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In the past few years experiments have revealed the
existence of a large number of resonances in elementary
particle reactions. Many physicists have found at-
tractive the idea of considering these resonances as
unstable particles, decaying via strong interactions,
but to be treated on an equal basis with the stable
particles. This poses the challenge to the S-matrix
theory of strong interactions » of dealing with pro-
cesses in which unstable particles occur as intermediate
or external particles. Forces arising from the ex-
change of unstable particles have been the subject of
intensive investigation, i.e., the exchange of a p-meson
(/=1 =1 pion-pion resonance) in pion-pion scat-
tering. As an example, we shall be concerned here
with processes such as n-+N—p-+ N, where the un-
stable particle occurs as an external particle, and with
the effect of this process on elastic pion-nucleon scat-
tering. One cannot insert an unstable particle state
directly into an S-matrix theory, because in such a
theory transitions are defined only between asymptotic
states. Therefore we consider processes such as
n4+ N—n-+n+ N, using the existence of the pion-pion
resonance to reduce the complexity due to the three
body state 2.

In the case of an S-wave pion-pion resonance, for
example, the first approximation is to assume that the
amplitude T,, for the pion production process depends
only on the invariant mass squared w of the two
final state pions in addition to the usual centre-of-mass
energy squared variable s, and invariant momentum

transfer variable ¢ between the initial and final nucleon.
For pion-pion resonance states of angular momentum
/>0 there is a further dependence on the orientation
of the momentum of these pions in their centre-of-mass,
which is given explicitly by the spherical harmonic
of order /. We shall restrict our discussion here to
the [ = 0 case. We assume further that as a function
of s,¢ and w this transition amplitude is analytic
except for poles and branch points associated with
single particle and multiparticle intermediate states
respectively. The physical values of the amplitude
are obtained by approaching each of the branch cuts
from the wupper half of the corresponding complex
plane. In general, the location of each cut depends
on the other variables; for some range of values of
these variables the cut extends below the physical
threshold and into the complex plane.

We require that the discontinuity of 75, in s and w
satisfy a generalized form of the unitarity condition
above their physical thresholds %, s = (M4u)*
and o = 4u* respectively, (M is the nucleon mass
and u is the pion mass):

Ty (sptw)— Ty (s_tw) = 2i Y {Ty (s 1'0) Ty (s-t")+

+T5,(s o ' 00" Ty (s_t"0")}
(D
Ty (stw ) — Ty, (stw_) = 2ie® sin §(w) Ty (stwr_) (2)

In Egs. (1) and (2), Ty, is the amplitude for pion-
nucleon scattering, T, is the part of the amplitude
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for the process n-+n+ N—>n+n+ N excluding a dis-
connected contribution in which the pions scatter
without interacting with the nucleon, and §(w) is the
S-wave pion-pion phase shift. The subscript +(—)
indicates that the corresponding variable is taken
above (below) the real axis. The primes designate
intermediate variables, and the symbol X represents
the phase space integrals over the 4-momenta of the
pion and nucleon in intermediate states. An approxi-
mation has been made in keeping only the two and
three particle intermediate states of lowest mass. ~ Simi-
lar equations are also satisfied by the transition
amplitudes Ty, and T3, .

Combining these discontinuity equations together
with the reality condition

T (xy...) = T(x*y*...) 3)

it can be readily verified that T, satisfies the physical
unitarity condition. The essential point, however, is
that the quantity which appears under the integrals in
dispersion relations for 7,, in the s variable, for

example, is the discontinuity of 7,, in s, which satis-
fies Eq. 1, while the unitarity condition gives rise to
an equation for the discontinuity of T,; in s and @
simultaneously, and is therefore not directly useful.

The discontinuity equation for T,; in w, Eq. (2),
and a similar equation for 7, can be satisfied by
introducing the functions

M, (stw) = T, (stw)/f(w)
M, (stw') = Ty, (stww")/ [f(w)f(w’)] 4

where f(w) is the S-wave pion-pion scattering ampli-
tude

flw) =16z \/ ——C()———Z-ei‘s(“’) sin é(w) ®)
w—4u

It can be readily verified that M,, and M,, have no
discontinuity in w for @>4u*. We note that Eq. (4)
is the relativistic form of the final state interaction
theorem of Watson .

Substituting Eq. (4) in Eq. (1) we then obtain an equation for the discontinuity of M, in s,

M (s tw)— My (s_tw) = 2i ) {M (s @) Ty1(s_t")+ M (s 1’ 000")| f(@")| "My (s-1"00')} (6)

The approximation we now make is based on the assum ption of a narrow resonance for S-wave pion-
pion scattering which implies that | f (w)] has a sharp peak at some value w = m? where m is defined as
the mass of the unstable particle. Since M,; and M,, are analytic functions of w, we can expand them in
a Taylor series in the variable of integration w’ about m*. Due to the factor ]f(a)’)l2 under the integral in
Eq. (6), a good approximation is to keep only the first term in this expansion. The integral over o’
can then be carried out explicitly. Projecting out partial waves of angular momentum / we obtain

[M121(S+w) _Mlzl(s—w)]/zi = M121(5+W)P1(S +)M11 1(s-)+ M122(5+wm2)/72(5+)9[3 _(M+2#>)2]M£1(S—m2) (7N

where

(Vs—M)?

P = I dopy(s)]fi@)] ®)

and py(s), p,(s, w) are the N and nnN phase space factors.

For @ = m* Eq. (7) is identical in form to the
unitarity condition for the production amplitude of
a stable particle of mass m. The fact that we are
dealing with an unstable particle appears in the gen-
eralized phase space integral, Eq. (8).

The procedure in establishing the integral equations
satisfied by the amplitudes M;; from dispersion rela-
tions is quite similar to the corresponding problem
with stable particles. However, in approximating the
unphysical singularities of partial wave amplitudes in
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the s variable, proper care has to be taken in order
to insure that the analytic properties in the @ variable
are satisfied. If one keeps, for example, only the
contribution from the single pion intermediate state
in the f-channel (see Fig. 1) corresponding to the
longest part of the range of the forces in the s-channel,
one finds that the amplitudes M,, and M,, have
branch points at @ = 4u? violating the condition that
they be analytic for @ > 4u®. The appropriate modi-
fication in this case is to include also the contribution
of the single particle intermediate state indicated on
Fig. 2. In this diagram the two final state pions do
not interact at all, but it is essential that it be included
to satisfy the unitarity condition in the present approx-
imation.
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Fig. 1 1-pion exchange interaction.
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Fig. 2 Additional interaction necessary for consistent formula-
tion of integral equations for T, .

The resulting coupled non-linear and singular inte-
gral equations can be reduced by use of an extended
form of the multichannel ND ™' method ® to Fredholm
integral equations, which can be solved by straight-
forward numerical methods. The first order iteration
solution of the elastic pion nucleon scattering ampli-
tude corresponds to the strip approximation > 7 of
the Mandelstam representation D in which the pion-
pion scattering amplitude is approximated by a reso-
nance in a single angular momentum state %)

We hope that the method which we have outlined
here for dealing with unstable particles in an S-matrix
theory of strong interactions may prove useful in the
treatment of the large number of such particles which
have recently been discovered experimentally.
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