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Abstract
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Non-perturbative aspects of quantum field theories are notoriously hard to explore. In this
thesis we study applications of two different techniques that give non-perturbative results for
supersymmetric quantum field theories.

The first exact technique we use is supersymmetric localization which allows for the exact
computation of partition functions on compact manifolds and squashed spheres of various
dimensions are the manifolds of our choice. In three dimensions we use the squashed sphere
partition functions to test dualities of N=4 gauge theories. For a squashed sphere preserving six
supercharges we lift analytic results from the round sphere. On a squashed sphere preserving 4
supercharges we numerically evaluate the ABJM and N=8 super Yang-Mills (SYM) partition
functions at low rank and find equality within estimated error margins. In four dimensions we
present a framework to obtain partially integrated correlators of 4d N=2 gauge theories from
their localized partition functions. Moreover we discuss the general form of the free energy of
N=2 superconformal field theories on deformed four-dimensional spheres and use localization
in N=4 SYM for an explicit example. In seven dimensions we study the super Yang-Mills on
a sphere and propose a contribution of three-dimensional membrane instantons to its localized
partition function. We then outline an approach to study the weak negative coupling limit of the
SYM theory on the seven-sphere.

As the second approach to exact results we use the integrability of N=4 SYM and ABJM
theory in the planar limit. Using the quantum spectral curve we compute the Hagedorn
temperature for finite coupling both in N=4 SYM and ABJM theory. On the dual AdS side we
use an effective model to compute subleading terms in the curvature expansion of the Hagedorn
temperature. We use the numeric CFT calculation to conjecture the analytic form of an unfixed
coefficient in the effective model.
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1. Introduction

Quantum field theory forms the backbone of our current understanding of par-
ticle physics. The most prominent example of a quantum field theory, the
Standard Model of particle physics, has been immensely successful in de-
scribing the fundamental particles and their interactions. The Standard Model
describes with great precision the processes in experiments such as the Large
Hadron Collider at CERN. Crucial for the quantum field theory’s success with
collider experiments is that the interactions at the center of these experiments
are weak. This allows us to use perturbative quantum field theory techniques
for the description. However beyond the perturbative regime explicit compu-
tations in a generic quantum field theory are difficult. One example for this
comes from gauge theory and more specifically Yang-Mills theory. The mass
gap in Yang-Mills theory is one of the unsolved Clay Millenium Prize prob-
lems [1].

One path towards non-perturbative results in quantum field theory starts by
imposing supersymmetry. Supersymmetric quantum field theories were first
considered in [2,3] and have since flourished into a productive playground for
studying quantum field theories. The symmetry between bosons and fermions
imposed by supersymmetry is very constraining for a quantum field theory
and therefore makes explicit computations more accessible. A series of exact
techniques for non-perturbative calculations in supersymmetric quantum field
theories have been developed. In this thesis we will discuss applications of
two of the approaches.

Supersymmetric localization has made the computation of partition func-
tions in supersymmetric gauge theories accessible. It started with seminal
papers by Nekrasov [4] and Pestun [5]. Pestun showed that the partition func-
tion and the Wilson loop expectation values in the mass deformed N = 4 su-
per Yang-Mills (SYM) theory on the four-sphere could be written as a matrix
model. This matrix model is the reduction of the path integral to an integral
over a BPS locus. Since the original papers by Nekrasov and Pestun super-
symmetric localization has been extended to a large number of supersymmet-
ric gauge theories on compact Euclidean manifolds of various dimensions. In
this thesis we use the results for the localized partition functions of supersym-
metric gauge theories on squashed spheres of dimension three, four and seven.

For N = 4 SYM on the four-sphere the localized partition function is a sim-
ple Gaussian integral. However, in general supersymmetric localization gives
a complicated matrix model. Depending on the background manifold, the de-
terminant of the quadratic fluctuations around the saddle point gives products
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of special functions in the integrand of the matrix model. For example, for
gauge theories on odd-dimensional squashed spheres one finds multiple sine
functions [6–8]. In some cases the fine tuning of parameters of a supersym-
metric gauge theory leads to a simplification of the localized partition function.
Cancellations in the one-loop determinant are the consequence of relations be-
tween fermionic and bosonic modes and thus they hint at enhanced supersym-
metry. In Paper III we show that fine tuning the mass parameter in N = 2∗

SYM on the squashed four-sphere leads to a partition function independent
of the squashing parameter. With Paper IV we explore the underlying super-
symmetry enhancement and extended the result to more general manifolds.
Similarly Papers I and II explore squashing independent partition functions
and loop operator expectation values of mass deformed N = 4 gauge theories
on the squashed three-sphere and find the underlying supersymmetry enhance-
ment for a fine tuned mass parameter. This squashing independence was first
observed by [9] in ABJM theory.

When transformations or evaluations of the matrix model are not available
we can resort to approximations to access some of the information contained
in the localized partition function. After gauge fixing a matrix model it be-
comes a finite dimensional integral over the eigenvalues of the matrix and for
the localized partition function the dimension of the integral equals the rank
of the gauge group. One approach viable at low rank is to use brute force and
numerically approximate this integral. In Paper II we do this for the partition
functions of the ABJM and N = 8 SYM theories at ranks two and three with
sufficient precision to plausibly claim their equality. An alternative is to con-
sider the opposite limit where the rank N of the gauge group becomes large.
In this large N limit the localized partition function is usually dominated by a
saddle point where the eigenvalues of the matrix model are all far apart from
each other. In Paper III we compute the partition function of N = 4 SYM on
the squashed four-sphere in the large N limit and use it as an example for the
general form of the free energy of N = 2 superconformal field theories on
deformed four-dimensional spheres.

One often overlooked theory we can study with supersymmetric localiza-
tion is the 7d super Yang-Mills on the seven-sphere. Usually in holography
one expects that supergravity, i.e. weakly coupled string theory or M-theory,
matches with strongly coupled gauge theory. However it has been suggested
that the spherical D6 brane solution of supergravity matches the weak nega-
tive coupling limit of SYM on the seven-sphere [10]. With Paper V we try to
shed some more light on the nature of this negative coupling limit by study-
ing a saddle point approximation to the localized partition function. Results
from lower dimensions suggest that instanton contributions play a crucial role
in this limit but only the perturbative part of the partition function has been
previously studied in detail. Taking inspiration from lower dimensions and
from string theory we suggest in Paper V a contribution of three-dimensional
membrane instantons.
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The second approach to non-perturbative results that we apply is integrabil-
ity in the context of the AdS/CFT correspondence. N = 4 SYM and ABJM
theory are said to be integrable in their respective ’t Hooft limits. This has most
prominently been used to develop techniques to solve their operator spectra for
all values of their ’t Hooft couplings. The most powerful of these techniques is
the quantum spectral curve and approaches to solve it perturbatively at weak
coupling and numerically for finite coupling are known. An adaptation of the
quantum spectral curve to compute the Hagedorn temperature in N = 4 SYM
was developed in [11]. In Paper VII we find the quantum spectral curve for the
ABJM Hagedorn temperature. The AdS/CFT correspondence lets us compare
the integrability results in N = 4 SYM and ABJM to the dual string theory
on anti-de Sitter space. Not much is known about the curvature corrections
to the Hagedorn temperature in AdS, although the first correction has been
found from a supergravity computation [12, 13]. In Papers VI and VII we use
an effective model and the integrability results in the dual CFT to compute the
AdS Hagedorn temperature to the third subleading term.

1.1 Outline of this thesis
This thesis consists of four parts. The first three parts contain applications
of supersymmetric localization and each of these parts focuses on a different
dimension. The fourth part of this thesis is about an application of integrability
in the AdS/CFT correspondence.

In Part I we discuss supersymmetric gauge theories on the squashed three-
sphere. We start chapter 2 by giving an introduction to rigid supersymmetry on
the squashed three-sphere, supersymmetric gauge theories on this background
and the localized partition function. We relate the squashing independence of
the localized partition functions of N = 4 supersymmetric gauge theories at
a fine-tuned value of a mass parameter to a supersymmetry enhancement from
4 to 6 supercharges. We do the same for loop operator expectation values.
In chapter 3 we test mirror dualities by comparing the partition functions for
pairs of dual N = 4 theories. Here we first lift analytic results from the round
sphere to the squashed sphere preserving 6 supercharges. Second, for the du-
ality of ABJM and N = 8 SYM we provide at low ranks numerical evidence
that the equality of the partition functions also holds for only four preserved
supercharges. This part is based on Papers I and II.

Part II is concernced with supersymmetric theories on the squashed four-
sphere. We start chapter 4 by discussing supersymmetry on the squashed
four-sphere and the localized partition function of N = 2 gauge theories on
this background. For N = 2∗ super Yang-Mills theory we discuss a local
supersymmetry enhancement at the poles of the squashed sphere that occurs
upon fine-tuning of the mass parameter. The enhanced supersymmetry leads
to squashing independence of the partition function and gives constraints on
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integrated correlators in N = 4 SYM. For N = 2 supersymmetric gauge the-
ories we propose a framework for studying partially integrated correlators. In
chapter 5 we discuss the general form of the free energy of N = 2 supercon-
formal field theories on deformed spheres. We show that the logarithm of the
localized partition function of N = 4 super Yang-Mills has this general form.
This part is based on Papers III and IV.

In Part III we discuss super Yang-Mills on the seven-sphere. In chapter 6
we first review supersymmetry on the seven-sphere and the localization of the
SYM partition function. We then describe in detail our proposal for the con-
tribution of three-dimensional membrane instantons to the localized partition
function. In chapter 7 we start by motivating the existence of the negative cou-
pling limit of the SYM theory on S7. We then outline our approach to studying
this limit based on the localized partition function and the membrane instanton
contributions to this partition function. This part is based on Paper V.

Part IV of this thesis discusses the Hagedorn temperature in AdS/CFT using
integrability techniques. In chapter 8 we present the AdS side of the duality
and outline an effective model for the computation of the Hagedorn temper-
ature using a scalar field in a Euclidean AdS background. In chapter 9 we
present the dual CFT perspective where we use integrability to compute the
Hagedorn temperature for finite coupling. We give a detailed description of
the quantum spectral curve for both N = 4 SYM and ABJM. Curve fitting
the numerical CFT results we conjecture the analytic expression for a param-
eter in the effective model on the AdS side of the duality. This part is based
on Papers VI and VII.
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Part I:
Supersymmetric gauge theories on the
squashed three-sphere





2. Supersymmetric localization on the
squashed three-sphere

This chapter focuses on supersymmetric gauge theories on the squashed three-
sphere and introduces many concepts that reoccur in Part II and Part III of this
thesis. This includes rigid supersymmetry on curved manifolds and supersym-
metric localization.

Two different geometries have been called a “squashed three-sphere” [6].
The one we will be considering has metric

ds2 =
r2

4

�
b+b−1

2

�2

(dψ + cosθdφ)2 +
r2

4
(dθ 2 + sin2 θdφ 2), (2.1)

with b∈R the “squashing parameter” and (ψ,θ ,φ)∈ [0,2π)× [0,π]× [0,2π).
This geometry is obtained by stretching the Hopf fiber of the round S3 which
we return to when b = 1. The other geometry is an ellipsoid and is mentioned
in paper I but will not play a role in the rest of this thesis.

We start this chapter with a review of the supersymmetric squashed sphere
and gauge theories coupled to this background. As part of this review we sum-
marize the squashed sphere preserving the six supercharges found in Paper I.
Thereafter we give an introduction to supersymmetric localization and the re-
sulting gauge theory partition functions. We highlight the simplifications due
to enhanced supersymmetry observed in Paper I. We close the chapter with
a brief discussion of loop operators in gauge theories on the squashed three-
sphere pertaining to the results in Paper II.

2.1 Rigid supersymmetry on the squashed three-sphere
An efficient way to define supersymmetric theories on curved spaces was laid
out by Festuccia and Seiberg [14]. They noted that in the limit of vanishing
Newton constant the fields in a supergravity multiplet are non-dynamical and
can be set to a background value. The requirement that this background con-
figuration of supergravity fields preserve some supersymmetries then leads to
the Killing spinor equations. Each solution of these equations corresponds to
one preserved supercharge. The Killing spinors are the supersymmetry ana-
logue of Killing vectors in Riemannian geometry which describe the isome-
tries of a Riemannian manifold. The supersymmetric coupling of gauge and
matter multiplets to the background supergravity multiplet then insures that
the gauge theory preserves these same supercharges determined by the Killing
spinor equations.
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2.1.1 Four preserved supercharges
To present the supersymmetric squashed three-sphere we start with the three-
dimensional new minimal supergravity [15]. The bosonic fields of the corre-
sponding supergravity multiplet are the dreibein ea

μ , a U(1) R-symmetry gauge
field AR0

μ , the dual graviphoton field strength Vμ and a scalar field H. All the
fermionic fields in the background supergravity multiplet are set to zero. Then
the Killing spinor equations come from the vanishing of the supersymmetry
transformations of the fermionic fields of the multiplet

∇μζ − i
�

AR0
μ +Vμ

�
ζ −Hγμζ +

1
2

εμνρV νγρζ = 0,

∇μ �ζ + i
�

AR0
μ +Vμ

�
�ζ −Hγμ �ζ − 1

2
εμνρV νγρ �ζ = 0.

(2.2)

Here the γ-matrices are the Pauli matrices. On the squashed sphere we choose
the frame

e1 =−r3

2
(sinψdθ − sinθ cosψdφ) ,

e2 =
r3

2
(cosψdθ + sinθ sinψdφ) , (2.3)

e3 =−r3

2

�
b+b−1

2

�
(dψ + cosθdφ) .

Setting the other bosonic fields in the supergravity multiplet to

H =
i
�
b+b−1

�

4r3
, V =−AR0 =

1
4
�
b2 −b−2�(dψ + cosθdφ) , (2.4)

one can check that for any choice of constant spinors ζ0, �ζ0 the spinors

ζ = e
i
2 Θσ3 ·g−1 ·ζ0, �ζ = e−

i
2 Θσ3 ·g−1 · �ζ0 (2.5)

solve the Killing spinor equations 2.2 [16]. We have set

eiΘ =−b, g =

	
cos θ

2 e
i
2 (φ+ψ) sin θ

2 e
i
2 (φ−ψ)

−sin θ
2 e−

i
2 (φ−ψ) cos θ

2 e
−i
2 (φ+ψ)



.

With these four Killing spinors, the supergroup preserved on the squashed
three-sphere is SU(2|1)�U(1) [16].

2.1.2 N = 2 gauge theories on S3
b

The 3d new minimal supergravity background from the previous subsection
can be coupled to N = 2 supersymmetric gauge theories while preserving all
four supercharges of the N = 2 theory [15]. In a supersymmetric theory, the
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gauge field is part of a vector multiplet. For N = 2 supersymmetry this mul-
tiplet contains the gauge field A, a pair of fermions λ ,�λ , a real scalar σ and an
auxiliary field D, all in the adjoint representation of the gauge group. There are
several terms for the Lagrangian of a vector multiplet. The supersymmetrized
Chern-Simons term takes the form [15]

LCS =
k

4π
Tr

�
iεμνρAμ∂νAρ −2Dσ +2i�λλ

�
, (2.6)

with k ∈ Z the Chern-Simons level. The explicit form of the super Yang-Mills
term is known but we refrain from showing it here because it is supersymmet-
rically exact [16], i.e. it takes the form QV where Q is one of the preserved
supercharges and V is a function of the fields in the vector multiplet. For
each Abelian factor of the gauge group we can also write a Fayet-Iliopoulos
term [15]

LFI = ξ (D−AμV μ −σH). (2.7)

The matter of 3d N = 2 supersymmetric gauge theories is in chiral mul-
tiplets. A chiral multiplet contains a complex scalar φ , a fermion ψ and an
auxiliary field F . The conjugate multiplet (�φ , �ψ, �F) is called anti-chiral. The
(anti-)chiral multiplet is charged under the R-symmetry U(1)R ⊂ SU(2|1).
This R-charge q of the multiplet gets assigned to the scalars (φ , �φ) as (−q,+q).
As for the super Yang-Mills term of the vector multiplet, the Lagrangian of the
chiral multiplet is supersymmetrically exact and we do not reproduce it here.

A theory with one or more chiral multiplets generically has a global “fla-
vor” symmetry. To round off this subsection we consider coupling this flavor
symmetry to a non-dynamical background vector multiplet with non-trivial
values for the bosonic fields (A,σ ,D). To preserve the same supercharges as
the background supergravity one can choose

∂μσ = 0, D =−σH, A =
2iσr3

b+b−1V. (2.8)

Assuming a flavor charge 1 and setting σ = m we get that the hypermultiplet
Lagrangian contains the terms [15]

Lhyp ⊃ m2�φφ − im�ψψ (2.9)

and thus we can understand such a flavor background vectormultiplet as a mass
term for the hypermultiplet.

2.1.3 Six preserved supercharges
To preserve more supercharges on the squashed three-sphere, we have to start
from a larger supergravity multiplet. In paper I we got such a multiplet and the
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corresponding Killing spinor equations by a twisted dimensional reduction of
the 4d N = 2 conformal supergravity from [17, 18]. An interesting solution
to these extended Killing spinor equations gives in addition to the fields of
subsection 2.1.1 a non-zero value to the bosonic fields of a U(1) vector field
(AF ,σ ,D). For the fields

σ =±i
b−b−1

2r3
, D =∓i

b−b−1

2r3
H, AF =∓b−b−1

b+b−1V, (2.10)

we showed in Paper I that there are two additional preserved constant Killing
spinors, enhancing the supersymmetry to SU(2|1)� SU(1|1). Note that the
signs in (2.10) are correlated and one should choose either the upper or lower
sign for all three.

The supergravity multiplet from subsection 2.1.1 has combined with the
vector multiplet (AF ,σ ,D) to form a bigger supergravity multiplet. The vector
multiplet couples to a U(1) subgroup of the SO(4) � SU(2)C × SU(2)H R-
symmetry of flat space 3d N = 4 supersymmetry. Checking the couplings
of AF as it enters our construction of the enhanced supersymmetry background
we find that it couples to a U(1) of the axial subgroup (SU(2)C ×SU(2)H)ax.

Comparing to (2.8), we note that (2.10) is the result of fine tuning a distin-
guished mass parameter m∗ to m∗ =±i b−b−1

2r3
. Away from this fine tuned value

for m∗ only four supercharges are preserved. In subsection 2.2.3 we start from
a generic value of the special mass parameter m∗ and observe the effect of fine
tuning and enhanced supersymmetery on the partition function.

2.1.4 N = 4 gauge theories
For a gauge theory to preserve the six supercharges in the previous subsection,
the gauge field and the matter must be part of N = 4 multiplets. These multi-
plets can be put together from the N = 2 multiplets we discussed in subsec-
tion 2.1.2. Besides coupling the constituent N = 2 fields to the background
fields of subsection 2.1.1 we then couple them to the additional background
vector field (2.10) with charges dictated by N = 4 supersymmetry to get a
gauge theory on the squashed three-sphere preserving six supercharges.

The N = 4 vector multiplet is formed from an N = 2 vector multiplet
and a chiral multiplet of R-charge 1 in the adjoint representation of the gauge
group. In terms of the SO(4) � SU(2)C × SU(2)H R-symmetry group, the
three scalars of the vector multiplet form an SU(2)C triplet. The auxiliary
fields are a triplet of SU(2)H and the fermions are in the (2,2) representation
of the full group.

A hypermultiplet is made from two chiral multiplets of R-charge 1
2 and

in conjugate representations R,R of the gauge group. The hypermultiplet
scalars organize into an SU(2)C doublet transforming in representation R of
the gauge group and an SU(2)H doublet in R. To give a mass to a hypermul-
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tiplet while preserving all supercharges, we couple it to a background N = 4
vector multiplet for a U(1) flavor symmetry.

Note that neither the vector- nor the hypermultiplet are invariant under the
exchange of SU(2)C and SU(2)H . The resulting multiplets under exchange of
the roles for the two R-symmetry subgroups are called “twisted” multiplets.

2.2 Supersymmetric localization
After introducing supersymmetric gauge theories on the squashed three-sphere
we discuss the derivation of their partition functions using supersymmetric lo-
calization. We give a short heuristic introduction to this technique, skipping
many of the technical details that were worked out by other authors [6, 16].
We then go straight to the results for the partition function of N = 2 gauge
theories on the squashed three-sphere. We end the section with a brief account
of the results from Paper I concerning simplifications of the localized parti-
tion function of N = 4 gauge theories on the background with six preserved
supercharges.

2.2.1 The supersymmetric localization argument
Supersymmetric localization is a saddle point approximation of the path in-
tegral of a supersymmetric gauge theory. However, unlike most other saddle
point approximations, in this case the saddle point gives the exact result. The
example which sparked rapid developments in supersymmetric localization
was for N = 4 super Yang-Mills and its N = 2∗ deformation on the four-
sphere [5]. Since this seminal work, supersymmetric localization has been
applied to many other contexts (see [19] for a review). Let us sketch in the
following how the localization argument works.

For a supersymmetric gauge theory the partition function,

Z =

�
D[fields]e−S, (2.11)

is invariant under a supercharge Q. Deform Z to

Z(t) =
�

D[fields]e−S−tQV , (2.12)

where V is some functional of the fields. If Q2 = B generates a symmetry of
the theory, then Z(t) is independent of the parameter t. Choosing QV to be
positive semi-definite we can take the limit t → ∞. The only contributions to
the partition function Z = Z(∞) then come from the locus where QV = 0. Thus
one only has to compute this locus as well as the determinant of the second
order fluctuations around it.
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The most common choice of V has a localization locus where the scalars in
the vector multiplet are constants. This is called Coulomb branch localization
and the partition function becomes a matrix model, i.e. an integral over the
Lie algebra for the gauge group. In the next subsection we present the results
of this computation for gauge theories on the squashed three-sphere.

2.2.2 The localized partition function
The localized partition function on the squashed three-sphere is an integral
over the Cartan subalgebra for the gauge Lie algebra [16]

Z =
�

drGσ

	
∏

α∈Δ+

α(σ)2



e−SclZ1−loop (b,σ) , (2.13)

where rG is the rank of the gauge group and Δ+ is the set of positive roots of
the gauge Lie algebra. In this expression the classical action Scl is the action
of the gauge theory evaluated on the localization locus. The name “classical
action” is misleading. The action we evaluate is off-shell supersymmetric and
we are not refering to any solutions of the classical field equations. As the
super Yang-Mills and hypermultiplet actions are Q-exact in three dimensions,
they vanish on the localization locus and do not contribute to Scl . However the
classical action gets contributions from Chern-Simons and Fayet-Iliopoulos
terms. The expressions (2.6) and (2.7) evaluated on the localization locus give
the terms

SCS
cl = i

kπ
2

Tr(σ2), SFI
cl =−2πiξ Tr(σ). (2.14)

The determinant of the fluctuations around the localization locus Z1−loop, also
called the 1-loop determinant, gets a contribution from every vector- and hy-
permultiplet of the theory. The one-loop determinant of the vector multiplet
takes the form

Zvec
N =2 = ∏

α∈Δ+

sinh(πbα(σ))sinh
�
πb−1α(σ)

�

α(σ)2 . (2.15)

For chiral multiplets, the 1-loop determinant depends on the R-charge q, the
flavor charge F and the mass m and can be written as a product over the
weights of the multiplet’s representation R of the gauge group

Zch(q,F,m) = ∏
ρ∈R

S2

�
Q
2
(2−q)− iFm+ iρ(σ);b,b−1

�
, (2.16)
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where Q = b+ b−1. S2(x;ω1,ω2) is the double sine function defined as the
zeta-function regularization of the infinite product [20]

∞

∏
m,n=0

(mω1 +nω2 + x)

∞

∏
k,l=1

(kω1 + lω2 − x)
. (2.17)

2.2.3 Enhanced supersymmetry and squashing independence
To get the one-loop determinants for the N = 4 multiplets we simply take the
product of the determinants for the constituent N = 2 multiplets. The N = 4
vector multiplet consists of an N = 2 vector multiplet and an adjoint chiral
multiplet with R-charge q = 1 and a flavor charge 1. Thus it has the one-loop
determinant

Zvec
N =4 = Zvec

N =2Zch(1,1,m∗). (2.18)

Similarly, the hypermultiplet consists of a pair of R-charge 1
2 chiral multiplets

in conjugate representations of the gauge group

Zhyp(m,m∗) = Zch,R(
1
2
,−1

2
,m∗+2m)Zch,R(

1
2
,−1

2
,m∗ −2m). (2.19)

We have left the value of the special mass parameter m∗ from subsection 2.1.3
generic. Thus the background only preserves four supercharges. For the vector
and the hypermultiplet we have also made explicit the flavor charges for the
coupling to the special mass parameter. Any additional mass parameter m
coupling with charge 1 to a flavor symmetry for the hypermultiplet then enters
as indicated in (2.19).

To obtain the one-loop determinants for an N = 4 gauge theory preserv-
ing six supercharges, we set the value of the special mass paramter m∗ to
m∗ =±i b−b−1

2 . Using the periodicity property of the double sine function

S2(x+ω1;ω1,ω2) =
S2(x;ω1,ω2)

2sin( πx
ω2
)

, (2.20)

we find that for this special value of m∗ an infinite number of factors cancel in
the one-loop determinants of the vector- and hypermultiplet and they simplify
to

Zvec
N =4 = b∓rG ∏

α∈Δ+

sinh(πb∓1
σ ,α�)2


σ ,α�2 , (2.21)

Zhyp = ∏
ρ∈R

1
cosh(πb∓1(
σ ,ρ�+m))

. (2.22)
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These cancellations in the determinants are a direct consequence of the addi-
tional preserved supercharges.

Plugging the simplified expressions into the integral expression (2.13) one
observes that by rescaling the integration variable in the matrix model the de-
pendence on the squashing parameter drops out of the partition function. Thus,
for N = 4 gauge theories preserving six supercharges the partition function
is squashing independent

Z
�

b,m∗ =±i
b−b−1

2

�
= Z(b = 1,m∗ = 0). (2.23)

Understanding the origin of this squashing independence requires the tech-
nical results of [21]. Here they show that the partition function of a gauge
theory on a three manifold does not depend on the metric but on the so-called
transversally holomorphic foliation (THF). In paper I, we checked that indeed
the THF for the additional two-supercharges preserved on the squashed three-
sphere is the same as on the round three-sphere.

2.3 Line operators
An important observable in gauge theories are line operators. Compactifying
the theory on a sphere, infinite lines get mapped to loops. In this section
we discuss some loop operators of 3d supersymmetric gauge theories on the
squashed three-sphere and their localized expectation values.

The squashed three-sphere background we presented in subsection 2.1.1
preserves an SU(2)×U(1) rotation group. Inserting a loop operator into this
setting preserves at most a U(1) subgroup of the SU(2) symmetry. This
implies that loop operators preserve at most two of the four supercharges
of the squashed three-sphere. For the maximal case the loop operators are
called supersymmetric or 1

2 -BPS. To preserve the two supercharges the super-
symmetric loop operators must live on a closed orbit of the residual U(1) ⊂
SU(2) rotations. For generic squashing parameters this restricts the loops
to either of the two circles at θ = 0,π . Following the same reasoning for
the SU(2|1)� SU(1|1) supergroup preserved by the background in subsec-
tion 2.1.3, we see that the N = 4 loop operators can be 1

3 or 2
3 -BPS and are

restricted to the same great circles.

2.3.1 Wilson loops
For 3d N = 2 gauge theories, a Wilson loop operator can be defined by the
insertion into the path integral of a path ordered exponential

TrRP exp
�

i
�

γ
(A− ixσ |dγ|)

�
(2.24)
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which depends on the representation R of the gauge group and the closed
path γ . Requiring the Wilson loop on the squashed three-sphere to preserve
two supercharges fixes the value of x to ±1 and the path γ to one of the circles
at θ = 0,π .

The supersymmetric localization argument we sketched in 2.2.1 also fol-
lows through in the presence of 1

2 -BPS Wilson loops. For example, with x = 1
the expectation value for the Wilson loop at θ = 0 is equal to the matrix model
(2.13) with an insertion of [22, 23]

TrR exp(2πbσ). (2.25)

For N = 4 supersymmetric gauge theories Wilson loops can be defined in
the same way. If the background preserves six supercharges Paper I shows that
for any choice of x = ±1 and of sign in (2.10) only one of the two circles at
θ = 0,π supports a Wilson loop preserving four supercharges while the Wilson
loop on the other circle only preserves two supercharges. The expectation
value of the 2

3 -BPS Wilson loop is independent of the squashing parameter
b in the same way as the N = 4 partition functions discussed at the end of
subsection 2.1.4.

2.3.2 Vortex loops
The effect of a vortex line in a three dimensional gauge theory is that all fields
charged under the corresponding symmetry pick up a fixed monodromy on
a loop around the line. For abelian symmetries the explicit construction of
1
2 -BPS vortex loops in N = 2 theories was discussed by [24, 23] and on the
squashed three-sphere they are allowed on both circles θ = 0,π . For an abelian
gauge vortex loop the localized expectation value is a prefactor to the partition
function while for an abelian flavor symmetry it shifts the mass parameter.

For vortex loops of non-abelian flavor symmetries in N = 4 theories a UV
construction was given in [25] and it couples the 3d theory to a 1d theory
living on the loop. In Paper II we argued that this coupling is also possible
on the squashed three-sphere and can preserve four of the six supercharges.
Notably we find that a Wilson and a vortex loop can preserve the same four
supercharges but they live on different circles, one at θ = 0, the other at θ = π .
Localizing the partition function of the coupled 3d/1d system, the vortex loop
expectation value is found to be an insertion of the index of the 1d theory into
the matrix model for the 3d theory. As for the Wilson loops, the 2

3 -BPS vortex
loop expectation value is squashing independent.
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3. Testing dualities on the squashed
three-sphere

There is a vast zoo of three dimensional N ≥ 4 supersymmetric theories in
the UV. However, once we flow to the IR many of these theories are related
by dualities. The main type of dualities considered in this thesis is mirror
symmetry [26]. 3d N = 4 gauge theories allow for two types of vacua. On
the Coulomb branch the scalars in the vectormultiplet take non-trivial vacuum
expectation values while on the Higgs branch the hypermultiplet scalars have
non-trivial vacuum expectation values. Two theories are mirror symmetric if
they are related by the exchange of their Coulomb and Higgs branches.

In the first section of this chapter we present some examples of 3d N ≥ 4
gauge theories and the dualities they satisfy. In the second section we give an
overview of Paper II’s results testing dualities using supersymmetric localiza-
tion.

3.1 Some 3d N ≥ 4 gauge theories
3.1.1 Hanany-Witten brane construction and mirror symmetry
One large class of 3d N = 4 gauge theories can be constructed from branes
following work by Hanany and Witten [27]. Consider NS5 branes in type IIB
string theory spanning the 0,1,2,4,5,6 directions and at distinct positions in
a compact 3 direction. Between neighboring pairs of NS5 branes we suspend
stacks of D3 branes extended along the 0,1,2,3 directions. The resulting ef-
fective theory on the D3 branes is a three dimensional N = 4 U(Ni) super
Yang-Mills theory where Ni is the number of D3 branes suspended between
the i-th and (i+ 1)-st NS5 branes. Strings spanning between D3 branes on
either side of an NS5 brane correspond to a hypermultiplet in the (Ni,Ni+1)
representation1. In addition we can intersect the D3 branes with D5 branes
spanning the 0,1,2,7,8,9 directions. A D5 brane intersecting the i-th stack
of D3 branes corresponds to having a hypermultiplet in the fundamental rep-
resentation of the U(Ni) gauge group. The double covers of the rotations in
the 4,5,6 and 7,8,9 directions are the SU(2)C and SU(2)H symmetries of
Coulomb and Higgs branch respectively. In Figure 3.1 we show a simple ex-
ample of this brane setup.

1As the hypermultiplet is made from two chiral multiplets in conjugate representations, we
could as well use the conjugate representation (Ni,Ni+1) to designate the hypermultiplet.
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Figure 3.1. We show a simple example of the Hanany-Witten brane setup. A stack of
N D3 branes (black) spanning the compact direction is intersected by two NS5 branes
(red) and one D5 brane (blue). The corresponding gauge theory has gauge group
U(N)×U(N), two hypermultiplets in the (N,N) representation and a single hyper-
multiplet in the fundamental representation of only one of the gauge group factors.

Figure 3.2. We show the brane setup for the mirror theory dual to the example in Fig-
ure 3.1. The corresponding gauge theory has gauge group U(N), a hypermultiplet in
the adjoint representation and a pair of hypermultiplets in the fundamental represen-
tation.

To get a gauge theory duality for this class of gauge theories one may start
from the S-duality of Type IIB string theory. This maps the D5 branes into
NS5 branes and vice-versa while the D3 branes are mapped to themselves.
Combining this with a rotation that exchanges the 4,5,6 directions with the
7,8,9 directions, we end up with a brane configuration of the same type as we
started from. For the gauge theories on both sides of this duality it follows then
from the construction that their IR fixed points are related by the exchange
of the Coulomb and Higgs branches. This type of duality is called mirror
symmetry [26, 28, 27]. In Figure 3.2 we show the mirror dual of the example
in Figure 3.1. Keeping track of the positions of the branes in the 4,5,6 and
7,8,9 directions it follows that under mirror symmetry masses of fundamental
hypermultiplets get exchanged with FI parameters.
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3.1.2 ABJM and maximally supersymmetric Yang-Mills theory
In three dimensions, the Chern-Simons action has conformal symmetry. How-
ever, for a single U(N)k gauge field, where k is the level, it admits a super-
symmetric extension only with at most N = 3 supersymmetry. In [29] it was
found that with a gauge group U(N)k ×U(N)−k and with opposite Chern Si-
mons levels k and −k respectively for the two factors of the gauge group more
supersymmetry can be preserved. To explicitly construct a three-dimensional
N = 6 superconformal gauge theory they coupled the vectormultiplets to a
pair of hypermultiplets in the bi-fundamental representation. This theory is
commonly known as ABJM theory. For k = 1,2 the supersymmetry enhances
further to the maximal N = 8 superconformal symmetry. Notably for k = 1
it describes the near horizon limit of N M2 branes in flat space.

Another theory that is supposed to describe M2 branes in flat space and thus
should be dual to ABJM theory is the IR limit of the 3d N = 8 SYM. This
maximal super Yang-Mills theory however is not amenable to the localization
method described in the previous chapter [30] as the R-symmetry in the in-
frared is accidental and does not coincide with the manifest R-symmetry of
the UV theory. To circumvent this problem, we can use the mirror symmetry
of the previous subsection. 3d N = 8 SYM is a gauge theory with a single ad-
joint hypermultiplet meaning that as a Hanany-Witten brane configuration it is
a stack of D3 branes intersected by a single NS5 brane. Applying mirror sym-
metry, the dual description has a single D5 brane intersecting the D3 branes,
i.e. it is the gauge theory with one ajoint and one fundamental hypermultiplet.
In the following all computations for the N = 8 theory will be performed in
this dual theory.

The duality of ABJM theory and N = 8 SYM is also an example of mirror
symmetry. It belongs to a more general class than the previous subsection and
we will not discuss any brane realization [31].

3.2 Tests of dualities
Duality of two quantum theories implies the existence of a map between ex-
pectation values of observables in both theories. For three dimensional N = 4
gauge theories supersymmetric localization facilitates the computation of par-
tition functions and loop operator observables. The first to use this to test
the mirror symmetry outlined in the previous section were [30, 24]. Starting
with [32] it was also applied to another type of dualities called Seiberg-like
dualities. Examples of this type were first found in [33, 34]. Based on van de
Bult’s results for transformations of hyperbolic hypergeometric integrals [35],
a very large class of these Seiberg-like dualities were tested on the squashed
sphere [36]. By contrast the mirror symmetries have largely resisted study
on the squashed sphere. Here we describe our results on mirror symmetry
dualities.
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3.2.1 With six preserved supercharges
Adding mass parameters �m and FI parameters �η the squashing independence
of partition functions from subsection 2.2.3 takes the form

Z (1;�m;�η ;m∗ = 0) = Z
�

b;b�m;
1
b
�η ;m∗ = i

b−b−1

2

�
(3.1)

= Z
�

b;
1
b
�m;b�η ;m∗ =−i

b−b−1

2

�
, (3.2)

generalizing equation (2.23). In Paper II we observed that this map of partition
functions allows us to lift results from the round sphere to the squashed sphere
with six supercharges.

For a mirror dual pair of gauge theories from the Hanany-Witten brane setup
it was found on the round sphere that the parition functions of the “electric”
and “magnetic” theories match [30],

Zel(1;�m;�η ;m∗ = 0) = Zmag(1;�η ;�m;m∗ = 0), (3.3)

if the mass parameters of the electric theory equal the FI parameters in the
magnetic theory and vice versa. Using equation (3.1) this lifts to the same
statement on the squashed sphere

Zel

�
b;�m;�η ;m∗ = i

b−b−1

2

�
= Zmag

�
b;�η ;�m;m∗ =−i

b−b−1

2

�
(3.4)

with the additional sign flip for the distinguished mass parameter m∗. This sign
flip comes directly from the exchange of the Coulomb and Higgs branches
as the parameter m∗ couples to the axial subgroup of the SU(2)C × SU(2)H
symmetry group of the two branches.

For ABJM theory the map from the squashed sphere to the round sphere is
more complicated [9], as is the round sphere mapping of the mass and FI pa-
rameters in the duality to N = 8 SYM [30]. However the lifting of matching
partition functions still works and the parameter mapping is the same as on the
round sphere.

Even for loop operators the results of [24,25] can be lifted. The expectation
values of a 2

3 -BPS Wilson loop matches to the expectation value of a 2
3 -BPS

vortex loop in the mirror dual theory.

3.2.2 Numerical tests with four supercharges
To test the ABJM-N = 8 SYM duality on the squashed sphere with less than
six supercharges we numerically evaluate both partition functions for low rank
of the gauge group for the special mass parameter m∗ set to zero. Localization
reduces the evaluation of the partition function to an integral over RrankG. For
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(a) Real part of the free energy for ABJM
(blue) and N = 8 SYM (red).

(b) Relative difference of the two numerically
evaluated partition functions.

Figure 3.3. Comparing the ABJM and N = 8 SYM partition functions at rank 2 at
b = 4 for a range of FI parameters η and masses μ of the ABJM theory. Note that in
in subfigure (a) the ABJM result is not visible as it agrees with the SYM result within
the precision of the plotting. The plots are taken from Paper II.

the numerical evaluation we simply replace this integral by a sum over a finite
sized equally spaced grid. While this is a very simple algorithm, it is fast
enough for evaluations at low rank. Away from the zeros of the integral we
find that it has sufficient precision to give a reliable result.

For N = 8 SYM with gauge group U(2) and ABJM U(2)1 ×U(2)−1 we
show in Figure 3.3 the results of the numeric evaluation at b = 4 for the
bi-fundamental mass μ ∈ [0,2.98] and the FI parameter η ∈ [0,0.69]. We
compile further results for b in the range [1,6] into videos showing the evo-
lution of the partition functions under variation of the squashing parameter,
see [37]. Away from what appears as ridges in the real part of the free energy
F =− log(Z) we find agreement within the expected precision.

The ridges in the plot of the real part of the free energy correspond to zeros
of the partition function, also called Lee-Yang zeros. For the round sphere
these zeros were already observed by [38, 39]. We observe that under squash-
ing the Lee-Yang zeros move further from the origin in the (μ,η) parameter
space.

For large rank, [40] conjectured an expression for the ABJM partition func-
tion dependent on the rank N and the squashing parameter b at parameter
values η = μ = 0. For rank two and three we compare this against our nu-
meric results, see Figure 3.4. The difference of the results is expected to mea-
sure non-perturbative contributions to the ABJM free energy from instantons.
In the published version of Paper II, Figure 3.4a was mistakenly reproduced
twice. Figure 3.4b should have been reproduced as Figure 8(c) of Paper II.
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(a) Rank 2

(b) Rank 3

Figure 3.4. Comparing the numerical results for the ABJM and N = 8 SYM partition
functions to the conjectured large N expression. We plot the relative difference of the
non-perturbative numeric result to the perturbative large N conjecture.
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Part II:
Four dimensions





4. Supersymmetric gauge theories on the
squashed four-sphere

In this chapter we discuss supersymmetric gauge theories on the squashed
four-sphere. We first give a brief description of N = 2 gauge theories on
curved manifolds using the example of the squashed sphere and their localized
partition functions. After that we discuss some of the results from Papers III
and IV.

4.1 Supersymmetry on the squashed four-sphere
Unlike in three dimensions, the squashed four-sphere is defined as an ellipsoid
embedded into R5 as desribed by the equation

x2
1 + x2

2
l2 +

x2
3 + x2

4
�l2

+
x2

5
r2 = 1. (4.1)

We recover the round sphere by setting l = �l = r. The metric of squashed S4

can be written in the form [41]

ds2 = (g2 +h2)dρ2 +2sinρ f hdθdρ

+ sin2 ρ
�

f 2dθ 2 + l2 cos2 θdφ 2 +�l2 sin2 θdχ2
�
, (4.2)

f =



l2 sin2(θ)+�l2 cos2(θ),

g =



r2 sin2 ρ + l2�l2 f−2 cos2 ρ,

h =
�l2 − l2

f
cosρ sinθ cosθ .

Supersymmetry on this background was first discussed by [41] but we will
present it in the language of [17]. We start with the Killing vector

v =
1
l

∂φ +
1
�l

∂χ (4.3)

and choose the two functions s = 2sin2 ρ
2 , �s = 2cos2 ρ

2 such that s�s = �v�2. On
the southern hemisphere we can then define the spinors

ζ i
α =

√
s

2
δ i

α , χ i =
1
s

vμσ μζi, (4.4)
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with α an SU(2)l Lorentz index, i an SU(2)R R-symmetry index and the ma-
trices σμ = (−iτa,1) and σ μ = (iτa,1) defined in terms of the Pauli matrices
τa (a = 1,2,3). To get globally well defined spinors we then apply the SU(2)R
transformation

U j
i = i

vμ

�v�σ j
μi (4.5)

to get for the northern hemisphere the expressions

χα̇
i =−i

√
�s

2
δ α̇

i , ζ i =−1
�s vμσμ χ i, (4.6)

with α̇ an SU(2)r Lorentz index.
Besides the graviton, the bosonic fields in the N = 2 Poincaré supergravity

multiplet [42] are an SU(2)R connection V i
μ j , a scalar N, a one-form Gμ , a

two-form Wμν , a scalar SU(2)R triplet Si j and a closed two-form Fμν . The
corresponding Killing spinor equations admit the globally defined spinors ζ ,χ
as a solution. This fixes the fields in the background Poincaré supergravity
multiplet. The explicit expressions for these background fields in terms of
the functions s,�s and the spinors ζ ,χ are given in [17] but will not be of
importance for the rest of this thesis.

Near the poles of the sphere the preserved supersymmetry simplifies. From
(4.6) we see that at the north pole ρ = 0 of the sphere the Killing spinors
become

χα̇
i =− i√

2
δ α̇

i , ζ i = 0.

From the diagonal form of χ we see that the preserved supercharge is that of
topologically twisted N = 2 theory [43]. Of the rotations SU(2)l×SU(2)r the
right factor has been identified with the R-symmetry SU(2)R. Similarly, we
see from (4.4) that at the south pole ρ = π of the sphere the SU(2)l gets twisted
with the R-symmetry. Taking also the background fields into consideration,
the supersymmetry near the poles approaches that of the Ω-background [4,44].

4.1.1 Gauge theories and cohomological variables
The vector multiplet of four dimensional N = 2 supersymmetry contains the
gauge field Aμ , a complex scalar X , gauginos λiα ,�λ i

α̇ in the (anti-)fundamental
of SU(2)R and an auxiliary field Di j in the triplet representation of SU(2)R.
Given that on the squashed sphere we are only preserving the Killing spinors
ζ i,χ i, it is of interest to rewrite the multiplet using cohomological fields [17]

ψμ = ζiσμλ
i
+χ iσ μλi, η = ζiλ i +χ iλ i, (4.7)

φ = �sX + sX , ϕ =−i(X −X),
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as well as a pair of two-forms χμν ,Hμν . The preserved supersymmetry then
acts as

δA = iψ, δψ = ιvF + idAφ , δφ = ιvψ,

δϕ = iη , δη = L A
v ϕ − [φ ,ϕ], (4.8)

δ χ = H, δH = iL A
v χ − i[φ ,χ],

where F = dAA and we use the covariant version of the Lie derivative L A
v =

Lv − i[ιvA,•] with ιvA the contraction of the vector v with the one-form A. In
these cohomological variables the Yang-Mills action takes the form

SY M =
1

g2
Y M

�

M
Ω∧Tr(φ +ψ +F)2, (4.9)

up to δ -exact terms. The multiform Ω is a sum of a zero-, two- and four-
form, and closed under the action of the equivariant differential id + ιv. By
definition, the integration is over the four-form component of the integrand.
Up to δ -exact terms the integrand is equivariantly closed

(id + ιv)Ω∧Tr(φ +ψ +F)2 = δ (Tr(φ +ψ +F)2). (4.10)

We can thus apply the Atiyah-Bott-Berline-Verne formula to localize the ac-
tion to the fixed points of the Killing vector v [45–47]. The fixed points are
the north and south poles and thus up to δ -exact terms the action is [48]

SY M =−4πiτl�lTr(X2)(N)+4πiτl�lTr(X2
)(S), (4.11)

where we have introduced the complexified coupling τ = θ
2π + 4πi

g2
Y M

.

The 4d hypermultiplet consists of an SU(2)R doublet of bosons qA, a pair
of fermions ψ,ψ and a doublet of auxiliary fields FA. The hypermultiplet also
admits a rewriting in cohomological variables [49]. The Lagrangian for the
hypermultiplet is

Lhyp = δVhyp, (4.12)

for a specific function Vhyp of the hyper- and vectormultiplet fields, and is thus
supersymmetrically exact for the action of the preserved supercharges [41,49].

4.2 The localized partition function
The partition function of supersymmetric gauge theories on the squashed four-
sphere was first localized by [41], generalizing the round sphere computation
of Pestun [5]. The localized partition function takes the form of an integral
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over the Cartan subalgebra of the gauge group

Z =
�

drGσ

	
∏

α∈Δ+

|α(σ)|2



Zclassical(σ)ZNek(σ ,m,q,q)

×Zvec
1−loop(σ)Zhyp

1−loop(σ ,m). (4.13)

The only parameter of the squashed sphere this partition function depends on

explicitly is b =



l/�l. For the coupling dependence of the non-perturbative

contributions ZNek we use q = e2iπτ . The bare hypermultiplet mass parameters
have been rescaled to m =

�
l�lmbare.

As noted in the previous section, the Yang-Mills action is not exact but gets
contributions from the scalar fields X , X which on the localization locus are
real and equal to the constant σ

2
√

l�l
. Plugging this into equation (4.11) we find

the value of the classical action,

logZclassical =− 8π2

g2
YM

Tr(σ2). (4.14)

The BPS equations of 4d SYM on the squashed sphere allow for instantons,
i.e. anti-self-dual gauge fields F+ = 0, at the north pole and anti-instantons,
i.e. self-dual gauge fields F− = 0, at the south pole. The contributions of
these saddles to the partition function we put together into ZNek. They factor
into an instanton contribution Zinst(σ ,m,q) from the north pole and an anti-
instanton contribution Zanti−inst(σ ,m,q) = Zinst from the south pole. As these
(anti-)instantons are localized at the poles of the sphere their partition function
is determined by the supersymmetry near the poles. Therefore Zinst is equal to
the SYM partition function on the four dimensional Ω-background, also called
the Nekrasov partition function [4, 44].

To write the 1-loop contributions to the localized partition function, we de-
fine the Upsilon function ϒ(x;b) [50]. This function is given by the regularized
infinite product

ϒ(x;b) = ∏
n1,n2≥0

�
(n1 +1)b+(n2 +1)b−1 − x

��
n1b+n2b−1 + x

�
�
(n1 +

1
2)b+(n2 +

1
2)b

−1
�2 . (4.15)

Notably it satisfies ϒ(b+b−1

2 ) = 1. For a hypermultiplet in a representation R
of the gauge group and for a vector multiplet the one-loop contributions to the
partition function are respectively

Zhyp
1−loop(σ ,m) = ∏

ρ∈R

1

ϒ
�

b+b−1

2 + iρ(σ)+ im;b
� , (4.16)

Zvec
1−loop(σ) =

�
ϒ�(0;b)

�rG ∏
α∈Δ+

ϒ(iα(σ);b)ϒ(−iα(σ);b)
α(σ)2 . (4.17)
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The product for the hypermultiplet is over the weights of the representation R
and for the vectormultiplet the product is over the positive roots of the gauge
Lie algebra. As for the instanton contributions, the 1-loop determinants only
depend on the supersymmetry near the poles of the sphere.

4.2.1 Local supersymmetry enhancement in N = 2∗

In four dimensions the maximal super Yang-Mills theory has N = 4 super-
symmetry. Its massive deformation is the so-called N = 2∗ theory, i.e. the
N = 2 supersymmetric gauge theory with a massive adjoint hypermultiplet. It
can be obtained from the N = 4 theory by introducing a background N = 2
vector multiplet for a U(1) subgroup of the SU(4)R R-symmetry. The mass
parameter corresponds to the scalar field in this background vector multiplet.
To preserve rigid N = 2 supersymmetry on the squashed sphere the auxiliary
field in the background vector multiplet has to be proportional to the mass.

From the perspective of N = 4 supersymmetry, the preserved supersym-
metry at the poles of the squashed four-sphere corresponds to the so-called
half-twist. The SU(4)R R-symmetry group of N = 4 has a SU(2)L

R ×SU(2)R
R

subgroup. Focusing on the symmetry at the north pole of the sphere, the
half-twist identifies the SU(2)L

R subgroup with the SU(2)r subgroup of the
Lorentz group SO(4) � SU(2)l × SU(2)r. Adding a background field for a
mass coupling to SU(2)R

R, one finds enhanced supersymmetry at fine-tuned
values of the mass parameter, cf. Paper IV and [51, 52]. The interesting point
is m = ±ib−b−1

2 . Then the SU(2)R
R symmetry gets identified with the SU(2)l

Lorentz symmetry. This is the Marcus twist of N = 4 [53]. At the same val-
ues m =±i b−b−1

2 for the adjoint hypermultiplet mass a similar local enhance-
ment of the supersymmetry also happens at the south pole of the squashed
four-sphere.

Although the supersymmetry enhancement upon fine-tuning of the N = 2∗

mass parameter is only local on the squashed four-sphere, it still implies sim-
plifications of the partition function. For one, the instanton partition function
becomes trivial Zinst = 1 [54] as a direct cause of the Marcus twist [53]. Sec-
ond, the 1-loop determinants of the vector- and hypermultiplet cancel for this
special value of the mass parameter. With the 1-loop and instanton contribu-
tions trivial, the N = 2∗ partition function at the fine-tuned value of mass is
equal to the N = 4 partition function on the round sphere,

ZN =2∗
�

m =±i
b−b−1

2
;b
�
= ZN =4(m = 0;b = 1) =

�
1

2Im(τ)

� rG
2
.
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4.3 (Partially) integrated correlators
For quantum field theories on a Euclidean manifold correlators are computed
as functional derivatives of the partition function with respect to background
fields. However, if we would like to use the supersymmetric localization re-
sults to study correlators we have to be careful. A generic background field
breaks supersymmetry and thus cannot be used in conjunction with localiza-
tion. Following [55, 56] a way out of this is to think of couplings and mass
parameters as background fields. Derivatives with respect to these parameters
will then give correlation functions where the operator insertions have been
integrated over all of space. For gauge theories on the (squashed) four-sphere
coupling derivatives stand out from this general discussion. Following equa-
tion (4.11) the integrated operator insertions for coupling derivatives localize
to operators inserted at the poles of the sphere [57]. In the rest of this section
we will highlight the results of Papers III and IV on integrated correlators.

Constraints in N = 4 SYM
The partition function of the N = 2∗ SYM theory on the squashed sphere
depends on the coupling τ , the squashing parameter b and the hypermultiplet
mass m. Its derivatives evaluated at (b,m) = (1,0) give integrated correla-
tors of N = 4 SYM on the round sphere. In Paper III we observed that the
squashing independence for the fine tuned mass m = ±i b−b−1

2 implies an in-
finite tower of constraints on the integrated correlators in N = 4. Notably at
four-points we showed that this implies the exact relations

0 = (∂τ∂τ∂ 2
m −∂τ∂τ∂ 2

b ) logZ
��
m=0,b=1 , (4.18)

0 = (−6∂ 2
b ∂ 2

m +∂ 4
m +∂ 4

b −15∂ 2
b ) logZ

��
m=0,b=1 . (4.19)

These relations were earlier observed in [58] by explicitly evaluating the lo-
calized partition function.

Partially integrated correlators
In N = 2 gauge theories with matter, flavor symmetry background fields pre-
serving all the supercharges of the squashed four-sphere background do not
have to be constant. In Paper IV we showed that if the scalars X ,X in the
background vector multiplet are constant along the flow of the Killing vec-
tor v one can find a background auxiliary field Di j and a background gauge
field A such that the supercharges are preserved. The localization computation
of [17,49] still goes through the same way as with constant background fields.
The resulting partition function only depends on the value of the scalar fields
at the poles of the sphere, i.e. X(N) and X(S). The functional derivatives
with respect to these position dependent background fields give us correlators
integrated only along the orbits of the Killing vector v.
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5. Superconformal field theories on deformed
spheres

The classical action of conformal field theories in flat space is indepentent of
any scales. However, this scale independence is broken when we consider the
quantum theory on a compact manifold. On a compact manifold UV diver-
gences require the introduction of a cutoff scale ΛUV . On a compact four-
dimensional manifold M , this implies that the free energy F of the CFT takes
the form

−F = logZM = A4
�
volM Λ4

UV
�
+A2

�
volM Λ4

UV
�1/2

+A0 log
�
volM Λ4

UV
�
+finite. (5.1)

The coefficients A4,A2,A0 as well as the finite term may depend on all the
parameters of the theory, including the number of degrees of freedom and
marginal couplings. Notably, this expression for the free energy is ambigu-
ous. A cosmological constant counter-term will contribute to the quartic term,
shifting the coefficient A4. Similarly, the quadratic term corresponds to an
Einstein-Hilbert counter-term. In addition, due to the logarithmic term, the
finite part of the free energy depends on the regularization scheme. Only the
coefficient A0 is unambiguous.

In Paper III we looked at the free energy of N = 2 superconformal field
theories on curved four dimensional manifolds. In the following sections we
will review our results on the coefficient A0 of the logarithmic term and the
form of the finite term. We use the localized partition function of N = 4
super Yang-Mills as an example and compare it to our results for the general
form of the SCFT free energy.

5.1 Deformations and the Weyl anomaly
The coefficient A0 of the logarithmic term in the free energy (5.1) is unam-
biguous in the sense that it cannot be changed by adding counterterms and
that it is independent of the regularization scheme we choose. For a conformal
field theory on a compact four-manifold it has been related to the conformal
anomalies [59–62]

A0 =
1

64π2

�
d4x

√
g(−aE4 + cCμνρσCμνρσ ). (5.2)
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The two terms contributing to A0 are examples of the two distinct types of
anomalies [63]. The integral of the Euler density E4 is a topological invariant
and therefore we classify the a anomaly as a type-A anomaly. By contrast, a
type-B anomaly like the c anomaly term which couples to the square of the
Weyl tensor C depends also on smooth deformations of the manifold.

Consider the example of the four-sphere and smoothly deform the metric to
d2s = ds2

round + hμνdxμdxν . Then at leading order the change of A0 takes the
form

δA0 =
1
32

δσ

�
d4x

�
g(x)

�
d4y

�
g(y)hμν(x)hρσ (y)
Tμν(x)Tρσ (y)�, (5.3)

where we used that the c anomaly is proportional to the normalization of the
stress tensor Tμν [64, 65]. The notation δσ represents a scale variation, also
called a “Weyl” variation, and is explicitly given by the derivative d

dlogΛUV
.

Thus it picks out the logarithmically divergent piece of the integrated two-
point correlator coming from the coincident limit x → y.

5.1.1 The case of N = 2 SCFTs
For superconformal field theories the logarithmic term in the free energy gets
contributions from all the fields in the background supergravity multiplet. The
form of this supersymmetrization of (5.2) can be determined from the super-
Weyl anomaly studied in [66–68]. For manifolds smoothly connected to the
sphere, the only A-type anomaly contribution to A0 comes from the Euler char-
acteristic. However, the B-type anomaly gets additional contributions from the
supersymmetrization of the (Weyl)2 term. Thus for SCFTs on smooth defor-
mations of the sphere the coefficient of the logarithmically divergent term of
the free energy is

A0 =−a+
c

64π2

�
d4x

√
g
�
CμνρσCμνρσ + . . .

�

� �� �
≡I

(Weyl)2

. (5.4)

In Paper III we determine the contributions to the (Weyl)2 term quadratic in
the background fields. Functional derivatives of (5.4) can be equated to diver-
gences of SCFT stress-tensor multiplet correlators. From the Ward identities
of these correlators we get relations between the different terms in I(Weyl)2 and
thus we find that the supersymmetric completion of the (Weyl)2 term takes the
form

I(Weyl)2 =
�

d4x
√

g
�

CμνρσCμνρσ +
3
2

D2 − 1
2

FμνFμν − 1
2
FμνF μν

+4096∇μB+μν∇σ B−
σν +2048RμνB+μρB−ν

ρ

+c5B+
μνB+μνB−

ρσ B−ρσ
�
. (5.5)

42



Here F and F are the field strengths of U(1)r and SU(2)R gauge fields respec-
tively, B is a two-form field and D is a scalar. All of these fields are part of the
supergravity multiplet. The quartic term in the third line is also allowed but it
will require studying four-point correlators to determine the coefficient c5.

5.2 The finite part of the free energy
Marginal operators Ci have a distinguished role in conformal field theories,
since deforming a CFT in flat space by a marginal operator preserves the con-
formal symmetry. The space of CFTs connected through marginal deforma-
tions is called the conformal manifold. A metric on the conformal manifold is
given by

gi j = 
Ci(0)C j(∞)�R4 , (5.6)

commonly called the Zamolodchikov metric [69]. For superconformal field
theories on curved spaces, deformations by marginal operators can be made
invariant under the preserved supersymmetry by including couplings to the
background fields in the supergravity multiplet. The deformation term then
takes the form [70]

1
π2

�
d4x

√
g∑

i
τi

�
Ci −

1
4
AiB+

μνB+μν
�
+h.c., (5.7)

where Ai is the bottom component of the superconformal multiplet containing
the marginal operator Ci. One example of a marginal operator in an SCFT
in four dimensions is the super Yang-Mills Lagrangian for the N = 2 vector
multiplet.

We noted already in equation (4.11) that for N = 2 superconformal field
theories on the squashed sphere, the super Yang-Mills action localizes to op-
erators at the north and south poles of the sphere. This holds true also for
marginal operators in other SCFTs without a Lagrangian description and it
implies that

∂i∂ j logZM = (32l�l)2 �Ai(N)A j(S)
�
M

. (5.8)

On the round sphere this result was found by [71, 70]. The right hand side of
this equation is related to a two-point function of marginal operators through
Ward identities. Hence it is proportional to the Zamolodchikov metric,

∂i∂ j logZM =
gi j

12
(1+ �P(τi,τ i,b)) , (5.9)

where we introduced the squashing parameter by defining l = rb, �l = r/b.
Integrating this equation we find that the finite part of the free energy takes the
form

logZS4
b

���
reg.

=
K(τi,τ i)

12
(1+P(τi,τ i,b))+Ph(τi,b)+Ph(τ i,b), (5.10)
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where K(τi,τ i) is the Kähler potential. Ph(τi,b) and Ph(τ i,b) are holomorphic
and anti-holomorphic functions of the marginal couplings, respectively. The
term constant in b matches the round sphere result in [71].

To further fix the form of P(τi,τ i,b) we start by looking at the part of the
Weyl anomaly which involves the Kähler potential. From a general expression
in [67, 68], we find in Paper III that

K(τi,τ i)

12
P(τi,τ i,b) =

I(Weyl)2

96π2 K(τi,τ i)�c(τi,τ i)+ γ(τi,τ i,b), (5.11)

with γ(τi,τ i,b) an unambiguous, Weyl-invariant and non-local functional of
the supergravity background fields. �c(τi,τ i) is constrained by considering
possible counterterms contributing to the finite part of the action. Kähler shifts
K → K+F +F by a holomorphic function F of the marginal couplings should
be accompanied by a shift in the couplings of counterterms such that the free
energy is invariant [72]. In the present case the possible supergravity countert-
erms are the supersymmetrized Gauss-Bonnet term and the integrated super-
symmetrized Weyl squared term I(Weyl)2 . This implies

K(τi,τ i)�c(τi,τ i) = αK(τi,τ i)+β (τi,τ i), (5.12)

for α a theory dependent constant and β (τi,τ i) an unambiguous function of
the moduli. Summarizing, we found in Paper III that the finite part of the free
energy of an N = 2 SCFT on a curved manifold is

logZS4
b

���
reg.

=
K(τi,τ i)

12
+

α
96π2 K(τi,τ i)I(Weyl)2 +

β (τi,τ i)

96π2 I(Weyl)2

+ γ(τi,τ i,b)+Ph(τi,b)+Ph(τ i,b). (5.13)

5.3 Examples using localization
N = 4 super Yang-Mills is an example of a superconformal field theory where
supersymmetric localization is applicable. In this section we compare the log-
arithm of the localized partition function of N = 4 SYM on the squashed
sphere to the general form of the SCFT free energy (5.13). Keeping track of
the logarithmically divergent terms in the regularization of the infinite prod-
ucts (4.15) we compute the integrated (Weyl)2 term for the squashed sphere.
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5.3.1 Regularizing the one-loop determinants
For N = 2∗ SYM on the squashed four-sphere the one-loop determinant be-
fore regularization is a product of factors of the form

∏
m,n≥0

(m,n)�=(0,0)

�
mb+nb−1 + ix

�
∏

m,n≥0

�
(m+1)b+(n+1)b−1 − ix

�

∏
m,n≥0

��
m+ 1

2

�
b+

�
n+ 1

2

�
+ ix+ iμ

���
m+ 1

2

�
b+

�
n+ 1

2

�
− ix− iμ

� .

(5.14)

Instead of working directly with this expression, we note that all of these fac-
tors contributing to the one-loop determinant either have x = 0 or they come
in pairs with ±x. Therefore we can look at regularizing the infinite product

∏
m,n≥0

(m,n)�=(0,0)

�
mb+nb−1 + ix

�
∏

m,n≥0

�
(m+1)b+(n+1)b−1 + ix

�

∏
m,n≥0

��
m+ 1

2

�
b+

�
n+ 1

2

�
+ ix+ iμ

���
m+ 1

2

�
b+

�
n+ 1

2

�
+ ix− iμ

�

(5.15)

=
∞

∏
n=1

n

∏
m=1

�
1− (n−2m)2(γ �)2

(n+ ix�)2

��
1− (n−2m+1+ iμ �)2(γ �)2

(n+ ix�)2

�−1

,

(5.16)

where we have defined γ � =



1− 4
Q2 , μ � = 2μ

Qγ � and x� = 2x
Q . We can then use

the Taylor series of the logarithm log(1− z) = −∑∞
p=1

zp

p to write this in the
form

exp

	
−

∞

∑
p=1

(γ �)2p

p

∞

∑
n=1

1
(n+ ix�)2p

n

∑
m=1

�
(n−2m)2p −

�
n−2m+1+ iμ ��2p

�


(5.17)

= exp

	
(1+(μ �)2)

∞

∑
p=1

(γ �)2p fp(x�,μ �)



. (5.18)

The functions fp(x�,μ �) contain the logarithmic divergence of the one-loop
determinant. Starting from the definition of the fp we can manipulate the
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expression to make the divergence apparent

fp(x�,μ �)

≡−
∞

∑
n=1

1
p(1+(μ �)2)(n+ ix�)2p

n

∑
m=1

�
(n−2m)2p −

�
n−2m+1+ iμ ��2p

�

(5.19)

=−
∞

∑
n=1

1
p(1+(μ �)2)(n+ ix�)2p

n

∑
m=1

�
2p(n−2m+1)2p−1(−1− iμ �)

+ p(2p−1)(n−2m+1)2p−2((−1)2 +(iμ �)2)

+O
�
(n−2m+1)2p−3��

(5.20)

=−
∞

∑
n=1

1
(n+ ix�)2p

�
n2p−1 +O

�
n2p−2�� (5.21)

=−
∞

∑
n=1

1
(n+ ix�)

+O
�
(n+ ix�)−2� . (5.22)

This last line makes clear the logarithmic divergence − log(Λ�
UV ) of the func-

tions fp and we see that the regularized expression is a sum of the digamma
function and its derivatives1. The UV scale Λ�

UV corresponds to a cutoff for the
summation but on the squashed sphere it is not obvious how to define it. We
propose that the correct cutoff Λ�

UV equals 2ΛUV
Q where ΛUV is kept constant

under squashing. This form of the cutoff is suggested by the rescaled x� = 2x
Q .

Summing the logarithmic divergences from the fp functions, we see that the
infinite product (5.15) diverges as

exp
�
− log(Λ�

UV )

�
Q2

4
−1+μ2

��
. (5.24)

5.3.2 The Abelian maximal super Yang-Mills
As the first example we consider the Abelian N = 4 super Yang-Mills theory.
To be more precise we consider the theory of an N = 2 vector multiplet with
a massless adjoint hypermultiplet. In this case the one-loop determinant is
given by equation (5.14) with x = μ = 0 and it can be written as

log(Z1−loop) =−
�

Q2

4
−1

�
logΛ�

UV + logϒ�(0). (5.25)

1The digamma function is defined as the series

ψ(z+1) =−γ +
∞

∑
n=1

�
1
n
− 1

n+ z

�
, (5.23)

where γ is the Euler-Mascheroni constant.
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This caputures most of the logarithmic divergence of the free energy but misses
the topological piece. On the round sphere, the logarithmic divergence of the
logarithm of the partition function is −4a logΛUV = − logΛUV . The U(1)
instanton partition function is [44, 73–75, 58]

ZU(1)
Inst. =

	
∞

∏
i=1

(1−qi)


Q2
4 −1

, (5.26)

with q = e2πiτ . It is holomorphic in τ and independent of the Coulomb branch
parameter. The last contribution to the partition function is the Gaussian inte-
gral

�
dσe

− 8π2σ2

g2
Y M =

�
g2

Y M
8π

=

�
1

Im(τ − τ)

� 1
2
. (5.27)

Thus the free energy of the abelian N = 4 SYM on the squashed sphere is

logZ =−Q2

4
logΛUV − 1

2
logIm(τ − τ)+ logϒ�(0)+

�
Q2

4
−1

�
log

Q
2

+ logZU(1)
Inst. (τ)+ logZU(1)

Inst. (τ). (5.28)

To compare with the general expressions for the free energy in equations (5.4)
and (5.13) we note that for Abelian N = 4 SYM the anomaly coefficients are
a = c = 1

4 and the Kähler potential is K(τ,τ) = −6log(Im(τ − τ)). We thus
see that

I(Weyl)2 =−64π2
�

Q2

4
−1

�
, β (τ,τ) = 0,

γ(τ,τ,b) = logϒ�(0)+
�

Q2

4
−1

�
log

Q
2
, α = 0, (5.29)

Ph(τ,b) = logZU(1)
Inst. , Ph(τ,b) = logZU(1)

Inst. .

5.3.3 N = 4 super Yang-Mills at large N
As our second example we consider the large N limit of SU(N) N = 2 su-
per Yang-Mills with a massive adjoint hypermultiplet. In this limit the in-
stanton contributions are suppressed and the matrix integral is dominated by
widely separated eigenvalues. To simplify the partition function we can then
use that the functions fp from equation (5.18) can for large x� be approximated
as fp(x�,μ �)≈− logΛ�

UV + log(1+ ix�). With this approximation we write the
partition function as

Z|reg. ≈
�

∏
i

dσi ∏
i< j

(σ2
i j)

Q2
4 +μ2

e−
8π2

λ N ∑i σ2
i , (5.30)
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and we dropped a prefactor which gives a subleading contribution to the free
energy at large N. For a mass μ = ±i Qγ �

2 this integral reduces to a Gaussian
matrix model. The saddle point equation for the integral is

16π2

λ
Nσi = 2

�
Q2

4
+μ2

�
∑
i�= j

1
σi −σ j

. (5.31)

This is the same saddle point equation as for a Gaussian matrix model with
the coupling λ replaced by

�
Q2

4 +μ2
�

λ . Therefore the resulting free energy
at large N is

logZ|reg. ≈
N2

2

�
Q2

4
+μ2

�
log

��
Q2

4
+μ2

�
λ
�
. (5.32)

Setting the mass μ to zero and adding the divergent part we find

logZ ≈ N2
�
−Q2

4
logΛUV +

Q2

8
logλ +

Q2

8
log

Q2

4

�
. (5.33)

We can compare this to the general form of the N = 2 SCFT free energy
(5.13) and find

I(Weyl)2 =−64π2
�

Q2

4
−1

�
, β (τ,τ) = 0,

γ(τ,τ,b) =
N2Q2

8
log

Q2

4
, α =−1

8
, (5.34)

Ph(τ,b) = 0, Ph(τ,b) = 0.

We note that the value of the integrated supersymmetrized (Weyl)2 term is the
same as for the Abelian case, cf. equation (5.29). This was to be expected as
this term only depends on the fields in the background Weyl multiplet.
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Part III:
7d super Yang-Mills at negative coupling





6. Super Yang-Mills in seven dimensions

In this chapter we give a brief introduction to the seven dimensional super
Yang-Mills theory. This theory has not had much attention as it is not UV-
complete. However it is sensible as a low energy effective theory for its UV
completion in string or M-theory. Considering a stack of D6 branes in type
IIA string theory one finds that at low energies the effective theory on the
worldvolume of the branes is 7d SYM with gauge group U(N). A Lagrangian
description can then be obtained by dimensional reduction of the 10d SYM.
In the following we look at the Lagrangian formulation of 7d SYM on the
squashed seven-sphere and the localized partition function.

6.1 Super Yang-Mills on the seven-sphere
Super Yang-Mills theory on the seven-sphere was first constructed in [76,77].
They started from the 10d flat space SYM Lagrangian dimensionally reduced
along the time direction and two space directions. The covariantized La-
grangian was then made invariant under half of the conformal Killing spinors
of the round sphere by adding correction terms to both the Lagrangian and to
the supersymmetry transformations of the fermions. In this section we give a
quick introduction to this Lagrangian description of the 7d SYM on S7 and the
perturbative contributions to its localized partition function.

Describing the Lagrangian as a dimensional reduction of the 10 dimen-
sional super Yang-Mills Lagrangian, we choose all spinors in this section to
be 10 dimensional Majorana-Weyl spinors and write ΓM,�ΓN for the corre-
sponding 10d Dirac matrices. To explicitly give the Killing spinors we use
projective coordinates on the seven-sphere of radius r. The metric is

ds2 =
dx2

(1+ x2

4r2 )
2
.

The Killing spinor equations and the corresponding preserved Killing spinors
then take the form

∇με =
1
2r

�ΓμΓ8�Γ9Γ0ε, (6.1)

ε =
1


1+ x2

4r2

�
εs +

1
2r

(x ·Γ)Γ8�Γ9Γ0εs

�
, (6.2)
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parameterized by the constant spinor εs. We thus have a total of 16 inde-
pendent Killing spinors on the seven-sphere. The 10 dimensional gauge field
AM splits up into the 7d gauge field Aμ (μ = 1, . . . ,7) and the scalars φI = AI
(I = 0,8,9) in the vector representation of the SO(1,2) R-symmetry group.
The unusual choice for the indices comes from dimensionally reducing the 10d
theory along the time direction (M = 0) and two space directions (M = 8,9).
With the supersymmetry transformations

δεAμ = εΓμΨ, δεΦI = εΓIΨ,

δεΨ =
1
2
�
ΓμνFμν +2ΓμIDμφI +ΓIJ[φI ,φJ]

�
ε +

8
7

ΓμIφI∇με,
(6.3)

the following 7 dimensional super Yang-Mills Lagrangian is invariant under
all 16 Killing spinors

L =
1

g2
Y M

Tr
�

1
2

FμνFμν +
1
2

DμφIDμφ I +[φI ,φJ][φ I ,φ J]−Ψ /DΨ

+
3
2r

ΨΓ8�Γ9Γ0Ψ+
8
r2 φ IφI −

2
r
[φ I ,φ J]φ KεIJK

�
. (6.4)

We use ε890 = 1 and /DΨ = ΓμDμΨ+ΓI [φI ,Ψ]. The second line of this La-
grangian are the correction terms added for the curved space.

In [8] it was noted that this construction works much more generally than
just the round sphere. If a seven dimensional manifold admits a solution to the
Killing spinor equation (6.1) then the Lagrangian (6.4) is invariant under the
corresponding supersymmetry transformation (6.3). For supersymmetric lo-
calization a minimum of two conserved supercharges is required which means
that the manifold should be Sasaki-Einstein. In the following we squash the
seven-sphere to preserve only this minimum number of supercharges. This in-
troduces four parameters ωi restricted to satisfy ∑4

i=1 ωi = 4. This deformation
helps with the regularization of infinities.

6.1.1 The perturbative partition function
Given a choice of a localizing supercharge with corresponding Killing spinor ε ,
the localized partition function depends on the Killing vector vμ = εΓμε . Us-
ing embedding coordinates zi = ri exp(iφ i) on the squashed seven-sphere the
Killing vector takes the form v = ∑4

i=1 ωi∂φi . The full equations for the lo-
calization locus were found in [77, 8]. However the BPS locus described by
these equations has not been fully determined. Only the part of the locus
where the gauge field A vanishes and the BPS equations require φ8 = φ9 = 0
and φ0 = constant is well understood. As in lower dimensions, this perturba-
tive part of the partition function of super Yang-Mills on a squashed S7 is an
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integral over the Cartan subalgebra for the gauge group [8]

Zpert.
S7 =

�
dσe

− 4π4r3ρ
g2
Y M

Tr(σ2)

∏
α∈Δ

S4(iα(σ);ω1,ω2,ω3,ω4), (6.5)

with ρ = (ω1ω2ω3ω4)
−1 and Δ the roots of the gauge Lie algrebra. Simi-

lar to the double sine function (2.17), we define the quadruple sine function
S4(x;ω1,ω2,ω3,ω4) as a the zeta funciton regularization of the infinite prod-
uct [20]

∏m,n,k,l≥0(mω1 +nω2 + kω3 + lω4 + x)

∏m,n,k,l≥1(mω1 +nω2 + kω3 + lω4 − x)
. (6.6)

6.2 Contact instantons
The instanton contributions to the SYM partition function on S7 have not
been analyzed in detail in the literature. In Paper V we compute the con-
tribution of some instantons to the partition function. The instantons we con-
sider are the lift of point-like instantons from four dimensions and are thus
three-dimensional membranes. The three-dimensional submanifold wrapped
by such an instanton should be invariant under the action of the Killing vector
v and thus on the squashed seven-sphere only a finite number of submani-
folds can be wrapped by these membrane instantons. We restrict our attention
to the instantons wrapping one of the six squashed three-spheres fixed under
the action of v. Near one of these S3 the supersymmetry approaches that of a
twisted S3×twC2. In subsection 6.2.1 we present how to compute the partition
function of these instantons and discuss the results in subsection 6.2.2. This
provides additional factors that should be included in the S7 partition func-
tion (6.5) similar to the non-perturbative contributions in the partition function
(4.13) on the four-sphere.

Before proceeding, let us write down the seven-dimensional equivalent of
the instanton equation and motivate the title of the section. First we have
to define the contact one-form κ = g(v,•) from the Killing vector v. This is
related to the volume element of the manifold as κ∧dκ3 =−24volg. It defines
a contact structure on the manifold. The contact instanton equation takes the
form

∗F =
1
2

F ∧κ ∧dκ. (6.7)

In the appendix to Paper V we showed that a solution to this equation is the lift
of a point-like instanton from 4d to 7d that has a constant wrapping around one
of the fixed squashed three-spheres. All the solutions to this contact instanton
equation are on the BPS locus of the seven-dimensional super Yang-Mills.
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6.2.1 ADHM gauge theory
This subsection is inpsired by the discussion of D-brane bound states in [78].

To find a model in which we can compute the membrane instanton contri-
bution to the 7d SYM partition function, we take a string theory perspective
of the problem. As noted earlier, the seven dimensional super Yang-Mills the-
ory is the low-energy effective theory on a stack of D6 branes. The D6 brane
action contains the term [78]

�
Tr(F ∧F)∧C3, (6.8)

which is an integral over the brane worldvolume and depends on the gauge
field strength F and the R-R 3-form potential C3. The membrane instantons
are non-trivial field strength configurations of co-dimension three. From (6.8)
we see then that the instantons are sourced by a non-trivial 3-form potential
on a three-dimensional submanifold of the D6 brane worldvolume. Such a
three-form potential corresponds to D2 branes which couple to the three-form
potential through

�
C3. Therefore we identify the membrane instantons of 7d

SYM with D2 branes bound to the D6 branes.
To compute the instanton partition function we then switch our perspective.

We can describe the D2-D6 brane bound state from the effective gauge theory
on the worldvolume of the D2 branes. In the absence of D6 branes, the ef-
fective gauge theory on the D2 branes is 3d N = 8 super Yang-Mills. For k
D2 branes the gauge group is U(k). In the presence of Nc D6 branes, strings
can stretch from the D2 branes to the D6 branes. The effective description
of these additional strings is a hypermultiplet in the fundamental represen-
tation of both the gauge group U(k) and the U(Nc) flavor symmetry which
corresponds to the gauge group of the 7d theory. Thus the effective theory is
a 3d N = 4 gauge theory with one adjoint and Nc fundamental hypermulti-
plets [78]. The separation of the D2 branes from the D6 branes is measured
by the scalars of the vectormultiplet in the effective three dimensional theory.
Therefore the instantons of the 7d theory correspond to supersymmetric con-
figurations in the 3d theory where these vectormultiplet scalars vanish. These
configurations are part of the space of vacua of the 3d N = 4 gauge theory
and their locus is called the Higgs branch. The instanton partition function
is thus equal to the localized Higgs branch partition function for the effective
theory on the D2 branes. However we can recover this Higgs branch partition
function by evaluating the integrals in the Coulomb branch partition function
reviewed in subsection 2.2.21.

We want to consider instantons wrapping three-spheres inside the S7. For
the computation of the partition function of instantons wrapping one of these
spheres, we can consider the D6 brane worldvolume to be S3 ×tw C2 while the

1See [79] where the authors take a simple example and explicitly match a sum over residues of
the Coulomb branch partition function to the Higgs branch partition function.
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D2 branes wrap the three-sphere. The twist of the geometry implies that the
effective 3d gauge theory lives on a squashed three-sphere and the hypermul-
tiplets are massive with the twist parameters entering as mass parameters for
some of the R-symmetry.

Guiding this whole construction are the lower dimensional results. Atiyah,
Drinfeld, Hitchin and Manin noticed that they could construct all Yang-Mills
instantons from a set of matrices subject to some constraint equations [80].
Nowadays we refer to these matrices as the ADHM data. Later it was noticed
that the ADHM data describe the bosonic fields in the D(-1)-D3 brane bound
state. In [4] Nekrasov used this ADHM data to compute the instanton partition
function in the four dimensional Ω-background, where from the quantized
theory he found solitons on S1 ×tw C2. The 2d ADHM gauge theory has also
been studied on the two-sphere [81].

6.2.2 Instanton partition function
The upshot of the previous section is that the membrane instanton contribution
to the S7 partition function of super Yang-Mills is the product of the partition
functions on six different squashed three-spheres

Zinst = ∏
1≤i< j≤4

ZS3
ωi,ω j

, (6.9)

with the squashing parameter
�

ωi/ω j for the three-sphere S3
ωi,ω j

. Each of
these six contributions is the sum over the instanton number k on that squashed
three-sphere, i.e. the rank of the ADHM gauge theory on that S3

ωi,ω j
,

ZS3
ωi,ω j

=
∞

∑
k=0

e
− 4π2k

g2
Y M

2π2r3
ωiω j Z(k). (6.10)

The weighting of each term corresponds to the contribution of the instantons
to the classical 7d SYM action. For concreteness we discuss in the following
the partition function on the squashed three-sphere S3

ω1,ω2
. The two parameters

ω3,ω4 give masses to the various chiral multiplets of the ADHM theory. The
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partition function for k instantons wrapping S3
ω1,ω2

is then given by the integral

Z(k) =

⎛
⎝

S2

�
Q
2 −ω3 −ω4

�

S2

�
Q
4 −ω3

�
S2

�
Q
4 −ω4

�

⎞
⎠

k

×
� dkφ e−2πiζ ∑k

i=1 φi

k!(
√

ω1ω2)
k ∏

i�= j

S2 (iφi j)S2

�
Q
2 + iφi j −ω3 −ω4

�

S2

�
Q
4 + iφi j −ω3

�
S2

�
Q
4 + iφi j −ω4

�

×
k

∏
i=1

N

∏
A=1

1

S2

�
Q
4 − iφi + iσA

�
S2

�
Q
4 + iφi − iσA − (ω3 +ω4)

� , (6.11)

where we use S2(x)≡ S2(x;ω1,ω2) and Q=ω1+ω2 to keep the notation more
compact. The integration is on Rk. Compared to Paper V we have adjusted
two things. First, motivated by computations in lower dimensions [82], we
have adjusted the R-charges of the chiral multiplets to the value suggested by
N = 4 supersymmetry. Second, we have added the FI parameter ζ which is
not part of the 7d SYM theory. However we use it to get a prescription for
evaluating the integral. For ζ > 0 we can evaluate the integral by summing
over all the poles in the lower half-plane. After the evaluation of the integral
we then set ζ to zero.

In Paper V we used a pole prescription inspired from results in 4 and 5
dimensions [4] and evaluated the poles contributing to Z(k) at leading order in
e−2πζ ω1 , e−2πζ ω2 . This truncated k instanton partition function takes the form

∑
|Y |=k

N

∏
A,B=1

∏
s∈YA

S2

�
iσBA − (vA(s)+1)

�
ω3 −

Q
4

�
+hB(s)

�
ω4 −

Q
4

��−1

×S2

�
iσAB − (hB(s)+1)

�
ω4 −

Q
4

�
+ vA(s)

�
ω3 −

Q
4

��−1

. (6.12)

It is a sum over N-tuples of Young diagrams with in total k boxes. vi(s) is the
vertical distance from box s to the boundary of the i-th tableaux and h j(s) is
the horizontal distance to the boundary of the j-th tableaux. We have set the
FI parameter ζ to zero. For the one instanton case this simplifies to

1

S2

�
Q
4 −ω3

�
S2

�
Q
4 −ω4

�
N

∑
A=1

∏
B�=A

1

S2(iσAB)S2

�
Q
2 + iσBA −ω3 −ω4

�

(6.13)

In the round sphere limit ωi → 1 this one instanton contribution is finite and
equals

1
2

N

∑
A=1

∏
B�=A

1
S2(iσAB;1,1)S2

�
iσBA − 3

2 ;1,1
� . (6.14)
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For more instantons the contribution from a single fixed three-sphere is not
finite in the round sphere limit. However we expect that these divergences
cancel between the six fixed three-spheres and that the full instanton contribu-
tion to the round sphere partition function of 7d super Yang-Mills is finite. In
five dimensions a similar cancellation of divergences is observed for instanton
contributions to the sphere partition function of 5d SYM.

For the one instanton case we can explicitly write down the full partition
function Z(1) as a sum over all the poles in the lower half-plane. After using
the pseudo-periodicity of the double sine function we get the result

Z(1) =

1

S2

�
Q
4 −ω3

�
S2

�
Q
4 −ω4

�
N

∑
A=1

⎛
⎝∏

B�=A

1

S2(iσAB)S2

�
Q
2 + iσBA −ω3 −ω4

�

⎞
⎠

×
∞

∑
n,m=0

(−2i)n+m(−1)nm (6.15)
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∏
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∏
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��
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∏
B�=A

n

∏
k=1

cos
�

π((k− 1
2)ω1−iσAB−ω3−ω4)

ω2

�

sin
�

π(iσAB−kω1)
ω2

�
m

∏
l=1

cos
�

π((l− 1
2)ω2−iσAB−ω3−ω4)

ω1

�

sin
�

π(iσAB−kω2)
ω1

� .

Looking at the products of cosines in the second to last line, we observe that
in the round sphere limit the additional contributions with n or m non-zero
vanish and thus Z(1) reduces to (6.14). We expect that this suppression of the
additional poles holds for all k instanton sectors such that (6.12) captures the
leading contribution close to the round sphere.
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7. The negative coupling limit of 7d SYM

The usual expectation is that for a gauge theory the regime of negative cou-
pling g2

Y M is not well defined. However, in Paper V we argue that for super
Yang-Mills on the seven-sphere the renormalized coupling may be negative
and that at weak negative coupling the theory admits a dual description as a
seven dimensional supergravity theory. We start this chapter by discussing
the motivations for studying the negative coupling regime of 7d super Yang-
Mills on a sphere and for expecting a supergravity theory in the small negative
coupling limit. Thereafter we present the progress made in confirming this
expectation using supersymmetric localization. The techniques we use are
inspired from similar works in five dimensions [83].

7.1 Motivation
In the previous chapter we discussed how the 7d super Yang-Mills theory on
the sphere can be studied from localization. SYM on S7 arises as the effective
theory on the spherical D6 branes of [84]. The corresponding 11d supergrav-
ity geometry is (H2,2/ZN)× S7 where H2,2 is a Wick rotation of AdS4 with
two time directions. In [10] the free energy and Wilson loop expectation value
were analyzed both from supergravity and supersymmetric localization. In
terms of the bare coupling g0 and a mode number cutoff n0, the effective cou-
pling for the localized SYM partition function is [77]

λ−1
e f f ≡

r3

g2
0N

− n0

2π4 . (7.1)

The strong coupling behavior of the perturbative partition function only ap-
pears once this effective coupling is continued through the normal strong cou-
pling point all the way to λ−1

e f f → −∞. To get the holographic dictionary to
match, the supergravity solution then also has to be analytically continued to
the point where there is an additional minus sign in the relation between the
string coupling gs and the Yang-Mills coupling gY M

g2
Y M =−2πgs(2πls)3. (7.2)

The results of [10] show the necessity for the negative weak coupling limit
of SYM on the seven-sphere in the context of holography. To understand the
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nature of this phase which is from the SYM perspective strongly coupled, we
have to include non-perturbative contributions to the partition function.

To get some insight into what a strongly coupled phase for seven dimen-
sional super Yang-Mills looks like, we turn to the results in [85]. Here Peet
and Polchinski looked at the near-horizon geometry of a stacks of N flat Dp
branes. Probing these geometries either by a Dp brane or a supergravity probe,
they found that two distinct energy scales could be probed,

supergravity : E =
U (5−p)/2

gY MN1/2 , (7.3)

Dp brane : E =U, (7.4)

in terms of the holographic coordinate U . Noticeably for D6 branes this im-
plies that there exist two distinct low energy effective theories, the 7d super
Yang-Mills theory in the near horizon limit at U → 0 and another low energy
theory at U → ∞. In addition they found that both these low energy theories
were weakly coupled in their respective regimes,

supergravity : g2
e f f =

�
g2

Y MNU p−3�(5−p)/2
, (7.5)

Dp brane : g2
e f f = g2

Y MNU p−3. (7.6)

This suggests that the strong coupling limit of the 7d SYM has a dual descrip-
tion as a weakly coupled supergravity theory.

7.2 7d SYM at weak negative coupling
In this section we present our approach for studying the weak negative cou-
pling limit of the localized partition function of seven-dimensional super Yang-
Mills.

We restrict the discussion to the gauge group SU(2). For this gauge group
the perturbative partition function (6.5) simplifies to

Zpert. =
�

dσe
− 8π4r3ρ

g2
Y M

σ2

S4(2iσ ;ω1,ω2,ω3,ω4)S4(−2iσ ;ω1,ω2,ω3,ω4),

(7.7)
where we defined σ ≡ σ1 = −σ2. Assuming the coupling λ =

2g2
Y M

r3 is small
and negative we want to determine the saddle points of this integral. We expect
that in this limit of the coupling the integral is dominated by contributions from
large values of σ . For large positive σ we can approximate the quadruple sines
as

log(S4(2iσ ;ω1,ω2,ω3,ω4)S4(−2iσ ;ω1,ω2,ω3,ω4))

≈−πρ
3

�
16σ3 −2σ(ω1ω2 +ω1ω3 +ω1ω4 +ω2ω3 +ω2ω4 +ω3ω4)

�
,

(7.8)
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up to exponentially suppressed terms. The saddle point equation then takes
the form

σ2 +
2π3

λ
σ − ω1ω2 +ω1ω3 +ω1ω4 +ω2ω3 +ω2ω4 +ω3ω4

24
= O

�
e−2σ� .

(7.9)
Solving this equation, we find the saddle point for small negative λ is at

σ =−2π3

λ
+O(λ ). (7.10)

With the effective ’t Hooft coupling small and negative this saddle point is at
large and positive σ which confirms our expectation and warrants the approx-
imation of the quadruple sines.

In the next step we expand both the perturbative integrand and the instanton
partition function around this saddle point. We write σ12 = 2σ =−2π3r3

g2
Y M

+δσ .
Then the perturbative integrand can be approximated as

exp

	
2π4r3ρ

g2
Y M

δσ2 − πρ
3

	
2δσ3 −δσ ∑

i< j
ωiω j




. (7.11)

The first term in this exponential is a Gaussian with the correct sign because
g2

Y M < 0 by assumption. The cubic and linear terms we expect will contribute
to the one-loop determinant for the light matter in this new phase. This is
motivated from the results in five dimensions, but is left to be shown by future
work. From equations (6.10) and (6.12) of the previous chapter we have the
leading instanton contribution

∞

∑
k=0

e
− 4π2|Y |

g2
Y M

2π2r3
ω1ω2 ∑

|Y |=k

2

∏
A,B=1

∏
s∈YA

S2

�
Q
2 +ω3 +ω4 + iσAB − (hB(s)+1)

�
ω4 − Q

4

�
+ vA(s)

�
ω3 − Q

4

��

S2

�
iσAB − (hB(s)+1)

�
ω4 − Q

4

�
+ vA(s)

�
ω3 − Q

4

�� ,

(7.12)

mutliplied by the contributions from the other five fixed three-spheres. As
before the parameters of the double sine function are suppressed to shorten the
expressions, i.e. S2(x) ≡ S2(x;ω1,ω2). For a single pair of Young diagrams
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(Y1,Y2) in the sum, the factors with A = B take the form

∏
s1∈Y1

S2

�
Q
2 +ω3 +ω4 − (h1(s1)+1)

�
ω4 − Q

4

�
+ v1(s1)

�
ω3 − Q

4

��

S2

�
−(h1(s1)+1)

�
ω4 − Q

4

�
+ v1(s1)

�
ω3 − Q

4

��

× ∏
s2∈Y2

S2

�
Q
2 +ω3 +ω4 − (h2(s2)+1)

�
ω4 − Q

4

�
+ v2(s2)

�
ω3 − Q

4

��

S2

�
−(h2(s2)+1)

�
ω4 − Q

4

�
+ v2(s2)

�
ω3 − Q

4

��

= ∏
s1∈Y1

S2

�
Q
4 +2+ x(s1)

�

S2

�
3Q
4 −2+ x(s1)

� ∏
s2∈Y2

S2

�
Q
4 +2+ x(s2)

�

S2

�
3Q
4 −2+ x(s2)

� . (7.13)

We have defined x(s) = (v(s) + 1
2)(ω3 − Q

4 )− (h(s) + 1
2)(ω4 − Q

4 ) and used
that ∑4

i=1 ωi = 4. Note that each of the factors in the last line is invariant under
ω3,4 − Q

4 → Q
4 −ω3,4 or equivalently x(s) → −x(s). To expand the factors

with A �= B around the saddle point we use that for |Im(z)| � 1 the double
sine function can be approximated as

log(S2(z;ω1,ω2))≈ sign(Im(z))
πi

�
z2 − (ω1 +ω2)z+

ω2
1+ω2

2+3ω1ω2
6

�

2ω1ω2
.

(7.14)

We find that the factors with A �= B can be approximated as

∏
s1∈Y1

S2

�
Q
2 +ω3 +ω4 + iσ12 − (h2(s1)+1)

�
ω4 − Q

4

�
+ v1(s1)

�
ω3 − Q

4

��

S2

�
+iσ12 − (h2(s1)+1)

�
ω4 − Q

4

�
+ v1(s1)

�
ω3 − Q

4

��

× ∏
s2∈Y2

S2

�
Q
2 +ω3 +ω4 − iσ12 − (h1(s2)+1)

�
ω4 − Q

4

�
+ v2(s2)

�
ω3 − Q

4

��

S2

�
−iσ12 − (h1(s2)+1)

�
ω4 − Q

4

�
+ v2(s2)

�
ω3 − Q

4

��

≈ e
2π4r3

g2
Y Mω1ω2

�
4−Q

2

�
|Y |

e−
π(4−Q

2 )
ω1ω2

|Y |δσ

× ∏
s1∈Y1

e−
πi(4−Q

2 )
ω1ω2

�
(h1(s1)+

1
2 )(ω4−Q

4 )+(v1(s1)+
1
2 )(ω3−Q

4 )
�

× ∏
s2∈Y2

e+
πi(4−Q

2 )
ω1ω2

�
(h2(s2)+

1
2 )(ω4−Q

4 )+(v2(s2)+
1
2 )(ω3−Q

4 )
�
.

(7.15)

We have used equation (A.1) from Paper III to trade h1(s2) and h2(s1) for
h1(s1) and h2(s2). It then follows that in the small negative coupling limit the
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instanton contribution from a single squashed S3 can be factorized as

Z (δσ ;ω1,ω2;ω3 −
Q
4
,ω4 −

Q
4
)Z (δσ ;ω1,ω2;−ω3 +

Q
4
,−ω4 +

Q
4
)

(7.16)

where we define

Z (δσ ;ω1,ω2;ω3 −
Q
4
,ω4 −

Q
4
) =

∑
Y

e
− Qπ4r3

g2
Y Mω1ω2

|Y |
e−

π(4−Q
2 )

ω1ω2
δσ |Y | ∏

s∈Y
e

πi(4−Q
2 )

ω1ω2

�
(h(s)+ 1

2 )(ω4−Q
4 )+(v(s)+ 1

2 )(ω3−Q
4 )

�

×
S2

�
Q
4 +2+ x(s)

�

S2

�
3Q
4 −2+ x(s)

� (7.17)

Unlike what we found in Paper V, the adjusted R-charges in the ADHM theory
imply that this expression for the instantons still depends on g2

Y M . The saddle
point should thus be shifted away from its perturbative value. We expect that
at this shifted saddle three-dimensional membranes become light and can be
interpreted as part of a graviton multiplet. Something similar happens for 4d
N = 2∗ super Yang-Mills on the sphere [82]. In this case at weak negative
coupling the naive perturbative saddle point gets shifted by instanton contri-
butions and the resulting saddle matches with the massless monopole point of
Seiberg and Witten [86].
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Part IV:
The Hagedorn temperature and AdS/CFT
integrability





8. The Hagedorn temperature of strings on
AdS

In [87] Hagedorn studied the asymptotic form of the mass spectrum of strong
interactions at high energies. Assuming that heavier and heavier hadrons ap-
pear at increasing energies, he deduced from the self-consistency of his statis-
tical description an exponential growth for the number of states. This led him
to conclude that there should be a maximum temperature. For an exponentially
growing density of states ρ(E) ∝ exp(βcE) the thermal partition function

Tr(e−E/T ) =
� ∞

0
dEρ(E)e−E/T ∝

� ∞

0
dE exp((βc −1/T )E) (8.1)

converges only if T < 1
βc

. This limiting temperature TH ≡ 1
βc

is called the
Hagedorn temperature.

In this chapter we will discuss the Hagedorn temperature in the context of
string theory with an emphasis on the recent developments for AdS super-
strings, including in Papers VI and VII. In the next chapter, we will discuss
the dual CFT perspective.

8.1 Hagedorn behavior in string theory
In bosonic string theory the exponential growth of the density of states was
observed very much from the beginning. As a precursor to string theory,
the Veneziano amplitude [88] and its higher point generalizations [89–91]
were found from consistency requirements. Studying these amplitudes Fu-
bini and Veneziano found a density of states growing exponentially with the
energy [92], i.e. the Hagedorn behavior of the bosonic string theory spectrum.
In flat space the bosonic string Hagedorn temperature is [93]

T bos.
H =

1
4π

√
α � . (8.2)

For superstring theory in flat space the Hagedorn temperature takes a similar
form. The convergence of the free energy of superstrings in flat space was
discussed in [94, 95]. For both the type I and II string theories it was found
that the partition function only converges below the Hagedorn temperature

T I/II
H =

1
2π

√
2α � . (8.3)
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One can reproduce the thermal partition function of a gas of strings at tem-
perature T by putting the string theory on a Euclidean background with the
time direction compactified on a circle of circumference 1

T . When the ther-
mal cycle becomes smaller than the inverse Hagedorn temperature the lightest
string mode winding the thermal cycle becomes tachyonic [96–98]. In the next
section we will use this winding scalar mode to compute α �-corrections to the
Hagedorn temperature in AdS backgrounds.

The physical interpretation of the Hagedorn temperature is not well under-
stood. Naively the divergence of the partition function would suggest that the
Hagedorn temperature is a maximum allowed temperature. However, this does
not appear to be the case in string theory. In [99] it was suggested that string
theory should undergo a phase transition at the Hagedorn temperature. At
this transition the light winding mode condenses and forms a self-gravitating
bound state of strings, sometimes called a “string star” [100].

8.1.1 In the plane wave background
To take a first look at corrections to the Hagedorn temperature in non-trivial
backgrounds, we review here the results on the plane wave background. For
string theory the plane wave geometries are special as the superstring on these
backgrounds can be explicitly quantized [101–103]. At special values of the
fluxes these backgrounds are limits of AdS string backgrounds.

The Hagedorn temperature of the type IIB superstring in the plane wave
background supported by pure RR five-form flux was studied in [104–106].
Starting from the light-cone Hamiltonian the exact free energy in this back-
ground was computed and the result is an equation for the Hagedorn temper-
ature to all orders in α �. Tuning the five form flux to the value for the plane
wave limit of the AdS5 ×S5 superstring the leading orders of the equation for
the Hagedorn temperature are

β 2

4πα � = 2π −2β +
β 2 log(2)

π
+O(β 4). (8.4)

The same computation can be done for the type IIA superstring on the plane
wave background supported by two- and four-form flux [107]. Tuning the
fluxes to the value for the plane wave limit of the superstring on AdS4 ×CP3

the truncated equation takes the form

β 2

4πα � = 2π − 3
2

β +
5β 2 log(2)

8π
+O(β 4). (8.5)

In both equations (8.4) and (8.5) we get the leading contribution to the α �

expansion of the Hagedorn temperature by truncating the right-hand side to the
first term. This leading result matches the value in flat space β (0)

H = 2π
√

2α �.
Intriguingly the linear terms in β , responsible for the first correction to the
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Hagedorn temperature, give results matching with the results in the corre-
sponding AdS backgrounds as we discuss in the next section.

8.2 The AdS Hagedorn temperature
Recently the Hagedorn temperature of superstring theory on asymptotically
AdS spaces has gained much attention. In this section we discuss the results
from string theory and supergravity computations and we leave the dual CFT
results for the next chapter.

The extension of the string star solution [100] to asymptotically AdS space
is discussed in [12] by Urbach. Here he looks at the effective equations of
motion of the scalar mode winding around the thermal cycle and the dilaton
in a Euclidean AdS background. He finds that the Hagedorn temperature in
AdSd+1 is

TH =
1

2π
√

2α � +
d

8π
+O((α �)1/2). (8.6)

This result for the first correction was independently found by [13].
A different approach leading to the same result is due to [108, 109]. They

study the semi-classical quantization of the string worldsheet theory around
the classical solution for the string winding around the thermal cycle. In this
stringy approach to the problem, the first correction to the Hagedorn tempera-
ture is due to the zero modes of the massive worldsheet scalars.

An effective supergravity model
In Papers VI and VII we propose an effective model for the string mode that
winds the thermal cycle and becomes tachyonic at the Hagedorn temperature.
Modeling the lowest string mode winding the cycle, we consider a scalar field
χ in Euclidean AdS space only depending on the radial, or holographic, di-
rection. At the Hagedorn temperature the string mode becomes massless and
thus our scalar field does not backreact on its background. We start from an
action �

dd+1X
√

g
�
∇μ χ∇μ χ +m2(R)χ2� , (8.7)

with the mass term

m2(R) = (1+R2)

�
β

2πα �

�2

+C. (8.8)

In this mass term C comes from the string zero-point energy and the rest
captures the contribution from stretching the string around the thermal cycle.
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From here we can write down the equations of motion for the scalar field

− 1
2

1
Rd−1

d
dR

Rd−1 d
dR

χ(R)+
1
2

�
β

2πα �

�2

R2 χ(R)+ΔHχ(R)

=−1
2

	
C+

�
β

2πα �

�2



χ(R). (8.9)

This has the form of a d dimensional rotationally symmetric harmonic oscil-
lator perturbed by

ΔH =− 1
2Rd−1

d
dR

Rd+1 d
dR

. (8.10)

We can then use perturbation theory to compute the ground state energy and
compare it to the right-hand side of (8.9). This relates the inverse Hagedorn
temperature β to the string zero-point energy C. Expanding the zero-point
energy around the flat space value C =− 2

α � +ΔC+O(α �), second order per-
turbation theory gives us the equation

β 2

4πα � = 2π − d
2

β −πα �ΔC− d(d +2)
4

πα �+
d(d +2)π2(α �)2

8β
, (8.11)

valid up to order (α �)3/2. For ΔC of order (α �)0 this reproduces the first sub-
leading order of the AdS Hagedorn temperature (8.6). To go to higher order we
compare equation (8.11) to the pp-wave equations (8.4) and (8.5). From this
comparison we conjecture that the correction to the zero-point energy takes
the form

ΔC =
β 2

2π2α �Δc. (8.12)

With this we find that the AdS Hagedorn temperature takes the form

TH(α �) =
1

2π
√

2α � +
d

8π
+

d(d +1)+8Δc
16
√

2π

√
α �+

d(d +2)(4d −1)
256π

α �

+O
�
(α �)3/2

�
. (8.13)

In Paper VI and VII we check this equation for d = 3 and d = 4 by comparing
with the numerical strong coupling results from the dual CFT. The numerical
precision is sufficient to conjecture

Δc =−d log(2). (8.14)

Beyond our results
The curvature corrections to the string zero-point energy in our effective su-
pergravity computation are very much ad hoc. The expression (8.12) is war-
ranted a posteriori by the matching against the numerical results from field
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theory. Harmark suggests a more systematic approach to curvature correc-
tions to the equations of motion of the effective scalar field [110]. Starting
from the Klein-Gordon equation with the covariantized version of the mass
term (8.9), he writes down the possible first order curvature corrections to
both the Laplace operator and the mass term. This allows him to give a unified
effective description of both the plane wave and the AdS Hagedorn tempera-
tures. From the plane wave he fixes the coefficient of the curvature correction
to the mass term and then predicts the correct value of the O(

√
α �) term for

the AdS Hagedorn temperature.
To go beyond the effective description [111] uses the quadratic expansion

of the worldsheet sigma-model from [108, 109]. They match the Hagedorn
temperature (8.13) to order (α �)1/2. This gives an explanation for the analytic
result (8.14) and confirms the conjecture from CFT integrability. However, the
last term in equation (8.13) cannot be computed from the current form of this
worldsheet approach. To obtain the next order of the Hagedorn temperature
quartic terms would need to be included in the expansion of the string sigma-
model in quantum fluctuations around the winding string.
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9. The CFT Hagedorn temperature and
integrability

In this chapter we discuss the Hagedorn temperature in conformal field theo-
ries dual to strings on AdS, restricting to N = 4 super Yang-Mills and ABJM
theory where integrability techniques are well established. We start with a
short review on perturbative results for the Hagedorn temperature in these two
CFTs. We then give a practical introduction to the integrability technique used
to solve the Hagedorn temperature in N = 4 SYM and ABJM theory. We
check the weak coupling solutions against the results reviewed in section 9.1,
while we compare the strong coupling solution against the results of the ef-
fective AdS computation from the previous chapter. Subsection 9.2.4 contains
results from Paper VI and section 9.3 is based on Paper VII.

9.1 Hagedorn temperature in CFT
Conformal field theories in Rn cannot have a Hagedorn temperature due to
scale invariance. It is only once the CFT has been put on a compact space that
Hagedorn behavior is possible. Here we choose to consider N = 4 SYM on
R× S3 and for ABJM the background is R× S2. In addition the exponential
growth of the density of states requires the strict large N limit. In N = 4
SYM at finite N single-trace operators with more than N fields can be related
to sums of multi-trace operators. This cuts down the number of independent
states of energy larger than N and thus removes the exponential growth of the
density of states. A similar statement holds for ABJM theory.

The first to calculate the free partition function of planar N = 4 SYM was
Sundborg [112] who strung beads together into necklaces to count single-trace
operators. Using Pólya theory he related the bound on the convergence of the
partition function to a special value of the single bead partition function. He
found the free Hagedorn temperature

TH(λ = 0) =
1

2log(2+
√

3)
, (9.1)

where λ is the ’t Hooft coupling and equals zero for the free theory. The lead-
ing correction to this Hagedorn temperature was computed by [113]. They
used that the one-loop correction to the spectrum of N = 4 SYM is related
to a spin chain Hamiltonian [114, 115]. The trace of this one-loop dilatation
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operator is then proportional to the one-loop correction to the Hagedorn tem-
perature. The result found by [113] is

TH =
1

2log(2+
√

3)

�
1+

λ
8π2 +O(λ 2)

�
. (9.2)

For ABJM theory the free Hagedorn temperature was found in [116]. Fol-
lowing the same route as [113], [117] computed the leading correction to the
Hagedorn temperature from the trace of a spin chain Hamiltonian [118, 119].
In terms of the ’t Hooft coupling λ , the ABJM Hagedorn temperature is

TH =
1

2log(3+2
√

2)

�
1+4λ 2(

√
2−1)+O(λ 4)

�
. (9.3)

Note that for the O(λ 2) term we have included a subtle factor of 2 that was
missing in [117] as we noted in Paper VII.

9.2 The quantum spectral curve of N = 4 SYM
For over two decades, integrability has been an important tool for the study
of N = 4 SYM in the planar limit. The first decade of developments and
applications were reviewed in [120]. One of the biggest successes of N = 4
integrability is solving the spectrum of operators. Techniques were developed
for the exact computation of the anomalous dimensions of all the operators.
These developments culminated with the quantum spectral curve (QSC) [121,
122] which gives a description of the full spectrum in terms of a finite set
of functional equations. In [123] Harmark and Wilhelm set out to develop a
similar integrability description of the Hagedorn temperature and started by
deriving the corresponding thermodynamic Bethe ansatz (TBA) equations. In
subsequent work they deduced the quantum spectral curve and solved for the
Hagedorn temperature both perturbatively at weak coupling and numerically
for finite coupling [11, 124].

In this section we give an introduction to the quantum spectral curve for
the N = 4 Hagedorn temperature, following the results of [11, 124]. Our
presentation of the Q-system follows [121, 122, 125]. This means that our
notation deviates from [11, 124] and Paper VI by exchanging the P- and Q-
functions. This clarifies the roles of R-symmetry and conformal symmetry
and thus facilitates the deduction of the ABJM quantum spectral curve in the
next section.

9.2.1 The psu(2,2|4) Q-system
The global superconformal symmetry algebra of N = 4 super Yang-Mills
is psu(2,2|4). The corresponding Q-system consists of the 256 Q-functions
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QA|I(u) of the “spectral parameter” u. A and I are both anti-symmetrized
multi-indices drawn from {1,2,3,4}. The indices can be raised by Hodge
dualizing, e.g.

Qab|i j =
1

(6!)2 εcdabεkli jQcd|kl . (9.4)

Several of these Q-functions play a distinguished role. First, the boundary
Q-functions Q /0| /0 and Q1234|1234 are chosen to be normalized to 1,

Q /0| /0 = 1, Q1234|1234 = 1. (9.5)

Next we define the P-functions

Pa = Qa| /0, Pa = Qa| /0 =
1
3!

εbcdaQbcd|1234. (9.6)

These functions carry indices of the SU(4) R-symmetry, with the lower one
corresponding to the fundamental representation 4 and the upper one to the
anti-fundamental 4. Similarly we have the Q-functions

Qi = Q /0|i, Qi = Q /0|i, (9.7)

which are respectively in the fundamental and anti-fundamental representa-
tions of the global conformal symmetry SU(2,2).

The Q-functions are related to each other by finite difference equations, the
so-called QQ-relations. For practical calculations, the most important of these
relations is

Q+
a|i −Q−

a|i = PaQi. (9.8)

Here we introduced the notation f±(u) = f (u± i
2). From the QQ-relations

many useful identities can be derived, including

Qi =−PaQ+
a|i, Pa =−QiQ+

a|i, (9.9)

PaPa = 0, QiQi = 0. (9.10)

Together with the normalization (9.5), the QQ-relations imply

Qa|iQa| j =−δ i
j, Qa|iQb|i =−δ a

b . (9.11)

Using QQ-relations all of the 256 Q-functions can be expressed explicitly in
terms of Pa, Qi and Qa|i. Solving equation (9.8) for Qa|i as an infinite series,
the Q-system can then solved in terms of a “basis” of 8 Q-functions. Pa,Pa

are often the preferred choice for the basis as they have the simplest analytic
properties, cf. subsection 9.2.2.

In the following we work in the left-right symmetric sector of the Q-system.
This assumption corresponds to a simple relation between the Q-functions
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in the fundamental and the anti-fundamental representation for both the R-
symmetry and the conformal symmetry. As an equation this amounts to

Pa = χabPb, Qi = χ i jQ j, (9.12)

where the matrix χ has the non-zero elements χ41 =−χ14 = χ23 =−χ32 = 1.
From the previous paragraph it is easy to see that this simplifies the Q-system
significantly as the basis of the Q-functions is reduced to the four functions Pa.

The Q-system has a large redundancy as it is invariant under the action of a
GL(4)×GL(4) group, the so-called H-symmetry. In the following this redun-
dancy is fixed by explicit choices for the asymptotics, parity transformations
and normalizations of the P- and Q-functions.

9.2.2 Analyticity and asymptotics encode physics
To get from the Q-system to the quantum spectral curve one fixes the ana-
lytic properties of the Q-functions. The P-functions have the simplest analytic
structure. On the first Riemann sheet they have a single square-root branch cut
on the interval u ∈ [−2g,2g], where g is defined as

g =

√
λ

4π
. (9.13)

This single branch cut can be resolved using the Zhukovsky variable x(u),

x(u) =
1

2g

�
u+

�
u+2g

�
u−2g

�
u = x+

1
x
. (9.14)

This maps the first Riemann sheet of the P-functions to the complement of the
unit disk in the x-plane. The Pa functions admit a convergent Laurent series in
x for |x|> 1. Analytically continuing Pa through the branch cut in the u-plane
corresponds to sending x to �x = 1

x in this Laurent expansion. We write �Pa for
this analytic continuation of Pa.

On one Riemann sheet the Q-functions are upper half-plane analytic. On
this same sheet they have a tower of square-root branch cuts on the intervals
u∈ [−2g− in,2g− in] for n∈Z≥0. The analytic continuation �Qi of Qi through
the branch cut on the real line is lower half-plane analytic with branch cuts on
u ∈ [−2g+ in,2g+ in] for n ∈ Z≥0. As the branch cuts are square-roots we
find that on the real line

Qi + �Qi = regular,
Qi − �Qi

g(x− 1
x )

= regular. (9.15)

Large u asymptotics
The difference between the quantum spectral curve for the spectrum [121,122]
and for the Hagedorn temperature [11, 124] lies in the large u-asymptotics
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of the Q-functions. For the spectral problem the Pa and Qi have powerlaw
asymptotics where the leading powers encode the global charges of the state.
By contrast, [11] found that the Hagedorn problem leads to exponential be-
havior in u for the Qi. Specifically, to compute the Hagedorn temperature we
define1

y = e−iπ exp(1/(2TH)), (9.16)

and then the leading large u asymptotics of the P- and Q-functions are

Pa ∼

⎛
⎜⎜⎝

1
u
u2

u3

⎞
⎟⎟⎠

a

, Qi ∼

⎛
⎜⎜⎝

yiu

uyiu

y−iu

uy−iu

⎞
⎟⎟⎠

i

. (9.17)

This particular choice of ordering for the asymptotics of the components of
P and Q fixes part of the redundancy that we mentioned at the end of the
previous subsection.

While these asymptotics were first derived from the TBA we can briefly
motivate their form. After conformally mapping the thermal partition function
from R×S3 to S1×S3 the inverse temperature 1

T is a fugacity for the dilatation
operator. From the spectrum it is known that such a “twist” corresponds to
exponential asymptotics for the Q-functions [126]. This gives the temperature
dependence in the asymptotics of the Qi. The additional factor eiπ in y ensures
the correct boundary conditions for the partition function on the circle S1.
Finally, the redundancies in the Pa-functions imply that we can choose all of
them to have different asymptotics and the Pa in (9.17) are the lowest order
polynomials satisfying this constraint. Similarly, the additional powers of u in
Q2 and Q4 remove the degeneracy in the asymptotics of the Q-functions.

Gluing conditions
Solving the quantum spectral curve means determining the Q-functions that
are compatible with the analytic structure and the asymptotics in (9.17). This
fixes the value of y and thus gives the Hagedorn temperature.

A big step towards solving the QSC comes from understanding the analytic
continuation of Qi through the branch cut on the real line. As we already
noted, while Qi is upper half-plane analytic, the analytic continuation �Qi is
analytic on the lower half-plane. The parity transformed Qi ≡ Qi(−u) has the
same analyticity properties as �Qi and thus there should exist an analytic matrix
L such that

�Qi = L j
i Q j. (9.18)

This gluing condition becomes constraining once the matrix L is determined.
For the asymptotics (9.17) it was found in [11, 124] that the gluing matrix has

1Compared to Paper VI we have inverted y to match with the convention for ABJM in Paper VII.
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the form

L = diag
�
e2πu,−e2πu,e−2πu,−e−2πu� . (9.19)

The zero-coupling solution
We are now ready to discuss the zero coupling solution. At zero coupling, the
square-root branch cuts shrink to points and the analyticity properties outlined
above forbid poles in the Q-functions. We can thus start from an ansatz for
Pa and Qi with the leading large u-asymptotics (9.17) and no poles at u =
0. This ansatz has a finite number of undetermined coefficients. To fix all
the redundancy we choose in the ansatz that the Pa- and Qi-functions have
simple parity transformation properties and impose P1 = 1, P2 = u and that
P3 has no constant term. With the ansatz we solve equation (9.8) for the Qa|i.
The symmetric sector assumption (9.12) constrains this solution through the
equation Qa|i = χabχ i jQb| j. We also impose the equations (9.9) and (9.11).
This fixes all the coefficients in the ansatz ,

Pa =

⎛
⎜⎜⎜⎝

1
u

−8icosh4 1
4TH

u2

−8
3 icosh4 1

4TH
u
�

u2 +3tanh2 1
4TH

−2
�

⎞
⎟⎟⎟⎠

a

, (9.20)

Qi =

⎛
⎜⎜⎜⎜⎜⎜⎝

coth 1
4TH

yiu

−i coth 1
4TH

yiu
�

u+ i
1−3tanh2 1

4TH
4tanh 1

4TH

�

−coth 1
4TH

y−iu

i coth 1
4TH

y−iu
�

u− i
1−3tanh2 1

4TH
4tanh 1

4TH

�

⎞
⎟⎟⎟⎟⎟⎟⎠

i

. (9.21)

The last step in solving the quantum spectral curve at zero coupling is to
check the regularity conditions (9.15) at the cut. This leads to a polynomial
equation

y2 +4y+1 = 0, (9.22)

and thus we can solve for the Hagedorn temperature at zero coupling

T (0)
H =

1
2log(2+

√
3)
. (9.23)

9.2.3 The perturbative solution
The algorithm for the perturbative solution of the quantum spectral curve was
first developed in [127] and adapted to the Hagedorn temperature by [11,124].

To perturbatively solve the quantum spectral curve to higher order in g2 we
start from an ansatz for the P-functions. As noted earlier the P-functions admit
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a convergent Laurent expansion in the Zhukovsky variable x(u). Combining
this with the gauge choices we made for the zero-coupling solution, the general
ansatz is

Pa =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1+∑∞
n≥1

c1,ng2n

x2n

(xg)
�

1+∑∞
n≥1

c2,2n−1g2(n−1)

x2n

�

A3(xg)2
�

1+∑∞
n≥2

c3,2n−2g2(n−2)

x2n

�

A4(xg)3
�

1+ c4,−1(xg)−2 +∑∞
n≥2

c4,2n−3g2(n−3)

x2n

�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

a

. (9.24)

The powers of g are chosen such that all coefficients have expansions in g2 of
the form ca,n = c(0)a,n + c(1)a,ng2 + . . . and Aa = A(0)

a +A(1)
a g2 + . . . .

The perturbative solution of the quantum spectral curve is found iteratively
order by order in g2. We give here the algorithm to get order g2, but higher
orders can be obtained in a similar fashion. Truncating the ansatz for P to
order g2, Pa = P(0)

a +g2P(1)
a +O(g4), some coefficients are already fixed from

the zero coupling solution and only a finite number of coefficients A(1)
a and

c(0)a,n, c(1)a,n are undetermined. We write the order g2 term in the expansion of
the Qa|i as Q(1)

a|i = Q(0)
a| j(b

j
i)
+ in terms of the zeroth order term Q(0)

a| j and some

matrix b j
i(u). The order g2 of the QQ-relation (9.8) can then be put into the

form

(b j
i)
++−b j

i =−(Qa| j (0))+
�

P(1)
a Pc (0) +P(0)

a Pc (1)
�
(Q(0)

c|i )
−. (9.25)

This finite difference equation can be solved for b j
i in terms of the unde-

termined coefficients in the ansatz for P. Some of the coefficients of P are
then fixed by enforcing equation (9.11) to order g2. At large u we check that
Qi =−PaQ+

a|i truncated to O(g2) satisfy

Q2

Q1
=−iu+O(u0),

Q4

Q3
=−iu+O(u0). (9.26)

Finally we impose that the equations (9.15) are satisfied at the branch cut. This
fixes the P-functions to order g2.

The correction to the Hagedorn temperature can be read off from the ex-

pansion of y. Writing TH = T (0)
H + g2T (1)

H +O(g4) and y0 = −e1/(2T (0)
H ) the

expansion of yiu in powers of g takes the form

yiu = yiu
0 − iug2 T (1)

H

2
�

T (0)
H

�2 yiu
0 +O(g4). (9.27)
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This means that at order g2 the coefficients of uyiu
0 and yiu

0 in the large u ex-
pansion of Q1 have the ratio −iT (1)

H /(2(T (0)
H )2). This then gives

TH =
1

2log(2+
√

3)

�
1+2g2 +O(g4)

�
. (9.28)

This matches the result in (9.2) [113].

9.2.4 The numerical solution and strong coupling
The numerical method for solving the quantum spectral curve was first devel-
oped in [128] and adapted to the computation of the Hagedorn temperature
by [124].

For the perturbative solution of the quantum spectral curve we truncated
the general ansatz (9.24) for the P-functions to a fixed order in g. By con-
trast, for the numerical solution we truncate it to a fixed order N in the inverse
Zhukovsky variable 1

x . The QQ-relation (9.9) implies that the functions Qa|i
have an infinite tower of branch cuts strictly in the lower half-plane. Conse-
quently, the subleading terms in the expansion

Qa|i = y−isiuuta|i ∑
n=0

Ba|i,n
un , (9.29)

are strongly suppressed for u large. For the numerical algorithm we truncate
this expansion to a finite number of terms, K. The constants si and ta|i are
determined from the zero coupling solution. We can then determine the coef-
ficients Ba|i,n, n ≤ K, by solving the QQ-relation

Q+
a|i −Q−

a|i =−PaPbQ+
b|i (9.30)

to sufficiently high order in its large u expansion.
We then choose the |IP| points IP = {−2gcos[ π

|IP|(n−
1
2)]}n=1,...,|IP| on the

cut on the real line with the aim of evaluating the Q-functions at IP + i0. To
get there, we start by evaluating the truncated Qa|i at IP +

U+1
2 i for U a large

even integer such that the truncation is sensible. Then we can iterate with the
QQ-relation

Q−
a|i =

�
δ a

b +PaPb
�

Q+
b|i (9.31)

to get the value of Qa|i at IP +
i
2 . From these we compute the values of the

Q-functions just above the branch cut on the real line through the relation
Qi = −PaQ+

a|i where we plug in P evaluated at IP + i0. Computing also Qi at

−IP + i0 we use the gluing condition (9.18) to get the �Qi at IP − i0 just below
the cut.

For the exact solution of the quantum spectral curve the values of Qi just
above the cut on the real line should match the values of �Qi just below the cut.
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Figure 9.1. The numerical results for the Hagedorn temperature plotted against the
square-root of the coupling g. In blue are the results from [124] and in red are the
results from Paper VI. This figure is taken from Paper VI.

To numerically solve the quantum spectral curve we therefore minimize the
function

F({ca,n},y) = ∑
i=1,2

∑
p∈IP

�����
�Qi(p− i0)
Qi(p+ i0)

−1

�����

2

(9.32)

on the space of coefficients {ca,n}n≤N and y. For this numerical minimiza-
tion we use the Levenberg-Marquardt method. The authors of [124] used this
method to compute the Hagedorn temperature up to

√
g = 1.8 and in Paper VI

we extended this to
√

g = 2.25. Figure 9.1 shows a plot of both results.
To the numerical results we can fit an expansion of the Hagedorn temper-

ature in 1√
g . Using that g = 1

4πα � we can compare this fit to the result (8.13)
from our effective model on AdS. In Paper VI we found that within numerical
precision the integrability result matches the leading two terms and the fourth
term in (8.13). We estimated that

Δc =−2.77259±1×10−5. (9.33)

This estimate is equal to −4log(2) with six digits precision. These results give
support to our effective supergravity model and the conjecture (8.14) for the
zero-point shift.
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9.3 The ABJM quantum spectral curve
In this section we discuss the quantum spectral curve for computing the Hage-
dorn temperature in ABJM theory developed in Paper VII. This development
is based on combining the AdS4 QSC for the spectrum from [129, 130] with
insights from the N = 4 Hagedorn QSC [11, 124] that we presented in the
previous section.

9.3.1 The osp(6|4) Q-system
The superconformal algebra for ABJM theory in the planar limit is osp(6|4)
with so(6) R-symmetry subalgebra and sp(4,R)� so(2,3) conformal subal-
gebra. Similar to the psu(2,2|4) case discussed in the previous section, all the
Q-functions for the osp(6|4) Q-system can be written in terms of P-, Q- and
Qa|i functions. The latter are in the spinor representations of both the SO(6)
R-symmetry and the SO(2,3) conformal symmetry and they satisfy

χ i jQa
| jQa|k =−δ i

j, χ i jQa
|iQb| j = δ a

b . (9.34)

As the spinors of SO(2,3) do not have a chirality we use the matrix χ to
lower the index Qa|i = χ i jQa

|i. A major difference to N = 4 SYM is that the
P- and Q-functions are in the vector representations of SO(6) and SO(2,3)
respectively. They relate to Qa|i through the equations2

PA =−1
2

Q+
a|iχ

i jσab
A Q−

b| j, QI =−1
2
(Qa

|i)
+Σi j

I Q−
a| j. (9.35)

For conventions regarding the matrices σ and Σ we refer to appendix A of
Paper VII and section 2 of [130].

When solving the psu(2,2|4) Q-system a central piece of the perturbative
and numerical algorithms is (9.8). For osp(6|4) the same role is taken by the
equation

Q+
a|i − (σA)abPA(Qb

|i)
− = 0, (9.36)

which comes from combining equations (9.35) and (9.34). To find the zero
coupling solution we use two more QQ-relations for the osp(6|4) Q-system,

QA|IJ = (σA)
ab
�

Q+
a|iQ

−
b| j

�
(ΣIJ)

i j = (σA)ab

�
(Qa

|i)
+(Qb

| j)
−
�
(ΣIJ)

i j,

(9.37)

QAB|I = (σAB)
b

a

�
(Qa

|i)
+Q−

b| j

�
(ΣI)

i j = (σAB)
b

a

�
(Qa

|i)
−Q+

b| j

�
(ΣI)

i j.

(9.38)

2The vector indices A and I should not be confused with the anti-symmetrized multiindices used
in the previous section.
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As in the previous section, the quantum spectral curve simplifies signif-
icantly by assuming that we are in the left-right symmetric sector. For the
P-functions this implies that P5 = P6 and it relates the functions Qa

|i to the
Qa|i as

Qa
|i =−χabQb| jK

j
i , (9.39)

with the matrix K = diag(1,−1,−1,1). We plug this relation into equation
(9.36) to get a linear finite difference equation for the Qa|i in terms of the
P-functions,

Q+
a|i +(σA)abPAχbcQ−

c| jK
j
i = 0 (9.40)

9.3.2 Analytics, asymptotics and the Hagedorn temperature
The convention is to call h the coupling as it enters the integrability treatment
of ABJM theory. The relation of this coupling to the ’t Hooft coupling λ is
non-trivial and the conjecture for the full relation is [131]

λ =
sinh(2πh)

2π 3F2

�
1
2
,
1
2
,
1
2

;1,
3
2

;−sinh2(2πh)
�
. (9.41)

This can be expanded at weak and at strong coupling to give respectively

h(λ ) = λ − π2

3
λ 3 +

5π4

12
λ 5 − 893π6

1260
λ 7 +O(λ 9) (9.42)

=

�
1
2

�
λ − 1

24

�
− log(2)

2π
+O

�
e−π

√
8λ
�
. (9.43)

At strong coupling we also use the shifted ’t Hooft coupling λ̂ = λ − 1
24 which

was argued to be the more natural parameter in this regime [132, 133, 40].
The first lesson we take from N = 4 SYM is that the analytic structure

for the Hagedorn QSC is the same as for the spectral problem [129, 130]. On
the first Riemann sheet the PA have a single square-root branch cut on the
interval u ∈ [−2h,2h] and thus they can be written as a convergent Laurent
series in the Zhukovsky variable x(u) defined in (9.14). The QI have a tower
of branch-cuts on the intervals u ∈ [−2h− in,2h− in], n ∈ Z≥0 and the Qa|i
have a tower of branch-cuts at u ∈ [−2h− i 2n+1

2 ,2h− i 2n+1
2 ], n ∈ Z≥0. The

two linear combinations of Q-functions

QI + �QI ,
QI − �QI

h
�
x− 1

x

� , (9.44)

should be regular on the branch cut u ∈ [−2h,2h].

80



The second lesson concerns the asymptotics of the Q-functions. At large
u the P functions should have polynomial asymptotics and the Q-functions
have exponential asymptotics which encode the Hagedorn temperature. The
charges under the dilation determine the powers of y−iu = e−πu exp(− iu

2TH
).

Consequently the asymptotics take the form

PA ∼

⎛
⎜⎜⎜⎜⎜⎜⎝

u
1
u4

u3

u2

u2

⎞
⎟⎟⎟⎟⎟⎟⎠

A

, QI ∼

⎛
⎜⎜⎜⎜⎝

y−iuu
y−iu

yiuu
yiu

0

⎞
⎟⎟⎟⎟⎠

I

, Qa|i ∼

⎛
⎜⎜⎝

y−iu u 1 yiu

y−iuu2 u3 u2 yiuu2

y−iuu u2 u yiuu
y−iuu3 u4 u3 yiuu3

⎞
⎟⎟⎠

a|i

.

(9.45)

The third and final lesson is about the gluing matrix. From N = 4 we
learned that the exponential asymptotics of the Q-functions require exponen-
tial behavior for the elements on the main diagonal of the gluing matrix.
The big difference for the gluing matrix in ABJM is that it is not diago-
nal. This was already noted for the spectral problem [130]. Still, the or-
dering of the �QI should be the same at u → −i∞ as for the QI at u → i∞,
i.e. |�Q1| > |�Q2| > |�Q3| > |�Q4|. This constrains the gluing matrix L to
be upper triangular. Similarly the orderings of QI and �QI should be the
same at u → −∞, implying L 3

2 = 0. In addition, as the branch cuts are
square-root the gluing matrix should satisfy L J

I L K
J = δ K

I . With the as-
sumption L 1

1 =−L 2
2 and L 3

3 =−L 4
4 we can use the H-symmetry to fix

L 2
1 = L 4

3 = 0. Finally, Q5 should be glued to itself. We thus find that the
analytic continuation of the Q-functions through the branch cut on the real line
relates to their parity transform as

�QI =

⎛
⎜⎜⎜⎜⎝

e−2πu 0 16isinh2 1
2TH

0 0
0 −e−2πu 0 −16isinh2 1

2TH
0

0 0 −e2πu 0 0
0 0 0 e2πu 0
0 0 0 0 −1

⎞
⎟⎟⎟⎟⎠

J

I

QJ. (9.46)

Note that the above reasoning does not fix an overall constant prefactor for
the exponentials on the diagonal as well as the two non-trivial off-diagonal
elements. These are fixed once we solve the quantum spectral curve at tree
level.

The zero-coupling solution
For N = 4 SYM we find the zero-coupling solution by starting from an ansatz
for the P- and Q-functions. For ABJM we start instead with the most general
ansatz for Qa|i compatible with the large u asymptotics (9.45) and that is finite

81



at u = 0. This ansatz is completely fixed up to gauge choices by the equations
(9.37), (9.38) and (9.34). For the gauge choice we impose that P- and Q-
functions map under parity to themselves up to a similarity transformation.
We end up with the zero-coupling solution

PA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u
1

−4
3 cosh4

�
1

4TH

�	
u4 −

�
2sech2

�
1

4TH

�
− 3

4

�2
−2

3




−16
3 cosh4

�
1

4TH

�
u
�

u2 + 1
4

�
1−6sech2

�
1

4TH

���

2cosh2
�

1
4TH

��
u2 + 1

6 − sech2
�

1
4TH

��

2cosh2
�

1
4TH

��
u2 + 1

6 − sech2
�

1
4TH

��

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A

(9.47)

QI =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8y−iuucosh3
�

1
4TH

�

8y−iu cosh3
�

1
4TH

�

i
8 yiucsch3

�
1

4TH

�	
u− i

cosh
�

1
2TH

�
−3

sinh
�

1
2TH

�




i
8 yiucsch3

�
1

4TH

�

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

I

(9.48)

From (9.48) together with the gluing matrix we can check the analytic prop-
erties (9.44) along the real line branch cut. This gives a polynomial equation
y2 +6y+1 = 0 with the solution

T (0)
H =

1
2log(3+2

√
2)
, (9.49)

reproducing the leading term in (9.3),

9.3.3 The solution for non-zero coupling
The techniques to solve the ABJM quantum spectral curve perturbatively and
numerically are very similar to those used for the N = 4 SYM QSC. In Pa-
per VII we give the details of the algorithms and here we only highlight some
important aspects and the results.
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The perturbative solution
The perturbative solution starts from the ansatz for the P functions as a Laurent
series in the Zhukovsky variable

PA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xh
�

1+∑∞
n=1

c1,2nh2(n−1)

x2n

�

1+∑∞
n=1

c2,2nh2n

x2n

A4(xh)4
�

1+∑∞
n=2

c3,2n−4h2(n−4)

x2n

�

A4(xh)3
�

1+ c4,−1(xh)−2 +∑∞
n=2

c4,2n−3h2(n−3)

x2n

�

A5(xh)2
�

1+∑∞
n=1

c5,2n−2h2(n−2)

x2n

�

A5(xh)2
�

1+∑∞
n=1

c5,2n−2h2(n−2)

x2n

�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A

, (9.50)

where the powers of h are chosen such that all coefficients AA,cA,n are O(h0)
at small coupling. Truncating this series expansion to finite order in h we then
use the equation (9.40) to solve for Qa|i to the same order and fix most co-
efficients by satisfying equations (9.34) and requiring the correct asymptotics
for the Q-functions constructed from (9.35). The remaining coefficients and
the Hagedorn temperature are then fixed from the analytic properties of the
Q-functions on the real line branch cut using equations (9.44) and (9.46).

We computed the perturbative Hagedron temperature to order h8, where we
find

TH =
1

2log(3+2
√

2)
+

√
2−1

log(1+
√

2)
h2 −2.5428h4

+21.778h6 −222.30h8 +O(h10). (9.51)

The first two terms match the previous results [116,117] given in equation (9.3).
The exact expression for the higher order terms can be found in subsection
3.2.2 and appendix C of Paper VII and can be expressed using polylogarithms.
We plot the different orders of the perturbative expansion of the Hagedorn
temperature in Figure 9.2.

The numerical solution
The numerical solution of the ABJM Hagedorn temperature quantum spectral
curve follows the same method as for N = 4 SYM. We start from the trun-
cation of the ansatz for P-functions to finite order in the inverse Zhukovsky
variable 1

x and solve equation (9.40) for an expansion of Qa|i at large u trun-
cated to finite order in u−1. With the equation

Q−
a|i =−PA(σA)abχbcQ+

c| jK
j
i (9.52)
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Figure 9.2. The perturbative solution of the quantum spectral curve truncated to var-
ious orders is compared to the numerical solution in the range 0 ≤ h2 ≤ 0.1 and the
[4/4] Padé approximation (9.57). Figure taken from Paper VII.

we can start from values of Qa|i at points v with Im(v) = U+1
2 for U a large

even integer and get values of Qa|i at points v� with Im(v�) = 1
2 . Then we can

evaluate QI just above the branch cut on the real line using

QI =−1
2
(ΣI)

i jχabQ+
b|kK

k
i PA(σA)acχcdQ+

d|lK
l
j (9.53)

and then use the gluing condition (9.46) to evaluate �QI just below the cut. On
the exact solution of the quantum spectral curve the function

F({cA,n},y) = ∑
v∈IP

4

∑
I=3

�����
QI(v+ i0)
�QI(v− i0)

−1

�����

2

(9.54)

is zero. Using the Levenberg-Marquardt algorithm we numerically minimize
this function on the space of y and the coefficients {cA,n}n≤N of the truncated
PA.

In figures 9.2 and 9.3 we show the numerical results for the Hagedorn tem-
perature at weak and strong coupling respectively.

At strong coupling we can fit to the numerical Hagedorn temperature an
expansion in λ̂−1/4. After checking that the leading two coefficients of the fit
to the AdS result (8.6), we fix them to their exact value to get a better estimate
for the subleading terms. We find that

TH(λ̂ ) =
λ̂ 1/4

25/4
√

π
+

3
8π

− (0.0308±0.0004)λ̂−1/4

+(0.046±0.003)λ̂−1/2 +O(λ̂−3/4). (9.55)
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Figure 9.3. The strong coupling numerical data for 0.21 ≤
√

h ≤ 2.28 plotted against
the fourth root of the shifted ’t Hooft coupling λ̂ = λ − 1

24 . We also plot both the Padé
approximation (9.57) from weak coupling and the strong coupling fit. Figure taken
from Paper VII with an alteration to the choice of colors.

The fitted function up to order λ̂−5/4 is plotted in figure 9.3. The term at order
λ̂−1/2 matches within the error estimate to the AdS result (8.13). Fixing also
this coefficient to the analytic value from (8.13), the updated fit value for the
λ̂−1/4 term gives for the string zero-point shift the estimate

Δc =−2.0782±0.0016. (9.56)

Within the estimated error this equals −3log(2) and thus supports the conjec-
ture (8.14).

Padé approximation
The growth of the numerical values of the subleading coefficients in the pertur-
bative solution (9.51) indicates that this perturbative expansion for the Hage-
dorn temperature has a finite radius of convergence. We expect that this radius
of convergence is h2 < 1

16 . The same radius is expected for the perturbative
solution of the spectral problem [134]. This agrees qualitatively with what we
see in Figure 9.2. For the spectral problem it was suggested to use a Padé
approximation to the weak coupling expansion to get a better approximation
at small but finite coupling [134]. For the present case the best Padé approxi-
mation is

T Padé[4/4]
H =

0.28365+4.1647h2 +10.425h4

1+13.026h2 +24.137h4 . (9.57)

In Figure 9.2 we show this Padé approximation and the numerical results for
the Hagedorn temperature for h2 ≤ 0.1. We observe that while the perturbative
results quickly start to diverge, the Padé approximation matches well with the
numerical data on the whole range shown on the plot. In Figure 9.3 we add
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the Padé approximation in the plot with the numerical results up to
√

h ≤ 2.28
and the strong coupling fit. We observe that for λ̂ 1/4 ≈ 0.85 both the Padé
approximation (9.57) and the strong coupling fit (9.55) match the numerical
results within a tenth of a percent.
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Svensk Sammanfattning

Kvantfältteori utgör ryggraden i vår nuvarande förståelse av partikelfysik och
framförallt är det gaugeteori som har bidragit till succén. Det mest framträ-
dande exemplet på en kvantfältteori, Standardmodellen för partikelfysik, har
varit oerhört framgångsrik i att beskriva elementarpartiklarna och deras inter-
aktioner. Standardmodellen beskriver med stor precision processerna i dem
experiment som utförs vid CERNs Large Hadron Collider. Avgörande för
kvantfältteorins framgång med att beskriva acceleratorexperiment är att in-
teraktionerna i centrum av dessa experiment är svaga. Detta gör att vi kan
använda perturbativa gaugeteoritekniker för beskrivningen. Dock är explicita
beräkningar i en stark kopplat gaugeteori svåra. En exempel är det så kallade
massgapproblemet i Yang-Mills teorin, dvs. gaugeteorin som ligger till grund
av Standardmodellen. Detta problem är på listan av de olösta Clay Millennium
Prize-problemen [1].

I den här avhandlingen kommer vi att fokusera på en specifik klass av
kvantfältteorier, de supersymmetriska gaugeteorierna, för att utforska icke-
perturbativa beräkningar. Supersymmetri är en relation mellan bosoniska och
fermioniska frihetsgrader. Supersymmetriska teorier har inte haft många suc-
céer inom fenomenologin, men sedan deras första framträdande för cirka 50
år sedan har de utvecklats till en produktiv lekplats för att studera icke-per-
turbativa aspekter av kvantfältteori. Symmetrin mellan bosoner och fermioner
är mycket begränsande och gör explicita beräkningar möjliga. Vi kommer att
utforska tillämpningar av två av de metoder för icke-perturbativa beräkningar
som har utvecklats.

I de tre första delarna av denna avhandling undersöker vi supersymmetriska
gaugeteorier på tre, fyra och sju dimensionella deformerade sfärer respektive.
I dessa teorier tillåter en teknik som kallas supersymmetrisk lokalisering oss
att exakt beräkna partitionsfunktionen. Partitionsfunktionen innehåller mycket
information om en teori.

I tre dimensioner utforskar vi först en utökning av supersymmetrin för vissa
gauge teorier på den deformerade sfären vid en finjustering av en massparame-
ter. Den ytterligare supersymmetrin leder till en förenkling av partitionsfunk-
tionen. Därefter jämför vi partitionsfunktionerna för par av vad som kallas
duala teorier. Duala teorier beskriver samma fysik. Genom att kontrollera att
deras partionsfunktioner är desamma samlar vi bevis för att de två teorierna
faktiskt beskriver samma fysik. Den utökade supersymmetrin möjliggör an-
alytiska jämförelser och när symmetrin bryts faller vi tillbaka på numeriska
approximation till partitionsfunktionen.
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I fyra dimensioner diskuterar vi den allmänna formen för den fria energin,
som är proportionell mot logaritmen av partitionsfunktionen, för så kallade
superkonforma fältteorier på deformerade sfärer. Superkonforma kvantfäte-
orier är både supersymmetriska och skalinvarianta. Ett exempel på en sådan
superkonform teori i fyra dimensioner är maximalt supersymmetrisk Yang-
Mills-teori. För detta exemplet kan vi använda supersymmetrisk lokalisering
och jämföra logaritmen av partitionsfunktionen med det allmänna resultat för
den fria energin.

I sju dimensioner använder vi partionsfunktionen för att utforska en intres-
sant gräns för den supersymmetriska gaugeteorin. I denna gräns förväntas
teorin beskriva samma fysik som en supersymmetrisk gravitationsteori. Par-
titionsfunktionen av den supersymmetrisk gaugeteorin i sju dimensioner har
inte utforskats mycket förut. Även om lokalisering är tillämplig så har inte
alla delar av partitionsfunktionen beräknats. Vi förslår en bidrag av tredimen-
sionella membran som kallas kontaktinstantoner. Inspirerad av beräkningar i
lägre dimensioner förväntar vi oss att dessa instantoner ger ett viktigt bidrag i
närheten av gränsen som vi utforskar.

I den sista delen av denna avhandling använder vi integrabilitet i vissa su-
perkonforma gaugeteorier för att beräkna Hagedorn-temperaturen i strängte-
ori på anti-de Sitter (AdS) geometrier. Detta är en användning av AdS/CFT
dualiteten som lär oss att strängteori i AdS besrkiver samma fysik som en kon-
form kvantfältteori i en lägre dimension. Två exemplar är dualiteten av sträng-
teorin på AdS5 × S5 och den maximal supersymmetriska Yang-Mills teorin i
fyra dimensioner (N = 4 SYM) och dualiteten av strängteorin på AdS4×CP3

och den så kallade ABJM teorin i tre dimensioner. Både N = 4 SYM och
ABJM är integrerbara teorier vilket betyder att det finns kraftfulla tekniker för
exakta beräkningar. Den tekniken vid använder heter Quantum Spectral Curve
(QSC) och det finns både analytiska lösningstekniker för svakt koppling och
numeriska för finit koppling. Hagedorn-temperaturen i strängteori är en tem-
peratur där en varm gas av strängar förväntas genomgå en fasövergång till
en “strängstjärna”. Vi kombinerar en effektiv modell i AdS geometrin och
numeriska QSC resultat i den duala konforma fältteorin för att beräkna de
första tre korrigeringstermer till Hagedorn-temperaturen på grund av AdS ge-
ometrins krökning.
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