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1 Introduction

In the present paper we will carry out a supersymmetric extension of studies presented
in [1, 2]. Extremal black holes contain an AdS2 factor in the near horizon limit in which
finite energy excitations decouple [3]. In order to capture also those it has been proposed
in [4] to add Jackiw-Teitelboim gravity [5, 6] to the bulk action. By integrating out bulk
fields this can be related to an effective one dimensional theory whose Lagrangian is given
by the Schwarzian derivative of the boundary curve [7–10]. This is also the effective La-
grangian arising in the strong coupling limit of the SYK model [11–13]. (For reviews on
the SYK/JT correspondence see e.g. [14, 15].) In the present paper we will be interested in
supersymmetric extensions. On the SYK side N ∈ {1, 2} extensions have been presented
in [17]. The effective Lagrangian at strong coupling is given by the corresponding super-
Schwarzian derivatives. The N = (1, 1) extension of JT gravity on manifolds without a
boundary is given in [16]. The inclusion of a boundary term, the extension to N = (2, 2)
and the relation to super-Schwarzians is presented in [18–20]. In the present paper, we will
be interested in the N = (2, 2) configuration of which further aspects have been studied in
e.g. in [21–33].

In [1, 2] (see also e.g. [34, 35]) the relation of the nAdS2/nCFT1 correspondence to
higher dimensional black holes is investigated in more detail. In [1] an extremal and near
extremal Reissner Nordström AdS4 black hole are considered. The authors compute the
four point function of conformal primaries in a dual CFT3 in different ways. Following [36]
by adding a probe massive free scalar (dual to the primary under consideration) and in-
tegrating out the induced metric perturbations. This yields an expression quartic in the
scalars (quadratic in energy momentum tensor components) i.e. quartic in the sources for
the primaries in the dual CFT3. Dimensional reduction (for spherically symmetric config-
urations and small frequences) relates this calculation to a calculation performed in the
nAdS2/nCFT1 scheme. Results obtained by integrating out Schwarzian modes match.

In the present paper we will consider a 1/4 BPS solution of gauged N = 2 4d supergrav-
ity [37, 38]. This solution represents a magnetically charged black hole with AdS4 asymp-
totics. In the near horizon limit supersymmetry is enhanced corresponding to N = (2, 2)
in two dimensions. The probe should now not only preserve spherical symmetry but also
supersymmetry. This can be achieved by adding a hypermultiplet along the lines of [39].

The paper is organised as follows. Section two is devoted to the four dimensional
picture and its near horizon reduction. In section 2.1 we review the sugra solution [37, 38]
which does not contain hypermultiplets. This solution represents a black hole with AdS4
asymptotics and an AdS2 × S2 near horizon geometry. General techniques for adding
a hypermultiplet [39] are applied in section 2.2. Section 2.3 discusses the dimensional
reduction in the near horizon limit, in s-wave approximation. In section 2.4 we compute
four point functions in a dual CFT following [1, 36]. That is, we integrate out metric
fluctuations, gravitini fluctuations and gauge field fluctuations in a limit in which first
corrections to the S2 radius have been added to the near horizon limit. For the gravitini
we have to impose further projections such that super currents are conserved in that limit.

Section three is devoted to the nAdS2/nSCFT1 perspective on the considerations of
section two. A natural choice for the two dimensional theory would be what we obtained
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from dimensional reduction in the near horizon region of the four dimensional black hole
solution. However, we will twist this slightly. Firstly, we switch to Euclidean signature cor-
responding to the choice in [20]. Another twist is performed for the following reason. We
want to associate the integrating out of bulk modes (such as the graviton) to integrating
out super-Schwarzian modes in the effective one dimensional dual. One of the super-
Schwarzian modes corresponds to the two dimensional graviphoton. This is the gauge field
of a Kaluza-Klein U(1) when reducing from four to two dimensions. (The four dimensional
N = 1 gravity multiplet does not contain a graviphoton.) The fluctuating hypermultiplet
in the four dimensional setup is charged under a combination of the N = 2 graviphoton
and an extra U(1). In two dimensions this will correspond to an extra vector multiplet.
We twist the charge of the probe matter in two dimensions such that it is charged under
the graviphoton instead of an extra U(1). In sections 3.1 and 3.2 we review the N = (2, 2)
extensions of JT gravity [20]. After that, in section 3.3 we add a covariantly twisted chiral
and anti-chiral multiplet describing probe matter. These have the same amount of degrees
of freedom and the same mass as what we obtained from dimensional reduction of half
the four dimensional hypermultiplet. But the covariantly twisted multiplets are charged
under the two dimensional graviphoton. Conserved currents (energy momentum tensor,
supercurrent, gauge current) share the same conservation laws with the dimensionally re-
duced ones and are associated to each other. Some further aspects of the relation between
dimensionally reduced four dimensional theory and the considered two dimensional the-
ory are mentioned in section 3.5. In section 3.6 the one dimensional holographic dual is
considered. Supergravity is replaced by super reparametrisations with a super-Schwarzian
action. Matter is coupled in a supersymmetric generalisation of the way it is presented
in [8]. That is, we write down a term which generates the N = 2 superconformal two point
functions of operators being dual to the bulk matter, in the zero temperature case. By
applying a general super reparametrisation on that expression one generates the couplings
to the super-Schwarzian modes. By integrating out (linearised) super-Schwarzian modes
we obtain the expression generating four point functions of the dual superconformal oper-
ator, in section 3.7. We express these generating functionals as two dimensional integrals
containing the conserved 2d currents. Then they can be matched with the findings of sec-
tion 2.4. We obtain agreement if we impose the same additional projection condition on
the supercurrent as in 2.4.

In section 4, we summarize the results and discuss possible future directions. In an
appendix A we list some of the used conventions.

2 A supersymmetric black hole in 4d

2.1 Solution without hypermultiplets

In this subsection we recapitulate the 1/4 BPS magnetically charged black hole solution [37,
38] of N = 2 gauged supergravity (for a review see [41–44]). Our conventions follow [44, 46]
and are summarized in appendix A. Pure gauged supergravity allows only for AdS4 ‘black
holes’ with a naked singularity [40].
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We will first consider a solution to a theory containing the supergravity and a vector
multiplet. The supergravity multiplet accomodates the vielbein eaµ, two gravitini ψAµ , A ∈
{1, 2}, and a graviphoton A0

µ. The vector multiplet consists of a vector A1
µ two gauginos

λA and a complex scalar z. The bosonic part of the supersymmetric Lagrangian is given by

L = 1
2R (e) + gzz∗∂

µz∂µz
∗ + IΛΣF

Λ
µνF

Σµν + 1
2RΛΣε

µνρσFΛ
µνF

Σ
ρσ − g2V (z, z∗) . (2.1)

Here, R(e) is the scalar curvature and gzz∗ is the metric on a special Kähler manifold
on which the scalar of the vector multiplet takes values. On a special Kähler manifold
there are holomorphic sections

(
XΛ (z) , FΛ (z)

)
where in our case Λ ∈ {0, 1}. Further,

FΛ = ∂F/∂XΛ where for the explicit solution in [37, 38] the prepotential

F = −2i
√
X0 (X1)3 (2.2)

is chosen. RΛΣ and IΛΣ denote real respectively imaginary part of the period matrix

NΛΣ =
(
∂FΣ
∂XΛ

)∗
+ 2i Im (FΛΓ)XΓIm (FΣ∆)X∆

XEIm (FEZ)XZ
. (2.3)

with FΛΣ = ∂FΣ/∂X
Λ. The Kähler metric is expressed in terms of the Kähler potential

gzz∗ = ∂z∂z∗K , with K = − log
[
i
((
XΛ

)∗
FΛ −XΛ (FΛ)∗

)]
. (2.4)

The scalar potential, finally, is given by

V =
(
gzz
∗
fΛ
z

(
fΣ
z

)∗
− 3

(
LΛ
)∗
LΣ
)
ξΛξΣ ,

with fΛ
z = e

K
2 (∂z + (∂zK))XΛ , LΛ = e

K
2 XΛ, (2.5)

and the real constants ξΛ are called Fayet-Iliopoulos (FI) parameters (characterising under
which U(1) the gravitini are charged). The explicit solution we are going to consider is a
magnetically charged black hole. The metric is given by

ds2 = U2 (r) dt2 − U−2 (r) dr2 − b2 (r)
(
dθ2 + sin2 θdϕ2

)
, (2.6)

where U and b will be specified shortly. The non vanishing vierbein and spin connection
components are,

eaµ = diag (U (r) , 1/U (r) , b (r) , b (r) sin θ) , ω01
t = U∂rU , ω12

θ = −U∂rb ,
ω13
ϕ = − (U∂rb) sin θ , ω23

ϕ = − cos θ. (2.7)

The gauge fields have only non vanishing ϕ components

AΛ
ϕ = −pΛ cos θ , (2.8)

and hence the field strengths are

FΛ
tr = 0 , FΛ

θϕ = pΛ

2 sin θ . (2.9)

– 4 –



J
H
E
P
0
1
(
2
0
2
1
)
1
8
6

Mostly we will work with the self-dual and anti-self dual field strengths defined as

F±Λ
µν = 1

2

(
Fµν ∓

i
2εµνρσF

ρσ
)
. (2.10)

The 1/4 BPS solution reported in [37, 38] has two Killing spinors

ε1 =
√

(U (r))e−
1
4 (∂zK∂rz−∂z∗K∂rz∗)ε01 , ε2 =

√
(U (r))e−

1
4 (∂zK∂rz−∂z∗K∂rz∗)ε02, (2.11)

where the ε0A are chiral constant spinors satisfying the projection condition

εA = −σ3
A
B
γ01εB , εA = εABγ0ε

B. (2.12)

The scalar in the vector multiplet is given by z = X1/X0 with

X0 = ± 1
4ξ0
− ξ1β

1

rξ0
, X1 = ± 3

4ξ1
+ β1

r
(2.13)

with correlated signs. Asymptotically, at r → ∞, z → 3ξ0
ξ1

becomes constant and so does
the potential

V → Λ4 = −2g2
√

3

√
ξ0ξ1

3,

corresponding to the radius of asymptotic AdS4 geometry. The metric components in (2.6)
are given by

U2 = eK
(
gr + 1

2gr −
16g
3r

(
ξ1β

1
)2
)2
, b2 = e−Kr2, (2.14)

with

eK = 1

8
√

(X1)3X0
=

2
√
ξ0ξ3

1r
2√

(r ∓ 4ξ1β1) (3r ± 4ξ1β1)3
. (2.15)

This is a geometry of a charged black hole, for which charges (see (2.8)) and mass, M , are
all fixed in terms of the integration constant β1, explicitly

p0 = ∓1
gξ0

(
1
8 + 8

(
gξ1β

1)2
3

)
, p1 = ∓1

gξ1

(
3
8 −

8
(
gξ1β

1)2
3

)
,

M = −128
81 Λ4

(
ξ1β

1
)3
. (2.16)

The metric component U2 has a double zero at r = rh. The position of the horizon is

rh =
√

16
3 (ξ1β1)2 − 1

2g2 . (2.17)

The near horizon geometry is AdS2 × S2 where the negative AdS2 curvature overcompen-
sates the S2 curvature resulting in a negative net curvature. Supersymmetry is enhanced
to 1/2 BPS corresponding to N = (2, 2) in two dimensions [50].
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2.2 Solution with a universal hypermultiplet

In the spirit of [1] we want to switch on perturbations around a sugra solution and study
the backreaction on the super geometry. We would like to do this in a supersymmetric
way and to consider only spin zero and 1/2 fluctuations. We also want the perturbation to
be charged under a U(1) gauge symmetry such that there is a corresponding backreaction.
All this can be achieved by modifying the solution of the previous section to fit into a
theory with a sugra, a vector and a hypermultiplet. How to perform such a modification
in general has been worked out in [39]. The hypermultiplet consists of four real scalars qa,
a ∈ {1, 2, 3, 4}, and two chiral fermions ζα, α ∈ {1, 2}. The four real scalars will be called(

q1, q2, q3, q4
)

= (R, u, v,D) .

These take values on a quaternionic-Kähler manifold which in our example is chosen to be
SU(2, 1)/U(2) with metric

ds2 = habq
aqb = 1

R2

(
dR2 +R

(
du2 + dv2

)
+
(
dD + 1

2udv −
1
2vdu

)2
)
. (2.18)

The metric hab can be expressed in terms of vielbeins (for details and conventions
see [41, 44])

hab = UAαa U
Bβ
b εβαεAB. (2.19)

Indices A and α are raised and lowered with the two dimensional epsilon tensor or its
transposed when they label bosonic quantities. For fermions these indices are raised and
lowered by complex conjugation. A reality constraint on the vielbeins can be viewed as
applying both rules simultaneously

Ua,Aα =
(
UAαa

)∗
= εABUBβa εβα. (2.20)

For the metric (2.18) the non vanishing vielbein components are

U12
R = U21

R = 1√
2R

, U12
D = −U21

D = i√
2R

,

U21
u = −U12

u = iv
2
√

2R
, U11

u = −U22
u = 1√

2R
, (2.21)

U12
v = −U21

v = iu
2
√

2R
, U11

v = U22
v = i√

2R
.

The solution of [37, 38] is invariant under the susy variations of the gravitino and the
gaugino

δεψµA = ∇µεA + 2iFΛ−
µν IΛΣL

Σ + igSABγµεB ,

δελ
iA = i∂µziγµεA +G−iµνγ

µνεABεB + iggij̄ f̄Λ
j̄ aΛσ

AB
3 εB ,

(2.22)

with
∇µεA =

(
∂µ −

1
4ω

ab
µ γab

)
εA + i

2gaΛA
Λ
µσ

3B
A εB ,

GΛµν = Re(NΛΣ)FΣ
µν −

1
2 Im(NΛΣ)εµνγδFΣγδ ,

(2.23)

– 6 –
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provided the following BPS conditions are satisfied,

U ′ = −2LΛIΛΣp
Σ

b2
± gaΛL

Λ ,

U

b
b′ = 2LΛIΛΣp

Σ

b2
± gaΛL

Λ ,

gaΛp
Λ = ∓1 .

(2.24)

In addition to this we now demand invariance of the hyperino variation

δεζα = iUβBa ∇µqaγµεAεABCαβ + 2gUAαakaΛL̄ΛεA , (2.25)

with
∇µq =

(
∂µq + gAΛ

µk
q
Λ

)
. (2.26)

Following the logic of [39] we keep gµν , FΛ
µν , z the same as for [37, 38] such that (2.22) is

still solved. Parameters are fixed by the requirement that (2.25) is also solved, implying
the conditions [37–39]

kaΛF
Λ
µν = 0 , P xΛf

Λ
i = 0 , εxyzP yΛP

y
ΣL

ΛL̄Σ = 0 , kaΛL
Λ = 0. (2.27)

Here, kΛ are Killing vectors tangent to the quaternionic-Kähler manifold resembling charge
vectors of the gauged isometry. We consider the following Killing vectors

kΛ = aΛ (−v∂u + u∂v) , (2.28)

where aΛ functions as the FI parameter, such that the black hole background is unchanged.
These Killing vectors correspond to moment maps

P xΛ = aΛ

(
v√
R
,
u√
R
, 1− u2 + v2

4R

)
. (2.29)

Plugging (2.28), (2.29) back into (2.27) and (2.22) we see that the following vevs are
required for the hyperscalar

〈u〉 = 〈v〉 = 0 , 〈R〉 = const. 6= 0 , 〈D〉 = const. . (2.30)

Later we will consider fluctuations of u and v. In a dimensionally reduced system these will
be scalars of a matter multiplet which is charged under a U(1) with gauge fields AΛ ∼ aΛ.
We will freeze R and D to their background values (2.30).

The BPS equations are not affected. In relating field strengths and mass matrices to
geometrical quantities we will often need the two linear combinations of the first two BPS
conditions (2.24)

U

b
b′ − U ′ = 4LΛIΛΣp

Σ

b2
, U ′ + U

b
b′ = ±2gaΛL

Λ . (2.31)
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2.3 Dimensional reduction with hypermultiplet as source

We now perform the explicit s-wave reduction on the two-sphere in the near horizon geom-
etry AdS2 × S2. This will be carried out for the gravity multiplet, the hypermultiplet and
the linearized supergravity theory coupled to the hypermultiplet as a source. The former
should reproduce the JT supergravity theory in 2d and the latter should correspond to the
linearized couplings in 2d. Performing this dimensional reduction will also reveal which
four-dimensional fields constitute the dilaton multiplet.

While for a bosonic field the s-wave reduction may be implemented by assuming no
dependence on spherical coordinates, for fermions an additional projection must be applied
such that the degrees of freedom are reduced by half. The correct projection can for example
be deduced by demanding that the vevs chosen for the hyperscalars R,D are kept intact
by supersymmetry variations, such that no dynamical R,D fields are generated and hence
u, v and half of the degrees of freedom of the hyperinos constitute a proper two-dimensional
multiplet.

By use of
δqa = UaαA(ζ̄αεA + CαβεAB ζ̄βεB) , (2.32)

the equations δR = 0 and δD = 0 are only fulfilled if ζ1 fulfills the same projection as ε2

and ζ2 the same as ε1 (see the first condition in (2.12)). The projected spinors have only
one independent component which motivates the replacement,

ζ1 →


1
i
i
1

 ζ1 , ζ2 →


1
i
−i
−1

 ζ2 , (2.33)

where in abuse of notation we have given the Grassmann variables on the right hand side
of (2.33) the same name as the four dimensional spinors on the left hand side.

The metric on AdS2 × S2 is given by

ds2 = r2

v2
1
dt2 − v2

1
r2 dr

2 − v2
2

(
dθ2 + sin2 θdϕ2

)
, (2.34)

with the vielbein
eaµ = diag

(
r

v1
,
v1
r
, v2, v2 sin θ

)
. (2.35)

The non vanishing components of the spin connection are

ω01
t = r

v2
1
, ω23

ϕ = − cos θ . (2.36)

We also note that for product space geometries, the equations of motion and the dimension-
ally reduced action are equivalent for the case of Einstein gravity and Maxwell theory [45]
(barring terms which have been neglected in the approximation with at most linear con-
tributions of the dilaton multiplet to the action). For the gravitini this can be easily seen
to also hold: the equations of motion derived from (2.48), (2.83) match the dimension-
ally reduced equations (2.102)–(2.107) in the near horizon limit up to contributions JθA
containing ψθ,A.
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2.3.1 Gravity sector

As a first step we reduce the kinetic terms for the gravitional multiplet, which encompasses
the Einstein-Hilbert term, the linear combination of the field strengths, and the gravitinos.

The relevant parts of the action are [46]

S ⊃
∫

d4x
√
−g

(
−1

2R+ i
(
N̄ΛΣF

−Λ
µν F

−Λµν −NΛΣF
+Λ
µν F

+Λµν
)

+ εµνλσψ̄Aµ γσ∇νψλA + h.c. + F−ΛµνIΛΣ4LΣψ̄Aµ ψ
B
ν εAB + gSABψ̄

A
µ γ

µνψBν

)
, (2.37)

with the gravitino mass matrix defined as

SAB = i
2(σx)CAεBCP xΛLΛ = i

2(σx3)CAεBCaΛL
Λ , (2.38)

where our choice of moment map (2.29) was applied in the second step. The covariant
derivative of the gravitino is given in (2.23). Furthermore, we also have to include the
potential for the complex scalar in the vector multiplet linked to the FI gauging. In the
full black hole solution it acts as the cosmological constant of AdS4. It is given by

V ⊃ −g23LΛL̄ΣaΛaΣ , (2.39)

where the momentum map has already been expressed via the FI constants.
The dimensional reduction of the Einstein-Hilbert term to two dimensions was per-

formed in [1]. Assuming a static, spherically symmetric metric and allowing for linear
fluctuations of spherical metric components hϕϕ = (sin θ)2hθθ leads to

4πv2
2

∫
d2x

√
−ĝφ (R− Λ2) + 8πv2

2

∫
∂M

duφK , (2.40)

where φ is identified with hθθ and Dirichlet conditions are set for φ. It also should be
mentioned that the effective two-dimensional cosmological constant Λ2 is a combination of
the magnetic part of the field strength of (2.37) with background value (2.9) and (2.39).
In (2.40) we have also added a boundary term originating from dimensionally reducing a
Gibbons-Hawking-York term [1]. In the following boundary terms will not be included.

Now we add fluctuations for the gauge fields in the gravity and vector multiplet along
the U(1) under which u and v are charged. Spherical symmetry is respected by setting the
ϕ and θ components in the corresponding combination of gauge fields to zero. The resulting
vector field provides an effective photon. Assuming AΛ

µ̂ = AΛAµ̂ with µ̂ ∈ {t, r} and AΛ

denoting a constant direction within the two U(1)’s gives the two-dimensional kinetic term

1
g2

2

∫
d2x

√
−ĝ (1 + 2φ)Fµ̂ν̂F µ̂ν̂ , (2.41)

where Fµ̂ν̂ is the fieldstrength of Aµ̂ and

1
g2

2
= 4π v2

2A
ΛIΛΣA

Σ (2.42)
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with IΛΣ being the imaginary part of the period matrix depending on the horizon values
of the gauge scalars z. The fluctuating gauge field Aµ̂ will be called photon in the rest of
the paper.

The gravitinos have to fulfill specific γ01 projections. The projection conditions on
the hyperinos (with solutions (2.33)) induce projection conditions on the supercurrent.
Since the supercurrent acts as the source of the gravitini, this further induces projection
conditions on the gravitini via their equations of motion. From an s-wave perspective these
projections are needed to lose the angular spin connection components and also to obtain
two-dimensional mass terms. Furthermore, when working out all contributions to the
gravitino terms of (2.37), one encounters couplings of ψr to ψt. These are not compatible
with unbroken two dimensinal N = (2, 2) supersymmetry. When applying the correct
projection these kinds of terms vanish as we will see below. We must also apply a spherical
projection on the gravitini in order to emulate the spherical symmetry, linking JϕA to JθA .
To be more precise, when expressing the supercurrents explicitly via the matter sector as
in (2.75) spherical symmetry manifests as

JθA = − sin θγ23J
ϕ
A . (2.43)

This should also be respected by the gravitino sector. All in all, we apply

ψr/tA = γ01(σ3)A
B
ψr/tB , ψθA = −γ01(σ3)A

B
ψθB , ψϕA = sin θ γ23 ψθA . (2.44)

Let us first understand the general structure of the gravitino contribution to (2.37) while
only applying the γ23 projection of (2.44). First, the field strength with its background
value (2.9) effectively acts as a mass term because it can be rewritten via the first equation
of (2.31) as a purely geometric term; the same is also true for the mass matrix contribution.
This can be expressed geometrically via the second equation of (2.31). We assume no
angular dependence of the gravitino components ψtA, ψrA and ψθA (ψϕA is fixed by (2.44)).
Hence, we get the following expression for the kinetic terms of the gravitini

S ⊃
∫

d4x e3
ϕψ̄

A
t

(
−2γ3∂rψθA+ i

r
σ3
ABγ

02ψBθ + iv2
2
(
−ψBr εAB+σ3

ABγ
01ψBr

))
+
∫

d4x e3
ϕψ̄

A
r

(
2γ3∂tψθA+ r

v2
1

(
−γ013ψθA+iσ3

ABγ12ψ
B
θ

)
+ iv2

2
(
ψBt εAB−σ3

ABγ
01ψBt

))
+2
∫

d4x e3
ϕψ̄

A
θ

(
v1
rv2

γ123∂tψθA−
r

v1v2
γ023∂rψθA−γ3∂tψrA+γ3∂rψtA

+ 1
2v1v2

(
−γ023ψθA−γ23ψ

B
θ εAB−iσ3

ABψ
B
θ

)
+ r

2v2
1

(
γ013ψrA+iσ3

ABγ
21ψBr

)
+ i

2rσ
3
ABγ

20ψBt

)
, (2.45)

where so far only the relationship of ψϕA to ψθA (2.44) has been used. Now we observe
couplings of ψt to ψr, couplings of ψθ to ψt and ψr and also terms exclusively consisting
of ψθ. As there is no kinetic term for the gravitini in two dimensions, any consistent
dimensional reduction should exclude couplings of ψt to ψr. A close inspection of these
terms in the first two lines of (2.45) shows that these terms vanish when applying (2.44).
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After use of the γ01 projections in (2.45) the ψθ to ψθ couplings can be brought into
the form,

8π
∫

d2xε23ν̂µ̂
(
ψ̄Aθ γνγ23∇µψθA

)
. (2.46)

In the purely gravitational sector a linearized approximation is used to arrive at the Jackiw-
Teitelboim action, where the dilaton appears only as a Lagrange multiplier. This procedure
can be emulated here by denoting ψθ as the dilatino mode. This immediately implies
that the quadratic term (2.46) is to be neglected. In accordance, after applying the γ01
projections, the remaining terms of (2.45) consist purely of ψt/rA couplings to ψθA. To be
specific, we solve projection conditions (2.44) explicitly and replace four component spinors
by a single Grassmann field according to

ψt/r1 →


1
i
−i
−1

ψt/r1, ψt/r2 →


1
i
i
1

ψt/r2,

ψθ1 →


1
i
i
1

ψθ1, ψθ2 →


1
i
−i
−1

ψθ2.
(2.47)

We focus on all terms in which ψt/rA and ψθA mix and perform the spherical integration.
In addition, we partially integrate those terms in which derivatives of ψθA appear. In the
resulting expression ψθA solely represents a fermionic Lagrange multiplier. We just give
the final answer in two-dimensional conventions (z = t+ y, z̄ = t− y, y = v2

1/r)

32πv2

∫
dzdz̄

(
ψθ1

(
∇z̄ψ∗z1−∇zψ∗z̄1+ i

2yψz2
)

+ψθ2
(
∇zψ∗z̄2−∇z̄ψ∗z2−

i
2yψz̄1

)
+h.c.

)
= 32πv2

2

∫
dzdz̄

(
λ1

(
∇z̄ψ∗z1−∇zψ∗z̄1+ i

2yψz2
)

+λ2

(
∇zψ∗z̄2−∇z̄ψ∗z2−

i
2yψz̄1

)
+h.c.

)
,

(2.48)

where the covariant derivatives are given by

∇zψz̄,A = ∂zψz̄,A +
(
σ3
)
A

B 1
4yψz̄,B , ∇z̄ψz,A = ∂z̄ψz,A +

(
σ3
)
A

B 1
4yψz,B

and in the last two lines we have introduced the dilatino with ψθA = e2
θλA.

It should be noted that this procedure is quite natural from a supersymmetric per-
spective. Recall that for the gravitational sector the role of the dilaton was played by
hθθ. Together with ψθ these should constitute the dilaton multiplet. So far however the
degrees of freedom do not match up. Whereas the dilaton which naturally appears as the
metric fluctuation hθθ must be real, we have double the amount of degrees of freedom for
the dilatino. In N = (2, 2) JT gravity there are two dilaton multiplets [20]. Here however
we do not consider the full Kaluza-Klein reduction, which would furnish the U(1)A field
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strength accompanied by the missing bosonic degree of freedom in the dilaton multiplet.
Hence we must set reality conditions on the dilatino.

Setting λ1 = iλ2∗, we arrive at

32πv2
2

∫
dzdz̄λ1

(
∇z̄ (ψ∗z1 + iψz2)−∇z (ψ∗z̄1 + iψz̄2)− 1

2y (ψz̄1 + iψz̄2) + h.c.
)
. (2.49)

The conditions for the dilatino modes are also applied when calculating the four-point
function (2.110).

2.3.2 Matter sector

Now we consider the kinetic and mass terms of the hypermultiplet in the near horizon limit.
These match the corresponding terms for the twisted chiral and anti-chiral multiplets in
section 3.4.

The relevant terms of the N = 2 Lagrangian are, the kinetic terms for our matter
fields ∫

d4x
√
−g

(
hab∇µqa∇µqb − i

(
ζ̄αγµ∇µζα − h.c.

))
, (2.50)

with the general mass terms∫
d4x
√
−g

(
g24habkaΛkbΣLΛL̄Σ + gMαβ ζ̄αζβ

)
, (2.51)

with the hyperino mass matrix defined as

Mαβ = −UαAa U
βB
b εAB∂

akbΛL
Λ (2.52)

and also a Pauli term ∫
d4x
√
−gF−Λ

µν IΛΣζ̄αγ
µνζγCαγ , (2.53)

which effectively acts as a mass term with the background value (2.9). For the vevs we
have chosen for the hyperscalars (2.30) and the choice of moment map (2.29), the scalar
mass terms of (2.51) amount to

g2(4habkaΛkbΣ) = g2aΛaΣ
4
R

(u2 + v2)L̄ΛLΣ

= (u2 + v2)U ′2 , (2.54)

where for the last step the BPS conditions (2.24) were used. The covariant derivatives are
given by

∇µq =
(
∂µq + gAΛ

µk
q
Λ

)
, ∇µζα = ∂µζα −

1
4ω

mn
µ γmnζα + ∆β

µαζβ , (2.55)

where for the hyperino covariant derivative we have already applied that the Kähler con-
nection is zero. Furthermore, in our approximation (leaving out higher order interaction
terms)

∆β
αζβ = Cβγ∆αγ = Cβγ

(
gAΛ∂ak

b
ΛUaαAU

β
bA

)
. (2.56)
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For both the scalar fields and the fermions the coupling to the gauge fields occurs due to
the last term in the covariant derivative. As we are considering electric fluctuations around
the magnetic background of the solution, we will also assume general gauge fields AΛ

µ̂ , such
that not only terms due to (2.8) will occur. In the s-wave approximation the Aϕ couplings
should drop out and only the couplings to AΛ

µ̂ should appear in two dimensions. We will
consider these effects, namely the linearized coupling to supergravity modes in the next
section 2.3.3.

For the scalar field one straightforwardly arrives at

S ⊃ 4πv2
2

∫
d2x

√
−ĝ 1

R

(
∂µu∂

µu+ ∂µv∂
µv +

(
u2 + v2

)
U ′2
)
. (2.57)

In the near horizon limit U ′ is constant and (2.57) resembles a free massive scalar on AdS2.
This leads to the equations of motion

v2
1
r2 ∂

2
t u−

r2

v2
1
∂2
ru−

2r
v2

1
∂ru−

2
v1
u = 0 , (2.58)

and the same with u replaced by v.
Solving (2.58) at large r leads to the solutions of the form

u ∼ r−∆± (2.59)

with
∆± = 1± 3

2 , (2.60)

and the same for v. According to the AdS/CFT dictionary [47] u and v are dual to
conformal primaries of dimension ∆+ of the emergent CFT1. For the comparison with the
two-dimensional results of section 3 it should also be noted that the scalar fields u, v always
appear in complex linear combinations with the vevs chosen for the hypermultiplet sector,
such that it is convenient to introduce the combinations

f := u− iv , f̄ := u+ iv . (2.61)

The action for the complex scalars is

S ⊃ 4πv2
2

∫
d2x

√
−ĝ 1

R

(
∂µf∂

µf̄ +
(
ff̄
)
U ′2
)
. (2.62)

For the hyperinos we impose the projections which led us to (2.47) earlier. Then terms in
the Lagrangian including angular components of the spin connection drop out. To be more
explicit, (2.50) includes terms of the form

− i
(
ζ̄αγθ∇θζα + ζ̄αγϕ∇ϕζα

)
, (2.63)

which are set to zero since the γ01 projections commute with γ23.
By use of M12 = −iaΛL

Λ, the background value of the field strength (2.9) and the
BPS equations, (2.51) and (2.53) combine to a single effective mass term such that one
ends up with the following two-dimensional Lagrangian for the hyperinos

S ⊃ 4πv2
2

∫
d2x

√
−ĝ

(
−iζ̄αγµ̂∇µ̂ζα + U ′ζ̄1ζ2 + h.c.

)
. (2.64)
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Replacing ζα by the one component fields as in (2.33) and taking variational derivatives
of (2.64) gives the following fermionic equations of motion

∂tζ
1 − r2

v2
1
∂rζ

1 − r

2v2
1
ζ1 − ir

v2
1
ζ2 = 0 , ∂tζ

2 + r2

v2
1
∂rζ

2 + r

2v2
1
ζ2 + ir

v2
1
ζ1 = 0 . (2.65)

These describe free massive fermions on AdS2. For large r we arrive at a solution of the
form (2.59) with

∆± = 1± 2
2 . (2.66)

2.3.3 Linearized coupling

So far we have discussed the dimensional reduction of the fields of the supergravity theory
itself, namely metric, photon and gravitinos and also of the matter on this specific back-
ground. In this section we want to dimensionally reduce the coupling of the photon and
gravitino fluctuations to the matter. To be more explicit, we now perform the dimensional
reduction of the part of the action, which quite heuristically may be written as

S ⊃
∫
d4x
√
−g

(
hµνT

µν + ψ̄Aµ J
µ
A + J̄Aµ ψ

µ +Aµj
µ
A

)
. (2.67)

As explained previously, due to covariance metric fluctuations are already coupled to matter
fields, such that we will only mention this schematically. We have to allow for metric
fluctuations in the spherical directions hϕϕ = sin2 θ hθθ and metric fluctuations in the
AdS2 direction hµ̂ν̂ in (2.50), to arrive at a structure like the first term in (2.67). Now
integrating over the spherical directions gives the two-dimensional action [1]

−4πv2
2

∫
d2x

√
−ĝ

(
hµ̂ν̂T

µ̂ν̂ + 2φT θθ
)
, (2.68)

where the metric fluctuation hθθ has been identified with the dilaton φ. The effective 2d
energy-momentum conservation reads

v4
1∂tTtt − r2∂r

(
r2Ttr

)
= 0 , v4

1∂tTtr − r∂r
(
r3Trr

)
− rv4

1Ttt = 0. (2.69)

The coupling of matter fields to the considered U(1) fluctuations (2.42) are contained in
the covariant derivatives in (2.50) via (2.55).

Starting from (2.50) we arrive at

S ⊃ −4πv2
2g

∫
d2x

√
−ĝ

(
ζ̄1γµζ1 − ζ̄2γµζ2 − 2u∂µv + 2v∂µu

)
aΛA

Λ
µ

= −q2

∫
d2x

√
−ĝ

(
ζ̄1γµ̂ζ1 − ζ̄2γµ̂ζ2 − 2u∂µ̂v + 2v∂µ̂u

)
Aµ̂ (2.70)

where the charge q2 is
q2 = 4πv2

2gaΛA
Λ. (2.71)

Notice also that the sum over µ ∈ {t, r, θ, ϕ} is reduced to µ̂ ∈ {t, r} because u and v are
taken to depend only on t and r and the ζA’s are eigenspinors of γ01 (which anticommutes
with γ02 and γ03).
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We now express the four component spinors in (2.70) by their one component pro-
jections according to (2.33) and combine two real scalars into one complex scalar (2.61).
Then (2.70) equals

q2

∫
d2x

√
−ĝ

(
−4iAtet0(ζ∗1ζ1 − ζ∗2ζ2)− 4iArer1(−ζ∗1ζ1 − ζ∗2ζ2)

)
+ q2

∫
d2x

√
−ĝ

(
−iAµ̂ ∂µ̂ f̄ f + iAµ̂ ∂µ̂f f̄

)
.

(2.72)

Taking the variational derivative of (2.70) with respect to Aµ̂ we arrive at the currents

jt = −iq2
(
f∂tf̄ − f̄∂tf

)
+ 4iq2

r

v1
(−ζ∗1ζ1 + ζ∗2ζ2) ,

jr = −iq2
(
f∂rf̄ − χ̄∂rf

)
+ 4iq2

v1
r

(−ζ∗1ζ1 − ζ∗2ζ2) .
(2.73)

The current conservation equation is given by

∂tj
t + ∂rj

r = 0 . (2.74)

The coupling of gravitino to supercurrent can directly be read off from the general N = 2
supergravity Lagrangian [46]∫

d4x
√
−g

(
−2UaAα∇µqaψ̄Aµ ζα − 2UaAα∇µqaψ̄Aν γµνζα − 2giNα

Aψ̄
A
µ γ

µζα
)
, (2.75)

with
NA
α = 2UAαakaΛL̄Λ . (2.76)

For clarity we will give the individual supercurrents of (2.75) explicitly before moving to
two-dimensional conventions. We will use the linear combinations (2.61) and explicit solu-
tions to spinor projection conditions as in (2.33) and (2.47). Then we get one component
supercurrents (for a relation to four component spinors see (2.101)),

J t1 =
√

2√
R

(
v2

1
r2 ∂tχ+ ∂rχ

)
ζ1 − i

r
χζ2 , J t2 =

√
2√
R

(
−v

2
1
r2 ∂tχ̄+ ∂rχ̄

)
ζ2 − i

r
χ̄ζ1 ,

Jr1 =
√

2√
R

(
−∂tχ−

r2

v2
1
∂rχ

)
ζ1 − irχζ2 , Jr2 =

√
2√
R

(
−∂tχ̄+ r2

v2
1
∂rχ̄

)
ζ2 + iirχ̄ζ1 .

(2.77)
The supercurrent components satisfy conservation equations

∂tJ
t
1 + ∂rJ

r
1 −

r

2v2
1

(
J t1 − iJ t∗2

)
+ i

2rJ
r∗
2 = 0 , (2.78)

∂tJ
t
2 + ∂rJ

r
2 + r

2v2
1

(
J t2 − iJ t∗1

)
− i

2rJ
r∗
1 = 0 . (2.79)

For the angular components the following relation holds

JθA = − sin θγ23J
ϕ
A . (2.80)
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The explicit form is

Jθ1 =
√

2√
R

(
v1
rb
∂tf −

r

v1b
∂rf

)
ζ1 + i

b
fζ2, Jθ2 =

√
2√
R

(
v1
rb
∂tf + r

v1b
∂rf

)
ζ2 − i

b
fζ1 .

(2.81)
Now we want to perform the dimensional reduction of the linearized supercurrent gravitino
coupling which in terms of four component spinors reads

4πv2
2

∫
d2x

√
−ĝ

(
ψ̄Aµ̂ J

µ̂
A + 2ψ̄Aθ JθA + h.c.

)
. (2.82)

Plugging in our explicit solutions to projection conditions in terms of one component Grass-
mann fields (see (2.33), (2.47) and (2.101)) yields

16πv2
2

∫
d2x

(
ψ∗1µ̂J

µ̂
1 − ψ

∗
2µ̂J

µ̂
2 − 2ψ∗1θJθ1 + 2ψ∗2θJθ2 + c.c.

)
. (2.83)

with µ̂ ∈ {r, t}. The ψAµ̂ are the gravitini of the (2, 2) Sugra multiplet in 2d whereas ψθA
are the superpartners of the dilaton, the dilatini.

2.4 Four-point function

In this subsection we will compute four point functions in the spirit of [36]. We will turn
on fluctuations in half of the hypermultiplet as described in section 2.3. This will backreact
and create fluctuations for gravitons, gravitini and photons. By expressing these in terms of
the hypermultiplet fluctuations and plugging that into the action one obtains terms which
are quartic in the hypermultiplet fluctuations. According to the AdS/CFT dictionary those
generate fourpoint functions in the dual CFT3. In a certain limit these match fourpoint
functions in the SYK model as was shown for gravitons and gauge fields in [1, 2]. This
is because the region in which the geometry differs from AdS2 × S2 contributes, in the
considered low frequency approximation, only contact terms which will be neglected. In
the dual CFT contact terms can be cancelled by local counterterms. In our case, the
calculation corresponding to integrating out gravitons and photons is quite close to the one
reported above. For this reason, we can be brief there. For the gravitini, the discussion
will be more complicated and, indeed, we will be able only to match a subsector of the
SYK result.

2.4.1 Integrating out gravitons

We consider metric fluctuations around our solution, impose spherical symmetry and fix
diffeomorphisms, i.e. we consider [1],

ds2 = U2 (r) (1 + htt (r, t)) dt2 − U−2 (r) dr2 − b2 (r) (1 + hθθ)
(
dθ2 + sin2 θdϕ2

)
, (2.84)

where U (r) and b (r) are solutions to the BPS equations (2.24) ensuring also that they
solve Einstein’s equations for the given background. For the computation of non-contact
contributions to the fourpoint function only the region of spacetime in which the geometry
can be nearly approximated by AdS2 × S2 is relevant. Here, ‘nearly’ means that U (r) is
taken to its Maldacena limit

U (r) = r

v1
(2.85)
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where r has been shifted by rh:
r − rh → r. (2.86)

For the S2 radius linear deviations from a constant are taken into account

b (r) = v2 + r, (2.87)
f (b) = f (v2) + rf ′ (v2) , (2.88)

where in the expansion (2.88) only the leading contribution is kept for each term. If no
further derivatives w.r.t. r are considered this is the limit given in [1] (adopted to our
notation)

U (r) = r

v1
, b (r) = v2, b′ (r) = 1. (2.89)

After integrating over the S2 the relevant part of the on-shell action is as in (2.68) with
φ = hθθ and the metric fluctuations are to be replaced by the corresponding solutions
of the linearised Einstein equations. This works in the same way as in [1]. The explicit
form of the energy-momentum tensor does not matter, here. In our case it will have
contributions from two real scalars u and v and also from the hyperinos satisfying the
projection condition (2.33). What matters later is that T µ̂ν̂ with µ̂, ν̂ ∈ {0, 1} matches
the result from the twisted chiral multiplet to be discussed in section 3.3. It is perhaps
worthwhile to point out that Tθθ is expressed in terms of Tµ̂ν̂ with µ̂, ν̂ ∈ {0, 1} by means
of energy-momentum conservation. For this it is important to take the nearly AdS2 × S2

limit (with b′ (r) = 1) because in the original Maldacena limit Tθθ would decouple from the
conservation law which would just be the two dimensional energy-momentum conservation.

The result for this sector of the on-shell action can be just copied from [1] (up to
differences in the signature)

Sg,os ∼
∫
dtdr

(
r2v3

2
v2

1
Trr

1
∂t
Ttr + v3

2r

v2
1
Ttr

1
∂2
t

Ttr

)
. (2.90)

To explicitly compute the four point function one should employ holographic renormaliza-
tion (for a review see [48]). For our purpose of comparing to results from integrating out
super Schwarzian modes the regularised version (r <∞) suffices.

2.4.2 Integrating out gaugefields

According to our discussion after (2.70) the angular components of the electromagnetic
current vanish. Spherical symmetry imposes vanishing angular dependence on the gauge
fields and we consider only fluctuations for At and Ar.

∂µ̂F
µ̂ν̂ = g2

2j
µ̂, (2.91)

where jµ̂ is given in terms of hypermultiplet fluctuations (2.73). Following [2] we gauge fix
At = 0 and solve (2.91) by

Ar = g2
2
r

v1
∂−2
t jr (2.92)

resulting in the on-shell action

SA,os ∼
∫
drdt

(
r

v1

)4
jr∂
−2
t jr. (2.93)
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2.4.3 Integrating out gravitini

Integrating out the gravitini reflects some new aspects and we will be more detailed, here.
We gauge fix

ψtA = 0, A ∈ {1, 2} . (2.94)

From spherical symmetry we deduced that JϕA is related to JθA (2.43). This is compatible
with the gravitini equations if we impose the last condition in (2.44). At the moment no
near horizon limit is considered. Then the remaining gravitini equations of motion are
from the variation of (2.37) plus (2.67) with respect to the gravitini

J t1 = −2
b
γ3∂rψθ1 −

b′

b2
γ3ψθ1 + b′U

b
γ123ψr1 + i

(
U ′

Ub
+ b′

b2

)
γ02ψ

∗
θ2+

+ i
2

[
Ub′

b
− U ′ +

(
Ub′

b
+ U ′

)
γ01

]
ψ∗r2 (2.95)

J t2 = −2
b
γ3∂rψθ2 −

b′

b2
γ3ψθ2 + b′U

b
γ123ψr2 + i

(
U ′

Ub
+ b′

b2

)
γ02ψ

∗
θ1+

+ i
2

[
U ′ − Ub′

b
+
(
Ub′

b
+ U ′

)
γ01

]
ψ∗r1 (2.96)

Jr1 = 2
b
γ3∂tψθ1 −

(
UU ′

b
+ U2b′

b2

)
γ013ψθ1 − i

(
UU ′

b
+ U2b′

b2

)
γ12ψ

∗
θ2 (2.97)

Jr2 = 2
b
γ3∂tψθ2 −

(
UU ′

b
+ U2b′

b2

)
γ013ψθ2 − i

(
UU ′

b
+ U2b′

b2

)
γ12ψ

∗
θ1 (2.98)

Jθ1 = −1
b
γ3∂tψr1 +

(
UU ′

2b + U2b′

2b2

)
γ013 ψr1 + 1

Ub2
γ123∂tψθ1 −

U ′

2b2 γ023 ψθ1−

− U

b2
γ023∂rψθ1 +

[(
Ub′

2b3 −
U ′

2b2
)
γ23 + i

(
Ub′

2b3 + U ′

2b2
)]

ψ∗θ2+

+ i
(
UU ′

2b + U2b′

2b2

)
γ12ψ

∗
r2 (2.99)

Jθ2 = −1
b
γ3∂tψr2 +

(
UU ′

2b + U2b′

2b2

)
γ013 ψr2 + 1

Ub2
γ123∂tψθ2 −

U ′

2b2 γ023 ψθ2−

− U

b2
γ023∂rψθ2 −

[(
Ub′

2b3 −
U ′

2b2
)
γ23 − i

(
Ub′

2b3 + U ′

2b2
)]

ψ∗θ1+

+ i
(
UU ′

2b + U2b′

2b2

)
γ12ψ

∗
r1. (2.100)

In the following we will reduce these four component spinor equations each to a one
component equation. In (2.33) we had reduced the four component hyperinos to one com-
ponent by imposing that the frozen scalars R and D do not change under susy transfor-
mation (together with chirality). This amounts to a reduction of the supercurrents (other
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projections will vanish) which we denote as

J
t/r
1 →


1
−i
−i
1

 J t/r1 , J
t/r
2 →


1
−i
i
−1

 J t/r2 ,

Jθ1 →


1
−i
i
−1

 Jθ1 , Jθ2 →


1
−i
−i
1

 Jθ2 .
(2.101)

For the gravitini we keep only those components whose equations are sourced by the pro-
jected supercurrents. This amounts to imposing projection conditions (2.44) or explicitly
to replace four component spinors by one component ones according to (2.47). In the
following we will use one component spinors only. For those, the remaining non trivial
gravitini equations read

J t1 = 2
b
∂rψθ1 + b′

b2
ψθ1 −

b′U

b
ψr1 − i

(
U ′

Ub
+ b′

b2

)
ψ∗θ2 + iUb

′

b
ψ∗r2, (2.102)

J t2 = 2
b
∂rψθ2 + b′

b2
ψθ2 + b′U

b
ψr2 − i

(
U ′

Ub
+ b′

b2

)
ψ∗θ1 − iUb

′

b
ψ∗r1, (2.103)

Jr1 = −2
b
∂tψθ1 +

(
UU ′

b
+ U2b′

b2

)
ψθ1 − i

(
UU ′

b
+ U2b′

b2

)
ψ∗θ2, (2.104)

Jr2 = −2
b
∂tψθ2 −

(
UU ′

b
+ U2b′

b2

)
ψθ2 + i

(
UU ′

b
+ U2b′

b2

)
ψ∗θ1, (2.105)

Jθ1 = 1
b
∂tψr1 +

(
UU ′

2b + U2b′

2b2

)
ψr1 + 1

Ub2
∂tψθ1 −

U ′

2b2ψθ1 −
U

b2
∂rψθ1+

+ iUb
′

b3
ψ∗θ2 −

i
2

(
UU ′

b
+ U2b′

b2

)
ψ∗r2, (2.106)

Jθ2 = 1
b
∂tψr2 −

(
UU ′

2b + U2b′

2b2

)
ψr2 −

1
Ub2

∂tψθ2 −
U ′

2b2ψθ2 −
U

b2
∂rψθ2+

+ iUb
′

b3
ψ∗θ1 + i

2

(
UU ′

b
+ U2b′

b2

)
ψ∗r1. (2.107)

From this set of equations one can derive the following conservation laws

∂tJ
t
1 + ∂rJ

r
1 −

UU ′

2
(
J t1 − iJ t∗2

)
+ 2b′

b
Jr1 − i U

′

2U J
r∗
2 + Ub′

(
Jθ1 − iJθ∗2

)
=
(
UU ′b′

b2
+ U2b′′

b2
+ UU ′′

b
− U2b′2

b3

)
(ψθ1 − iψ∗θ2) , (2.108)

i
(
∂tJ

t∗
2 + ∂rJ

r∗
2

)
− UU ′

2
(
J t1 − iJ t∗2

)
− U ′

2U J
r
1 + i2b

′

b
Jr∗2 + Ub′

(
Jθ1 − iJθ∗2

)
=
(
UU ′b′

b2
+ U2b′′

b2
+ UU ′′

b
− U2b′2

b3

)
(ψθ1 − iψ∗θ2) . (2.109)
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Due to the non-vanishing right hand sides in (2.108) and (2.109) these may not look like
proper conservation laws. However, imposing the BPS conditions (2.24) it is not difficult
to check that the right hand sides vanish. For us there remains a problem, though. In the
limit (2.89) the right hand sides do not vanish. This is because the limit is not consistent
with the BPS conditions (for consistency one would have to include corrections to U , i.e.
the AdS2 geometry, which we do not want to consider). Another, more technical, problem
is that the JθA enter only in the combination Jθ1 − iJθ∗2 . This means, that one cannot use
conservation laws to express the other combination, Jθ1 + iJθ∗2 , in terms of J tA and JrA.
This does not pose an immediate problem. However, when we will later integrate over the
super-Schwarzian modes in section 3.7 we will find that the result can be expressed by 2d
supercurrents only. The dilatino source corresponding to JθA will not appear. Both these
problems can be addressed by restricting ourselves to a subsector

ψθ1 − iψ∗θ2 = 0. (2.110)

Such a constraint puts the right hand sides of (2.108) and (2.109) to zero and also solves our
second problem since, in the on shell action, Jθ1 + iJθ∗2 couples just to the l.h.s. of (2.110).
From the gravitini equations (2.104) and (2.105) we learn that (2.110) constrains

Jr1 − iJr∗2 = 0. (2.111)

After imposing spherical symmetry, the projections (2.101), (2.47) and the restric-
tion (2.110) (implying (2.111)) the relevant part of the on-shell action takes the form∫

d4x
√
−g

(
ψ̄Aµ J

µ
A + h.c.

)
→

Sψ,os ∼
∫
drdt

[
(Jr1 + iJr∗2 )∗ (ψ1r − iψ∗2r)− 2

(
Jθ1 − iJθ∗2

)∗
(ψ1θ + iψ∗2θ) + c.c.

]
(2.112)

where on the r.h.s. of (2.112) one component fields appear. This can now be computed along
the following steps. First one expresses JrA by the gravitini equations (2.104) and (2.105).
The appearing time derivatives of ψAr can be expressed by means of gravitini equa-
tions (2.106), (2.107). Taking also the limit (2.89) one arives at

Sψ,os ∼
∫
dtdr

[
(ψθ1 + iψ∗θ2)∗

(
Jθ1 − iJθ∗2 + v1

2rv2
2
∂t (ψθ1 + iψ∗θ2)

)
+ c.c.

]
(2.113)

The ψθA can be expressed as solutions to (2.104) and (2.105)

ψθ1 + iψ∗θ2 = −v2
2 ∂
−1
t (Jr1 + iJr∗2 ) , (2.114)

whereas the combination of JθA can be replaced by means of the conservation laws (2.108),
(2.109). The final result reads

Sψ,os ∼
∫
dtdr

{
v2 (Jr1 + iJr∗2 )∗ ×

∂−1
t

[ 1
v1

(
J t1 − iJ t∗2

)
−
(2v1
r
∂r + v1

r2

)
(Jr1 + iJr∗2 )

]
+ c.c.

}
(2.115)
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where contact terms have been omitted. Notice that, when we go to the near horizon
limit (with b′ = 0), the last two terms in (2.115) can be expressed via the conservation
equations (2.78), (2.79) as a time derivative of a current component. Therefore, they give
rise to contact terms in that limit. The result (2.115) will be matched with one obtained
by integrating out super-Schwarzian modes in section 3.7.

3 Supersymmetric JT

In this section we would like to compare our results from the near horizon considerations
of the AdS4 supersymmetric black hole to a two dimensional configuration relating super-
symmetric JT gravity to the super-Schwarzian effective theory on the boundary. We will
consider Euclidean signature and take for the AdS2 metric

ds2 = dzdz̄

y2 = dx2 + dy2

y2 , z = x+ iy. (3.1)

The coordinate x can be viewed as Euclidean time. For the matter multiplet we will not
take directly what we get from dimensional reduction of half the hyper multiplet which
we turned on as a probe in the previous section. Instead, we will use two twisted chiral
respectively anti-chiral multiplets. They share many features with the probe of the previous
section. The major difference is that they are not charged under an extra U(1) but under
the U(1) mediated by the 2d graviphoton. This would correspond to a Kaluza Klein U(1)
in the dimensional reduction setup. The reason is that integrating out the graviphoton
can be directly associated to integrating out a bosonic mode in super reparametrisations
of the boundary. The dynamics of this boundary mode is contained in an effective super-
Schwarzian action. If instead, we considered the original U(1) gauge field we would need
to add an extra phase mode to the boundary as it was done in [2]. This would correspond
to a straightforward repetition of the calculation presented in [2]. In the following, we will
match results on a qualitative level not taking into account numerical factors. Further we
will not identify 2d probe fields with 4d probes but rather present a map between conserved
currents.

3.1 Minimal 2d N = (2, 2) supergravity

In this section we summarize the Euclidean 2d N = (2, 2) supergravity construction of [20].
With superspace coordinates

zπ =
(
z, θ+, θ̄+; z̄, θ−, θ̄−

)
(3.2)

we have rigid superspace derivatives

∂z , D+ = ∂

∂θ+ + 1
2 θ̄

+∂z , D̄+ = ∂

∂θ̄+ + 1
2θ

+∂z, (3.3)

∂z̄ , D− = ∂

∂θ−
+ 1

2 θ̄
−∂z̄ , D̄− = ∂

∂θ̄−
+ 1

2θ
−∂z̄, (3.4)
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which fulfil the anticommutation relations{
D+, D̄+

}
= ∂z ,

{
D−, D̄−

}
= ∂z̄ . (3.5)

In general complex conjugation for fermionic quantities such as the supercharges is given by

(Q+)∗ = Q̄− , (Q−)∗ = Q̄+ . (3.6)

Applying axial torsion constraints and solving them in conformal gauge gives the following
supercovariant derivatives

∇+ = eσ̄
(
D+ + i (D+σ) M̄

)
,

∇− = eσ̄
(
D− − i (D−σ) M̄

)
,

∇̄+ = eσ
(
D̄+ + i

(
D̄+σ̄

)
M
)
,

∇̄− = eσ
(
D̄− − i

(
D̄−σ̄

)
M
)
. (3.7)

Here, σ, σ̄ refer to the conformal factors since in U(1)A supergravity the geometric quantities
are given in terms of chiral/anti-chiral fields. M, M̄ are convenient linear combinations of
the Lorentz and U(1)A generators.

The superconformal factor takes on the following form on the AdS2 geometry,

σ = −1
2 log

( 1
2yc

)
− i

4yc
θ+θ− , (3.8)

where yc refers to the chiral basis. It is important to note here that the auxiliary field of
the gravity multiplet, which appears as the field multipliying the θ+θ− factor in (3.8) takes
on a non-zero vev. We will see in section 3.3 that this will furnish the mass of the probe
matter.

While the starting point of our considerations will indeed be the superspace described
above, it is important to see how the structures of (3.7) map onto x-space quantities as
the actual physical calculations will take place there.

The x-space covariant derivative, which can be deduced by projecting out superspace
coordinates in (3.7) is of the form

∇µ = ∂µ + JΩµ + Y2 Aµ , (3.9)

where J ,Y refer to the Lorentz and U(1)A generator respectively and Ωµ and Aµ are the
spin connection and graviphoton gauge field. Both Ωµ and Aµ are of course implied by the
bosonic term of the superconformal factor. Ωµ is determined by the real part of σ|, Aµ
by the imaginary part of σ|, where | denotes the projection on the leading component of a
multiplet. For the background (3.8) the imaginary part of σ| is zero, however we must allow
for fluctuations later. In section 3.3 it will be explained how (3.9) acts on the individual
component fields of the matter multiplets.
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3.2 N = (2, 2) JT supergravity

The first term of our two-dimensional action, is the N = (2, 2) JT action, which leaving
out the topological term, is given by [20]:

S = − 1
16πGN

∫
M

d2zd2θE−1Φ (R+ 2) + h.c. + 2
∫
∂M

dudϑdϑ̄
(
Φb + Φ̄b

)
K

 . (3.10)

E−1 refers to the chiral density, which is needed to correctly define chiral superspace inte-
gration, R to the chiral supercurvature and K to the extrinsic supercurvature. Furthermore,
the dilaton naturally also appears as a chiral and anti-chiral field with the field content
Φ ⊃ ϕ, λα, B and Φ ⊃ ϕ̄, λ̄α, B̄.

We should also think about what (3.10) implies in x-space and how it can be related
to the four-dimensional model of the previous section. We repeat the analysis of [20] for
the bosonic fields: the variations with respect to the supergravity auxiliary fields fix the
dilaton auxiliary fields to be related to the dynamical bosonic field of the dilaton, such that
one ends up with the following bosonic part of the JT action in x-space

SJT,bos. = i
16πGN

∫
dzdz̄√g (ϕ (R+ iF + 2) + ϕ̄ (R− iF + 2)) . (3.11)

Recall, that the supersymmetric JT action not only furnishes a dynamical term for metric
fluctuations, it also allows the gravitino to acquire a kinetic term, as the standard gravitino
term vanishes in two dimensions. In superconformal gauge the gravitino appears as the
fermionic components of the conformal factor. The coupling of dilatino to gravitino is

SJT,ferm. = 1
2πGN

∫
dzdz̄

[
λ+

(
∇z̄ψ+̄z −∇zψ+̄z̄ + i

2yψ−z̄
)

+

+ λ−

(
∇zψ−̄z̄ −∇z̄ψ−̄z −

i
2yψ+z

)
+ λ̄+

(
∇zψ+z̄ −∇z̄ψ+z + i

2yψ−̄z
)

+

+ λ̄−

(
∇z̄ψ−z −∇zψ−z̄ −

i
2yψ+̄z

)]
. (3.12)

Assuming real curvature constraints in (3.11) implies ϕ = ϕ̄ and hence a real Lagrange
multiplier coupled to the Ricci scalar, which is just the canonical form of the JT action.
In order for dilaton degrees of freedom to match, reality constraints have to be applied to
the dilatino modes. We apply Majorana conditions, which in our conventions amount to
λ+ = λ̄+ and λ− = λ̄−. This results in

SJT,ferm. = 1
4πGN

∫
dzdz̄

[
λ+

(
∇z̄ψ+̄z −∇zψ+̄z̄ + i

2yψ−z̄ +∇zψ+z̄ −∇z̄ψ+z + i
2yψ−̄z

)
+ λ−

(
∇zψ−̄z̄ −∇z̄ψ−̄z −

i
2yψ+z +∇z̄ψ−z −∇z̄ψ−z̄ −

i
2yψ+̄z

)]
. (3.13)

3.2.1 Graviphoton kinetic term

As we have introduced a gauge field in the covariant derivatives and will treat gauged
matter below, we should also add a kinetic term for the gauge field. First consider the
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supersymmetric Gauss-Bonnet term

S = − 1
16πGN

∫
M

d2zd2θE−1R+ h.c. . (3.14)

Here, when moving to x-space, the field strength drops out and one recovers the standard
Gauss-Bonnet term. Therefore a further term is required in order for a kinetic term for
the gauge field to appear,

S = − 1
2πGN

∫
M

d2zd2θd2θ̄R R̄ . (3.15)

Integrating to x-space gives

S = − i
4πGN

∫
M

d2z
√
gFzz̄F

zz̄, (3.16)

where the curvature R drops out. Here, we should specify exactly how the superconformal
factor is related to the graviphoton.

In general Im(σ)| constitutes the gauge field in Lorentz gauge Aµ = εµν∂
νIm(σ)|.

Hence,
∂z Im(σ)| = −1

2Az , ∂zIm(σ̄)| = 1
2Az , (3.17)

and also
∂∂̄Im(σ)| = 1

4Fzz̄ .
(3.18)

From a two-dimensional perspective the term (3.16) will reduce to the kinetic term of the
internal U(1)A mode at the boundary and from a four-dimensional perspective this term
corresponds to the Kaluza-Klein field strength.

3.2.2 JT supergravity and the super-Schwarzian

Just as delineated in [8] integrating out the dilaton as a Lagrange multiplier, constrains
the geometry to AdS2, while at the same time reducing the action to an integral over the
boundary, which in our supersymmetric case is [20]

Seff = − 1
8πGN

∫
∂M

dudϑdϑ̄(Φb + Φ̄b)K . (3.19)

Setting Dirichlet conditions for the dilaton and calculating the supercurvature then leaves
us with the explicit form for the effective action of the system:

Seff = − 1
2πGN

∫
∂M

dudϑdϑ̄ ϕb Schw
(
t, ξ, ξ̄;u, ϑ, ϑ̄

)
, (3.20)

where ϕb is the boundary value for the leading component of Φ and Schw
(
t, ξ, ξ̄;u, ϑ, ϑ̄

)
refers to the N = 2 super-Schwarzian, which is defined by

Schw
(
x, ξ, ξ̄;u, ϑ, ϑ̄

)
= (Dϑ̄ξ̄

′)
Dϑ̄ξ̄

− (Dϑξ
′)

Dϑξ
− 2 ξ′ξ̄′

(Dϑξ)(Dϑ̄ξ̄)
, (3.21)
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with ξ, ξ̄ general super-reparametrisations of the boundary and u, ϑ, ϑ̄ the boundary su-
perspace coordinates. The super-reparametrisations are subject to superconformal con-
straints (3.65).

Whereas for the bosonic case the Schwarzian action describes the soft mode of
reparametrisations of time, here the situation is generalised to superspace. The super-
Schwarzian constitutes the effective action of reparametrisations of time, and the fermionic
coordinates of the boundary superspace.

It should be mentioned that the x-space expressions for the kinetic terms of the gravity
multiplet given in the previous sections could also be reduced to boundary expressions
individually. Here, we have assumed the super-Schwarzian as the boundary effective action
due to the arguments presented in [20] and then projected down to x-space. Alternatively,
it should in principle also be possible to perform everything entirely in superspace.

3.3 Matter coupled to 2d N = (2, 2) supergravity

Now we also want to add supersymmetric matter to the JT supergravity theory. This is
done by straightforwardly adding a matter term, such that the matter field only couples to
the metric and not the dilaton. The field can then be considered to be moving on a pure
AdS2 geometry, such that the usual AdS/CFT dictionary can be applied.

Hence, we must only work out what the coupling of the superconformal factor to a
locally supersymmetric matter multiplet in superspace amounts to in components in x-
space.

3.3.1 Chiral vs. twisted chiral

For global supersymmetry, there are two main ways to build symmetric theories: setting
chiral constraints or setting twisted chiral constraints on a general superfield. While the for-
mer is charged under U(1)V and uncharged under U(1)A, the opposite is true for the latter.
Since we are interested in constructing matter gauged under the graviphoton of the super-
curvature multiplet, which can be related to a bosonic mode in super-reparameterisations
of the boundary, we must set twisted chiral constraints given by

D̄+χ = 0 , D−χ = 0 . (3.22)

Here a crucial difference arises to the Lorentzian case [49]. Whereas complex conjugation
of (3.22) implies the conditions for the associated twisted anti-chiral field for Lorentzian
singature, here, due to the complex conjugation properties elucidated in section 3.1 we
obtain the same constraints on the complex conjugated field, such that the usual kinetic
action would vanish. This implies that we have to choose χ to be real.

3.3.2 Supersymmetric action

For our analysis we must construct superfields which are covariantly twisted chiral, which
means that they fulfil the generalisation of (3.22) to curved space. Such that a covariantly
twisted chiral field is given by

∇̄+χcov = 0 , ∇−χcov = 0 , (3.23)
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and a covariantly twisted anti-chiral field by

∇̄−χ̄cov = 0 , ∇+χ̄cov = 0 . (3.24)

Note that the notation χ̄ here does not refer to complex conjugation. The solution of the
constraints (3.23) and (3.24) depends on the charge of the superfield, which we choose to be

[M,χ] = −iχ , [M, χ̄] = iχ̄ . (3.25)

In superconformal gauge we arrive at the following expressions for the definition of our
covariant fields

χcov. = e−σ−σ̄χ , χ̄cov. = e−σ−σ̄χ̄ . (3.26)

The formal expression for the D-term is∫
dzdz̄d2θd2θ̄E−1χcov χ̄cov . (3.27)

As we will see below, there will be no need to add another probe term.

3.3.3 X-space

We also have to define how the physical fields, which will appear in x-space after superspace
integration are defined.

The most convenient way to do this is by the projection method:

χcov| = f χ̄cov| = f̄ (3.28)

∇+χcov = ζ+ ∇−χcov = ζ− (3.29)

∇̄−χcov = ζ̄− ∇+χ̄cov = ζ̄+ (3.30)
1
2[∇+, ∇̄−]χcov = F

1
2[∇̄+∇−]χ̄cov = F̄ . (3.31)

We should also translate the superspace charge (3.25) into U(1)A and Lorentz charges in
x-space for the individual component fields (3.28).

For the bosonic components

[Y, f ] = 2 [Y, f̄ ] = 2 , (3.32)

and for the fermionic fields

[Y, ζ−/ζ+̄] = ζ−/ζ+̄ . (3.33)

For the Lorentz charge we naturally get

[J , ζ̄+/ζ+] = − i
2 ζ̄+/ζ+ (3.34)

[J , ζ̄−/ζ−] = i
2 ζ̄−/ζ− . (3.35)

This determines (3.9). In conformal gauge for (3.8) we have Ωz/z̄ = 1
2y .
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3.3.4 Breaking superconformal symmetry

We can now just take the formal expression (3.27) and perform the integration via the
chiral density method and then project onto the physical x-space fields via (3.28). So far
it would seem that as we have only included a D-term, we still have to add an F-term in
order to add masses to the fields and break conformal symmetry. However, as we will see,
the gauging itself breaks superconformal symmetry. This is due to a theorem first noted
in [51]:

In 2D, if the spin-0 field of a matter supermultiplet carries a non-trivial real-
ization of an internal symmetry charge that is gauged by a spin-1 field in the
superconformal multiplet, the action for the spin-0 field is neither conformally
nor superconformally invariant.

For the specific case at hand this occurs because in the component expansion of (3.27)
the matter fields couple to the supergravity auxiliary field of (3.8). Therefore the masses
are determined by the curvature itself.

3.4 Equations of motion and currents

Now performing the integration of (3.27) in superspace and then using (3.28) we arrive at
the two-dimensional matter action for the probe multiplet

i
2

∫
dzdz̄

[
(∂f)

(
∂̄f̄
)

+
(
∂̄f
) (
∂f̄
)

+ 1
y2 ff̄ −

1
2y ζ̄−∂ζ− − ζ̄+∂̄ζ+ − i 1

2y2 ζ̄−ζ̄++

+ fAz∂̄f̄ + fAz̄∂f̄ + 3
2yAzζ−ζ̄++

+ ψ̄+z
(
ζ̄+∂f̄

)
− iψ̄+z̄

(
el̄z̄ ζ̄−f̄

)
+ ψ̄−z̄

(
ζ̄−∂̄f

)
+ iψ̄−z

(
elzζ+f

)
+ h.c.

]
. (3.36)

The first line represents the kinetic terms, the second line the linearized coupling to the
gauge field and the last line the linearized coupling to the gravitinos.

Now focussing on the kinetic terms for a moment we can derive the equations of motion,
which take on a simple form by use of (3.9).

For the bosons

∂∂̄f = 1
2y2 f , (3.37)

∂∂̄f̄ = 1
2y2 f̄ , (3.38)

and for the fermions

∇z̄ζ+ = iel̄z̄ ζ̄−̄ , (3.39)
∇zζ− = −ielz ζ̄+̄ . (3.40)

For bosons we can immediately solve the equations asymptotically, which lead to normal-
izable mode y∆+ and non-normalizable mode y∆− with

∆± = 1± 3
2 . (3.41)
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Iteration of (3.39) with the complex conjugate of (3.39) (and vice versa) provides corre-
sponding asymptotics for fermions with

∆± = 1± 2
2 . (3.42)

3.4.1 Symmetry currents

It is now also important for us to write out the symmetry currents of the two-dimensional
action. There are currents linked to energy-momentum, U(1)A and supersymmetry con-
servation. In principle the currents constitute a multiplet in superspace. More precisely,
as we are breaking superconformal symmetry we are essentially introcuding a multiplet of
superconformal anomalies, which together with the multiplet of superconformal currents
fulfill a conservation equation in superspace. For our purposes we are only interested in
x-space expressions. A purely superconformal current such as the superstring fulfills the
algebraic constraints

Tµµ = 0 (γµSµ)α = 0 , (3.43)

As we have essentially gauged the tangent space group of the N = (2, 2) superstring
and also added massive perturbations, we will have corrections to (3.43). The energy-
momentum tensor acquires a non-zero trace and for the supercurrent, the components
S+z̄, S−z and their complex conjugates become non-zero.

In a linearized approach we can derive the U(1)A current by taking the variational
derivative of (3.36) with respect to the gauge field, which leads to

jAz = 1
2
(
f̄∂f − f∂f̄

)
+ 3

4y ζ+ζ̄+ , jAz̄ = 1
2
(
f̄ ∂̄f − f∂̄f̄

)
− 3

4y ζ−ζ̄− , (3.44)

where the A denotes the axial nature of these currents. The conservation equation is
given by

∂jAz̄ + ∂̄jAz = 0 . (3.45)

Due to the internal U(1)A charge the supercurrents split up into a parts consisting of
f, ζ+, ζ̄− and a part, which includes f̄ , ζ−, ζ̄+.

The former being

S+̄ z = ζ+∂f , S− z̄ = ζ̄−∂̄f ,

S+̄ z̄ = −iel̄z̄ ζ̄−f , S− z = ielzζ+f .
(3.46)

and the latter
S+ z = ζ̄+∂f̄ , S−̄ z̄ = ζ−∂̄f̄ ,

S+ z̄ = −iel̄z̄ ζ̄−f̄ , S−̄ z = ielz ζ̄+f̄ .
(3.47)

The conservation equations are

∂̄S+̄z + ∂S+̄z̄ −
i

4y
(
S+̄z + S+̄z̄

)
+ i

2yS−z̄ = 0 ,

∂̄S−̄z + ∂S−̄z̄ + i
4y
(
S−̄z + S−̄z̄

)
− i

2yS+z = 0 .
(3.48)
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The energy-momentum tensor is most conveniently expressed by splitting it up into
fermionic and bosonic contributions. For the bosons we have

T zzB = −4y4∂f∂f̄ , T z̄z̄B = −4y4∂̄f ∂̄f ,

T zz̄B = 2y2ff̄ ,
(3.49)

and for the fermions

T zzF = y3
(
ζ+∂ζ̄+ + ζ̄+∂ζ+

)
, T z̄z̄F = y3

(
ζ−∂̄ζ̄− + ζ̄−∂̄ζ−

)
,

T zz̄F = −iy2 (ζ−ζ+) .
(3.50)

Now for the combined energy momentum Tensor Tµν := TB;µν + TF ;µν the conservation
equations are

∂xTxx + ∂yTxy = 0 , ∂xTxy + ∂yTyy + 1
y

(Txx + Tyy) = 0 . (3.51)

3.5 Comparison to four-dimensional model

We see that at leading order we can let the JT model acquire the same form as the
dimensionally reduced model. For the gravity multiplet it is important to note that for the
JT term we have a priori already made an assumption by restricting the supercurvature to
a real number: Φ(R+ 2). This forces a real dilaton and hence also real dilatino structures.
In principle one could allow the supercurvature to be a general complex number, which
would fix the field strength to a specific value. In comparison the dimensionally reduced
model naturally assumes a real dilaton.

Furthermore, for the matter sector we recover behaviour already noticed in [1]. In
the dimensionally reduced model, an additional source dilaton coupling φT θθ appears,
which constitutes a deviation from pure JT behaviour as one does not consider matter to
dilaton couplings in that approach. Here, we acquire an additional dilatino to supercurrent
coupling: ψ̄Aθ SθA. Also, the field strength comes with the standard kinetic term and a linear
dilaton coupling, whereas the two-dimensional approach just yields the former. There is
a further deviation related to the different signatures. Recall, that the four-dimensional
calculations are performed in Lorentzian signature, whereas the two-dimensional model is
Euclidean. In order to add gauged matter, we had to use covariantly twisted chiral and
anti-chiral multiplets, which was only possible by applying an additional reality condition.
Hence, for two dimensions f and f̄ are not linked by complex conjugation and as such are
real, whereas for the dimensionally reduced model we had complex bosons. However, the
current conservations still match between the two approaches as do the masses.

3.6 Super-Schwarzian coupled to matter

Our general approach will follow the steps outlined in [1]. We work out the on-shell action
of the two-dimensional probe matter, such that it reduces to a boundary two-point form
coupled to fluctuations of the boundary. There are additional complications for the case at
hand as the boundary two-point function only takes on a elegant form in superspace. Hence,
we work out what the general form of two-point function should be at the boundary due to
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symmetry restrictions. Then for a general multiplet we allow for superspace fluctuations in
this two-point function, and match the resulting x-space expressions to the on-shell action
of the bulk pulled back to the boundary.

Furthermore, we can now calculate the four-point function by combining the previous
result with the effective Schwarzian action and integrating out the fluctuations.

To recapitulate, we do the following: work out the probe on-shell action implied
by (3.36) and reduce to the boundary. This will then be matched with a general re-
sult for the boundary two-point form in superspace dictated by symmetry considerations.
This superspace action will then in conjunction with (3.20) be used to integrate out the
fluctuations.

3.6.1 On-shell action

Now we want to determine the on-shell action, which will just reduce to a boundary ex-
pression. A regularised solution to (3.37) is

f (y, ω) = e−(y−ε)|ω| 1 + y |ω|
y(1 + ε|ω|)f (ω) , (3.52)

where a Fourier transform replacing Euclidean time x by ω has been performed. Solu-
tion (3.52) is unique in that it is regular at y →∞ and satisfies the boundary condition

f (ε, ω) = 1
ε
f (ω)

for some given f (ω). The solution of f̄ (y, ω) is the same with f (ω) replaced by f̄ (ω).
Note, that for more generic masses solution (3.52) is expressed in terms of modified Bessel
functions [52].

Analogously the solutions to (3.39) and (3.40) are given by

ζ+(y, ω) = e(ε−y)|ω| (1 + ωy + y|ω|)ζ(ω)
√
y(1 + ε|ω|) , ζ̄−(y, ω) = −e(ε−y)|ω| (1− ωy + y|ω|)ζ(ω)

√
y(1 + ε|ω|)

ζ−(y, ω) = e(ε−y)|ω| (1− ωy + y|ω|)ζ̄(ω)
√
y(1 + ε|ω|) , ζ̄+(y, ω) = −e(ε−y)|ω| (1 + ωy + y|ω|)ζ̄(ω)

√
y(1 + ε|ω|) .

(3.53)
As can easily be seen from (3.53), at the boundary there will only be two fermionic degrees
of freedom. Let us note the explicit boundary behaviour of the solutions above. The
bosonic boundary behaviour is

f (y, ω) ∼ f (ω)
(

1
y

+ ε2ω2

2y −
1
2ω

2y − ε3ω2|ω|
3y + 1

3ω
2y2
)
, (3.54)

with the analogous behaviour for f̄(y, ω). For the fermions we get

ζ+ (y, ω) ∼ ζ (ω)
(

1
√
y

+ ω
√
y + ε2ω2

2√y −
1
2ω

2y3/2 − ω|ω|y3/2
)
, (3.55)

ζ−(y, ω) ∼ ζ̄ (ω)
(

1
√
y
− ω√y + ε2ω2

2√y −
1
2ω

2y3/2 + ω|ω|y3/2
)
. (3.56)
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We define the following quantities for which frequency dependence is replaced by depen-
dence on Euclidean time

f∆− (x) =
∫

dωeiωxf (ω) , f̄∆− (x) =
∫

dωeiωxf̄ (ω) ,

f∆+ (x) =
∫

dx′
f∆− (x′)
[x− x′]4 , f̄∆+ (f) =

∫
dx′

f̄∆− (x′)
[x− x′]4 ,

(3.57)

and similarly for the fermions

ζ∆− (x) =
∫

dωeiωxζ (ω) , ζ̄∆− (x) =
∫

dωeiωxζ̄ (ω) ,

ζ∆+ (x) =
∫

dx′
ζ∆− (x′)
[x− x′]3 , ζ̄∆+ (x) =

∫
dx′

ζ̄∆− (x′)
[x− x′]3 .

(3.58)

In terms of (3.57), (3.58) the boundary behaviour (3.54), (3.55) amounts to (a dot denotes
a derivative w.r.t. Eucledian time x)

f (y, ω) ∼
f∆− (x)

y
−

2ε3f∆+ (x)
πy

+
2y2f∆+ (x)

π
−
ε2f̈∆− (x)

2y + . . . (3.59)

and for the fermions

ζ+(y, x) ∼
ζ∆−(x)
√
y

+
2iy3/2ζ∆+(x)

π
− i√yζ̇∆− +

2ε3ζ̇∆+

3π√y + . . . ,

ζ−(y, x) ∼
ζ̄∆−(x)
√
y
−

2iy3/2ζ̄∆+(x)
π

+ i√y ˙̄ζ∆− +
2ε3 ˙̄ζ∆+

3π√y + . . . .

(3.60)

3.6.2 Boundary super-space, two-point function

In superspace, the on-shell action should reduce to the form of a superconformal two-point
function. Therefore one must only know what the supertranslation invariant interval on
the boundary is and also the structure of chiral or anti-chiral multiplet to give the correct
form of the boundary two-point function. The boundary superspace was constructed in
the context of the N = 2 SYK model [17]. The super-derivatives are in our conventions

Dϑ = ∂ϑ + 1
2 ϑ̄∂u , Dϑ̄ = ∂ϑ̄ + 1

2ϑ∂u , (3.61)

with the anticommutation relations {
Dϑ, D̄ϑ̄

}
= ∂u . (3.62)

Chirality constraints can then be imposed via

Dϑχ̄ = 0 , Dϑ̄χ = 0 . (3.63)

Here χ, χ̄ are general boundary superfields. The N = 2 superreparametrisations(
u, ϑ, ϑ̄

)
→
(
x
(
u, ϑ, ϑ̄

)
, ξ
(
u, ϑ, ϑ̄

)
, ξ̄
(
u, ϑ, ϑ̄

))
, (3.64)
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are constrained by

Dϑξ̄ = 0 , Dϑx (u) = 1
2 ξ̄Dϑξ , Dϑ̄ξ = 0 , Dϑ̄x (u) = 1

2ξDϑ̄ξ̄ . (3.65)

Their dynamics are effectively described by the super-Schwarzian (3.21). One can
solve (3.65) for a general component structure (x denotes Euclidean time)

x(u) = u+ ε(u) + 1
2 [ϑη̄(u) + ϑη(u)]

ξ(u) = η(u) + ϑ

[
1 + σ(u) + 1

2 ε̇(u)
]

+ 1
2ϑϑ̄η̇(u) , (3.66)

ξ̄(u) = η̄(u) + ϑ̄

[
1− σ(u) + 1

2 ε̇(u)
]
− 1

2ϑϑ̄
˙̄η(u) .

We observe that the superreparametrisations can be expressed in x-space via four individual
modes ε, η, η̄, σ. The first, ε (u), is the single gravitational mode, which also appears in the
purely bosonic setting and as such is the boundary fluctuation, which is linked to the
energy-momentum coupling of the bulk on-shell action. In a similar spirit, σ represents
the boundary degree of freedom of gauge fluctuations Az/z̄ and η, η̄ constitute boundary
gravitinos and are hence linked to the supercurrent.

In order to find the supertranslation invariant boundary superspace structure, we de-
mand the following

D′ϑ∆bdy. = Dϑ̄∆bdy. = 0 . (3.67)
The unique solution is [28]

∆bdy. =
[
u− u′

]
− 1

2
[
ϑϑ̄+ ϑ′ϑ̄′ + 2ϑ̄ϑ′

]
. (3.68)

We can include fluctuations of the boundary super-curve by employing the relations (3.66)

∆bdy. =
[
t(u)− t′(u′)

]
− 1

2
[
ξ(u)ξ̄(u) + ξ′(u′)ξ̄′(u′) + 2ξ̄(u)ξ′(u′)

]
. (3.69)

We also have to define a boundary multiplet which should have a matter content consistent
with the boundary expansions of the bulk matter multiplet. Hence, we define a chiral and
an anti-chiral multiplet (with respect to the boundary derivatives). Both will consist of the
on-shell boundary degrees of freedom worked out in the previous section. Hence, for the
chiral multiplet we have

(
χbdy. ⊃ f∆− , ζ∆−

)
and for the anti-chiral one

(
χ̄bdy. ⊃ f̄∆− , ζ̄∆−

)
χbdy. (uC) = f∆− (uC) +

√
2ϑζ∆− (uC) , (3.70)

χ̄bdy. (uAC) = f̄∆− (uAC)−
√

2ϑ̄ζ̄∆− (uAC) . (3.71)

We end up with the following boundary two-point function coupled to super-curve fluctu-
ations1

Sχbdy. =
∫

dudϑdu′dϑ̄′ [Dϑ̄ξ (u)]3 [D′ϑξ′ (u′)]3

∆3
bdy.

χbdy. (u) χ̄bdy.
(
u′
)
. (3.72)

1Here, we assume that there is no mixing with any other dimension two operator. If there was such
a mixing we would have to add terms in which one of the χ’s is replaced by the corresponding boundary
mode. Indeed, there is another dimension two operator associated to the dilaton [10]. Since the 2d action
does not contain terms linear in the twisted multiplet fields and there is no direct coupling to the dilaton
we do not see how a corresponding mixing could arise in an on-shell action.
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Plugging in the structure (3.66) and performing the superspace integration of (3.72) will
give boundary couplings of the x-space matter fields to the fluctuations of (3.66). These
are quite lengthy expressions. Therefore, we give each matter coupling to one of the four
fluctuations individually.

Matching to bulk. The internal σ mode is coupled in the following way:
δSχbdy.

δσ
= 6

(
f̄∆−f∆+ − f∆− f̄∆+ + ζ∆− ζ̄∆+ − ζ̄∆−ζ∆+

)
. (3.73)

The first boundary gravitino mode coupling reads
δSχbdy.

δη
=
√

2
(
2f̄∆−

˙̄ζ∆+ − 3χ̄∆+ ζ̄∆− + 3 ˙̄f∆− ζ̄∆+

)
, (3.74)

and the second is
δSχbdy.

δη̄
=
√

2
(
−2χ∆− ζ̇∆+ + 3f∆+ζ∆− + 3ḟ∆−ζ∆+

)
. (3.75)

The boundary graviton couples according to
δSχbdy.

δε
=− 3

(
f∆−

˙̄f∆+ + f̄∆− ḟ∆+ + 2f∆+
˙̄f∆− + 2f̄∆+ ḟ∆−

)
+
(
3ζ̄∆+ ζ̇∆− + 3ζ∆+

˙̄ζ∆− − ζ̄∆− ζ̇∆+ − ζ∆−
˙̄ζ∆+

)
. (3.76)

In order to match the expressions with the four-dimensional results we must first express
the Schwarzian couplings via the on-shell symmetry currents (3.44), (3.46), (3.49), (3.50).
The boundary expressions are

T bdy.
xx = − 3

yπ

(
f∆− f̄∆+ + f̄∆−f∆+

)
,

T bdy.
xy = 1

π

(
−3f∆+

˙̄f∆− − 3f̄∆+ ḟ∆− + ζ̄∆− ζ̇∆+ + ζ∆−
˙̄ζ∆+ + ζ∆+

˙̄ζ∆−

)
,

T bdy.
yy = 1

πy

(
3f∆− f̄∆+ + 3f̄∆− + 2ζ̄∆−ζ∆+ + 2ζ∆− ζ̄∆+

)
.

(3.77)

We can now express (3.76) as
δSχbdy.

δε
= π(Tty − y∂tTyy) . (3.78)

The boundary expressions for the supercurrent components are

Sbdy.
+z =

f̄∆− ζ̄∆+√
yπ

+ 3i
√
yζ̄∆+ f̄∆−
π

− i
√
yζ̄∆+

˙̄f∆−
π

, Sbdy.
−̄z = −

f̄∆− ζ̄∆+√
yπ

,

Sbdy.
−̄z̄ = −

f̄∆− ζ̄∆+√
yπ

+ 3i
√
yζ̄∆+ f̄∆+

π
− i
√
yζ̄∆+

˙̄f∆−
π

, Sbdy.
+z̄ =

χ̄∆− ζ̄∆+√
yπ

,

Sbdy.
+̄z = −

f∆−ζ∆+√
yπ

− 3i
√
yζ∆− f̄∆+

π
+ i
√
yζ∆+ ḟ∆−
π

, Sbdy.
+̄z̄ =

f∆−ζ∆+√
yπ

,

Sbdy.
−z̄ =

f∆−ζ∆+√
yπ

− 3i
√
yζ∆−f∆+

π
+ i
√
yζ∆+ ḟ∆−
π

, Sbdy.
−z = −

f∆−ζ∆+√
yπ

.

(3.79)
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Equations (3.79) allow us to rewrite (3.74)

δSfbdy.

δη
= π√

2y
(
i
(
S+z − S+z̄ − S−̄z + S−̄z̄

)
+ y∂t

(
S+z − S+z̄ + S−̄z − S−̄z̄

))
. (3.80)

Similarly for η̄ we get

δSχbdy.

δη̄
= π√

2y
(
i
(
S+̄z − S+̄z̄ − S−z + S−z̄

)
+ y∂t

(
S+̄z − S+̄z̄ + S−z − S−z̄

))
. (3.81)

The values of the gauge current at the boundary are

jAz = 3i
2π
(
f∆− f̄∆+ − f∆− f̄∆+ + ζ̄∆−ζ∆+ − ζ∆− ζ̄∆+

)
,

jAz̄ = −jz .
(3.82)

This allows us to express (3.73) as

δSχbdy.

δσ
= 2πjAy . (3.83)

3.7 Four-point function/integrating out the fluctuations

To the action (3.72) we must also add the super-Schwarzian (3.21). This is a quite lengthy
expression. Fortunately, we only have to consider expressions at most quadratic in the
fields appearing on the r.h.s. of (3.66), leading to

SSchw =
∫

du
[
−1

2 ε̈ (u)2 + 2σσ̈ (u)− 4η
...
η̄ (u)− 4η̄

...
η (u)

]
. (3.84)

We now have to work out the equations of motion of the fluctuations in order to integrate
them out. We get contributions from the kinetic terms (3.84) and from the coupling of
these modes to matter, which was worked out in the previous subsection. The general form
for the resulting on-shell action is

S =
∫

du
[(
∂−4
u

δSχbdy.

δε

)(
δSχbdy.

δε

)
− 1

4

(
∂−2
u

δSχbdy.

δσ

)(
δSχbdy.

δσ

)
+ 1

4

(
∂−3
u

δSχbdy.

δη̄

)(
δSχbdy.

δη

)
+ 1

4

(
∂−3
u

δSχbdy.

δη

)(
δSχbdy.

δη̄

)]
, (3.85)

For comparison with results from the 4d calculation performed in section 2.4 we would like
to rewrite these expressions in terms of two dimensional integrals. To this end, one inserts
a ‘constructive identity’,

∫
dy∂y, and employs conservation equations [1]. This works well

for the first, third and fourth term in (3.85) leading to

Sε = −π
2

4

∫
dxdy y2

(
∂−2
x Txx

)
(2Txy − 2y∂xTyy) , (3.86)

Sηη̄ = π2i
8

∫
dxdy

(
∂−1
x

(
S+z + S+z̄ + S−̄z + S−̄z̄

) (
S+̄z − S+̄z̄ − S−z + S−̄

))
+ π2i

8

∫
dxdy

(
∂−1
x

(
S+̄z + S+̄z̄ + S−z + S−z̄

) (
S+z − S+z̄ − S−̄z + S−̄z̄

))
. (3.87)

– 34 –



J
H
E
P
0
1
(
2
0
2
1
)
1
8
6

For the contribution corresponding to integrating out the gauge field there is a subtlety
which has been pointed out in [2]. In our approximation (ωy � 1) jAy does not depend on y,
and therefore inserting

∫
dy∂y on jAy ∂−2

x jAy would return zero. The authors of [2] considered
just a charged scalar. Their argument is based on the observation that the current contains
the scalar and its complex conjugate in an antisymmetrised way. Therefore, only products
between different modes in an expansion like (3.54) contribute. At the given approximation
this includes the first two lowest powers in y yielding a factor of y (since ∆+ + ∆− = 1).
Another factor of 1/y appears due to a y derivative (in the first term on the r.h.s. of (3.44)).
The same arguments also apply to the fermionic contributions to the gauge current (where
the derivative w.r.t. y has been replaced by a division by y). In summary, the second term
in (3.85) can be rewritten as (for further details see [2])

Sσ = −π2v2

∫
dxdy

√
g (gyy)2 jAy ∂

−2
x jAy . (3.88)

Now, we would like to compare this to the results of section 2.4.3. To this end, we
replace the presently used 2d metric by one with the AdS2 radius restored and an additional
overall sign (z = x+ iy)

ds2 = −v2
1
dzdz̄

y2 . (3.89)

This changes, at most, a numerical factor in front of (3.86), (3.87) and (3.88). To make
contact with the 4d near horizon AdS2 factor in (2.6) with U(r) = v1/r (and b = v2, b′ = 0)
we perform the following coordinate transformation (including a Wick rotation)

x = − i
v1
t , y = v1

r
. (3.90)

Then energy momentum conservation (3.51) matches the one obtained in the near horizon
dimensional reduction (2.69). This motivates us to associate the involved energy momen-
tum tensors (up to an overall factor which would not change conservation laws). Indeed,
applying (3.90) on the corresponding part of the on-shell action Sε in (3.86) matches the
4d near horizon result (2.90). The same observation holds for the U(1) currents with
conservation laws (3.45) respectively (2.74). The onshell actions (3.88) and (2.93) agree
as well.

For the gravitini sector the situation is more complicated. Performing a Wick rotation
on spinorcomponents (such as the supercurrent) can be more involved (see e.g. [53–55]).
In our setup, where we have projected everything to one component spinors the problem
shows up as follows. Performing the transformation (3.90) on the equations (3.48) as well
as on their complex conjugates will result in four equations which are not anymore pairwise
related by complex conjugation. We proceed as follows. We just perform (3.90) on the two
equations written explicitly in (3.48), resulting in

∂tS
t
+̄ + ∂rS

r
+̄ −

r

2v2
1

(
St+̄ − S

t
−

)
− 1

2rS
r
− = 0, (3.91)

∂tS
t
−̄ + ∂rS

r
−̄ + r

2v2
1

(
St−̄ − S

t
+

)
− 1

2rS
r
+ = 0. (3.92)
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These, we compare to (2.78) and its complex conjugate. This suggests the following asso-
ciation

St+̄ = iJ t1 , Sr+̄ = iJr1 , St+ = iJ t∗1 , Sr+ = iJr∗1 ,

St−̄ = −J t2 , Sr−̄ = Jr2 , St− = −J t∗2 , Sr− = Jr∗2 . (3.93)

Then (2.79) and its complex conjugate should map the set of conservation laws obtained
from complex conjugation of (3.91) and (3.92). This indeed hapens if we apply the following
rules for taking the complex conjugate of (3.91) and (3.92) (α ∈ {t, r}),(

Sα+
)∗ = Sα−̄ ,

(
Sα−
)∗ = Sα+̄ , ∂∗t = −∂t. (3.94)

The relation between the current components is the same as it would be without perform-
ing a Wick rotation. Therefore one should take the complex conjugate of the coordinate
transformation (3.90) justifying the last assignment in (3.94). Note also, that the prescrip-
tion (3.94) does not apply to the right hand sides of (3.93). That means in particular
that after the replacement (3.93) the onshell action (3.86) is not manifestly real anymore.
Therefore we add its complex conjugate by hand. Finally, we arrive at

Sηη̄ ∼
∫
dudr

[
(Jr1 − iJr∗2 )∗ ∂−1

t

(
J t1 + iJ t∗2

)
+

+ (Jr1 + iJr∗2 )∗ ∂−1
t

(
J t1 − iJ t∗2

)
+ c.c.

]
, (3.95)

where now complex conjugation relates 4d components ((JµA)∗ = Jµ∗A ). To compare with
results from section 2.4.3 we impose (2.111) which removes the first contribution to (3.95).
Further we notice that (2.78) and (2.79) imply(2

r
∂r + 1

r2

)
(Jr1 + iJr∗2 ) = −2

r
∂t
(
J t1 + iJ t∗2

)
(3.96)

giving rise to a contact term in the near horizon limit. Hence, our expressions (2.115)
and (3.95) match within the given restriction (2.111).

4 Discussion

Summary. In the first half of the paper we embedded the solution of [37, 38] into a
supergravity solution with the same amount of susy encompassing a hypermultiplet. This
requires the choice of a moment map (and a corresponding Killing vector on the quater-
nion manifold) and choice of vacuum expectation values for the four hyperscalars. As a
next step the dimensional reduction (in s-wave approximation) of the supergravity theory
is performed in the near horizon limit, hence on AdS2 × S2. To be more exact, we include
fluctuations of photon, metric, gravitini and of the matter multiplet. For the latter we only
let half of the hypermultiplet fluctuate, namely u, v and one projection of the hyperinos,
such that we acquire a proper two-dimensional multiplet. Contributions containing the
background magnetic fieldstrength or the angular components of the spin connection drop
out due to the spherical integration, the BPS conditions and the choice of projection, such
that a fully two-dimensional theory is furnished. The effective two-dimensional cosmologi-
cal constant is given by a linear combination of the magnetic charge and the FI constants.
We observe the dilaton coupled to metric fluctuations, an electric field strength term, an
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electric field strength to dilaton coupling and gravitini fluctuations coupled to the dilatini.
The spherical fluctuations hθθ, ψθ1, ψθ2 constitute the dilaton multiplet. Furthermore, we
also see that deviations from pure JT supergravity occur due to additional source to dilaton
multiplet couplings. We also calculate the four-point function in a dual CFT following the
general prescription [36] within the same limits as discussed in [1].

In the second half of the paper we repeat the construction of [20] for N = (2, 2)
Euclidean JT supergravity, while allowing the gravitini and graviphoton field strength to
fluctuate. We focus on real supercurvature constraints, which take out half the degrees
of freedom of the dilaton multiplet. Gauged matter can be added in form of a covari-
antly twisted chiral and anti-chiral multiplet and additional reality constraints due to the
Euclidean signature. Somewhat unusually only a D-term is necessary to enable gauged,
massive matter fields. The masses are determined by the curvature, such that they agree
with the dimensionally reduced near-horizon theory. The D-term furthermore gives a lin-
earized supergravity theory. Taking variational derivatives with respect to graviphoton,
metric and gravitini furnishes symmetry currents. We show how the on-shell action of
the matter coupled to the gravity multiplet fluctuations may be described via the bound-
ary superspace two-point function. Then in combination with the super-Schwarzian up
to quadratic order, we may integrate out the gravity multiplet fluctuations, such that we
end up with a four point function described in terms of the currents. We compare our
results with the computation obtained in the near horizon calculation of the four dimen-
sional theory in which next to leading corrections to the S2 radius have been taken into
account. When expressed in terms of energy-momentum tensor and gauge current the re-
sults match. For the contribution containing the supercurrent the situation is a bit more
involved. The limit in which only corrections to the S2 radius are considered is not com-
patible with BPS conditions. Supercurrents are only conserved if we impose an additional
projection. Up to terms vanishing under that projetion results from integrating out the
fermionic super-Schwarzian mode match the four dimensional calculation.

N = (2, 2) JT quantum supergravity. As mentioned above, N = (2, 2) JT super-
gravity encompasses a larger space of options then might be guessed when just performing
the s-wave reduction. The dimensionally reduced theory naturally assumes a real dila-
ton and hence half the degrees of freedom available to the most general two-dimensional
theory. A priori the two-dimensional theory might use Φ(R + α), with α being a general
complex number. This would fix the graviphoton to a specific background value. It would
be interesting to explore the full range of solutions of this theory.

This is especially interesting with respect to the results of [56, 57]. By use of [56, 58] cal-
culated exact partition functions for JT gravity with arbitrary genus and arbitrary number
of asymptotic boundaries. The partition functions are (non-uniquely) non-perturbatively
completed by a genus expansion of a specific matrix integral. While [57] extended these
results to the N = 1 case,2 it would be interesting to see the extension to N = 2 for the
aforementioned reasons, although it is not quite clear how feasible this is.

2Supersymmetric extensions of JT gravity have been considered in this context also in [59–61].
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Localization. As we have constructed a Euclidean off-shell formulation of an N = 2
supergravity theory coupled to matter, it is natural to consider localization techniques.
For the general Schwarzian theory this was performed in [21] for the bosonic case and also
N = 1 and N = 2. It would be interesting to first of all, localize the minimal sugra theory
on the AdS2 background. The assumption would be that this should in leading order match
the Schwarzian result for the partition function with differences perhaps arising in higher
order corrections. Then one might attempt to perform this while also including the chiral
twisted multiplet.

Other settings. We have chosen the specific background of [37, 38] as the near horizon
enhancement matches with the two-dimensional theory first presented in [20] and for the
fact that the AdS4 asymptotics of [37, 38] allow for the construction of a four-dimensional
four point function via the AdS/CFT dictionary. However, the most common four di-
mensional BPS solutions exhibit Minkowski asymptotics with near horizon enhancement
to full BPS. It would be interesting to try and understand if these kind of solutions can be
described via super-Schwarzian asymptotics.

Acknowledgments

We would like to thank Max Wiesner for collaboration on this project at the initial stage.
Preliminary results had been reported in [62]. We would also like to thank Hans Jockers
and Jun Nian for numerous discussions and Kyril Hristov for correspondence. This work
was supported by “Bonn-Cologne Graduate School for Physics and Astronomy” (BCGS).

A Four-dimensional supergravity conventions

In this appendix, we summarize the most important conventions taken from [41, 44]. We
use the mostly minus form of the Minkowski metric ηab = diag(1,−1,−1,−1). The flat
space Dirac algebra of the γ-matrices is

{γa, γb} ≡ 2ηab , (A.1)

with γab given by the commutator

γab ≡
1
2 [γa, γb] . (A.2)

The chirality matrix is defined as

γ5 ≡ −iγ0γ1γ2γ3 = iγ0γ1γ2γ3 . (A.3)

The γ matrices are chosen to be purely imaginary (γµ)∗ = −γµ and furthermore

γ†0 = γ0 , γ0γ
†
i γ0 = γi , γ†5 = γ5 , i = 1, 2, 3 . (A.4)
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The γ5 eigenvalues of the fermions are

γ5

ψ
µ
A

λiA

ζα

 =

ψ
µ
A

λiA

ζα

 , (A.5)

γ5

ψ
µA

λiA
ζα

 = −

ψ
µA

λiA
ζα

 , (A.6)

where ψµA is the gravitino, λiA the gaugino and ζα the hyperino. For this choice of γ5 for
chiral fermions we get

λ∗A = λA , ψ∗µA = ψAµ , ζ∗α = ζα. (A.7)

In terms of the Pauli matrices the representation of the γ-matrices is

γ0 =
(

0 σ2

σ2 0

)
, γ1 =

(
iσ3 0
0 iσ3

)
, γ2 =

(
0 −σ2

σ2 0

)
, γ3 =

(
−iσ1 0

0 −iσ1

)
, (A.8)

where σi, i = 1, 2, 3 denote the Pauli matrices,(
σ1
)
A

B =
(

0 1
1 0

)
,

(
σ2
)
A

B =
(

0 −i
i 0

)
,

(
σ3
)
A

B =
(

1 0
0 −1

)
. (A.9)

The SU(2) indices A,B are raised and lowered via the antisymmetric matrix

εAB =
(

0 1
−1 0

)
, εAB =

(
0 1
−1 0

)
such that we get(

σ1
)
AB

=
(

1 0
0 −1

)
,
(
σ2
)
AB

=
(
−i 0
0 −i

)
,
(
σ3
)
AB

=
(

0 −1
−1 0

)
(A.10)

and (
σ1
)AB

=
(
−1 0
0 1

)
,

(
σ2
)AB

=
(
−i 0
0 −i

)
,

(
σ3
)AB

=
(

0 1
1 0

)
. (A.11)

In the hypermultiplet sector the indices α, β are raised and lowered via the antisymmetric
symplectic matrix Cαβ

Cαβ =
(

0 −1
1 0

)
. (A.12)

With the charge conjugation matrix

C = iγ0 , (A.13)

and
λA = i (λA)T γ0 , (A.14)

chiral fermions satisfy (
λA
)∗

= λA . (A.15)
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