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Abstract

After a brief description of the Standard Model of Particle Physics, we introduce the Hi-
erarchy Problem and its possible resolutions. Among several possibilities we choose two
protection mechanisms that realize a Natural Fermi scale: Composite Higgs and Supersym-
metry. Our aim is to consider realistic natural models for the Fermi scale and compare them
with the experimental data coming (mainly) from precision measurements.

In the case of Composite Higgs, we discuss the fine tuning needed to realize a successful
electro-weak symmetry breaking and accommodate a 125 GeV Higgs. Composite Higgs can
naturally explain such light mass if new coloured fermions with the same quantum numbers
of the top are below or at 1000 GeV. Direct searches are starting to probe the natural region
of this kind of models. However, there are strong constraints on this picture coming from
electro-weak and flavour tests. Although non trivially, it is possible to satisfy the bounds if
appropriate representations of the composite fermions are chosen and an approximate U(2)?
flavour symmetry is at work.

The Minimal Supersymmetric Standard Model (MSSM) experiences a significant fine-
tuning because a 125 GeV Higgs boson is too heavy to be obtained naturally. After a brief
review of the MSSM and a discussion of its Higgs sector, we consider the Next-to-Minimal
Supersymmetric Standard Model (NMSSM). The NMSSM provides a 125 GeV Higgs boson
with milder tuning and it also mitigates naturalness upper bounds on stops and gluinos,
which start to be strongly constrained from below by direct searches. Another relevant
aspect of the NMSSM is the suggestion that the lightest new particles could be the CP-even
scalars of its extended Higgs sector. This possibility can be efficiently constrained from the
measurements of the Higgs mass and branching ratios at LHC. In many cases the Higgs fit
is an important constraint, competitive with direct searches. When these constraints are
absent we outline possible strategies for future experimental searches.

We conclude with a brief summary and comment on the relative importance of electro-
weak and Higgs precision measurements in the models discussed in the thesis.

This thesis is mainly based on the papers [1], [2], [3], [4], [5] and [6] published during my
three years of PhD.
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Part 1

What we know and what we do not understand






Chapter 1

Introduction

Neglecting all the masses, Nature at short distances is invariant under Ggy = SU(3). X
SU(2)r x U(1)y, with helicity +1 particles G, W¢, B,, and couplings gs,g,g". Matter, in
the form of spin-1/2 particles, is a set of Weyl fermions, each of them appearing in three
copies (generations), classified according to their quantum numbers,

spin—1/2 SU(S)C SU(Q)L U(l)y
UR 3 1 2/3
dp 3 1 ~1/3
I 1 2 1/2
e 1 1 —1

Table 1.1. Quantum numbers of Weyl fermions in the SM.

Together, Gy and table 1.1 define the minimal gauge lagrangian of the SM. The use
of gauge-invariance can be thought of as an artefact to keep manifest locality and Lorentz
invariance. Interaction vertices among spin-1 and spin-1/2 particles (and among the vectors
themselves) are precisely described by this theory.

The inclusion of masses for vector bosons (and fermions) is a relevant deformation of the
theory in the infra-red (IR). The massive and massless theories show two radically different
behaviours. The whole difference resides in the fact that a massive vector has three degrees
of freedom, while massless vectors only two. To underline the difference we can restore the
gauge invariance including explicitly a scalar mode in addition to the two massless & helicity
states, by promoting the gauge parameters to scalar degrees of freedom, with their own gauge
transformation. The minimal lagrangian gets an additional gauge-invariant piece,

£ 2 v*Tr[D,U(D,U). (1.1)

This is a non-linear ¢ model of SU(2) x SU(2)/SU(2), where U(z) = expin®c®/v is the
exponentiation of the Goldstone bosons (GBs), 7%, i.e. the longitudinal components of the
vector bosons. The very presence of a non-linear sigma model suggests that the theory
undergoes a regime in which scattering amplitudes have a bad behaviour with energy. A

3



1.1 THE ELECTRO-WEAK SECTOR

theory with massive weak bosons has an internal physical cut-off at ~ 47v, as one can infer
from 77 scattering.

This argument was the true theoretical motivation (a theorem in a sense) to expect
new particles/dynamics before 47v: a “discovery” of something new at those energies was
unavoidable. Now that a scalar resonance of mass 125 GeV has been found [7,8], thanks to
the incredible efficiency of the LHC, we know that the “new physics” needed before 47v is
weakly-coupled to a high degree and it is seems nothing else than the Higgs model [9, 10].

The SM is simply the minimal gauge lagrangian supplemented by the Higgs model, and
it is defined by

Loy = | D HP? 4 p?|H? = MNH* + (YA G, H + Y G di H + Y1, el H 4 h.c.) + kin. terms,
(1.2)
where H is a (1,2,1/2) under Ggy. It can be conveniently parametrized as

1 Vort
H=— . .
V2 \ v+ h+ims

If 4, A\ > 0, H develops a Vacuum Expectation Value (VEV) v*> = p?/\ # 0, such that
(|H*) = v*/2 ~ (174 GeV)?, that breaks the original gauge symmetry in the desired way,

SU©2)L x U(1)y = U(1)em. (1.3)

This Introduction consists of two main parts reflecting the dichotomy of its title.

In the first part (sections 1.1-1.3) we describe the above lagrangian (1.2) in several limits.
As it is well known one of the reasons why the SM is so successful in describing fundamental
physics not only relies on its manifest global symmetries but also on its partially hidden acci-
dental symmetries (exact or approximate). We will discuss them but also other less evident
facts stemming from (1.2) in three “sectors”: 1) Electro-weak sector, 2) Flavour sector, 3)
Higgs sector. Of course none of them is isolated from the rest, as manifest from the leading
role played by the Higgs field. Given the notorious overall success of the SM, any deforma-
tion is bounded to energies higher than those currently under experimental scrutiny. While
discussing these three “sectors”, we will comment on a few basic consequences derivable from
present data, as an anticipation of what will be discussed in this thesis.

In the second part (sections 1.4,1.5) we introduce the Hierarchy Problem and comment
on the possible solutions. We describe how the naturalness principle suggests the presence
of relatively light New Physics (NP) and conclude in section 1.6 with a detailed outline of
the project.

1.1 The Electro-weak sector

The scalar potential has an accidental symmetry SU(2);, x SU(2)g where the right-handed
SU(2) is manifest upon writing (1.2) in terms of the real components of H. In the vacuum it
is spontaneously broken to SU(2)., its diagonal combination. If exact it would have implied
a spectrum classified according to SU(2), multiplets. SU(2), x SU(2)r is explicitly broken
by the hyper-charge interaction and by the SM Yukawas, while it is preserved by SU(2).

4



1 INTRODUCTION

gauge interactions. The leading source of breaking is the top-bottom sector, where tg and
br can hardly be thought of being in the same SU(2)g doublet given the hierarchy between
the top and bottom masses. At tree level SU(2). notoriously implies degeneracy of W*and
Z in absence of ¢'.

The approximate custodial symmetry of the electro-weak sector can be systematically
analysed in terms of gauge boson vacuum polarization amplitudes, which encode a large
part of electro-weak effects accurately measured at LEP, not only the custodial preserving
ones.

1.1.1 Oblique corrections

LEP [11] has provided electro-weak observables measured to a great accuracy and there is a
common way used since early '90s to present its findings. The three parameters of the weak
sector (g, ¢’,v) can be fixed in terms of the three most precise observables o, Gg, Mz, which
are called the input parameters, all the other derived observables depend on these three
quantities. The derived observables relevant to us are the Z width into leptons, asymmetries
at the Z-pole and the W-mass measured at the TeVatron.
We can define three quantities [12] directly related to I'(Z — I*17), AL (hence to the
axial and vector couplings of the Z, g4 ) and My,
2 ar _ Miv Miy,
Ar=1—-sc[(1 - —5)—5], (1.4)
M3~ Mj
Ap = —=2(1+ 2g4), .
Ak = (1 - gy /ga)/(45%) — 1, (1.6)

which are often traded, via a triangular system, for the famous e-parameters,

€1 = Ap>
gy = AAp +5°/(c* — s*)Ar — 25° Ak, :
g3 = Ap + (¢ — $°) Ak, (1.9)

where ¢? = 1 — s? and s is the sine of Weinberg’s angle. These measurable quantities can be
exactly computed as [13]

g1 =61 —e5 —0Gy,/Gp — 4694,
€9 :62—5264—0265—(5GA75/GF—(59V—3(5gA, (1.10)
£3 = e3 + cley — ces + (¢ — %) /(25%)dgy — (14 25%)/(25%)dga.

The e; encode the so-called oblique corrections defined in terms of vacuum polarization
amplitudes

_ H3(0) — Hyw(0)
= 2 Y
]\/éW ) es = F,(0) = P,y (M),
ea = Fyww (M) — Fis(M3), es = MZFL,(M32),
c
e3 = EF?;O(M%) ;

€1

(1.11)



1.1 THE ELECTRO-WEAK SECTOR

Adimensional form factors operators custodial SU(2),
g7s = I135(0) (HTTaH)WﬁVBW/QQI + -
g 2MR,T = T33(0) — Tyww (0) [H' D, H|? - -
g 20 = y(0) — My (0) - -
2972 MV = 1145(0) — iy, (0) - -

29~ g My X = T14,(0) + -
2972 M 2Y = TI5(0) (0pBuw)? /29" + +
292 My P W = 115;(0) (D,W,)? /247 + +

Table 1.2. The 7 coefficients from the expansion of I1;; at O(q*) as discussed in [14].

where
I (¢°) = —in® [15(0) + ¢° Fiy(¢*)] + (a"q” - --). (1.12)

The non-oblique contributions to €; are box corrections to vector and axial couplings dGvy, 4,
and vertex corrections dgy 4. Hence, the €; parameters are not vanishing in the SM and
receive both oblique and direct corrections. However, as far as universal theories are consid-
ered, NP contributions always enter the above parametrization via oblique corrections.

If NP is decoupled from the weak scale, it is often sufficient to expand the above e; at
small external momenta ¢? in an effective field theory (EFT) approach. Then, an expansion
up to (¢%)? of the four polarization amplitudes gives a total of 12 coefficients. Three of them
are fixed in terms of the input parameters, whereas other two combinations are constrained
by gauge invariance. At O(q*) a total of seven coefficients appears, see table 1.2. Each
coefficient can be mapped to one or more higher dimensional operators classified according
to their custodial and weak isospin quantum numbers, thus providing a useful catalogue of
sources of breaking of the above symmetries, which is not manifest in (1.10).

The relations between the new physics contributions to e; (g;), called Ae; (Ag;), and the
7 coefficients are the following

~ 2

A61: Ta g2 25 ASlﬁf—W—i—QXé—YS—Q,
~ 32 A€42——2W——X—Y, R g ¢
AGQEU_V_EWa ¢ c Aey=U—-W +2X- -V,
c
X Aes =W —22X + 2y, ~ x
Aeng—i—;, ¢ ¢ Aeg~ S —-—W+ — —Y.
sc

These formulae clarify the difference among the e-parameters and the properly normalized
Peskin-Takeuchi parameters S, T, U [15] . The latter cannot be identified directly with the
former for at least two reasons: 1) if the NP is not confined to sufficiently high energies the
EFT expansion is meaningless; 2) even if NP is decoupled, there is no dimensional argument
to expect W and Y be suppressed with respect to S and 7.

Having in mind this difference, on which we shall return later in the thesis, the latest
electro-weak fit after the Higgs discovery [16] shows a remarkable agreement of the SM with
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1 INTRODUCTION

the Electro-Weak Precision Tests (EWPTs),
S=0.03£0.10, T =0.05+0.12, U =0.03+£0.10. (1.13)
On the other hand the values of ¢; determined by the fit are [17]

g1 =(5.64+1.0)107° 9= (-7.84009)107% e3=(5.6+0.9) 107" (1.14)

1.1.2 Electroweak sector of NP

Taking the outcome of the electro-weak fit we can try to infer some generic aspects of NP
in the electro-weak sector. Working with only S and f, keeping in mind that it is often
insufficient as discussed above, we should pay particular attention to the following kind of
NP: tree-level and log-enhanced 1-loop contributions.

i) Tree-level contributions to T can arise in models with extended Higgs sectors with
scalars in higher representation of SU(2), (like triplets). A tree-level contribution to Sis a
robust prediction of models with additional weak bosons. A lower bound of about 3 TeV on
their masses can be derived.

i1) Log-enhanced contributions arise if the Higgs couplings to vectors deviate from the
SM values. In fact, from an incomplete cancellation between GBs and Higgs contribution in
bosonic self-energies, we get the famous result [18]

S~ + (1—c)lo A2+ T ~ ’ (1—¢)lo A2+ (1.15)
1272 v gm% T 167me v gmi ’ '

where ¢y is the coupling of the Higgs to vectors and A is the cut-off of the theory where
new degrees of freedom will enter the game. The dots represent finite (A°) and decoupling
terms (1/A?) that can be computed once the model is specified. We will consider later in
the thesis the effect coming from additional Higgses coupled to the SM one. The presence of
IR-logs due to the Higgs boson shows once more the interplay of the Higgs and ElectroWeak
Symmetry Breaking (EWSB) sectors.

1.2 The Flavour sector
The non-trivial flavour structure of the SM arises entirely from the Yukawa sector
Loy D YIG wl, H + Y G db H + YT, el H + h.c., (1.16)
where we have assigned the index ¢ = 1,2,3 to the three families in the quark and in the
lepton sector. ijd,e are generic 3 X 3 complex matrices for a total of 27 complex parameters.
We can get rid of many of them by going to the basis defined by
Yu = VT@U7 }/d = ?)d, }/e = /ge- (117)

The following notation has been introduced:



1.2 THE FLAVOUR SECTOR

L4 gu = diag(yuaycayt)v gd = diag<yd>ysayb) and Qe = diag(QeayuayT)a are the (real)
Yukawa couplings. The fermion masses are m;; = \%@m

e V is the Cabibbo-Kobayashi-Maskawa (CKM) matrix [19,20]. It can always be written
with 3 real and 1 imaginary parameters (dxum)-

Eq. (1.17) allows to derive many consequences for the Flavour sector of the SM. Given the
large U(3)® symmetry of the fermionic kinetic terms together with the fact that only V allows
for flavour transition, a few basic facts can be summarized: 7) Individual lepton numbers are
conserved, U(1). x U(1), x U(1),; it) The total baryon number U(1)p is conserved (at the
perturbative level); i7i) Flavour Changing Neutral Currents (FCNCs) are absent at tree-level
in the SM; iv) CP violation (CPV) is governed by the sole dx ), complex phase in V' [20].

A useful convention for the CKM matrix is provided by the Wolfenstein parametrization
21],

1— 13— 1\ A AN (p — in)
V= A+ 3A2N[1=2(p+in)] 1—3iA— g (1+44%) AN? . (1.18)
AN1 = (1= $XB)(p +in)] —AN + JAN1 = 2(p +in)] 1 — FAZM

Experiments have shown a remarkable agreement with the CKM picture of flavour and CP
violation. Very likely, the SM model Yukawa couplings are the dominant source of flavour
and CP violations observed so far, as we are going to discuss.

1.2.1 Overall success of the CKM picture
A recent fit to CKM [22] confirms the success of the CKM picture
A =0.82340.014, p=p(1—)?/2) = 0.142+0.020, 7 = n(1—X?/2) = 0.34140.012 (1.19)

and the fitted value of A is given to an excellent precision by the input |V,,s| = 0.2249(8) [23].
The inconsistency of 77 with zero shows that the mechanism of CPV is at work. Another
striking success of the CKM picture is the agreement of several constraints in the famous
plot of the unitarity triangle [24].

It can be shown that the CKM picture of CPV is not only at work but also dominant. A
quantitative approach in order to quantify possible deviations from this picture consists in
assuming that NP affects only loop observables such as By — By mixing. For AB;, NP can
be parametrized as

hae7 = Anp/Asur. (1.20)

Fitting tree-level decays and AB, one can show that 7 is inconsistent with zero and hy <
0.2 = 0.3. This suggests that CKM is certainly at work but possible deviations of 20 = 30%
from that picture could be possible in some scenarios of NP [22].

Flavour physics can set bounds on the scale of NP. Given the accuracy of the CKM
picture, generic NP effects are likely constrained to very high scales. A very useful tool
consists in equipping the SM with a tower of irrelevant Gsy-invariant operators constructed
with the low-energy particle content [25],

Lo = ESM+Z%Q~. (1.21)
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1 INTRODUCTION

Assuming that the dimensionless coefficients ¢;’s have no particular structure and are O(1),
we can derive lower bound on the scale A. Observable like ex put the strongest constraint:
A, 2 10° TeV. Even removing the strongest one, several others are of the order A > 103+
TeV [26].

Such strong bounds on A can have two possible explanations. The first is that flavour
violations are confined to very short distances. The second is that, if NP is present at a scale
accessible to present experiments, it has to be highly non-generic. Requiring a NP scale of
order TeV, these bounds reflect themselves into very small dimensionless coefficients ¢; [26].
Such bounds can be relaxed only assuming a non-trivial NP structure, which makes the ¢;
naturally suppressed.

1.2.2 Flavour symmetries

As done for part of the observables in the electro-weak symmetry breaking sector, it is also
possible to understand the mechanism of suppression of FCNCs and why the CKM picture
works well in terms of approximate symmetries. Indeed, the presence of a symmetry will
naturally suppress higher dimensional operators in (1.21) thanks to some selection rules,
simultaneously allowing for a reduction of the NP scale A.

However, differently from the case of custodial symmetry, there is no unique compelling
candidate for describing the absence of NP flavour effects and the hierarchy of masses and
mixing of the flavour sector. Different mechanisms/symmetries are distinguished by the
different way the Yukawa couplings Y, and Y, are thought of. Clearly when Y, 4, — 0
a U(3)® symmetry arises from the kinetic terms. However the use of such symmetry to
approximately describe the quark spectrum via a small breaking is questionable due to the
largeness of y;. Anyhow, no matter what the actual symmetry is, its role is to select a series
of effective operators (in the mass basis), generally made of the following fermion bilinears

" Kt Kigdpo™ dy. (1.22)

Notice that in the SM only K7 and K are different from zero, while symmetries different
from U(3)? can deviate from these minimal terms. It is interesting to understand what are
the predictions of a few mechanisms and/or symmetries: in the rest of this section we will
be discussing three of them as relevant for this thesis.

U(@3)?

A flavour symmetry U(3)? is also called Minimal Flavour Violation (MFV), because the only
source of flavour transition is V. Formally it amounts to consider Y, and Y, as spurions of
such symmetry transforming as

Y, ~ (3,3%,1), Yy~ (3,1,3%. (1.23)

In this case, the only relevant fermion bilinears are indeed the ones of (1.22) and, more
specifically,

Kfp =&, Kir= vl (1.24)
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where

§ij = Vi Vis- (1.25)

Notice that eq.s (1.22)-(1.24) are the ingredients of Flavour Violation in the SM itself. MFV
predicts correlated effects in b — s, b — d and s — d both in AF = 2 and AF =1
amplitudes and possible new sources of CPV in AF =1 chirality breaking operators.

U(2)?

As already discussed, y; ~ 1 can hardly be thought of as a small parameter. A better
motivated approximate symmetry of the quark spectrum is U(2)? acting on the two lightest
generations and minimally broken [27,28]. The spurions of are

AY, ~ (2,25,1),AY; ~ (2,1,2°),V ~ (2,1,1), (1.26)

which give rise to the following Yukawas,

B AYU .’fCtV . A}/;l be

AY,, AY, are the analogues of Y,, Yy in the first two generation sector, whereas V is the
minimal way to describe the communication of the 1-2 generations with the third one, while
keeping the breaking of U(2)? at a few 1072 level. Eq. (1.22) in the U(2)? case has the same
suppression of &;; of MFV but new phases can appear. As an example

K7 = (cpljs + cxdj)e %53, (1.28)

where ¢ and cp are real and of similar order. In this framework some relevant predictions
are

i) correlated effects in AB = 2 with a possible new source of CPV. Differently from MFV,
AB =2 and AS = 2 are not correlated, with the latter aligned in phase with the SM.

i1) Correlated effects in AB = 1 with a possible new phase, both in chirality breaking and
conserving operators, and AS = 1 uncorrelated.

The virtues of U(2)% are several. As shown in [22,28], this symmetry can reconcile a NP
scale close to the weak scale in a natural way: the scale A can be as light as ~ 3 TeV, with
¢; ~ .2+ 1. Moreover, treating differently the first two generations and the third one, it
works closer to the hierarchy in the quark masses and mixings than MFV.

Anarchy

The anarchic paradigm assumes that the Yukawas are O(1) structureless matrices, Y, sup-
pressed by small parameters, whose hierarchy can reproduce both masses and mixings,

Vi = Yol (129

The fact that Anarchy is in the section of Flavour symmetries is explained by noticing that
it acts as a U(1)? = U(1),, 4,4, sSymmetry with €; playing the role of spurions. This leaves

10



1 INTRODUCTION

aside the breaking of U(1)° by Y, necessary to avoid that only one generation peaks up a
mass. Assuming a hierarchical structure of the ¢; one can reproduce the CKM matrix with

Vij~e e i< (1.30)

The main consequences of Flavour anarchy is that beside K, Kpg, which are almost MFV-
like but with new complex phases, one expects the presence of the K gR structure absent in
the SM, most notably

051) L Y (1.31)
I3 ij
which, contracted with Ky in eq.s (1.22) and (1.24), gives a large contribution to the Kaon
system.

1.3 The Higgs sector

While the Higgs mass cannot be predicted within the SM, its couplings to matter are uniquely
determined. We can ask if the data from LHC7-8 can already constraint such values. In
order to do that it is useful to slightly modify the SM Higgs lagrangian to take into account
possible deviations,

h

(%

h

h
L D 2m3y, W:W_“CW; +my 2,7 cy = (1.32)

D my ey

Y=u,d,!

The SM Higgs boson has all the coefficients ¢; equal to one. A fit to ¢y = ¢y = ¢z and
¢y = ¢, = ¢q = ¢ suggests that |cy — 1| < 15%, while |¢y — 1] < 25% at 95%CL [29,30]. The
main observables are the rates p;_,; normalized to SM,

o(i — h)BR(h — j)

i—j = - - . 1.33
Hisg o(t = h)smuBR(h = 7)|su ( )

The initial state depends on the production mechanism. The most relevant channel for a
125 GeV Higgs boson is gluon fusion. Final states can be WW*, ZZ* bb, 7t7~ and 7.
Assuming no NP in loops implies that gluon fusion and h — 7+ are indirect probes of the
htt coupling.

1.3.1 The Higgs boson and Perturbativity

The check of perturbativity of scattering amplitudes is often the right place to test a given
theory and consequently to look for NP. It should be stressed that the loss of perturbativity
is not by itself an inconsistency of the theory, as quantum field theory exists even in the non-
perturbative regime. However, in many cases the potential loss of perturbativity pointed
to the existence of NP. Ancestors of the SM like the Fermi theory of [-decay and old-
Intermediate Vector Boson theory were known to be valid up to mz and 47v respectively
simply by looking at amplitudes with a bad behaviour at high energy. We can try to apply
the same argument to the (elastic) scattering of GBs (longitudinal component of W’s) and
also to hh — hh scattering.

11
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Deviations from standard couplings to matter

Using the lagrangian (1.32) to compute 77 elastic scattering we get

E? 2 Elo v
Alrm — ) ~ F(l —cp)+ O((;) , (E> ). (1.34)
Any deviation of ¢y from unity will induce a physical cut-off of order ~ 47v/\/1 — ¢},. We
have already discussed that a bound related to EWPTs appears if ¢y # 1 (1.15), as expected
from the appearance of a strongly coupled regime. This inconsistency of the model (1.32)
when extrapolated to higher energy can be addressed in two ways:

e The theory becomes strongly coupled at E ~ 47v/4/1 — ¢

e Additional particles appear before the cut-off. In this case (1.32) is no more appro-
priate. Very likely this kind of UV completion is an extended (renormalizable) Higgs
sector. In this case a sum rule ), c%/i = 1, extended to all scalar particles coupled
to vectors, forces to vanish all the energy-growing terms in 77 elastic scattering (see
e.g. [31] for the impact of the finite term). Moreover, the constraint coming from (1.15)
can be quite easily satisfied.

The last realization, i.e. the appearance of more than one Higgs, even as replicas of the SM
Higgs sector, deserves the highest attention. There are no strong motivations to stick to the
minimal case with only one Higgs, and partial difficulties induced by the presence of extra
scalars can be controlled. We shall return to this point later in this thesis.

The role of m;, = 125 GeV

There is an upper bound on the quartic coupling A coming from the request of perturbativity.
This translates to m;, < 180 GeV, if we require perturbativity up to Mp; ~ 10! GeV.

A lower bound comes from the request of vacuum stability. Refined calculations including
uncertainties on Higgs and top mass show that m;, = 125 GeV destabilizes the potential (i.e.
negative quartic) at large scales, even close to Planckian energies, as shown in [32], although
with a large uncertainty.

The actual value of the Higgs mass lies in the window which satisfies both lower and
upper limits, with a slight preference for meta-stability [32]. Hence we cannot infer from this
argument any relatively close NP threshold. However, at energies comparable to Mp; non-
renormalizable gravitational interactions suppressed by G = 1/M3, can turn relevant. The
exchange of a graviton, coupled through ~ h,, T*" /Mp), will spoil unitarization of hh — hh
scattering by terms of order A ~ E?/M3,. Hence at E ~ Mp it is likely that NP will enter
the game.

1.4 Hierarchy Problem

Fundamental Physics is solidly based on the Standard Model of particle physics as the
experiments carried out in the last decades have confirmed to an increasing accuracy, as
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1 INTRODUCTION

summarized in the previous sections. This, however, should not let the reader think that
there are no open issues, both experimental and theoretical.
Indeed a series of possible manifestations of New Physics is easily derived from few basic

facts.

1.

2.

Neutrino masses. Neutrino oscillations imply massive neutrinos.

Strong CP problem. Besides the complex phases in V', the SM lagrangian can be
extended with a renormalizable CP-odd operator,

0 vpo a a
@6“ P G;u/Gpa7 (135)
which has physical effects in spite of being a total divergence. In fact, the neutron
electric dipole moment bounds the coefficient of this operator to be extremely small,
6 < 10719 Why is it so small? This could be explained by axions.

Baryon asymmetry. Barring asymmetric and very peculiar initial conditions, the
observed asymmetry between baryons and anti-baryons can not be explained by the
sole SM. The SM does not completely satisfy at least two of the three Sakharov con-
ditions [33] necessary for baryogenesis: the size of CPV in the SM is too small and the
ElectroWeak phase transition (which is a cross-over, rather than first order, given the
actual Higgs mass) cannot provide an efficient departure from thermal equilibrium.

Dark Matter. If it is a particle, none of the SM ones could play this role.

. Charge quantization. Within the SM we cannot explain why |Q, + Q,| < 1072},

that is why the electric charges of electron and proton are equal and opposite.

Landau pole of hyper-charge. U(1)y is not asymptotically free. This is an estab-
lished signal for NP. However the Landau pole appears at Ay ~ mye'/® > Mp,, which
may confine this aspect to a purely academic problem. Given that gravitational effects
become strong many orders of magnitude before Ay, NP should be already at work
well before Ay-.

It looks difficult to explain why particle physicists strongly expect the (abundant) pres-
ence of NP near the TeV scale, even if none of the possible new phenomena in the previous
list is strictly correlated to this scale. This common expectation is related to a possible
solution of the so-called Hierarchy Problem.

At the risk of simplifying too much, the Hierarchy Problem derives from the question:
why is m? so much smaller than M3? A related question could be why we do not care of
the even greater smallness of Agcp relative to Mpy. In the latter case we know that Agcp
is exponentially suppressed from UV scale by dimensional transmutation, making Aqcp
naturally much smaller than Mp;, whereas in the former we simply do not know why there
is that hierarchy.

13



1.4 HIERARCHY PROBLEM

In fact we would have expected a different situation. In any effective field theory (EFT)
valid up to some scale A, where new particles show up, scalar masses are of the order O(1)A,
unless some specific mechanism protects them. Differently from chiral fermions or gauge
fields, scalars, by themselves, do not have any particular symmetry that keeps their mass
small (or even zero). In the SM, given that Mp, is likely to represent such a scale, the Higgs
mass is expected to be m7 ~ MZ.

To make the previous statement more concrete, the following example could be useful.

1.4.1 Scalar masses and Effective Field Theory

Let us consider a toy-model with two mass scales,

L= S(09) — gmP + idy — My — ygis (1.36)
and suppose masses are hierarchical, m < M. Integrating-out the massive fermion from
the UV theory (1.36), we get an IR-theory with just one scalar field. Given the approximate
Zo-symmetry of the UV theory, only broken by the Yukawa coupling y, the IR can be thought
of as a quasi-free theory (interaction terms ™ are suppressed by y™).

The two theories describe the same low energy physics as long as the parameters are
matched order by order in the perturbative expansion. For our purpose, we shall consider
only the 1-loop matching of the 2-point function. As discussed in [34,35] it is better to work
in a mass independent scheme such as MS. From the UV theory we get

.43/2 5 1 D .4y2 9 1 D
--- --S:—ZWM¢<1—3/O dmlogﬁ +2167r2p /0 drx(1l — x) 1—310gﬁ ,

where D = Mi — x(1 — x)p?. The presence of large-logarithms, log Mi /p?, and the non-

decoupling limit of the MS scheme are automatically cured by the EFT approach, as the
boundary p = My, distinguishes between the two theories with and without the fermion.
The IR theory is approximatively free (no running of the mass). Matching the two
theories at the boundary p = M, (after an expansion in momenta of the 1-loop ampitude)
we get a large matching correction,
m?(u = My) = m? + A M2 (1.37)
v 162" Y '
This very equation is at the basis of the Hierarchy Problem. It would be highly unnatural to
have a mass much lighter that M, as this can happen only for a special, although perfectly
defined, cancellation between the MS mass parameter m?(M,) and the 1-loop matching
correction, the relative accuracy being

L At m?

AT = ——.
2
y? Mw

(1.38)

This explains that in EFT scalar masses are naturally of order of the cut-off scale. Several
examples can be studied, the case of two scalars, together with the one presented here, is
discussed for instance in [35].

14
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In the case of fermions, we never experience fine-tuning in renormalized mass terms.
This can be traced back to the chiral symmetry, which implies that quantum corrections to
fermion masses are always proportional to the bare mass parameter, i.e. quantum corrections
are multiplicative rather than additive.

What has been shown in this subsection can be summarized as follows. In an EFT a
relevant operator which is a global singlet of the theory, has its dimensionful coefficient of

the order of the cut-off of the EF'T.

1.4.2 Tuning in the SM

The SM seen in isolation is clearly free from any fine-tuning, the top mass being the highest
threshold. However, nobody can really defend the absence of the fine tuning problem when
Gravity is taken into consideration. The non-renormalizable nature of Gravity strongly
suggests that the ultimate cut-off of the SM be Mp). Above this threshold, very likely new
degrees of freedom appear to UV complete GR and they will affect the Higgs mass through
radiative corrections,

dmi ~ M3, (1.39)

If we quantify the fine-tuning as A = dm3? /m}, we learn that the SM has a tuning of 1032
This is the precision to which we have to know the initial condition at Mp; to end up at low
energy with the observed my,.

Comment on quadratic divergences

In all the discussion we tried to avoid any mention to the “problem” of quadratic divergences.
It is known that if we regulate with an hard momentum cut-off A the top-loop we have

NB_th/\?

om2 ~ --- --
472

As summarized by eq. (1.37), mass thresholds are the real sources of the Hierarchy Problem.
Nonetheless, quadratic divergences roughly give the same estimate of fine-tuning if A is
considered as a particle mass, coupled to the Higgs with unit strength y; ~ 1. It is true that
quadratic divergences are unphysical (indeed vanishing in dimensional regularization), but
they are not meaningless.

In fact, the presence of power divergences in the computation of a given observable tell
us that that quantity is not calculable in the theory under consideration, because too much
sensitive to what is going on in the UV. From this perspective, power divergences become
extremely useful, as they can give us a suggestion of what can be done to remove the UV-
sensitivity. As an example of this, let us compute the Coleman-Weinberg 1-loop effective
potential [36] for a scalar h in a theory with massive particles,

A? 1

M(h)?
S M (W)’ + o -

Az

Ve (h) = const. + STr | M (h)*log (1.40)
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where M?(h) is the squared mass matrix and the super-trace is taken over all the indices.
This expression, on which we shall return, suggests that the spectrum of particles coupled to
the Higgs is essential in screening the UV-sensitivity of the Higgs mass term.

More in detail, the way the particle spectrum screens UV sensitivity consists in making
STrM (h)? a constant independent of h. The case where this constant is zero is related to
Supersymmetry, but in general the constant does not need to be vanishing.

Comment on the Cosmological Constant

An even more relevant operator is the trivial one: a constant A*. Such cosmological constant
term is known to be experimentally very small if compared to particle physics thresholds:
A2, ~ (1 meV)*. The tuning experienced in this case is 102 ~ M3 /A% ! Given that models
that aim to solve the Cosmological Constant problem are often modifications of General
Relativity (at least at large distances), we are not going to discuss anymore this problem.

1.4.3 Possible solutions of the Hierarchy Problem

There is a finite number of “solutions” of the Hierarchy Problem, here ordered according to
our taste.

e Natural Fermi scale. Here we make the assumption that there is some protection
mechanism for the Higgs mass, which screens its sensitivity to Planckian scales or to
any other existing high energy threshold, no matter what they are.

It means that at some scale Axp new symmetries and/or new dynamics occur, such
that

Smi ~ #A5p + - - (1.41)

from which we can derive a natural upper bound on Ayp, if we require that quantum
corrections to m? do not exceed the physical value by a factor A = dm? /m?,

Axp < 450 GeVVA. (1.42)

In this scenario we can compute low-energy observables just neglecting what is going
on at very high energies. A situation which is always welcome in physics and up to
now realized in many different circumstances.

e Physical Naturalness. Here we make some assumptions on UV physics. We have to
assume that gravity can be UV completed without new particles and does not affect
the Higgs mass. Moreover, one has to specify the physics at any scale in order to
explain the actual Higgs mass as a consequence of any possible threshold encountered
along the way [37]. In this picture one can then apply Naturalness to constrain NP
suggested by experiments (neutrino masses, dark matter, etc.), and likely it will be
again near the TeV scale (or higher if its coupling to the Higgs boson is sufficiently
small). At last, also the Landau pole of hyper-charge has to be avoided. To find a
model that fulfils all these aspects seems an hard task.
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e Anthropic principles. Applied to A.., the anthropic principle explains that it is
close to a critical value above which galaxy formation cannot occur [38,39]. If applied
to the SM, it suggests that the weak parameter v is close to the upper bound ~ 5v,
beyond which atoms cannot be formed [40]. The problem is how to verify/falsify this
idea.

1.5 Naturalness from symmetries

The aim of this thesis is to present realistic scenarios where the Higgs mass is naturally
light thanks to some symmetry argument. The use of a symmetry to realize a protection
mechanism for m;,, seems a more robust approach than considering dynamical assumptions
to keep my, light. Notoriously, at least two symmetries can play this role:

e Shift symmetry - Composite Higgs Models (CHM). A shift symmetry of the
Higgs field, h — h + const., provides a theory of a massless scalar with only derivative
interactions. The vanishing of the scalar potential is ensured by the Goldstone theorem
to all order in perturbation theory. This scenario also assumes that the Higgs is part
of a strong/composite sector. The UV-sensitivity of the Higgs is thus screened by the
compositeness scale even when the shift symmetry is necessarily broken by the Higgs
couplings. This kind of modesl goes under the name of Composite Higgs Model.

e Supersymmetry (SUSY). In its simplest realization it implies the existence of pairs
of fermions and bosons degenerate in mass with highly constrained interactions. We
will reserve a more detailed illustration of its principles later in the thesis. Roughly
speaking, SUSY attaches a “notion of chirality” also to scalar fields, thus obtaining
multiplicative renormalization of their masses.

As long as these two symmetries are exact, the Higgs mass receives quantum corrections
proportional to its bare mass (it remains zero in the case of shift symmetry). Of course these
cannot be exact symmetries of Nature. There will be a scale myp where the symmetry is
broken: this can be the scale of SUSY breaking or the compositeness scale. The breaking
will spoil the multiplicative renormalization leading to quantum corrections of the order

Smi ~c-mip+ - (1.43)

from which we can derive a natural upper bound in the same way of eq. (1.42), pointing
to a NP testable at current experiments. The coefficient ¢ takes different forms in different
models. However, even without entering specific model building, some of its generic aspects
can be discussed. Given that we are considering quantum corrections, the parametric form

of cis

Nqy?
Cc = 4753 F(AU\/, mNp). (144)

The presence of the colour factor and the Yukawa coupling is easily understood: the largest
SM coupling will give the biggest radiative contribution, showing that naively it is the
NP associated to the top that controls the naturalness of the weak scale. The function
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F(Ayv, mnp) represents the sensitivity to the UV physics of the models so extended: the
invoked protection mechanism would like to minimize it. As evident from (1.40)

AQV A2 mIQ\IP
F(Auv, mxp) = ay m‘; + az log mgv + a3+ O0(55). (1.45)
NP NP Uuv

SUSY and CHM differ in the way the screening is achieved: in terms of the above (1.45)
they differ by the values of the coefficients a;, in principle of O(1). Clearly they both
have vanishing a;, however in standard supersymmetric models the coefficient as is non-zero
while in Composite Higgs it is practically zero. The physical interpretation of Ayy in SUSY
coincides with the scale of mediation of the supersymmetry breaking (it could be Mp, in the
case of gravity mediation). In Composite Higgs, there are models where a; = 0 as we will
discuss in the following, but in general even if it differs from zero, the size of the log is always
small due to the closeness of myp to the scale where the theory is strongly coupled.

The above discussion is correlated to the crucial difference between SUSY and Composite
Higgs: the first being a weakly-coupled, the second a strongly-coupled extension of the SM.
The size of the coupling of NP has also a dramatic impact on the phenomenology and not
only on the way the naturalness of the weak scale is achieved. Moreover, the discussion of
the robustness of the SM against any deformation, as discussed above, naively suggests that
it will not be easy to obtain natural and viable models.

1.6 Content of the thesis

In this thesis we consider natural models in the SUSY and Composite Higgs frameworks.
We will show models emerge that look capable to satisfy any low-energy constraint and to
provide interesting signatures for the second run of the LHC.

In the first part we will discuss Composite Higgs as a paradigm of strongly-coupled new
physics. In particular:

e In chapter 2 we will give a general overview of Composite Higgs models and we discuss
the tuning and the expected value of Higgs mass. Chapter 2 is mainly based on [1,2].
e In chapter 3 we address the issue of the compatibility of Composite Higgs models with
electro-weak and flavour tests. Chapter 3 is based on [3].
The second part we will be devoted to SUSY. In particular:
e In chapter 4 we discuss general aspects of the Minimal Supersymmetric Standard Model

with a focus on Natural SUSY. The original part of this chapter is mainly based on [4]

e In chapter 5 we will discuss how the LHC data on the Higgs boson constrain the
Higgs sector of the Next-to-Minimal Supersymmetric Standard Model. Chapter 5
relies on [4,5].

In the end

e In chapter 6 we will make a comparison of precision measurements, also arguing what
could be the impact of future measurements of Higgs couplings and electro-weak ob-
servables on explicit models. This chapter is based on [6].
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Chapter 2

Composite Higgs and m; = 125 GeV

In this chapter we are going to introduce the main assumptions and the general picture of
composite Higgs models. After a brief introduction to the basic assumptions in section 2.1-
2.2, we comment about the possibility to obtain m; = 125 GeV with mild tuning in section
2.3. In the end of the chapter an explicit model is introduced to show with a concrete
example the main features of natural composite models.

2.1 Composite Higgs: general picture

We assume the presence of a new strongly interacting sector near the TeV scale. It experi-
ences a spontaneous symmetry breaking G/H at a scale f, and the Goldstone bosons (GBs)
of this breaking are exactly massless excitations of the strong sector. Our aim is to have
among them at least an SU(2) doublet H that can be identified as the composite Higgs
boson. At this level G/H completely determines the low-energy effective theory.

Assuming that the unknown underlying theory which produces the effective strong cou-
pling has a large- N behaviour, we can expect an infinite tower of composite resonances both
of spin-1/2 and spin-1, related to conserved operators of the strong sector. Then the strong
sector is characterized by a compositeness scale m, ~ g, f set by the lightest resonances, with
possibly g, ~ 4w/ V/N. Solving the Hierarchy Problem calls for m, ~ TeV. Then in the limit
where Ggy is switched off, the spectrum is made of massless GBs and massive resonances.

The Higgs mass and its interactions require that it is a pseudo-GB (pGB). Weak couplings
break explicitly G/H down to Gsy. At quantum level V (k) # 0 and electro-weak symmetry
breaking (EWSB) can occur. As a rough estimate,

Sm2 3yt2 2

thus naturally explaining the smallness of m;, with respect to the TeV scale. This very idea
goes back to the 80’s [41,42], but it has received the greatest attention only in the last
decade. The entire set-up is deeply inspired by the case of the electromagnetic splitting of
pions in low-energy QCD, where similarly to (2.1), and keeping the same notation for the

vector boson mass 5
2 2 9QQED m2

Mo — Mgy O — =M. (2.2)
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2.2 Minimal Composite Higgs

In the previous section we did not specify any particular symmetry structure G/H. As
already anticipated, the low-energy lagrangian (below m,) is fixed by G/H. The standard
procedure [43,44] amounts to construct the lagrangian with the field IT = 7*T* belonging to
the broken part of the Lie Algebra. Through an exponentiation,
11
U(II) = exp 27 (2.3)

and a projection onto broken, 7%, and unbroken, T%, generators U TE?MU =id, T + iEfLTi, we

get the non-linear o-model
2

L~Ll g (2.4)

2 Hw

non-linearly invariant under G.

However, we will restrict our choice to a single, specific, coset space, that delivers only
one physical scalar which will be identified as the (composite) Higgs boson. The symmetry is
SO(5)/SO(4) [45], which defines the Minimal Composite Higgs Model (MCHM). This coset
has many virtues, the most important of which is that the strong dynamics responsible for
the breaking SO(5)— SO(4) respects the same SO(4) symmetry of the SM scalar potential,
thus preserving from large contributions the T parameter.

The breaking can be realized with a uni-modular five-plet 3. In the basis of Ref. [45]
this implies

wt— %h(hl, ha, hs, hy, hcoty), h = +/h;h;, (2.5)

where s, = sin(h/f). The lagrangian of the low-energy o-model is
,c—szz? Yukawa interacti 2.6
_7( ,2)° + (Yukawa interactions). (2.6)

From the action of SM gauge fields on ¥ one can establish a useful relation. When EWSB
occurs, h — (h) + h and the vector mass is m}, = g% f%s7 /4. This gives the relation

_ (%)2 - siﬁ%. (2.7)

Interestingly & controls the deviations from the SM Higgs couplings. For example ¢y of
(1.32) is now ¢y = /1 — . The suppression of the couplings of the Higgs is related to its
GB nature. To satisfy the EWPT, f = 700 GeV is a phenomenological viable scale (see
sections 1.1). It can be shown that all the Higgs couplings to fermions (1.32) are dcy ~ O().
However, to compute their actual values, we need to know something about the strong sector.

2.2.1 Parametrizing the strong sector

In order to discuss the implications of the above scenario we need a parametrization of the
dynamics of the strong sector, which in the MCHM consists in a light scalar particle and
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massive resonances. As already anticipated the strong sector can be characterized by one
scale of confinement, m,, corresponding to the lightest vector resonance, and one coupling
g, [46], related by the decay constant of the pNGB Higgs,

my, = g,f. (2.8)

As discussed in section 1.1, spin-1 particles generally contribute at tree-level to the S pa-
rameter and for this reason their mass is constrained to the multi-TeV range, m, 2 3 TeV.
Given the symmetry of the strong sector, composite spin-1 particles in the adjont of SO(5)
decompose under SO(4) and SU(2) x SU(2) as 10 =6+4 = (3,1) + (1,3) + (2, 2).

In general we denote the typical mass of spin-1/2 by m,, and the associated coupling g,
is defined by

my = gyf - (2.9)

This coupling can be thought of as the strength of the interaction between pGB Higgs and
composite fermions in a very similar way to g,.

The representations of the composite fermions add extra model-dependence. Possible
SO(5) representations and their reduction under SO(4) and SU(2) x SU(2) are

4=4=(21)+(1,2),

5=4+1=(2,2)+(1,1),
10=6+4=(3,1)+(1,3) + (2,2),
14=9+4+1=(3,3)+(2,2) +(1,1). (2.10)

Each of them defines a different version of MCHM, denoted by MCHM, 5 10,14 [45,47,48].

2.2.2 Partial compositeness

In order to complete the description we need the last ingredient: the pattern of breaking of
G/H by Ggy. The SM gauge bosons are introduced as elementary fields, external to the
strong sector, and gauge the SM subgroup of SO(5). Notice that in order to accommodate
the correct fermion hyper-charges, an extra U(1) x global symmetry is needed. The presence
of this extra symmetry does not modify the general discussion. As such, the SM gauge
bosons are coupled linearly to the corresponding currents and the elementary-composite
gauge interactions take the form

Lyauge = gW,J". (2.11)

The situation is assumed to be analogous for the SM fermions (here and in the following we
are considering only the quark sector) [49]. They are introduced as elementary fields coupled
linearly to the fermionic operators of the strogn sector with equal quantum numbers under
the SM

‘Cfermion = eme@DLOl + ERm¢¢R02 . (212)

This choice is crucially different to old technicolour theories where the coupling to fermions
was obtained with a 4-fermi operator.! Here we have a bilinear mixing which implies that

In technicolour-like theories, the fermion masses are generated by operators like %1@-%07 where 9 is a
SM field, while O is a techni-fermion bilinear that condenses at a natural scale (O) ~ m3.« ~ (TeV)3. The
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Figure 2.1. Genesis of fermion masses in the partial compositeness paradigm. The coupling of
(2.12) gives rise to a Yukawa term as in (2.13).

the composite fermions must be coloured. This mechanism realizes the paradigm of partial
compositeness [49, 50], according to which the SM particles (i.e. the mass eigenstates) are
a mixture of elementary and composite states. The analogous phenomenon in QCD is the
well known photon-p mixing.

Within the hypothesis of partial compositeness the couplings g, € r are responsible for
the generation of all the interactions among the elementary states and the composite Higgs.
In particular the SM Yukawas at leading order take the form

Yud = €L - Gy * €R- (2.13)

They are matrices in flavour space but for determining the Higgs mass only the third genera-
tion will be relevant, given the largeness of y; which is one of the coupling that breaks SO(4).
There are few caveats with the above formula. First of all it is valid only in an expansion in
the mixings, e r < 1. Second, it is parametrically violated if some of the top partners, with
specific quantum numbers, are accidentally lighter than the others [51].

2.3 Higgs mass and Tuning

Loops of elementary fields generate a potential for the Higgs boson, because the elementary-
composite interactions of eq.s (2.11) and (2.12) break explicitly the SO(5) global symmetry.
The largest contributions to the potential are typically associated to the largest couplings in
the SM, the top Yukawa and the gauge couplings

V(h) =V (h)top + V(h)gauge- (2.14)

Here and in the following we consider only the top-sector and eq. (2.13) will be used only
for the top Yukawa coupling, y; = €gy€r.

In an expansion in the elementary-composite interactions the Higgs potential is strongly
constrained by the SO(5) symmetry. This is best understood by promoting g, €, and eg to
spurions and noticing that the potential must formally respect the SO(5) symmetry under
which both the Higgs and the spurions transform [52,53]. With this technique it is possible
to establish, order by order in the number of spurion insertions, the functional form of the

same dynamics that generates the above operator also induces 4-fermi FCNC operators suppressed by the
same overall scale A. Hence, the bounds coming from the Kaon system, of order A > 10*TeV as discussed
in chapter 1, are in contrast with the generation of the masses of the third generation quarks, which instead
require A ~ 10 TeV.
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Figure 2.2. Sketch of generation of V(h). A dot represents an elementary-composite insertion
~ €2F;(h/f), where F; is one of the trigonometric functions in (2.16), and it can be chirality
breaking and/or conserving.

Higgs potential. Making also use of naive power counting to estimate the overall size one
finds, for the gauge contribution

9g° mﬁ 2

V(R eage ~ —— L2 2.15
(h) gang 6472 glg) Sh ( )

which is rather model independent because the quantum numbers under SO(5) of the g
spurion in eq. (2.11) are fixed.

The fermionic contribution, on the contrary, is not universal because it depends on the
representation of the fermionic operators O 5. Once the choice of representations is made,
the classification of the invariants can be carried out in the same way as for the gauge fields.
We can obtain the same result in a somewhat more explicit way by first writing down the
effective action for the elementary quarks obtained by integrating out the strong sector, and
afterwards computing the Coleman-Weinberg one-loop Higgs potential. Neglecting higher
derivative terms, the structure of the effective Lagrangian obtained integrating out the heavy
fermions is schematically

L=(1+e] Z a; fi(h/f)) quilqr + (1 + G%Zbi 9:(h/f)) ariPqr
i i 2.16
+ (nf D cimi(h/ Paan +hee.)., (210

where the functions f;, g; and m; are determined by the spurionic analysis for each given
choice of the fermion representation. The coefficients a;, b; and ¢; are a priori O(1) but their
values can be reduced either by tuning or if the fermionic sector respects some (approximate)
global symmetry. The sum over ¢ takes into account possible several terms that can appear
depending on the fermion representation.

The loops of SM fermions are UV divergent within the low energy theory described by
eq. (2.16), but they are cut-off by the non-local form factors which account for the presence
of the fermionic resonances of the full theory. The cut-off scale is provided by the scale m,,
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I, Ig Inr, Irr, IR
I, =rg =95 sin®(h/f) sin®*(h/f) with n=1,2
rp =rg = 10 sin?(h/ f sin®(h/f) with n=1,2
rp, = rr = 14 | sin®(h/f), sin*(h/f) | sin®*(h/f) with n=1,2,34
r, =rg =4 sin?(h/2f) sin?(h/2f) with n=1,2

Table 2.1. Table with all possible invariants appearing in the Higgs potential. For the case with
totally composite tg only the I, and Ir; invariants are relevant.

of the fermionic resonances, so that

Viwtng ~ 755 EONETAULEE LTI

V;ub—leading ~ 167T2

My, Z [yt Lin(h/ f) + €L 1) (] ) + ERIRR(h/f)] (2.17)
The origin of the invariant trigonometric polynomials 1) can be traced back to the f;, ¢
and m; of eq. (2.16), and again their number is quite limited in explicit models. A sketch of
the radiative generation of the Higgs potential is depicted in figure 2.2.

The invariants are listed in table 2.1 for the various cases considered. They are con-
structed from SO(5)-invariant objects built with fermionic representations and ¥ as defined
n (2.5).

One caveat to eq. (2.17) is that in the limit of full compositeness of tg, eg ~ 1, there
are no contributions in €% or €% because the state is part of the strong sector respecting
the global symmetries. In this case the y? term in the second line of eq. (2.13) becomes of
the same order of the formally leading €2 because, as mentioned above, ¢; becomes of order
Y/ gy Indeed in the case of total ¢z compositeness there is a single source of breaking of
global symmetries, the mixing of the left doublet. Therefore the expansion is truly in €.
Another important remark is that the very notion of leading and subleading terms becomes
useless in the limit of fermionic coupling g, close to 1, because the expansion in €z, r looses
its validity. In this case, similarly to what we mentioned below eq. (2.13) concerning the
estimate of the Yukawa couplings, eq. (2.17) can be violated at O(1) but still it provides a
valid estimate of the size of the Higgs potential.

The Higgs potential in eq. (2.17) generically has its minimum for (h) ~ f. The phe-
nomenological success of the model requires instead (h) < f, i.e. that the parameter £ < 1,
as discussed in section 2.2. As a benchmark we will mainly focus on the relatively conserva-
tive choice £ = 0.1, which corresponds to f ~ 800 GeV. Achieving this requires unavoidably
some cancellation. We refer to
Apin = 1/€ (2.18)

as the “minimal tuning” because we expect that it provides the absolute lower bound for
the tuning required by any model of composite Higgs. For sure this is the case for all the
models we are going to discuss.
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2 CoMPOSITE HIGGS AND my = 125 GEV

2.3.1 Double Tuning

As exhaustively discussed in ref. [51], a parametrically enhanced fine-tuning is needed in all
the models where a single invariant is present in the potential at the leading order in €y, .
The popular MCHM,, MCHMj5 and MCHMj, all belong to this class.

In this case the subleading terms must be taken into account in order to achieve a realistic
EWSB. For instance for ry, = rg = 5 or 10, table 2.1 shows that the potential has the form

V5ts — Vleading -+ Vsub—leading = %mig [(CZL + aR)si -+ (bL€2 + 5362)8%] , (2.19)
where ay, g and by, g are model-dependent O(1) numerical coefficients.” In the equation above
we have assumed, for simplicity, e, = eg = €.

The tuning of the Higgs VEV, provided the signs of the coefficients can be freely chosen,
requires
ar + ag
bL€2 + bR62

=2¢. (2.20)

The amount of cancellation implied by the equation above is

A5+5 — maX(|aL|7 |CLR|) ~ lg_'d) (2 21)
oL +arl Sy '

and it is parametrically larger than Ay, for € < 1. This accounts for the “double” tuning
which has to be performed on the potential in eq. (2.19): one must first cancel the € terms
making them of the same order of the formally subleading €* ones, and afterwards further
tune the €2 and e* contributions.

Once the minimization condition is imposed we can easily obtain the physical Higgs mass,

m; ~ vigge (2.22)

In doubly tuned models the Higgs quartic coupling is also automatically reduced in the
tuning process. In spite of the fact that the potential is generated at O(e?) indeed the Higgs
mass-term scales like €* rather than €2,

1
myT® =500 GeV (g_w) ; ASHE ~ 290 (2.23)
5 § U

It follows that an option to get a light Higgs is to have a small overall fermionic coupling g,.

Anomalously light partners

In models with a largish gy, a realistic Higgs mass requires that we deviate from the estimate
of eq. (2.13), and this can occur if the spectrum of the top partners is non-generic. Indeed,
suppose that one of the partners, with the appropriate quantum numbers to mix strongly

2Very similar considerations hold in the case ri, = rg = 4, the only change is in the functional form of
the leading and subleading terms.
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2.3 HIicGSs MASS AND TUNING

with the left- or right-handed top quark, * becomes anomalously light, with a mass m,,
slightly smaller than m,. Given that the Yukawa coupling arises from the mixing with the
partners, its size will be controlled by the mass m,, of the lightest state. Therefore eq. (2.13),
that assumes a common mass m,, for all the partners, needs to be modified and becomes [51]

92
Y = ELGRL. (224)
myp

This estimates reduces to eq. (2.13) if m, >~ m,, = g, f, but it can be parametrically different
in the case of a large separation m, < m,. Putting this estimate into (2.22), we get

Ne yem yim
mots o~ G RC Py =100 GeV (Tp) . (2.25)

A realistic Higgs is thus obtained if some of the top partners are light, at least below around
1 or 2 times f, i.e. <2 TeV for £ =0.1. No restriction is instead found on the overall scale

my = gy f of the other fermionic resonances. The price to pay, however, is a large tuning.
Eq. (2.21) indeed becomes

AB+5 — % .20 <M) <9_¢)2 7 (2.26)

mp 5

and the tuning easily overcomes 100 for a realistic value of &.

2.3.2 Minimal Tuning

To avoid the double tuning it is enough to choose the fermionic representations in such a way
that two or more invariants are allowed in the leading order potential. Sticking to irreducible
representations the simplest choice is ry, = rg = 14. Following table 2.1 and again assuming
€1, ~ €g the leading order potential has the form

N,

yla+14 _
1672

‘/leadmg mq/;€2 [(aL + aR)S%L + (bL + bR)S%} ) (227)
and it can be adjusted to give a realistic EWSB without need of relying on the subleading
terms. The minimization condition requires a degree of tuning

1 b
L letarl . Ptbel (2.28)
A max(lar], |ar]) max(|agl, |ar|)

Therefore, in the absence of additional cancellations among b;, and bg, the model has minimal
tuning A4 ~ A . = 1/¢. The estimate of m3 is now

N242

mi o~ 52V e (2.29)

3In the cases of the 5 + 5 these states must be in the 4 and/or 1
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2 CoMPOSITE HIGGS AND my = 125 GEV

2 4

and it scales like €* and not like €* as in the case of double tuning. Adopting the naive
estimate in eq. (2.13) for y;, which implies € ~ /y:/gy, the Higgs is extremely heavy for

large gy
N, Gy \/?
mpAti ~ \/ —27T2ytgivg = 1 Tel (%) : (2.30)

As before we can achieve a 125 GeV only with smallish g,.

In models where g, is large, we could also rely on anomalously light top partners as we
did in the case of double tuning. However this mechanism can not reduce m, indefinitely
because the partners can not be arbitrarily light. An absolute lower bound is m, > emy,
which is saturated if they are massless before elementary-composite mixing. For a minimally
tuned model like the one at hand instead the bound gives

| Ne
mpy 2 S Ytdul = 500 GeV <g€¢> (2.31)

which again shows that, if g, is large, the Higgs is unavoidably too heavy.

2.3.3 Minimal tuning with composite tp

Another interesting possibility, which can alleviate the issue of a too heavy Higgs in models
with largish gy, is that the tg is a completely composite chiral state that emerges from the
strong sector. In this case the potential is entirely generated by the left coupling €,. By
looking at table 2.1 we see that a minimally tuned potential can be obtained also with a
completely composite tg if we assign the left fermionic operator to the 14. The potential is

N,
V4 = Wieading = Wmie% [a 53+ bsﬂ , (2.32)

where a and b are, a priori, O(1) coefficients. To tune the electro-weak VEV we have to
require that the coefficient a can be artificially reduced, which corresponds to a cancellation

1 1
AY = —~ (2.33)
la| — b¢
The Higgs mass-term scales like €? as in the previous section, i.e.
N,
2 . ey 9 4 2
my ~ ﬁbv gy€ - (2.34)

The difference with the previous case is that now €, is smaller, because for a totally composite

tr the top Yukawa is simply €, =~ ;”—;, therefore the Higgs mass is somewhat smaller,

N. g
14 . c _ P
mit ~ Vb ﬁyfgiiﬂ = V500 GeV (E) : (2.35)
Again, for b ~ O(1) a 125 Higg can be obtained only for small g,.
Notice that no help can come in the case of large g,, from anomalously light top partners

because the absolute lower bound €7, > /g, is already saturated. However, for g, 2 2, an
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2.3 HIicGSs MASS AND TUNING

alternative way to obtain a light Higgs is to reintroduce additional tuning to lower the Higgs
mass. In the case at hand this could be achieved by artificially reducing the parameter b
that controls the Higgs mass (see eq. (2.35)), i.e. by taking

1 mp, 2 5 2
po L (322 256
16 \125 GeV (g¢> (2.36)
This obviously enhances the fine tuning. From eq. (2.33) we obtain
1N, 1 125GeV\? /g2
An o2V 2 e [ 222CV (—”’) . 2.37

The level of tuning of this scenario is comparable with the one of doubly-tuned models
with anomalously light partners reported in eq. (2.26), however there is a crucial difference
among the two cases. There the 125 GeV Higgs requires the existence of anomalously light
partners, therefore even if the fermionic scale m, is high some of the resonances will be
light and easily detectable at the LHC. In the present case instead there is no need of light
partners and all the fermionic and gauge resonances could be heavy, lying in the multi-TeV
region. This kind of models evade the connection among light Higgs and light resonances
and they could even escape the direct LHC searches. Of course they are tuned, but the level
of fine-tuning is comparable with the one of the standard MCHMy5 10 constructions.

Double tuning with composite tz

Another logical possibility that might be considered is the one of doubly tuned models with
composite tg, for example a model where the ¢, mixes with a 5 of SO(5) like the one
discussed in ref. [54]. The estimates for this case are easily extracted from section 2.3.1 by
remembering that now y; ~ y;, and read

19, 1 2 N,
Aszgg_g:g.% (%’") o m® = st ~ 100GeV. (2.38)
Yt ™

In this setup one thus expects sizable tuning, comparable with the one of the MCHM, 5 10,
but no need for anomalously light top partners to obtain a light enough Higgs. We will not
further discuss this option because it is difficult to realize it in an explicit calculable model.
In the minimal realizations, indeed, we find that the Higgs potential is too constrained and
that there is not enough freedom in the parameter space to tune £ to a realistic value.

2.3.4 Gauge Tuning

When relevant we will also include in the tuning the gauge contribution. One interesting
point is that the gauge contribution to the potential, often considered sub-leading, can be
relevant in the region of small fermion mass scale, m, < m,. The amount of tuning due to
the gauge can be easily estimated. In the limit m,, < m, the gauge loops can give a sizeable
contribution to the Higgs mass

3 B 9p
omy, ~ 190V = 120 GeV ( 3 ) . (2.39)

30



2 CoMPOSITE HIGGS AND my = 125 GEV

This contribution is of the size of the measured Higgs mass (125 GeV) for g, ~ 3. We can
also quantify the tuning associated to gauge contributions as

Agange & g@g 9p—3 - (2.40)

With obvious identifications of the couplings, one can notice that the estimate in eq. (2.40)
has exactly the same structure of the fermionic tuning in the minimally tuned models with
composite ¢ty (see eq. (2.37)). Given the bound on the S-parameter, m, 2 2.5 TeV, eq. (2.40)
implies A 2 10 for a realistic Higgs mass. This is an irreducible source of tuning that exists
in all models where the Higgs is a pNGB even beyond partial compositeness and therefore
provides a lower bound.

2.4 An explicit model

When facing the construction of an explicit model for a composite Higgs, the biggest issue
is usually the calculability of the Higgs potential V' (h) in the sense of (1.40).

A possibility for model building is usually offered by the five dimensional approach a
la Randall-Sundrum [55], which can be thought of as equivalent to a strongly coupled four
dimensional conformal field theory [56,57]. This is the context where most of the Composite
Higgs models have been discussed so far [45,50] (see also [58-60]). However, five dimensional
models are not the most general ones. Indeed, a common prediction of 5d models is the
presence of a single mass scale for all the resonances (fermionic and bosonic) proportional
to the (inverse) size 1/R of the extra-dimension. This very observation, together with the
discussion of section 2.3, suggests that any five dimensional realization of the Composite
Higgs paradigm is likely to experience significant levels of tuning because of the lower bound
on m, ~ my ~ 1/R from EWPTs.

An alternative possibility to construct realistic composite models has been suggested by
the idea of dimensional deconstruction (see for example [61]). In this case the fermionic and
bosonic resonance scales can be easily disentangled from each other, allowing for scenarios
with less tuning compared to the five dimensional case, provided my/f < 2.

Anyhow, no matter what (partial) UV completion we have in mind, a meaningful low-
energy description of CHM has to have an SO(5)/SO(4) symmetry structure with a sufficient
number of composite resonances below the cut-off.

A possible explicit model can be constructed with the following matter content, justified
a posteriori by the finiteness of V' (h),

e Vector resonances in the adjoint of SO(5).
e Two Dirac fermions in the 5 of SO(5).

As said before, the inclusion of resonances must respect the SO(5)/SO(4) structure of the
strong sector. Vector resonances can be introduced adding redundant gauge symmetries
without spoiling SO(4)-invariance. Also fermions have to be introduced in a consistent way.
In the following paragraphs we discuss the two sectors separately. This approach shares
some similarities with [62,63] and [53].
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2.4 AN EXPLICIT MODEL

Gauge Lagrangian

A lagrangian describing the gauge fields of the SM plus the composite resonances in the
adjoint of SO(5) is

1 a a f12 2 f22 T 1 A Auv
['gauge = _rggWuVWw/ + ZTr ’DMQ’ + ? (DM(I)) (DHCI)> - 4_ggpuyp . (241)
2 is an SO(5) matrix, while ® a five dimensional real unit vector. The composite spin-1
resonances, p®, are introduced as gauge fields. The action of SM and composite gauge fields
on €2 and & is the following

D =0,0—iW,Q+iQp,,  D,®=0,D—ip,®. (2.42)

Although not manifest, it can be shown that the above lagrangian has an SO(5)/SO(4)
spontaneous breaking. In particular, the mass spectrum in absence of elementary-composite
mixings (go — 0) can be classified according to SO(4)

m? = g>ft/2, vectors in the 6, m2 = go(fi + f3)/2, vectorsin the 4 (2.43)

Moreover at global symmetry level, in the limit gy, g, — 0, © and ® parametrize two different
coset spaces: SO(5) xSO(5)'/SO(5)4 and SO(5)”/SO(4) respectively. As evident from (2.42),
the composite p, are introduced as gauge fields of the diagonal combination of SO(5)" and
SO(5)”, thus providing a “collective” SO(5)/SO(4) coset space.

After the gauging of the SM subgroup, the elementary-composite mixing splits 6 —
(3,1) 4 (1,3), with the first heavier by a factor (1 + g3/g>), and the SU(2) gauge coupling
is g = go(g¢ + 92)~'/* (here we neglect hyper-charge effects).

In order to make a comparison with section 2.3, we can show that the physical decay
constant of the pGB Higgs is given by

113
r=di 2.44
i+ f3 .
while the pGB field of eq. (2.5) is
5 = Q0. (2.45)

Fermionic sector

Each SM chiral quark is coupled to a Dirac fermion in an SO(5) representation. Here we will
consider fermions in the 5, hence the model belongs to the class of doubly tuned models. The
spontaneous breaking SO(5)/SO(4) allows couplings between fermions associated to the left
and right chiralities of SM fields that will eventually generate SM Yukawas. The lagrangian
of the third generation is
- _el - 7A€l e el - rhel e
LM — gl g+t e
+ AtL CYEZQ\IJT + AtR E%Q\IJT + h.C.
+ U (i) — mp) U + V(i) — mz) Vs (2.46)
— YT\I/TL(I)(PT\IIT’R — mYT\I/TvL\IJT,R + h.c.
+(t—b, T — B).
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2 CoMPOSITE HIGGS AND my = 125 GEV

The elementary quarks ¢§ and ¢% couple to two different Dirac fermions ¥7 and ¥z, in the 5
representation of SO(5), via mass mixing A, and A, that respect the SM gauge symmetry.
The terms in the fourth line break spontancously SO(5)/SO(4). We retain the only terms
with a certain chirality as necessary to generate the SM Yukawas. We recall that the SM
quark doublet must couple to two composite fermions with different charge under U(1)x to
generate Yukawa of the top (X=2/3) and bottom quark (X=-1/3). Although a deviation
from minimality this choice is welcomed from the point of view of EWPT (as discussed in
the next chapter). Once again here we consider only the top-sector.

In general my,, and Y7 are complex parameters, both are needed in order to reproduce the
most general SO(4)-invariant mass spectrum of composites. One phase can be reabsorbed
with a redefinition of the composite fields while the relative phase remains as a physical CP
violating phase. This describes a strong sector that breaks CP. The same holds when the
coupling to the elementary fields is included so that the action violates in general CP even
with a single generation. Following the literature we will take these IR parameters to be real
in what follows, i.e. we consider a CP invariant composite sector.

2.4.1 Higgs potential

The computation of V' (h) at loop-level follows the Coleman-Weinberg approach [43]. If we
integrate out all the resonances and leave only SM quarks and W bosons in the background
of h we get,

T

P _
L= 5 My (p*; hYWEWY +quplly, (0°; B)qr+Trpll, (0% h)tr+(qu M (p*; h)tr+h.c.), (2.47)

where P}, = 1., — pupy/p*. The effective potential is

& 9
V(h) = / (277'34 [log[ﬁﬂw] — 2N, logIT,, — 2N, log(p*IL,, I1,,, — | M) (2.48)

The functions II, M, usually called form factors, can be derived by matching (2.47) with the

lagrangian with resonances integrated-in (2.41),(2.46). In the case under consideration, the
Higgs potential can be approximated as [47]

V(Rh) ~ as; — Bsici, (2.49)
where «, 8 are related to integrals of the form factors. From (2.49) we can derive

8 § > B-

m o~

(2.50)

In order for the coefficients «, 5 to be calculable and finite within the theory defined by
(2.41) and (2.46), the integrand in (2.48) has to be at least a function which goes as p~% at
large momenta.
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Gauge potential

The computation of V(h)gauge is particularly simple and directly shows the importance of
the “axial” resonances 4 to make the potential fully calculable. Matching the two theories
we can show that the gauge form factor Ily, has a simple dependence on h, as already hinted
by eq. (2.39), Iy = Iy (p?) + s211;(p*)/4. The integral, which contributes to a in (2.49), is
UV convergent because I1; /TI; behaves properly

Hl(pQ) 2g§mf, <m21 - mi) piooo 1

— — 5 —.
Mo(p?)  g2p% [P —m2 (1 + g3 /g2)] (p> —m2,) pe

(2.51)

At leading order we get [64]

d*p 911, h 9 ¢? m?2 h
V(h) eanee = s sin? - ~ Zm*l —4 ) gin? =, 2.52
(h) gaug / (27)4 811, Si 7 64r2 gg m, 10g mlg) S1n 7 ( )

The curvature of the potential at the origin is positive, a general feature of gauge interactions
which tend to preserve the symmetry. For m,, — oo (corresponding to fo — 0o in our setup)
the potential becomes logarithmically divergent, showing that the coset resonances are crucial
for the finiteness of the gauge potential. This explicit calculation is well in agreement with
the NDA estimate in eq. (2.15). Moreover (2.52) is formally equal to the electro-magnetic
mass-splitting of the pions Am2. as derived from current algebra [65] and Weinberg sum
rules [66].

Fermion potential

The contribution from the top-loop in (2.48) is much more difficult to compute analytically.
It can be shown that the fermionic contribution to « requires all the 2 Dirac 5 to be finite.
On the contrary the fermionic contribution to 5 needs only one composite 5. To show this
we have to look at the form factors. Integrating out heavy fermions in the background of A
from (2.46) we get the following matching conditions

My, = T0?) + 2T (?), (2.53)
I, (p*) = 5(p*), (2.54)
i, (p°) = 15 (p°) + % I} (p%), (2.55)

M(p?) = 20 () (2.56)

The expressions on the right-hand side encode all the relevant information on the strong
sector, and they can be unambiguously computed starting from (2.46) (see [1] for details).
The form factors give us information on the spectrum of the composite fermionic resonances.
In the model under consideration we have four different sets of resonances once classified
according to their SM quantum numbers

21/65 27/6, 12/3. (2.57)
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2 CoOMPOSITE HIGGS AND my, = 125 GEV

Each of the above states appears twice in the spectrum. From a computational viewpoint,
the masses of the composite fermions are respectively zeros of II{(p?) (ma, J60 M2, ), Doles
of TI§(p?) (ma, M2, ,,) and zeros of Ig(p?) (ma,,,,M1,,,). The top mass can be extracted
from M (p?) at small momentum upon canonical normalization,

- ShCh M{L(O) _ ShCh ALARmeTYT
V2 VIGOIE0) V2 ma, e, gma, i,

Following the approach of [51], we can get a simple result looking at the limit where only two
top-partners are light. Expanding (2.48) in the elementary-composite mixings and matching
with (2.49), the leading contribution to g is

(2.58)

N (M®?2 T
pr —2N. / [2p2nqnu+4ngng
A2 AZmEm2YE (2:59)
— aN, / |
2(p? _m21/6)<p _mzl/ﬁ)(p _m12/3)<p —m12/3)

The form factors needed for the above computation are listed in the appendix of [1]. Using
the expression for the top-mass and taking the limit ma, , < ma, , and mq, , < my,,, we

get [48,51,54]
9 2 2 2
m2 ~ Nemy M2, My M2
h— 92 2 _ 2 2
m f m21/6 m12/3 m12/3

Hence the masses of the fermions which mix with SM quarks control the Higgs mass.

(2.60)

2.4.2 Implications of a 125 GeV Higgs

my, = 125 GeV naturally prefers small values of g, (g, < 2). Here, as an operative definition
of the fermionic coupling g, we adopt the geometric mean of the mass parameters of the
Lagrangians divided by f. We will focus on this region of the parameter space and on a
reference value f = 800 GeV.*

4Since in general it is impossible to get analytic expressions, we perform a scan over the 6 fermionic
parameters of the model, requiring that the electro-weak VEV and top mass are correctly accounted for. We
demand m; € [145,155] to roughly account for the running top mass in MS scheme at the scale of the heavy
fermions ~ TeV.

In order to evaluate quantitatively the tuning in a given model we adopt the definition of fine-tuning given
in ref. [67]
6 logmz

A —
0log x;

: (2.61)

where z; are the parameters of the theory, and mz = g/ cos(6w ) fsn/2, which fixes the size of (h). Keeping
fixed f and the gauge couplings, eq. (2.61) is exactly equivalent to the tuning on s, and coincides with the
definition of tuning usually adopted in the composite Higgs scenarios.

For the numerical computation it is useful to notice that the tuning can be extracted directly from the
Higgs potential (2.48). Using the minimum condition V’(s;,) = 0, the tuning measure can be cast as follows

2z; i O*V

sn f?m3 Ox;0sp,

A = max (2.62)

K3

Using this formula one can readily derive the tuning estimates of section 2.3.
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Figure 2.3. Scatter plots for 125 GeV Higgs in MCHMj5;, f = 800 GeV. We varied the fermionic
parameters in the range 0.5 — 5 TeV and imposed that the mixings are smaller than 3. The gauge
contribution is computed with m, = mg, / V2 = 2.5 TeV. Left: correlation of the doublet and
singlet masses, the red solid line is eq. (2.60). Right: tuning as a function of the mass of the
lightest resonance.

As originally shown in ref. [51] and here derived in eq. (2.60), my; is sensitive to the
lightest top partners. It is easy to see why a simple formula holds. In this model only one
multiplet of resonances is necessary for the finiteness of 8 and therefore a formula depending
on muy,, and mg, , must hold, at least at leading order in the mixings. Two multiplets are
instead necessary to make « finite. This however does not affect the Higgs mass due to the
fact that o must be tuned in order to obtain the correct Higgs VEV. Notice that the relation
between the Higgs mass and the lightest resonance masses is a peculiarity of the models with
double tuning, in which one of the invariants has a lower degree of divergence.

The correlation in a blind scan between the singlet and the doublet mass is shown on the
left plot of figure 2.3. The lightest state is often an exotic doublet with hyper-charge 7/6,
the custodian, that contains an exotic state of electric charge 5/3. The present experimental
bound is ms/3 2 700 GeV [68,69] and starts carving out the natural region of the model.
See also [70] for a detailed analysis of top-partners phenomenology.

In the right plot the tuning of the various points is considered. We see that no strong
correlation exists between the tuning and the mass of the lightest resonance. The tuning
varies between 10 and 100 with an average A,,, = 30. Note that the lower bound is saturated
by the gauge contribution, which amounts to an irreducible tuning A = 10.

2.5 Discussion

In this chapter we have provided a classification of CHM and presented an explicit model
studied partly analytically and partially numerically to strengthen the estimates provided in
the first part of the chapter.

The main result of this classification is that a (composite) Higgs with m;, = 125 GeV,
typically requires fermionic partners lighter than TeV. We identified three classes of models
characterized by the type of cancellation required to generate the electro-weak VEV:

1. Double tuning.
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Figure 2.4. Schematic representation of the properties of the basic scenarios.

2. Minimal tuning.
3. Minimal tuning with composite ty.

Within each class the expected size of the Higgs mass can be different and thus the recent
discovery of a light Higgs can have a different impact. For the models in the second and
third class it is difficult to obtain a light enough Higgs for a large strong sector coupling.
However the tension with the observed Higgs mass disappears in the limit of light fermionic
scale, corresponding to g, = my/f ~ 1. In this case the double tuning issue encountered
for the models in the first category tends to disappear. When g, is weak the implication
is that light fermionic coloured resonances, the top partners, are an expected feature of the
composite Higgs models. Not observing these particles at the LHC would rapidly carry the
scenario in a finely-tuned territory.

We also considered the possibility of a larger tuning (100 or larger). In this case we
found two possibilities to obtain a realistic Higgs mass, as summarized in figure 2.4. One
option is to stick to models with doubly-tuned potential like the standard MCHMy 5 19. In
this scenario a light Higgs requires the presence of light top partners significantly below
the typical fermionic-resonance scale. The spectrum is characterized by one or two light
multiplets, a four-plet or a singlet of SO(4), while all the other resonances are heavy and lie
in the mass range of the vectors, m, > 2.5 TeV. In the case of low g, previously discussed,
instead, all the fermionic resonances are light and they can have different quantum numbers.
For instance in the model with the 14 we expect light top partners in the 4, in the 1 and
in the 9 of SO(4). Alternatively, for similar tuning, one can also have models with heavy
fermionic resonances where the Higgs mass is tuned independently of the electro-weak VEV.
We provided one example based on the 14, and totally composite tgz. This case is indicated
in the upper right corner of figure 2.4. A model of this kind is rather difficult to test directly
at the LHC, therefore if no top partners are found it might become the last corner where
the Composite Higgs scenario could hide.
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Chapter 3

Composite resonances and precision tests

In the previous chapter we have shown that one crucial parameter to obtain the correct
Higgs mass in composite models is the ratio my/f,

\/ﬁc My,
T mtTa
The closeness of my, to f suggests to study effects in precision physics.
In this chapter we will focus on Flavour and ElectroWeak precision tests. We consider a
number of different options for the transformation properties of the spin—% resonances under
the global symmetries of the strong dynamics, motivated by the need to be consistent with the
constraints from the EWPT, as well as different options for the flavour structure/symmetries,
motivated by the many significant flavour bounds. We analyse in succession the different
options for the flavour structures/symmetries: Anarchy in section 3.4, U(3)? in section 3.5,
U(2)? in section 3.6. Section 3.3 describes the constraints from EWPT that apply generally
to all flavour models. The summary and the conclusions are contained in section 3.7.

(3.1)

3.1 A “truncated” Composite Higgs

In general, Composite Higgs models predict towers of resonances. Moreover, the Higgs
potential becomes calculable and finite only when a sufficient number of resonances lies
below the cut-off. The aim of preserving predictivity on the Higgs potential is most of
the times incompatible with low-energy phenomenological studies, where it is common and
appropriate to focus on the lightest state. Then, in order to investigate the electro-weak and
flavour precision tests in this class of models we make some simplifying assumptions, relying
basically on [50].

The vector resonances transform in the adjoint representation of a global symmetry re-
spected by the strong sector, which contains the SM gauge group. To protect the T parameter
from tree-level contributions, we take this symmetry to be G, = SU(3).x SU(2), x SU(2) g X
U(1)x. We assume all vector resonances to have mass m, and coupling g,. For the explicit
form of their effective Lagrangian we refer to [50].

The choice of the fermion representations has important implications for the electroweak
precision constraints. We will consider three cases.
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3.1 A “TRUNCATED” CoOMPOSITE HIGGS

1. The elementary SU(2); quark doublets, ¢, mix with composite vector-like SU(2),
doublets, @, one per generation. The elementary quark singlets, ug and dg, couple
both to an SU(2)r doublet R. We will call this the doublet model.

2. The elementary SU(2), quark doublets mix with a composite L = (2,2),/5 of SU(2), x
SU(2)r x U(1)x, and the elementary quark singlets couple both to a composite triplet
R = (1,3)2/3. The model also contains a (3,1)s/3 to preserve LR symmetry. We will
call this the triplet model.

3. The elementary SU(2), quark doublets mix with a Ly = (2,2)9/3 and a Lp = (2,2)_13
of SU(2), x SU(2)g x U(1)x, the former giving masses to up-type quarks, the latter
to down-type quarks. The elementary up and down quark singlets couple to a (1, 1)s/3
and a (1,1)_1/3 respectively. We will call this the bidoublet model.

For concreteness, the part of the Lagrangian involving fermions reads

e In the doublet model

LEW = —Q'mpQ" — R'mp R+ (Y7tr[Qp HRE] +he) (3.2)

where H = (iocoH*, H) and R = (U D)" is an SU(2)g doublet;
e In the triplet model
Lmelet — ty[Lim? L] — tr[R'ms RY] — tr[R/'mb R
+YUtr[LL HRY) + Ytr[H Ly R + he, (3.4)
£ = AT T+ Dt
where @ is the T3z = —3 SU(2),, doublet contained in L and U, D are the elements in
the triplet R with charge 2/3 and -1/3 respectively;

e In the bidoublet model

[bidoublet _ —tr[Z’ijmguU[’]] — Umi U + (Y(jjtr[fj}'ﬂ-[]LUlj% +h.c)+ (U= D), (3.6)
Lo — il N7 @ Qe + My Ap Uiy + (Uyu — D, d), (3.7)

where again ), and )y are the doublets in Ly and Lp which have the same gauge
quantum numbers of the SM left-handed quark doublet.

Everywhere 4, 7 are flavour indices. The field content in all three cases is summarized in
table 3.1.1

To set the correspondence between the partial compositeness Lagrangians that we use and
models with the Higgs as a pseudo-Goldstone boson, one can take the composite Yukawa

INote that we have omitted “wrong-chirality” Yukawa couplings like Y% tr| 7%7—[]%%] for simplicity. They
are not relevant for the tree-level electroweak and flavour constraints and do not add qualitatively new effects
to the loop contributions to the T" parameter.
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3 COMPOSITE RESONANCES AND PRECISION TESTS

model SU3). SU12), SUR2)r U(l)x
doublet ¢ 3 2 ! %
R 3 1 2 1
L 3 2 2 2
triplet R 3 1 3 2
R 3 3 1 2
Ly 3 2 2 2
bidoublet 223 2 2 =
U 3 1 1 2
D 3 1 1 -3

Table 3.1. Quantum numbers of the fermionic resonances in the three models considered. All
composite fields come in vector-like pairs. The X charge is related to the standard hyper-charge
as Y =T3r + X.

couplings Y% in (3.2),(3.4) and (3.6) to be proportional to my/f in (3.1), where my is a
common fermion mass, up to a model dependent factor of O(1). From the point of view of
models with pGB Higgs, all the three models belong to the class of doubly tuned CHM, as
they can be traced back to MCHM,,MCHMj; and MCHM;q respectively, to which eq. (3.1)

refers.

3.2 Flavour structures

Quark masses and mixings are generated after electroweak symmetry breaking from the
composite-elementary mixing. To follow the conventions of chapter 1: the states with van-
ishing mass at v = 0 obtain the standard Yukawa couplings, in matrix notation,

:&u ~ Spu - ULy - YU ’ U;rzu " SRu (38)

where

s% = Axi/V/1+(Axi)? X =L, R, (3.9)

)\Lu = diag()\Lula )\Lu27 )\LuS) : ULu ) (310)
)\R’LL - U]T%u : dia‘g(ARuh >\Ru27 ARU3) ) (311)

and similarly for ;. Notice the change of notation with respect to the general formula
Uu ™ €L - gy - €g given in (2.13).

Here and in the following, the left-handed mixings are different for v and d quarks,
Sru 7 Spa, only in the bi-doublet model. At the same time, in the v = 0 limit, the remaining
states have mass my, or my/+/1+ (Ax)?, respectively if they mix or do not mix with the
elementary fermions.

While the effective Yukawa couplings g, 4 must have the known hierarchical form, the
Yukawa couplings in the strong sector, Yy p, could be structureless anarchic matrices (see
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3.2 FLAVOUR STRUCTURES

e.g. [60,71-77]). However, to ameliorate flavour problems, one can also impose global flavour
symmetries on the strong sector. We discuss three cases in the following.

Anarchy

In the anarchic model, the Yy p are anarchic matrices, with all entries of similar order, and
the Yukawa hierarchies are generated by hierarchical mixings A. From a low energy effective
theory point of view, the requirement to reproduce the observed quark masses and mixings
fixes the relative size of the mixing parameters up to — a priori unknown — functions of the
elements in Yy, p. We follow the common approach to replace functions of Yukawa couplings
by appropriate powers of “average” Yukawas Yy, p., keeping in mind that this introduces
O(1) uncertainties in all observables. In this convention, assuming Axs > Ax2 > Axi, the
quark Yukawas are given by

Yu = YUsSLulSRul » Ye = YUuSLu25Ru2 Yt = YUsSLu3SRu3 - (3.12)

and similarly for the Q = —1/3 quarks. In the doublet and triplet models, the entries of the
CKM matrix are approximately given by

Vi~ 2H (3.13)

SLj

where i < j. Using egs. (3.12) and (3.13), one can trade all but one of the sy g for known
quark masses and mixings. We choose the free parameter as

Tt = S13/SRu3- (3.14)
In the bidoublet model, instead of (3.13) one has in general two different contributions to
Vi,
Vi~ Sk g SLui (3.15)
SLdj SLuj

Given the values of all quark masses and mixings, the hierarchy Ax3 > Axo > Ax1 is only
compatible with sp,;/s5,; being at most comparable to sp4/Srg;. In view of this, the two
important parameters are

Ty = Spi/Skt I (3.16)

The requirement to reproduce the large top quark Yukawa (m; = %v)

Yt = SrtYUsSrt, (3.17)

restricts x; to a limited range around one?,

<z < — (3.18)

while we take z throughout to be greater than or equal to 1.
From now on we identify Yy, and Yp. with the parameter Y of (3.1).

2In our numerical analysis, we will take 1, = 0.78, which is the running MS coupling at 3 TeV.
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3 COMPOSITE RESONANCES AND PRECISION TESTS

U(3)°

In the U(3)? models [78-80] one tries to ameliorate the flavour problem of the anarchic model
by imposing a global flavour symmetry, at the price of giving up the potential explanation
of the generation of flavour hierarchies. Concretely, one assumes the strong sector to be
invariant under the diagonal group U(3)g+uv+p or U(3)guiv X U(3)gayp. The composite-
elementary mixings are the only sources of breaking of the flavour symmetry of the composite
sector and of the U(3), x U(3), x U(3), flavour symmetry of the elementary sector. We
consider two choices.

1. In left-compositeness, to be called U(3)3 . in short, the left mixings are proportional

to the identity, thus linking ¢ to @ (Q“, Q%) into U(3)g+u+p+q (0r U(3)guiqitviniq)s
and the right mixings Ag,, Arg are the only source of U(3)? breaking.

2. In right-compositeness, to be called U (3)3 in short, the right mixings link u to U
and d to D into U(3)guiv+u X U(3)gaspia, while the left mixings Az, Arq are the only
source of U(3)? breaking.

All the composite-elementary mixings are then fixed by the known quark masses and CKM
angles, up to the parameters z; (and, in the bidoublet model, z), which are defined as in
(3.14,3.16). Compared to the anarchic case, one now expects the presence of resonances
related to the global symmetry U(3)g1v+p or U(3)guiv x U(3)gdsp, which in the following
will be called flavour gauge bosons® and assumed to have the same masses m, and g, as the
gauge resonances. Note that left-compositeness can be meaningfully defined for any of the
three cases for the fermion representations, whereas right-compositeness allows to describe
flavour violations only in the bidoublet model.

U(2)°

In U(2)? models one considers a U(2), x U(2), x U(2)y symmetry, under which the first
two generations of quarks transform as doublets and the third generation as singlets, broken
in specific directions dictated by minimality [27,28]. Compared to U(3)?, one has a larger
number of free parameters, but can break the flavour symmetry weakly, since the large top
Yukawa is invariant under U(2)3.

Analogously to the U(3)? case, in the strong sector the flavour groups are U(2)g4v+p
(or U(2)quiv x U(2)ga,p) and:

1. In left-compositeness, to be called U (2)3 5, the left mixings are diagonal with the first
two entries equal to each other and the only sources of U(2)? breaking reside in the
right-handed mixings.

2. In right-compositenss, to be called U(2)% 4, the right mixings are diagonal with the
first two entries equal to each other and the only sources of U(2)? breaking reside in
the left-handed mixings.

3We will only allow flavour gauge bosons related to the SU(3) subgroups of the U(3) factors.
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3.3 ELECTROWEAK PRECISION CONSTRAINTS

Again we expect the presence of flavour gauge bosons associated with the global symmetries
of the strong sector. As before right-compositeness can be meaningfully defined only in the
bidoublet model.

3.3 Electroweak precision constraints

In this section we discuss electroweak precision constraints that hold independently of the
flavour structure. Among the models considered, only U(3)3 is subject to additional elec-
troweak constraints, to be discussed in section 3.5.1.

3.3.1 “UV?” oblique corrections

In the models under consideration the Higgs couplings to vectors are shifted by an amount
¢l =1 —v*/f?, which implies the famous IR-contributions to S, T of eq. (1.15). However,
the presence of composite resonances also induces “UV” contributions to S and 7.

e S parameter. As well known, the S parameter receives a tree-level contribution,
which for degenerate composite vectors reads [50]

2
S = 87”2’ : (3.19)
my,

independently of the choice of fermion representations. Experimentally, the recent
global electroweak fit [16] finds S = 0.03 + 0.10 and 7" = 0.05 + 0.12. Requiring 20
consistency with these results of the tree level correction to .S, which largely exceeds
the IR one of eq. (1.15) and has the same sign, gives the bound

m, > 2.6 TeV . (3.20)

e T parameter. It strongly depends on the choice of the fermion representations. We
present here simplified formulae valid in the three models for a common fermion res-
onance mass m, and developed to first nonvanishing order in Az;, Agr¢, as such only
valid for small sy, sg;.

In the doublet model the leading contribution to T, proportional to A%, reads

71 N. m2Y?

T= 576 2T (3.21)
In the bidoublet model one obtains from a leading A}, term
T = —%1];2:—; Y5 (3.22)
In the triplet model the leading contributions are
T = <logA—Z—1> chm—gy—g, an T:g chm—gaj? 2 (3.23)
my, 2/ 16w My, Ye Ty 84 16w my,
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3 COMPOSITE RESONANCES AND PRECISION TESTS

Observable Bounds on my, [TeV]
doublet triplet bidoublet
T 028 Y/z, 051 /Y3/z;, 0.60 2,V 0.25 2,Yy

Ry (9%) 5.6 VoY 6.5 Yp\/x/ Y /2
B — Xy (gy)  0.44 \/Y/x 0.44 /Y /2, 0.61

Table 3.2. Lower bounds on the fermion resonance mass my, = Y f in TeV from electroweak
precision observables. A blank space means no significant bound.

where the first comes from A%, and the second from A},. Note the logarithmically
divergent contribution to the A%, term that is related to the explicit breaking of the
SU(2)r symmetry in the elementary-composite fermion mixing and would have to be
cured in a more complete model.

Imposing the experimental bound at 20, egs. (3.21, 3.22, 3.23) give rise to the bounds
on the first line in table 3.2 (where we set log (A/m,) = 1). Here however there are
two caveats. First, as mentioned, egs. (3.21, 3.22, 3.23) are only valid for small mixing
angles. Furthermore, for moderate values of f, a cancellation could take place between
the fermionic contributions and the infrared logs of the bosonic contribution to T". As
we shall see, the bounds from S and 7" are anyhow not the strongest ones that we will
encounter: they are compatible with my,, < 1 TeV for Y =1 to 2 and g, = 3 to 5.
Note that here and in the following m, represents the mass of the composite fermions
that mix with the elementary ones, whereas, as already noticed, the “custodians” have

mass my/+/1+ (Ax)2

3.3.2 Modified Z couplings

In all three models for the electroweak structure, fields with different SU(2); quantum
numbers mix after electroweak symmetry breaking, leading to modifications in Z couplings
which have been precisely measured at LEP. Independently of the flavour structure, an
important constraint comes from the Z partial width into b quarks, which deviates by 2.50
from its best-fit SM value [16]

Ry = 0.21629(66) RM = 0.21474(3) . (3.24)

Writing the left- and right-handed Z couplings as

Ciny“ (=3 + 350 + 09zu) Pr + (350 + 095y) Pr] b2, (3.25)
one gets
2y2 29)2 2y2 ,2Y; 242 2y
Sgky, — UIDIY Gy ser VYD U GV YU g g 0

2m% YU “ 4m? YU

2 2m% Y7 4m?2 vy, Y5

with the coefficients
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3.3 ELECTROWEAK PRECISION CONSTRAINTS

‘ doublet triplet bidoublet ‘ doublet triplet bidoublet
a 1/2 0 1/(22%) c| —1/2  —=1)2 0
b 1/2 0 1/22 d| —1/2 —1 0

The vanishing of some entries in (3.26) can be simply understood by the symmetry consider-
ations of ref. [81]. As manifest from their explicit expressions the contributions proportional
to a and ¢ come from mixings between elementary and composite fermions with different
SU(2) x U(1) properties, whereas the contributions proportional to b and d come from p-Z
mixing. Taking Yy = Yp =Y, mp = Y f and m, = g,f, all these contributions scale
however in the same way as 1/(f%Y).

It is important to note that dg%,, is always positive or 0, while dgZ,, is always negative
or 0, while the sign of the SM couplings is opposite. As a consequence, in all 3 models
considered, the tension in eq. (3.24) is always increased. Allowing the discrepancy to be at
most 30, we obtain the numerical bounds in the second row of table 3.2. The bound on
my in the doublet model is highly significant since z;Y > 1, whereas it is irrelevant in the
triplet model and can be kept under control in the bidoublet model for large enough 2 (but
see below). In the triplet model, there is a bound from the modification of the right-handed
coupling, which is however insignificant.

3.3.3 Right-handed W couplings

Analogously to the modified Z couplings, also the W couplings are modified after EWSB.
Most importantly, a right-handed coupling of the W to quarks is generated. The most
relevant experimental constraint on such coupling is the branching ratio of B — X7, because
a right-handed Wtb coupling lifts the helicity suppression present in this loop-induced decay
in the SM [82]. Writing this coupling as

g R s +
E59Wtb(t7NPRb)Wu ; (3.27)
one gets
VYuYp g’ Y
Sqtim = £ b 3.28
Jw 2momy Yy @t 4m? .Yy ’ ( )

with the coefficients

‘ doublet triplet bidoublet
a 1 1 _2$tyt/Y
b 1 1 0

The coefficients in the bidoublet model vanish at quadratic order in the elementary-composite
mixings as a consequence of a discrete symmetry [81]. The nonzero value for a in the table is
due to the violation of that symmetry at quartic order [82]. The contribution to the Wilson
coefficient C7 g, defined as in [83], reads

my 6gﬂxtb 2 2
Crg=——"2A W 3.29
7.8 — A 778(mt /m ) ( )
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3 COMPOSITE RESONANCES AND PRECISION TESTS

where A7(m?/m¥,) ~ —0.80 and Ag(m?/m%,) ~ —0.36.

Since the B — X v decay receives also UV contributions involving composite dynamics,
we impose the conservative bound that the SM plus the IR contributions above do not exceed
the experimental branching ratio by more than 3¢. In this way we find the bound in the
last row of table 3.2.

3.4 Constraints on the anarchic model

We now discuss constraints that are specific to the anarchic model, as defined above, and
hold in addition to the bounds described in the previous section.

3.4.1 Tree-level AF =2 FCNCs

In the anarchic model exchanges of gauge resonances give rise to AF = 2 operators at tree
level. Up to corrections of order v?/f?, the Wilson coefficients of the operators

V= (dpydy) (diytdy,). VI = (dpy"di) (dpydg), - (3.30)
U () (T ). I () (). (331
can be written as
2
CdDAB - %ggdggdcdDAB7 A; B = La R7 D = V7 57 (332)
P

and with the obvious replacements for up-type quarks, relevant for D-D mixing.
The couplings g./, with i # j contain two powers of elementary-composite mixings. In
the doublet and triplet models, one can use egs. (3.12)—(3.14) to write them as (§;; = V;; V)

ij Ty
gLJ ~ SLdiSLdj ™ gij% ) (333)
ij YuiYui
9pu ™ SRuiSRuj ~ < > 3.34
f ! Yytxtfz’j ( )
ij YdiYdi
9rg ~ SRAiSRd] ~ T~ - 3.35
Rd 7 Yytxtgij ( )
In the bidoublet model, one has
ij ij Ty ij 2 YU YaiYas ij YuiYui
9ra ™~ 9iu ~ i~ Jra ™~ 2 o5 - Ghy ~ . 3.36
Ld L ! Yu fid YLQ) ytwtfz‘j B YUﬁUt%ﬁ&‘j ( )

The coefficients ¢3P depend on the quantum numbers of the composite fermions and can be
explicitly computed. They are of order 0.5 <+ 1 and are listed in the appendix of [3].

The experimental bounds on the real and imaginary parts of the Wilson coefficients
have been given in [84,85]. Since the phases of the coefficients can be of order one and
are uncorrelated, we derive the bounds assuming the phase to be maximal. We obtain the
bounds in the first eight rows of table 3.3. As is well known, by far the strongest bound,
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3.4 CONSTRAINTS ON THE ANARCHIC MODEL

Observable Bounds on m,, [TeV]
doublet triplet bidoublet

ex (QLR) 14 14 14 2

ex (QLY) 2.7 x4 3.9 x4 3.9 x,
Bg-Bg (Q5%) 0.7 0.7 0.7
Bg-Bg (QEE) 2.3 a, 3.4 x, 3.4 z,
B,-B, (Q5F) 0.6 0.6 0.6
BB (QEF) 2.3 m 3.4z 3.4 x,
D-D (QL%) 0.5 0.5 0.5

D-D (QE) 0.4 x, 0.6 2 0.6 2

Ky — pp (Z-p) 039 /Y/x; 056 \/Y/xy

Table 3.3. Flavour bounds on the fermion resonance mass m,, in TeV in the anarchic model.

shown in the first row, comes from the scalar left-right operator in the kaon system which
is enhanced by RG evolution and a chiral factor. Note in particular the growth with z of
the bound in the bidoublet case, which counteracts the 1/z behaviour of the bound from
R,. But also the left-left vector operators in the kaon, B; and B, systems lead to bounds
which are relevant in some regions of parameter space. The bounds from the D system are
subleading.

3.4.2 Flavour-changing 7 couplings

Similarly to the modified flavour-conserving Z couplings discussed in section 3.3.2, also
flavour-changing Z couplings are generated in the anarchic model. In the triplet and doublet
models, as well as in the bidoublet model, since the down-type contributions to the CKM
matrix are not smaller than the up-type contributions in (3.15), one has

L SLdiSLdj L L
09744 ~ T] 097 ~ &ij 097 » (3.37)
Lb
R SRdiSRdj ¢« R YailYas ¢ R
5gZdid,J' ~ Tb] 9zvp ™ E 9zvp - (3'38)

In the b — s case, a global analysis of inclusive and exclusive b — s/~ decays [83] finds
1095 < 8% 1075, while in the s — d case, one finds |dg5.| < 6x 1077 from the K — putpu~
decay [86]*. Using (3.37) one finds that the resulting constraints on the left-handed coupling
are comparable for b — s and s — d. Since they are about a factor of 3 weaker than
the corresponding bound from Z — bb, we refrain from listing them in table 3.3, but their

presence shows that the strong bound from R, cannot simply be circumvented by a fortuitous

4The decay KT — 7tvi leads to a bound |5gé’£| <3 x107% at 95% C.L. and is thus currently weaker

than K — ptu~, even though it is theoretically much cleaner.

48



3 COMPOSITE RESONANCES AND PRECISION TESTS

cancellation. In the case of the right-handed coupling, one finds that the constraint from
Kp — ptp~ is an order of magnitude stronger than the one from b — s¢*¢~, and also much
stronger than the bound on the right-handed coupling coming from Z — bb. The numerical
bounds we obtain are shown in the last two rows of table 3.3 from the contributions with
fermion or gauge boson mixing separately since, in constrast to Z — bb, the two terms are
multiplied by different O(1) parameters in the flavour-violating case.

3.4.3 Loop-induced chirality-breaking effects

Every flavour changing effect discussed so far originates from tree-level chirality-conserving
interactions of the vector bosons, either the elementary W, and Z,, or the composite p,,. At
loop level, chirality-breaking interactions occur as well, most notably with the photon and
the gluon, which give rise in general to significant AF = 1 flavour-changing effects (b — s,
€, AAcp(D — PP)), as well as to electric dipole moments of the light quarks. In the
weak mixing limit between the elementary and the composite fermions, explicit calculations
of some of the AF = 1 effects have been made in [82, 87, 88], obtaining bounds in the
range my > (0.5-1.5)Y TeV. For large CP-violating phases the generated EDMs for the
light quarks can be estimated consistent with the current limit on the neutron EDM only if
my > (3-5)Y TeV, where the limit is obtained from the analysis of [89].

3.4.4 Direct bounds on vector resonances

Direct production of vector resonances and subsequent decay to light quarks can lead to a
peak in the invariant mass distribution of pp — jj events at the LHC. In the anarchic model,
due to the small degree of compositeness of first generation quarks, the coupling of vector
resonances to a first generation quark-antiquark pair is dominated by mixing with the SM
gauge bosons and thus suppressed by ¢%/g,. For a 3 TeV gluon resonance at the LHC with
Vs =8 TeV, we expect

5 fb
[Lua(s,m2) + Laa(s,m2)] = —, (3.39)

2
p

27 g3
S G ==
o(pp )= 55 e

where L4(s, §), with ¢ = u, d, is the parton-parton luminosity function at hadronic (partonic)
center of mass energy /s (\/E) The ATLAS collaboration has set an upper bound of 7 fb on
the cross section times branching ratio to two jets times the acceptance [90], and a similar
bound has been obtained by CMS [91]. Given that the gluon resonance will decay dominantly
to top quarks, we conclude that the bound is currently not relevant, even for small g,.

A similar argument holds in the case of the dijet angular distribution, which can be
used to constrain local four-quark operators mediated by vector resonances. Following the
discussion in the appendix of [3], we obtain the bound

4.5 TeV
m, > 0 (3.40)
Yp

which, in combination with the bound on m, from the S parameter, is irrelevant for g, 2 1.5.
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Partial summary and prospects on anarchy

If the bound coming from the Q5® contribution to ex is taken at face value, the fermion
resonances should be far too heavy to be consistent with a naturally light Higgs boson and
certainly unobservable, either directly or indirectly. Note in particular the growth of this
bound with z in the bidoublet model.

In view of the fact that this bound carries an O(1) uncertainty, one might however
speculate on what happens if this constraint is ignored. As visible from table 3.3, with
the exception of the first line, all the strongest bounds on m, in the bidoublet or in the
triplet models can be reduced down to about 1 TeV by taking x; = % to i. This however
correspondingly requires Y = 3 to 4 (and maximal right-handed mixing) which pushes up
the bounds from K; — p*p~ and is not consistent with my, = Y f and f 2 0.5 TeV. The
loop-induced chirality-breaking effects on ¢ and AAgcp in D — PP decays would also come
into play. Altogether, even neglecting the bound from ex(Q%®), fermion resonances below
about 1.5 TeV seem hard to conceive.

3.5 Constraints on U(3)?

We now discuss the constraints specific to U(3)3. In U(3)3 the sizable degree of compos-
iteness of light left-handed quarks leads to additional contributions to electroweak precision
observables; in U(3)3- FCNCs arise at the tree level. In both cases collider bounds on the
compositeness of light quarks place important constraints. Our analysis follows and extends
the analysis in [80].

3.5.1 Electroweak precision constraints specific to U(3)3

The bounds from R, as well as the S and T" parameters discussed in section 3.3 are also valid
in U(3)3, with one modification: in U(3)? , the contributions to the T’ parameter proportional
to s7, have to be multiplied by 3 since all three generations of left-handed up-type quarks
contribute. The corresponding bounds remain nevertheless relatively mild.

In addition, an important constraint arises from the partial width of the Z into hadrons
normalized to the partial width into leptons, which was measured precisely at LEP

RY® = 20.767(25) , RM = 20.740(17) , (3.41)

showing a 1.1o tension with the best-fit SM prediction [16].

In U(3)} the modified left-handed Z couplings of up and down quarks are equal to
the ones of the ¢ and b respectively, while the same is true in U(3)3 for the right-handed
modified couplings. Analogously to the discussion in section 3.3.2, one can write the modified
Z coupling of the top as

g _
C—t’y“ [(% - %Sfu + 5gétt)PL + (-%Sfu + 5glz%tt>PR} tZ,, (3.42)
and one has
Sok — vYF 2oy IoV* ey S — vYE gV s
tht - 2 2 Y 4 2 Y b7 tht - 2 2 Y 4 2 Y d7 (343>
mg Yu m, Yy my Xy my Ty
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3 COMPOSITE RESONANCES AND PRECISION TESTS

with
‘ doublet triplet bidoublet ‘ doublet triplet bidoublet
a| —1/2 -1 ~1/2 c| 1/2 0 0
b| —1/2 -1 -1 d 1/2 0 0

Since the right-handed Z coupling to b and ¢ receives no contribution in the bidoublet model,
there is no additional bound from Ry, in U(3)%. In U(3)}-we find the numerical bounds
shown in table 3.4.

In U(3)? - an additional bound arises from violations of quark-lepton universality. Writing
the W couplings as

g L\ — +
\/5( 9w )u Vuir/ PLd; W), (3.44)
we find
gk, = YI%U; Lty ay Y/?ﬂj Telt ] 9;2:“2 Tels (3.45)
2mU YU 2mD YU 4m% YU
with
‘ doublet triplet bidoublet
a, | —1/2 —1/2 —1/2
ag | —1/2 =12 —1/(22%)
b -1 -1 -1

The usual experimental constraint on the strength of the Wud; couplings, normalized to the
leptonic ones, is expressed by (1 + dgfi,)? >, [Vui|* =1 = (=1 £ 6) x 107*, which, from the
unitarity of the V;; matrix, becomes 2dg%;, = (—1 £ 6) x 10~*. By requiring it to be fulfilled
within 20, we find the numerical bounds in table 3.4.

Finally we note that, in contrast to the anarchic case, there are no flavour-changing Z
couplings neither in U (3)LC nor in U(3)}o. In the former case this is a general property of
chirality-conserving bilinears, while in the latter it is a consequence of the fact that only the
down-type mixings Ar4 affect the Z vertex, which thus becomes flavour-diagonal in the mass
basis.

3.5.2 Tree-level AF =2 FCNCs

While in U(3)3 there are no tree-level FOCNCs at all [80], minimally flavour violating tree-
level FCNCs are generated in U(3)3¢ [28,92]. The Wilson coefficients of AF = 2 operators
are given by (3.32), and the couphngs

xtyt 7
ng =&ij~— Y, gl%d ~ 0. (3.46)

g7, has the same form of the K/, structure in the effective U(3)? approach, see eq. (1.24)
in chapter 1. However, there is also a suppression proportional to s%, coming from the
elementary-composite mixing. We obtain the bounds shown in table 3.5. The bound from
D-D mixing turns out to be numerically irrelevant.
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3.5 CONSTRAINTS ON U(3)3

Observable Bounds on my, [TeV]
doublet triplet bidoublet
Ry, 7.2 VxY 6.0 VY 4.9V Yy
Verm 74 Vx,Y T4VxY 6.0z Yy

pp — jj ang. dist. 3.4 xy

4.2 Ty 4.2 Tt

Table 3.4. Lower bounds on the fermion resonance mass m,, in TeV in U(3)3 ..

Observable Bounds on my, [TeV]
ex (QLF) 3.7 x4
By-By 3.2 2,
B,-B, 3.6 x4
pp — jj ang. dist. 3.0/,

Table 3.5. Lower bounds on the fermion resonance mass my, in TeV in U(3)% (bidoublet model).

We stress that, in contrast to the anarchic case, there is no O(1) uncertainty in these
bounds since the composite Yukawas are proportional to the identity. Furthermore, since the
model is minimally flavour violating, there is no contribution to the meson mixing phases
and the new physics effects in the K, By and B, systems are prefectly correlated.

3.5.3 Loop-induced chirality-breaking effects

Flavour-changing chirality-breaking effects in U(3)? occur when elementary-composite mix-
ings are included inside the loops. At least for moderate mixings, the bounds are of the
form my > (0.5-1.5)/Y/z; TeV in the U(3)3 case, or my > (0.5-1.5)y/Yx; TeV in the
U(3)3c case. The stronger bounds from quark EDMs, similar to the ones of the anarchic
case, disappear if the strong sector conserves CP. This is automatically realized, in our effec-
tive Lagrangian description, if the “wrong chirality” Yukawas vanish or are aligned in phase
with the Y’s. On the contrary, in the anarchic case this condition is in general not sufficient
to avoid large EDMs.

3.5.4 Compositeness constraints

Since one chirality of first-generation quarks has a sizable degree of compositeness in the
U(3)? models, a significant constraint arises from the angular distribution of dijet events
at LHC, which is modified by local four-quark operators obtained after integrating out the
heavy vector resonances related to the global SU(3). x SU(2), x SU(2)g x U(1)x as well
as the flavour symmetry in the strong sector, U(3) in the case of U(3)} and U(3) x U(3) in
the case of U(3)3¢.

In general, there are ten four-quark operators in the dijet angular distribution [93]. The

relevant ones in U(3)} are (9,(1;) = (qz7"qr)? and 0% = (qLy*Tqr)?. Their Wilson coeffi-
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3 COMPOSITE RESONANCES AND PRECISION TESTS

cients can be explicitly computed and read

a 92 T4y 2 92 T4y 2
o _ 0 9 (T o® _ _ 9 (T 3.47
4 36m2 \ Yy ’ 2 m2 \ Yy ’ ( )

where a = 5 in the doublet model and a = 17 in the triplet and bidoublet models. Using
the updated version of [93], we obtain the bound in the last row of table 3.4. In U(3)3¢
the operators with right-handed quarks are relevant. Numerically, we find the bound on

O%) = (ary"ur)? to give the most significant constraint on the model parameters. Its
Wilson coefficient reads
59, Yt 2
oW — _Zdp [Tt 3.48
uu 9 m% xtYU ( )

and the resulting numerical constraint is shown in the last row of table 3.5.

3.5.5 Direct bounds on vector resonances

As discussed in section 3.4.4, direct bounds on m, are obtained from searches for peaks in
the invariant mass of dijets at LHC. In U(3)? the production cross sections can be larger than
in the anarchic case due to the sizable degree of compositeness of first-generation quarks.
Neglecting the contribution due to mixing of the vector resonances with the gauge bosons,
the production cross section of a gluon resonance reads

. 2m
70— C%) = 2T (5% L, m2) + Lol m3)] (3.49)

where the L is valid in U(3)} and the R in U(3)3. In U(3)} the branching ratio to two
jets reads approximately

4 4 4
287, +357a T Sk

BR(G" — jj) = , 3.50
( 37 3571, St + 3514+ Shy (3:50)
and is typically larger than in the anarchic case. Similarly, in U(3)3. one has
2 4 4 3 4
BR(G* — jj) = ——tw 500 = 9% (3.51)

] 2 2 7
874+ 38R, T ST+ 35k

To judge if the most recent experimental bounds by ATLAS [90] and CMS [91] have
already started to probe the U(3)3 parameter space, we evaluate the cross section for maximal
mixing, i.e. x; = Y/y; in U(3)}¢ and z; = y,/Y in U(3)3, for a 3 TeV gluon resonance,
i.e. only marginally heavier than allowed by the S parameter (cf. table 3.2). For U(3);, we
obtain

o(pp — G*) ~ 13¢> b | BR(G* — jj) =~ 58% (83%) for Y =1 (4n) , (3.52)
and for U(3)3c
o(pp — G*) = 30g; fb BR(G" — jj) =~ 69% (67%) for Y =1 (4m) . (3.53)
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3.6 CONSTRAINTS ON U(2)3

This is to be compared to the ATLAS bound ¢ x BR x A < 7 fb, where A is the acceptance.
We conclude that, assuming an acceptance of the order of 60% [90], maximal mixing is
on the border of exclusion in U(3)} and already excluded in U(3)%. for a 3 TeV gluon
resonance. We note however that maximal mixing is already disfavoured by the indirect
bounds discussed above.

Partial summary on U(3)?

As apparent from tables 3.4 and 3.5, a fermion resonance at about 1 TeV is disfavoured.
In U(3){ the crucial constrains come from the EWPT due to the large mixing of the first
generations quarks in their left component. Note that x;Y cannot go below 3, ~ 1. In
U(3)3c there is a clash between the tree-level AF = 2 FONC effects, which decrease with
xy, and the bound from the pp — jj angular distributions due to the composite nature of
the light quarks in their right component, which goes like 1/z,. We stress again that these
conclusions are more robust than in the anarchic case, since there is no uncertainty related
to the composite Yukawas, which are flavour universal in the U(3)? case.

3.6 Constraints on U(2)’

In U(2)} and U(2)} the first and second generation elementary-composite mixings are
expected to be significantly smaller than the third generation ones, so that the electroweak
precision constraints and the collider phenomenology are virtually identical to the anar-
chic case and the most serious problems plaguing the U(3)? models are absent. The most
important difference concerns the flavour constraints.

3.6.1 Reference formulae for U(2)*

For ease of the reader we recall the setup of U(2)?. The strong sector can be taken invariant
under a U(2)g+v4p flavour symmetry acting on the first two generations of composite quarks.
In right-compositeness — meaningful only in the bidoublet model — in order to generate the
CKM matrix one has to consider a larger U(2)quiv X U(2)gasp symmetry. Let us define

w_ [Q _ (U _(a _(u
Q" = (Qg) U= (T> qr = (quL)’ up = (t;‘) (3.54)

where the first two generation doublets are written in boldface, and the same for down-type
quarks. The mixing Lagrangians in the cases of left-compositeness and right-compositeness
are respectively®
U@)ic _ — u — u T
Lo " = musArus BrQ3p + MuaArue qLQR + mysAru3 TLlR
+ mya2 du (ﬂLV)tR + mya2 l_]LAu'U,R + h.c. + (u, U, t, T — d, D, b, B) (355)

5We write the Lagrangians for the bidoublet model. The doublet and triplet cases are analogous, with
Q" and Q? replaced by a single Q.
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3 COMPOSITE RESONANCES AND PRECISION TESTS

and

U(2)3 = — _ u
EmEX)RC = MysArus Trtr + MuaAru2 UL + musAnws G3rQsg

+ mys du (QLV)QgR + My QLAUQ?{ +h.c. + (U, U’ t7 T— d7 D7 bv B) (356)

The mixings in the first line of (3.55) and (3.56) break the symmetry of the strong sector
down to U(2), x U(2), x U(2)4. This symmetry is in turn broken minimally by the spurions

V ~(2,1,1), Ay~ (2,2,1), Ay~ (2,1,2). (3.57)

Using U(2)? transformations of the quarks they can be put in the simple form

_ (0 _ cu  Su€\ (Axu O
V = <EL) ? Au — (_Sueiau Cu ) ( 0 )\Xu2) ) (u — d), (358)

where X = R, L in left- and right-compositeness, respectively. Here we do not discuss the
case of generic U(2)? breaking introduced in [89)].
The SM Yukawa couplings (3.8) can be written as in eq. (1.27)

. Ay A\, b’V . ag g bbewa)
’lL: ) == 3 3.59
wo= (V) = (" (359)

where the top-yukawa is y; = Yy3SrusSruz and the other parameters read a, = YyoSrue,
b = Yaspue dy, in U(3)} o and a, = YiraSgrug, by = Yir3srus dy in U(3)3. Similar expressions
hold for ag4, by, and y;,. Here and in the following we consider all the parameters real, factoring
out the phases everywhere as in (3.59).

The 9,4 of (3.59) are diagonalized to a sufficient level of approximation by pure unitary
transformations of the left-handed quarks [28]

Cy 5,610 — 5, 5,6/ @utr) Ca 5467 —sg5,e"(@at )
U, >~ | —s e ¢, —Cy 5™ , Ug~ | —sge7 ¢y —cgspe’ P ,
0 spe i 1 0 spe 1P 1
(3.60)
where
d €, ddEL . .
S; = YyoSrus——, Sp = YpaSrao , in left-compositeness, (3.61)
Yt Yv
d €r, ddGL . . .
$; = Y38 pus—— Sp = YDp3SRras , in right-compositeness. (3.62)
Yt Yo

The CKM matrix is V = U, U ; and, after a suitable redefinition of quark phases, takes

the form .
1—X2/2 A syse®

V> -\ 1—X%/2 cys : (3.63)
—sgs €@t _ge, 1
where
SuCd — CuSqe” ' = /\eié, s — 5,61 = ge'X, (3.64)

Given the above formulae and the observation that, differently from U(3)3, the Yy, sgy
and sp, are no longer proportional to the identity but are still diagonal with only the first
two entries equal to each other, we can derive a few basic consequences:
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3.6 CONSTRAINTS ON U(2)3

e In U(2)} the transformations in (3.60) lead to exactly the same suppression as in
U(3)3c (see eq. (3.46)).

e In the U(2)} - we have a non trivial coupling giLj absent in U(3)} . In fact, contrary to
the U(3)} case, sp., although still diagonal, is not proportional to the unit matrix.
Hence a flavour violation survives (see next section) controlled by a new free complex
parameter

ry = 20 eilx=en), (3.65)
S

3.6.2 Tree-level AF =2 FCNCs

The Wilson coefficients of AF = 2 operators generated in U(2)}, and U(2)} are again
given by (3.32). The flavour-changing couplings in U(2)? read

i LYt
gngd =&z Th— 931 =12 \Tb

pitdt
Y, '

Y, Gaa =0, (3.66)
with 7, defined in (3.65). As a consequence there is a new, universal phase in By and B,
mixing, while the K-K amplitude is aligned in phase with the SM. This is the expected
scenario in the minimally broken effective U(2)% approach, see eq. (1.28) in chapter 1. We
find the bounds in table 3.6. If the parameter |r,| is somewhat less than 1, these bounds
can be in agreement with experiment even for light fermion resonances. We note that the
contribution to the AC' = 2 operator is proportional to |1 — r|?, so it cannot be reduced
simultaneously. However, it turns out that it is numerically insignificant. Since furthermore
the contribution is real — a general prediction of the U(2)% symmetry for 1 <+ 2 transitions —
the expected improvement of the bound on CP violation in D-D mixing will have no impact.

As discussed in section 3.6.1, in U(2)3 the flavour-changing couplings are the same as
in U(3)ge,

i TtYt TiYt ij
97 = iz ~—, 915 = €12 =, G = 0. (3.67)
Yu Yu

Thus, as in U(3)%c, there is no new phase in meson-antimeson mixing and the NP effects
in the K, B; and B, systems are perfectly correlated. The resulting bounds are shown in
table 3.7.

3.6.3 Loop-induced chirality-breaking effects

One expects in general flavour-changing chirality-breaking effects in U(2)® with bounds on
the fermion resonances similar to the one of the anarchic case, my > (0.5-1.5)Y TeV. With
CP conservation in the strong sector, however, the contributions to the quarks EDMs would
arise only at higher orders in the U(2)?3 breaking terms, so that they would not be significant
for the current limit on the neutron EDM.
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3 COMPOSITE RESONANCES AND PRECISION TESTS

Observable Bounds on m,, [TeV]
doublet triplet bidoublet
ex (QEE) 2.3 mylrp)® 3.3 x|y |? 3.3 x4|rp|?
By-By 2.3 x4|m) 3.4 xy|m) 3.4 xy|ry|
B,-B, 2.3 xy|m) 3.4 xy|m) 3.4 xy|ry|

Kp — pp 3.8 VY| 3.8 Yp|rp|\/xe/Yu /2
b—stl 3.5 \/xY|r| 3.5 Yp/ x|/ Yu /2

Table 3.6. Lower bounds on the fermion resonance mass my, in TeV in U(2)3 .

Observable Bounds on m,, [TeV]

GK( ‘L/L) 3.3 Tt
Bd—Bd 2.8 Tt
BS—BS 3.1 Ty

Table 3.7. Lower bounds on the fermion resonance mass my; in TeV in U(2)3 (bidoublet model).

3.6.4 Flavour-changing Z couplings

In U(2)}c flavour-changing Z couplings are absent at tree level. In U(2)} the left-handed
couplings do arise, while the right-handed couplings are strongly suppressed. Similarly to
the anarchic case, one can write them as

6g§bdi ~ &i3 T 5951)1; ) 59§sd ~ &12 ‘rb‘2 5951)1) . (368)

One obtains the bounds in the last two lines of table 3.6, which are weaker than the analogous
bounds from Ry, unless || > 1. An important difference with respect to the anarchic case is
the absence of sizable flavour-changing right-handed Z couplings, which can be probed e.g.
in certain angular observables in B — K*u*p~ decays [94].

Partial summary on U(2)?

Two important differences distinguish the U(2)? case from the U(3)® one: i) both for the
bidoublet (at large enough z) and for the triplet models, the bounds from the EWPT or
from compositeness become irrelevant; ii) a single complex parameter correlates the various
observables, 7, in the U(2); . case. As apparent from table 3.6, values of x; and r;, somewhat
smaller than one can reduce the bounds on the fermion resonance mass at or even below the
1 TeV level. This is also formally possible in U(2)3, where 7, = 1, but requires z; < 0.3,
i.e. Y 2 3, not consistent with my =Y f and f 2 0.5 TeV.
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doublet triplet bidoublet

&) 4.9 1.7 1.2%
UBR. 65 65 5.3
UBRe - . 3.3
U2@. 49 06 0.6
U(2)¢ - - 1.1x

Table 3.8. Minimal fermion resonance mass m,, in TeV compatible with all the bounds (except
for the QL% contribution to €f in the anarchic model), fixing O(1) parameters in anarchy to 1 and
assuming the parameter |ry| in U(2)}, to be ~ 0.2. The bounds with a * are obtained for a value
of Y ~ 2.5, that minimizes the flavour and EWPT constraints consistently with m, = Y f and
f 2 0.5 TeV.

3.7 Discussion

We have adopted some simple partial-compositeness Lagrangians and assumed that they
catch the basic phenomenological properties of the theories under consideration. This allows
us to consider a grid of various possibilities, represented, although at the risk of being too
simplistic, in table 3.8, which tries to summarize all the more detailed tables 3.2 to 3.7
discussed throughout the chapter. For any given case, this table estimates a lowest possible
value for the mass of the composite fermions that mix with the elementary ones and which
are heavier than the “custodians” by a factor of /1 4 (Ax)?2. In the case of anarchy we are
neglecting the constraint coming from ex (first line of table 3.3, particularly problematic
for the bidoublet model, maybe accidentally suppressed) and the various O(1) factors that
plague most of the other flavour observables in table 3.3. In every case we also neglect the
constraint coming from one-loop chirality-breaking operators, relevant to direct CP violation
both in the K and in the D systems, as well as to the quark electric dipole moments. This
is a subject that deserves further detailed study.

The general message that emerges from table 3.8, taken at face value, is pretty clear. To
accommodate top partners at or below 1 TeV is often not possible and requires a judicious
choice of the underlying model: an approximate U(2)? flavour symmetry appears favorite,
if not necessary. Note that the bounds with a * (bidoublet model with anarchic or U(2)3¢
flavour structure) are obtained for a value of Y ~ 2.5, that minimizes the flavour and EWPT
constraints consistently with m, =Y f and f 2 0.5 TeV. There are two simple reasons for
the emergence of U(2)3: i) in common with U(3)3, the suppression of flavour changing effects
in four-fermion operators with both left- and right-handed currents, present in the anarchic
case; ii) contrary to U(3)® but as in anarchy, the disentanglement of the properties (their
degree of compositeness) of the first and second from the third generation of quarks.
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Chapter 4

Minimal SUSY and the impact of Higgs cou-
plings

In this chapter we are going to briefly review a few aspects of low-scale supersymmetry
(see [95] and reference therein), with a focus on the Minimal Supersymmetric Standard
Model. After a definition of the model in section 4.1 we analyse in section 4.2 the conclusions
that can be drawn on its parameter space after the discovery of the Higgs boson and the
measurements of its couplings. We conclude in section 4.3.

4.1 Minimal Supersymmetric Standard Model

The minimal gauge lagrangian of the SM, if equipped with supersymmetry, will automatically
imply the presence of s-particle. Gauginos, A® are spin-1 /2 partners of gauge fields Al
which (together with a real scalar auxiliary field D*) form the vector multiplet. S-quarks
and s-leptons, ¢;, are complex scalars partners of chiral fermions 1; which (together with
an auxiliary complex scalar F;) form chiral multiplets. All the new s-particles have gauge
interactions according to their quantum numbers; given that SUSY commutes with gauge
symmetries. Moreover, SUSY enforces other kind of interactions summarized by

Lusy int = E

i

S e (Vago T At )+ A (W e, (41)
5 g )3 Gaag, Vivitec) (4

W
0P

a

where W is an holomorphic polynomial in chiral super-fields, with each monomial of mass
dimension less or equal to three. These two properties are necessary and sufficient to have a
renormalizable supersymmetric theory.

In the case of the MSSM, the holomorphicity of the superpotential implies the presence of
two Higgs doublets in order to give mass to both up and down type (s)fermions. Concretely
the MSSM is defined by

WMSSM = /\UQUCHU -+ )\dQDCHd + )\eLECHd + uHqu (42)

SUSY is powerful enough that W is not renormalized at perturbative level. Only wave-
function renormalization is possible. This is why SUSY is an efficient protection mechanism
for the Higgs mass.
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4.1 MINIMAL SUPERSYMMETRIC STANDARD MODEL

4.1.1 Soft supersymmetry breaking

Supersymmetry must be broken, hopefully in a dynamical way. However, no matter what
the SUSY breaking mechanism is, a consistent EFT description below the scale of SUSY
breaking is provided by

1 ~ ~ o~
_Esoft = §(M3§§ + MQWW -+ MlBB + C.C.)

+ (@AQH, + dA;QH, + éA.LH, + c.c.) (4.3)

S0 mAaa w4 mdy | Ha? + (0HHy + c.c.),
q=Q,L,u,d,e

where the name ‘soft” means that only terms of dimension less or equal to three are introduced
that preserve the absence of quadratic divergences of the original supersymmetric lagrangian.
Gauginos have Majorana masses, A-terms and mass terms are 3x3 complex matrices, with
mg hermitian.

It can be shown that the parameters of the superpotential (4.2) do not renormalize if
SUSY is softly broken as defined in eq.(4.3).

In this framework, the Higgs mass receives additive quantum corrections dm3 ~ m?,,
where myg is the overall scale of (4.3). In fact dmj is now sensitive to imperfect loop-
cancellations between particles and s-particles. Given that y; is the largest coupling, the
leading contribution is related to the top-stop 1-loop effect. Solving the Hierarchy Problem
roughly suggests mgor S TeV.

4.1.2 SUSY problems

The abundance of s-particles, the richness of flavour and CP violations from the soft terms,
together with the non-observation of a single new particle so far, suggest that SUSY, if
present at all at the TeV scale, should be augmented with some additional structure.

e R-parity. A drawback of the MSSM is that the superpotential can accommodate su-
persymmetric renormalizable operators which break lepton and baryon number. These
can be avoided imposing a discrete symmetry (—1)3(L=5)+25 a5 done in writing (4.2).
This means that s-particles are pair-produced and the lightest of them (LSP) is stable.

e SUSY flavor problem. As discussed in the Introduction, NP should be highly non-
generic if close to the electro-weak scale. The MSSM is no exception, especially with
the plethora of soft terms which mix flavours, m;;, A;;. To keep consistency with an
approximate CKM picture requires that some mechanisms be operative. As we will
see below heavy third generation squarks are in constrast with Naturalness argument.
This can be paired with a solution of the SUSY flavor problem by taking the first two
generations of squarks heavy enough and a light third generation poorly mixed with
the first two.

e SUSY CP problem. Differently from the SM, the MSSM has flavour-blind phases,
i.e. sources of CPV not vanishing when the full U(3)® flavour symmetry is restored.
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4 MINIMAL SUSY AND THE IMPACT OF HIGGS COUPLINGS

AF = 0 CP-odd observables, such as the electron or the neutron dipole moments
constrain these phases. If these phases are sizeable, they also require heavy sfermions
of the first generation.

On top of these issues there is the question if the MSSM can really be thought as a natural
theory, given the absence of any new s-particle so far and in view of the observed Higgs mass.

4.1.3 Quantifying the naturalness of the MSSM

The naive request for a natural MSSM is mg.i ~ TeV. We make this statement more precise
as follows [96]. The scalar potential (restricted to H, 4) can always be put in the following
form,

2
m
= (Iul* +mi HP + (1 +mi, ) Hy* — (bHHG + c.c) + 52 (1H” — [Ha?)* (4.4)

In the limit tan 3 = (H?)/(HY) > 1, the minimization conditions give

2
m
~ T2 P (45)
Eq. (4.5) requires a negative soft mass m%lu, which is naturally obtained by the IR flow from
the input scale, and a cancellation between the two terms in the right-hand side. Requiring
a fine-tuning of such cancellation less than A, we can set an upper bound on p,

mp A 1/2
< L -
11 < 250 GeV (125 Gev> ( = ) . (4.6)

We can also constrain the value of my,. In this case, while © does not get corrected by soft
terms, my, is 1-loop sensitive to the stop sector. In addition, the stops get large corrections
from gluinos to which they are strongly coupled. These two effects are summarized as

292 A

2

dmiy, |stops ~Ton 752(771@3 +m2 .+ A 1) log <T V) (4.7)
2U7 o A

Sy o = 2 o (1) (49

Applying the naturalness criterion as before we get upper bounds on the stop average mass
and the gluino mass [96]

sin 3 log(A/TeV) i/ mp, AN'?
2 2 <600 GeV —— ) | — 4.9
M T S Yt ( 3 e/ ls) - W9

log(A/TeV)\ " mp A\Y?
< A et " K=
M; < 900 GeV ( 3 (125 GeV) E , (4.10)

where z, = A;/ mtgl + mtgl. This shows that the naturalness bound on the stops depends

on their mixing.
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Figure 4.1. Natural SUSY spectrum. Only Higgs-inos, stops (and left-handed sbottom) and
gluinos are required to be light as discussed in (4.6,4.9,4.10). Figure taken from [96].

Given the upper bounds on pu, stop and gluino masses, a natural spectrum of SUSY
s-particles require only light Higgsinos, third generation stops and gluinos. The other s-
particles are poorly constrained from naturalness arguments: the bound on the first two
generations of squarks is at 5-10 TeV scale, while on the B-ino, W-inos is in the 2-3 TeV
region [96-99.

The MSSM spectrum is constrained from below by direct searches. Most relevant are
lower bounds on the lightest stop and gluinos. Conservative lower bounds, derived by re-
considering some existing direct searches, are m;, > 200 < 300 GeV (if u 2 150 = 250 GeV)
and mg > 1000 GeV. Neglecting points with peculiar correlations in the parameter space,
we can infer stronger bounds, mz > 700 GeV and m; > 1300 GeV [100]. This shows that
direct searches are directly probing the natural territory of the MSSM.

The Higgs mass in the MSSM

Besides direct searches, also the observed Higgs mass pushes the MSSM towards large fine-
tuning. At tree-level m; < myz because the quartic coupling is set by the gauge contribution
to the Higgs potential (4.4). Taking into account the dominant stop-top correction, it is

m; ~ mycos® B+ A? (4.11)
where ,
GZm? ms X? X2
A? ~ 2T gg(—L) 4 ZH (1 — L 4.12
t \/571’2 Og(m%) + m%( 127”7%%) I ( )

with X; = A, — pcot 8, and mt? is an average stop mass (see [101,102] for more details on
this formula).
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To accommodate 125 GeV, A; 2 85 GeV is unavoidable. Such 1-loop correction can be
achieved with heavy stops and/or large mixing and it pushes the MSSM towards a %-ish
fine tuning. This calls for deviations from minimal SUSY, i.e. models where the Higgs mass
can evade the upper bound my already at tree-level, as we will discuss in the next chapter.

4.2 Higgs sector of the MSSM

The measurements of the Higgs mass and branching ratios have a significant impact on the
parameter space of the MSSM Higgs sector (see for example [103,104]).

The CP-even scalar sector is an admixture of two doublet states: h,, that gets the
vacuum expectation value v and its orthogonal combination k. with vanishing VEV. For
the combination of standard MSSM parameters (p1A;)/(m?) below unity, the mass matrix in
the (h,,, hi) basis is well approximated by

mih _ mQZ(l_tan2B)2 I A? QmQZtanﬁ(l—taHQ 5) A?

o 1+tan? 3 (1+tan? ,6’) ~ tanf
M= tanﬂ(l—tan2 ,B) A2 ¢ A? ) (413>
2m2 — AL 2 g2t
Z (1+tan? B)° tang T°A Z (14+tan? ﬁ)2 fan?

where we call m?, the 1,1 entry for later convenience. One can trade m4 and A, for the
masses of the two eigenstates, h and H, and express in terms of these masses and tan 3 the
mixing angle 0, defined by

h = cosd h, —sind hi, H =cos§ hy +siné h,. (4.14)

An expression, accurate for my = 400 GeV and any value of tan 3, is

2 ~ fan? 2
my, 1—tan“8 my —|—O(L). (4.15)

tan Sm? 1+ tan? §tan fm? miy

sind = —

From eq. (4.14) and the fixed form of the supersymmetric Yukawa couplings, all the Higgs
couplings are given by

Uy i 5
ggM = cosd 4 -0 , ggﬁl = cosd — tan S sinJ, gSM = oS 0. (4.16)
Ihua tan ﬁ ghdd Invv

uu . d .
It _ g5 — °° JHAd _ i § + tan [ cos 9, glgl\\zv = sin 0. (4.17)

oM tan 3’ 9222 9hvv
The simplification of this approach is that only two parameters are free and they can be
taken to be the mass of the heavy Higgs mpy and tan 5. In terms of these two quantities
we can quantify the impact of a fit to the Higgs couplings (using the data collected so far)
and analytically compute as a function of them all the relevant cross sections and branching
ratios of the extra Higgs H. This allows to make a clear connection between the measured
properties of h, identified with the state at 125 GeV and called hereafter hypc, and the direct
searches for H (or the pseudo-scalar state A). The assumption is that no other radiative
correction affects the mass matrix (4.13) than the non decoupling top-stop 1-loop correction
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4.2 HIGGS SECTOR OF THE MSSM

(4.12). This simplification is extremely accurate in the limit (uA;)/(m?) < 1 (see [102])
and especially when the other Higgs is heavier than the state at 125 GeV. However, in the
following we will comment also on the possibility that hppc be not the lightest scalar state.

From the simple formulae above, the MSSM requires a minimum value of A; 2 85 GeV
that is needed to accommodate the 125 GeV Higgs boson as the lightest CP-even neutral
scalar, while this is not necessary if it is not the lightest scalar. Also for this reason we let A;
vary and we show in figure 4.2-left the allowed regions by the fit to current experimental data
on the signal strengths of hrgc. The Higgs coupling fit is based on the code of the authors
of ref. [29]. We used all ATLAS [105], CMS [106] and TeVatron [107] data collected so far.
The isoline my;, = my, separates the regions where hyyc or H are the lightest states. Both
configurations are still allowed by the Higgs coupling fit under the assumptions described
here.

The literature has several examples of such a kind of studies: a recent paper [108] analyses
the Higgs system of the MSSM in a way similar to ours and gives comments about the heavy
Higgs searches in different channels (see also [109)]).

4.2.1 MSSM: hruc as the lightest scalar

To quantify the impact of Higgs coupling measurements in the standard scenario where my >
my, we can choose mpy as a free parameter. Figure 4.2 right is a zoom of the corresponding
allowed region of figure 4.2 left. Note that in the plane (tan 3, my) the isolines of A; are
increasingly large at lower tan 3: a sign of increasing fine tuning.

Given the allowed range for the mass of H (and A) it is interesting to know what are
its main production and decay channels. To this end we compute in terms of the same two
parameters of the fit the relevant observables: gluon fusion cross section and branching ratios
of H. The couplings (4.16) allow to write the gluon-fusion production cross section of H by
means of [110]

o9y = H) = 0™ (gg — H(mp))| A T2 1 4,720 (4.18)
hitt Ihob
where
Fi(7ep) m?
Ay = A L Ty =42 4.19

and F (7) is a one-loop function that can be found e.g. in [111,112]. We use the values of

o™ at NNLL precision provided in [113], and the running masses m; ; at NLO precision. We
checked the validity of this choice by performing the same computation both with the use of
masses at LO precision and K-factors [114], and with the program HIGLU [115,116], finding
in both cases an excellent agreement. We also performed a further check of our results with
the ones recently presented in [117] and [108], finding an equally good agreement.

We show in figures 4.3-4.5 the gluon-fusion production cross sections and the widths of
H. In the same (tan 3, my) plane (g9 — A) is therefore also determined, which allows to
delimit the currently excluded region by the direct searches for A, H — 777~. Such a region
is known to be significant, especially for growing tan 8. In figures 4.2-4.5 we draw the region
excluded by such search, as inferred from [118].
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Figure 4.2. MSSM. Left: isolines of my,, (solid) and mp+ (dashed), the gray region is unphysical
because of m% < 0. Right: isolines of A;(GeV) (solid) and mpg+ (dashed). Light colored regions
are excluded at 95%C.L. by the Higgs fit, the red region is excluded by CMS direct searches for
AH — 1717,
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Figure 4.3. MSSM. Isolines of gluon fusion production cross section o(gg — H). Light colored
region is excluded at 95%C.L., the red region is excluded by CMS direct searches for A, H — 777
Left: LHCS8. Right: LHC14.
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Figure 4.4. MSSM. Left: Isolines of the total width I'y (GeV). Right: isolines of BR(H — hh).
The light colored region is excluded at 95%C.L., the red region is excluded by CMS direct searches.
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Figure 4.5. MSSM. Left: isolines of BR(H — tt). Right: isolines of BR(H — bb). The light
colored region is excluded at 95%C.L., the red region is excluded by CMS direct searches.
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Figure 4.6. MSSM, hyyc > H. Isolines of Ay (solid) and my+ (dashed) at (,u,At)/<mtg) < 1.
The red region is excluded by LEP direct searches for H — bb. The light colored region is excluded
at 95%C.L.

4.2.2 MSSM: hygc as the heaviest scalar

As anticipated, the case where there is a CP-even H below 125 GeV is still a possibility.
Again, the allowed area in the plane (tan 3, my) depicted in figure 4.6 is the zoomed version
of the corresponding region in figure 4.2-left. As expected, figure 4.6 makes clear that a large
value of A; is needed to make the MSSM consistent with a 125 GeV Higgs boson. Notice
that this low-mass region is difficult to explore at the LHC. However LEP data provided
limits on a scalar resonance decaying to bottom quarks [119] that exclude the residual region
for low enough tan 3. Figure 4.6 is affected by growing values of pA,/(m?), which modifies
the radiative corrections to (4.13).

4.3 Discussion

In spite of an embarassing %-ish fine tuning, the MSSM may still be realized in nature
with some particles at the TeV scale. With this attitude in mind, we have analysed the
phenomenological consequences of the MSSM Higgs sector when confronted with data coming
from the LHC, both from direct searches of its extra scalar bosons and Higgs coupling
measurements.

Several comments can be drawn, which we summarize schematically:

e If hiyc is the lightest CP-even scalar, H is bounded to be heavier than 350 GeV by
the Higgs coupling fit over the full range of values of tan $ not excluded by the search
of HHA— 77,
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4.3 DISCUSSION

e The bounds from the Higgs couplings are stronger than the direct ones for moderate
tan [.

e On the direct searche side, H decaying to tf and bb is worth to be investigated in the
small and large-tan 5 limit respectively, as shown in figure 4.5.

o If hyyc is the next-to-lightest scalar, H in the range of 80 GeV is still allowed by
current data (figure 4.6).

70



Chapter 5
Extended Higgs sector of a general NMSSM

After an introduction to the NMSSM, where we discuss how it alleviates the tuning in (v, my,),
we show how the measurements of the couplings of the 125 GeV Higgs boson constrain the
region of the physical parameters of a generic NMSSM most relevant to this context. In
the same region of parameter space we determine the cross section for the production of a
heavier CP-even scalar together with its total width and its most relevant branching ratios.

5.1 The Next-to-MSSM

Chapter 4 was devoted to the phenomenology of the MSSM Higgs sector. A motivated
alternative is the so called Next-to-Minimal Supersymmetric Standard Model (NMSSM). In
the NMSSM, a singlet superfield S couples to the Higgs superfields, H, and Hy, via the
Yukawa-like coupling ASH, H,; [120] (see [121] for a review). The superpotential is of the
form,*

W = Wyssm + ASH Hy + f(S). (5.1)

Consequently, also Lgg of (4.3) is supplemented with additional terms involving the singlet.
The inclusion of such Yukawa coupling affects directly the Higgs mass. We have a tree-level
contribution

mj o~ mQngﬁ + )\2"02636 + A2, (5.2)

This equation shows that we can get 125 GeV with a largish A coupling instead of invoking
large top-stop corrections. This is certainly a welcome situation from the point of view of
naturalness: the large contribution from A; which is needed in the MSSM, here is softened
by the presence of .

Moreover, values of A = 1 suppress the sensitivity of the Higgs VEV with respect to
changes in the soft supersymmetry breaking masses, thus still keeping the fine tuning at a
moderate level even for stop masses up to 1 TeV [122-124]. A recent analysis [125] finds that
the fine tuning in the NMSSM can be above 5% for stop masses up to 1.2 TeV and gluino
masses up to 3 TeV for A & 1 and moderate tan j3,

m; S1TeV, mz <3 TeV. (5.3)

'In some NMSSM versions Whisgm does not include the o term, like in the scale-invariant version.
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Figure 5.1. Simplified spectrum of the NMSSM scenario under consideration.

These bounds depend on the model under consideration: ref. [125] considered the scale-
invariant superpotential and a low mediation scale M = 20 TeV, which is welcome to relax
the tuning, as eq. (1.45) shows in chapter 1. There is a simple way to understand the
appearance of such milder natural upper bounds on s-particles coupled to the top-stop sector.
Let us consider the dependence of v on the parameter of the model. In the NMSSM the
minimization condition gives,
o
A

(5.4)

to be confronted with v* ~ 4m?/g* in the MSSM, here 7 is a soft mass parameter. The
different dependence allows the s-particles of the NMSSM to be parametrically higher than
those of the MSSM,

N 2X
MNMSSM 2 ?mMSSM- (5.5)

With this natural NMSSM, it is conceivable, if not likely, that the lightest new particles
around can be the extra scalar partners of the Higgs, except perhaps for the LSP. In general
terms, to see whether the newly found resonance at 125 GeV is part of an extended Higgs
system is a primary task of the current and future experimental studies. Given the above
motivations, this appears to be especially true for the extra Higgs states of the NMSSM,
which can be thought as having the spectrum sketched in figure 5.1.

A well known objection to this scenario is its compatibility with gauge coupling unifica-
tion. Requiring A to stay semi-perturbative up to the GUT scale bounds A at the weak scale
at about 0.7 [126]. This value is in fact influenced by the presence of vector-like matter in
full SU(5) multiplets that slows down the running of A by increasing the gauge couplings at
high energies. However, even adding three vector-like five-plets at 1 TeV, in which case ag
still remains perturbative, does not allow A at the weak scale to go above 0.8 [127,128].

As we are going to see current data on the Higgs couplings prefer values of A below
1+ 1.5. There are several ways [129-136] in which A could go to 1 + 1.5 without spoiling
unification nor affecting the consequences at the weak scale of the NMSSM Lagrangian, as
treated above (see also section VI of [4]). In any event even a value of A ~ 0.7 <+ 0.8 is of
relevance to our discussion.
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5 EXTENDED HIGGS SECTOR OF A GENERAL NMSSM

5.2 A general description of the NMSSM Higgs sector

The many parameters that can enter the general NMSSM do not prevent for studying in
relatively simple terms the CP-even scalar sector under a few assumptions justified a poste-
1074,

In particular we have in mind the spectrum of figure 5.1, where the lightest new particles
are the extra Higgses and the coloured s-particles are heavy enough that many of their
radiative effects can be neglected. Assuming also a negligibly small violation of CP in the
Higgs sector, we take as a starting point the form of the squared mass matrix of the neutral
CP-even Higgs system in the general NMSSM (5.1):

m% cos? B + m?% sin® B (20%°X\2 — m? — m%) cos (sin 8 v M,
M? = | (20222 —m% —m%)cos Bsin B m?cos? B+mZsin? B+ 62 vM, (5.6)
UM1 UM2 M32

in the basis H = (HY, H?,S)T. In this equation

m% = mie —miy + A7, (5.7)
where mpyg=+ is the physical mass of the single charged Higgs boson, v ~ 174 GeV, and
67 = AZ(my,,my,,0;)/sin® B is the well known effect of the top-stop loop corrections to the
quartic coupling of H,, with m; , and 607 physical stop masses and mixing. We neglect
the analogous correction to (5.7) [102], which lowers my+ by less than 3 GeV for stop
masses below 1 TeV. We leave unspecified the other parameters in (5.6), My, My, M3, which
are not directly related to physical masses and depend on the particular NMSSM under
consideration.

The vector of the three physical mass eigenstates H,p is related to the original scalar
fields by
H=RIRPRHpn = RHp, (5.8)

where ngj is the rotation matrix in the ij sector by the angle § = «, v, 0. Defining H,, =
(hs, hi, ha)", we have R" M?R = diag(mj,, mj, ,mj,).

We identify hy; = hppc with the state found at LHC, so that m;,, = 125.7 GeV. From
(5.8) hiuc is related to the original fields by hy = ¢, (—saHq + coH,) + 5,5, where sy =
sinf, ¢y = cosf. Similar relations, also involving the angle o, hold for hy and hs.

5.3 Higgs coupling fit in the NMSSM

We can compute the couplings of hrpc to the fermions or to vector boson pairs, VV =
WW,ZZ, normalized to the corresponding couplings of the SM Higgs boson. Defining
d = o — [+ /2, they are given by (see also [110,137])

Yhiuctt GhLucVV

55 Ghiucbb
=c(cs + ), =cy(cs — sstan 8), = = ¢ c5. (5.9)
gw 0 T ogny g

One can notice that the formal difference with respect to the MSSM case (4.16) is the
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Figure 5.2. Fit of the measured signal strengths of hruc. Left: 3-parameter fit of tan 5, ss and
. The allowed regions at 95%C.L. are given for s = 0 (black), 0.15 (dark grey) 0.3 (light grey).
The regions overlap in part, but their borders are also shown. Right: fit of 5 in the case of § = 0.

presence of the extra mixing angle . Similarly to what as been done in the chapter 4 for
the MSSM, also here we fit all ATLAS [105], CMS [106] and TeVatron [107] data collected
so far on the Higgs signal strengths. As a result we obtain the bounds on ¢ for different fixed
values of v shown in figure 5.2 left and the bound on v for § = 0 shown in figure 5.2 right.
To make this fit, we adapt the code provided by the authors of [29]. As stated below, we do
not include in this fit any supersymmetric loop effects. Note that in the region of ss close to
zero, a larger s?y forces d to take a larger central value.

5.3.1 Reference equations

In full generality the mixing angles § = a« — 4+ 7/2, 7,0 can be expressed in terms of the
physical masses mp, ;¢ hy.ns and my+, the charged Higgs boson mass, as [4]

det M* 4+ mj,  (mj . —tr M?)

2
s (5.10)
7 (m}ZLLHC - m%g)(m%LHc - mf21,3) ,
2 m;, — m,%LHC det M? +mj (mj,, — tr M?) (5.11)
, )
o mfm — m,%g det M2 — mizmig + m,%LHC (m,%2 + mig13 — tr M?)
So5 = _2300037 (mh th) (2]\4121 mhLHCcz — miz(s + 3202) m,%g(c + 3252)>
+ 2M122 (m,%3 (02 — 325 ) + mhz (33 — 5202) — miLHcci)]
x| (mh, —mi,s] —mi . A)"+ (mh, —mi) sy
—1
+ 2 (mz2 - m%b3) (mia + ml2l2sz’ - m}QLLHC (1 + 83>) Cis?f} ’ <5'12)
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where sy = sinf,cy = cos, M? is the 2 x 2 submatrix in the 12 sector of the full 3 x 3
squared mass matrix M? of the neutral CP-even scalars in the #H basis

M2 - mch 4+ ms? (20°A% —m3 —m7z) cosp (5.13)
(20202 = 2 —m3) cpsy mEE +ms? + 67

and M? = Rg_,M2RY,__, in eq. (5.12).

More importantly we have also not included in eq. (5.13) the one loop corrections to the
12 and 11 entries, respectively proportional to the first and second power of (uA;)/ (mtg), to
which we shall return.

5.3.2 Optimizing the strategy

We shall in particular be interested in two limiting cases:
e H decoupled: mp, > mp, yon, and 0,0 = — +7/2 =0,
e S decoupled: mp, > my; 400, and o,y — 0,

but we use eq.s (5.10, 5.11, 5.12) to control the size of the deviations from the limiting cases
when the heavier mass is lowered. In the two respective cases the reference equations are

e H decoupled:
2 2
_ Mk = Mhyye

2
§2 — (5.14)
g 2,2
my, M ne
where
i = 4 N+ 19
e S decoupled:
22%0% — m% —m?
S2a = S258 — ZQ 5;’m;LHc2 ’ (516)
mA|mhLHC T Mz i mhLHC
Mpy = mA’mhLHC +my + 51: ~ Mhppes (5'17)
where
2,2(12,2 2\ 2 2 2 2 2 5072
m2 o A% ()\ vT — mZ)SQ,B — mhLHC(mhLHC — Mz~ 5t) _ mzét % (5 18)
A Mhy o m%h - m%tLHC | |

All the equations in this section are valid in a generic NMSSM. Specific versions of it may
limit the range of the physical parameters mp, .23, my= and o, vy, o but cannot affect any
of these equations. Notice that in the limit A = 0, eq. (5.16) coincides with the MSSM case.

When considering the couplings of the CP-even scalars to SM particles, relevant to their
production and decays, we shall not include any supersymmetric loop effect other than the
top-stop loop effect. This is motivated by the kind of spectrum outlined in section 5.1, with
all s-particles at their “naturalness limit”, and provides in any event a useful well defined
reference case. We also do not include any invisible decay of the CP-even scalars, e.g. into a
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pair of neutralinos. To correct for this is straightforward with all branching ratios and signal
rates that will have to be multiplied by a factor I'/(I' + Iy, ). Finally we do not consider
the two neutral CP-odd scalars, since in the general NMSSM both their masses and their
composition in terms of the original fields depend upon extra parameters not related to the
masses and the mixings of the CP-even states nor to the mass of the charged Higgs.

In all the cases we always discriminate between two configurations:

e hiyc is the lightest state, i.e. we identify the observed particle with the lightest CP-
even scalar in the NMSSM.

e hpyc is the next-to-lightest state, i.e. we investigate the configuration where there is
a particle lighter than 125 GeV. In this case we consider also the “invisible” decay of
hinc into a pair of the lightest CP-even scalars.

5.4 H decoupled

In this limiting case, only hygc and hs are relevant, and all phenomenological consequences
can be drawn just by studying v and my,. By comparing eq. (5.14) with eq. (5.16), notice
that in this case there is only a single relation between the mixing angle v and the mass of
the extra CP-even state my,, involving tan 8, A and A;. Due to the singlet nature of S it
is straightforward to see that the couplings of hyyc = hrac and hs to fermions or to vector
boson pairs, VV = WW, ZZ, normalized to the same couplings of the SM Higgs boson, are
given by

ghL;I\(/J[ff _ ghLé{ﬁVV —c, ghSQI\J;f _ ghSQI\‘ZV _— (5.19)
Ihsf Ihvv Inss Invv

The fit of all experimental data collected so far gives the bound on 33 shown in figure 5.2
right,
sin?y < 0.22. (5.20)

Here an invisible branching ratio of Appc, BRiny, would strengthen the bound on the mixing
angle to 53/ < (0.22 — 0.78BRipy ).

5.4.1 H decoupled, hiyc lightest

Upon use of (5.14) the impact of the bound (5.20) on the parameter space is shown in
figure 5.3 for A = 0.8 and 1.4, together with the isolines of different values of 53 that might
be probed by future improvements in the measurements of the hypc signal strengths. Larger
values of \ already exclude a significant portion of the parameter space at least for moderate
tan 3, as preferred by naturalness. In this section we are taking a fixed value of A; = 73 GeV,
which is obtained, e.g., for m;, = 600 GeV, mj, = 750 GeV and mixing angle 6, = 45° [101].
As long as one stays at A; < 85 GeV, in a range of moderate fine tuning, and A 2> 0.8, our
results do not depend significantly on A;.

In the same (tan 3, my,) plane of figure 5.3 and for the same values of A, figure 5.4 shows
the gluon-fusion production cross sections of hy at LHC for 8 or 14 TeV c.o.m. energies,
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Figure 5.3. H decoupled, hpuc lightest. Isolines of sin?~. Left: A = 0.8. Right: A = 1.4. The
colored region is excluded at 95%C.L. by the experimental data for the signal strengths of hyyc.

where we rescaled by c% the NNLL ones provided in [113]. All other hy production cross
sections, relative to the gluon-fusion one, scale as in the SM with myg,, = mp,.

To determine the decay properties of h; it is crucial to know its coupling (gp,nz, . /2)h2hi e
to the lighter state. In the general NMSSM and in the large mpy limit considered in this
section, the leading A\2-term contribution to this coupling, as well as the one to the cubic
hruc-coupling (g~ /6)hi e, are given by

LHC

)\2
Gnoh2, = 8\/_ (4— cosy + 12— cos 3y — Tsiny + 12 cos 43 cos® v siny + 9sin 37)
3
— ——A?cos® ysiny (5.21)
Vv ’
Gh3 A2o? ) Vg 2
e = 5—— COS"Y (10 — 4 cos4f3 cos”y — 6cos 2y + 8— sin 27) +— L cos®ry,
ghiHc 8mhLHC v hruc
(5.22)

where vg is the VEV of the singlet. Figure 5.5 shows the hy branching ratio into a pair of
light states for some choices of vg. The other most significant decay mode of hy is into a
W -pair, with a branching ratio given in figure 5.6. Figure 5.7 shows the triple hygc-coupling
normalized to the SM one. It can be shown that hy is always a narrow resoances with total
width T'y, ~ 1+ 3(2 + 10) GeV for A = 0.8(1.4).

These results depend on the value taken by wvg, in particular we note that the Higgs fit
still allows the triple Higgs coupling to get a relative enhancement of a factor of a few (with a
negative or positive sign) with respect to the Standard Model one, thus yielding potentially
large effects in Higgs pair production cross sections [138].
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Figure 5.4. H decoupled, hrpc lightest. Isolines of gluon fusion cross section o(gg — ho) at
LHCS8 and LHC14, for the values A = 0.8 and A = 1.4. The colored region is excluded at 95%C.L.
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Figure 5.5. H decoupled, hypc lightest. Isolines of BR(hy — hh). Left: A = 0.8 and vg = 2wv.
Right: A = 1.4 and vg = v. The colored region is excluded at 95%C.L.

As a small comment, it is clear that the parameter space in the case hrgc < ho(< h3(=
H)) is still largely unexplored at A = 0.7 = 1. Most promising in this case are the direct
searches of hy with gluon-fusion production cross-sections at LHC14 in the picobarn range
and a large branching ratio, when allowed by phase space, into a pair of hygc or vector
bosons as shown in figures 5.5 and 5.6. Furthermore large deviations from the SM value can
occur in the cubic hygc-coupling.

5.4.2 H decoupled, hipc next-to-lightest

Here we consider the configuration when hy < hppc. We are going to discuss two possible
ranges of .

e The low A case (A = 0.1) is shown in figure 5.8 for two values of A; together with
the isolines of s%. The current fit of the signal strengths measured at LHC constrain
s?/ < 0.22 at 95% C.L., which explains the lighter excluded regions in figure 5.8. The
red regions are due to the negative searches of hy — bb at LEP [139].

e For ) close to unity we take as in the S-decoupled case A; = 75 GeV, but any choice
lower than this would not change the conclusions. The currently allowed region is
shown in figure 5.9 for two values of A\. Note that, for large A, no solution is possible
at low enough tan 3, since, before mixing, m3?, in eq. (5.15) has to be below the mass
squared of Appc.
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Figure 5.8. H decoupled, hrjc next-to-lightest. Isolines of sfy. A = 0.1 and vg = v. Left:
A; = 75 GeV. Right: Ay = 85 GeV. The orange region is excluded at 95%C.L. by the experimental
data for the signal strengths of hrpc, while the blue one is unphysical. The red region is excluded
by LEP direct searches for hy — bb.

In both cases we include in the fit the “invisible” decay hppc — hohe when kinematically
allowed. 2

How will it be possible to explore the regions of parameter space currently still allowed
in this he < hrac(< hs(= H)) case in view of the reduced couplings of the lighter state?
Together with an expected improvements in the Higgs coupling measurement, a significant
deviation from the case of the SM can occur in the cubic hpyc-coupling, g3, as shown in
figure 5.10. The LHC14 in the high-luminosity regime is expected to get enough sensitivity
to be able to see such deviations [140-142]. At that point, on the other hand, the searches
for directly produced s-partners should have already given some clear indications on the
relevance of the entire picture.

5.5 S decoupled

When S is decoupled, notice the difference with respect to the single relation (5.14) of the
H-decoupled case. Identifying as before hpyc with the resonance found at the LHC, this
determines the mass of hs (and of H*) for any given value of A and tan 3.

From our point of view the main motivation for considering the NMSSM is in the possi-
bility to account for the mass of hyyc with not too big values of the stop masses. For this

2To include hyuc — hohy we rely on the triple Higgs couplings as computed by retaining only the \2-
contributions. This is a defendable approximation for A close to unity, where hpgc — hohe is important.
In the low ) case the A2-approximation can only be taken as indicative, but there hrgc — hohs is less
important.
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Figure 5.9. H decoupled, hrpc next-to-lightest. Isolines of s,2y. Ay = 75 GeV and vg = v. Left:
A = 0.8. Right: A =1.4. Orange and blue regions as in figure 5.8. The red region is excluded by
LEP direct searches for hy — bb.
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Figure 5.10. H decoupled, hypc next-to-lightest. Isolines of gp3 /g3 Left: A=0.1, Ay =85

s
GeV and vg = v. Right: A =0.8, A; = 75 GeV and vg = v. Orange and blue regions as in figure

5.8. The red region is excluded by LEP direct searches for hy — bb.
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Figure 5.11. S decoupled. Left: isolines of mp; (5.15) (solid), the grey region is unphysical due
tom zi < 0. Right: isolines of A in the region with mp, ~ 125 GeV. The dashed isolines are for
my+. The colored regions are excluded at 95%C.L.

reason we take A; = 75 GeV, which can be obtained, e.g., for an average stop mass of about
700 GeV. In turn, as it will be seen momentarily, the consistency of eq.s (5.16)-(5.18) requires
not too small values of the coupling A. It turns out in fact that for any value of A; < 85
GeV, the dependence on 4, itself can be neglected, so that my,,, my+ and § are determined
by tan § and A only. For the same reason it is legitimate to neglect the one loop corrections
to the 11 and 12 entries of the mass matrix, eq. (5.13), as long as (uA;)/(m?) < 1, which is
again motivated by naturalness.

Defining as before 6 = o — 4+ 7/2, the couplings of hg become formally the same of the

MSSM case (4.16)

cos o
g}éﬁ =sind — ——, g};sl\l;[b = sind + tan 3 cos o, ghgl\‘gv = sin¢. (5.23)
Ihtt tan 5 gy, Ihvv

We are not considering the possible decays of hpgc and/or of hs into invisible particles,
such as dark matter, or into any undetected final state, because of background, like, e.g.,
a pair of light pseudo-scalars. The existence of such decays, however, would not alter in
any significant way the excluded regions from the measurements of the signal strengths of
hinc, which would all be modified by a common factor (1 + [juy/Tyis) ™!, This is because
the inclusion in the fit of the LHC data of an invisible branching ratio of hruc, BRiyy, leaves
essentially unchanged the allowed range for ¢ at different tan S values, provided BRy,, < 0.2.

5.5.1 S decoupled, hpc lightest

The allowed regions in the plane (tan/,\) shown in figure 5.11 left are determined by a
2-parameter fit of tan 8, sind. This fit results in an allowed region which is virtually the
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Figure 5.12. S decoupled, hppc lightest. Isolines of gluon fusion production cross section o(gg —
hs). The colored regions are excluded at 95%C.L., and the dashed line shows mg+ = 300 GeV.
Left: LHCS8. Right: LHC14.

same as the one with v = 0 in figure 5.2 left. When inverting A as a function of tan 3, ms,,
there are two solutions. In figure 5.11 right, we show only the one which corresponds to
the narrow allowed region with my;, close to 125 GeV. Note that A is restricted to relatively
small values. As a consequence the analysis becomes more sensitive to values of A; at or

above 80 GeV.

The other two allowed regions in figure 5.11 left, when translated to the (tan/,my,)
plane, correspond to the other solution for A, and are not displayed in figure 5.11 right. The
first one with tan 8 ~ 3 and A 2 1 always implies a charged Higgs mass my+ below 150
GeV, which is disfavored by indirect constraints [143]. Note that this region, corresponding
to the allowed region with large § in figure 5.2, is mainly allowed because of the large error in
the measurement of the bb coupling of hruc. Reducing this error down to about 30% around
Ghinctv/ grnt = 1 would exclude the region. The second one with tan 3 ~ 1, allowed by the
Higgs fit, is also excluded by the bounds on my«.

The couplings (5.23) allow to compute the gluon-fusion production cross section of hg by
means of the techniques described in section 4.2. This cross section is shown in figure 5.12.

9 h3 h%HC

The coupling of hz to the lighter state Thg,h%Hc and the triple Higgs coupling
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Figure 5.13. S decoupled, hrpc lightest. Left: isolines of BR(h3 — bb). Right: isolines of
BR(hs — tt). The colored regions are excluded at 95%C.L., and the dashed line shows myg+ = 300
GeV.

gh%Hc h} e are given by
[(m% + 022 sin 6 + 3(m% — \2v?) sin(48 + 30)]
Ihshiye = 2\/5@
2 in?
_ 30% cos(8+9) sin (B+9) (5.24)
V2u sin® 8
Ihine _ (my + v*X\?) cos § 4 (m% — v*A?) cos(4 + 30) n Af sin®(8 + 6), (5.25)
gfbi%/i[c 2TniLHC m}%LHC Sil’l3 5

Figure 5.13 shows the most relevant widths of h3. Here differently from H-decoupled case
BR(hs — hh) is not particularly relevant, see [5] for more details.

5.5.2 S decoupled, hipc next-to-lightest

We can represent in figure 5.14 the allowed regions in the plane (tan 3, my,) and the isolines
of A and mpy+ for hy < hrgce(< h3(= S)). At the same time the knowledge of ¢ in every
point of the same (tan /3, my,) plane fixes the couplings of h3 and hypc, which allows to draw
the currently excluded regions from the measurements of the signal strengths of hypc. As
declared, we do not include any supersymmetric loop effect other than the ones that give
rise to eq. (5.13).

Note, as anticipated, that in every case A is bound to be above about 0.6. To go to lower
values of A would require considering A; = 85 GeV, i.e. heavier stops. On the other hand
in this S-decoupled case lowering A and raising A; makes the NMSSM close to the MSSM.
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Figure 5.14. S decoupled, hpuc next-to-lightest. Isolines of A (solid) and my=+ (dashed). The
orange region is excluded at 95%C.L. by the experimental data for the signal strengths of hyyc.
The blue region is unphysical.

5.6 Fully mixed scenario

In the general case, when H or S are not completely decoupled, the three angles §, v and
o can all be different from zero, and the three masses my,, my, and my+ are all virtually
independent. In this section we present a spectrum where h3 is parametrically heavier than
hiuc, ho. Such configuration can be seen as a deformation of the H-decoupled case. Again,
we are considering both the cases where hppc is and is not the lightest CP-even scalar.

5.6.1 Fully mixed scenario, hyyc lightest

In figure 5.15 we show the excluded regions in the plane (tan 3, my,) for my, = 750 GeV and
A = 1.4, setting s2 to two different values in order to fix mpy+. When s = 0 one recovers
the previous H decoupled case in the limit my, — co. With respect to this case, both v and
0 are free parameters in the fit to the couplings of hrpc, and as a consequence the bounds
are milder than what is expected from using only 7. If s2 # 0, hy and h3 are not decoupled,
and their masses can not be split too much consistently with all the other constraints. This
is reflected in a broader excluded region for low my, in figure 5.15 right, where we take
s2 = 0.25.

5.6.2 Fully mixed scenario, hijc next-to-lightest

In this configuration, we consider the case of a state hy lighter than hypc, lowering my,
to 500 GeV, to see if it could have an enhanced signal strength into v+, as discussed also
in [144]. Using eq.s (5.10)-(5.12), for fixed values of o, A and A, the two remaining angles «
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(or 6 = a— f+7/2) and v are determined in any point of the (tan 8, my,) plane and so are
all the branching ratios of hy and of hyuc. More precisely 4§ is fixed up to the sign of s,c,s,
(see first line of eq. (5.12)), which is the only physical sign that enters the observables we
are considering.

The corresponding situation is represented in figure 5.16, for two choices of A and A;. The
sign of s,c,s, has been taken negative in order to suppress BR(hy — bb). This constrains
s2 to be very small in order to leave a region still not excluded by the signal strengths of
hiuc, with ¢ small and negative. To get a signal strength for hy — 77 close to the SM one
for the corresponding mass is possible for a small enough value of 53/, while the dependence
on my, is weak for values of my, greater than 500 GeV. Note that the suppression of the
coupling of hs to b-quarks makes it necessary to consider the negative LEP searches for hy —
hadrons [119], which have been performed down to my, = 60 GeV.

Looking at the similar problem when hy > hpyc, we find it harder to get a signal strength
close to the SM one, although this might be possible for a rather special choice of the
parameters.®> Our purpose here is more to show that in the fully mixed situation the role of
the measured signal strengths of hppc, either current or foreseen, plays a crucial role.

5.7 Discussion

We have outlined a possible overall strategy to search for signs of the CP-even states of the
general NMSSM by suggesting a relatively simple analytic description of different situations.
To make this possible at all we have made some simplifying assumptions on the parameter
space, which are motivated by naturalness requirements and have been in any case specified
whenever needed. In our view the advantages of having an overall coherent analytic picture
justify the introduction of these assumptions.

A clear difference emerges between the two cases we have considered, the S-decoupled
and the H-decoupled cases: the influence on the signal strengths of hypc of the mixing with
a doublet or with a singlet makes the relative effects visible at different levels. With present
data, although the signal strengths of hygc are close to those expected in the SM, they still
allow for a new further state nearby in the NMSSM if hpyc is the lightest state. This is
unlike the case of the MSSM, where a CP-even scalar heavier than h;yc and below about
350 GeV is unlikely, as shown in chapter 4. If hppc is the next-to-lightest state only the
H-decoupled case shows a sizeable parameter space still allowed.

Needless to say, in any case the direct searches will be essential. The new states behave
differently in the two limiting cases.

The state hy of the H-decoupled case has a large BR into a pair of hAygc, whenever allowed
by phase space, with V'V as subdominant decay (figures 5.5-5.6). With the production
cross sections shown in figure 5.4 its direct search at LHC8 or LHC14 may be challenging,
although perhaps not impossible [146,147]. A recent analysis of a scalar resonance decaying
into yybb shows that the LHC experiments start becoming sensitive to interesting regions of
the parameter space [148]. For the case of hy decaying into vectors an interesting possibility
is offered by searches for an heavy Higgs in the ZZ channel, see [149] and the next chapter.

3 An increasing significance of the excess found by the CMS [145] at 136 GeV would motivate such special
choice.
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On the other hand the reduced value of A allowed in the S decoupled case makes the bb
channel, and so the 77, most important, below the ¢t threshold (figure 5.13). This makes
the state hs relatively more similar to the CP-even H state of the MSSM (figures 4.4 and
4.5), which is being actively searched.

It is also interesting that, in the H-decoupled case, large deviations from the SM value
are possible in the triple Higgs coupling g?LLHC, contrary to the S-decoupled and MSSM cases.

Finally, in case of a positive signal, direct or indirect, it may be important to try to
interpret it in a fully mixed scheme, involving all the three CP-even states. To this end the
analytic relations of the mixing angles to the physical masses given in eq.s (5.10)-(5.12) offer
a useful tool, as illustrated in the examples of a v+ signal of figure 5.16.
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Figure 5.15. “Fully mixed scenario”, hruc lightest, with A\ = 1.4 and my, = 750 GeV. The
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at 95%C.L. In the grey area there is no solution for §. The thick line shows the naive exclusion
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Figure 5.16. “Fully mixed scenario”, hypc next-to-lightest,. Isolines of the signal strength of
hs — 7 normalized to the SM. We take my, = 500 GeV, s2 = 0.001 and vs = v. Left: A = 0.1,
Ay =85 GeV. Right: A =0.8, A; = 75 GeV. Orange and blue regions as in figure 5.8. The red and
dark red regions are excluded by LEP direct searches for ho — bb and hy — hadrons respectively.
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Part 1V

A comparison of precision tests
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Chapter 6

What next? Higgs vs. electroweak observables

In this thesis, we have considered models of EWSB satisfying all the existing bounds and able
to give sizeable effects at future experiments. It has been shown however that the MCHM,
MSSM and NMSSM have to face a certain degree of fine-tuning raised by the null results
coming from the first run of the LHC.

In fact, despite the hope that some of the models described in this thesis will manifest
themselves at the LHC, it should be said that the results of the first LHC phase, as partly
already hinted by previous experiments as well [150], have shown that the proposed natural
models do not work in the way they were originally thought. Here we take the view that it
will be in any case crucial for the entire field to push as high as possible the sensitivity to
the signs of “quasi-natural” theories of EWSB, as they may now be called.

In the concluding part of this thesis we would like to comment on the information that
might come from indirect searches in precision measurements. Such measurements could
play a leading role in a sufficiently long period of time, after a relatively early stage of the
new LHC phase, whatever its findings will be, and before the advent of a needed higher
energy hadron collider. Specifically we have in mind the measurements of the Higgs boson
couplings at the LHC and the improvements in the EWPTs that could be done at a new
Z factory, like at an ILC or at TLEP. A different opportunity is offered by flavour physics
experiments, as discussed, for example, in chapter 3 for the CHM case.

In order to try to have a sufficiently broad view of the possible outcomes we discuss all
the three models encountered so far in this thesis. Also in view of the current bounds, they
models provide a significant representation of quasi-natural models of EWSB, even though
different specific realizations are possible, that can give rise to different features. The early
results of the LHC in its second phase might clearly point to one of them, perhaps with some
needed integration, or could keep them all as open possibilities.

This chapter relies on [6].

6.1 A “composite” Higgs boson

The simplified model of composite Higgs boson that we consider is defined by the Lagrangian
[18]

L= (D)~ M@~ 3~ Vig.p5), (6.1)
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where ® is a five-plet of real scalar fields, D, is the covariant derivative with respect to the
SM gauge group and V(p, p5) is a potential that breaks explicitly the SO(5) symmetry of
the A-dependent term down to SO(4). Under this SO(4) ® = ¢ + 5 where @ is quartet, or
a complex doublet under SU(2), x U(1)y, and ¢5 is a SM singlet.

In a non-linearly realized SO(5)/S0(4) o-model, as introduced in section 2.2, the A-term
is replaced by 6(®? — f?), where f is the decay constant of the (pseudo)-Goldstone boson
field . Here we keep a finite coupling A to increase the calculability of the model.

With a specific choice of the potential V', e.g. [151]

V(e ¢s) = afge® — Bo*es, (6.2)
one can compute the vacuum expectation values of ¢ and 5

_ 2fgla=B)A

220 P — % = (246 GeV)?, 6.3
(o = o (246 GeV) (63
2
o Jola(B—2)) —28))
— ’ 6.4
as well as the mass and composition of the two physical scalars in ®. Let us define
I\ — «
2 2 g2 — 2

so that, when A — oo, then fy; — f to recover the non-linear o-model description. Let us
also define the mass eigenstates (h, o) by

h = cosfOp +sinfyps, o = —sinfp + cosbys, (6.6)

where we maintain the same notation ¢ for its only physical component. If one insists that
the parameters of the breaking potential, «, 8, remain limited as A grows, the parameters
a, B, A and fy can be traded for the more physical parameters v, f and the masses my, m,
in a unique way, e.g.

A= et (67
In this way the mixing angle is also uniquely determined by
, m2 +m3 m2m?2
§in20 — —2 g(1-g)m§+m%\/1— s TS (6.8)
where we define as customary ,
£ = % (6.9)
For large m?2/m?2 we have
sin20:§—2—§+0(52—§). (6.10)
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Had we considered a different SO(5)-breaking potential than (6.2), e.g. V = afios — BfE2p?
[18], we would have obtained a similar expression except for a factor of 2 in front of the
m3/m?2 correction.!

The mixing angle (6.8) is the main parameter that determines both the modified Higgs
couplings to the gauge bosons, V = W, Z, as well as the corrections to the e-parameters of
the EWPT [12]. For the Higgs couplings, normalized to the SM one has,?

QZI\//I\/ = cos 0, QZII\L/IVV = cos? 0 (6.11)
Invv 9hhvv
and, for those ones of the o field,
IV — _sing, IV _in2g, (6.12)
Invv Innvv
As a consequence, for the g;,1 =1,2,3
g = 5Z~SM’}'{ + cos? 0z;(my,) + sin® 02;(m,), (6.13)

where 5Z~SM’}'{ are the total SM contributions but the Higgs exchanges, while &; are the pure
Higgs contributions to the e-parameters in the SM. We do not consider modifications of the
Higgs-fermions couplings nor the virtual effect of any extra particle other than the o-scalar
itself.

In the large m, limit, for the deviations from the SM values Ag; = ¢; — e¥™ | one gets
Aey = —sin20—" |10 %+c(m)+0(m—2z) (6.14)
1 — 87TC,12U g mh 1 h mg— I :
2
g, « my,
Agy = sin 047rcfv |:02(mh) + O(m_g)]’ (6.15)
2
o My ms,
Aez = sin” 6 Y [log p— + c3(myp) + O<m_§)] : (6.16)
where numerically for m;, = 125 GeV
¢ = —0.57, cy = 0.10, cs = 0.62. (6.17)

As noticed in [153], to obtain the values of the finite terms ¢;, one has to include the cor-
rect dependence of the €; on my, which is not only contained in the vacuum polarization
amplitudes entering the usual parameters S, T, U [15] (see section 1.1 in chapter 1).

The outcome of these considerations is represented in figure 6.1, where we show the
relative deviation of gy from the SM and the value of Ae; as a most representative quantity
in the EWPT. In all of the (m,, f) plane, A is below 3, i.e. in a semi-perturbative regime,
with ', < m,. At LHC the 1o attainable precision on gy, is expected to be around 5% after

!The potential (6.2) can be viewed as the linearized version of MCHMj5 10 [47], whereas V = a f3ps—Bf3?
represents the linearized version of MCHM, [45].

20One can show that, in the m, — oo limit, scattering amplitudes sensitive to the couplings in eq.(6.11)
(e.g. VV — V'V, hh) agree with those of the non-linear o-model [152].
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Figure 6.1. “Composite” Higgs model. Isoline of [0gnyv| (solid) and Ae; (dashed).

300 fb™! and it might be lowered by a factor of about 2 in the High Luminosity configuration
(HL-LHC) [154,155] with a corresponding reduction of the theory uncertainties®. A precision
below 1% is expected on the other hand in a Higgs factory at an eTe™ collider [157]. About
the EWPT, the error on the parameter Ag;, currently of (5 + 8)10~* depending on the
assumptions of the fit [16,17], might be reduced by more than one order of magnitude at
TLEP [157-159].

6.2 NMSSM

As a relevant representative of a weakly coupled theory, we consider, as in chapter 5, the
NMSSM with s-partners heavy enough that their virtual exchanges do not affect in a sig-
nificant way the precision observables of interest here. More specifically we focus on the H
decoupled case of section 5.4 which allows for a formal connection with the model discussed
in the previous section. Indeed, in the limit where the extra scalar doublet orthogonal to
the observed states (the Goldstone and the Higgs bosons) is also decoupled, the two resid-
ual physical scalars are again an admixture of an SU(2) doublet and a real singlet S.* This
admixture is controlled by the rotation of an angle v that diagonalizes the scalar mass matrix

1+tan? 3 1+tan? 3

M =
oM m?

(mQZ(ltan25)2 + ( Qtan2ﬂ)2 202 + Af )\UM> (6.18)

3See [156] for a recent detailed analysis.
4The pseudo-scalar component of the complex singlet is decoupled from the system in presence of CP
conservation.
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500F "\

m,/GeV

Figure 6.2. NMSSM at A = 0.8 and A; = 75 GeV. Isolines of sin? v (solid) and Ae; (dashed). The
orange region is excluded at 95%C.L. by the experimental data for the signal strengths of h. The
red region is excluded by direct searches for ho — ZZ [149]. This exclusion above the threshold
ho — hh depends on the vacuum expectation value of S. Here we take (S) = 2v.

where A is the usual supersymmetric Yukawa coupling of the NMSSM and A; lumps the
main radiative correction effects that do no decouple in the heavy s-partner limit. The
diagonalization of this matrix, trading M and mg for the physical masses in the order
mp, < mp,, gives the mixing angle of eq. (5.14),

1 2tan?
m; —mj, | (1+ tan® ()2

1 — tan? 3
1+ tan? 3

sin?y = N2 4+ AZ + m3( )2 —mi|. (6.19)
The formal analogy with the previous model makes it such that eq.s (6.11-6.17) are also valid
here with the replacements § — v and 0 — ho. The important difference with the composite
Higgs model is that in the NMSSM not only the couplings gy but also the couplings to all
the fermions, g, ;7, are rescaled by a universal factor cos+ relative to the SM ones.

The impact of all this on the precision observables is shown in figure 6.2 for A = 0.8, at
the upper border for perturbativity up to the Grand Unified Scale [126,128], and A, = 75
GeV, compatible with stop masses above 700 GeV. How changes in these parameters would
affect figure 6.2 is clear from eq. (6.19). In the same figure we also show the currently
excluded regions from the measurements of the Higgs couplings and from the direct search
of hg — ZZ [149].

At LHC a universal rescaling by cos~y of all the Higgs couplings manifests itself in the
signal strengths as an effective branching ratio in invisible channels. The current limit at 95%
C.L., sin?y < 0.24, should be reduced to sin?y < 0.15 after 300 fb~! of the next LHC phase,
whereas sin?y < 0.05 might be attainable at HL-LHC [154,155]. An absolute measurement
at TLEP of the hZ cross section could increase the sensitivity to sin?~ at the 1% level or
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less [157]. Figure 6.2 makes clear that the EWPT would have a relatively limited impact on
the NMSSM, at least in the configuration that we have considered.

6.3 MSSM

The MSSM has been analysed in chapter 4. However, for ease of the reader we reproduce here
some of the relevant formulae. Referring to the mass matrix (4.13), the two mass eigenstate
h and H, taken in the order m;, < my, are given by

h = cosd h, —siné hy, H = cosé hi +sind h,. (6.20)

An expression, accurate for my = 400 GeV and any value of tan f3, is

m? 1 —tan?B m2 1
ing =———->~=" Z O(—). 6.21
S tan Sm? 1+ tan? § tan fm? + (m‘}{) (6:21)

From eq. (6.20) and the fixed form of the supersymmetric Yukawa couplings, all the Higgs
couplings are

ud Sln 5 g .
ggM = cosd + , % = cosd — tan #sin 4, gg% = oS8 0. (6.22)
Ihua tan ﬁ ghdg Ihvv

wi . Cos 0 i .
gz;M =sind — ——, % =sind + tan 3 cos 4, gg% =sind. (6.23)
Ihu tan 3" gy Ihvv

The isolines of sind in the (tan 5, my) are shown in figure 5.8, together with the currently
excluded regions, at 95%C.L. and within the given assumptions, from the fit of the Higgs
couplings and from the search for A, H — 77 [118].

To determine the sensitivity to sind in the next LHC phase after 300 fb™" of integrated
luminosity we use the projected uncertainties of the measurements of the signal strengths
of the Higgs boson by ATLAS [160] and CMS [161] given in table 6.1. The corresponding
95%C.L. exclusion line with SM central values is also shown in figure 6.3.

ATLAS CMS

h — vy 0.16 0.15
h— ZZ 0.15 0.11
h—WW 0.30 0.14
Vh — Vbb —~ 0.17
h— 11 0.24 0.11
h — pp 0.52

Table 6.1. Projected uncertainties of the measurements of the signal strengths of h at the 14 TeV
LHC with 300 fb~".

The EWPT observables receive contributions from the complete Higgs system, deter-
mined in terms of sind and the masses of all the physical states my, mg, ma, my+. In the
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Figure 6.3. MSSM. Isolines of sind (solid) and Ae; (dashed). The line LHC14 gives the 95%C.L.
projected exclusion from the sensitivity on the signal strengths of h at ATLAS and CMS with
300 fb~!. The orange region is excluded at 95%C.L. by current data for the signal strengths of h.
The red region is excluded by CMS direct searches for A, H — 77~ [118].

formal limit of large mpy, ma, my+ at fixed sind one would obtain the usual “infrared” log-
arithms of the same form as in eq.s (6.16). However, as seen in eq. (6.21), sin® § vanishes as
1/m%;. As a consequence the EWPT observables, at my 2> 400 GeV, are not dominated by
the mixing effect, as in the previous cases, but by the non-degeneracy of the H, A, H* states,
which gives effects scaling like 1/m?,. The explicit expressions of the Ag; at leading order in
1/m?. To make this statement more precise, each Ae; which defines Ag; as in (1.10) is the
sum of two contributions,

Ae; = sin? 5[éi(mH) — éi(mh)} + de;, (6.24)

where the first is the usual term due to modified Higgs couplings with subtracted SM terms,
whereas the second comes mainly from diagrams with exchange of the H, A, H* scalars,
which are sensitive to their splittings. Notice that de; is not vanishing when sind = 0. As an
example of this consider that, at tree-level, m7,. = m? + mj, independently of sind. This
kind of splitting can be traced back to quartic terms in the scalar potential which feel the
EWSB. In the decoupling limit (6.21) the first term of (6.24) is of order 1/m%. Therefore
only de; gives the leading O(1/m?) contribution to the electro-weak parameters.
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From an explicit computation of all the relevant diagrams, we find for the MSSM

a  mi — Am? my
Aey = x O(— 6.25
“ 487s2  m% - (m‘}{% (6.25)
a  md my
Aes — — W W 2
e 240mc2, qu * O<mj§)7 (6:26)
Am*® —2 myy
Aey = ——— mE = 2miy o W, (6.27)
967 sz, m2 mi
mA
a  md
Aey = W o2 6.28
“ 12072, m%, * (mj%{)’ (6.28)
a(l +t4)mW miy
Aes = ——— +0 6.29
© 240ms2 m%, - my 1): (6.29)

where we have defined Am? as the O(1/m?) splitting between m? and m?

m3 m%(3tan? 3 — 1)

Am? =
m tan? 8 tan® 3(1 + tan® )’

(6.30)

as one can check diagonalizing (4.13).

Two main conclusions stem from the above formulae. First, notice that the leading
contribution to Ae; 3 comes from the Am? splitting, whereas Aey is not sensitive to it and
vanishing in the custodial limit, i.e. Aey (or U) feels Am? only at O(1/m?;) [162]. Second,
the size of Aey 5 is comparable with that of Ae; 33, i.e. with the Peskin-Takeuchi parameters.
Differently from the case of the singlet here also Ae, is relevant in the computation of €53
because of the presence of H*. The asymptotic formulae (6.25)-(6.29) are well justified in
most of the parameter space of figure 6.3, where, however, Ae; is computed without making
the large-my approximation.

Numerically one sees the EWPTs play a marginal role for this configuration of the MSSM.

6.4 Discussion

Although with differences in the different cases, the main conclusion that we can draw, as
emerging from figures 6.1,6.2 and 6.3, is that the precision measurements will have something
significant to say for relevant configurations of every model that we have examined. This
is particularly the case for the measurements of the Higgs couplings which will always be
able to explore a significant portion of the different parameter spaces. On the contrary the
role of precision measurements of the EW observables, even pushed at a dedicated Z-factory,
appears mostly limited to the case of a “composite” Higgs boson.

Coming to the individual cases, the key feature that makes the CHM particularly sensitive
to precision measurements, both of the Higgs couplings and of the EW observables, as shown
in figure 6.1, is the possible separation between the symmetry breaking scale f and the mass
of the “composite” resonances, represented in the linear model by the o-particle. In spite
of the crudeness of the model, adopted for its calculability, the relation of the scale f with
the strength of the linear Higgs couplings to the vectors is not subject to significant model-
dependent corrections [46]. More model dependent in a truly strongly interacting Higgs
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boson are the EW observables, as also discussed in our description of indirect constraints
on composite resonances (see section 3.3). Nevertheless the “infrared logarithms”, which are
the main feature in figure 6.1, will anyhow be there [18]. In turn this makes at least highly
unlikely that an improved measurement of, say, the €; parameter, at the level necessary to
see an effect like in figure 6.1, could end up being consistent with the SM value.

As in the linear o-model also the NMSSM can show a mixing of the Higgs boson with
an SU(2)-singlet scalar, with two important, although formal, differences. One is that the
mixing is controlled by the single heavier scale, i.e. the mass of the extra scalar. (See
eq. (6.19)). The other difference is that this same mixing suppresses all the couplings of the
Higgs boson to the vectors and to the fermions in the same way. These differences are at the
origin of the relatively weaker explorative power in figure 6.2, with respect to figure 6.1, by
the precision measurements. An absolute measurement of the invisible Higgs width would
be the key here, as possible at an e*e™ collider [157]. Another possibility is offered by the
measurements of the triple Higgs coupling, with conceivable deviations of relative order unity
from the SM [4], against a 30% lo accuracy foreseen at HL-LHC.

The third case that we have examined is the MSSM with s-particles sufficiently heavy
that their virtual exchange does not influence the precision measurements and with the
extra scalars, although heavier than the observed Higgs state, that could be the lightest new
particles around. In this case the key features that makes powerful the measurements of
the Higgs couplings are: i) their distortion by the mixing between h, and h;, different for
vectors, the top quark or the bottom/7; ii) the dependence of the mixing angle 6 on my and
tan § given in eq. (6.21) and shown in figure 6.3.

Given the configuration of the models that we are considering, the competitor of the
precision measurements is the direct search for extra scalars, be they new Higgs particles or
some strongly interacting new states. This is manifest, for example, in figures 6.2 and 6.3,
where exclusion regions due to direct heavy Higgs searches are already present. It would
be interesting to know as reliably as possible the future sensitivity of the LHC, including
the high luminosity phase, in the parameter spaces at least of the MSSM and the NMSSM,
i.e. in the planes of figures 6.2 and 6.3, where in fact the properties of the extra scalars are
precisely defined. It appears, however, that the precision measurements will anyhow play an
important complementary role.
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Summary and conclusions

Following the naturalness principle as a guideline for addressing the Hierarchy Problem we
have considered a series of motivated models for the Fermi scale. We have shown that in
order to have a natural Higgs boson, the SM should undergo some important deformations
which generally predict physics at the TeV scale. The beautiful (and robust) connection
between naturalness and physics at the TeV scale has been under challenge since the LEP
era and the null results from the first run of the LHC have put it in a quite uncomfortable
situation. Nevertheless, it does not seem to us yet the right moment to shift towards more
radical approaches, some of which have been discussed in the introductory chapter. Indeed,
as this thesis work should have shown, reasonably natural scenarios for the weak scale are
still allowed by direct and indirect constraints, with LHC14 ready to probe a large part of
their parameter spaces.

While detailed conclusions have been already discussed in the ending sections of chapters
2, 3, 4, 5 and 6, here we summarize again some of the most relevant points. Probably one
of the most interesting (general) conclusions that can be drawn is that natural extensions
of the SM can be still both weakly or strongly-coupled, despite the fact that the increasing
amount of precision data (last but not least the Higgs couplings themselves) might have led
to quickly exclude the latter.

In chapter 2 we outlined the basic concepts of the Composite Higgs paradigm. Relying
on naive dimensional analysis we estimated the size of the Higgs mass and the corresponding
tuning in different models based on several representations of the composite fermions. In
general the most conservative way to achieve acceptable levels of tuning is to disentangle
the scale of bosonic, m,, and fermionic, my, scales. If the overall fermionic scale is low,
i.e. close to f, the tuning is minimal and light composite fermions are expected below the
TeV scale (with a scale f saturating the lower bound from indirect searches). Allowing for
more fine-tuning two possibilities emerged. The first one is offered by models with double
tuning with fermions in 5, 10 or 4 of SO(5). They provide a 125 GeV Higgs even for an
overall heavy fermionic scale m, ~ 5f if at least one top partner is light. The second is
obtained with fermions in 14 and a composite tg. In this case the Higgs mass can be light
even without light partners, with 125 GeV obtained just by tuning.

Motivated by the fact that natural CHMs predict light top partners, in chapter 3 we
analysed the constraints on such scenario coming from precision measurements. We focused
on the class of doubly tuned models with light composite fermions in the 5, 10 or 4 of SO(5)
and with different flavour structures: U(3)3, U(2)3 and anarchy as introduced in chapter 1.
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Models with fermions in the 4 are highly constrained by EWPTs, most notably the distortion
of the Zbb coupling, and they are disfavoured irrespectively of the flavour structure. Anarchic
models suffer severe bounds from flavour, especially in the Kaon sector. Only assuming that
some coefficients, in principle of order unity, are sufficiently small, they can be reconciled
with existing bounds. A U(3)? flavour symmetry with significantly composite left-handed
quarks is disfavoured by EWPTs, while in the opposite case, with composite right-handed
quarks, dijet constraints from LHC are already probing the natural parameter space. Instead,
a minimally broken U(2)? symmetry has flavour bounds milder than U(3)? and negligible
constraints from EWPTs given the different degree of compositeness of the first two and the
third generation of quarks.

In chapter 4 we introduced Natural Superymmetry. Despite the amount of tuning of the
MSSM, we studied its phenomenology in light of the Higgs mass and BRs measurements. It
turned out that the Higgs sector of the MSSM can be meaningfully constrained by the Higgs
coupling fit. Over the full range of tan 3 a heavy extra Higgs lighter than 350 GeV is excluded
at 95% CL, at least for the configuration we have considered. However, the possibility of an
extra CP-even Higgs below 125 GeV is still allowed by current data, although in a squeezed
region of the parameter space.

The NMSSM as a motivated option for natural SUSY has been discussed in chapter 5.
After a brief general discussion, we quantified the impact of Higgs couplings on the NMSSM
extended Higgs sector. With some simplifying assumptions we focused on spectra with
only two light CP-even scalars and the third one decoupled. Contrary to the case where
the doublet-like state is light, the case with a light singlet-like state (dubbed H-decoupled
scenario) is poorly constrained by the fit to the Higgs couplings. The H decoupled case
can be probed by direct searches, with hh and ZZ as two prominent decay channels for the
heavy extra Higgs. Also the possible enhancement of the triple Higgs coupling could be a
signature of this scenario. Both the S and H decoupled cases allow for an extra scalar lighter
than 125 GeV in regions not excluded by LHC and LEP.

In the final chapter we have discussed a comparison of precision tests in specific examples
of models presented in this thesis. We studied the overall impact of Higgs and EW observables
on a few fully calculable models. Both existing data and projections of future experiments
have been used, such as LHC14 at 300/fb and also HL-LHC and TLEP. In all the models
under consideration, the Higgs couplings will have a significant impact regardless of the
weakly or strongly-coupled nature of the model, while EWPTs seem particularly relevant
only for the latter.
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