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A PROBABILITY MEASURE ON PARTON AND STRING STATES
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ABSTRACT: The states obtained in hard high energy processes can, in a comple-
mentary way, be described in terms of partonic QCD language or in terms of a
stringlike confined force-field spanned by the partons. We define a surface
characteristic of a confined force-field which breaks up into hadrons. The nega-
tive exponential of this surface multiplied by the appropriate phasespace
defines a measure on the QCD-states which is everywhere finite and infrared
stable. It reproduces the results of perturbative QCD in the kinematical regions
where such results are relevant. It has simple mathematical properties, in
particular it is factorizable and in that way generates a stochastic process.
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The results I want to discuss in this talk are obtained in collaboration with
B. Andersson and B. Séderberg1).

Hard processes like e+e_—annihilation or lepton-proton scattering are
described as two-step processes

e+e— parton state
hd - hadron state

1p quarks and gluons

The Lund hadronization model attempts to describe the second step, partons >
hadrons, and for a complete description we also need the probability to obtain a
definite parton state. This is given by perturbative QCD, which however is
computationally very difficult. Interference effects are complicated and are
often neglected in jet calculus calculations when one is satisfied by assuming
the dominance of the poles in tree diagrams.

In this talk I want to propose a measure on a parton state for the relative

probability to obtain different states. This measure has the following properties:

1. It coincides with perturbative QCD on the poles.

2. It gives a welldefined result in cases where many Feynman diagrams contri-
bute and interfere, and is an infrared stable interpolation between the
pole expressions.

The Lund hadronization model is based on the following assumptions2

1. The colour field between a quark and an antiquark behaves like a vortex
line in a superconductor or a relativistic string.

2. Gluons act as excitations on such a (colour triplet) string. Thus in the
case e+e- hd qag the string is stretched from the quark to the antiquark via
the gluon, and for T »> ggg the string is a closed triangular loop.

3. The fragmentation of a linear stringlike colour field is described by the
one-dimensional semiclassical model.

The fragmentation is illustrated in fig. 1. Quark—antiquark pairs are produced

in the colour field and combine to the final state hadrons. In the recent version
of the mode13) (called the symmetric Lund model) the probability P to obtain a

certain state with n hadrons is given by

no2 2 2
P « jij=[1[Nd pié(pi—m )]6(Zpi—Ptot) exp(-bA) (1)

Fig. 1 Fig. 2a 2b 2c
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Here p; are the hadron momenta and we assume here that there is only one type of
hadron, which has mass m. The quantity A is the area indicated in fig. 1. Thus

P contains a product of a phase space expression and an exponent which resembles
a Wilson loop integral. The model contains two parameters, N and b. If N is large
this favours the production of many hadrons and if b is large the hadrons are
more strongly correlated in rapidity ( a large b also favours fewer hadrons).

The particle distribution obtained from eq. (1) can also be generated as a jet
cascade. It is called the symmetric Lund model because for a qa system it gives
the same result if the cascade is generated from the quark end or from the anti-
quark end.

The Lund model is infrared stable in the following sense. In case we have a
state with many gluons we get a string with many corners as shown in fig. 2a. If
we plot the momenta of all the partons after each other as in fig. 2b, we obtain
a figure called the directrix, which fully determines the state of motion for the
string (to be exact the directrix also contains the mirror image of fig. 2b). The
directrix also describes the motion of the quark at the endpoint of the string,

starting off with momentum k., provided the string does not break into pieces. We

12
note that the directrix and the state of motion of the string is not changed much
if one gluon with low mass is split into two as indicated in fig. 2c. We think
that it should be possible to describe the physics in terms of asymptotic final
states, i.e. hadronic states. Due to the finite hadron masses this implies a
finite resolution power on the parton or string state. In this way we get a
smooth transition between e.g. three- and two-jet events and between four- and
three-jets.

In the fragmentation of a qa system as in fig. 1, the breaking points are

located around a hyperbola. Thus the area is approximately given by
bA ~ ln(s/mi) (2)

where the constant m is determined from the parameters N and b.
For a qag system two straight string pieces are stretched. Thus for a hard
gluon the corresponding area spanned in Minkowski space also contains two pieces

A, and A, (cf fig. 3) which are given by

R 2 2
~ 1 ~ 1 .
bA1 ln(és12/mo), bA2 ln(2523/m0), sij

The factor 3 in the argument of the logarithm comes because half of the gluon

= (i +k)? (3)

momentum, k2, is used to stretch each of the two string pieces. If the gluon is
soft, it cannot stretch out two string pieces as in fig. 3. Instead the retarded
gluon has soon lost its energy and a straight string piece is stretched between

the quark and the antiquark ends. Thus in the limit k_, - O the area approaches

2
the expression in eq. (2). A smooth interpolation between the hard and soft

gluon cases 1is given by
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Fig. 3

Jl ]

2
bA ~ 1n [S/mo *855,3

We now make the conjecture that the probability P to obtain a definite qag
parton state is given by the expression
3
2
P~ [k, 6(ki)] 6(Zk;~P, ) exp(-bA)

i=1 N

~ dx,dxg

(s)

(1-x,)(1—x )+hm§/s

1 3
This expression has again the form of a phase space factor times an exponent of
an area. This area can be interpreted as an effective action. It is given by the
average size of a Wilson loop type area when the parton system fragments into
hadrons. The quantities x, are the usual scaled momenta, xi=2E1WE, where Ei are
the energies in the c.m. system.

When we compare eq. (5) with the result from perturbative QCD:

2.2
x1+x3
P dx dy ————— (6)
(1=, )(1=x.)
1 3
we note that the singularities at x1=1 and x3=1 are cut off by the term hmg/s. We

also see that the factor x?+x§ in the numerator is not reproduced. However, this
factor follows because the qqg system originates from a virtual photon with spin
one; such polarization properties are not included in eq. (5).

For a generalization of the result in eq. (5) to the general case with many
gluons we demand that the result shall be infrared stable. Thus when the
invariant mass of two (consecutive) gluons goes to zero, then the measure for n
partons should go over into the measure for n—1 partons. This is directly
achieved if it is expressed in terms of the string state.

If we add to the directrix curve in fig. 2b a time component we obtain a four-
vector function Pu(t) which describes the state of the string and also the motion
of the quark at the endpoint of the string. In case of a three-jet system the

expression in eq. (4) can be written in the following form

2 dt
am (7
L bJ;_ ds(E,t,) i tJJ ds(t,,t,) N )
l‘mi : at 1 dt, 25 st ,t,) = (P(t,)-P(t,))
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A generalization to many gluons is obtained by the expression
t t

© B ds(E,t,) 1 ds(t,,t,) j-1 as(t. ,,t.)
1 1272 -1°
T=1+) [~ [ - [ o] - — 0 J (8)
j= 2, 2 2m2 2m2
=1y s 0 0 0 o

The function T can be interpreted as the exponent of an area in Minkowski space,
which in turn can be interpreted as an effective action. As for the three-jet
events above we make the conjecture that the probability Pn to obtain a certain
state with n partons is given by a phase space factor (where p is a constant)

times T_1:

n
2 -1
P j£1[pdkjd(kj )]6(2kj—ptot) T (k1,...,kn) (10)

For the simple example when all the invariant masses kiki are large compared to

+1
the parameter mi it is easy to show that if ki+ki+1=Q as in fig. 4, then

2
P =P - 2npm2 44 -dz (11)

Here Pn— is the probability to obtain a state with n-1 partons having momenta

k1""ki11’Q’ki+2""kn' The parameter z is as usual ki's lightcone fraction of Q.
This result obviously very much resembles the corresponding result in perturba-
tive QCD. However, for z very close to O or 1 the approximate expression in eq.
(11) needs corrections. Small values of z correspond to large values of © and the
corrections effectively cut off the pole at z ® O when the angle O in fig. 4 is
larger than y. This corresponds exactly to the angular cut off due to soft gluon
interference obtained in perturbative QCD and discussed by Mueller, Marchesini,
Webber and othersh).

A similar result is obtained also when the two massless gluons with momenta ki
and ki+1 are replaced by subsystems of gluons, so that a large subsystem is di-
vided into two smaller subsystems.

An important property of the measure is that events distributed according to eg
(10) can be generated as in iterative stochastic processes. A Monte Carlo simula-
tion program is being developed by M. Bengtssonand M. v Zijl. There seems to be
a characteristic "curvature". Smoothly bent directrices are favoured; strong
bends give small values for T_1 whereas for long straight sections the phase
space is not fully utilized. In e.g. an high EL event at the collider this might

correspond to coherent initial and final state bremsstrahlung.
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