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Abstract. While deep learning techniques are becoming increasingly more
popular in high-energy and, since recently, neutrino experiments, they are less
confidently used in direct dark matter searches based on dual-phase noble gas
TPCs optimized for low-energy signals from particle interactions.
In the present study, the application of modern deep learning methods for event
vertex reconstruction is demonstrated with an example of the 50-tonne liquid
argon DarkSide-20k TPC with 8200 photosensors.
The developed methods successfully reconstruct event positions within sub-cm
precision and apply to any dual-phase argon or xenon TPC of arbitrary size with
any sensor shape and array pattern.

1 Dual-phase TPCs, Electroluminescence, and Position
Reconstruction

Particle detection and identification in a dual-phase time-projection chamber (TPC) relies on a
prompt light pulse (S1) induced by scintillation, followed by a delayed pulse (S2) associated
with ionization electrons. The latter are drifted upwards in an electric field and extracted
into a thin layer of gas, where after being accelerated induce a secondary light signal by
electroluminescence. Both S1 and S2 signals are detected by photosensors below and above
the active volume.

A strong feature of a TPC particle detector is the possibility to determine all three coor-
dinates of an interaction vertex in the target volume, which are used for position-dependent
signal corrections and fiducialization of the target volume for background suppression. The
z-coordinate is inferred with sub-mm precision from the measured time difference between
S1 and S2 with known electron drift velocity and TPC drift length. The XY coordinates are
reconstructed from the S2 signal distribution.

The proportional scintillation signal S2 is generated in a well-defined plane between the
liquid-gas interface and the anode electrode (figure 1). About half of the light is observed
by a fraction of the photosensors in the top array, just above the S2 production region, while
the other half is rather uniformly distributed among the bottom array. The top pattern, being
localized and consisting mostly of direct, non-reflected light, is used for XY vertex recon-
struction (figure 1). For an optimal XY resolution, the top photosensor array is typically
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placed at a distance H from the production region roughly equal to the size of the sensor unit
S .

Figure 1. A simplified model (not-to-scale) of a dual-phase TPC and propagation of the electrolumines-
cence light (S2) from the production in the gas layer to the detection by the top array of photodetection
modules (PDMs) at a vertical distance H.

The conventional event vertex reconstruction algorithms are based on analysis of light
response functions (LRFs) and likelihood fitting of the top array light patterns [1]. The hit
patterns are usually generated by detailed optical Monte Carlo (MC) simulations, or can even
be deduced in an accurate analysis from measured data. While likelihood-based algorithms
give very good vertex reconstruction resolution (sub-cm precision [1]), they are iterative and
expected to be computationally heavy and slow. Machine learning techniques were shown to
perform with high accuracy and computing efficiency, for instance, in the XENON10 experi-
ment [2].

Modern deep learning methods are being increasingly applied for event reconstruction in
neutrino experiments such as MicroBooNE [3, 4] and DUNE [5, 6]. Moreover, studies based
on convolution neural networks (CNNs) are also found for dual-phase TPC-based experi-
ments, for example, the EXO-200 [7], the XENONnNT [8], and the DarkSide-50 [9] collab-
orations. In addition to these, several applications of various neural network techniques were
demonstrated for the LUX xenon TPC [10], not covering direct XY vertex reconstruction.

The next-generation experiments based on dual-phase TPCs, which will consist of tens
of tonnes of condensed argon or xenon in the target and will be equipped with thousands of
photosensors [11], appear as an appealing subject for deep learning studies.

In this work, we describe the network design, training techniques, and software tools de-
veloped to train networks with the purpose of event vertex reconstruction in the DarkSide-20k
experiment, with the ultimate objective of developing a complete deep neural network (DNN)
based data reconstruction chain that can be adapted to any size, shape, and photosensor place-
ment for dual-phase TPCs. DarkSide-20k will be a dual-phase argon TPC of about 50 t target
mass for dark matter detection [12] at Laboratori Nazionali del Gran Sasso (LNGS), Italy,
with 8200 silicon photodetection modules in the inner detector. A future experiment ARGO
is being planned at SNOLAB, Canada, which will include an argon TPC with a target mass
of 370 t [11]. A comparison with past and current TPCs for direct dark matter searches is
shown in figure 2.
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Figure 2. Approximate characteristics of dual-phase xenon and argon TPCs for direct dark matter
searches (excluding DUNE): target size, number of DAQ channels, and data storage size.

Due to the radiogenic nature of a large component of the background, most background
energy deposits are found in the edges of the TPC. This fact combined with the fidualization
of the active volume allows to discriminate events of this nature. For this reason, an adequate
and precise position reconstruction is needed. An upper bound estimate for the XY spatial
resolution can be obtained from observing the amount of events of this nature that leak into
the fiducial volume (FV) given a certain spatial resolution (σr). Figure 3 shows the spatial
distribution of events of radiogenic nature as well as the percentage (R) of events falling into
the FV given a certain spatial resolution. These plots are based on a Monte Carlo simulation
that includes properties of the materials used in the construction of the DarkSide-20k detector.
It can be observed that the events start to leak into the FV when spatial resolutions reach
values greater than σr > 1 cm.

(a) (b)

Figure 3. a) Background spatial distribution of radiogenic nature events. In green, the FV boundaries.
b) Leakage of background events into the FV as a function of XY spatial resolution.
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2 Vertex Reconstruction for the DarkSide-20k Experiment

The data for the study have been generated in Monte Carlo simulations with G4DS [13],
a GEANT4-based application that includes a detailed model of the DarkSide-20k TPC and
relevant optical models for light propagation.

The electroluminescence signal (S2) is simulated as isotropically distributed photons with
the vacuum-ultraviolet (VUV) wavelength of 128 nm originating in a thin layer of gas argon
at the top of an octagonal TPC with the planar dimensions from one edge of the TPC to the
other of ∼3.5 m. This light is propagated in the detector volume and is eventually wavelength-
shifted to 420 nm in a Tetraphenyl Butadiene (TPB) layer covering the transparent acrylic
anode, and is subsequently detected by an array of 4100 silicon photodetection modules of
∼ 5 × 5 cm2 (figure 1).

Only the fraction of light detected by the top photosensor array is of interest to the present
study, and the bottom fraction of the electroluminescence signal is ignored, as light arrives
with a large solid angle due to the TPC height and after multiple scattering. The illumination
is not localized and additional information does not benefit the reconstruction. However, it
can be noted that information from both arrays can be used for more complex studies, such
as detection of anomalies and signal quality checks on real data.

The performed studies take into account scenarios of partial loss of photosensors at the
level of a single module and a full mechanical unit, as well as signal non-linearity and channel
saturation at various levels, and granularity of the top photodetection array.

Three different algorithms have been developed and are described in the following sec-
tions.

2.1 Fully Connected Layers

Fully Connected (FC) layers are used among a large variety of applications in the machine
learning realm due to the lack of manipulation the data needs before being fed to a model
[14]. This allows for the network to learn features present in the raw data given at hand with
relative ease. However, for large amounts of input dimensions space, this simplicity comes at
the expense of requiring many parameters, leading to computationally expensive processes.
Nonetheless, this method was used to investigate the performance of using exclusively a DNN
of FC layers. The model in figure 4 describes the architecture used for this approach; it is
composed of the input layer, three hidden layers with dropout and regularization included to
prevent over-fitting, and a final output layer with two output neurons that correspond to x and
y position estimates.

2.2 Convolutional Networks

2.2.1 Conv1D

Other standard machine learning structures are 1D CNNs. The foundation of these assemblies
is scalar multiplication and addition, making them widely used among a variety of applica-
tions parting from the fact that they are low cost and perform in real-time [15]. 1D Convo-
lution methods can be used to extract data features [16] and are widely used as a preceding
block in general machine learning (ML) models.

With the purpose of position reconstruction, this methodology was also explored by build-
ing the model shown in figure 5. This structure is composed of the block which performs the
one-dimensional convolution on the input data and a block that contains a DNN of FC layers.
As the data are fed forward in the convolutions block, the filter size of the convolution is kept
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Figure 4. Network graph of a 4 layer DNN with 4100 inputs and 2 outputs used for the method
described in section 2.1.

Figure 5. Architecture of the 1D CNN trained for the XY reconstruction in the DarkSide-20k experi-
ment with 4100 photosensors in the top array.

constant while the feature space is increased. Furthermore, pooling layers are used in be-
tween hidden layers to reduce the dimensionality of the parameter space before reaching the
following block. Once the convolution sector is finished, the data are flattened into a single
dimension array and fed to the DNN which outputs the reconstructed positions. The main
advantage of this approach over strictly using a DNN is that by the time the first layer in the
FC network is reached, the number of dimensions has been largely reduced and the parameter
toll is approximately one order of magnitude smaller than in the previous methodology.

2.2.2 Conv2D

Similar to its one-dimensional counterpart, 2D convolution is also widely used as a preceding
structure to DNNs in a variety of applications, for instance, picture recognition [17]. These
structures rely upon feature extraction and classification processes and are more conveniently
used for data structures that are two-dimensional in nature. One of their major advantages is
the facility to adapt these architectures to different sizes as well as being immutable to data
translations and scaling [15]. This property is widely exploited in section 3 in this study.
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(a) (b)

Figure 6. The architecture of the 2D CNN optimized for the XY reconstruction in the DarkSide-20k
experiment: a) Model Input data format. b) An example of the light fraction map generated with
the optical model implemented in G4DS. The top photosensor array consists of 4100 photosensors of
∼ 5 × 5 cm2 size.

For this method, the user can specify the input number of photosensors around the channel
that collects most of the light. A three-level deep square size array based on the user’s input
(figure 6) is filled with the light and position information of each channel before feeding it
to the model. Similar to the methodology described in the previous section, after the 2D
convolution block, the data is flattened and fed into the DNN of FC layers and the event’s
position is reconstructed.

3 Performance Evaluation

This section describes the performance of the three different approaches used for position
reconstruction. Furthermore, the method described in section 2.2.2 is used to investigate
the detector response when affected by saturation or loss of photosensor channels. Table
3 shows the spatial resolution for each of the methods applied. The spatial resolution is
defined as the standard deviation of the reconstructed error distribution of each coordinate.
The reconstructed error is simply the difference between the MC positions and the recon-
structed position outputted by the model. The FC DNN for instance, are 30% better when
reconstructing low energy events, [10-3000] photoelectrons, with respect to more traditional
methods like Center of Gravity (CoG) developed for the DarkSide-20k detector.

Method σx [cm] σy [cm]
FC DNN 0.34 0.33

1D Convolution 0.53 0.54
2D Convolution 0.55 0.53

Table 1. Spatial resolution obtained with the different methodologies used for XY position
reconstruction for events with [10-10000] photoelectrons.

Due to edge effects like wall reflections and irregular light patterns, the spatial resolution
tends to worsen as the radial distance (R) from the center of the detector increases. Figure
7 illustrates the performance of the model as a function of radial distance. The increasing

6
6

EPJ Web of Conferences 251, 03029 (2021)	 https://doi.org/10.1051/epjconf/202125103029
CHEP 2021



(a) (b)

Figure 6. The architecture of the 2D CNN optimized for the XY reconstruction in the DarkSide-20k
experiment: a) Model Input data format. b) An example of the light fraction map generated with
the optical model implemented in G4DS. The top photosensor array consists of 4100 photosensors of
∼ 5 × 5 cm2 size.

For this method, the user can specify the input number of photosensors around the channel
that collects most of the light. A three-level deep square size array based on the user’s input
(figure 6) is filled with the light and position information of each channel before feeding it
to the model. Similar to the methodology described in the previous section, after the 2D
convolution block, the data is flattened and fed into the DNN of FC layers and the event’s
position is reconstructed.

3 Performance Evaluation

This section describes the performance of the three different approaches used for position
reconstruction. Furthermore, the method described in section 2.2.2 is used to investigate
the detector response when affected by saturation or loss of photosensor channels. Table
3 shows the spatial resolution for each of the methods applied. The spatial resolution is
defined as the standard deviation of the reconstructed error distribution of each coordinate.
The reconstructed error is simply the difference between the MC positions and the recon-
structed position outputted by the model. The FC DNN for instance, are 30% better when
reconstructing low energy events, [10-3000] photoelectrons, with respect to more traditional
methods like Center of Gravity (CoG) developed for the DarkSide-20k detector.

Method σx [cm] σy [cm]
FC DNN 0.34 0.33

1D Convolution 0.53 0.54
2D Convolution 0.55 0.53

Table 1. Spatial resolution obtained with the different methodologies used for XY position
reconstruction for events with [10-10000] photoelectrons.

Due to edge effects like wall reflections and irregular light patterns, the spatial resolution
tends to worsen as the radial distance (R) from the center of the detector increases. Figure
7 illustrates the performance of the model as a function of radial distance. The increasing

6

trend is clearly observed for R > 160 cm, with the spatial resolution reaching values of
σx,y ∼ 1 cm. Although this is a noticeable increase in the spatial resolution, CoG methods
developed for the DarkSide-20k detector consistently show spatial resolutions of σx,y > 2 cm
for radial distances of the same range.

Figure 7. Distribution of the spatial resolution as a function of the radial distance for the x and y
coordinates.

Moreover, the energy dependence of the spatial resolution is also evaluated and shown in
figure 8. This is done by extracting the mean and standard deviation from the distributions
of the reconstructed error as a function of the number of photoelectrons (NPE) detected per
event. Due to the lack of a well defined light pattern in the photosensor array for low energy
events, these are reconstructed more poorly, reaching values of σx ∼ 2.8 cm and σy ∼ 2.5 cm
for events under 500 NPE.

3.1 Response to the Loss of Photosensor Channels

The DarkSide-20k detector is expected to have a run-life in the order of 5 years after the
commissioning phase [12]. Due to this long operational period, some channels could experi-
ence a failure during the life of the experiment. This will to a certain measure affect the XY
spatial resolution since a definite number of photosensors will not be able to register any light
information.
With this purpose of quantifying this effect, the spatial resolution was studied for a different
number of inactive channels. These channels were randomly distributed throughout the full
top array of the detector. Any signal that was registered in a channel that was characterized as
invalid was set to 0. A model previously trained with the full functioning array was used for
reconstruction. For each configuration of invalid channels, the reconstruction error distribu-
tion was computed and the spatial resolution was evaluated. The results are shown in figure 9
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Figure 8. Distribution of the spatial resolution as a function of NPE for the X and Y coordinates.

a); the spatial resolution increases linearly as the number of inactive photosensors. This was
done with the 2D convolution methodology, which adequately performs for a low number of
inactive photosensors since most of the top array channels are ignored for the reconstruction.
It is only above 200 inactive channels that the spatial reconstruction starts to increase above
levels of σr > 1 cm

(a) (b)

Figure 9. a) Spatial Resolution as a function of number of inactive channels. b) Error map of the
detector with 2 5x5 groups of inactive photosensors.
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On a different note, the photosensors of the DarkSide-20k experiment will be grouped
in 5×5 channel arrays forming a photodetection unit (PDU). The power modules for these
photosensors will be jointly connected such that there is a potential risk of a full PDU mal-
functioning. This would imply the loss of 25 channels in a localized region, which largely
affects the position reconstruction capabilities of the experiment. Figure 9 b) shows an error
map of the detector in which two PDUs have been marked as inactive. The reconstruction
error in the local 5×5 photosensor region increases up to levels above 17 cm.

3.2 Signal Saturation Effects

Another physical phenomenon to consider when reconstructing the position of a given event
is the signal non-linearity. Due to the photosenors employed in the experiment, the specifics
of the electronics and signal readout systems, and the fact that direct dark matter experiments
are tuned for very low energy signals and thresholds, saturation effects in single modules
could be observed for signals of ∼ 150 NPEs / PDM.

Unlike inactive channels where all signal from the sensor is lost, saturation limits the
maximum NPEs that a channel can register, which can drastically change the shape of the S2
distribution in the XY plane. Since the reconstruction of the event position depends on the
NPEs recorded per channel, only the channels that are saturated and the maximum amount
of PEs registered are of interest. To investigate this effect, events with different NPEs were
reconstructed while changing the saturation threshold per channel. Figure 10 shows the cor-
relation between NPEs at which channels can be saturated and the corresponding spatial
resolution. Since higher energy events are usually reconstructed better, it is important to note
that when accounting for saturation these will tend to be reconstructed poorly especially for
low values of the saturation threshold. According to this figure, saturation thresholds below
200 PEs will rapidly start increasing the spatial resolution.

Figure 10. Spatial Resolution as a function of the saturation threshold.
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4 Conclusions

A software package was developed for event vertex XY reconstruction in dual-phase TPCs,
based on modern deep learning methods. Network training, testing, and validation were
performed on the data simulated with a model of the DarkSide-20k TPC with unprecedented
results.

The XY resolution achieved with the deep learning techniques matches well the design
value of 1/10th of the photosensor size. It is observed to be even better with the FC DNN and
is a subject of further investigation. As this type of neural network uses all information from
the entire photosensor array and performs well despite a large number of training parameters,
it will be studied for other applications complementary to vertex reconstruction, such as target
fiducialization and discrimination of single and multi-it events.

The developed package includes the necessary modularity and options to be easily
adopted for TPCs with the different size, shape, and photosensor array granularity, with the
specifics of the detector effects and light propagation to be taken into account in the dedicated
Monte Carlo simulations.

Particularly interesting for the next steps is hardware (GPU [18] or FPGA-based [19])
acceleration for deep learning inference within the data reconstruction workflow, and hence
possibilities of a coarse online event vertex reconstruction for trigger purposes, to reduce the
data bandwidth and free disk space and computing resources.

References

[1] V. N. Solovov et al. (ZEPLIN-III Collaboration), IEEE Transactions on Nuclear Science
59, 6 (2012), 112.1481

[2] E. Aprile et al. (XENON Collaboration), Astroparticle Physics 35, 573 (2012),
1107.2155

[3] C. Adams, M. Alrashed, R. An, J. Anthony, J. Asaadi, A. Ashkenazi, M. Auger, S. Bal-
asubramanian, B. Baller, C. Barnes et al., Physical Review D 99 (2019)

[4] J. Strube, K. Bhattacharya, E. Church, J. Daily, S. Malachi, S. Charles, W. Kevin, EPJ
Web of Conferences 214, 06016 (2019)

[5] J. Liu, J. Ott, J. Collado, B. Jargowsky, W. Wu, J. Bian, P. Baldi, Deep-learning-based
kinematic reconstruction for dune (2020), 2012.06181

[6] M. Wang, T. Yang, M.A. Flechas, P. Harris, B. Hawks, B. Holzman, K. Knoepfel,
J. Krupa, K. Pedro, N. Tran, Gpu-accelerated machine learning inference as a service
for computing in neutrino experiments (2020), 2009.04509

[7] S. Delaquis, M. Jewell, I. Ostrovskiy, M. Weber, T. Ziegler, J. Dalmasson, L. Kaufman,
T. Richards, J. Albert, G. Anton et al., Journal of Instrumentation 13, P08023–P08023
(2018)

[8] C.K. Khosa, L. Mars, J. Richards, V. Sanz, Journal of Physics G: Nuclear and Particle
Physics 47, 095201 (2020)

[9] A.I. A. Grobov, Convolutional Neural Network Approach to Event Position Reconstruc-
tion in DarkSide-50 Experiment, in Journal of Physics: Conference Series. Vol. 1690,
5th International Conference on Particle Physics and Astrophysics at MEPhI (2020)

[10] S. Delaquis, M. Jewell, I. Ostrovskiy, M. Weber, T. Ziegler, J. Dalmasson, L. Kaufman,
T. Richards, J. Albert, G. Anton et al., Journal of Instrumentation 13, P08023–P08023
(2018)

[11] P. Agnes et al. (DarkSide collaboration) (2020), 2011.07819
10

10

EPJ Web of Conferences 251, 03029 (2021)	 https://doi.org/10.1051/epjconf/202125103029
CHEP 2021



4 Conclusions

A software package was developed for event vertex XY reconstruction in dual-phase TPCs,
based on modern deep learning methods. Network training, testing, and validation were
performed on the data simulated with a model of the DarkSide-20k TPC with unprecedented
results.

The XY resolution achieved with the deep learning techniques matches well the design
value of 1/10th of the photosensor size. It is observed to be even better with the FC DNN and
is a subject of further investigation. As this type of neural network uses all information from
the entire photosensor array and performs well despite a large number of training parameters,
it will be studied for other applications complementary to vertex reconstruction, such as target
fiducialization and discrimination of single and multi-it events.

The developed package includes the necessary modularity and options to be easily
adopted for TPCs with the different size, shape, and photosensor array granularity, with the
specifics of the detector effects and light propagation to be taken into account in the dedicated
Monte Carlo simulations.

Particularly interesting for the next steps is hardware (GPU [18] or FPGA-based [19])
acceleration for deep learning inference within the data reconstruction workflow, and hence
possibilities of a coarse online event vertex reconstruction for trigger purposes, to reduce the
data bandwidth and free disk space and computing resources.
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