-zero contributions to (4.4.7) is if the
operators not connected to O, are all single particle operators of charge two. Let K be
the number of operators that are disconnected from O,, all of which are Oy operators,
and K > 2. Let {kq,...,k,} label the partitions of K such that there are no 1’s, meaning

k; > 2 for all 7 and Y] _, k; = K. The disconnected part of the correlation function is

given by
K k1 k-

((H Og) Ogicir - Og1 Op)discon. = Z (H Os) ... <H 02)(Ogseir - Ogi Op) conn.
i=1 (k1,0 ke K =1 i=1

(4.4.16)

We will conclude this section with some simple examples described below.

4-point Functions

Using (4.4.11), we see there are three possible trees for the operators. Referring to
the number of legs at positions ¢+ = 1,2,3 given by d;, the three trees correspond to

dy = 2,ds3 = 1 and the two other unique permutations of this. There is no degeneracy,
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as can be seen by (4.4.12), therefore using (4.4.10) the full result is given by

(0pO04qy Og, O ) connected = 71G2q3 (OpOp) <Q1_1>92172QZ§7193371 912913+ (4.4.17)

qg1—1 _g2—1 q3s—

1 g2 gs— 2
(=) g8 9827205 giagas + (g3—1)983 952 9% 13023

5-point Functions

Again using (4.4.11), the number of trees is given by 42 = 16, and this is the first number

of points with degeneracy. There are four non-degenerate trees given by

di =3,dj—34=1 ; dy=3,dj—134=1 ; d3=3,dj—104=1 ; dy=3,dj—123=1
(4.4.18)

On top of that, there are the following six configurations that have degeneracy two

dicip=2,di=3qa =1 ; diz13=2,di=4=1 (4.4.19)
diz1a=2,dimaz=1 ; dieo3=2,dim1a=1

dioa =2, dimi3=1 ; diga=2,di—12=1.

It is worth noting that the contribution of some of the trees might vanish for low charges.
For example, consider the case ¢ = 2; the diagram associated to d; = 3,dj—234 = 1
contributes ¢1¢2¢3q4(q1 —1)(g1 —2). This vanishes the case of ¢; = 2. In fact, if we consider
the correlator (O202020,05) all of the non-degenerate diagrams vanish and we are left

with the degenerate trees given above, all contributing with coefficient ¢;¢2q3q4 = 16.

4.4.2 Next-to-Maximally-Extremal Correlators

The next correlation functions to consider are the next-to-maximally-extremal functions

(NME). These are the n-point correlators given by

(0p(2)Og (1) ... Ogp s (1)) 5 k=n—1 ; k=3(-p+> a). (4.4.20)



114
Once again, it is worth noting the difference between the two different associations with

the term “extremality”. The NME functions refer to the set of n-point correlators that
have the second lowest value of k for which they do not vanish. However, this is not a
fixed value of k for all n. At three points, the N?E three point functions are the next-
to-maximally-extremal three point functions. At four points the N®E functions are the

next-to-maximally-extremal four-point functions.

To begin we will discuss three-point next-to-maximally-extremal functions, and provide
an explicit, closed formula for these functions. We will then move on to comment on

n-point NME correlators.

3-Point Functions

Starting with n = 3 we are studying next-next-to-extremal three-point functions
(Op(2)O4, (21)Ogy (22)) 7 pP=q1+¢—4 (4.4.21)

We will see below that these correlation functions can also be related to the two-point
function (0,0,), but with a more complicated pre-factor than in (4.4.6) consisting of

non-factorisable polynomials.

Once again, to continue we replace O,, and O,, by their respective expansions in the trace
basis. For this case, the expansion will truncate for any term involving higher than double-
trace operators at a single point with all other terms vanishing due to the now familiar
near-extremal argument. Furthermore, double trace operators can be replaced directly
with double particle operators (meaning the product of two single particle operators)

since any other terms would vanish. Therefore, we end up with the following expansion
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for N? three-point functions:

(Op(2) O, (1) Ogy (22)) = (Op() T, (1) Ty (22))
+ i2 Cp1(q1fp1) <OP(‘T) [Om Oth—m] (ml)oqz (x2)> (4.4.22)

3 Cortarry (On(2) 00, (1) [0, Orpa] (2))

p2=2
where C(;,,,) is the coefficient of the double trace operators T}, T,, in the expansion of
the single particle states. The explicit form for this mixing coefficient can be found in

appendix C.

The terms involving double-traces are equivalent to the four-point ME diagrams given in

the previous section. Precisely in (4.4.17). We find,

<Op($> [Om OQI_pl] (x1)0q2 (332)> = q2(q2 — ); (CII —p1) 9%:29%;293;1@ <OpOp> (4'4'23)

(0p(2)Oy, (#1) [Op, Ogy—py] (22)) = 1 (g1 — D)pa(ga — p2) 942922292 .. (0,0,)  (4.4.24)

In each case there is only one term compared to (4.4.17) because there cannot be a bridge

within (O, Og,—p,] (21) or [0, Ogy—p,] (72).

The only unknown is therefore (O, (x)1y, (z1)Ty,(x2)). This consists of Feynman diagrams
with two propagators between T, and Tj,, of which there are ¢1(¢1 — 1)g2(g2 — 1)/2
different ways of contracting the fundamental fields. However, the net colour factor has
four contributions for each arrangement of Wick contraction. This is because we are using
the SU(N) propagator given in (4.1.5), so there will be different contributions depending
on if we are using the U(N) part of the propagator, 0%d;, or the second part of the
propagator, —%57?6?. Below we shall investigate the different contributions that we get

for the Wick contractions between T, and T,:

- If we consider the two Wick contractions between T}, ()T}, (x2) but use just the second
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part of the propagator, the resulting leading term is a double trace operator:

Tr(...¢|g...¢g...)Tr(...¢e...¢|g...) (—%) 0867 (— %) 0505 ~ 7= Tr(¢ ... 6) Tr(g. .. )
q1 : q ! ! ! : q1—2 g2—2
(4.4.25)

This will give zero when the final two-point function with O, is taken, by the definition

of the single particle operator.

- If we now consider the two Wick contractions but focussing on the U(N) part of the
SU(N) propagator, with the fundamental fields being non-adjacent, we also end up with

a double trace operator as the leading term. We get

Y e
Te(...op...¢5...)Tr(... ¢

|

g a9 Sc Se ~u
G 0h )RS0 ~Te( ¢...p )Tx( b...p )
n q2 q1+i—j—k+1—-2 q2—i+j+k—1-2

(4.4.26)
where 17, 7, k, [ label the positions of the fields ¢ that were written out explicitly on the
left-hand side of (4.4.26) in that order. Notice that the total charge of the resultant
double trace operator is q; + g2 — 4 as expected. As with the previous case, it will give

zero when the final two-point function with O, is taken.

- The next two cases will both give non-vanishing results. The leading operator that comes
from performing the Wick contractions between T}, and 7}, we will see is the single-trace
operator T),. The first case is using the U(N) part of the propagator with the fundamental

fields in each T, with bridge ends being adjacent to each other. We end up with

|a b d |e b Sd
Te(... peh. . ) Te(... 265 .. )59650L08 =~ N Te(¢. . . )
1 q2

(4.4.27)

where there are ¢;¢o unique Wick contractions of this type. The second case that gives

a non-zero contribution is taking one propagator to be the U(N) part of the propagator,
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and the other to be the second part of the SU(N) propagator giving

|a c e |9 asqd 1 ccse 1 cas9 Sc Se 2
Te( gy 05 ) Tr( 5. 0. .) (—6700 0505 — %07000505) ~ —2 Tr(¢... )
q1 q2 P

(4.4.28)
The number of non-zero contractions of this type is given by ¢1(¢1 — 1)g2(g2 — 1)/2.
So, upon inputting (4.4.27) and (4.4.28) into a vev with O, and using the fact that

(T,0,) = (0,0,) we get the final result

(T0. T Op) = 102 [N _ o= 1])\5612 - 1)] (0,0,) . (4.4.29)

Inputting the calculations described above into (4.4.22) yields an explicit formula for the

N? extremal three-point functions of single particle operators

(1 —1)(q2 — 1)]+

(Op(2) Oy, (21) Oy (2)) = (OpOy) N

7142 [N —

4] 2]
Z C’pl(tllﬂm)qz(q2 - 1)p1(Q1 - pl) + Z sz(%*pz)ql((h - 1)p2(Q2 - p2)] . (4430)
p1=2 pa=2

The two sums are symmetric and can be performed with the explicit knowledge of Cy,, (4, —p)

given in appendix C. We find

71
2
Z @) P1 (@ — P1) =

2((]1 - 1)2N<N)th
(N =g+ 1)y — (N)g

q1

— = _[2N? —1)oN +2(q1 — 2
2N (g1 —2) + (g1 = 1)2N +2(q1 — 2)2 +

(4.4.31)

n-Point Functions

Whilst we are not necessarily able to provide a closed formula for n-point NME functions,
the method described above can be generalised to any point. We provide a sketch of how

the computation goes here.

The definition of k = 7( p+ > ¢q) =n— 1 selects an operator O, to be special in some

way, and we call the others “light". The calculation begins by expanding all these “light"
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operators in terms of the trace basis, where it should be clear that almost all terms in

the expansion vanish since they produce correlators equivalent to near-extremal higher
point diagrams. The result is the following generalisation of the three-point expansion in

(4.4.22), namely
(O - Oy, Op) =T, - 'TQn—lo (zn)) +

5

/pz(qm Pi) <Oq1 Oy [Opioqrpi] Oqu e Op(xn» .

n Mw\s.

(4.4.32)

We can think of (4.4.32) as a separate equation for each contributing Feynman diagram
independently. Note that the correlators in the sum are all contributions to n + 1-point
N""lextremal correlators, which are maximally extremal, so we have formulae for them in
section 4.4.1. The first term can then be computed by doing the partial Wick contractions,
n — 1 in total, on the single trace operators 7}, ...T}, , only keeping the relevant terms,

just as was done in the three-point case in the discussion above (4.4.29).

4.4.3 On correlators with lower extremality

In section 4.4.1, we defined how to classify free theory correlators according to their
degree of extremality with respect to the maximally-extremal correlator. The maximally-
extremal n-point correlators were defined to be the simplest non-vanishing correlators,
which are those which satisfy k = n — 2, as for k < n — 3 we showed in 4.3 they vanish.
These functions can be computed in terms of tree graphs, and the charge dependence
on p and the ¢;s fully factorises out for each tree graph, with the factor having a clean
interpretation. The NME functions in section 4.4.2 showed more structure. They were not
as simple to calculate directly, however a closed formula was found in the end for the three-
point functions. We would expect that NNME functions will have ever more structure,
and so on for higher extremality. Here we will explicitly show that the complexity of

NNME is already evident in the three-point functions.
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Let us consider the correlators (0,0, 0,,) with r = p + ¢ — 6. In theory we can

approach this calculation in the same way as for the next-to-maximally-extremal functions
by expanding O, and O, in terms of the trace basis. For this case, however, more
complicated multi-trace contributions will remain, and so when re-writing the traces in
terms of the single particle operators again one must be careful to add in any extra
coefficients necessary. In theory all of the contributions are known or can be calculated
using the considerations of the previous sections, except for the leading term of the form

(O,T,,T,,), with three bridges between T}, and T,,. The first few cases are shown below,

(OTeTs) = (300 + 7]2\20 + 36N2) (060%) (4.4.33)
(OTTy) = (840 + 13380 n 42N2> (0:05) (4.4.34)
(OSTyTy) = (1680 + 2%260 + 48]\72) (O50%) (4.4.35)
(Os1T7) = (1911 + 2?8;50 +19N?) (0:04) (4.4.36)
(O T Tr) = (3528 + 3?350 + 56N2) (000y) (4.4.37)

where it should be noted the correlators (7,75, T,) are very complicated before converting

the T}s to the single particle operator O,.

Using similar reasoning to that around (4.4.25) - (4.4.28), we can build up contribu-
tions to (0,1}, T,,) by considering different configurations for each of the three SU(N)

propagators:

(1) O(1/N?) contributions can only come from the configuration of propagators in-
volving two 1/N parts and one U(N) part. Completing the two 1/N Wick con-
tractions leaves Tj, _o(x1)Ty,—2(z2), then doing the one U(N) contraction results in

a single trace operator of weight p (as all multi trace contributions vanish when calcu-

lating the two-point function of it and O,. There are a total of o=@ _23\?5(”_1)(‘72_2),

where the half comes from the interchangeability of the two propagators that we

take the 1/N terms from.
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(2) O(1/N) contributions can only occur from propagator configurations that have two

U(N) parts that are not consecutive, and one 1/N part. When the 1/N Wick
contraction is completed we reduce to Ty, _1(x1)T,—1(22), then when we attach the
two U(N) propagators we are in a situation like (4.4.26) therefore the contribution

vanishes.

(3) O(N) contributions can only arise from picking three U(NN) propagators, with two
being consecutive and the last specifically not being consecutive to the other two.
The consecutive U(N) propagators give a factor of N, reduce the number of legs
to ¢1 + g — 4 and link the two operators. In fact, we saw in (4.4.27) that at this
stage without a third propagator we would get at first order a single trace operator.
The third propagator, however, gives us a similar situation to (4.4.26) again and

the result vanishes.

(4) O(N?) contributions can only arise from picking three U (V) propagator parts that
are all consecutive. There are ¢;qs total ways of contributing to this propagator

structure.

(5) O(1) contributions can arise from two different configurations: a) one 1/N propag-
ator part and two consecutive U(N) parts. b) three U(N) parts none of which can

be consecutive to each other.

Notice that a) is necessarily negative, whereas b) is positive.

Putting all of this information together we find

(O,T,T4,) = Q1QQN2 +3 X

(1 — 23)!?}2(122 —2)s + (—;(Nca) + Cb)] (O, 0p)

where ¢, ¢, > 0 and depend on the charges ¢; and ¢,.*°

It is not straightforward at this point to extract further information from the combinatorics,

and in practice the dependence on the charges becomes hidden in the combinatorics.

10A simple guess is ¢, — ¢o = (q1 — 1)2(g2 — 1)2(3(q1 — 5)(g2 — 5) — $(q1 — 6)(g2 — 6)), which seems to
be consistent with all of the above examples.
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However, the surprisingly simple final results for the NNME three point function discussed

above indicates that it may be possible to understand single-particle multipoint correlators
in a way that avoids having to complete the brute force method of computation. We hope
to make this observation more concrete in the future. For example, it would be interesting
to see if the approach taken in [138], in which diagrammatic tensor space techniques are
used to calculate extremal and near-extremal correlators, could provide any more insight
into how to obtain explicit formulae for more classes of correlators involving single particle

operators.

In [58], we present a nice alternative approach to obtaining multi-point correlation func-
tions using the half-BPS operator product expansion. The basic idea is to bootstrap the
free theory correlators by projecting onto the half-BPS states, which was an approach

also pursued in [139] at order ﬁ This method gives a different perspective to the colour
factors obtained for the correlators described above. In [58], there are examples of NME,

NNME and NNNME correlators; the interested reader is encouraged to take a look.

4.4.4 3-Point Functions as Multi-Particle 2-Point Functions

The work done in the previous sections has been to start from maximally extremal and
next-to-maximally extremal three-point functions, compute them, and understand how
to generalise the techniques to n-point functions of single particle operators. In order
to deal with the three-point functions, we substituted two out of three SPOs with their
corresponding expansion in the trace basis, and as such reduced part of the calculation to
finding a three-point function of a single particle operator and two single-trace operators.
In this section, we wish to present an interesting feature of three-point functions of the
single particle operator which does not require passing to the trace basis, and is valid for

any extremality. The relation works as follows,

k

——
<OPOqOT‘ Opoq] [Or 02 Tt 02 ]>connected7 P + q—Tr= 2k . (4438)

) = 5
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where the equality is for the color factor of the left hand side being the same as that of a

two-point function of multi-particle operators of SPOs on the right hand side.

Let us first illustrate the case k = 3 with the following picture,

[Op O

[0y Oy Oy O,]

(4.4.39)

The diagram on the left is the single diagram contributing to (0,0,0,), whereas the one

on the right is the only type of diagram contributing to ([0,0,] [0,02020s]).

To show (4.4.38), consider where the two legs out of an Oy can end. They can not go
to O, as they are at the same point. If they both went to O, , this would result in a
diagram of the form of a dumbbell in (4.3.1) (centered around O,) which thus vanishes.
Similarly if both legs go to O,. The only exception to this is if p or ¢ equals two in which
case you can have a completely disconnected contribution, however the statement (4.4.38)
is for the connected diagram so we do not need to consider this case. Therefore, the only
remaining possibility is that one leg goes to O, and one to O, resulting in the diagram
shown on the right. There are clearly 2*k! different but equivalent diagrams of this sort,
arising from the k! possibilities of swapping the propagators from O, to the O,s and from

the cyclic symmetry around each Os.

The colour factor of (0,0,0,) is the same as one of the equivalent configuration of
([0,0,] [0, 04 ... 04]) described above. This follows from the fact that

1
o o 05 = drd = 0% — 0%,

@) [ .'_I o i
O @ e 85 = 0050005 = 538 — L6765

(4.4.40)
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which concludes our proof of (4.4.38).11

While the right hand side of (4.4.38) is restricted to the connected part of the two point
function (thinking of it as a limit of a higher point function) rather than the full two-point
function, we need this distinction only when p or ¢ equals 2 and k£ = 1. In this case we
have

(0,0:0,) = 5 (([0,05] [0 O]) = (O,04) (020)) . (4.4.41)

N | —

It is worth noting that the condition giving the value of k in (4.4.38) is dependent on the
order of O,, O, and O,; in particular it distinguishes O, from the other two operators.
However the colour factor of the three-point function does not depend on this ordering.
For example, consider the three point function of O3, O4 and Os, we can have three

multi-particle two-point functions with k£ = 1,2, 3 respectively,

60 T, (N? —42)

(030,405) = (030504) = (04050;3) = N(5+ N?)

3 {0304 [0:0,)) 5 ([0305][040:0:]) 45 ([0405] [030,0,05])
(4.4.42)

All three multi-particle two-point functions are then equall.

We conclude that for a triplet of single-particle operators all multi-particle two-point
functions which correspond to different dispositions of the three SPOs give the same color

factor up to a multiplicity counted by 2¥k!.

While the discussion above required O, and O, to be SPOs, it nowhere relied on O, to

be an SPO. Thus the following more general relation holds for any half-BPS operator

1 ———
(OO o) = i (OO T O - Oa Demcrots (1443

withry +...+r=rand p+q—1r = 2k.

' The ideas of our proof here can be generalised to multipoint correlators as well. For example those
which are equivalent to the Lh.s. of (4.4.43).
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4.4.5 Some Formulae for Two-Point Functions of

Multi-Particle Operators
Zeroes

Looking at the two point functions of multi-particle operators with two-particle operators

of weight p, we can predict when they are zero. The statement is as follows:
<[Op—p10p1][OQ1"'0qg']> =0, J>p, (4.4.44)

where p — p; is the largest charge. By thinking of (4.4.44) as the limit of a higher point, p;
extremal function, this is a direct consequence of the fact that near extremal correlators
vanish. All diagrams contributing to p; extremal functions are zero if the number of
points is p; + 3 or above. ([O,_p, Op,][Oy,...Oy,]) is a j + 2-point function, therefore for

J > p1 all diagrams are zero and we arrive at (4.4.44).

In fact, the statement can be generalised to
i—1
([0p,0p, .0, ][00 1) =0, §>> pp—i+3. (4.4.45)
k=1
where ¢ < j and p; is the largest charge. The reasoning follows in a similar way to the

two-particle case above, noting that the two point function (4.4.45) is the limit of a higher

point, >4~ pp extremal function.

Multi-particle two point functions proportional to single particle two-point

functions

Considering again two point functions of multi-particle operators with two-particle oper-

ators of weight p, we find

<[Opfp10p1][0qy“oqg']> = pi! (ﬁ[ q]') <Op*p10p*p1>? J =D, (4'4'46)
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where p — p; is the largest charge. To show this, we first note that

(O, 0p, ][04 - 04, ) = ([Opp Ty | [T, Ty, ]) (4.4.47)

which can be seen by expanding all bar the first single particle operators in the trace basis
and noting that for j = p; all other contributions are near extremal and therefore zero.
The only diagrams that contribute to (4.4.47) are those with one propagator between the
charge p; and each of the charges g, ..., ¢;; the others either reduce to dumbbell diagrams
that are known to be zero, or factorise into two two-point functions of a single particle
operator with a multi-particle operator, which are zero by definition. Doing these p;

contractions gives

limg, —ya Tr(cbl(:vl) (1)) Tr(@(a) - P(22)) - Tr(p(2) - dw2)) > Tr(p(xa) ... p(a2)) + ...

N———
p1 q1 q; p—pr1

(4.4.48)
and since the right hand side is being contracted with the single particle operator O,_,,,

only the p — p; single trace term will be non-zero in the end.

There are p;! Hizl qr ways of doing the above contractions, therefore

<[OP*PIOPIHO(11“'OQJ']> = pi! (ﬁ[ qj) <Opfp1Tp*p1>' (4.4.49)

Finally, using the fact that (O,T,) = (0,0,) for all p due to the orthogonality of O,, we

arrive at (4.4.46).

4.4.6 Three-point Functions of Multi-Particles Involving O,s

In this section we present some formulae for two- and three-point functions of multi-
particle operators constructed using single particle operators of charge 2. We then take
the large N limit of the normalised correlators we have calculated. The motivation
behind studying these correlation functions was to try to make contact with the AdS

giant gravitons, which we expected to be related to a product of Oss in the multi-particle
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basis. In the Schur basis the AdS giants are given by the Schur polynomial operators

associated to the completely symmetric Young diagram. By comparing to results detailed
in [140] we will see that these limits are in fact not in agreement with the AdS giant
graviton calculation on the string theory side. However, the explicit expressions for the
correlators may be useful in the future so we present them here even though they do not

have the interpretation we expected in the large N limit.

We begin by calculating the three point function of the form (O[Os...05][Os...04)).
Firstly, from many examples we observe the two-point function of products of Oy’s is
given by

k k

([0s...0,][05...05)) = 2" kN0, 0,) H 2i — 1+ N?) (4.4.50)

_ 2Dy (2(1 +N2)>k (0,0,). (4.4.51)

This particular two-point function will be useful for calculating the rest of the correlators
considered in this section. Note that for the rest of the section we shall use the variables
k and [ to represent the number of Oy operators in a multi-particle operator, and ¢ and

r for when we are referring to the total charge of the multi-particle operator.

[S]5)
N3

——
The only non-zero correlators of the form (O3[0;...05][Os...0s]) are those with % =5=k

and 2 =k, 5§ = k — 1. The three-point functions are given by

(03][05...05][05...05)) = ([05...05][O,...05)), (4.4.52)
(O5[O,...0,)[0;...04]) = 2 - 2k([O5...05][O...0)). (4.4.53)

Relation (4.4.52) is clear from the point of view of the correlator as a limit of the 2k-
point function of O’s. There cannot be a contributing diagram with a propagator
between the individual O, and any of the £k — 1 group of Os’s, as there is no consistent
propagator structure that can link the rest of the fields of the Oss. Therefore, the

diagrams contributing to (4.4.52) are the same as the diagrams contributing to the two-
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point function (4.4.50). The relation (4.4.53) comes from the same considerations as in

section 4.4.1, and the observation that

<[0202 TQ...TQ > = < 02...02 OQ...OQ >,

which is a result of near-extremal correlators vanishing.

We consider the limit of the normalised three-point functions (4.4.52) and (4.4.53) where
N — 00, and ¢,r — oo such that ¢' = &, 7" = £ are fixed. We find the limit of (4.4.52)

- N
is given by
k k—1
—N— —
<02[0202][02(92]> N q/N (4454)
\/<0202><[02...02][02...02]><[02...02][02...(92]> 2
k k k—1 k—1
and the limit of (4.4.53) is given by
k k
O5[Os...05][0s...05])
(5[0 O]10s... O, V2L (4.4.55)

\/<ozo2><[02...o2][02...02]><[02...02][02...02]>% N

In fact, equation (4.4.52) can be generalised to the following set of extremal three-point

functions:
k l k+1 k+1 k+1
—N— N — —N—
(02 O3)[0r. O[O O3]) = ([Or.. O[O O3] (4.4.56)

There are no diagrams with propagators between the group of £ Oy’s and the group of
[ Oy’s, therefore the diagrams contributing to the three-point function on the left-hand
side of (4.4.56) are the same as the diagrams contributing to the two-point function on

the right-hand side of (4.4.56).

Now, taking the limit N — oo, but ¢ — oo such that ¢’ = & is fixed:

k l k—+l1
— N
([03..-02)[02..0)[05...03) \/E <: ;) (4.4.57)

o
\/([02.;02][02.1;.(92]><[02.;.02] [02.;.02}><[02k.;l(92][Ozk.;lozp

The 3-point function scales as N2. The expression for k = 1 is in agreement with (4.4.54).
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Finally, equation (4.4.53) can be generalised to the following set of next-to-extremal

three-point functions:

k:+l 1 k+1-1 k+i-1

([0, 02][02 02] 02 03)) = 2k - 20([05... O3 [05.03). (4.4.58)

This relies on the following;

([0s...05][O;... T2 (92 (92 (4.4.59)

k+1-1 kJrl 1

([05...0,][0,...0,]|O = T2 T.. T2 (4.4.60)

both of which are a consequence of the vanishing of near extremal functions.

Now, taking the limit N — oo, but ¢ — oo such that ¢’ = & is fixed:

k l k+1-1

([0s...02][Os...04][Os...02])
\/[02 .05][0s.. 02] (0. 02][02 02] ([03...04][05...04))

k+1—-1 k+1-1

Nk=3gk—1 Nk—1g/k+1

/ _
= 2RO N T 2 k]

(4.4.61)

where ¢ = 2[. The 3-point function scales as N %, so is only finite for £ = 1. As a sanity

check, the expression for k = 1 is in agreement with (4.4.55).

As mentioned at the beginning of this section, the limits can be compared to the string
theory calculation of the AdS giant gravitons given in [140]. They do not appear to agree,
therefore it seems that the products of O, are not the right objects to compare to the
AdS giant graviton. It would be interesting to work out what object in the multi-particle

basis is related to the AdS giant graviton, but we shall leave this to future work.

4.5 Conclusions

In this chapter, we explored a new basis of half-BPS operators in N' = 4 super Yang-
Mills. The basis was developed out of a need to be very precise when discussing the

definition of the operator dual to the single particle supergravity states on AdSs x S°.
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Products of these single particle operators were then used to extend the basis to a full

multi-particle basis. We provide explicit formulae for these operators, and showed that
they interpolate between point-like gravitons and giant (sphere) gravitons in the relevant
limits, as they should. We then went on to consider free theory correlators of these
operators. A particularly interesting and useful result was found that stated all near-
extremal correlators of SPOs, namely n-point correlators with extremality degree strictly
less than n — 2, vanish. We would assume that this is tied to the conjecture given in [129]
that the corresponding supergravity couplings vanish. We then continued to consider the
maximally extremal correlators, which were nicely directly related to tree diagrams with
n — 1 vertices. The next-to-maximally extremal correlators were then studied; despite
finding that the complexity increases as the extremality is lowered, we found additional
simplicity compared to the single-trace correlators. Finally, we gave a few exact results of
two- and three-point functions of multi-particle operators, and particularly interestingly
proved a relation between the three-point functions of single particle operators and two-

point functions of multi-particle operators that held for all extremality.

It is interesting to revisit past discussions involving half-BPS operators, especially con-
cerning large N limits and the relation to string theory computations via AdS/CFT, in
the light of our new basis of SPOs. As we saw in section 4.2.3, the SPOs correctly inter-
polate between single trace operators and the operators conjectured to be dual to S® giant
graviton operators in the relevant limit. In [140] the half-BPS three-point functions of two
giant graviton operators and one point-like graviton was performed and compared with
the analogous computation in gauge theory. The gauge theory was computed using two
large Schur polynomial operators and one single trace operator. The results were found to
not quite agree and it was conjectured the reason was related to the inability of the Schur
polynomials to correctly interpolate between giant and point-like gravitons. The SPOs on
the other hand do precisely interpolate between the two as show in section 4.2.3. However,
the extremal correlators of SPOs simply vanish! In [141] this issue was revisited and it

was argued that indeed there were subtleties in the extremal case which are not present
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in the next-to-extremal case. The NE three-point functions with two giant gravitons and

one point-like graviton were computed in gauge theory (using Schur polynomials for the
giant gravitons and single trace operators for the point-like operator) as well as in string
theory and this time found agreement. Since we have explicit formulae for the NE 3-point

functions we can check this agrees here also.

We start with the next-to-extremal three-point function of unit normalised single particle

operators. From (4.4.6) we have

(0,0,0,) _ J (0,0,)
J10,0,0(0,0,)(0,0,) ~ "I\ 10,0,)(0,0,)

pHqg=r+2. (4.5.1)

Now consider the limit N — oo with p staying finite, but ¢,r — oo such that ¢ =
q/N,r" =r/N are fixed. Taking the appropriate limits of the two point functions (4.2.52)
we find

(0,0,0,) P T\ .
V(0,0,)(0,0,)(0,0,) -~ (1 ) , ptg=r+2 (4.5.2)

which is in precise agreement with [141].

We can also compute the normalised next-to-next-to-extremal three-point function given

by (4.4.30)-(4.4.31) in the same limit, N — oo with p,q' = ¢/N,r" = r/N fixed

(99,9, r 7 (p—1)r _
\/<OPOP><Oqu><Or@T> - \/]_)N <1 - N) (1 B 2N> , ptg=r+4

(4.5.3)

It would be interesting to compare with the corresponding string theory computation.

We shall provide some examples of interesting paths that could lead to the continuation

of this work in Chapter 6.



Chapter 5

A Note on N°MHV Yangian
Invariants for N =4 SYM

5.1 Introduction

Yangian invariants are the basic building blocks of many quantities of interest related
to amplitudes in A/ = 4 super Yang-Mills (see for example [43-45,64,142-145]). Some
examples of the quantities they can be used to construct include any tree-level amplitude
which can be written as a linear combination of Yangian invariants [146], and any lead-
ing singularity of a loop level integrand which are themselves Yangian invariants [147].
Therefore, a full understanding of all Yangian invariant functions and their properties
would be extremely useful. There have been considerable steps made recently in under-
standing these functions, for example all positive n-particle N*MHV Yangian invariants
with n = 5k were classified in [148]. Furthermore, all rational m = 2 (corresponding to
the toy model of N/ =4 SYM) Yangian invariants were classified very nicely in terms of

generalised triangles inside the m = 2 amplituhedron [80].

In Section 2.3 we introduced the five particle R invariant in the context of the n-point
NMHYV superamplitude integrand, and showed that it can be written in bosonised dual

momentum superspace co-ordinates (or amplituhedron coordinates) as the following dual
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conformal ratio:
(ijkim)*
(ijkl) (jklm) (klmi) (Imij) (mijk)

[ijkim] = (5.1.1)

For any k, these Yangian invariants can be understood as residues of a Grassmannian
integral. It would be useful to understand how these residues of the Grassmannian can
be taken directly in amplituhedron space, which would give covariant forms for higher-k
analogues of the R invariants given by (5.1.1). A procedure for calculating expressions
for the R invariants in amplituhedron coordinates was outlined in [31], which was used

to calculate the 6 and 7 particle N>MHV Yangian invariants.

In this chapter, we look to extend those considerations to all other N2MHV Yangian
invariants. We will begin by briefly introducing the Grassmannian representation for the
Yangian invariants, and give an outline of the procedure used in [31] to calculate them in
amplituhedron coordinates. Finally, we will use this procedure to calculate all bar one of

the rest of the fourteen N*MHYV Yangian invariants.

5.1.1 Yangian Invariants from the Grassmannian

The Grassmannian representation of n-particle N¥MHV Yangian invariants is given by [45]

1 dk:xnC ) k A
AT —_ |4 A 12
vol|GL(k)] /cag MM, --- M, }15 (CuiZt") (5.1.2)

where C,, is the k x n matrix defining a Grassmannian of k-planes in n dimensions,
Gr(k,n), and Z# are super momentum twistor co-ordinates. The M; variables in the
denominator are the ordered, adjacent, maximal minors of C, e.g M; = det[C] ... Cy],
My = det[Cy...Ckia], ..., M, = det[C,...Ck_1]. The GL(k) redundancy reflects a
change of basis for the k planes coordinates of which are given by the matrix of variables
C'. The integral is k x (n — k) dimensional after taking into account the GL(k) invariance.
There are 4k bosonic delta functions, which would then leave a total of k x (n — k — 4)
non-trivial integrals. A spanning set of all possible integrals of this form is provided by

the residues of these poles, which define a co-dimension k x (n — k — 4) integration region.
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This corresponds to a 4k dimension cell of Gr(k,n); it was shown that these cells can be

classified by permutations in [45].

One can obtain positive canonical coordinates for this cell inside Gr(k,n) which we will
label aq,...,a4. By positive we mean that the ordered minors of the Grassmannian
matrix are all strictly positive if and only if ; > 0 for all 7. In these coordinates, the

measure in (5.1.2) reduces to the following simple d log form:

1 dkxnc«ai dOél Ce dOé4k
Q) = Ly = donedan
k(n=F) VOI[GL(I{?)] M1M2 cee Mn 4k Q... Oyk

(5.1.3)

We now wish to write the full Yangian invariant in amplituhedron coordinates. The

Grassmannian integral in (5.1.2) becomes
/ Qud™ (Y Yo), (5.1.4)
where we have defined YA = C,;Z#*, and

Yoo = (Ob 5’8) _ [P

[eRinge’

(5.1.5)
Lixk

Notice that when defining Y; we split the 4 + k index B into an ordinary four dimensional
twistor index B and k additional indices 8. The delta function (5.1.4) is the natural

Grassmannian invariant d-function,
F*H(Y3Yo) = / g* ek (p)3 det(p) 6 D (Y] = pVi), (5.1.6)
whose precise definition can be found in [47].

The natural brackets in amplituhedron space, C***, are (4+k)-brackets. One can construct
4 + k-brackets using four bosonised momentum-twistor coordinates and Y € Gr(k, k 4 4)

in the following way:

Ypars) = (Y ... Y22, 2,2, Z,) = det (V. .., Yo, Zy 2y 2, Z) . (5.1.7)

We can use these brackets to write the reduced measure )y, as a differential form on



134
Gr(k,k +4), giving

Qup = <Y d4Y1> . <Y d4Yk> X Vo Z1, ..., Zn,Y). (5.1.8)

The full form is rendered covariant in the Y variables as the weights of the brackets with
the differentials are offset by the weight —(k + 4) V,x. Here, (Y d*Y7)... (Y d*Y}) is
the natural Grassmannian invariant measure which uses the brackets defined in (5.1.7)
but with the Zs replaced by the anti-symmetric differential form d*Y. Explicitly these

brackets are given by

(Y ') oc ey, Y0 Y dy ey (5.1.9)

Apya

If Q0 can be written as (5.1.8), then the Yangian invariant (5.1.4) can be written as
/Q4k54k(Y;Y0) = Vil Zi, o 2, V). (5.1.10)

Due to the form of Y given in (5.1.5), the brackets involving Y reduce to the 4-brackets
(Yoijkl) = (ijkl). Note that there is really no integral to perform here; the delta functions
fully fix Y.

Using the above construction will allow us to jump directly from the canonical coordinates
and corresponding dlog from (5.1.3) to the Yangian invariant Y,..(Z1,...,Z,,Ys). In
this chapter, we shall be paying particular attention to the N>MHYV Yangian invariants,
i.e. for k = 2. For this case, © in (5.1.4) becomes a (4 - 2) = 8-form, which if we use the

canonical positive coordinates on the Grassmannian defined in [45] is given by
d
0= / G- (5.1.11)

Therefore, we can jump straight to the Yangian invariant in amplituhedron space by

solving
0= /do‘1 = (Y dW) (Y d'%) X Vool Zu...., 20, Y) (5.1.12)

In the next section, we work through an example of a covariantisation procedure in
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detail for a seven-point £ = 2 Yangian invariant, as detailed in [31]. This process

gives a methodical way of finding some expression for ). However, we note that this
process does not necessarily have to be pursued; if one were to guess a function ) such
that (5.1.12) was satisfied, then we would have immediately found an expression for the
Yangian invariant. This is mostly what was done when calculating the rest of the N>MHV
invariants; specifically when looking to write some in a simple way. We will show these

results in 5.2.

5.1.2 Covariantising the Seven-Point Yangian Invariants

Here we shall show an example of a covariantisation method for calculating the Yangian
invariants for n = 7. Though this is specified for n = 7, these invariants are also valid for

higher n.

From (5.1.2), any 7-point N2MHV Yangian invariant can be represented as the following

Grassmannian integral:

1 d2><ncai 2 "
vol[GL(2)] /cCra (12)(23)(34)(45)(56)(71) [T 0" (Caizt). (5.1.13)

a=1

where (jj + 1) = det[C;C}41] where j labels column j of the C' matrix. The integration
is 14 — 4 = 10 dimensional after dividing by vol[GL(2)], and there are 8 bosonic delta
functions, which leaves two non-trivial integrations. Therefore, we can choose to circle
two of the poles (corresponding to two of the minors given in the denominator) and use

the residue theorem.

There are three classes of residues given by the following pairs of vanishing minors
(67) = (71) =0, (12) =(34) =0 (12) = (45) =0, (5.1.14)

where all other invariants are related by cyclicity. Each of these poles is directly related
to one type of Yangian invariant present at seven points. The simplest case corresponds

to the residue at the first pole in the list, (67) = (71) = 0. As mentioned in the previous
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section, we can choose to use the positive canonical coordinates given in [45] to produce

1 agt+as+as+as (aa+as+ag)ar (g +ag)as asas 0 0

Cai = )

0 1 (0% (071 (0% (075} 0
(5.1.15)

giving the canonical form in (5.1.11). The goal now is to solve (5.1.12) in order to jump

straight to the Yangian invariant in amplituhedron space.

Using the GL(6) invariance of the external momenta, we can choose amplituhedron

coordinates
10 000 0 a
01 0000 b
001000 c
ZA = , (5.1.16)
000100 d
000010 ¢
000001 f
which when projected using (5.1.15) through Y = C,; Z7* gives
yA Il agtas+ag+ag (a4 ag+ ag)ar (ag+ag)as asaz 0 .L1D)
0 1 (074 (673 3 (03]
Using (5.1.17), the covariant differential form is given by
<Y d4Y1> <Y d4Y2> = (1305007 dOél ... O, (5118)

Since the differential form is of weight 6 in Y, we can divide by any six brackets defined in

(5.1.7) to obtain a Y-weightless volume form. For example, we can choose the following:

(Y'1234) (Y1236) (Y1456) (Y 2345) (Y2346) (Y 3456)  anamndasas’ o

meaning the residue (67) = (71) = 0 is given by

day ... dog as (Y d4Y;) (Y d4Y5)

ar.. o5 asogar (Y1234) (Y1236) (Y 1456) (Y2345) (Y 2346) (Y 3456)
(5.1.20)

Qer), 1) =
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The final step is to covariantise the a variables on the right hand side of (5.1.20). The

expressions must be Y-weightless in order for the expression to remain Y-weightless

overall. We find the following:

(Y'2346) (Y'2356) (Y 1256) (Y 3456) (Y 2456)
Ny — ——— g — ———— g = — oy = ——
STU(Y3456) 0 (Y3456)° 0 (Y2356) (Y2456)° (Y 3456)
(5.1.21)
Substituting these values into (5.1.20), we arrive at
Y d*Yy) (Y d*Y;
< D 2) (5.1.22)

Q .
(67(T) ™ 1371934 (Y2345) (Y 3456) (Y 4561) (Y 5612) (¥ 6123)

Whilst the above expression is weightless in Y, it is not weightless on the external particles.
We can easily correct this by multiplying by (123456)4 which is equal to one, giving us

the final covariant expression?

(Y d*yy) (Y d*Ys) (123456)°
Y'1234) (Y2345) (Y 3456) (Y 4561) (Y5612) (Y6123)°

Qery(r) = < (5.1.23)

So, the Yangian invariant is given by the piece of (5.1.23) not involving the differentials
upon removing the Y's, which corresponds to integrating with the delta function. It should
be noted that this example was particularly straight forward, because this invariant is
actually the unique six-point N?MHV Yangian invariant. Despite being slightly more

complicated, the other invariants can be calculated following this procedure.

There are two Yangian invariants present at n = 7, which correspond to the other poles
given by (5.1.14). The calculation of the remaining invariants was presented in [31]; since
their derivation is very similar to the above example, we do not go through them here.

Instead, we state the final results:

4
Ryt = 123456) , (5.1.24)
(1234) (2345) (3456) (4561) (5612) (6123)

'In general this result would seem to be dependent non-trivially on the unfixed coordinates
a1,b1,c1,dy,e1, fi. We can write these in the following forms, which are all weightless in Y: a1 =
—(234567), by = (134567), ¢; = — (124567), d; = (123567), e; = — (123467) and f; = (123457).
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RO=2) ({[1/567) (|2]34567))"

(1269 7 (1267) (1567) (2567) (3456) (3567) (4567) (125[7|) (345(6]) (12[6|7) (34|5]7)’
(5.1.25)

=2 (([2/367) (|1]34567))" (5.1.26)

(12)(45) ™ (1237) (1267) (1367) (2367) (3456) (3467) (4567) (123[7]) (345|6])’

where ([1]567) (|2]34567) = (1567) (234567) — (2567) (134567) is an ordered antisymmet-

risation of the two points enclosed in the square brackets.

5.2 Results of N>’MHYV Yangian Invariants

We now present the results of the rest of the N?MHV Yangian invariant functions, except
for one which unfortunately we were not yet able to find in a nice form. Unlike in section
5.1.2, we will not be going through a complete step-by-step procedure to calculate the
invariants; a number of them were calculated by going through many covariant brackets
expanded in the canonical coordinates given in [45] by hand to try to match (5.1.11). To

begin with, we will set up some notation.

There are fourteen cyclically distinct Yangian-invariant functions for & = 2; a unique
six point invariant, two more at seven points, six more at eight points (one of which
we have not yet calculated), four more at nine points and a final Yangian invariant
at ten points. For ease of notation we shall label these invariants by y;”>, where n
corresponds to the particle number for which the invariant first exists, and p runs over the
integers 1, ..., 14 and references the pole structure. The number of non-trivial integrations,
therefore the number of poles required, corresponding to particle number n is given by
n-2—4—8=2n—12. The unique six particle invariant is just labelled by p = 1 and

there is no non-trivial integration to do in this case. The pole structures of the other
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thirteen values of p are given by:

p=2: (12)(34) p=3: (12)(45)
p=4: (12)(23)(45)(56) p=>5: (12)(23)(56)(67)
p="6: (12)(23)(45)(67) p="T: (12)(23)(45)(78)
p=38: (12)(23)(56)(78) p="9: (12)(34)(56)(78)
=10 (12)(23)(34)(56)(67)(78) =11: (12)(23)(34)(56)(67)(89)

(5.2.1)
where the pairs of values correspond to the minors being set to zero. If the Y dependence
had been kept, then equations (5.1.24), (5.1.25) and (5.1.26) would correspond to Vo
)72(7) and y§7> respectively. Note, the Yangian invariant corresponding to the pole structure
given by p = 9 is the invariant we have not yet managed to write down in a nice way. The

procedure described in the previous section should still follow through for this example.

The coordinates we shall use, as a natural extension to (5.1.16), will be given by

100000 a - apg
010000 b - byg

24— 001000 ¢ - s | 522
000100 d - dyg
000010 e - eng
000001 fi - fos

where the Y independent forms of each variable can be written in the following way:

a; = (—1)"(23456a,,4;), b = (—1)"*(13456b,,:), ¢ = (=1)" (12456¢,4;)
di = (—1)" (123567an13), e = (—1)"(123467b, 1), fi = (—1)"1(123457¢c, ;)

(123456) = 1. (5.2.3)
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The final piece of notation that we shall need is

(Y (irjikilimy) N (iggakaloma)) = (Yiiyjikilima) (Yaiogokaloma)—(Yaiijikilima) (Yrigjokaloms) ,
(5.2.4)

which we introduce to simplify the expressions, and hint toward the notation used in [80]
where it was helpful to introduce such notation to very nicely classify all m = 2 Yangian

invariants. Using this notation, we can write the numerators of (5.1.25) and (5.1.26) as:

(([1]567) (|2]34567))* = (Y (12567) N (34567))*, (5.2.5)

(([2]367) (|1]34567))* = (Y (12367) N (34567))" . (5.2.6)

We shall now present the results of the Yangian invariants, y,gm. At each new n, the
canonical coordinates taken from [45] will be stated, then the Yangian invariants newly

present at that value of n will be written down.

5.2.1 n = 8 Invariants

Here we present the Yangian invaraints corresponding to p = 4,...,8 in (5.2.1). Labelling

the 2 x 8 matrices of canonical coordinates by C®), [45] gives

1 a1 Q9 (063+Oé4) (a3+a4)a5 (Oé3+&4)0é6 [670%4 0

oW = (5.2.7)
0O 0 O 1 o o a7 o

0(5): 1 a1 Q9 (()é3+064) 05 Oyllg  OylQliy 0 (528)

0 0 0 1 Qs Q6 Q7 Qg

o) 1 oar ap (a3+as) (a3+adas asas asar 0 (5.2.9)

0 O 0 1 (071 (07 (074 a8

o — 1 o ay (ag+ay) (az+ag)as agag 0 0 (5.2.10)

0O 0 O 1 Qs Qg Q7 Qg

o® _ 1 a1 ay (ag+aq) agas agzag 0 0 | (5.2.11)

0 0 0 1 Qs Qg Q7 Qg
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where it is understood in each case that Y = C?) . Z with Z given in (5.2.2) for n = 8.

The goal is to find a rational expression which is weightless in Y and the external momenta
for each case, which along with the measure reproduces (5.1.11). We find we can write
the Yangian invariants as follows

(Y (12378) N (45678))*
(Y1238) (Y1278) (Y 1378) (Y 2378) (Y 4567) (Y 4578) (Y 4678) (Y 5678) (Y 123[7]) (Y 456|8])

Y = (5.2.12)

P _ (Y (12348) N (45678))* (5.2.13)
5 (Y1234) (Y'2348) (Y3481) (Y 4812) (Y8123) (Y 4567) (Y5678) (Y 6784) (Y 7845) (Y 8456) -

((Y'5678) (Y (12348) N (45678)) + (Y6784) (Y (12358) N (45678)))*

PE
° (Y'5678) (Y4678) (Y4578) (Y 4568) (Y 4567) (Y 1238)

* (Y'13[6]8) (Y45|7]8) (Y'12[68) (Y'45|7]8) (Y'23[6|8) (Y'45|7]8) ((Y'123[6]) (Y'45|7]8) + (Y'1238) (Y4567))

(5.2.14)

<<Y4567> (Y4678) (Y'(12358) N (45678)) + (Y'8456) (Y6784) (Y (12357) N (45678)) + )4

S (Y4567) (Y5678) (Y'(12348) N (45678)) + (Y'8456) (Y'5678) (Y (12347) N (45678))
() =

(5.2.15)
(Y4578)* (Y4567) (Y4568) (Y4678) (Y'5678) (Y 123[7]) (Y'456|8])

(Y'126[7]) (Y'456(8]) (Y'136[7|) (Y'456|8]) (Y'236[7|) (Y456(8]) ((Y'123[7]) (Y456|8]) — (Y'1236) (Y 4578))

8) _ ((Y4567) (Y (12348) N (45678)) + (Y4568) (Y (12347) N (45678)))4 (5.2.16)

(Y4567) (Y4568) (Y4578) (YA678) (Y5678) (Y 1234)

Vs
* (Y123[7]) (Y456(8]) (Y'124[7]) (Y456(8]) (Y 134[7]) (Y'456(8]) (Y'234[7]) (Y 456|8])
When the relevant canonical coordinates are substituted in to each expression, we find
that
dag .. .dag

(Y avi) (v diya) pf) = =108, (5.2.17)

ap...08
therefore from (5.1.12) we can conclude the expressions above are indeed representations

of the Yangian invariants in amplituhedron coordinates.

5.2.2 n =9 Invariants

At n =9, there are four more cyclically distinct R-invariants. The canonical coordinates

are given by the following

1 oy as a3 o4 ogos ogog gy 0
00 _ 1 Qo Q3 04 0405 Qa0 0407 (5.2.18)

0O 0 0 0 1 a5 g Qa7 Og
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C(H) _ 1 a1 g (3 Q4 0OQy05 0yl 0 0 (5219)
00 0 0 1 a5 g Q7 Qg

0(12): 1 a1 g (3 Q4 0OQyQsp 0 0 0 (5220)

00 0 0 1 a5 a a7 ag

0(13): 1 1 O Q3 Q30y Q305 0 0 0 (5221)

0 0 0 0 1 s Qg Qp Qg

We find the Yangian invariants for these cases can be written as

(Y (12349) N (56789))*

YO — (5.2.22)
107 (y'1234) (Y 1239) (Y 1249) (Y 1349) (Y 2349) (Y 5678) (Y'5679) (Y'5689) (Y'5789) (Y 6789)
y® — ((Y5678) (Y (12349) N (56789)) + (Y9567) (Y (12348) N (56789)))* (5.2.23)
(Y'1234) (Y'5678) (Y'5679) (Y'5689) (Y'5789) (Y 6789)
(Y123[8]) (Y'567]9]) (Y'124[8]) (Y'567|9]) (Y'134[8]) (Y'567|9]) (Y'234[8]) (Y'567]9])
»O — ((Y6789) (Y (12345) N (56789)) + (Y'7895) (Y (12346) N (56789)))* (5.2.24)

(Y'1234) (Y'5678) (Y5679) (Y'5689) (Y'5789) (Y 6789)
(Y123[5]) (Y'|6]789) (Y'124[5|) (Y'|6]789) (Y'134[5|) (Y'|6]789) (Y'234[5]) (Y'|6]789)

(Y'6123) (Y'7894) (Y (12356) N (45789)) + (Y 1235) (Y'7894) (Y (12356) N (46789)) + (Y'1234) (Y 7894) (Y (12356) N (56789)) +
(Y'6123) (Y'5789) (Y (12346) N (45789)) + (Y 1235) (Y'5789) (Y (12346) N (46789)) + (Y'1234) (Y 7895) (Y (12346) N (56789)) +
(Y'1236) (Y6789) (Y (12345) N (45789)) + (Y'5123) (Y'6789) (Y (12345) N (46789)) + (Y 1234) (Y 6789) (Y (12345) N (56789))

9) _
Vi = ((Y'1236) (Y4578) — (Y'1235) (Y4678) + (Y1234) (Y5678))((Y 1236) (Y4579) — (Y 1235) (Y4679) + (Y 1234) (Y'5679))
((Y'1236) (Y4589) — (Y'1235) (Y4689) + (Y'1234) (Y'5689))((Y123[4]) (Y]5]789))2 ((Y'123[4]) (V'|6]789))2
((Y'1256) (Y4789) — (Y'1246) (Y'5789) + (Y'1245) (Y 6789))((Y1356) (Y4789) — (Y 1346) (Y'5789) + (Y 1345) (Y 6789))
((Y'2356) (Y4789) — (Y 2346) (Y'5789) + (Y'2345) (Y 6789))
(5.2.25)
where

(Y45(123) N (789)) (Y 46(123) N (789))
(Y'56(123) N (789))

Once again, when the relevant canonical coordinates are substituted in to each expression,
we find that it satisfies (5.2.17). Therefore, from (5.1.12) we can conclude the expressions

above are representations of the Yangian invariants in amplituhedron coordinates.
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5.2.3 n =10 Invariants

There is one final Yangian invariant present at ten points and beyond. The canonical

coordinates for this term are given by

0(14): 1 a1 g (3 Q4 0 0 0 0 0 ’ (5226)

0 0 0 0 0 1 a5 as ar ag

with Y = C(" . Z. The corresponding Yangian invariant is given by

(Y'(12345) N (6789(10)))*
(Y1234) (Y'1235) (Y'1245) (Y'1345) (Y 2345) (Y 6789) (Y679(10)) (Y689(10)) (Y 789(10)) (Y 678(10))

(5.2.27)

5.3 Concluding Remarks

In this chapter, we have presented expressions for most of the N2MHV Yangian invariants
for N = 4 SYM in amplituhedron coordinates. There are a number of advantages in
writing the invariants in amplituhedron coordinates over the original coordinates. For
example, non-trivial identities which are very hard to see in the superspace formalism

arise naturally as Schouten-like identities in the bosonised quantities.

By writing the m = 2 Yangian invariants in (m = 2) amplituhedron coordinates, it was
shown that the n-point N*MHV Yangian invariants can be classified by labelling them
as a general configuration of k£ non-intersecting triangles in an n sided polygon. One
would hope that there may be a way to generalise this classification to m = 4 Yangian
invariants, or at least use an uplifted version of this construction to describe some subset
of the invariants. We already see that some of the N2MHYV invariants have very simple
forms; see for example (5.1.25), (5.1.26) with numerators written in the form given in
(5.2.5), as well as (5.2.12), (5.2.22) and (5.2.27). It would be interesting to investigate
why these forms are particularly simple, and see if they can be generalised to a subset
of invariants with £ > 2. It would also be interesting to see if the invariants with more
complicated expressions can be written in a simpler way, and further, see if all & = 2

invariants can be classified in a simple geometric way that can be extended to k > 2.
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Moreover, these Yangian invariants can be used to continue the work of [31]. There,
the authors managed to extract individual amplitudes from the four-point correlator by
assuming Yangian symmetry and an appropriate basis of planar dual conformal integrands.
Writing the R invariants in amplituhedron coordinates was a necessary ingredient of the
method which they tested up to seven points and two loops. In order to move to higher
points, the n = 8 invariants are required; it would be beneficial to first find a way to write

yés) in as simple a way as possible.



Chapter 6

Conclusion

To conclude, let us briefly review the main results of each chapter, and indicate some

directions in which the research could be continued.

In this thesis, we have continued the exploration of three fundamental objects in four
dimensional planar supersymmetric Yang-Mills theory; amplitudes, operators and invari-

ants.

In chapter 3, we utilised the Wilson loop / amplitude duality in the hopes of finding a very
explicit tesselation of the amplituhedron using Wilson loop diagrams (WLDs). The WLDs
split the amplitude into well defined pieces as a sum of planar Feynman diagrams and
whilst each individual expression contains spurious poles, they all cancel when summed
leaving only the physical poles of the amplitude. Motivated by this property, and the fact
that each diagram could be naturally associated with a canonical form of a geometrical
object in the same subspace as the amplituhedron, Gr(k,k + 4), we set out to explore
whether the geometrical regions given by each diagram could be glued together to give
a final “good geometry” i.e. one with no spurious boundaries left unmatched (locally)
pairwise. Whilst this was possible for the NMHV case, we proved that it is not possible
for N?MHYV and beyond. The principle of the proof can be very nicely summed up by

Figure 6.1.
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Figure 6.1: Regions I and II clearly have a spurious boundary along the
edge [Z; Z3] despite their canonical forms summing to cancel
the associated spurious pole.

The canonical forms associated to regions I and II sum and result in only poles that
correspond to logarithmic singularities along the boundary of the quadrilateral labelled
ZhZoyZsZy. However, the geometrical region clearly still has unmatched spurious bound-
aries. In this simple example, region II could instead be chosen to be the interior of the
triangle with vertices Z;, Z3 and Z,, allowing it to maintain the same canonical form and
match the spurious boundary along the edge [Z;Z3]. Our proof shows that for N2MHV, it
is not possible to choose geometries that are consistent with the canonical form dictated
by the WLDs and the pairwise matching of the boundaries. Therefore, we conclude that

the WLDs do not provide a tesselation of the amplituhedron, or any geometrical region.

Whilst the WLDs do not provide a geometrical tesselation of the amplituhedron, they
do still give a very concrete ‘tesselation’ at the level of its canonical form. It may be
interesting to see if this property generalises to more general positive Grassmannians.
Furthermore, it may be interesting to explore the final geometry the WLDs provide from
a mathematical perspective despite them not having the physical interpretation we had
hoped for. It was noted in [90] that it may be interesting to see if the WLDs correspond
to some characteristic class of the manifold, for which the Amplituhedron volume forms

may be seen as a special case.

In Chapter 4 we initiated an investigation into the properties of single particle operators,

O,, and their correlation functions. The operators defined to be orthogonal to all multi-
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trace operators, and are appropriate for describing single-particle states of superstring

theory on AdSs x S°. We found explicit formulae for them in three different bases:
the trace basis, the basis corresponding to the eigenvalues of the operators and in the
Schur polynomial basis. Furthermore, we found an explicit expression for their two point
function, and show that for weight greater than one the U(N) SPOs are simply the SU(N)

SPOs, or more precisely in substituting ¢ = ¢ — % we have

Oy Mgl = 0Ny p>2.

p

We made contact with the gravity side, and pointed out that in the large N limit, as
the length of the operator increases the single-particle operator naturally interpolates

between the single-trace and the sphere giant graviton.

The extension of single particle operators to a full basis of half-BPS operators was then
discussed by simply taking products of the operators; we referred to these as multi-particle
operators. This new basis has the advantage of being valid in U(N) and SU(N) gauge
theories (by either allowing O; contributions in the product or not respectively), and
naturally cuts off when the length of any of the single-particle operators exceeds the

number of colours.

We then went on to study correlators of single particle operators, beginning with a very

interesting theorem regarding multipoint orthogonality:

Multipoint Orthogonality Theorem. Consider any diagram contributing to a half-
BPS correlator that has a single particle operator O, connected to two sub-diagrams,
with the sub-diagrams themselves disconnected from each other. Any propagator structure

consistent with this type of diagram has a vanishing colour factor. This statement holds

for both U(N) and SU(N) free theories.

This theorem meant that a huge number of diagrams thought to contribute to various
correlators of SPOs were actually zero, simplifying a number of calculations that followed.

In particular, an important corollary of this theorem was the following:
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Near-Extremal Correlators Vanish. Any near-extremal SU(N) correlator in free

theory, where the largest charge operator is a single-particle operator, vanishes, i.e.

<Op(x)Tq1 (z1)...T.

dn—1

(1)) =0 k<n-3. (6.0.1)

In the U(N) theory, a similar statement can be made but with the caveat that it is true

only for connected correlators.

Using the above results, we were able to calculate expressions for all maximally and next-
to-maximally extremal free correlators, and were able to calculate explicit expressions for

some multi-particle two and three point functions.

There are a number of ways in which this topic can be further explored. Firstly, there are
still a large number of things left to calculate even in the free theory. For example, the
simple nature of the end formula for lowering extremality three-point functions hints that
there may be a way to write a general formula for all N* maximally extremal three-point
functions. As mentioned previously, the multi-particle basis is not orthogonal; it would
be interesting to see if a canonical way of orthogonalising the single particle operators

could be discovered, perhaps by exploring the string theory point of view further.

One could try to generalise the story of single particle operators described here to beyond
the half-BPS sector. Bases do exist already for more general operators beyond the half-
BPS sector [149-155], but it would be interesting to revisit these from the perspective of

the single-particle operators.

In a slightly different direction, one would assume that the definition of the single particle
operator holds beyond the U(N) and SU(N) gauge theories, to the orthogonal and
symplectic gauge groups in N' = 4 SYM. These can be obtained via a Z, orientifold
projection of the standard AdS; x S° set-up [156]. There have been studies on half-BPS
operators in these theories [157-160], so it would be useful to consider single particle
operators in these gauge theories and see how they compare to those operators already

studied. It would also be interesting to study single particle states for other backgrounds,



149
for example AdS;3 [161], ABJM, and for the slightly mysterious six-dimensional (2,0)

theory on AdS; x S*.

Finally, it would be interesting to consider aspects of the dynamics of the single-particle
operators that have not yet been explored, and go beyond the computation of the one-loop
amplitudes in [115], along the lines suggested in [162]. The trace basis is widely used
in the context of integrability, and in turn integrability based techniques have allowed
the computation of exact correlators (see work on the octagon configuration in [163-167]
and the five-point analogue called the decagon configuration in [168]). It would be very
interesting to understand how the integrability based techniques [169, 170] modify or

adapt when correlators of single particle operators are considered.

Finally, in Chapter 6 we looked to write all the N2MHYV Yangian invariants of N' = 4
SYM in amplituhedron coordinates. We began be describing a covariantisation algorithm
detailed in [31] that made this possible. Then we presented results for all bar one of the
14 N2MHV Yangian invaraints. It was evident that some had particular simple forms; it
would be interesting to see if there exists a nice geometrical way of classifying (a subset of)

Yangian invariants for all £ > 2, in a similar way that was done for all m = 2 invariants

in [80].






Appendix A

Spurious Pole Cancellation for

Special N°MHYV Three-Way Case

Here, we show how the algebraic cancellation works for the special three-way cancellation

illustrated in Figure 3.8 and the surrounding discussion:

2 Zy Z «— Zy Z 2

Figure A.1: The WLDs corresponding to the special three way cancella-
tion, with the limits of the residues illustrated by the arrows

on each WLD.

To begin, the three integrals given by the WLDs in Figure A.1 are

d(ll dbl dC1 ddl d61 dfl dgl dh1
(D), :/ 568 (¢! . Z A.0.1
(1) arbigihier(c1fir — dier)dy (G- 2) (A.0-1)
da2 dbg dCQ ddg d62 df2 dgg th
(D) = / 568 (1. Z A0.2
(D) codagahoas(eabs — as fa) fo (Cs- 2) ( )
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and

dasz dbs des dds des d f3 dgs dhg
asbses fscs(dsgs — hscs)hs

(D) = / 5B (1. ), (A.0.3)

with the C' matrices in the above delta functions given by

a by 0 ¢ d 0 1
o= " , (A.0.4)
hi 0 0 e fi g 1

as by 0 co do 0 1
o= , (A.0.5)
e fo 00 go hy 1

a3 b3 0 0 ¢35 ds 1
o= " S (A.0.6)

0 0 e f3 g3 hg 1

The claim is that in summing the diagrams, the residues at the poles diagrammatically

represented by the arrows in Figure A.1 precisely cancel:

’E{e%I(D’l) + Res Z(Dy) + Re%I(Dg) =0. (A.0.7)
1= e3=

az fa=bzez

To show this, we will change variables of Cy
(e1, f1) = (o, €e1) (€2, f2) = (B, €2) (93, h3) = (7,€3)
e1 =acy, fi=adi+e ex=pPfay+e, fr=pby g3=7cz+te3, hy=ds
The spurious poles in question now occur when hq,€,e3 — 0.

Substituting these new variables into the integrals corresponding to the WLDs currently

being examined gives

da1 dbl dCl dd1 dgl dhl da dEl

Res I(D}) = R 569 (0. 2
hlg% ( 1) hli% alblcldlglh1a€1 ( 1 )
_ / da; db; de; dd; dg; dade

abicidygroeg

BB (Cy|p=0 - 2), (A.0.8)

ResZ(D5) = Res

e2=0 e2=0

/ dCLQ dbg dCQ ddg dgg dhg dﬁ d€2
asbacadagahafSes

dCLQ dbg dCQ dd2 dgg dhg dﬁ
= SBB) (O eyo - 2 A.0.9
/ azbacadagaha (Celey=0- 2) ( )

589 (¢, - 2)
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and

ResZ(D3) = Res 588 (Cy - 2)

/ da3 dbg ng ddg d63 df3 d’)/ d€3

e3=0 e3=0 asbscsdszes fayes
da3 dbg ng ddg dfg d’y d€3
— G (C5lpaco - Z) . A.0.1
/ asbscads f3yes (Caleao - 2) (4.0.10)

The measure in each expression is now simply the dlog of all the variables. The associated

C matrices in the delta functions become

a1 bl 0 C1 d1 0 1
Ciln=o = : (A.0.11)
0 0 0 acy adi+e€¢ g1 1

a by 0 ¢ do 0 1
Chlamo=| P : (A.0.12)

Bay Bby 0 0 g hy 1

az by 0 0 c ds 1
Chleo= | ’ P (A.0.13)

0 0 0 f3 yez+eg ~vds 1

In order to compare the three C! € GR(2,7), we must introduce a change of parameteriz-

ation. Utilising the GL(2) invariance, we make the following change of basis for C] and

Ci,
1! 1 0 !
C] = ) X Ci (A.0.14)
j e 1—a
and
=y _1
o=\ (A.0.15)
1 0

The three matrices CY, CY and CY are now of the same form, meaning they have zeros

and ones in the same entries and variables in the others:

a b 0 o d 0 1
cr=1| = S , (A.0.16)

—aay —aby 0 0 €1 g 1
l-«a l-«a

cr=|T T T T I . (A.0.17)
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We make a change of variables for C7 and CY¥ to the variables of C) as dictated by

matching entries:

a —a by = b cp—c —

cr. TP T TR s 155 (A.0.18)
di = dy € — ﬁ% g1 — ﬁlh
as — Bay b — Bb — Lo 1

o, B Pe b o = (A.0.19)
€3 — _1%2 3 —>ga dz— hy -

Substituting these new variables into the residues of Z (D]) and Z (D) and taking the

sum of all three integrals gives

day dby deg ddy dgy dhy d S ( 1 1 1 ) (818) (1
_ + -+ —— (- 2)=0. (A.0.20
/ a1b101d191h1 5(1 - 5) 5 1- 5 ( 2 ) ( )

Therefore, we have shown that (A.0.7) is indeed satisfied.




Appendix B

Character Polynomials

As we saw in section 4.1.2, group theoretic formula for the dual operators to the trace
basis was given by Brown in [127]. This formula was dependent on the character of
any conjugacy class of the symmetric group in any hook representation, where the hook
representations consisted of the representations associated to Young diagrams with one
column and one row. An explicit formula for this set of characters is unknown, however
they are neatly packaged in character polynomials. We give a brief explanation of them
here and show how to calculate the characters given in the character tables in (2.1) using

this technique.!

In [70], the following generating function was defined for the character polynomials for
characters of all hook representations:
i qutt = 1 (1= (=) (B.0.1)
k=0 L+t
Here, g;x is the character polynomial for the hook representation correponding to the

Young diagram with k£ + 1 boxes in the first column and a row of any length), and ¢;

denotes the number of cycles of length ¢ the element o € S, has.

"'We were able to re-write the sum for the single particle operators in terms of other group theoretic
quantities described in section 2.4.6, which turned the coefficients of the multi-traces into formulae
explicit in the weight p and the conjugacy class of the trace structure {q¢1,...,¢n}. So, calculating these
characters explicitly did not end up being relevant when continuing to discuss SPOs.
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The simplest way to understand this generating function is by illustrating its use with

an example. To do this, we shall calculate the character table for S;. There are four

representations that have the required hook shape:

|
E . O, L oo (B.0.2)
The left hand side of (B.0.1) must be expanded to k = 3 giving
qio + quit + qi2t® + qsts. (B.0.3)

Now to expand the right hand side. Plugging in the relevant ¢; gives a different expansion

for each conjugacy class, which we show below:

() 11#L4—Wf:1+&+&ﬁmﬂ (B.0.4)

(12) - 11+t<1 (=)= (=) =1t — L — 3, (B.0.5)
(12)(34) 1itu—w—ﬂ%2:1—t—ﬂ+¢i (B.0.6)
(123) : 11#1—@@%@—(4»:1+§ (B.0.7)
(1234) : 11+t(1 — ()Y =1—t+t* -4 (B.0.8)

By comparing (B.0.3) to each of the polynomials on the right hand side of (B.0.4), we
can construct the part of the S; character table involving hook representations. Note
that the set of coefficients of the polynomials in ¢ each give one column of the character

table. The result is below:
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Si

~—~

) (12) (12)(34) (123) (1234)

T 11 1 1 1
qo 31 -1 0 -1
Qﬂ 3 -1 -1 0 1
E 1 -1 1 1 1

Table B.1: The character table involving hook representations, using
characters calculated using the generating function (B.0.1)

I

We see that the results of B.1 are in full agreement with the S, character table we showed

in (2.1).






Appendix C

Trace Sector Formulae

In section 4.2.2 we obtained the result

Op = Z Cq1,..,quq1,..qm (C'O-l)
{q1--gm}tp
—DEFYUN 41— p)y s (N +p—X .
Coroa = |[‘7q1--Qm]‘| Z (—1) (N + p)p ( )( +Dp (5))2( ) (C.0.2)
@ =D erarramy (N)p = (N+1=p)p

which is explicit in p and ¢ . . . ¢, and depends on group theory data which we explained

in section 2.4.6.

The value of m distinguishes the splitting of O, into m traces we. We will give explicit

examples for the double trace sector m = 2, and the triple trace sector m = 3.

C.1 Double Trace Sector

Consider the partition ¢; + ga = p. The powerset in the sum is

P ({aee}) = {} {a} {ae} {ar, 2} } (C.1.1)

and the corresponding values of > are

{1 =0, 3{a}) =a, 2({e}) =, E{qn. ¢}) =qa +q¢ =p. (C.1.2)
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Furthermore the size of the conjugacy class is |[q1¢2])| = p!/(q1¢2) as long as ¢1 # ¢o.

Otherwise ¢1 = ¢2 = p/2 and |[q1¢2]| = p!/(2q1¢2) = (p—1)!/(2p). With these informations,
the coefficient of T,,T,, in O,, from (C.0.2), is

p % _(N_p+1)p - (N)p + (N_p+1>q2 (N+Q2)p—q2 + (N_p+1)q1 (N+QI)p—q1

o 142 (N)p = (N =p+1),
a2 2 § —(N=p+1), — (N), + (N—p+1)p/2(N+p/2)p/2
’ (N)p— (N —p+1),

(C.1.3)

The above formula holds for the coefficients of the double trace contributions to the single

particle operator of any weight.

C.2 'Triple Trace Sector

Consider the partition ¢; + g2 + g3 = p. By making explicit (C.0.2) we find,

Corares = p —(N—=p+1),+(N),
' 019293 (N)p — (N —p+1),
p - Zi: (N=p+1)g(N +qi)p—q + Z?:l(N —p+ 1) (N +p—aqi)g
¢19293 (N)p = (N =p+1),

+ (C.2.1)

The other two possible cases, in which ¢; = ¢; and ¢; = ¢ = ¢35 = p/3, only differ
compared to the result above by the the size of the conjugacy class. In the first case we
have to further divide by 2, and in the second case by 6. This formula thus cover all

possible triple trace contributions to single particle operators of any weight.

For any value of m, i.e. for any trace sector, the function C; can be made very explicit

in a similar way to the examples above.



Appendix D

Priifer Sequences and Trees

The Priifer sequence, which we write as s = (s ...) gives a unique way of labelling a tree
diagram. The construction was described in [171]; here we look to give a brief description

on how this works.

Consider a tree made of points at positions 1,...,n — 1, with each point ¢ having d;
legs attached to it. For example, the trees associated with the Tj, operators and the

propagators between them in (4.4.8) are given in Figure D.1.

—~0—~W &0

Figure D.1: Tree diagrams corresponding to the diagrams given in (4.4.8).
The label ¢ corresponds to the propagator T, and the
branches of the trees correspond to the propagators.

We define a leaf in a tree to be a pair of positions (a,b) such that a has one and only
one bridge connecting to it, and b is the node at the other side of that one bridge. The
Prifer algorithm works as follows: at step k of the algorithm remove the leaf (a,b) where

a has the smallest label, and assign s = b to the sequence. To relate this to the number
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of possible Wick contractions for that propagator, write down the contribution

IW(a,b)| = (ga — da + 1)(qs — R(D)), (D.0.1)

where q,, ¢, corresponds to the charge of the operator at position a, b respectively and
R(b) corresponds to the number of times b has appeared in the sequence previous (i.e.
steps < k). The Prifer sequence stops when there is only one leaf left, i.e. one pair of
nodes left. However, we do have to write down that final contribution to the number of

Wick contractions given by (D.0.1).

For example, on the left hand side of Figure D.1, the Priifer algorithm would give the
sequence {1, 1}, and the number of Wick contractions at each step would correspond to
{IW(2,1)| = g1, IW(3,1)] = ¢g3(qn — 1)}. The total number of wick contractions for
the whole tree though would be the product of the right hand side of each element in
that sequence, multiplied by the result of the final leaf given by |W(3,1)| = qi(q1 — 2).

Therefore, for this example

IW(T)| = q1¢203(q1 — 1) (@1 — 2). (D.0.2)

It is very straightforward to continue these considerations to as complicated a tree as you

like.

It is quite evident that the Priifer Sequence gives a very nice way of ordering Wick
contractions for the purposes of counting the total number of possibilities. It is clear that
the first time two operators ¢ and j appear in the sequence, they count with ¢,;q;, because
necessarily d; = 1 or d; = 1. The second time one of this operators appears again, it

counts with ¢; — 1 or ¢; — 1, and so on. The total number of Wick contractions is then,

WIT) = TLalai = 1) (0 — ds+ 1) 003

which is the result we quoted in (4.4.9).
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