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In the past few years experiments have revealed the 

existence of a large number of resonances in elementary 

particle reactions. Many physicists have found at­

tractive the idea of considering these resonances as 

unstable particles, decaying via strong interactions, 

but to be treated on an equal basis with the stable 

particles. This poses the challenge to the S-matrix 

theory of strong in t e rac t ions 1 } of dealing with pro­

cesses in which unstable particles occur as intermediate 

or external particles. Forces arising from the ex­

change of unstable particles have been the subject of 

intensive investigation, i.e., the exchange of a p-meson 

(J = I = 1 pion-pion resonance) in pion-pion scat­

tering. As an example, we shall be concerned here 

with processes such as n+N-^p+N, where the un­

stable particle occurs as an external particle, and with 

the effect of this process on elastic pion-nucleon scat­

tering. One cannot insert an unstable particle state 

directly into an ^-matrix theory, because in such a 

theory transitions are defined only between asymptotic 

states. Therefore we consider processes such as 

n+N-+n+n+N9 using the existence of the pion-pion 

resonance to reduce the complexity due to the three 

body state 2 ) . 

In the case of an S-wave pion-pion resonance, for 

example, the first approximation is to assume that the 

amplitude T21 for the pion production process depends 

only on the invariant mass squared co of the two 

final state pions in addition to the usual centre-of-mass 

energy squared variable s, and invariant momentum 

transfer variable t between the initial and final nucléon. 

For pion-pion resonance states of angular momentum 

/ > 0 there is a further dependence on the orientation 

of the momentum of these pions in their centre-of-mass, 

which is given explicitly by the spherical harmonic 

of order /. We shall restrict our discussion here to 

the / = 0 case. We assume further that as a function 

of s, t and œ this transition amplitude is analytic 

except for poles and branch points associated with 

single particle and multiparticle intermediate states 

respectively. The physical values of the amplitude 

are obtained by approaching each of the branch cuts 

from the upper half of the corresponding complex 

plane. In general, the location of each cut depends 

on the other variables; for some range of values of 

these variables the cut extends below the physical 

threshold and into the complex plane. 

We require that the discontinuity of T21 in s and m 

satisfy a generalized form of the unitarity condition 

above their physical t h r e s h o l d s 3 , 4 0 , s = (M+fi)2 

and co = Aji2 respectively, (M is the nucléon mass 

and ft is the pion mass) : 

(*) W o r k suppo r t ed in p a r t by t he U . S . A t o m i c Ene rgy Commiss ion . 

In Eqs. (1) and (2), Tn is the amplitude for pion-

nucleon scattering, T 2

C

2 is the part of the amplitude 
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for the process n+n+N->n+n+N excluding a dis­

connected contribution in which the pions scatter 

without interacting with the nucléon, and 5(co) is the 

S-wave pion-pion phase shift. The subscript + ( — ) 

indicates that the corresponding variable is taken 

above (below) the real axis. The primes designate 

intermediate variables, and the symbol I represents 

the phase space integrals over the 4-momenta of the 

pion and nucléon in intermediate states. An approxi­

mation has been made in keeping only the two and 

three particle intermediate states of lowest mass. Simi­

lar equations are also satisfied by the transition 

amplitudes F u and T22 • 

Combining these discontinuity equations together 

with the reality condition 

it can be readily verified that T21 satisfies the physical 

unitarity condition. The essential point, however, is 

that the quantity which appears under the integrals in 

dispersion relations for T21 in the s variable, for 

example, is the discontinuity of T2l in s, which satis­

fies Eq. 1, while the unitarity condition gives rise to 

an equation for the discontinuity of T2i in s and œ 

simultaneously, and is therefore not directly useful. 

The discontinuity equation for T21 in œ, Eq. (2), 

and a similar equation for T22 can be satisfied by 

introducing the functions 

It can be readily verified that M2i and M22 have no 

discontinuity in co for co^4/* 2 . We note that Eq. (4) 

is the relativistic form of the final state interaction 

theorem of Watson 5 ) . 

Substituting Eq. (4) in Eq. (1) we then obtain an equation for the discontinuity of M21 in s, 

The approximation we now make is based on the assum ption of a narrow resonance for S-wave pion-

pion scattering which implies that \f(œ)\ has a sharp peak at some value co = m2, where m is defined as 

the mass of the unstable particle. Since M21 and M22 are analytic functions of co, we can expand them in 

a Taylor series in the variable of integration co' about m2. Due to the factor | / (co ' ) | 2 under the integral in 

Eq. (6), a good approximation is to keep only the first term in this expansion. The integral over co' 

can then be carried out explicitly. Projecting out partial waves of angular momentum / we obtain 

where 

and Pi(s), p2(s, co) are the zN and miN phase space factors. 

For co = m2 Eq. (7) is identical in form to the 

unitarity condition for the production amplitude of 

a stable particle of mass m. The fact that we are 

dealing with an unstable particle appears in the gen­

eralized phase space integral, Eq. (8). 

The procedure in establishing the integral equations 

satisfied by the amplitudes Mtj from dispersion rela­

tions is quite similar to the corresponding problem 

with stable particles. However, in approximating the 

unphysical singularities of partial wave amplitudes in 

where /(co) is the S-wave pion-pion scattering ampli­

tude 
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the s variable, proper care has to be taken in order 

to insure that the analytic properties in the œ variable 

are satisfied. If one keeps, for example, only the 

contribution from the single pion intermediate state 

in the ^-channel (see Fig. 1) corresponding to the 

longest part of the range of the forces in the ^-channel, 

one finds that the amplitudes M21 and M22 have 

branch points at œ = 4fi2 violating the condition that 

they be analytic for œ ^ 4fi2. The appropriate modi­

fication in this case is to include also the contribution 

of the single particle intermediate state indicated on 

Fig. 2. In this diagram the two final state pions do 

not interact at all, but it is essential that it be included 

to satisfy the unitarity condition in the present approx­

imation. 

Fig. 1 1-pion exchange interaction. 

Fig. 2 Additional interaction necessary for consistent formula­
tion of integral equations for T 2 i . 

The resulting coupled non-linear and singular inte­

gral equations can be reduced by use of an extended 

form of the multichannel ND~1 method 6 ) to Fredholm 

integral equations, which can be solved by straight­

forward numerical methods. The first order iteration 

solution of the elastic pion nucléon scattering ampli­

tude corresponds to the strip approximation 3 ' 7 ) of 

the Mandelstam representation x ) in which the pion-

pion scattering amplitude is approximated by a reso­

nance in a single angular momentum state 8 ) . 

We hope that the method which we have outlined 

here for dealing with unstable particles in an 5-matrix 

theory of strong interactions may prove useful in the 

treatment of the large number of such particles which 

have recently been discovered experimentally. 
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