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The double-differential 7* production cross sections in interactions of charged pions on targets at high momentums are analyzed
by using a multicomponent Erlang distribution which is obtained in the framework of a multisource thermal model. The calculated
results are compared and found to be in agreement with the experimental data at the incident momentums of 3, 5, 8, and 12 GeV/c
measured by the HARP Collaboration. It is found that the source contributions to the mean momentum of charged particles and to
the distribution width of particle momentums decrease with increase of the emission angle, and the source number and temperature

do not show an obvious dependence on the emission angle of the considered particle.

1. Introduction

Charged particles are the main products in hadron and heavy
ion induced nuclear reactions at high energies. In such col-
lisions, the particle distributions can provide information on
the properties of interacting system [1-3]. These distributions
include multiplicity distribution, rapidity and pseudorapidity
distributions, azimuthal and polar angular distributions,
momentum and transverse momentum distributions, and
double-differential cross sections.

Many models have been introduced to describe particle
productions in high energy collisions. For example, the
FRITIOF model [4], the VENUS model [5, 6], the RQMD
model [7-9], the HIJING model [10-12], a multiphase trans-
port model (the AMPT model) [13], the Gribov-Glauber
model [14], the QGSM model [15], the color glass condensate
(CGC) model [16], the perturbative QCD plus saturation
plus hydrodynamics (EKRT) model [17], the ART model [18],
the ZPC model [19, 20], the Hydrodynamics model [21, 22],

the string percolation model [23], a running coupling nonlin-
ear evolution [24], a consistent quantum mechanical multiple
scattering approach (EPOS) [25, 26], a combination model of
constituent quarks and Landau hydrodynamics [27], a two-
stage gluon model or a gluon dominance model [28], the KKT
model [29], a multisource thermal model [30-32], and others
are used in the data analyzes of high energy collisions.

As a challenging investigation, the multisource thermal
model has been proposed and developed by us to describe
the multiplicity distribution of charged particles [33] and
isotopic production cross section of emitted fragments [34].
It is known that the multisource thermal model is very
simple in describing some experimental data. Particularly, it
can result in a multicomponent Erlang distribution which
describes uniformly some distributions. In most cases, the
experimental data have not been presented by the momen-
tum distribution, but the transverse momentum distribution
of particles. We are interested in analyzing the momentum
distribution in terms of probability or double-differential
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FIGURE 1: Double-differential 7" production cross sections in 7z~ -Be interactions at high momentums. The circles represent the experimental
data of the HARP Collaboration [35] and the curves are our calculated results. Different panels are scaled by multiplying different amounts
marked in the panels. The three numbers in (- --) in each panel represent the values of {p;, ), m,, and y*/dof, respectively.

cross section for the further test of the multisource thermal
model.

In this paper, we will use the multisource thermal
model to describe the double-differential 7* production
cross sections in charged pion induced nuclear reactions
at high momentums. The model is described in Section 2.
The comparisons with the experimental data at the incident
momentums of 3, 5, 8, and 12 GeV/c measured by the HARP

Collaboration [35] are shown in Section 3. Finally, we give our
conclusions in Section 4.

2. The Model and Method

The model used in the present work can be found in our
previous work [33, 34] which present related formulations
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FIGURE 2: The same as Figure 1, but showing the results for 77~ production cross sections.

in terms of multiplicity distribution of final-state products
and neutron number distribution in isotopes. To give a whole
presentation of the present work, we introduce briefly the
model [33, 34] on the multicomponent Erlang distribution in
terms of charged particle momentum p and its distribution
in the following. In the model, many emission sources of
particles and fragments are assumed to form in collisions.
According to different interaction mechanisms or event
samples, the sources are divided into I groups (subsamples).

The source number in the jth group is assumed to be m;.

It is assumed that each source contributes to momentum
distribution to be an exponential function, that is, the
momentum (p;;) distribution contributed by the ith source
in the jth group is given by

)= gsee(gs) o

where (p;;) denotes the mean momentum contributed by the
ith source in the jth group [33, 34]. Generally, the mean



Advances in High Energy Physics

n"-Be, 3GeV/c
0.14 — —
6= 0.05-0.10rad, x0.5

0.12 |— ¢ (0.76, 5, 3.280)
0.1 —

0.08 —

0.06 —

0.04 —¢ o

0.02

d20™ 1dpdQ (barn/GeV ¢! sr)

5GeV/c,x0.3
(2.25, 3, 1.059)

12 GeV/c, x0.5
(1.46, 3,1.935)

8GeV/c, x0.6
(2.88, 2, 0.425)

9 B
ﬂj‘? ¢¢#

0 = 0.10-0.15rad, x0.7 x0.8

(1.22, 3, 0.756)

d*6™ 1dpdQ (barn/GeV ¢ sr)

(1.19,3,0.556) | (#

x0.6 x0.6
(0.90, 3, 0.852) (1.03, 3, 0.453)

| 6=0.15-0.20rad, x1.0 x0.9

(1.05,2,0.376)

d26™ | dpdQ (barn/GeV ¢! sr)

(0.90, 2, 1.025)

x0.7
(0.90, 2, 0.475)

x0.5
(0.90, 2, 0.667)

x1.1

6 = 0.20-0.25rad, x1.6
(0.68, 2, 0.696)

d*6™ 1dpdQ (barn/GeV ¢ sr)

(0.75, 2, 0.710)

x1.1
(0.98,2,0.513)

x1.2
(1.02, 2, 0.330)

p (GeV/c)

p (GeV/c)

p (GeV/c) p (GeV/c)

FIGURE 3: The same as Figure 1, but showing the results in 71" -Be interactions.

momentum contributed by different sources in the same
group is assumed to be the same. The particle momentum
distribution contributed by the jth group is then given by the
folding of m; exponential functions [33, 34]:

m;—1

P

T [ ——
00 e Cay) o

One can see that an Erlang distribution is obtained. The
momentum distribution contributed by the I groups is given
by a weighted sum of I Erlang distributions:

f(p)= ijfj (p) (3)

where k; denotes the weight factor and obeys the normaliza-

tion le:l k i =1To avoid the factorial calculation in (2) in
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FIGURE 4: The same as Figure 1, but showing the results for 7~ production cross sections in 7* - Be interactions.

the case of m; being a large value, the Monte Carlo method is

]

used to calculate the momentum distribution [33, 34].
In the Monte Carlo calculation, let R;; denote random

variable in [0, 1]. We have

py=—{py) InR;

group is

(4)

p=-) (py)InRy
i=1

for the ith source in the jth group due to (1) which obeys the
exponential function. The momentum contributed by the jth

(5)
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FIGURE 5: The same as Figure 1, but showing the results for 77" production cross sections in 7~ -C interactions.

due to the fact that (2) is the folding of m; exponential To obtain the parameter values, for the purpose of
functions. The mean momentum contributed by the I groups ~ convenience, we can use the idea of the least-square method.
is The values of (p;;) and m; are changed from low to high step

; by step and the values of y* can be obtained. The former
(p) = Z k; < Pij> m; (6)  Parameter can change continuously and the latter one is a
st series of integers. The best parameter values correspond to the
minimum y? value, and the acceptable y* values determinate
due to the fact that (3) is a weighted sum. the parameter errors.
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FIGURE 6: The same as Figure 1, but showing the results for 7~ production cross sections in 77~ -C interactions.

In the model, the value of I denotes the number of types
of emission sources. Generally, I = 1 — 3, which renders a
small number of types of emission sources. The total number
of emission sources can be small or large. A small number
of emission sources means the hadronic sources, and a large
number of emission sources means the parton degree of
freedom. In the charged pion induced nuclear reactions at 3—
12 GeV/c which are considered in the present work, we expect

a small number of emission sources due to the saturation
effect of target nuclei and not too high incident momentums.

The imbalances in mechanics and geometry render the
interacting system to have kinetic, hydrodynamical, and
thermaldynamical evolutions. The system or subsystems
are assumed to stay in an equilibrium state or in local
equilibrium states at the stage of chemical freeze-out. In
the model, the inverse slope (mean transverse momentum)
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FIGURE 7: The same as Figure 1, but showing the results for 7" production cross sections in 7*-C interactions.

in the exponential distribution of transverse momentums
is approximately regarded as the temperature parameter.
According to the relation between the transverse momentum
pr and the momentum p, we have the temperature T =

Z;zl k;{p;;} sin @ for a given polar angle 0. Although there is
a 0 in the presentation of T, we do not expect that there is a
dependence of T on 6.

3. Comparisons with Experimental Data

The double-differential 7* and 7~ production cross sections
measured in different emission angle (0) ranges in 7~ -Be
interactions at 3, 5, 8, and 12 GeV/c are shown in Figures 1
and 2, respectively. Different panels are scaled by multiplying
different amounts to give all of them in a whole figure.
The circles represent the experimental data of the HARP
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FIGURE 8: The same as Figure 1, but showing the results for 7~ production cross sections in 7" -C interactions.

Collaboration [35] and the curves are our calculated results.
In the calculation, we have used I = 1. The best values
of (p,;) and m,, as well as the value of x> per degree of
freedom ( XZ/dof), are given in the figure in terms of ({p;;),
my, x*/dof), where (p;,) is in the units of GeV/c. The relative
errors for (p;;) are about 6%, which are only statistical errors,
and the systematic errors are eliminated. The error for m, can
be neglected due to that the smallest alteration m; + 1 results
in different distribution shape with an unexpected large x°.

Similarly, the double-differential 7 and 7~ production cross
sections measured in different 0 ranges in 77" -Be interactions
at 3, 5, 8, and 12GeV/c are shown in Figures 3 and 4,
respectively. From Figures 1-4 one can see that the model
with [ = 1 describes uniformly the experimental data in most
cases.

Figures 5-8 are the same as Figures 1-4, respectively,
but showing the results for 77*-C interactions. Figures 9-12
are the same as Figures 1-4, respectively, too, but showing



10

Advances in High Energy Physics

n -Al, 3GeV/c
0.14 — —
6= 0.05-0.10rad, x1.0

0.12 — (2.65, 2, 0.754)

0.08

0.06 ¢

0.04

d20"+/dpdﬂ (barn/GeV ¢! sr)

0.02

5GeV/c, x0.7
(1.40, 2, 0.337)

12GeV/c, x0.3
(1.40, 2, 0.403)

8GeV/c, x0.3
(1.27,2,0.719)

S I O B
6 =0.10-0.15rad, x1.0
(0.66, 2, 3.600)

d20"+/dde (barn/GeV ¢! sr)

x0.6
(0.77, 2, 1.509)

x0.4 x0.3
(0.98,2,0.716) (1.17, 2, 1.133)

6 = 0.15-0.20rad, x1.2
(0.59,2,0.136)

+

d*o™ /dpdQ (barn/GeV ¢! sr)
o
&

I
x0.7
(0.49, 3,0.747)

x0.4
(0.75,2,0.731)

x0.6
(0.79, 2, 1.248),

6 = 0.20-0.25rad, x1.1 x0.6
(0.36, 3, 0.600)

0.14 |—

d20"+/dde (barn/GeV ¢! sr)

) [ (0.32,5,0.970) |

%44 3,0.957

x0.6 x0.3
(0.40, 4, 0.927)

0 L
0 2 4 6

p (GeV/c)

(
|
2 4
p (GeV/c)

0.02 — —
0

o2}

|
6 8

0 2 4 6 8 0 2 4 6 8
p (GeV/c) p (GeV/c)

FIGURE 9: The same as Figure 1, but showing the results for 7* production cross sections in 7~ -Al interactions.

the results for 77-Al interactions. We see that the model
describes uniformly the experimental data in most cases.
In [35], the experimental data on 7" -Cu, Sn, Ta, and Pb
interactions at high momentums have been given, too. A
similar conclusion can be obtained in the case of fitting the
experimental data by using the model.

From Figures 1-12 we see that the distribution width
which is represented by (p;)m, shows a decrease with
increases of 6. This phenomenon renders that the emission
source has a forward movement along the beam direction.

As a result, comparing with the situation in the source rest
frame, the pion with small 0 has a large momentum and that
with large 0 has a small momentum due to the effect of source
momentum. We see also from Figures 1-12 that m1, is only
in the range from 2 to 12 and the most probability is 2. The
sources are obviously incident pion and target nucleons. The
number of participant target nucleons is in the range from
1 to 11 and the most probability is 1. Except the participant
nucleons, other nucleons in target nucleus are the spectator
nucleons.
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FIGURE 10: The same as Figure 1, but showing the results for 7~ production cross sections in 77~ -Al interactions.

To see clearly the changing trends of the parameters,
the dependences of (p;;), m,, {(p;;)m,, and T on 0 for
n* produced in 7 -Be, C, and Al interactions are shown
in Figure 13. The different symbols represent the parameter
values obtained at different momentums, and for targets Be,
C, and Al the results are taken from Figures 1, 5, and 9,
respectively. Similarly, the corresponding dependences for
7~ produced in the same interactions are given in Figure 14
which holds the parameter values taking from Figures 2, 6,
and 10. The results for 7 and 7~ produced in 7" induced

interactions are presented in Figures 15 and 16 which hold
the parameter values taking from Figures 3, 7, and 11,
as well as Figures 4, 8, and 12, respectively. We see that
(ps) has a decreasing trend, m; and T do not show an
obvious change, and (p; )m, has a decreasing trend with
increasing 0. This renders again that the emission source has a
forward movement along the beam direction, which leads the
momentum distribution width of produced pions to be small
at large 0. The target nucleus presents a saturation effect on
the source number and temperature.
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FIGURE 11: The same as Figure 1, but showing the results for 7% production cross sections in 77" -Al interactions.

From Figures 1-16, we see that the changing trends of
the parameters on incident momentum and target size are
not obvious. We have not seen an obvious difference of
parameters for 7° and 7~ produced in reactions induced
by incident 7" and 7~ To see clearly the dependences of
parameters on incident momentum (P) and target size, we
combine the results of 7* produced in the four 6 ranges in
reactions induced by 77" and give the mean values of (p;; ), m,,

(piymy, and T (i.e,, {p;), 1, {p;ym,, and T) for different
incident momentums and target nuclei in Figures 17(a)-
17(d), respectively, where the error bars for (p; ), {(p;)m,
and T are obtained according to the error transformation
formula, and those for 7, are standard deviations. One
can see that the concerned mean values have no obvious
dependence on incident momentum and target size. We
would like to point out that the nondependence on incident
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FIGURE 12: The same as Figure 1, but showing the results for 7~ production cross sections in 7" -Al interactions.

momentum may be a result of the too narrow range of
incident momentums, and the nondependence on target size
renders the saturation effect of target nuclei in charged pion
induced reactions at the considered incident momentums.
Particularly, the extracted mean temperatures are in the
range from (107 + 7)MeV to (147 + 9) MeV which are
lower than the critical temperature (156 MeV) for phase
transition from hadron matter to quark matter obtained by
the thermaldynamic model [36].

4. Conclusions and Discussions

To conclude, the multisource thermal model is used to give
a new and simple description of the double-differential 7*
production cross sections measured in different emission
angle ranges in interactions of 7" on different targets at
the considered incident momentums. In most cases, the
model describes well the experimental data of the HARP
Collaboration. In the calculation we have used I = 1. This
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means that there is only one type of emission sources in ~ do not play an important role at the considered incident
the considered emission angle ranges. The parameter m1;, is ~ momentums.

small, which renders that the emission sources are incident The parameter 1, does not show an obvious change with
pion and target nucleons. The structures of pion and nucleon  increases of . For a given interaction, it is a natural result that
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the source number has no relation with the emission angle
of produced particle. The parameter (p;;) and the product
(pi1)m; decrease obviously with increases of 6. Considering
the noneffect of m,, (p;;) has the same behavior as {(p;;)m,.
As the distribution width of particle momentum, {p;;)m,
has a small value at large 8 because the emission source

has a forward movement along the beam direction and the
particle has a momentum transformation from the source rest
frame to the laboratory reference frame.

As the source number, m, is not related to the concerned
incident momentum and target size. The source contribution
({p;1)) to the mean momentum of charged particles and
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the distribution width ({p;; )m;,) of the particle momentums effect of target nuclei in the concerned reactions. It is expected
are not related to the concerned incident momentum and  that the concerned parameters will increase at a high enough
target size, too. The nonrelation to the concerned incident  incident momentum.

momentum is caused by the narrow momentum range, and The extracted temperatures do not show an obvious
the nonrelation to the target size is the result of saturation = dependence on the incident momentum, target size, and
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polar angle in the considered collisions. The target nucleus
presents a saturation effect on the source temperature. The
extracted mean temperatures over polar angles are in the
range from (107 + 7) MeV to (147 + 9) MeV which are lower
than the critical temperature (156 MeV) for phase transition

from hadron matter to quark matter obtained by the thermal-
dynamic model [36]. It is expected that higher temperatures
will be obtained at higher incident momentums.

Because the transverse momentum pr = psin0, the
distribution of pr is similar to that of p at a given 0.



18

1.8 —
1.6 —
14—

1.2 —

a8

0.6 —

(pi1) (GeV/c)
I
—p—

04—

02—

8
P (GeV/c)

()

10

12

14

4.5 —

35—

(pi1ym(GeV/c)
o
I
——

15—

0.5 —

(c)

8
P (GeV/c)

10

12

14

Advances in High Energy Physics

4.5 —

35—

25—

15 —

0.5 |—

0 2 4 6 8 10 12 14
P (GeV/c)

(b)

0.25 |—

02—

T (GeV)
(=}
o
I
Ot
-
>0~

0.1 —
0.05 —
0 I I I I I I I
0 2 4 6 8 10 12 14
P (GeV/c)
O Be
Ooc
A Al

(d)

FIGURE 17: Dependences of (a) {p;,), (b) my, (c) {p,;)m,, and (d) T on incident momentum P for 7* produced in 7* induced reactions. The
different symbols represent the corresponding values obtained for different targets. The original values of the concerned parameters are taken

from Figures 1-12.

The present modelling description can be used for the trans-
verse momentum distribution if we use py instead of pin (1)-
(3). In fact, in our previous work [37], the transverse momen-
tum distributions of identified particles (7%, n°, K*, p, p,

and J/y) produced in proton-proton, proton- (deuteron-
) nucleus, and nucleus-nucleus collisions at the Relativistic
Heavy Ion Collider and related energies are studied by using
the multisource thermal model. This means that the present
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model can be used in different interacting systems in a wider
energy region.
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