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Abstract

We review the construction of two topological invariants of smooth manifolds -
Morse and Floer homology and sketch the construction of isomorphism between
them, that intertwines with ”variation of parameters”.

1. Introduction: Topological invariants

Let M be a smooth manifold. An algebraic object A(M) associated to M
that does not change under continuous deformations of M is a topological
invariant of M . This algebraic object A(M) can be, for example, an integer,
a group, a ring, a differential graded algebra, etc. Since a coordination
is a rule of an assignment a number to some mathematical object, the
association M �→ A(M) is in fact a ”generalized coordination”. It translates
the problem of distinguishing (classes of homeomorphic) manifolds from
topological to algebraic langauge: if A(M) �= A(N) then M �= N .

There are, in some sense, two ways of constructing topological invariants -
direct and indirect way.

If one uses only topology of M to construct topological invariant, then we
say that it is obtained in a direct way. This is illustrated in the following
classical examples.

Example 1 The simplest example is the number of connected components
of M , π0(M) (see Figure 1).

∗ Work partially supported by Ministry of Science and Environmental Protection of
Republic of Serbia Project #144020.

† e-mail address: jelenak@matf.bg.ac.yu
‡ e-mail address: milinko@matf.bg.ac.yu

263
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M =

N =

Figure 1:π0(M) �= π0(N)

Example 2 The homotopy classes of based loops in M form a fundamental
group π1(M) (see Figure 2).

π1(M) = 0
M = S2

M = S1 × S1

π1(M) = Z ⊕ Z

Figure 2:Fundamental group π1

Example 3 A natural generalization of the Example 1 and Example 2 are
higher homotopy groups πn(M), homotopy classes of based n− spheroids
(continuous maps Sn �→ M).

Example 4 The second natural generalization are homology and cohomo-
logy groups, Hk(M) and Hk(M), for k ≥ 0.

The indirect way to make a topological invariant uses some auxiliary struc-
ture (for example, Riemannian metric, symplectic form, smooth function,
etc.) to construct an algebraic object. The crucial step of this construc-
tion is to prove that the obtained algebraic object is independent of the
auxiliary structure, and thus that obtained object is indeed a topological
invariant.

Example 5 For given smooth manifold M take a continuous function

f : M → R
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(as an auxiliary structure). Denote by N(f) the number of its minima (or
maxima). If N(f) is strictly greater than zero, for any such function f ,
then M is compact. The converse is obviously true. Here the auxiliary
structure is f , but the claim N(f) > 0 is independent on particular choice
of f .

The relation between critical points of functions and topology of smooth
manifolds (the simplest case is the Example 5) is formalized in Morse theory.

2. Morse theory

A smooth function on a smooth manifold, f : M → R is called Morse if
all its critical points are non-degenerate, i.e. if the matrix d2f(p) is non -
singular for every critical point p. According to classical result called Morse
Lemma one can choose coordinates (x1, x2, . . . , xn) in the neighborhood of
p so that

f(x1, x2, . . . , xn) = f(p) − x2
1 − x2

2 − . . . − x2
k + x2

k+1 + x2
k+2 + . . . + x2

n

where k is the number of negative eigenvalues of the matrix d2f(p). The
number k is independent of the choice of coordinates and it is called Morse
index of f at critical point p. An obvious consequence of Morse Lemma is
that the critical points of Morse function are isolated.
Suppose that M is compact; in that case the set of critical points of f is
finite. Morse chain complex is a Z2–vector space CM∗(f) generated by the
set of these critical points. Here ∗ stands for grading, which is determined
by Morse index of f . Fix a Riemannian metric g on M and define the
gradient vector field of f , ∇f , to be the g–dual of a differential df , i.e.

df(x)(ζx) = g(ζx,∇f(x)), x ∈ M, ζx ∈ TxM. (1)

The number of gradient trajectories that connect two critical points defines
the boundary operator on CM∗(f). More precisely, for two critical points
p, q of f , let n(p, q) be the number (mod Z2) of solutions of ordinary
differential equation

⎧⎨
⎩

dγ

dt
+ ∇f(γ) = 0

γ(−∞) = p, γ(+∞) = q
(2)

(see Figure 3).

p

q

γ̇ = −∇f

Figure 3: Gradient trajectory
The boundary operator is defined by

∂ : CM∗(f) → CM∗−1(f), ∂(p) :=
∑

q∈Crit(f)

n(p, q)q.



266 J. Katić and D. Milinković

Morse homology groups HM∗(f) are the homology groups of CM∗(f) with
respect to ∂, i.e:

HM∗(M) :=
Ker ∂

Im ∂

The proof of ∂2 = 0 is based on the following cobordism argument: the
boundary of one - dimensional manifold of gradient trajectories that con-
nect critical points p and q of Morse indices ∗ and ∗ − 1 is the union of
”broken” trajectories that appear in the definition of ∂.
Morse homology is a topological invariant of M constructed indirectly by
means of two auxiliary structures: a Morse function f and a Riemannian
metric g. As we said, the crucial step is to prove the independence of
an auxiliary structure. For two Morse functions fα, fβ there exists an
isomorphism

Tαβ : HM∗(fα) → HM∗(fβ).

It is defined again by counting the numbers of the solutions of an ordinary
differential equation. More precisely, for a fixed R0 > 0, let fαβ

t be a
t−dependent family of smooth functions such that fαβ

t = fα
t , for t ≤ −R0

and fαβ
t = fβ

t , for t ≥ R0. Denote by nαβ(pα, pβ) the number of solution
of

⎧⎨
⎩

dγ

dt
+ ∇fαβ(γ) = 0

γ(−∞) = pα, γ(+∞) = pβ.
(3)

The isomorphism Tαβ is defined on generators by:

Tαβ(pα) :=
∑

pβ∈Crit(fβ)

nαβ(pα, pβ)pβ.

In a similar way one shows the independence of Riemannian metric. More-
over, the following important theorem holds.

Theorem 1 Morse homology groups HM∗(f) are isomorphic to singular
homology groups H∗(M ;Z2).

We refer the reader to [18, 26, 25] for different proofs of Theorem 1. For
more details about Morse theory see also [17, 19, 20, 27, 29].
One generalization of Morse theory is Floer theory, developed by Andreas
Floer in a series of papers [3, 4, 5, 6, 7, 8, 9, 10]. It is based on Witten’s
work on supersymmetry [29] and Gromov’s work on pseudo holomorphic
curves [12].
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3. Floer thoery

Although at first appears that the natural ambient for Morse theory is
Riemannian geometry (as the definition of gradient flow relies upon the
presence of Riemannian metric; recall (1)), it turns out that Morse theory
is essentially symplectic in its nature. Indeed, recall that for any smooth
manifold M its cotangent bundle T ∗M carries canonical symplectic struc-
ture ω0 (see [2]). The graph of the differential df of any smooth function
f : M → R

Γ(df) := {df(x) | x ∈ M} ⊂ T ∗M

is a Lagrangian submanifold in T ∗M , i.e. ω0 vanishes on its tangent space
and its dimension is the half of the dimension of the ambient manifold
T ∗M . The property of f being Morse can be rephrased as a transversality
of Γ(df) to the zero–section OM in T ∗M , and the solutions of gradient flow
equation (2) are in one-to-one correspondence with the solutions Cauchy–
Riemann equation ∂̄u = 0 in T ∗M with Lagrangian boundary condition
(see [6]). This observation generalizes in a following way.
Let P be a symplectic manifold and L0, L1 ⊂ P two Lagrangian subman-
ifolds. Floer chain groups CF∗(L0, L1) are Z2–vector spaces generated by
the set L0∩L1. Under certain conditions (see [21, 22] and, for more general
results,[11]), Floer homology HF∗(L0, L1) for the pair L0, L1 is defined as
the homology group of CF∗(L0, L1). The boundary operator is defined by

δ : CF∗(L0, L1) → CF∗−1(L0, L1), δ(x) :=
∑

y∈L0∩L1

n(x, y)y,

where n(x, y) is the number (mod Z2) of holomorphic discs u that satisfy
Cauchy - Riemann equation with Lagrangian boundary conditions:

⎧⎪⎪⎨
⎪⎪⎩

∂u

∂s
+ J

∂u

∂t
= 0

u(s, i) ∈ Li, i ∈ {0, 1}
u(−∞, t) ≡ x, u(+∞, t) ≡ y, x, y ∈ L0 ∩ L1

(4)

(see Figure 4).

ux y

L0

L1

Figure 4:Holomorphic disc u
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Although only the almost complex structure J figures in the explicit for-
mula (4) in the definition of δ, the symplectic structure is in fact the most
important ingredient in construction of Floer homology.
In particular, let P = T ∗M be a cotangent bundle over a compact manifold
M , H : T ∗M → R a smooth Hamiltonian, XH a corresponding Hamiltonian
vector field and φH

t Hamiltonian flow, i.e. the smooth flow locally given as
the solution of

dq

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂q
(5)

in canonical coordinates (q, p). If L0 = OM is a zero section, and
L1 = φH

1 (L0) a Hamiltonian deformation of L0, then the system (4) is
equivalent to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u

∂s
+ J

∂u

∂t
= JXH(u)

u(s, i) ∈ L0 = OM , i ∈ {0, 1}
u(−∞, t) = φH

t ((φH
1 )−1)(x),

u(+∞, t) = φH
t ((φH

1 )−1)(y), x, y ∈ OM ∩ φH
1 (OM )

(6)

so the boundary operator is defined by the number of perturbed holomor-
phic ”tunnels” with boundary on OM , instead of holomorphic discs (4) (see
Figure 5).

OM

x(t)
y(t)

Figure 5: Perturbed holomorphic tunnel u

Note that the equation (6) is inhomogeneous (unlike the homogeneous equa-
tion (4)) and that the boundary conditions in (4) and (6) are different.
The equivalence of (4) and (6) follows from simple change of variables. It
is worthwhile mentioning that the equation (6) can be considered as the
gradient flow of a classical Hamiltonian Action Functional

AH(γ) :=
∫

γ
p dq − Hdt

(here p dq is the Liouville form on T ∗M) on the space of paths starting and
ending on OM . Its solutions are two-parameter families of paths and they
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connect two critical points of AH (i.e. two solutions of (5) that start and end
on OM ). Hence the Floer theory (in this setting) can be considered as the
infinite dimensional Morse theory of the Action Functional. It turned to be
fruitful to consider the Floer homology groups together with the filtration
given by the level sets of AH . This gives rise to interesting numerical
invariants of Lagrangian submanifolds (see [23] for survey and [28], [16] for
finite–dimensional analogues based on construction in [15]).

Denote Floer homology groups HF∗(OM , φH
1 (OM )) by HF∗(H). As before,

one needs to prove that they are independent on the auxiliary structure,
which is in this case a Hamiltonian H. For two Hamiltonians Hα,Hβ the
corresponding Floer homology groups HF∗(Hα) and HF∗(Hβ) are isomor-
phic. The isomorphism is defined by counting the solution of a partial dif-
ferential equation similar to (6). More precisely, fix R0 > 0. Let Hαβ(s, t, x)
be a smooth function such that Hαβ(s, t, x) = Hα(t, x), for s ≤ −R0 and
Hαβ(s, t, x) = Hβ(t, x), for s ≥ R0. The isomorphism

Sαβ : HF∗(Hα) → HF∗(Hβ)

is defined by
Sαβ(xα) :=

∑
xβ

n(xα, xβ)xβ

where n(xα, xβ) is a number (mod Z2) of the solutions of the system
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u

∂s
+ J

∂u

∂t
= JXHαβ (u)

u(s, i) ∈ L0, i ∈ {0, 1}
u(−∞, t) = φHα

t ((φHα

1 )−1)(xα), u(+∞, t) = φHβ

t ((φHβ

1 )−1)(xβ),

xα ∈ OM ∩ φHα

1 (OM ), xβ ∈ OM ∩ φHβ

1 (OM ).

(7)

Floer [6] proved that Floer homology is isomorphic to the singular ho-
mology of M . The isomorphisms between Floer and singular homologies
is established though reduction of Floer homology to Morse homology in
a following way. Any C2–small Morse function f : M → R can be ex-
tended to a Hamiltonian Hf : T ∗M → R so that the intersection points
OM ∩ φ

Hf

1 (OM ) are in one-to-one correspondence with critical points of f
and the solutions of (3) are in one-to-one correspondence with the solutions
of (6) (see [6] for details). Hence we have the isomorphisms

H∗(M ;Z2) ∼= HM∗(f) ∼= HF∗(Hf ).

By now we sketched the proofs of independence of parameters and the
isomorphism between Morse and Floer homologies. However, we have not
proved yet the functoriality of Morse - Floer theory, i.e. the commutativity
of the diagram
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HF∗(Hα) Sαβ−→ HF∗(Hβ)
↑ ↑

HM∗(fα) T αβ−→ HM∗(fβ).

(8)

The commutativity of (8) is not obvious because of the fact that the iso-
morphisms Tαβ and Sαβ are defined by means of two analytically different
tasks: ordinary differential equation and elliptic partial differential equa-
tion. Motivated by [24], we overcome this difficulty by introducing objects
of mixed type that incorporate both gradient flow and Cauchy - Riemman
equation. So the isomorphism between Morse and Floer homology is estab-
lished for any Morse function f on M and any Hamiltonian H on T ∗M (not
only the special one Hf ), by counting the mixed type objects, i.e. pairs
(u, γ) of ”tunnels” and gradient trajectories

u : (−∞, 0] × [0, 1] → T ∗M, γ : [0,+∞) → M

that satisfy the equation
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dγ

dt
= −∇f(γ(t)),

∂u

∂s
+ J

∂u

∂t
= XρRH(u)

u(∂([0,+∞) × [0, 1])) ⊂ OM ,

u(−∞, t) = x(t), γ(+∞) = p,

γ(0) = u(0, 1
2)

(9)

(see Figure 6). Here ρR : (−∞, 0] → R is smooth function such that
ρR(t) = 1, for t ≤ −R − 1 and ρR(t) = 0, for t ≥ −R.

OM

p
x(t)

Figure 6: Mixed type object (u, γ)

Using this isomorphism instead of one used in Floer’s proof one can prove
that the diagram (8) commutes. The proofs of the facts that the homomor-
phism defined by (9) is well defined, that it is an isomorphism and that the
diagram (8) commutes is based on certain cobordism arguments and the
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fact that the number of points in the boundary of one - dimensional mani-
fold is even. Namely, consider one - dimensional component of a manifold
of mixed - type objects as in the Figure 6. One can show that its boundary
consists of the two types of ”broken” mixed type objects (see Figure 7)
and using this fact one can prove the mentioned claims (see [14, 13] for the
details).

OM

Figure 7: The boundary of one-dimensional manifold of mixed type
objects

The generalisation of the construction presented above from cotangent bun-
dles to more general symplectic manifolds does not give isomorphisms, but
only homomorphisms (see [1]). In contrast to this, similar question in
Floer homology for periodic orbits for more general symplectic manifolds
was resolved by Piunikhin, Salamon and Schwarz [24]. Instead of the iso-
morphisms described above, they constructed the isomorphisms defined
by counting the intersection numbers of spaces of perturbed holomorphic
cylinders and spaces of gradient trajectories.
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