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Abstract

The extreme spacetime environments of modified black holes are an ideal context in
which to study possible quantum corrections. This is critical for reconciling general
relativity and quantum mechanics and creating a theory of quantum gravity. In this
dissertation, I use canonical gravity methods to construct, reinterpret, and probe the
properties of quantum-corrected black holes, with the goal of refining modified gravity
models, in the pursuit of a theory of quantum gravity. First, I construct a quasi-classical
static black hole model with an additional scalar field introduced in the Hamiltonian
constraint, and I derive the form of the resulting quantum effects surrounding the
horizon and asymptotically. Then, I demonstrate that this model can be similarly
constructed as a superposition of classical black holes of varying mass by deriving a
quantum modification to the Newtonian potential in the asymptotic limit. Finally, I
calculate the effect of a related quantum correction on established volume calculations
for the interior of the event horizon. Together, this work provides key insights into the
possible structures and behaviors of quantum black holes, opening avenues to probe
the information paradox, black hole "deaths," mass uncertainty, and other mysteries of
black hole physics. These advances lay the groundwork for potential future predictions
such as quantum switch behaviors around quantum black holes and gravitational wave
quasinormal mode observables from mergers of modified black holes.
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Chapter 1
Introduction

The core of my dissertation consists of three papers, each exploring different aspects of
constructing, interpreting, and investigating quantum-corrected black holes in canonical
gravity. In this introduction, I provide big-picture background and motivation, in an
effort to make this work accessible to a wider audience and a useful resource for future
researchers. I also provide a brief overview of the core papers. In chapters 2-4, I
summarize the key procedures and results of each of these papers, followed by the full
text for further detail. In Chapter 5, I highlight my novel results and lay out a variety of
follow-up projects, including plans for observable predictions. In Chapter 6, I document

additional contributions to the department and the physics community in general.

1.1 Background and Motivation

How can we reconcile general relativity with quantum mechanics, and what are the
necessary attributes of a superseding theory of Quantum Gravity? What is the nature of
spacetime, quantum information, and black holes? We can use canonical quantization
to probe these questions via modified black hole spacetimes. Introducing quantum
corrections into black hole physics has the potential to address open questions such as
the information paradox, singularity divergences, and the mysterious late stages of a
black hole’s life. What observable consequences would distinguish such modified gravity
models? Ultimately, I am working to make potentially observable predictions for quantum
gravity effects in quantum switch experiments and the quasinormal modes of gravitational
wave signals.

General relativity and quantum mechanics are the foundation of modern physics and
are essential to modern life, from GPS and space travel, to nuclear power and quantum

computing. General relativity has been tested on planetary and intergalactic scales, and



quantum mechanics has been tested on sub-atomic scales, but they come into conflict
when their regimes of validity overlap and the mathematics of general relativity affects
the behavior of particles on a quantum scale. How to reconcile these two physical models,
combining them into a cohesive theory of quantum gravity, is one of the largest open
questions in physics.

Black holes are an excellent testing ground for theories of quantum gravity because
the extreme curvature of spacetime makes general relativity relevant on small quantum
mechanical scales. This is why I research Modified Gravity, specifically quantum-corrected
black holes. T construct black hole spacetimes with quantum corrections and calculate
their behavior, exploring their dynamics, volumes, and distinctive properties. There are
a number of features of black holes which these modified models can potentially explain
or predict, such as information capacity, singularity replacement, and black hole death.
These predictions would allow us to constrain what models are likely candidates for a
theory of quantum gravity.

This dissertation revolves around black holes, using the mathematics of canonical
gravity to explore quantum effects. Specifically, this dissertation consists of three
projects involving two modified black hole spacetimes, two representations of a single
modification, and novel investigations of relevant quantum effects. These investigations
include: interior volume calculations, near-horizon effects, and modified potentials in
the asymptotic regime. A successful theory for quantum gravity explaining quantum
behaviors involving black holes would have the potential to solve many open questions in

physics, astronomy, cosmology, and beyond.

1.1.1 Black Holes

A black hole is any amount of mass compressed into effectively zero volume, creating a
singularity. The diverging density of the singularity corresponds to an infinitely increasing
gravitational force as one approaches the center. Thus, at some radius around this central
mass, the velocity necessary to escape the gravitational pull would exceed the speed of
light. This boundary, from which not even light can escape, is known as an event horizon
and is why these astrophysical objects appear black.

The only well-established mechanism for forming black holes is stellar core collapse
during specific supernova events, first proposed in 1939 in [1]. However, most galaxies
have supermassive black holes at the center [2], with masses hundreds of thousands or
billions of times the mass of our sun, and current models cannot account for how large

these black holes have grown in the age of the universe. There is a limit to the size that



stars can form, so any black hole born from a supernova would be limited in size. To
grow this large, black holes must consume dust, gas, planets, and hundreds of thousands
of solar systems or other black holes. Even making generous estimates of how early stars
formed, how large they were, how many went supernova, how many of those formed black
holes, and how frequently they were able to merge, the sizes of supermassive black holes
we see today defy explanation. Thus, we know that there is much more left to discover
about black holes and the evolution of our universe. Thus, we need to understand black
holes, and any quantum behaviors related to them, at a more fundamental level.

Another problem with current models is that the infinite density of a singularity
should be physically impossible, and yet we observe black holes and their extreme
gravitational effects. Astronomers have long observed the jets of active galactic nuclei [3],
the gravitational slingshot of stars orbiting the galactic center [4], gravitational waves
emitted from merging black holes [5], and direct light from the accretion disc and Einstein
ring around an (astrophysically speaking) nearby black hole [6]. All of these measurements
confirm the existence of gravitational forces so concentrated that light cannot escape.
We know this extreme warping of spacetime occurs, but not physically what happens
behind the curtain of the horizon. There is some room to modify the mathematical
models of black hole spacetimes and preserve the dominant external curvature effects,
while sidestepping the problems of a central singularity. Avoiding these mathematical
and physical problems is another motivation for various modified black hole models, such
as those in Chapter 4.

Hawking radiation is an important mechanism by which black holes can reduce their
mass, in a process known as evaporation [7]. A simplified visualization of this process
is an entangled particle-antiparticle pair emerging from vacuum energy, as allowed by
quantum mechanics, at the edge of an event horizon. One particle falls into the black hole
and annihilates a particle inside, identical to its original partner, while the other escapes
to be detected. The mass of the black hole will be reduced by the mass of the particle
annihilated on the interior, and the black hole will appear to have emitted the identical
escaped particle. This is the mechanism of black hole evaporation, though the detected
particle of Hawking radiation did not originate inside the black hole, and therefore never
had to exceed the speed of light to reach an observer outside. A more accurate way to
conceptualize Hawking Radiation is simply as positive energy flux from near the event
horizon towards positive infinity outside the black hole and negative energy flux from the
horizon towards the singularity inside the black hole. Already being a quantum process,

Hawking radiation could be significantly affected by quantum corrections in black hole



models.

The information paradox, also known as the problem of information loss, is another
mystery which could benefit from a quantum description of black holes [8]. Any mat-
ter /information which falls into the black hole becomes inaccessible beyond the horizon.
Is this information effectively destroyed, which would violate the law of conservation of
information? Understanding the geometry, volume, and longevity of the space inside
the event horizon could provide mechanisms to store and/or recover the information
consumed by a black hole.

Black hole death, or lack thereof, is a hotly debated topic. What happens as Hawking
radiation depletes the last of the mass in a singularity”? Are there violent explosions?
Black hole to white hole transitions? Remnants? Any quantum properties of black
holes will become most relevant at this stage, and could therefore hold the answers to
what happens to a black hole at this point in its life. This would determine whether

information is destroyed, recovered, or stored away.

1.1.2 Modified Gravity

The term “modified gravity” usually refers to cases where the line element is modified
directly. This can also refer to a method of modifying the action, such as modifying
the higher curvature term in scalar-tensor theories. While this is worthwhile, it tends
to have challenges with stability. Adding higher order terms with second derivatives in
time produces equations higher than second order. This requires more initial values, but
most possible initial values are unstable [9]. High curvature effective actions often have
problems with the speed of gravitational waves differing from the speed of light, which is
a departure from observations.

In my derivation of modified gravity theories from canonical quantum gravity, I avoid
these instabilities, first by maintaining the second-order nature of equations of motion,
such that there are no new independent solutions that would otherwise result from
additional initial values. Second, I respect the observational constraint that the speed
of gravitational waves is close to the speed of light by formulating a coupled system for
gravity and light based on one spacetime geometry [10-13]. This is a relative physical
criteria that these two speeds must be the same, therefore their agreement is not affected
by my modification magnitudes. This advantage is inherent in modifying the spacetime
itself.

I choose to work with canonical gravity because it centers around preserving covari-

ance, so that physical results have the critical property of being coordinate independent.
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The condition for covariance is that the Poisson brackets of the Hamiltonian and dif-
feomorphism constraints with themselves, and each other, must remain closed. The
Hamiltonian constraint is a statement of conservation of energy, which also functions
as the generator of time translations. The corresponding statement of conservation
of momentum, which generates spatial translations, is known as the diffeomorphism
constraint. The relationship between these constraints, determined from hypersurface
deformations, enforces covariance. This means that the output of any Poisson bracket
between them must depend on one or more of the constraints themselves, as part of a
closed space. This condition is utilized in the construction of quantum-corrected black
holes in canonical gravity. Our work is distinct, in that we modify the Hamiltonian

constraint and propagate that through to the line element by imposing covariance.

1.2 Overview

This research is presented in three parts, projects I conducted in collaboration with
my advisor, Martin Bojowald, and each of my undergraduate research mentees: Gianni
Sims (now an astrophysics grad student at Florida Atlantic University), Aurora Colter
(continuing to build on our work for her senior thesis), and Allison Colarelli (starting
grad school at University of Arizona in general relativity). We have published, submitted,

and drafted papers respectively, which comprise each of the next three chapters.

1.2.1 Quantum-Corrected Black Hole

In Chapter 2, I will elaborate on my work in, Quasiclassical solutions for static quantum
black holes, written in collaboration with Gianni Sims, Manuel Diaz, and Martin Bojowald.
Our goal was to calculate quasiclassical space-time dynamics with non-local quantum
corrections, using canonical methods of non-adiabatic quantum dynamics, and ultimately
extend this to an effective quantum field theory. We start from the simplest case, a
spherically symmetric black hole spacetime, introduce a quantum correction into the
Hamiltonian constraint, impose our covariance condition on the constraints, calculate
the equations of motion, introduce perturbations, impose a static simplification, and
use these results to constrain what form the modification can take. The success of this

approach takes us a step closer to a quantum gravity theory.



1.2.2 Quantum Black Hole Superposition

Collaborating with Aurora Colter, Manuel Diaz, and Martin Bojowald, I have submitted
Space-time superpositions as fluctuating geometries for publication in Physical Review D.
In this paper, we reinterpret my previous black hole model as a quantum superposition
of classical black hole spacetimes of varying mass. We set the modified Hamiltonian
constraint to zero, recalculate the equation of motion using only the first order correction
to the Hamiltonian, take the weak field limit, and solve for power series solutions for the
scalar fields and lapse function. We then used these solutions to construct the quantum-
corrected Newton potential, complete with bounds on the constants. This broadens the
applicability, both of our previously established quantum-corrected black hole, and of
related black hole superposition studies. We were able to derive quantum corrections to
Newton’s potential in the weak field limit, and the corresponding corrections to metric

components.

1.2.3 Quantum Black Hole Volume

Collaborating with Allison Colarelli and Martin Bojowald, I have written Volumes of
Quantum Corrected Black Holes, in which we calculate the volume on the horizon interior
for a black hole spacetime with a related modification. Our goal was to use established
definitions for the volume inside the event horizon as constrained slices of the spacetime
(Maximally Slicing a Black Hole, Estabrook and Wahlquist) and recreate this calculation
for a spacetime model with a similar modification to ours (An effective model for the
quantum Schwarzschild black hole, Alonso-Bardaji, Brizuela, and Vera). We expected
this modification to shift the radius at which these slices were found to converge inside
the horizon. Such a result could offer insights into both the information paradox and the
late-stages of black hole evaporation. We are in the final stages of this calculation, now

analyzing second order effects.



Chapter 2
Constructing a quantum-corrected

black hole

In my recent paper, Quasiclassical solutions for static quantum black holes, I constructed
a spacetime with quantum modifications, using Canonical Gravity methods adjacent to
Loop Quantum Gravity. My goal was to calculate quasiclassical space-time dynamics
with non-local quantum corrections, using canonical methods of non-adiabatic quantum
dynamics. I modeled coordinate-independent black hole quantum corrections and estab-
lished the presence of nonlocal quantum effects surrounding this modified black hole. I
already have projects in motion to make testable predictions, and ultimately, I hope to

extend this to an effective quantum field theory.

2.1 Summary

Starting from a spherically symmetric, static black hole model, we introduce corrections
to the Hamiltonian constraint, impose a covariance condition, calculate the equations of
motion, simplify to the static case, and use these calculations to restrict the form of the

scalar field introduced in the modification.

2.1.1 Construction

Most non-local effects in black hole models assume a specific non-local action. We
used a new systematic quasiclassical formulation with non-local corrections derived in
a canonical quantization to model a coordinate-independent black hole with quantum
corrections, deriving lon-local effects. We introduce an additional field in the Hamiltonian

constraint, ¢3, and treat it as a quantum correction on the existing metric field, ¢,,



making a static gauge choice for the other metric field, ¢; equal to z2.

Starting with the classical Hamiltonian for a static, spherically symmetric black hole,

s () )

(2.1)

we introduce our first correction, dependent on a new scalar field, ¢3:
10*°H U 0*H 10°H 0*H ,
) _'~/dxA“x)<2f92 ( ‘%¢3> 06:0p ¢”B*‘2a¢2¢3 &¢a¢'¢“%>
_ _/de <¢2p3 ¢3p2p3 n <6\/_1¢/1¢/2 1 (¢1)° 925”\/97) 2

2Vh1 | Vo o5 2Ve T 43
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This correction introduces an additional scalar field in the Hamiltonian constraint. We

(2.2)

then interpret the new scalar field ¢3 as a quantum correction on the existing metric
field ¢o. Note that x is the spatial, radial coordinate measuring distance from the center
of the black hole, C is a constant, and M is the mass of the black hole. The ¢’s and p’s
are degrees of freedom in the metric. They are functions of the tetrad variables, which
relate to physical properties such as extrinsic curvature.

Note that the diffeomorphism constraint is affected, modified with £,/ E;, but this is
not relevant for the static analysis where momenta are set to zero. The diffeomorphism
constraint modification simplifies conveniently in the static regime we chose. Next, we
preserve covariance by requiring the quantum-corrected constraints to maintain the

property that the Poisson brackets are closed.

{D[My], D[Ms]} = D[MM; — MyMj] (2.3)
{H[N],DIM]} = —H[MN'] (2.4)
{H[N1], H[No]} = —DIE"(E?)"*(N1Nj — NoNj)]

In the process of enforcing this condition, we discovered the need for a higher order
constraint, specifically, it required the introduction of a higher order correction to the

Hamiltonian constraint:
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2.1.2 Investigation

With both quantum corrections to the Hamiltonian constraint, we calculated the equations
of motion to see how our modified spacetime behaves, specifically how the fields and
their momenta evolve in time. These are calculated by taking the Poisson bracket of
the unfixed fields and their momenta with the sum of modified Hamiltonian constraints

(again the Diffeomorphism constraint does not have a relevant effect):

SH|[N] N §Hy,[L]

¢ = {¢, H[N] + Hy,[L]} = 5, 5 (2.6)
_ (23: 1+%p2+gﬁm>N+%(¢3pz+¢gps)

by = {00 BN+ Hja]) = P | el (27)
= 916(6152]93 + ¢3pa) N + <¢\/2% + 2\/&1?1) ¢sL,

0= s = {pa, H[N| + Hy,[L]} = —MZZV I Mfsﬁ;zm (2.8)

0= p3 = {ps, H[N] + Hg,[L]} = —5%2\[] — 51223@] (2.9)

We then use perturbation theory, introducing small fluctuations around the classical
lapse function N (which governs the passage of time) and around the classical metric
field ¢,.

by = ¢3) + 0y = + 66hy (2.10)



Implementing the static condition that momenta are zero, we solve the system of equations
to restrict what properties our quantum correction can have. This produces a constrained

form of the scalar field, ¢3, which we initially introduced into the Hamiltonian constraint.

B
(1 —p/x)*?

We solve these equations of motion and the established constraints for these perturbations,

¢3(x) = (2.11)

introducing an integration constant for each. These new degrees of freedom imply that
quantum extended theories like this are more complex than classical ones. We then
analyze asymptotic behavior around the horizon and infinity to see the effects of our

quantum corrections.

B Eve 3¢ 7/2
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2.1.3 Results

We successfully restricted the form the modification ¢3 can take. I also conducted a
numerical analysis of the behavior of the necessary Casimer function, U(x), showing

asymptotically constant behavior. The final modified metric takes the form:

(0) 5bo)2
d82 — _<N(0)+5N)2dt2+Wd$2+$2d92 (214)
05" + 204”06

12 dz’® 4 2°dQ?
4h

~ —(NO2 L oNO§N)dr? +

valid for describing the exterior spacetime, outside the horizon.

By analyzing the asymptotic behavior around the event horizon and at infinity, we see
that the quantum corrections have a ripple effect that extends beyond their local area. We
succeeded in identifying quantum effects from canonical quantization of this spherically
symmetric constrained system and obtained solutions in almost-closed form. The Planck-
scale corrections have more effect than one might expect. We found potential new effects
near the horizon and asymptotically, demonstrating that our model is sensitive to new,
possibly non-local, corrections while maintaining general covariance. These corrections

may be crucial for understanding the behavior around the event horizon of quantum
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black holes, and our methods are promising for future work.

2.2 Paper: Quasiclassical solutions for static quantum
black holes

Abstract:

A new form of quasiclassical space-time dynamics for constrained systems reveals how
quantum effects can be derived systematically from canonical quantization of gravitational
systems. These quasiclassical methods lead to additional fields, representing quantum
fluctuations and higher moments, that are coupled to the classical metric components.
The new fields describe non-adiabatic quantum dynamics and can be interpreted as
implicit formulations of non-local quantum corrections in a field theory. This field-theory
aspect is studied here for the first time, applied to a gravitational system for which a
tractable model is constructed. Static solutions for the relevant fields can be obtained in
almost closed form. They reveal new properties of potential near-horizon and asymptotic
effects in canonical quantum gravity and demonstrate the overall consistency of the

formalism.

2.3 Introduction

For some time now, black holes have presented a popular testing ground for possible
implications of quantum gravity. Examples include quantum corrections to Newton’s
law, modified horizon dynamics, implications for Hawking radiation, tools to address the
information loss problem, potential resolutions of the central singularity, or speculations
about the post-singular life of a black hole. A large variety of methods have been applied,
ranging from effective field theory [14-16] to proposed non-perturbative ingredients of
approaches such as string theory or loop quantum gravity.

Here, we present new results using a formulation situated on the middle ground
between standard effective field theory on one hand and non-perturbative effects on the
other: We extend effective field theory by applying non-adiabatic quantum dynamics,
foregoing the derivative expansion of quantum corrections that is implicitly assumed when
they are expressed in higher-curvature form. Our formulation will therefore be sensitive to
new (and possibly non-local) corrections, while maintaining crucial consistency conditions

for constraint equations and an application to space-time physics. The importance of

11



such consistency, related to the question of whether general covariance can be maintained
by quantum corrections, has recently been highlighted by the finding that most black-hole
models or other space-time descriptions proposed in the field of loop quantum gravity
violate covariance [17-19]. (A more careful approach that aims to maintain covariance
as much as possible has been studied in [20-29], using a variety of models.) One of
these no-go theorems that ruled out covariance for certain modifications encountered
in models of loop quantum gravity, derived in [18], relies on the local nature of current
models. The no-go theorem could therefore be evaded by constructing suitable non-local
quantum corrections, possibly leading to consistent implementations of modifications
in covariant models. The present paper can be considered a first step in this direction,
studying non-local quantum corrections in spherically symmetric canonical quantum
gravity. We will formalize our consistency conditions in more detail when we introduce
relevant ingredients of space-time physics in Section 3.4.

Our formulation is based on canonical methods of non-adiabatic quantum dynamics,
used for some time in various fields such as quantum chaos or quantum chemistry [30-33]
mainly for systems with finitely many classical degrees of freedom. Related meth-
ods [34-36] have been applied recently to spherically symmetric models of collapsing
shells [37]. Our task will be to extend these methods to quantum field theories, and to
incorporate access to space-time structures in order to implement consistency conditions
required for general covariance. In particular, we will consider a generalization of quasi-
classical methods to constrained systems, applied to the Hamiltonian and diffeomorphism
constraints of canonical general relativity. By requiring that quantum-corrected con-
straints obey suitable Poisson brackets, known from hypersurface deformations [38—41],
we will show that such constraints can be imposed consistently and solved for modified
metric components and their quantum fluctuations.

In order to reduce the complexity of these tasks, we will work with spherically
symmetric models and analyze, for now, only static solutions. In a field theory, even
static solutions are sensitive to non-adiabatic methods because they may vary significantly
in a spatial direction. An implementation of non-adiabatic quantum dynamics with
methods from other fields is therefore of interest. In this way, we will be able to explore
new quantum effects in a tractable manner.

We will review canonical effective methods, which provide the mathematical basis
for non-adiabatic, quasiclassical dynamics in Section 2.4. We will first summarize the
well-developed version of these methods applied to the quantum mechanics of a single

degree of freedom, as well as an extension to constrained systems. Section 3.4 is the
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central part of our paper, in which we generalize quasiclassical methods to the field
theory given by spherically symmetric gravity. We will describe the form of effective
constraints encountered in this system, and derive the equations to be solved for static
solutions with leading quasiclassical corrections. Although multiple integrations will be
required, interesting information about these solutions can be obtained in closed form, in
particular regarding the near-horizon and the asymptotic behaviors. We will discuss the
self-consistency of our solutions from the perspective of an intuitively expected behavior

of quantum fluctuations, demonstrating that they are smaller in the asymptotic regime.

2.4 Canonical effective theories

Canonical, non-adiabatic methods of quantum dynamics provide a quasiclassical formu-
lation in which the classical phase space, say (¢, p), is extended by a certain number of
quantum degrees of freedom, depending on the order in an expansion by A. To leading
order, the classical variables ¢ and p are combined with a second canonical pair, (s, ps)
where s = Agq, such that a classical potential V' (¢q) is turned into a specific effective
potential Vig(q, s). The derivation of this effective potential (and the physical meaning

of the momentum py) requires making use of methods of Poisson geometry.

2.4.1 Effective Hamiltonians

First, if the classical system is described by a Hamiltonian

He Vo V(q), (2.15)

" om
one can define an effective Hamiltonian as the expectation value Heg = (H) of the
corresponding Hamilton operator, taken in an arbitrary state. The effective Hamiltonian
is therefore a function on the state space of the system. A systematic semiclassical
description parameterizes suitable states by their expectation values of basic operators,
q = (G) and p = (p), as well as a series of moments such as A(¢g") = ((§ — (§))"). Taking
into account ordering choices, we follow [42,43] and define a specific set of moments of a

state by
Ag"p™) = {(@ = ()" (P — ()™ )symm (2.16)

in completely symmetric (or Weyl) ordering. The moment order, n + m, corresponds to

the order in a semiclassical expansion, given by A7)/,
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Moments, together with the basic expectation values, form a phase space equipped

with a Poisson bracket that is obtained by extending the definition

(A, (= 22D 217

using linearity and the Leibniz rule. With this bracket, the effective Hamiltonian

Heg = (H) indeed generates the correct Hamiltonian dynamics: The equation

- (2.18)

is equivalent to quantum evolution of generic expectation values implied by the Schrodinger
equation. At fixed order in A, the resulting Poisson manifold is, in general, not symplec-
tic. That is, it is described by a family of symplectic leaves, on which certain Casimir
functions take constant values. A Casimir function has vanishing Poisson brackets with
any other function on the same Poisson manifold. It therefore implies a degeneracy of
the Poisson tensor which cannot be inverted to obtain a symplectic form. The dynamics
are nevertheless determined uniquely because Hamilton’s equations, used in what follows
for evolution as well as gauge transformations, only require a Poisson bracket.

The effective Hamiltonian Heg = (H) used in (3.53) can be interpreted as a function
of the moments obtained from the state that appears in the expectation value. It can be
computed explicitly to order N/2 in h, for any integer N, by applying a Taylor expansion

to <fI ) around any fixed pair of basic expectation values:

Heg = (H(§,p)=(H(g+(q—q),p+ (D—Dp) (2.19)
Y1 9"™™H(q,p)

- H A(g"p™) .
(q7p)+n+m:2n!m! 9Oy (¢"p™)

(Here, we assume that the Hamilton operator is Weyl ordered. For a Hamiltonian
polynomial in ¢ and p, the series always truncates at a finite order. It merely rewrites
bare moments (¢"p™) in terms of central moments A(g"p™). These are centered around
basic expectation values, according to (3.49). For non-polynomial Hamiltonians, the
series is in general asymptotic.)

Written as a phase-space function, the Hamiltonian (3.54) generates equations of
motion. This is accomplished by coupling basic expectation values and moments, such as
(@) and (p), by applying Hamilton’s equations with the Poisson bracket (3.53). However,

while it can easily be seen that {(§),(p)} = 1 is of canonical form, the moments
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are not canonical variables. For instance, {A(q?), A(p?*)} = 4A(gp). More generally,
second-order moments of M classical degrees of freedom have brackets equivalent to the
Lie algebra sp(2M,R) [44,45], while higher-order moments have brackets quadratic in
moments [42,46].

It is therefore convenient to apply a transformation from moments to canonical
coordinates. Such a transformation always exists locally, according to the Darboux
theorem [47] or its extension to Poisson manifolds [48]. To second order for a single
classical degree of freedom, canonical coordinates for the moments A(¢?), A(gp) and
A(p?) are given by (s,p,) such that [30,31,33]

U
Al?) =5, Algp)=sps , AQP*)=p+— (2.20)

with a Casimir function U, restricted by Heisenberg’s uncertainty relation to obey the
inequality U > h*/4. As a Casimir function, U has vanishing Poisson brackets with any
other phase-space function that depends only on basic expectation values and second-
order moments. In particular, its Poisson bracket with the Hamiltonian vanishes in a
second-order truncation, which means that U is conserved to this order. In quantum
mechanics, the phase-space function U is reduced to a constant on any given solution
which determines how close the evolving state is to saturating the uncertainty relation.
One of the more technical aims of the present paper will be to explore the role of U in a
field theory, where it may be a function of spatial coordinates.

Inserting the canonical form (3.55) of moments in the expansion (3.54) for N = 2,

assuming a classical-mechanics Hamiltonian with generic potential V' (q), we obtain

2 2

p p

Hyg=2 4 Ps
ff 2m+2m+2m52

+V(q) + ;V”(q)SQ. (2.21)

The last three terms together form the effective potential

Virla:9) = 5 + V() + 5V (@) (2.22)

2ms?

The independent quantum degree of freedom s describes quantum corrections by two
terms in the effective potential: The first term, U/(2ms?), originates in the kinetic energy
or momentum fluctuations. In the effective picture, its U/s*-form (where U is strictly
positive) prevents position fluctuations s from reaching zero. The other term, %V” (q)s?,
may be positive or negative depending on the classical potential. It is positive around

local minima, where it raises the ground-state energy by a term analogous to zero-point
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fluctuations. The term is negative around local maxima, which would be relevant in
quasiclassical descriptions of tunneling phenomena.

The description is non-adiabatic because no assumption has been made about the
rate of change of s compared with ¢. If, by contrast, one assumes that s changes slowly

and merely tracks its ¢g-dependent minimum

Smin(q) = § n% (2.23)

of a ground state in the potential (2.22), one obtains a g-dependent effective potential

U@)V"(a)

— (2.24)

‘/lowfenergy<Q) = V(Q) +

This quasiclassical result equals the standard low-energy effective potential for the
minimum value U = h?/4 [42,49]. For the harmonic oscillator, for instance, V" (q) = mw?
implies the correct zero-point energy %hw A higher-order adiabatic approximation implies
higher-derivative corrections to the classical equations of motion [50]. An adiabatic
approximation to all orders would imply a non-local theory with time derivatives of
arbitrarily high orders. Such a non-local theory, which is often complicated because it
cannot be analyzed by solving local partial differential equations, can more easily be
studied by keeping s as an independent field in a non-adiabatic quasiclassical formulation.
(From the point of view of the non-local theory, s would be considered an auxiliary field
that makes it possible to write non-local equations in local form. Here, however, s has
physical meaning; s represents quantum fluctuations in one of the classical degrees of
freedom. The local formulation is therefore more physical than an alternative non-local
theory obtained by eliminating s by partially solving equations for it in an adiabatic
expansion. )

Along similar lines, a canonical moment description of field theories has been performed
in [51], where the analog of (2.24) is the Coleman—Weinberg potential [52]. Here, we
apply canonical moment methods to a field theory motivated by spherically symmetric
gravitational systems. This formluation retains independent quantum degrees of freedom,
such as a field version of s. We therefore derive non-adiabatic or non-local effects of

quantum gravity.
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2.4.2 Effective constraints

Relativistic systems are subject to constraints, instead of Hamiltonian evolution with
respect to an absolute time. The formalism of effective and quasiclassical methods
therefore has to be generalized to constrained systems, as done in [53-55]. The main
observation is that the presence of new quantum degrees of freedom, such as A(g?),
implies additional constraints compared with the classical theory.

An effective constraint,

Cet = (C’) (2.25)

for a constraint operator C, is defined just like an effective Hamiltonian. An effective
constraint is a function on the phase space of basic expectation values and moments, which
can be computed by Taylor expansion as in (3.54). The Hamilton’s equations generated
by Ceg correspond to gauge transformations rather than strict evolution. According to
Dirac’s quantization procedure for constrained systems, effective constraints must vanish
on physical solutions, Ceg = 0. This is because the constraint operator C annihilates any
admissible state upon which it acts. (As a general phase-space function, Cg is obtained
for states in the so-called kinematical Hilbert space of states not necessarily annihilated
by C'. In addition, solving the equation C.g implicitly restricts solutions to the physical
Hilbert space of states annihilated by ¢ )

Classical constraints, where C(q,p) and f(q,p)C(q, p) as phase-space functions imply
the same gauge flow on the constraint surface, and have the same solution space as
long as f # 0. In contrast, expressions such as (C), and (f(q,)C) in general, imply
independent functions when expressed in terms of basic expectation values and moments.
(For instance, in the simple case of C = p and f(4,p), the constraint <é> =) =0
restricts the expectation value (p), while (f(q, ﬁ)é’) = (p?) = 0 then requires zero variance
as well. In a kinematical state, the expectation value (p and the variance A(p?) can
be chosen independently, for instance in a standard Gaussian wave function.) Effective
descriptions of singly-constrained classical systems are therefore subject to multiple
constraints. These constraints are of a number that depends on the order of moments
considered. Based on [53,54], it is convenient to organize higher-order constraints by
powers of the same basic operators used in the moments that describe a given system.

A

In addition to Ceg = (C'), we have independent constraints

Corpr = (@ = (@) — (D)™)o € (2.26)
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for integer n and m such that n +m > 1.

While we symmetrize products of non-commuting ¢ and p, we have to keep C' to the
right, to make sure that it always acts on the state used in the expectation value. In
general, higher-order effective constraints therefore take complex values. Solving them for
moments then results in complex values. This indicates that the inner product used on
the kinematical Hilbert space which defines effective constraint functions is adjusted when
a physical Hilbert space is introduced for the solution space. In an effective constrained
system, the transition from a kinematical to a physical Hilbert space, which can be very
complicated in generic quantum systems and is in general uncontrolled, is implicitly
performed by simply imposing reality conditions for combinations of moments that solve
the constraints. The consistency of this approach has been demonstrated in several
examples [53, 54, 56—61].

Because (O — (O)) = 0 for any operator O, all terms in higher-order constraints (2.26)
contain at least one moment factor. Therefore, they can be considered as constraints
on the moments, supplementing the effective constraint (2.25) which restricts basic
expectation values, subject to quantum corrections depending on moments. Since
moments up to a given order in general form a Poisson manifold that is not symplectic,
applying the usual constraint formalism requires a generalization to Poisson manifolds
as given in [62]. In particular, it is possible for a number N of first-class constraints
(that is, C; with ¢ = 1,..., N such that all Poisson brackets {C;, C;} ~ 0 vanish on the
solution space of the constraints C;) to generate gauge flows that span a hypersurface of
dimension less than N.

The formalism of effective constraints has a straightforward generalization to systems
with more than one classical constraint. If the classical constraints are first class, the
corresponding effective and higher-order constraints are then guaranteed to be first class
as well. A new feature arises in constrained systems with structure functions, as in
general relativity. If there is a first-class quantization with constraint operators C; such
that [, C’]} =1ih) fj}é’k with operator-valued coefficients ;’;, effective constraints have
the Poisson-bracket relations [55]

{Cierr, Cienr} = D (fECK) =" fheaCren + - (2.27)
k k

where fi];-eﬁ‘ are effective structure functions obtained from ( ;’;), and the dots indicate
neglected higher-order constraints. For systems with structure functions, the basic

effective constraints (2.25) and higher-order constraints (2.26) are therefore coupled in
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the constraint algebra, forming an enlarged system of underlying gauge symmetries.

It is an interesting question whether such an enlarged system in models of gravity
can be interpreted as an extended space-time structure. Here, we will not address this
question in complete generality because we will restrict our attention to static solutions.
However, our constraints will have higher-order corrections, allowing us a glimpse on
what moment-based extended space-time structures might entail. In our technical
analysis, we will combine the formalism of effective constraints with a field-theory version
of the canonical variables (3.55) for moments, restricted to spherical symmetry. The
metric components that determine the fields of spherically symmetric gravity will be

complemented by an additional canonical field, ¢3, representing quantum fluctuations of

-

2.5 Space-time in quasiclassical form

In a classical canonical formulation of general relativity, the line element of spherically

symmetric space-times is defined by

ds? = —N(t,2)%df* + o (t,7) (dz + M(t,z)dt)’
o (t, 2)dQ° (2.28)

with the lapse function N, the radial component M of the shift vector, and two indepen-
dent spatial metric components, g,, and g,..

The definition of a line element entails that it implies coordinate invariant geometrical
statements such as distances, areas or volumes as well as physically important concepts
such as geodesics or horizons. A geometry described by a line element can therefore
be evaluated with any choice of coordinates, or any conditions slicing space-time into
spatial hypersurfaces. However, individual metric components such as N or q,, are
not invariant and must transform in a specific way under coordinate changes for the
line element to be invariant. Classically, this consistency condition is described by the
tensor-transformation law for the space-time metric. But it is not clear that quantization
(even in a quasiclassical form, which avoids operators but amends terms—such as N and
¢zz—Dy quantum corrections 0N and dq,,) can maintain this condition.

We will use a canonical approach, in which the space-time metric is replaced by
time-dependent families of fields (for g,,(t) and g,,(t), as well as their momenta). We

will do this such that fixing the value of t is classically equivalent to fixing a constant-t
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hypersurface in space-time. The lapse function N and shift vector M then appear as
coefficients in evolution equations for these fields. These evolution equations are obtained
as Hamilton’s equations generated by a phase-space function, which can be written in the
form H[N]+ D[M] with the Hamiltonian constraint H and the diffeomorphism constraint
D. Since changes of hypersurfaces are gauge transformations, their generators H and
D are constrained to vanish. Several consistency conditions then immediately arise,
because the constraints H = 0 and D = 0 must hold at all times. Therefore, they must
be preserved by Hamiltonian evolution generated by H[N|+ D[M], and the combination
of two slicing changes must be another slicing change. In technical terms, the constraints
must therefore be first-class. They must also have Poisson brackets suitable for the
geometrical form of hypersurface deformations in space-time. Since it is difficult to
evaluate these conditions for quantum-corrected constraints, we will do so here only for
a specific class of gauge transformations that preserve the static nature of solutions. We
will therefore check that the Poisson brackets of constraints have the correct form, only
in the case of vanishing momenta. What we will now refer to as consistency conditions

has the following ingredients:

o There is a quasiclassical set of constraints, of the form H+dH and D+0D, where H
and D are the classical expressions. Additionally, ) H and 6D depend on quantum

fluctuations, in a specific way derived from the classical constraints following (3.54).

o The constraint brackets remain first class, and of hypersurface-deformation form,
when restricted to the phase-space submanifold of vanishing momenta. This value,
{(H +0H)[N,],(H + 0H)[N,]}, is proportional to the diffcomorphism constraint,
and therefore vanishes when restricted to the submanifold of vanishing momenta.
We set the momenta equal to zero, only after evaluating the Poisson bracket, which

therefore is not trivially zero.

« We will be able to go slightly beyond the preceding condition by comparing
momentum-dependent terms in the Poisson bracket {(H + 0H)[N:|, (H + 6 H)[N>]}
with terms expected from the classical structure function resulting from this
bracket. Some terms are as expected, but others are not. This observation
highlights the necessity of vanishing momenta at the current stage of developments

for quasiclassical constraints.

o In practical terms, we will explicitly demonstrate that all the constraint and
evolution equations of the quasiclassical system have mutually consistent static

solutions with the desired classical limit.
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We will now recall detailed definitions of the phase-space variables and properties of the

constraints.

2.5.1 Variables and constraints

At any z, the phase space of metric components has a boundary given by the inequality
det g = qmqfw > (0. A canonical quantization of these variables therefore requires some
care [63,64]. Here, we avoid this issue by using a triad formulation, with two components
E?® and E¥ of a (densitized) triad at each z, related to the metric components by the
canonical transformation

(E%)?
I

Qra = dpp = |E”]. (2.29)
(These components of a spherically symmetric metric are derived from the general
relationship ¢* = E!E" /| det(E5)| between the inverse spatial metric and a densitized
triad E7.) In our explicit calculations, we will assume E* > 0, corresponding to a
right-handed triad. But in general, £, unlike the metric components, may take negative
values for a left-handed triad thanks to absolute values in (2.29), and the sign of E¥
does not matter thanks to the quadratic appearance in (2.29). In a triad formulation, it
is therefore possible to apply standard canonical quantization of a phase space without
boundaries. According to the appearance of E* and E¥ in the spatial metric, the former
(times 47) represents the areas of 2-spheres at a constant radial coordinate x, while the
latter determines the radial distance.

Momenta of the triad fields are classically given by the components of extrinsic

curvature, such that we have basic Poisson brackets [65—67]

{Ka.(2), E*(y)} = 2G6(z,y) and
{Ky(2), EZ(y)} = Gi(z,y) (2.30)

with Newton’s constant G. (There is no factor of two in the second equation because the
angular direction represents two degrees of freedom on a 2-sphere that are strictly related
by spherical symmetry.) The relationship between K, and K, and derivatives of the
triad components follows from equations of motion of the classical theory. Classically, K,
is proportional to the change in time of E* or of 2-sphere areas, while K, determines the
change in time of the radial distance. These relationships, in general, may be modified

by quantum effects introduced in the canonical dynamics.
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Specific equations of motion are generated by a combination of constraints, the
Hamiltonian constraint H[N], corresponding to conservation of energy, and the dif-
feomorphism constraint D[M], corresponding to conservation of momentum, such that
f ={f, HIN]+ D[M]} for any phase-space function f. The dot refers to a time derivative
in the direction of an evolution vector field t* = Nn® + Me® determined by lapse and
shift [40], where n® is the future-pointing unit normal to a space-like foliation and e®
a unit vector tangential to the foliation. In classical spherically symmetric gravity, the

constraints as phase-space functions take the form

H[N] = —é/de(\/_KinL\/ﬁK K, (2.31)
LB ()
2WVE* 8/E*E$
L VER(E) () \/ﬁ(Ew)")
2(E9)2 2E°

and
D[M] = 210 /d:v M (2K] B — K, (E*)) . (2.32)

They form a first-class system with brackets

{DM), D[My]} = DM M — MM (2.33)
{H|N],D[M]} = —H[MN'] (2.34)
and
{H[N1], H[No]}
= —DIE*(E®)*(NiN; — NaNy)] (2.35)

corresponding to deformations of spacelike hypersurfaces in classical space-times with
spherical symmetry. The structure function E*/(E%)? in the last equation is the only
component of the inverse spatial metric that contributes if spherical symmetry is imposed.

Any (1 + 1)-dimensional triad theory subject to brackets (3.19), (3.20) and (3.21) is
generally covariant [68], in the sense that solutions of the theory are subject to gauge
transformations equivalent to space-time coordinate transformations. The general form
of the brackets should therefore be maintained by quantum corrections. More generally,

it may be possible that quantum corrections preserve the first-class nature of the two
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constraints, H[N| and D[M], but with modified brackets. In particular, as in (2.27) the
phase-space function E*(E¥)~2 in (3.21) may be quantum corrected if E* and E¥ are
quantized. Such a theory would still be consistent, but it may not describe space-time
with Riemannian geometry. It would rather describe a quantum version of space-time
with a structure that depends on the detailed modification of the coefficient E*(E¥?)~2
or on higher-order versions (2.26) of the gravitational constraints.

Quantum corrections considered in the present paper will not present a clear modifi-
cation of the structure function, but information about this possibility is limited by the
restriction to static configurations that we will make for tractable equations. Further
analysis of non-static solutions will be necessary before statements about the quasiclassi-
cal structure of space-time can be made. Nevertheless, within the setting to be developed
here, it is possible to study implications of quantum effects on specific static solutions.
To this end, we initiate and apply here a canonical description of quasiclassical quantum
field theory. The canonical nature makes it possible to extend the Poisson brackets used
in (3.19) and (3.21) to constraints amended by quantum corrections. Consistent orderings
of constraint operators are known in spherically symmetric quantum gravity [69,70],
which guarantees that closed effective constraint brackets of the form (2.27) exist. The
required equations have been derived explicitly in [71], where consistency was confirmed
independently. The quasiclassical nature means that we will be able to include key
features such as quantum fluctuations or uncertainty relations, in our analysis. (In
addition, factor ordering choices matter in quantum constraints, which in our context
imply certain imaginary contributions to effective constraints that we will not consider
in detail here.)

It will also turn out to be important that the methods we use, which are generalized
versions of what has been known for some time in quantum chemistry [33], are non-
adiabatic. In our context, this non-adiabaticity means that we will not be required to
express quantum corrections in the form of a derivative expansion, as implicitly done
by common methods of quantum field theory such as low-energy potentials or Feynman
expansions. Quantum corrections are rather expressed in terms of independent degrees

of freedom that physically correspond to fluctuations or higher moments of a state.

2.5.2 Canonical fields

Before we implement fluctuation variables, we transform our current fields to strictly
canonical form, removing a factor of two in (2.30). (From now on, we choose units

such that 2G = 1.) Also renaming the fields, this transformation is accomplished by
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introducing
¢1 = FE" , P1= _Kx 5 ¢2 =2FE¥ , P2 = _ch . (236)

In this notation, ¢, and ¢, therefore represent the metric components with momenta
p1 and ps. Classically, the momentum fields have the usual interpretation as extrinsic
curvature, but this relationship will be modified by quantum corrections. In these

variables, the Hamiltonian constraint takes the form

HIN) =~ [ doV () (fj@% +2/opips + (1 . (j)) by (Z) @)
(2.37)

while
DIM] = [ deM(@) (~ips + phos) (2.38)

The number of independent fields can be reduced by making a gauge choice for
E?® or ¢; such that z is the usual area radius: ¢; = z2. The gauge-fixing condition,
g(z) = ¢1(x) — 22 for all z, then forms a second-class pair of constraints, together with
the diffeomorphism constraint. This is because {g(z), D[M|} = —2M ()¢ (x)¢)|(x) ~
—4M (x)2® # 0, unless z = 0 or M(z) = 0. Here, ~ indicates that we have used g(z) = 0
in this step. For second-class constraints, we have to solve both conditions, D[M] = 0 for
all M and g(z) = 0 for all . We do this while removing the diffeomorphism constraint
and fixing its gauge freedom, by using a specific radial coordinate z, such that ¢;(z) = 2.
In the static case, D[M] is automatically zero. However, its gauge flow, restricted to the
submanifold of zero momenta in phase space, does not identically vanish. This is because
it may still change ¢; and ¢9. This freedom is fixed by imposing the condition g(x) = 0.

The remaining flow generated by the Hamiltonian constraint will be time evolution
for a given lapse function N. The only fluctuating field will then be ¢, for which we
introduce an independent quantum degree of freedom ¢3 as a field version of s = Agq
as recalled for quantum mechanics in Section 2.4.1, together with a momentum field ps.

Therefore,

U(x)

2.39
02 (2:39)

A(Qﬁ) = 9253 ) A(qbng) = ¢3p3 A(p%) = p?z +

As our notation indicates, the Casimir function U, which was a function on phase space

but constant along solutions in quasiclassical quantum mechanics, may now be a function
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of the spatial coordinate x, just like the other canonical fields. There are no equations of
motion for U because it does not have a momentum field. One of the aims of this paper
is to look for additional consistency conditions that may be used to determine U based
on U-dependent equations of motion for the other fields.

In order to determine how the new fields appear in an effective Hamiltonian, we need
to perform a Taylor expansion of H[N] by ¢ and py, which is rather lengthy. The result

is that the effective Hamiltonian constraint is of the form
H[N] = H|[N|]+ H;[N]| (2.40)

with the classical H[N] from (2.37) and a correction

10°H U\  oH \*H , OH
Hy[N] = /dIN(x) (2 op2 ( ¢3> Brap 29253]?3 B 897 ¢3 8¢28¢'2¢3¢3>
_ $2p3 P3p2ps3 V1819h _ - 1 (¢9)? _ Vo ) 2
@t (w— T+ (0 - M )
\/_¢/¢3¢3 U(x )¢2> ‘ (2.41)

RN

As in (3.54), the effective Hamiltonian follows from a Taylor expansion, here in terms
of ¢o(x) at any x. The leading corrections are expressed in terms of second-order partial
derivatives in the first line of the preceding equation, which are evaluated in the next
two lines.

The last term in (3.68), %U(x)@qﬁfl/%f, is implied by (3.61). Its analog in quantum
mechanics has a contribution from zero-point fluctuations [51] that would be subtracted
out in a quantum field theory, or be subject to renormalization. (See also the simple
example we gave after (2.24).) For this reason, and because uncertainty relations for
operator-valued fields are less clear than those of quantum mechanics, we will not impose
a non-zero lower bound on U(z) such as h?/4. We will, however, require that U(z) be
positive for all x, motivated by its interpretation as a remnant of zero-point fluctuations.
The value of U(x) at a given position can then be used as an indication of the strength
of quantum effects.

From the perspective of hypersurface deformation generators, the U-term in (3.68)
does not contribute to the Poisson bracket of two Hamiltonian constraints because it does
not contain any spatial derivatives or momenta. Therefore, it does not have an effect on

the main consistency test performed in this paper, given by closure of the quasiclassical
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constraints in the static limit. The term will, however, affect our static solutions to be

derived below.

2.5.3 Spatial diffeomorphisms

It is noteworthy that the function U(x), according to its first appearance in (3.61),
should have spatial density weight two so as to be consistent with a density weight one
of ¢3 (inherited from ¢,) and density weight zero of ps3. This property provides further
motivation for allowing U(x) to be a function of z, rather than a constant which would
be possible for a density only in a specific spatial coordinate choice. Moreover, any lower
bound such as h?/4, imposed on a density, would not be respected by transformations of
the spatial coordinate, while positivity U(z) > 0 is compatible with a density weight.

The density weight of U(z) also implies that the U-term in (3.68) has the correct
density weight one, as expected for any contribution to a spatial integrand. If the density
weight were ignored, the term would have density weight minus one because ¢o and ¢3
have the same transformation property according to (3.61), and ¢, has density weight
one. This unconventional transformation behavior, if it were used, would be analogous
to a property studied in the minisuperspace context [72-74], where it originated in
a contribution to the dynamics from infrared modes included in a symmetric model.
Spatially homogeneous minisuperspace models do not provide control over the density
weight because the spatial dependence of all functions is ignored. The present paper
is the first one that studies this phenomenon in a field-theory setting in which density
weights can be determined unambiguously. We will see below that the density weight
of U(x) may be ignored consistently if only spatial transformations are considered that
are generated by a quantum corrected diffeomorphism constraint equal to the Poisson
bracket of two Hamiltonian constraints (including the structure function). This generator
is sufficient for formal consistency of the quasiclassical constraints. However, if one
tries to analyze full covariance under all spatial coordinate transformations, which lies
outside the scope of the present paper, there may be further subtleties related to spatial
transformations in spatially inhomogeneous quantum midisuperspace models.

The effective diffeomorphism constraint does not follow directly from the quantum-
mechanics model because its structure is rather different from a Hamiltonian. However,

we may expect that the effective diffeomorphism constraint should be of the form

DIM] = [ daM(2)(~6p1 + Dy + pios) (2.42)
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Unlike ¢, which transforms as a standard scalar field in the symmetry reduced model,
the field ¢y transforms with density weight one, a property that is inherited by the
original appearance of ¢y in the metric components. The new field ¢3, which represents
quantum fluctuations of ¢o, is assigned the same density weight. These considerations
explain the different signs and positions of spatial derivatives in the three terms of (2.42).

The new term, compared with the classical constraint, can be derived from a quantized
phoo after applying a point-splitting procedure: In order to evaluate the expectation
value of a product of field operators, defining the effective diffeomorphism constraint,
we follow the quantum mechanics example of (3.54). We first introduce two slightly
different positions for pl(z) and ¢s(y), such that the prime uniquely refers to a derivative
only of ps. This holds, even in a product of these two operators or in the quantum
covariance (Py(2)P2(y))symm = A{(P2(x)d2(y))symm/dz. Taking the limit z — y after
moving the derivative out of the expectation value, we obtain (p)()d2(2))symm =
lim,_,, d<ﬁ2(1:)q32(y))symm /dz, without any ambiguity as to which operator the derivative

is acting on. Continuing with this equation, we have

d d

(P(2)02(2)symn = 10— (P2 (0)02(y)symum = limn = ((P2()) (D2(v)) + Alp2(2)62(v)))
= im S (o)) {a(u)) + pale)6s(9)) = Phon + pis. (2.43)

(We may assume the symmetric ordering of p, and ngﬁg because reordering terms
of the quadratic expression would merely be introduce constants.) This form of the
diffeomorphism constraint is also consistent with the transformation behavior of ¢3 which,
like ¢, should be a scalar density, as already observed in (2.42).

A schematic operator version of the diffeomorphism constraint can also be used to
determine which higher-order constraints should contribute to the effective constraint
brackets, as in (2.27). The classical bracket (3.21), after fixing ¢, = E® = 2? to be
non-dynamical, shows that the two expectation values —4@2_ 2610, p1) and 4<¢1$2_ L)
will be relevant, which we should expand by moments of ¢, and py. Ignoring ordering

questions for now, we therefore expect the replacements

_4¢1¢’1p1 S _4< P1 ﬁfi >
¢3 (2 + Agy)?
_4¢1¢;P1 _ 12¢1¢'1€25§P1 (2.44)
b3 o
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and

4

P15 oy <¢1(p2 + A/]32)'>

b2 ¢ + @2
/ 2,/ /
4¢;]:2 + ¢1z§p2 _ 4¢1Z§p3 (245)

where A/ggz = 52 — ¢o and A/Z;Q = Po — po. Interestingly, the last term in the preceding
equation cancels out completely with the last term in (2.42) once the latter equation is
evaluated with the structure function according to (3.21). We therefore do not expect a
term proportional to pj in the bracket of two Hamiltonian constraints, even though it
appears in (2.42).

With this result we can return to the U-term in (3.68), proportional to Ugs/(\/é1¢3).
Even if the density weight of U(z) is ignored, this term is consistent with gauge trans-
formations generated by a quantum-corrected diffeomorphism constraint that includes
the structure function expected for the bracket of two Hamiltonian constraints: Due
to the fact that the ps-term is expected to cancel out in this expression, these gauge
transformations do not act on the ¢s-dependence of the U-term. If this dependence is
ignored for the purpose of counting density weights relevant for a Poisson bracket with
the diffeomorphism constraint, the remaining dependence on ¢ provides the expected
density weight of one, suitable for an integrand. (If the density weight of ¢3 is included
in the count, one has to assign a density weight two to U(z). As already mentioned, this
definition is likely necessary if one attempts to extend diffeomorphism to arbitrary shift
vectors. If the structure function is not included in the diffeomorphism constraint, the
latter depends on p3 and is sensitive to the density weight of |¢3).)

As a further test of mutual consistency of the quasiclassical constraints, we now
evaluate the bracket of two Hamiltonian constraints in more detail. The derivation of

{H[N], H[M]} can be split up into smaller calculations using

= {H[N],H[M]} + {H[N], Ho[M]} + {H:[N], H[M]} + {Ha[N], H2[M]}
= {H[N], HM]} + {H[N], Hao[M]} — {H[M], H5[N]} + { Ho[N], H>[M]}
(2.46)

based on the antisymmetry of the Poisson bracket. We already have the first term in
(2.46), so we only need to derive the second term, { H[N], Hy[M]}, and the last term,
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{H,[N], Hy[M]}. The third term can then be obtained from the second term by flipping
N and M. The last bracket, { Hy[N], Hy[M]}, and the combination { H[N], Hy[M]} —
{H[M], Hy[N]} are antisymmetric in N and M. It is therefore sufficient to consider only
terms in which a spatial derivative of ¢5 or ¢3 appears, which after integration by parts
then leads to the non-zero antisymmetric combination NM’ — N'M. We are interested
here in the Poisson brackets of gauge generators, relevant for our consistency conditions,
as well as asymptotically flat solutions close to the classical case for large x. Therefore,
the lapse function is required to drop off to zero at infinity, while the ¢-dependent terms
in the constraint remain finite. (The fields ¢; and ¢, asymptotically grow like z? and
x, respectively, but the momentum-independent terms in the Hamiltonian constraint
contain only ratios or derivatives of these fields with finite limits.) We can then ignore
boundary terms when integrating by parts for gauge generators. Lapse functions with
non-zero limits at infinity correspond to symmetry generators in the asymptotically flat
region, which we do not consider here.

A lengthy calculation produces the result

{H[N],H[N]}:/dx(NM’_N’M)( ¢;¢’ 1+421 ,>+
2 2
/ 9 ,
(=i
_/dx NM' — N'M) ;;1( ¢1p1+¢2p2+3¢3¢1p1
i;’ , — 56165ms) .

for the Poisson bracket of two Hamiltonian constraints. The first two terms are the
classical diffeomorphism constraint with the correct structure function, while the next
two terms are quantum corrections as expected from the expansions (2.44) and (2.45).
The last term does not correspond to a contribution in the diffeomorphism constraint. It
can be seen as a consequence of our reduction, which includes quantum corrections only
of ¢9 but not of ¢;. In particular, a complete effective constraint would include moments
such as A(p90)) as well as A(p1p2) with a bracket that can contribute to the ¢sps-term
we obtained here. As shown by the consistency check in [71], all such contributions
indeed cancel out in the complete effective system, while they do not completely cancel
out in our reduction. The left-over contribution here re-introduces a ps-dependence that
generates non-trivial transformations on the U-term in (3.68). Our system is therefore

not fully consistent if generic spherically symmetric configurations are considered, but it
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may be used for static solutions for which the last term in {H[N], H[N]} vanishes. The
solutions we obtain are also reliable as consistent configurations in the complete system

in which all cross-correlations between ¢, and ¢, vanish.

2.5.4 Higher-order constraint

In addition to H[N] and D[M], there is one higher-order constraint of the form (2.26)

that is relevant for static solutions at second order in moments:

A

Hg,[L) = (62 — (@2) H[L]) . (2.48)

This constraint does not directly contribute to the brackets of hypersurface deformations,
but it provides additional restrictions on the fields that are implied by imposing the
quantum constraint. For a derivation of Hy,[L] in terms of moments, we need a Taylor
expansion of H[L] to first order in ¢y — (¢s) and py — (ps). These terms, together with
the factor of (¢ — (b)) included in the definition of H,,[L], then produce second-order

moments. Considering the fact that H locally depends ¢, as well as on ggé, we write

H¢2[L] = /de ( ¢3 8¢2¢3¢3 ¢3p3>

_ P 1 (¢1)* +4¢1¢/1, \/_¢/¢/> 2
A (( NENCRERENCT: i )
L 2a

2 F 3 + (q\b;% + 2\/;1]91) ¢3p3) : (2.49)

In the first line, the common factor of ¢, in all three terms is implied by the explicit
factor of (s — (¢)) in the definition of H,,[L]. The remaining factors of ¢, ¢ and ps,

respectively, are correspond to first-order terms in a Taylor expansion of H.

The presence of higher-order constraints implies that evolution is not uniquely de-
termined by the classical pair of two functions, lapse and shift, but also requires the
specification of additional functions such as L. The latter determine the direction of
a time evolution vector field in moment or state space. The general form of evolution

equations with moment terms is therefore given by
f={f HIN]+ DIM] + Hy,[L] +---} (2.50)
for any phase-space function f, where the dots indicate further higher-order constraints
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that would involve higher moments or higher-order versions of the diffeomorphism
constraint. The former do not appear to second order as considered here, while the latter,
just like the classical D[M], is not included for static solutions. Our evolution equations
will therefore be given by f = {f, H[N] + Hy,,[L]}. In the static case, N is classically
determined by the consistency condition that evolution equations be compatible with
static behavior. As we will see, the same is true for L if quantum fluctuations are required

to be static too.

2.5.5 Solutions

We will derive properties of static solutions in radial gauge, choosing ¢; = z? such that
x is the area radius. Since our extended system is first class according to (2.27), we are
allowed to fix the gauge in order to determine solutions. All momenta vanish for static

solutions, and we are left with four free functions, ¢, ¢3, N and L.

2.5.5.1 Equations

The diffeomorphism constraint (along with its higher-order versions) is identically satisfied

for static solutions, and we have fixed its flow. Two equations of motion,

1[N] | 6H[L)

. _ 0H
= H[N|+ Hy,|[L]} = 2.51
¢2 {¢27 [ ] + (252[ ]} (5p2 5p2 ( o )
= <2xp1 + Pap2 + ¢3p3> N + @ (3p2 + dop3) L
x x x
and
, _ SHIN] = 6Hg,[L
b = Aon AN+, (r)y = TN OHenll (2.52)
P3 D3
1
= ;(¢2p3 + ¢ap2) N + (Q\S/Q% + 2\/9271]?1) ¢sL,
are identically satisfied in the static case.
The remaining equations are therefore given by two constraints, H[N] = 0 and
H,,[L] =0, and two equations of motion,
: - SHIN]  §Hg,[L
0= o = (o, HIN] + H, (1]} = ~ 2N OMlerll (2:53)

¢ 02
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and

SHIN]  0Hg,[L]
093 03

in static form. These implement the correct flow generated by the Hamiltonian constraint

0=p3 = {ps, H[N] + Hy,[L]} = — (2.54)

as required for static solutions. The full equations are rather lengthy, and will be shown
in a more specific form when we start solving them below. With these conditions, we

obtain the Hamiltonian constraint

_— ¢y 2 z\ 22y 6 22h3d; Uy
H[N]——/de(x) (——495 () +<12 ¢%2 %)d)g—s P 34 2x¢§> ,
(2.55)

the higher-order constraint

6 2/ 2 ,
Hyl1) = - [ deL(a (( t ¢f)¢3 "’%m) (2.56)

and the two equations of motion.

These four equations are coupled differential equations for the four free functions. In
order to simplify the solution procedure, we proceed perturbatively and assume that ¢
and N are given by their classical solutions (according to the Schwarzschild line element)

plus small corrections of the order of ¢3:
¢o = O + 00y =

N = NO 4N =/1—p/x+ 0N

where gbgo) and N© are obtained from the Schwarzschild line element. The constant i is

+ 002 (2.57)

equal to the mass in our units, having set 2G equal to one in order to simplify several
numerical factors in the constraints and Poisson brackets. Transforming to the more
standard choice where G equals one can easily be achieved by equating p to twice the
mass.

The higher-order constraint equation Hy,[L] = 0 then takes the form

0 = HoL] (2.58)
— —/d:cL(x)qbg (2352@ + (1 — Z) ¢§,> + O(¢3662)
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and can be interpreted as a first-order differential equation for ¢3. Its general solution is

¢
(1= /)"

with an integration constant C. This solution diverges at the horizon, which is not

p3(7) = (2.59)

surprising because this is where our background solutions (3.96) break down in the
Schwarzschild coordinate system. At spatial infinity, ¢3 approaches a constant while ¢

diverges. Fluctuations are therefore small at low curvature.

2.5.5.2 Metric correction

Using our solution for ¢3, the constraint (3.97) implies a differential equation for d¢s,
coupled to 6 N. Only the classical part of the constraint contributes to the dependence
on d¢ and N in our perturbative treatment because Hs[N] is quadratic in the small ¢3,
such that any contribution from d¢, or d N would be of higher order. For this contribution,

we have

oH
Oa

©) 10°H 0*H
+/d N (2 - ~ (862)? + %8%5@5% (2.60)

HIN] = H[N]| 0 + [ da(N! +5N)< 562+ 507 5¢2>

where all coefficients are evaluated at the classical solution. Therefore, H[N]| 40 18 set to
2

zero by definition of gbéo) There is no second-order term in d¢,, because the dependence of
H[N] on ¢, is linear. In the first line, we can integrate by parts in the last term. Several

resulting contributions then equal the integral of d¢, times the classical

(0)
—pa(y) v = —{p2(y), HIN]} = %

/d NC < (“">5(x_y>+5ﬂ(fv)35(x—y)> _ v 9H (N(O)8H>’

(2.61)

092 (y) OPh(y) Oz 8¢2 Oy

which vanishes for static background solutions. For the  N-terms, we can also integrate

by parts,
oOH 0 OH 0OH
20N [ 5y + 20 Ja I 5oy + NO 25
f (acm ot g %) "X ( 90, TN 0, )
0) O OH 0OH [ ON
5 N© SN — N© 2.62
fassen (v - a¢’>> ' (N“))) i
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The first 0 N-term in this expression vanishes, again by virtue of (3.26), but one term
now remains, containing (JN/N©)'. Including this term in the expanded Hamiltonian

constraint, we are left with

- (
N]—/de0)< 0,

The expansion of H[N] contributes additional terms depending on ¢3, which by

5N 1 il CO*H

construction of Hy[N] from a Taylor expansion have the same coefficients as the last two
dpo-terms in (2.63). All these terms can be combined to

H[N] = / dzN© < 50, 5o < 5N> (2.64)
10*°H 1 0*H 1 U(x)ps
+5 907 ((5¢2)2 + ¢§) 2 06900, (((5¢2) + ¢;2),) + 2\/&%) :

(The U-term should be considered second-order because it is derived from A(p3) in (3.61).
The function U(x) is therefore of fourth order in the quasiclassical expansion. If moments
of a semiclassical or Gaussian state are used, one order in the quasiclassical expansion
corresponds to a factor of \/ﬁ) Inserting classical solutions, from the background upon

which we evaluate the perturbations, in the coefficients, we obtain

Ufx)
3

+ fo (1 _ ’Jf) (1 - ) ((5@) +¢3) - 219[; (1 - ;‘)2 ((662)* + ¢>§)'> -

In order to simplify this expression, we can combine it with the a non-vanishing

de (= (1=H) 6p,0N" + 5¢25N+ (2.65)
fae (- (-1)

contribution to the full p, to linear order in d¢o and 6N, which will allow us to eliminate
SN from (2.64). Using (3.26) for the expanded solution, this linear contribution to ¢, is
given by

OH;; OH®O OH;; OH© 1\’
linear = ————tNO) 22 5N Zoimear ar(0) 4 257 SN
Pl 06 o0, " T\ o T 0,

__(9H °H ., (PH .\ o
B <6¢% 002 Hn05," % (8¢5a¢25¢2>>N

02 H OH oOH\' OH
+ ) N(O)’—<—< >>6N+ SN’
oo 96~ \odh o0,
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_ _(*H ([ &H ! ©
= <a¢% <8¢’26¢2>>5¢2N

0*H (0),_<8H <8H>'> 0H
+3qb’23¢25¢2N o o N O (266)

Upon inserting background solutions in the coefficients, the § N-terms in

1
p2|linear = (1 - ) 5¢2 ZE2 5N + (1 - M) 5N/ == 0 (267)

S22 x

are of the same form as those of (2.64) and can therefore be eliminated from this equation.

The simplified second-order constraint,

/ dz ( S <1 _ ) (569)% + Ug) (2.68)
b (1-2) (1= 2) (Gonr + ) - 5 (1= 1) (G2 + ) )

provides a differential equation for d¢, if we use the known solution (2.59) for ¢3. Keeping

some of the ¢2-terms for now, we write this differential equation as an inhomogeneous

one for (0¢h)? + 3

4; (1 ’;) (1 —~ ) ((662)* + 3) — 2133 (1 B g)z (562 + &)

C? U(z) w3
S 2221 —pjz)? 2 (1 Bl :E> ‘ (2.69)

The corresponding homogeneous equation can easily be solved for

D\/x
which then implies the differential equation
C? 2U () (x — p)7/?

D = (2.71)

(z — p)3/2 + 2 3

for solution of the inhomogeneous equation of the form (2.70) with az-dependent D.
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Solving this equation, we obtain

EyVx 207 N2
(A= p/af? (- pfop | O 1 - u/x 5/2 /U (1 N x> \/Zdjz)

(0¢2)* + 95 =

with a new integration constant F, or

5¢2:J Eve 3¢ /U (1—’“‘)7/2\/5(1:6.
(1= p/x)?? (1= pfz)® O 1—u/x )>? x

(2.73)
(For constant U, there is a closed-form logarithmic expression for [(1 — p/x)"/?\/zdx,
but it is lengthy.)

Notice that the second term dominates near the horizon, where it is negative. The
perturbative solution therefore breaks down before the horizon is reached, where ¢3 is
large but still finite. For z > p, the dominant behavior of ¢s(x) is determined by the last
term in (2.73), which, for an asymptotically constant U (z), behaves like Ux? (the integral
can then be approximated as [z'/2dx = §x3/2). In this case, therefore, d¢y ~ Uz
grows with z, but so does the classical solution ¢9(0). Since ¢§°) ~ x for x > u, the ratio
(0g2)/ gbéo) ~ /U implies a nearly constant correction of the order of % for semiclassical
states, where U & h?/4 remains asymptotically constant. The first term in (2.73) may
also be relevant in intermediate regimes, where it would imply a d¢, that behaves like
z'/*. The correction to ¢, then increases asymptotically, unlike ¢3, but less slowly than
©: we have (5¢s)/¢Y) ~ 73/ from the first term in (2.73).

2.5.5.3 Lapse correction

Given this solution for d¢o, we can go back to (2.67) as a differential equation for dN. So
far, we have not fully solved this equation and only used it to eliminate d N from (2.64).
Our solution for d¢y obtained in this way now makes it possible to solve (2.67) for J N,
although the lengthy form of (2.73) makes it hard to find a complete analytical solution.
Nevertheless, the form of the solution in certain limits will turn out to be instructive.

We first rewrite equation (2.67) as

1 ON

(2.74)
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such that
JoB

5N:—;/1—5/de (2.75)

where (2.73) should be inserted in the integral. A simple integration is obtained in

regimes in which both C?-terms in (2.73) can be ignored, in which case

2 vE +rf1-2 (2.76)

ON ~ ——
3341 — p/x)l/4 x

with a new integration constant F'. The F-term just changes the background lapse
function by a constant factor 1 4+ F', which can be absorbed in the time coordinate. The

remaining correction to the lapse function,

2 VE

SN ~ ==
Bad/A (1 — pfx)

(2.77)

shows an interesting asymptotic behavior of the correction which falls off more slowly
than the classical curvature correction —p/x of the lapse function. Using this term as a
correction of Newton’s potential in a weak-field line element shows that non-local effects
could imply larger corrections than effective field theory in a derivative expansion, where
the leading correction would be of the order 1/z3 [15]. However, our simplified solution
(2.77), based on the E-term in (2.73), does not apply in the completely asymptotic regime
where the U-term in (2.73) would be dominant. Since this term, for asymptotically
constant U(z), implies an asymptotic behavior of §¢ ~ v/ Uz, the corresponding 6 N
according to (2.75) is N ~ +/Ulog(u/z). Interpreted as a correction to Newton’s
potential, this term suggests a relationship with infrared contributions, consistent with
the interpretation of fluctuation terms in quantum cosmological models that have the
same origin as U here [72,73].

We are left with the equation ps = 0, a differential equation for L. It is straightforward

to solve
by _ _OH ) <62H (0)>, U(x)gy ' N© OH | (aHL>’
bs O¢2 020, Voiss  T00, " \04,
1—p/z  2U(x) ( u>6 2/ ( M) /
212 + 4 T 22 L+ " L (2.78)
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for L, where we have used background solutions in all coefficients. The result is

L:—l_“/x+G<1—“>2 (2.79)

2z x
2 3 2
_2U(z) (1_“) (1—’“‘) +3“<1—“) L3 (1—”)+3Mlog(u)
I T x 2 x x? x x x

with a new integration constant G. Since L vanishes at x = u, the evolution of

fluctuations freezes at the horizon, just as the evolution of the classical metric.

2.5.5.4 Quantum effects

We have obtained complete solutions, up to two remaining integrations. These are not
only lengthy in analytical form but also require additional information about the function
U(z), which quantifies the strength of quantum effects. So far, we have mainly discussed
U-dependent modifications in asymptotic low-curvature regimes, in which we assumed
that U(x) is nearly constant. The results were encouraging, in that they showed that
a nearly constant U also implies a nearly constant relative metric fluctuation, given by
dpa/ gzﬁgo). Nevertheless, it is of interest to obtain independent information about the
possible form of U(z).

Since the field U(x) does not have a momentum, in the truncation to second-order
moments used here, it is not subject directly to an evolution equation. (At higher moment
orders, the uncertainty product A(¢2)A(p2) — A(gops), which equals U to second order,
is not conserved. The momentum of U can therefore be thought of as a combination
of higher-order moments that are eliminated in our truncation.) However, it turns out
that we can use another equation of motion in order to derive a consistency condition
for U(x): We have implemented the leading non-zero terms in the equation p, = 0,
which were of linear order in d¢s and dN. Since we used second-order constraints, there
is also a second-order contribution to ps. Setting this contribution equal to zero for
static solutions allows us to test the self-consistency of the formalism. A long calculation

(performed using Mathematica) implies an equation for U(z) of the form

0 = f@)+ fo(2)U(x) + f3(2)U(x)* + fa(z)U'(z)
+f5(2) U] + fo(2)U(x)I[U] + fr(2)U'(x)I[U]
+ fs(2) I[U]? (2.80)
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where

Ul = [Va(l = u/2)2U (@) d (2.81)

and the U-independent coefficient functions are
filz) = 3608\/1 <\/1 (1 + = — ;’;i) +1 (2.82)

“scoms (1) (-t (5 P 0O0) o) sctmta (1- 1)
folz) = 1202 (1 - ;‘)11/2 ( 1— g < 13“) >

_AC?EL? (1 - ’;)6 ( -2 (3 4 M“) 1) (2.83)
fa(z) = 162" (1 — g)n (2.84)
falz) = 16C°%° (1 = ’;)7 <302 — BV, 1 - “) (2.85)
fo(z) = —6C"H? (1 - ’;) ( -2 (5 L. if‘) + 9> 1 20C2Ex ( Y3 36)
folz) = —8a°2 (ﬁ (3 4 y;‘f) - 1) (1 - ;‘)6 (2.87)
fle) = s (1) (2.88)
fs(x) = 20z (1 - 5)3/2 : (2.89)

This long equation can be analyzed in the asymptotic regime if we assume that U(x)
is of power-law form there. In the derivative terms, xU’(x) is then of the same order as
U(z), and asymptotically for z > p with nearly constant U the integral behaves like
232, In (2.80), the contributions with coefficient functions f3(x), fs(x), fr(x), and fg(x)

are then dominant, such that the equation simplifies to

al(2)* + bU (x)I[U] /232 (2.90)
+exU' (2)I[U] /232 + dI[U)?/2* = 0

with z-independent coefficients a, b, ¢ and d. For nearly constant U at x > u, we have

I[U] ~ 222U, and therefore our equation takes the form

al(z)* + cxU(x)U'(z) =0 (2.91)

39



Varying Initial Condition

X
3.0 3.5 4.0 4.5 5.0

Figure 2.1. An example of two numerical results for U(x) following from equation (2.80).
Two choices of initial values were set for U(z) at « = 2.5, given by Ui, = 0.01 in the
lower curve and Ui, = 0.06 for the upper curve, respectively. Constants are set as follows:
C =0.01, £ =0.0001, u = 1.

with a new constant @. The simplified equation therefore has solutions U(z) = 0 or a
power law for U(z). Asymptotically, these solutions are consistent with our condition
that U(z) not be negative. Numerical solutions at smaller z, shown in Fig. 2.1 confirm
this behavior.

This result is encouraging because the non-negativity condition is motivated by the
quantum-mechanics origin of our modifications, which is independent of the consistency
conditions we checked for the constraint brackets. The observation that solutions respect
the quantum condition indicates that the equations are self-consistent, not only as a

model of modified gravity, but also from the perspective of quantum physics.

2.6 Conclusions

Any quantum theory, and in particular quantum gravity, is expected to imply non-local
behavior. Non-local action principles and their equations of motion are usually hard
to solve, but if one assumes a specific non-local action, it can often be analyzed by
mapping the theory to a local one in which classical degrees of freedom are coupled to
auxiliary fields. We have introduced here a new, systematic quasiclassical formulation
of spherically symmetric models in quantum gravity with non-local corrections derived
in a canonical quantization. By implementing quantum fluctuations and correlations as
physical versions of what would usually be called auxiliary fields in a non-local theory, a
multi-field local theory is obtained in which coupling terms are completely determined

by the rules of canonical quantization.
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The presence of new degrees of freedom implies that such quantum extended theories
are more complex than the classical model. Working with vacuum spherically symmetric
models, we constructed a tractable constrained system in which one of the metric
components, ¢, is fixed by using the area radius (a partial gauge fixing of the theory).
Doubling the classical field content by introducing second-order quantum moments, we
therefore obtained a theory for two independent fields that represent a single classical
metric component (the radial distance measure ¢) and its quantum fluctuation (¢s3).
While the reduced system ignores cross-correlations between the radial distance ¢q/(21/¢1)
and the area radius /¢y, it is formally consistent for static solutions and allows explicit
solutions in almost complete closed form.

The fluctuation field ¢3 couples dynamically to expectation value ¢, representing one
of the metric components. The former field cannot vanish owing to uncertainty relations,
and through the coupling terms it implies changes d¢o of the metric field compared with
its classical behavior. Through canonical equations of motion, the staticity condition
determines the lapse function N for a given ¢, such that N inherits certain changes
from d¢s. Using the appearance of these fields in a classical-type line element, we obtain

a quantum-corrected space-time geometry from

(Cbgo) + 0¢p2)?

ds? = —(N© +6N)2de? + e’ 4270 (2.92)
xr
(0)2 (0)
2058
~ _(N(0)2+2N(0)5N)dt2+¢2 Z? ¢2dx2+x2d92
xXr

to first order in N and d¢o. The latter values are given by the rather lengthy expressions
(2.75) and (2.73), respectively. However, a word of caution is in order when we organize
our solutions in this form: So far, we have checked the consistency of our quasiclassical
constraints only for static configurations, and therefore we can use a line element of
the form (2.92) only for static slicings. It might be tempting to apply a more general
coordinate transformation once solutions have been put into the form of a line element,
but by doing so we would leave the range of validity of our derivations here. The
cosmological analysis [75] extended our static constraints to non-static ones, observing
that consistency then requires an inclusion also of fluctuations of ¢;. An application to
black-hole models remains to be completed.

We have observed several interesting features of our solutions. In particular, the
quasiclassical approximation breaks down before the horizon is reached, which suggests

that non-local effects may be crucial for horizon dynamics of quantum black holes. A
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confirmation of this expectation would, however, have to await a solution of higher-order
quasiclassical approximations, as well as an extension to non-static configurations that
would allow us to use different space-time slicings.

The asymptotic behavior is more reliable within the restrictions of our model. We
analyzed it by studying solutions for one of the new quantum fields that corresponds to
the uncertainty of a state in quantum mechanics. For this field, we found an asymptotic
fall-off behavior consistent with a positivity condition. Our quasiclassical solutions
are therefore consistent with the existence of an underlying quantum state of static,
spherically symmetric space-times. In a full quantum field theory, important properties
such as positivity would be implied by unitary evolution. The fact that we observed a
positivity property without explicitly deriving unitary evolution from the quasiclassical
constraints indicates that our treatment is self-consistent and does reveal features of an
underlying quantum theory of gravity. Our analysis therefore shows that quasiclassical
methods are promising in applications to inhomogeneous models of quantum gravity.
They allow explicit derivations of quantum corrections without requiring additional

assumptions beyond what is provided by canonical quantization.
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Chapter 3
Reinterpretation as a black hole
superposition

My recent preprint, Space-time superpositions as fluctuating geometries, is building on
my recent paper. In the previous chapter, I described Quasiclassical solutions for static
quantum black holes and how I established the presence of quantum effects in a black
hole spacetime, modified with novel quantum-corrections. This new approach involves
recreating these quantum effects, while modeling the quantum-corrected black hole as,
instead, a quantum superposition of classical black holes. Rather than a spacetime with
quantum fluctuations, we now have a quantum superposition of classical spacetimes. This
reinterpretation supports my earlier numerical results and produces quantum corrections
in the Newtonian potential in the asymptotic limit. Shifting the framework in which

these quantum corrections are interpreted broadens the applicability of my results.

3.1 Summary

It is valuable to examine phenomena in a variety of formalisms. Here, we start with
a spherically symmetric, static black hole model with quantum corrections shown to
produce nonlocal effects in a canonical gravity formalism. We relate this to a quantum
superposition of classical black hole spacetimes of varying mass, investigating the genera-
tion of analogous nonlocal effects. Having examined the asymptotic limit in isotropic
coordinates, we have reinforced the previous numerical results for fall-off of U(x), derived
quantum corrections to the Newtonian potential, and articulated a metric with quantum
uncertainty present in both the temporal and spatial components.

We set the modified Hamiltonian constraint to zero, recalculate the equation of motion

using only the first order correction to the Hamiltonian, take the weak field limit, and
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solve for power series solutions for the scalar fields and lapse function. We then used
these solutions to construct the quantum-corrected Newton potential, complete with
bounds on the constants.

Our work is distinct in that we utilized the general formalism laid out for models
of canonical quantum gravity in [76]. The previous Schwarzschild gauge treatment was
relevant for horizon properties, and here, we replace it with a derivation in isotropic
coordinates. This choice is more appropriate for taking the complete weak-field limit.
This gauge choice is enabled by our construction of a covariant space-time formulation.
Thus we have a universal theory for spherically symmetric black holes with quantum

fluctuations. This enables derivation of a large set of physical properties.

3.1.1 Calculation

Transforming to isotropic coordinates, we start with the modified Hamiltonian constraint

from the previous chapter, with only the first order correction:
0= H[N]+ H2[N] (3.1)

And we re-derive the equation of motion for p, using only the classical Hamiltonian,

since this will already be a higher-order equation than the Hamiltonian constraint.
0=po (3.2)

We introduce power series for the quantum correction, ¢3, the metric field ¢,, and the

lapse function N:

3b 32
b2 =) o+ 24 (3.4)
d d
N=NO 42424 (3.5)
r
We impose the isotropy condition
P2 = 221 (3.6)
x

and take the asymptotic limit for large radius. By collecting the constraint equations
by powers of radius and equating each coefficient individually to zero, we get a system

of equations solvable for the values defined in our power series expansions. Note that
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some coefficients in the constraint equations were trivially zero, so we went to higher
powers to have enough constraint equations for our system. The solution to said system

of equations being:

8v/0Uy

o = e V1 - C1/(640U,) (3.7)
o = 3P0 70— 9C/(8UK) 58)

8C /11— C1/(640Uy)
V000 394 — 47C*/(8bU)
" o6c V1= C4/(6400;)

VB, 2445 — 79C*/ (bUy ) + 163C3 /(25662U2)

— b2 1
C3 € 800 (1—04/(64bU0))3/2 (3 O)
P L VB0 9735 — 589C4/(2bU,) + 569C% /(256b2U2) (3.11)
3 640C (1 — C*/(64bUy)) 3/2 '

With these solutions, we can derive Newton’s potential with quantum corrections.

e GM  G*M?  d .
Vig) = 5 (N@)? =)~ ===+ =5+ -5+ 0™) (3.12)

And the corresponding modification to the metric:

2
ds* = - <N<°> Ay @ +O(z~ )) Ade?

(0)
1 2 | 2/392 | i 297 2
+ ( " NG > LI —2 + O(z~ )) (dx + 2%(d9” + sin” Idy )) (3.13)

Note that the metric contains uncertainty in both the temporal and spatial components,

via this relationship:
b5 ~ C < 2/2(bU,) "4 (3.14)

We derived characteristic effects in the line element. Specifically, the time and space
components of the space-time metric are affected differently by quantum corrections, in
contrast to previous assumptions. Our results imply a more precise space-time geometry

than past constructions, combining interrelated gravitational and quantum effects.
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3.1.2 Results

This project broadens the applicability of both our quantum-corrected black hole model
and the existing literature on black hole mass superpositions. This work has demonstrated
that our past numerical result for the asymptotically constant behavior of U(x) in the
large radius limit is robust, as outlined in Chapter 2. We have calculated corrections to
the Newtonian potential in the asymptotic limit, showing the impacts of our quantum
corrections even at large radii. We went on to derive the corresponding metric, with
quantum uncertainties in both spatial and temporal components. This result takes us
another step closer to a theory of Quantum Gravity and has clearly outlined paths for

further study, as will be discussed in Chapter 5.

3.2 Preprint: Space-time superpositions as fluctuating

geometries

Abstract:

Superpositions of black holes can be described geometrically using a combined canonical
formulation for space-time and quantum states. A previously introduced black-hole
model that includes quantum fluctuations of metric components is shown here to give full
access to the corresponding space-time geometry of weak-field gravity in terms of suitable
line elements with quantum corrections. These results can be interpreted as providing
covariant formulations of the gravitational force implied by a distribution of black holes
in superposition. They can also be understood as a distribution of quantum matter
constituents in superposition for a single black hole. A detailed analysis in the weak-field
limit reveals quantum corrections to Newton’s potential in generic semiclassical states,
as well as new bounds on quantum fluctuations, implied by the covariance condition,
rather than the usual uncertainty principle. These results provide additional control on
quantum effects in Newton’s potential that can be used in a broad range of predictions

to be compared with observations.

3.3 Introduction

A quantum state formed by a superposition of different massive objects is expected
to generate a gravitational force dependent on quantum effects. Detailed derivations

and studies of the resulting implications on test objects, which may themselves be in
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non-trivial quantum states, require ingredients from gravitational as well as quantum
physics. Given the current lack of a complete and consistent quantum theory of gravity,
only partial answers can be given to the question of how quantum test objects behave in
a superposition state of different masses. Nevertheless, this setting is promising because
it does not necessarily require high curvature, where a detailed theory of quantum
gravity is believed to be essential, and can likely be addressed by semiclassical or other

approximations.

3.3.1 Current approaches

Recent developments in quantum information methods applied to gravitating states
and quantum reference frames have led to strong interest in the possible implications of
superpositions of states that experience or generate gravitational fields. For instance,
various proposals in [77-80] analyze potential aspects of quantum superpositions of
test-particle states at locations that experience different values of proper time, due to
their location in the gravitational potential well of a larger mass. In these and other
cases, a classical background gravitational field or a classical space-time geometry are
assumed, usually at weak fields, which is experienced in different ways by observers
or quantum test particles depending on their states. For example, particles moving
along the two arms of an interferometer experience different time dilations, if they travel
at slightly displaced altitudes. Since the combined superposition state simultaneously
experiences two different values of time dilation, there may be characteristic signatures
in the interference pattern that differ from the pattern in the absence of gravity. An
analysis of the resulting state suggests the possibility to study gravitational effects in a
quantum context, potentially using new experiments.

Models based on a classical background space-time are feasible because they do not
directly involve quantum gravity or quantum space-time, even if quantum states are used
for test objects. A related question closer to quantum aspects of the gravitational field
itself is how test objects might experience the gravitational force generated by two (or
more) masses in a quantum superposition. Recent examples of such studies include [81,82]
for superpositions of spherically symmetric masses or shells. In a first approximation,
the question may again be analyzed in a weak-field context, using superpositions of
Newtonian potentials. However, even though a Newtonian description is not necessarily
relativistic, geometrical properties of space-time are used in the definition of proper time
that determines how the internal degrees of freedom of a quantum test particle evolve

at its position. This is particularly relevant to one of our results, as it involves deriving
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quantum corrections to the Newtonian potential.

The concept of proper time requires an understanding of space-time geometry because
it is derived from a line element. In [83-85], proper time experienced by an object in
the gravitational field generated by a superposition of two masses was defined using the
individual space-time geometries of each mass, and applying transformations between
quantum reference frames to combine the individual classical-type results into a time
duration experienced in a superposition of the two geometries. However, there was
no space-time geometry that could describe the combined implication of both masses.
From a fundamental perspective, such a description is incomplete because it is unable
to describe important gravitational phenomena such as gravitational waves: If the two
masses in superposition are orbiting around each other, they emit gravitational waves.
Since these waves are produced by the combined system of both masses, they cannot be
formulated as excitations on each of these individual space-times for a single mass; the
system must be considered in a combined space-time description. Such studies may be
sufficient to derive a specific kind of new, and potentially observable, effect related to
the behavior of test objects. However, they do not show whether (or how) space-time
geometry around a superposition of masses can be used for a complete description of
gravitational phenomena. Field-theoretical aspects of gravity and general covariance
require a consistent geometrical formulation of space-time, on which excitations such
as gravitational waves can propagate. An open question is whether such a formulation
can retain its classical form of Riemannian geometry if it is generated by superposition
states. It is possible that geometrical concepts eventually have to be generalized in a

suitable way to create such a formalism.

3.3.2 Geometrical space-time structures

A key issue in these endeavors is therefore whether a consistent geometrical structure
can be derived from a superposition of two gravitational fields, and how to do so, if it is
possible. The existence of basic geometrical concepts such as line elements or suitable
generalizations compatible with a superposition state is also required. This is necessary
for a complete description that makes it possible to extend the analysis to strong fields.
In such cases, gravity is understood through general relativity as an implication of space-
time curvature. The concept of space-time curvature, in turn, requires a meaningful
definition of space-time geometry, tensor calculus, and general covariance. However, it is
currently unclear what the superposition of two geometries should be like in a geometrical

setting. For instance, is the superposition of two Riemannian geometries (described by
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space-time line elements) still Riemannian, or do we need a more general concept of
geometry? If the superposition is still Riemannian, how do we derive a valid line element
which faithfully describes geometrical properties of the superposition? Compared to the
motion of quantum test masses on a given background space-time, these questions are
much closer to fundamental issues in quantum gravity. Answering them could potentially
suggest new classes of physical phenomena, such as, unique properties of gravitational
waves produced by a black hole (in a superposition of the massive constituents of a
progenitor star), or new behaviors of Hawking radiation.

Even in weak fields, a geometrical picture of superpositions of gravitational states is
expected to have important distinctions. Superpositions of masses with a Newtonian
gravitational potential are restricted by standard conditions of quantum mechanics, such
as the uncertainty relation. Well-defined space-time geometries, and their potential
superpositions, are also subject to the important condition of general covariance. This
symmetry, expressed as 4-dimensional coordinate invariance or the freedom to choose
arbitrary spacelike slicings of the space-time manifold, imposes restrictions on possible
theories. One standard application is the classification of possible modifications of general
relativity. For instance, the properties of curvature tensors and their invariants determine
the form of possible higher-curvature effective actions. Similarly, general covariance
is expected to restrict possible superpositions of gravitational fields, even if they are
applied only in a weak-field limit. It would be impossible to notice such restrictions
from general covariance, if one does not attempt to construct a geometrical space-time
picture of superposed Newtonian potentials. In this context, the question posed here
is whether there is an action principle or some other fundamental description that has
superpositions of gravitational fields among its solutions. This important field-theoretical
question cannot be addressed by current formulations of quantum reference frames, which
focus on the properties of test objects.

General covariance is usually difficult to control if one starts with a non-covariant
formulation, such as a spatially dependent potential. As is well known from decades of
research on quantum gravity, the problem becomes even more challenging if quantum
effects are included. For instance, a path-integral formulation may formally work with
space-time tensors, but could still violate general covariance if there are anomalies in
the measure used to integrate over the space of metrics. Superpositions of masses
lead to non-Gaussian states on a field space, which may imply additional challenges
for common evaluations of path integrals based on saddle-point approximations. It is

therefore important to develop a direct and tractable approach to analyze covariance
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conditions and their potential implications. A possible covariant approach has been
developed in [86,87] and used for an analysis of space-time superpositions in [81]. However,
in this case, the space-time geometry follows indirectly from the evolution of matter
fields, based on field correlators. Here, we require that a fundamental description of
gravitational superposition states be independent of matter properties and also work in
vacuum situations. It should therefore be directly applied to the geometry of space-time,
described by the metric or an alternative mathematical object.

It might seem that a full-fledged theory of quantum gravity is required to address these
questions about the quantum properties of the gravitational field. However, we will show
here that this is not the case. The situation is similar to derivations of quantum corrections
to Newton’s potential [15], based on perturbative quantum gravity as an effective field
theory [14,16]. These results are obtained from Feynman expansions. Alternatively, they
can be calculated using path integrals. This effectively traces out quantum degrees of
freedom such as fluctuations, quantum correlations, or higher moments of an underlying
state. Quantum corrections obtained in this way depend on dynamical relationships
between the moments of a state and expectation values of basic field operators, but they
do not use explicit expressions for these moments. In a quantum mechanical context,
these methods, described for this setting in [49], can be extended to a more general
treatment [42,43] in which moments and expectation values are initially independent
and subject to equations of motion. An adiabatic approximation can then be used to
solve for the moments in terms of expectation values. Inserting these solutions back
into the equations of motion for expectation values is equivalent to the path-integral
effective action from [49]. The generalization lies in the fact that it is not necessary to
perform the adiabatic approximation. Non-adiabatic properties may indeed be important
in a gravitational context, even for static backgrounds. This is due to the fact that
a space-time covariant treatment implies non-adiabatic behavior if there are relevant
variations of the fields, not only in time, but also in space. Moreover, the general
methods of [42,43] provide direct information about properties of moments which may
lead to additional physics insights. For instance, we will derive new bounds on quantum

fluctuations of static black holes in addition to standard uncertainty relations.

3.3.3 Combined geometry of space-time and quantum physics

Importantly, these generalizations also allow us to consider non-Gaussian and possibly
mixed states. In the present context, we are looking for superposition states of masses.

In a Newtonian picture, such states could be understood as wave functions in an energy
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representation of a mass superposition, or in a position representation describing the
location of the superposed masses. However, masses or positions are not necessarily the
fundamental degrees of freedom of a quantum theory of gravity in which a geometrical
superposition state may be constructed. The precise nature of fundamental degrees of
freedom depends on the approach to quantum gravity, but it is to be expected that a
rather simple state for the superposition of two masses or two positions can only be
obtained after a complicated procedure of tracing out infinitely many local degrees of
freedom of a fundamental theory of quantum gravity. It is therefore important that
physical results do not depend on assumptions of Gaussianity, purity, or other properties
of states that are being superposed. The only reliable assumption is semiclassicality
in a general sense, such as the existence of an expansion in A, in order to preserve the
classical limit in a Newtonian regime. A general parameterization of states by moments
up to a certain order gives us enough freedom to obey this condition. As we will see,
specific solutions for moments can be derived from geometrical constraints and staticity
conditions.

We use these general methods in order to propose a new approach to the question
of superposition geometries based on a canonical formulation of general relativity. This
procedure has two main advantages in the present context. First, while the usual
canonical formulation of general relativity does not work with space-time tensors and
is not manifestly covariant, it implies strict algebraic conditions on possible equations
of motion, which are compatible with general covariance. These conditions can be
described by the requirement that the Poisson brackets between the local generators of
space and time translations remain closed. These generators are formally given by the
diffeomorphism and Hamiltonian constraints of canonical gravity, respectively. In theories
known to be generally covariant, such as general relativity, evaluating canonical equations
is usually considered more tedious than evaluating equations for space-time tensors,
such as Einstein’s equation. However, canonical equations have the great advantage
of allowing us to analyze the covariance of proposed modifications of general relativity
without having to know beforehand that the modifications are covariant, or whether they
may be related to non-Riemannian geometries. Canonical gravity is therefore a useful
tool for analyzing possible geometrical descriptions of superpositions of gravitational
fields.

Secondly, canonical methods are useful because they employ phase-space formulations
of the gravitational field, which can be combined with suitable phase-space formulations

of quantum mechanics, such as the canonical effective methods introduced in [42,43].
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General covariance is implemented in this picture by having a suitable form of gauge
generators, as phase-space functions that obey certain algebraic relations based on the
Poisson bracket. One of the gauge generators is closely related to the gravitational
Hamiltonian because the Hamiltonian generates time translations, which are one example
of covariant transformationa. The quantum Hamiltonian, written in a phase-space
formulation of quantum mechanics, then provides a candidate for possible quantum
modifications of the gauge generators. For instance, one can add fluctuation terms
derived from the classical form of the Hamiltonian. A phase-space formulation of
quantum mechanics also extends the Poisson bracket to quantum degrees of freedom,
which in our case will be fluctuations of metric components. It is therefore possible
to evaluate algebraic relations of the gauge generators, even if they include quantum
terms. This procedure results in strict covariance conditions for fluctuating or superposed
geometries. The quantum-corrected gauge generators can be viewed as semiclassical
approximations of transformations between quantum reference frames in a full field-theory
context of space-time.

In this paper, we apply canonical methods of gravity and quantum mechanics in the
weak-field regime of static spherically symmetric space-times, reviewed in Sections 3.4 and
3.5, respectively. By including phase-space degrees of freedom for quantum fluctuations,
we will be able to analyze the geometrical structure and physical properties of the
gravitational field implied by two or more masses in superposition at the same central
point. Our methods are based on [76], where the general formalism has been laid out for
models of canonical quantum gravity. The previous treatment in a Schwarzschild gauge,
relevant for horizon properties, is replaced here by a derivation in isotropic coordinates,
which is more suitable for a complete weak-field limit. This choice of various gauges is
possible only because we are dealing with a covariant space-time formulation. There
is therefore a universal theory of spherically symmetric black holes and their quantum
fluctuations that can be used to derive a large set of physical properties. Our new
weak-field results, such as novel terms in quantum Newton’s potentials, as well as bounds

on fluctuations allowed in a covariant context, are contained in Section 3.6.

3.4 Canonical description of space-time structure

The canonical formulation of generally covariant systems describes space-time as an
evolving geometry on spacelike hypersurfaces. From the space-time point of view, the

spatial geometry on a given hypersurface is determined by the induced spatial metric g,
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and its velocity or momentum p® is related tothe extrinsic curvature of the hypersurface
in space-time [39,40,88]. These relationships define a phase-space structure on the
space of geometries. The canonical formulation replaces the derivation of an induced
metric and extrinsic curvature from a 4-dimensional line element. It is replaced with
coupled evolution equations for two phase-space fields, g, and p®, together with gauge
transformations. These gauge transformations ensure that a 4-dimensional geometry
exists, from which these fields may be induced. Geometrically, the gauge transformations
correspond to infinitesimal deformations of the spatial hypersurfaces in the normal and
tangential directions [41]. These deformations are parameterized mathematically by the
lapse function and shift vector, as described in this section.

Explicit expressions simplify if spatial geometries are restricted to be spherically
symmetric, which we will assume from now on. The general spatial line element is then
given by

ds? = queda® + goo(dV? + sin® ¥dy?) (3.15)

with two functions, ¢,, and gyg, that depend on the radial coordinate x. If a family of
hypersurfaces is considered, labeled by time coordinate ¢, then the metric components
also depend on t.

The definition of the time derivative ¢,, = L;q., as a Lie derivative requires a
time direction that relates points on two nearby hypersurfaces with the same spatial
coordinates. Such a time direction is not unique and implies additional free functions. It

can be parameterized by the time-evolution vector field
t* = c¢(Nn*+ M*?) (3.16)

with the speed of light ¢ and the unit normal n* to a hypersurface. The free components
of this space-time vector field are then separated into a normal component, the lapse
function N, and the three components of a spatial vector field, the shift vector M?,
tangential to the hypersurface.

In a covariant theory, the spatial metric, together with the time-evolution vector field,
can be used to reconstruct a space-time metric. As inverse metric tensors, the standard

@ _ nan’ because it implies two properties: (i) ¢**n, = 0

relationship is given by ¢* = ¢
with the timelike unit normal n,, nn, = —1, such that the spatial metric is induced on
a hypersurface normal to n. And (ii) ¢**s, = g*s, for any vector s, tangential to the

hypersurface, n®s, = 0, such that the spatial metric agrees with the space-time metric in
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this case. Solving (3.16) for n® and inserting the result in ¢g%°, we obtain
g =q" — —(t"/)c— M) (t*/c — M?). (3.17)
Inversion of this metric tensor implies the reconstructed space-time line element:
ds? = —N22dt? + qup(da® + M%cdt)(da® + MPedt) . (3.18)

For (3.18) to provide a generally covariant description of the original canonical
theory, we must have slicing independence. Every family of spacelike hypersurfaces
(or every time coordinate ¢ that defines spacelike hypersurfaces t = const) implies a
time-dependent family of induced spatial metrics and extrinsic curvatures, determined by
(3.18). Each such family must evolve in a manner consistent with the canonical equations
of motion. Since evolution is canonically determined as Hamilton’s equations generated
by a Hamilton function on phase space, this function itself must be transformed in a
consistent way if the family of hypersurfaces changes. There must, therefore, be a set of
Hamiltonian phase-space functions that obey specific algebraic relations through Poisson
brackets. The classical theory of general relativity in canonical form can be used to

derive these relations, which, in spherical symmetry, turn out to be:

(DM, D]} = DM, M — MM (3.19)
(HN],D[M]} = —H[MN] (3.20)
{H[N1],H[N;]} = —Dlq,, (N1N; — N>Ny)] (3.21)

Here, H[N] is the Hamilton function for a given time component N in (3.16). D[M] is
the generator of a spatial shift tangential to a hypersurface, using the radial component
of a spherically symmetric version of (3.16).

These relations describe the symmetry of infinitesimal deformations of spatial hyper-
surfaces. In a physical theory presented in canonical form, abstract generators D[M] and
H[N], fulfilling the relations (3.19)—(3.21), are realized by specific phase-space functions.
These functions depend on the geometrical canonical variables qq, and p®, such that
their Poisson brackets model (3.19)—(3.21). Since the underlying symmetries are gauge
transformations, the generators must vanish for physical phase-space solutions: D[M] = 0
for all M and H[N]| =0 for all N. These constraint equations depend on M and N, as
explicitly shown, but also on g, and p® through their phase-space realizations. The

constraints do not directly depend on position coordinates x because they are globally
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defined expressions given by spatial integrals. We use the conventional expression H[N]
to denote the Hamiltonian constraint, and similar notation for its quantum-corrected
versions. In addition, the notation H by itself will represent the Hamiltonian constraint’s
integrand excluding the lapse function. The lapse function always appears as a single
factor in the full integrand of H[N] in order to be compatible with relations (3.19)—(3.21)
linear in D and H.

Explicit expressions of the gravitational constraints in spherical symmetry are given
by

=g e (35 i (- 2) ) 2(2) )

(3.22)
and 5
c
DIM] = 5= [ daM(2) (~0ps + phos) (3.23)
We parameterize the metric components as scalar fields
¢1=qgo and @2 = 2/qu2 Q9o (3.24)

with momenta p; of ¢; and py of ¢, such that {¢1(z),p1(y)} = 2Gc36(x — y) and
{do(x), p2(y)} = 2Gc36(x — y). Here, G is Newton’s constant and we use primes to
indicate partial derivatives by x. We assign units of length to the coordinate x and use
unitless angles ¥ and . Since the line element has units of length squared, ¢, is unitless
and gy has units of length squared. Therefore, ¢ has units of length squared as well,
while ¢5 has units of length. The momenta’s units are then determined by the form of
our Poisson brackets: A Poisson bracket of a 1-dimensional field theory has units of 1/A
(from the product of partial derivatives of position and momentum components) times
inverse length from 6(x — y). Using the expression ¢p = /Gh/c? for the Planck length,
the factors of G/c¢® in our Poisson brackets therefore provide units of length squared
divided by A. This is compatible with the units of ¢; and ¢ if p; has units of inverse
length and ps is unitless. Our Hamiltonian constraint then has units of energy divided
by c¢. Thus, a Poisson bracket with this expression generates a spatial derivative, rather
than a time derivative, as appropriate for a geometrical object.

The relationships between the momenta and time derivatives of the metric components,
related to extrinsic curvature, need not be imposed independently. They follow from

Hamilton’s equations applied to ¢; and ¢,: If our time evolution vector field is given by
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(3.16) with spherically symmetric components N and M, then the time derivatives are

o1

— =1L HIN|+ DIM]} = —2N\/ips — M, (3.25)
and '
o _ —Nﬂpz - 2N\/Ep1 — (Mgy)". (3.26)

c VoL

These equations can be solved for p; and py in terms of ¢y, ¢o, N and M, in agreement
with expressions for extrinsic curvature. Then the time derivatives of p; and ps, derived
in the same way, determine the evolution equations.

For the weak-field limit, we need the Schwarzschild solution in isotropic coordinates,
which can be derived from the canonical equations following the standard Schwarzschild

example in [89,90]. These coordinates, by definition, imply a line element

ds? = — (1 + 2@0235) + O(@(x)/02)> c*dt?
+ (1 — my) +O(®(x) /02)> (dx? +dy? +dz?) (3.27)

in Cartesian spatial coordinates (X,Y,7) with 22 = X2 +Y? + Z2. In this form, the

line element directly implies a proper-time interval

dT:\/—dSQ/CQZ\JleQq)C(;U) — <1—2<DC<;C>>|‘C72|2dt (3.28)

to leading order in Newton’s potential, ®(z)/c2, and with the velocity vector V = d.X /d¢

in these coordinates. For small potential and non-relativistic speeds, a further expansion

dr = (1 G 1“7|2) dt (3.29)

implies

c? 2 2

with a combination of gravitational and special-relativity redshift effects. The metric
components in isotropic coordinates therefore directly determine the gravitational poten-
tial ®(z). (The leading-order potential may be obtained also in standard Schwarzschild
coordinates. However, any corrections such as those studied below may require the
specific form of isotropic coordinates, in which the gravitational potential and the speed
are clearly separated in the non-relativistic limit. In this context, note that Newton’s

potential is not covariant because it was originally defined assuming an absolute time.
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In general relativity, this non-covariant concept can be defined only in a specific slicing,
which is the one given by isotropic coordinates.)
The isotropic line element can be expressed in the general spherically symmetric form

by transforming the original (z,%, ) in (3.18) to Cartesian coordinates by
X =zxsindcosp , Y =zxsindsing , Z=uwxcos?. (3.30)

The line element then takes the form

20 (x)

ds* = —<1+
c

+ O(@(x)/02)> cAdt?

+ (1 _ @) O(®(x) /&)) (d2® + 2*(dv” + sin*vde?)) . (3.31)

2
By comparing with (3.18), we read off the condition

dyy

which can be used to define isotropic coordinates in the canonical formulation, or

¢2=2? (3.33)

for the fields used here. In addition, since the line element in isotropic coordinates is
static, we require that all time derivatives, as well as the dxdt-component M of the
line element, vanish. These conditions, taken together, uniquely determine the isotropic
slicing into hypersurfaces. In other words, they determine the gauge of the canonical
theory.

It immediately follows that the constraint D[M] = 0, as well as (3.25) and (3.26), are

identically satisfied. The remaining constraint simplifies to

& Vo | 3a(#)’  wdl &
H[N)aic = = 5. [ daN (@ RO T ) 3.34
N = =55 [ (o) (G2 20 2 G} e
This expression vanishes for all N(x) if ¢, satisfies the differential equation
3 /\2 /

Vg gy x?  x

The substitution f(x) = /zé1(z)"/* us employed for the convenience of simplifying this
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equation to f” = 0, such that

¢1(x) = (a\/E + b>4 (3.36)

with two constants, a and b. Therefore,
4

We can choose a = 1 without loss of generality because a different value (other than

zero) could always be absorbed into the Cartesian coordinates. The weak-field limit then

relates OM
b= 3.38
2c2 ( )
to the mass M, with Newton’s constant G. The equation
b\
¢ (2) = (1 + a:) = T3 chwarsschild (3.39)

provides the coordinate transformation between isotropic and Schwarzschild coordinates.

The remaining equations to solve are Hamilton’s equations for p; and ps, given by

NV R L R T ;;zslcbad»g/@ +3(¢1)* — 19 (3.40)
12
and , o ) > _ (2
%2 _ 2N ;)/;_1@ Ly +21\)/%¢—§ (@1)" (3.41)

With staticity, p1 = 0 = pg, po = 0 = po, and the isotropy condition ¢y = 2¢, /z, these

equations simplify to

0 = —2z¢:N" + (z¢) — 261) N’
_ —52%(¢h)? + 4wy (4 + 2o) + 4¢%N

-y (3.42)
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and

120
0 = WN—W)QN’. (3.43)

Using (3.35) and (3.43), equation (3.42) is turned into

"o (¢3)2 Qsll le 1 B —4b
e ( 8¢7 N dxgy  a3¢h 2m2> T (z+b)2(z — b)N (3.44)

with our solution for ¢;(z), while (3.43) takes the form

N ¢ o1 1

A _ - - . 3.45
N x2¢) 41 x—b x+0D ( )
The functions b
x J—
N = N, 3.46
() = Moo (3.46)

solve both equations, with an integration constant N, that can be absorbed into the
time coordinate. Applying the coordinate transformation (3.39) confirms that this is the
correct expression, which replaces the well-known lapse function in the Schwarzschild
line element with a corresponding expression in isotropic coordinates upon implementing
the coordinate transformation (3.39). Note that the alternative derivation of N(z) is by

using the coordinate transformation (3.39) in the original Schwarzschild lapse function.

3.5 Canonical description of quantum mechanics

Given a quantum system with canonically conjugate basic operators ¢ and p with
[G,p] = ih, it is possible to equip states and operators with geometrical meaning on a
quantum phase space. We first interpret operators O as functions fo on the space of
states 1), given by the evaluation f5 (1) = (¢, Oz/z) There is a unique complex-valued
function with a dense domain of v for every operator O acting on the Hilbert space of
the system. In general, this function is not defined for all 1) because expectation values of
unbounded operators may be infinite in some states, but it is defined for a dense subset

in the topological sense. Useful examples for the following developments are the functions

() (3.47)
p = fo=1P) (3.48)
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as well as functions for products of multiple ¢’s and p’s, from which we can construct the

central moments
Alg"p™) = (G — (D))" (P — (D)™ )symm (3.49)

with operator products in completely symmetric (or Weyl) ordering.

3.5.1 Dynamics

On this function space, we define a Poisson bracket by

{f1: [5} = f[jhm (3:50)
or, equivalently, R
(A = 52 @.51)

which is extended to products of functions by using the Leibniz rule. This Poisson
bracket turns Ehrenfest’s theorem into a statement about Hamiltonian dynamics: The
evolution of expectation-value functions is given by Hamilton’s equations generated by

the expectation value
He = fy = (H) (3.52)

because
2 (A H)  d(A)
{<A>7Heff}_ ih - dt . (353)

If we use the basic expectation values ¢ and p, together with central moments, as

coordinates on the quantum phase space, we should write the effective Hamiltonian H.g

as a function of these variables. We can do so by using a formal Taylor expansion in

Heg = (H(§,p)) =(H(qg+(q—q),p+(D—Dp))

N 1 an—i—mH(q p>
- H YA (g p™ 3.54
(¢,p) +n+m:2 T R e (¢"p™) (3.54)

assuming that the Hamilton operator is Weyl ordered. (If this is not the case, there will
be additional reordering terms that explicitly depend on A.)

The Poisson bracket of two moments is not constant, as can be seen by a direct
calculation [42,46]. Therefore, the moments are not canonical coordinates on the quantum
phase space. The Darboux theorem and its generalization to Poisson manifolds [47,48]

guarantees the existence of local canonical coordinates with the standard values zero
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and one of basic Poisson brackets. However, suitable coordinates of this form may be
difficult to derive in general. For low orders, several examples exist. We are particularly

interested in the second-order canonical parameterization [30, 31,33, 34]

U
Alg)=s" . Algp)=sps , AP =pi+ 3 (3.55)

where s and p, are canonically conjugate, {s,p;} = 1, and U has vanishing Poisson
brackets with both s and p,. The uncertainty principle restricts the values of U by
U > h?/4. Further examples have been derived in [44,45] for moments of up to fourth
order or for two independent degrees of freedom. With these canonical variables, the

effective Hamiltonian of a 1-dimensional mechanical system takes the form

2 2
p p
Hg =+ 4+ s

ff 2m+2m+2m52

+Vig) + ;V”(Q)S2 : (3.56)

which can directly be used to compute Hamiltonian equations of motion, with coupling
terms (or quantum back-reaction) between (¢, p) and (s, ps).

The example of the harmonic oscillator, where V(q) = $mw?¢?, shows that U
determines the value of zero-point energies: In this case, the Hamiltonian contains the

s-dependent potential

U 1
Vi(s) = + —mw?s? (3.57)

© 2ms? 2

which is minimized by

U h
s = VU _ — (3.58)
mw 2mw

using the minimal value for U in the second step. At this value of s, the effective potential
evaluates to a constant contribution Vi(s) = wvU = %hw We will consider this role of U
in our extension to a 1-dimensional field theory in the radial direction of our spherically
symmetric models. Quantization then require a suitable regularization procedure that
subtracts zero-point energies or vacuum expectation values from the Hamiltonian, just
as in standard quantum field theory.

For relativistic systems and the physics of space-time, we need two extensions of
this formalism: a canonical formulation of constraint operators such as H and ﬁ, and a
suitable description for quantum field theories. The first extension [53-55] is technically

involved because it requires general properties of constrained systems, but it follows
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directly from a basic definition of an effective constraint
Cot = fe = (C) (3.59)

for every constraint operator C in the system. Physical states then define a submanifold
of the quantum phase space defined by Ces = 0 for each constraint.

However, it turns out that this restriction is not sufficient because the quantum
constraint equation C |) = 0 implies that not only does <¢,éz/1> vanish, but also
(1, OC‘@D) for any operator O. A single quantum constraint therefore implies infinitely

many constrained expectation values. If we parameterize these constraints by
(@—a@)"(p—p)"C) =0 (3.60)

with positive integers n and m, there is a finite number of such constraints for any set of
central moments up to some finite order. Such a system of constraints can be treated by
the general methods for constrained systems as given in [?]. It constitutes a semiclassical
approximation of infinitesimal transformations between quantum reference frames of
space-time.

In spherically symmetric gravitational systems, we have two constraints, H[N] and
D[M]. For static solutions, D and its higher-order versions (3.60) vanish identically,
and higher-order versions of H need only be considered for the ¢-fields, but not for
their momenta, such that m = 0 in (3.60). For constraints on second-order moments,
including quantum fluctuations, it is sufficient to consider only n = 0 and n = 1 in
(3.60). Moreover, the isotropy condition strictly relates ¢; and ¢9, and therefore their

fluctuations.

3.5.2 Ingredients from quantum field theory

In order to derive the relevant constraints and higher-order versions, we need to determine
how quantum parameters such as s and ps can be implemented for fields. In general,
quantum fields may be in a state with non-zero correlations between their values of
different positions, which would require infinitely many correlation fields. Here, for a
first analysis that aims mainly to include quantum fluctuations, it will be sufficient to
ignore such non-local correlations and only implement a version of (s, ps) at each point

on the radial line. Therefore, we will introduce an additional fluctuation field, ¢3 with a
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canonical momentum p3, such that

U
A(Q%) = ¢§ , Algapz) = d3ps A(Pg) = p§ + qﬁi% (3.61)

independently at each radial position x. The treatment of U now requires some care
because, as shown by our discussion of the effective potential (3.57) of the harmonic
oscillator, this parameter is related to zero-point energies. For a quantum field theory on
Minkowski space-time, we would simply remove the U-term from any Hamiltonian as a
subtraction of zero-point energies. In our background-independent treatment, however,
we can only assume that we will be near Minkowski space-time in a suitable asymptotic
region of small curvature, close to the regime where we will apply our main weak-field
analysis. In regions of curved space-time that are not strictly Minkowskian, which are
relevant for any radial dependence of quantities such an effective gravitational potential,
the vacuum state and corresponding zero-point energies are not uniquely defined. As
a result, we cannot simply remove the entire U-term from our Hamiltonian but rather
subtract only the Minkowski limit, as we will see in more detail when we discuss the
specific Hamiltonian.

For now, we conclude that some U-dependent contributions are likely to remain in
the Hamiltonian and are fully subtracted only in the asymptotic Minkowski region at
xr — 00. The presence of a subtraction implies that we should no longer subject U
to the inequality U > h%/4 from quantum mechanics. We will therefore impose only
positivity of U without using a general non-zero lower limit. And since the subtraction is
complete only at z — 0o, we expect that remaining effects described by U may be given
by a function U(x) of z that should be determined by consistency conditions within the
quantum theory but cannot be known a priori.

Another basic implication of a treatment of our model as a quantum field theory is that
quantizations of ¢o(z) and ps(x) are operator-valued distributions. Their commutator
equals 1hG/c® times a 1-dimensional delta function, where the factor of G/c* comes
from our Poisson bracket. Combining all factors, including an inverse length scale for
units of the delta function, the commutator has units determined by Gh/(c*L) = (3 /L
with the Planck length /p and a relevant macroscopic, h-independent length L such
as the Schwarzschild radius. The uncertainty relation, derived from this field-theory
commutator, then implies that U = A(¢3)(A(p3) — p3) has units of ¢3/L?. This result
differs from the units of h%/4 obtained for U in quantum mechanics. Therefore, just

based on dimensional reasoning, it is now impossible to impose a lower bound of /?/4 on
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U in a quantum field theory. This observation provides further motivation to require
only positivity of U(z) but not a stronger non-zero lower bound.

Following our discussion of units for the classical fields, the individual fields used here
have units of length for ¢o and ¢3, inherited from the metric, and no units for ps and ps.
The quantum fields ¢3 and ps, defined as square roots of second-order moments of a state,
are expected to be proportional to v/ for semiclassical solutions. These conditions are
consistent with one another if ¢35 ~ fp and ps ~ fp/L. For U, we then obtain U ~ ¢4 /L?,

in agreement with the result suggested by field commutators.

3.5.3 Gauge choice and constraints

Finally, we must implement the isotropy condition (3.33). Since momentum fluctuations
may contribute non-zero terms such as U/¢2, even in static situations, we first find the
accompanying equations to 2¢; — x¢, = 0, a corresponding condition on momenta. For
the isotropy condition to be preserved over time and in the zero M limit, the equations
of motion (3.25) and (3.26) imply that the momenta must be related by

xp; —p2 =0. (3.62)

This pair of conditions is second class: The smeared Poisson bracket

(261(2) — 20a(2). [ No)um(0) — polu))dy} = 6 e (x) (3.63)

is non-zero for x # 0. We should therefore impose the two conditions contained in
the second-class pair before we quantize, for instance by eliminating (¢1,p1) in favor of
(¢2,p2). The remaining field will then be supplied by quantum variables, as in (3.61).
(After imposing the second-class constraints, the Dirac bracket of ¢o and py is 2/3 times
the Poisson bracket. The additional factor provides a constant rescaling of all time
derivatives, which we may ignore since we are interested in static configurations.)

The reduced classical Hamiltonian constraint after imposing the second-class isotropy

conditions equals

c? b9 s 3 3ady 32 (¢h)*  x¢h
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A Taylor expansion as in (3.54) then leads to
H[N] = H[N] + H,[N] (3.65)
with the classical H[N] = [dxNH and and a quantum correction

102H U O*H
[ azN(z) (2 ~ < ¢3> Ho+ 5050 0apy

102 0*H 1 0*H 0*H
et 3¢28¢2¢3¢3 2067 " 80,005

¢3¢§)3 66)

Partial derivatives of H follow the form of the expanded effective Hamiltonian in (3.54),
and Hj is the vacuum expectation value to be subtracted from the Hamiltonian. We can
write this terms as . Ul
Hy= ;lim ——— (3.67)
2020 ¢3 Ops
if we use b, related to the black-hole mass in specific solutions, as a parameter that
determines deviations from Minkowski space-time. Partial derivatives of the classical

Hamiltonian then implies the following coefficients:

_ \/_pg P3paps 3 (b% 9 \/_
45 $3/2 , 3 xS/ \/_
+32\/§¢g/2(¢2)2¢§ 8\/_¢5/2 b0 + 4\/—¢3/2¢3¢3 (3.68)

9 3/2 1 3/2
- \/Ji¢5 5 0hdadh + 4o \/g SCORE ; 0ty

¢2 .U
+3( 27 &2 })g%gb%))

In the vacuum subtraction, we used the Minkowski limit ¢ — 2z of ¢o. At this point,
the b-dependence of ¢3 and possibly U remains to be determined from field equation.

The only higher-order constraint we need to consider after the reduction is given by
Hy,[L] = ((d2 — (b)) HIL)). (3.69)
Also here, a Taylor expansion provides the constraint as a function of moments:
Hy,[L] /dL() O o | O\ #+ fbcb ¢>
= xL(x
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= —;;/d:cl}(x)

3 pl 39 1 3 Vr 9 g3/2 x3/2 )
9 /—2x¢2+§ 270y 4\/—¢3/2¢2 8\/_¢5/2(¢2) \/—¢3/2¢ ?3

6 6 23/? 3/2 ., 2
+ <—4 222 4 ;¢3/2 ¢2> P35 — m% 3+ 5\/?{)2@53}73) . (3.70)

3.5.4 Solutions

Inserting the background solution

f; (1 + b) (3.71)

based on (3.36) with a = 1 and (3.33), as well as p; = 0, we have

Hy, [L] (3.72)

L b b 1
/dx ¢ ( —b/x) ¢3—3 (1+b/z)zdy — = (14 b/z)* 224 | .
1+b/x) 2
The constraint Hy,[L] = 0 is fulfilled for all L(x) if ¢3 obeys the second-order differential
equation
b b 1

3— (1= bfw)ds — 3= (1+b/w)wgh — 5 (1+ b/z)* 22l =0 (3.73)
which does not seem to have simple closed-form solutions. However, thanks to the factor
of b/z in each of the two lower-order derivative terms, there is a unique solution (up
to a constant multiplicative factor) which permits an asymptotic expansion ¢3(x)
1+ ai/x + as/z* + - -+, compatible with the weak-field limit. The coefficients ay, as,

..can be computed iteratively from
(3b — ap)z™ " + ((3bay — 3b%) + 3bay — (2a1b + 3az))x > + O(x™3) =0 (3.74)

and collecting terms with the same factor of x7". The three individual terms in the
second parenthesis result from the three independent derivative expressions in (3.73).

From the first two terms of the expansion, we obtain the solution

3b 3b?
¢3(x)=C<1+x+x2+~->. (3.75)
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To first order in b/z, this result is consistent with the corresponding solution derived for
Schwarzschild coordinates in [76]. Since ¢3 should have units of length, like ¢, and be
proportional to v/A for semiclassical solutions, we have C' o lp.

We recall that the new field ¢3 describes quantum fluctuations of the metric component
@2, or of the full spatial metric, since ¢, is strictly related to ¢o by the isotropy condition
(3.33). In order to derive implications of quantum fluctuations on Newton’s potential, we
have to solve the remaining constraint and evolution equations for a correction 6V of the
classical lapse function, which happens to depend on the correction d¢y of ¢o implied by
quantum effects. The required equations are considerably longer than those used for our
derivation of ¢3 and are therefore collected in Appendix 3.8. For the weak-field behavior,
it is sufficient to derive the asymptotic form of solutions for ¢, and N for large x. Given
the leading orders ¢ ~ x and N ~ 1, our equations can be solved for the coefficients c¢;
and d; in

dy  do

C
¢2:¢§0)+C1+5+“' , N=NO4 ‘f‘ﬁ"‘"' (3.76)

x
where c;SgO) and N© are the classical solutions in isotropic coordinates. Corrections to
Newton’s potential can be read off directly from N(x)? = 1+ 2®(x)/c?, in which ®(x) is
the quantum-corrected gravitational potential.

A general implication of the dynamical equations, in particular using ps = 0 for
static solutions and to leading order in 1/z, is that d; = 0; see equation (3.107) in the
appendix. The leading term in Newton’s potential is therefore unmodified, but there
are higher-order terms in 1/xz. The remaining coefficients are determined by terms in
po = 0 of higher order in 1/x, coupled to the Hamiltonian constraint. With the quantum
extension, the latter depends on the function U, for which we should assume a power-law

" with some x > 0, in order for a weak-field expansion to exist. It turns

form U(x) < x
out that there are also rather strong reality conditions implied by the explicit terms of
the Hamiltonian constraint, which is quadratic in ¢3 and the perturbation ¢, — gbéo) and
should be compatible with real ¢;. A direct evaluation shows that these conditions can
be realized only if U(x) = Uy/x with a constant U, but not for constant U or U o 1/
Relevant conditions can be seen, for instance, in (3.105), derived for U(x) = Uy/z: The
second-order term in this expansion of H[N] in 1/x has mixed signs, such that there
is a range of quantum parameters for which ¢; is real. For U(z) = U or U(z) = Uy/x"
with k > 2, by contrast, all signs in this term would be the same, implying imaginary
solutions for ¢;. These properties are discussed in more detail in App. 3.8.3.

We evaluate the expansions (3.105) and (3.107) for the coefficients ¢; and d; up to
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i = 3, or third order in 1/, using the power-law U(z) = U,/x that allows real solutions.
The new constant U, introduced by this parameterization should, according to the
discussion following equation (3.61), have units of 4?/L with a classical length scale L.
A natural choice for the latter is the Schwarzschild radius or b in the present context.
The same classical parameter also appears in the equations for ¢; and d; because they
have been obtained after perturbing ¢, and N around their b-dependent classical values.
The coupled set of conditions for dy and ds in N as well as ¢;, ¢ and c¢3 in ¢, contains

linear and quadratic equations which are solved by

o = egngO\/l—C4/(64on) (3.77)
o
L B T0 - 90 (ShU) a78)

8C /11— C1/(640Uy)
. 4
o - V000 394 — 47C*/(8bU) (3.79)
96C /1 —C1/(640U)

VU, 2445 — T9C*/ (bUy) + 163C8 /(25662U2)

_ 2
c3 = ¢b 300 (1= O/ (64b075)) 72 (3.80)
b V009735 — 589C" /(2bU0) + 569C°/(2560°U) (3.81)
° 640C (1 — C*/(64bUy)) 3/ '

There is a single sign choice € = 1 in ¢;, which is not fixed by the constraint but

determines the sign choices in ¢, c3, do, and ds.

3.6 Implications

The values (3.77)—(3.79) have several unexpected implications. The solution for dj
immediately gives the leading quantum correction to Newton’s potential and can therefore
be compared (although not directly, as we will see) with calculations in perturbative
quantum gravity. The same coefficient, together with ¢; and ¢y, implies characteristic
features of a line element that may be used for a covariant description of superpositions

of central masses.
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3.6.1 Effective potentials

First, using d; = 0, the quantum-corrected Newton potential is given by

V(z) = C;(N(:c)2 oy GM L GME L (3.82)

T x2c? 212

where we used b = GM/(2c?). We also expanded the lapse function N (z) in isotropic
coordinates to second order in z~!. Since d; = 0, Newton’s constant is not renormalized.
The leading quantum correction dy from (3.79) is of the order GM{p /c* because C, for a
semiclassical state, is of the order Vi  fp and /bUj is of the order C2. The classical

I agrees with the perturbative result from [15], and it

term in (3.82) quadratic in x~
has the same origin. However, the leading quantum correction in this case is of the
order M /(3 /x3, which is smaller than our M/{p/2? for generic quantum corrections. If we
extend d¢, and N to higher orders in 271, we obtain additional terms of the order b"/p
with integers n > 1. Their dependence on ¢p or h remains of first order, which is fixed in
our approximation by using second-order moments of order A in the constraint. As a
quadratic expression in d¢5 and dN, the constraint then implies corrections in N of the
order v/A. Higher orders in v would require higher moments.

We could try to impose dy = 0, eliminating our larger term compared with perturbative

quantum field theory, by choosing suitable values for C' and Uj. This is possible only if

315260,

4
¢ 47

~ 67.1bU, , (3.83)
but this value is not compatible with the upper bound on C* < 64bU, implied by the
square root in the denominator of dy being real. Therefore, our quantum corrections
are always greater than what is expected from perturbative quantum gravity as derived
(with varying results) for instance in [?,14,15,91-95]. This discrepancy can be explained
by the fact that we are considering different physical settings, such that the underlying
states, which determine quantum corrections, need not be the same. Here, we use a
generic semiclassical state parameterized by its moments. The moments, derived from
the gravitational constraints, describe an entire black hole (or a superposition of black
holes) that has been formed by some collapse process and eventually settled down to a
static configuration. In contrast, the result from perturbative quantum gravity implicitly
refers to 2-particle states close to the interacting vacuum. This vacuum is itself close to
the Gaussian vacuum state of a free field theory in perturbative situations. Moreover,

perturbative calculations are usually done for two masses on Minkowski space-time, while
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our results are for the effective Newton potential experienced by a light test mass in
the curved background of a heavy mass. The physical settings are therefore different,
which means that differing results are not problematic. Coefficients, and even orders of
quantum corrections, may well be different in our case.

We already referred to an upper bound on C, implied by reality conditions on the
expansion coefficients (3.77)—(3.79). This upper bound is of interest and is explicitly
given by

b5 ~ C < 2v2(bUy) 4. (3.84)

If the classical length scale L in Uj is equated with b, we have (bUp)Y* ~ vk, which is
the expected order of C' for semiclassical solutions. With the required length units for ¢,
and ¢3, we can parameterize bUj as ufp with a unitless number u. Given the inequality
in (3.84), a space-time geometry is compatible with such quantum corrections only if C,

or the quantum fluctuations ¢3 of ¢, are subject to the upper bound

Ay < 2 2ut*0p . (3.85)
Since (3.61) implies
ul
(Apa)*(A¢n)” = U+ pids > U = -, (3.86)
momentum fluctuations are bounded from below by
2 1/4
Apy > Vil o ulle (3.87)

T bAGy T 2v/2b

Static solutions as derived here, which by assumption have a vanishing expectation value
of po, can therefore exist only with non-zero momentum fluctuations. The geometrical
meaning of the momentum as extrinsic curvature of spatial slices suggests that quantum
black holes that are static on average are, in fact, superpositions of collapsing and
expanding geometries, corresponding to wave functions that have support on positive
and negative values of py. An open question is whether such quantum oscillations would
imply the emission of gravitational waves if non-spherical perturbations are included in
our models. Since u o b4, according to its definition, the lower bound on Ap, decreases
with the mass and is negligible for Schwarzschild radii much greater than the Planck
length. This superposition effect in the momentum and possible quantum oscillations
would therefore be relevant only for microscopic or primordial black holes.

Compared with the previous [76], on which the present paper is based, we have
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performed calculations in isotropic rather than Schwarzschild coordinates. This change of
coordinates implies that a clear analysis of the weak-field limit could be performed with
an unambiguous definition of Newton’s potential. Crucially, our space-time description
made it possible to consider different coordinate systems within the same model, which
is a requirement for a simultaneous interpretation of physical effects in the weak-field
regime (derived here) as well as close to the horizon of a black hole (considered in [76]).
Our novel weak-field results qualitatively confirm the fall-off behavior of the function
U(z) which previously was found only numerically. They also led us to re-interpret this
function by introducing a suitable length scale, L, implied by the density-behavior of
fields compared with point particles in quantum mechanics, as discussed in detail in
the passage following equation (3.61). The function U(z) here therefore has units of
h?/L, rather than k%, which is important for estimating orders of magnitude for quantum

corrections.

3.6.2 Black-hole superpositions

We have obtained specific expressions (3.77)—(3.79), together with d; = 0, for the
expansion coefficients ¢; of d¢, and d; of 6N. In canonical gravity, ¢, is a phase-space
degree of freedom that would be quantized in canonical quantum gravity and therefore
have quantum fluctuations. Here, these fluctuations are described by a new independent
field ¢3 and determined in our solutions by the parameter C. Solving the Hamiltonian
constraint also implies a dependence of ¢; and d; on the spatial function U(z) that can
be interpreted as the uncertainty product, imposing a lower bound (A¢y)?(Aps)? — ¢2p2
as an expression of the uncertainty relation.

In contrast to the ¢;, the coefficients d; in an expansion of §N do not appear in a
phase-space degree of freedom because N does not play such a role in the formulation of
canonical gravity used here. (An extended phase-space formulation could include N as a
phase-space degree of freedom, but only in a limited role because its momentum would be
constrained to vanish.) Canonically, the coefficients ¢; and d;, respectively, therefore play
different roles in how they may be related to wave functions or quantum fluctuations.
The ¢; in d¢o have a more direct relationship with quantum fluctuations than the d; in
ON. In the derivation of Newton’s potential, however, the d; are more relevant because
the gravitational potential in the weak-field limit appears in N to leading order.

An effective Newton’s potential therefore depends on quantum fluctuations in a rather
indirect way. Omne such dependence is given by the relationships between ¢; and d;

implied by the constraints and staticity conditions, which we solved in order to obtain
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our solutions. Moreover, if we use the full space-time metric, all the coefficients ¢y, cq, dy
and d, introduced in our solution procedure appear in the corrected metric components
through 0 N and d¢, in isotropic coordinates. The corresponding line element is of the

form

2 (0) dy da -3 ’ 2 142
ds® = —(NY+ —+ S5 +0( )| dt
x x

(0)
2 €1 C2 -3 2 201,02 1 win 2
+ (255 + oot 5 30 )) (da? + 22(d0? + sin?¥dp?)) . (3.88)
One implication is that the coefficients ¢; in d¢o change the radial length according to the
underlying geometry. If a corrected Newton’s potential is expressed as a function of the
geometrical radius r = [( éo) + 8¢2)1/% dz, rather than the coordinate x, all coefficients
contribute to the potential in higher-order corrections from

b _b <a:—1 /<¢50> +86)'2 dx)2 . (3.89)

T2 r2

The second factor depends on the ¢;, but overall corrections that include the first factor
of dy are at least of second order.

Our weak-field results therefore depend on the behavior of quantum fluctuations,
indirectly to leading order in relationships between ds and the ¢; implied by the constraints,
and directly at higher orders when the geometrical radial distance is used in the effective
Newton potential. The equations we solve for these expansion coefficients are implied by
covariance conditions, implemented here in a model of curved space-time. They could not
have been derived from quantum mechanics alone, which would not suggest any bounds
such as those found for C' and Aps, in addition to the uncertainty principle. General
covariance, or the existence of a curved space-time geometry for the gravitational force
of a quantum state of masses, therefore implies non-trivial conditions.

There are also characteristic effects in the line element. In particular, since d; = 0
while ¢; # 0 generically, the time and space components of the space-time metric are
affected in different ways by quantum corrections. This result is in contrast to previous
assumptions, for instance in [82], where Schwarzschild-like patches of space-time, with
closely related time and space components, were glued to each other in order to construct
a geometry suitable for superposition states. Our results imply a more precise space-time
geometry that combines interrelated gravitational and quantum effects.

In this way, our solutions can be used for consistent descriptions of quantum superpo-
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sitions, defined by suitable values of the moments or of the parameters C' and Uy. The
setting of spherical symmetry implies that a superposition state can only be formulated
for masses at the same position, defining the center of symmetry. Quantum fluctuations
are therefore not given by position fluctuations, but rather indirectly by mass fluctuations:
the primary quantum operator, as always in canonical gravity, is given by the spatial
metric, or ¢s in the present formulation. Quantum momenta of ¢,, parameterized by
C and U, therefore determine the fundamental fluctuations. The mass enters only
indirectly via the weak-field limit of the lapse function NN, which is coupled to ¢, and its
moments by the constraints and evolution equations (or staticity conditions in the present
case). These indirect implications on the mass or its superpositions are the reason why
superposition geometries cannot simply be constructed from wave functions, but rather
have to be derived through various consistency conditions implied by the gravitational
constraints. The final result, expressed in the form of a line element, can then be analyzed
by standard means, for instance by computing geodesics and proper-time intervals.
Our space-time geometry can be used not only for standard relativity analysis, such
as geodesics, but also for additional quantum-information studies. For instance, there is a
promising line of inquiry calculating quantum switch predictions in the context of our (and
related) black hole mass superpositions. If the quantum switch experiment in [82] were
conducted outside one such black hole superposition, how would the uncertainty within
our quantum-corrected metric components impact the quantum switch experimental
output? We would go about defining the measurement events in terms of proper time,
which will be subject to fluctuation effects inherited from the metric components. One
implication is that measurements would have to be made far enough apart in space and
time for the quantum switch order to be distinct despite the uncertainties in radial and
temporal distances. Increasing these distances should improve the result of the quantum
switch measurement, as long as the necessary mass entanglement is preserved, throughout
the necessary time and over the necessary distances. Such a quantum switch experiment
would need to be conducted repeatedly to generate sufficient statistics on the results so
as to associate any variation in output with the mass (and therefore metric) uncertainty

from the space-time quantum corrections.?

We thank Natalia Méller for discussions about these questions.
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3.7 Conclusions

We have derived the first fundamental description of fluctuating space-time geometries
that may be interpreted as superpositions of classical black holes, or as superpositions
of matter constituents in a single black hole. Our analysis here was made with the
assumption of spherical symmetry. Intuitively, all superposed ingredients are therefore
located at the same central point. Quantum fluctuations and superposition effects first
appear in metric components of the resulting geometry. By standard relativistic analysis,
such as taking the weak-field limit, they then imply indirect effects on mass superpositions
in the central object or on corrections to Newton’s potential.

The canonical methods used here, for both gravitational and quantum physics, made
it possible to derive state properties. These include results such as new conditions on
quantum fluctuations from general principles, one key example being general covariance.
Further conditions follow from our assumption that our solutions are static, describing a
non-rotating superposition of a black hole that has settled down after a collapse process.
These conditions made it possible to derive state properties, without having to impose
strong assumptions on the nature of the state, such as Gaussianity or purity. Our
results, derived from leading corrections by second-order moments in the gravitational
Hamiltonian, could therefore belong to either a pure or a mixed state.

The generality of our formalism is crucial for bridging fundamental questions in
quantum gravity with potentially observable implications. In particular, identifying what
are to be considered fundamental gravitational degrees of freedom depends on one’s
approach to quantum gravity. On a basic level, wave functions or superpositions of states
would be formulated for these degrees of freedom. Most of these would have to be traced
out to obtain a state relevant for a given observational situation. The actual tracing
process is expected to be challenging, if not impossible, to perform explicitly in any
complete quantum theory of gravity that includes all possible degrees of freedom, but
the outcome determines the relevant final state. We eliminate assumptions on the final
state, other than that it be semiclassical in the weak-field regime but it may well be
mixed. In this way, we obtained results which may be considered a universal implication
of quantized space-time geometries.

The condition of general covariance not only gave us a restrictive set of equations to
solve, it also made it possible to derive gravitational effects in different coordinate systems.
In particular, we used isotropic coordinates in the present paper, which are relevant for

the weak-field limit. Our methods were originally developed in [76] and evaluated in

74



Schwarzschild-type coordinates. We have seen several results that demonstrate general
agreement, in particular the behavior of quantum fluctuations as a function of the radial
distance. The previous paper focused on horizon properties, while the new physical result
of the present paper is an effective Newton’s potential, with corrections from quantum
fluctuations. We found new terms in this potential that are expected to be larger than
those previously derived in perturbative quantum gravity. The general nature of our
quantum states explains this difference because our effects pertain to a test mass in the
curved, fluctuating space-time of a large central mass. Standard results of perturbative
quantum gravity instead produce an effective potential between two test masses on a flat
background.

Our conditions on state parameters imply a novel lower bound on momentum fluc-
tuations (geometrically related to the extrinsic curvature of spacelike slices). Unlike
the standard uncertainty relation of quantum mechanics, this lower bound (3.85) is
independent of fluctuations of the configuration variable (a metric component) conjugate
to this momentum. The lower bound does, however, depend inversely on the mass of
the central object. Heuristically, this bound means that momentum fluctuations cannot
be arbitrarily small. A quantum black hole that is static on average, with vanishing
momentum expectation values as assumed here, can therefore be viewed in a new way.
We interpret the black hole as an oscillating system in a superposition of expanding
and collapsing classical geometries. Implications for the stability of black holes would
require an extension of our model to non-static and non-spherical geometries. In such
an extension, the quantum oscillation could involve higher multipoles that could source
gravitational waves.

The present results for static and spherical configurations can be used in multiple
ways for further analysis, mainly as a background space-time. Several questions of current
interest in relativistic quantum information theory make use of the concept of proper
time, which so far has mainly been defined for a classical space-time. Our effective line
elements extend this important notion to quantum backgrounds with fluctuation terms.
On these backgrounds, additional systems of interest for quantum information can then
be set up. One example is the analysis of quantum switch experiments described in [82].
It is also possible to study the quantum effects of matter fields on our backgrounds. One
could, for instance, study possible effects on their entanglement or other properties, as
analyzed in [96,97]. Another promising avenue for exploration is to look at related effects

in analog gravity [98].
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3.8 Detailed equations for metric corrections calculation

This appendix collects details of our solution procedure of quantum-corrected constraints.

3.8.1 Equations of motion

Calculating the equations of motion from Poisson brackets of our fields and momenta

with the Hamiltonian, we obtain:

s H[N] N 0Hy,[L]

_ )
= = H|N|+ H,,|L]} = 3.90
c {¢27 [ ] + ¢2[ ]} 5p2 6]92 ( )
303 (2p3¢2 + p23) I 3x (4psdads + p2 (8d2” — ¢3%)) (3.91)
V2263 12 (1) 32 |
and
Ps . GH[N] | 6Hy,[L]
= = H[N|+ H,,[L]} = 3.92
2 (o AN+ HolL)} = 25 5+ (392)
_ _3\/§p2v $¢2¢3L _ 3(2p3¢2 + pags) N (3.93)
x V2zd;
These equations are identically satisfied in the static case.
In addition, we have non-trivial equations of motion
P2 - OHN]  0Hy,[L]
0 = = {po, H[N] + Hy,|L]} = — — 3.94
2 = {pa HIN| + Hoy[L]} = =25 = = 20 (39
; _ SH[N] O0H,[L
Y RN 17) N L (395)

Cc 6¢3 5¢3

for static behavior. We evaluate the first equation after imposing the Hamiltonian
constraint. The second equation, as seen in [76] can be used to derive L, which is
not required for our purpose of finding corrections to Newton’s potential. (Unlike IV,
the multiplier L does not appear in metric coefficients and instead determines how
fluctuations contribute to the evolution generator. This function does contribute to the
equation (3.94) that we will solve below, but only in terms of second or higher order in
the quantum parameter ¢3. As we will see, for our purposes it will be sufficient to solve
(3.102) to first order, in which L does not appear.)
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3.8.2 Perturbations around classical background

Fluctuation terms in the quantum Hamiltonian constraint modify the classical solutions
for ¢ and N. As a first approximation, we apply a perturbative treatment to both ¢

and N around the classical solutions, qbgo) and N©:

b 4
br = 08 +0¢y =2 <1+w> + 0 (3.96)
N o= NO =" sy
r+b

As discussed earlier, we absorb the original integration constant Ny in N into the
definition of the time coordinate, effectively setting Ny = 1 here. Applying these
perturbations to the Hamiltonian constraint, we can arrange the terms according to
whether they contain the quantum field ¢3 and its momentum ps or only the classical

fields, taking into account the perturbed portions for ¢, in the latter case. We write

H[N] = HI[N]+ Hy[N] (3.97)
with
= [daN() 1‘92 LU g OH
¢3 ’ 8(;528192 33
162 82 , 1 °H 0*’H
2 3¢2 (bg aqbgaqbé ¢3¢3 (3@25') (¢3) a¢ 8¢,,¢3¢ ) (3-98)
and
H[N] = H[N]| o+ / dz(N© +6N) (0}]5@ 5¢ 5¢> (3.99)
% eJo5 Oy 2 0¢Y
o (1°H , O°H , 1 O°H 0’H
+/d N <2 a¢2< ¢2) + a¢2a¢,25¢25¢2 (a¢/) ( ¢2) 8¢28¢//5¢2

where H[N]| o0 = 0 for classical background solutions. We consider the quantum field
¢3 and the perturbations d¢, and dN induced by it to be of the same order. Therefore,
H,[N] is already of second order, such that we can simply insert the classical solutions
in the coefficients defined by partial derivatives of H. Similarly, all non-zero correction
terms in (3.99) are of second order because the only linear terms (in the first line of

(3.99) proportional to N() are, upon integration by parts, proportional to the classical
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equation of motion for p,, which vanishes for static solutions.

Having applied the perturbations of N and ¢, to both H[N] and H3|[N], we now
have their sum, the perturbed form of our corrected Hamiltonian H[N]. We then apply
the classical background solutions into the equation. At this stage, we also insert the

solution for ¢3, resulting in the equation

_ 32%(b+ x)*U 3U  3z*(x —b) (13b* — 10bx + %) 65>
H[N]|N<o>¢<°> T o an2 ne T oe T 9
P2 C?(30? + 3bx + 22)°  C 16(b + z)
+SC'2 (—24b° + 16b3(b + x)% — (b+ 2)%)  32°(b — x)d¢)>
16(b+ )8 16(b + x)7

23ONOPy b SN, 25(b — )¢l
Tt T rap O\ TSGr ey

<3x5(x —5b)(x — b)ogy,  3bx(b— x)5N>
+0¢ho

8(b+ )8 (b4 x)* (3-100)
In the second term, given by the vacuum subtraction —Hy = 3U/C?, we have assumed
that U does not depend on b. This assumption will be sufficient for our purposes but
could easily be relaxed if needed.

We need a second constraint equation, since the Hamiltonian constraint provides a
single equation coupling ¢, and d N. Such a condition can be obtained from the equation
of motion for ps which, unlike the background equation (3.102), includes perturbations
from d¢y. Since we only need one additional equation, it is sufficient to consider the
equation of motion expanded to linear order in d¢,. Since ¢3 is of the same order as d¢o
and H is quadratic in ¢, the relevant equation of motion is generated by the expanded
H[N] without the contribution from Hs[N]. With

oH oH oH
H _ g YL o Y 101
linear a¢2 6¢2 + a¢/2 5¢2 + 8 /2/5¢2 (3 0 )
and . . ,
P2| N ¢(0) OH OH OH
=% O <N<0> ) + <N<0> ) = 0. 3.102
% 56» 50, 0% (3.102)

we have separated the ¢, ¢, and ¢ derivatives that appeared in the original functional
derivative by ¢9, allowing us to treat them as separate variables for the purposes of these
partial derivatives. We then have

p2’1inear o _aHlinear N(O) 3H(0)

c 0o O

O Hi; OH©O 1\
ON + DA NO 4 SN
( I¢h 9¢h
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Applying the classical background solutions and the solution for ¢3, we obtain:

+

¢2N(0)//

Pelyog®  bat (330% — 5lbx + 1622) 5¢y  325(b — )¢ (3.104)
c 4(b+ x)? 8(b+ x)7 '
bz®(15b — 16x)0¢y,  x36N"  3bx (b(x —2) + %) IN’
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3.8.3 Asymptotic expansion

In order to solve this system, we first expand 0N and d¢, as power series, similar to our
earlier handling of ¢3: dN = dy/x + dy/x* + d3 /x> and ¢y = ¢ + /1 + c3/x*. The
classical solution for N is asymptotically constant, while the classical ¢y grows like x.
Our perturbations include only terms higher than the classical order in 1/x in order to
preserve the Minkowski limit.

The remaining undetermined function is U(z). It is not subject to a constraint or

equation of motion, but its dependence on x turns out to be restricted by solvability
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conditions on the expansion coefficients ¢; and d;. For U(z) to be compatible with the
weak-field limit, it must have an expansion in 1/x. For simplicity, we only consider

® in which the exponent is an integer x > 0. We will first

power-law forms U(z) = Upz~
provide detailed expressions of the constraint and equation of motion, both expanded in
y = b/x around zero, for the case of K = 1 and then show why the remaining power laws
do not result in non-trivial real solutions.

The expanded Hamiltonian constraint is given by
- 32 30?7 120,
H[N] = *|——L —
N =y ( 1662 1662 T bC2>
cody  cico 3cdy 1562 3C* 30U
+y3<21 162 sady | 1oy B 0)

b3 b3 b? 4b2 8b? bC?
+y4 <3C3d1 ngg C% 150103 802d1 301d2 + 59C1€2 + 1501d1>

¥ ¥ A e 52

Lo (501 9C?  5al
1662 1662 = bC?

) + 0@ (3.105)

This equation can be simplified because the constraint has to vanish for any lapse function.
Instead of using the expanded lapse with coefficients d;, a simpler expression is obtained
for N = N(©. The resulting constraint can simply be obtained by setting d; = 0 and

ds = 0 in the preceding expression:

_ 3¢ 3C?* 120, clc 15¢2  3C? 30U,
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) + O(y°)(3.106)

and we have the equation of motion

pr_ s 3 3d doa A 4 9 6dy  lde, 195¢ 64
c T Y\ T T e T T e T T a2
+0(y°), (3.107)

after gathering terms by powers of y = b/x. We then equate the second, third, and fourth
order coefficients to zero for both H[N] = 0 and p, = 0. This produces a system of six
equations, which we can solve for the coefficients in each power series. For instance, the

quadratic term in y of the Hamiltonian constraint has real solutions from a quadratic
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equation for ¢; since Uy > 0 by our positivity condition. These solutions then successively
determine cs, do, c3 and d3 from the remaining terms, while d; = 0 from the quadratic
term in po/c = 0. These results are used and discussed in the main part of our paper.
Direct evaluation of the resulting Hamiltonian constraint for constant U or U oc 1/2?
show that non-trivial real solutions cannot be obtained in these cases. For constant U,

we have

HIND = =& 162 1662 (2
Ly (ngl ac 3ad 15¢2 307 54U>

_ 12Uy 2( 3¢ 307 3OU>
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9C? 63U
N 5
+y < 62~ 2 ) + O(y°) (3.108)

where a constant contribution —3U/C? has been removed by our general vacuum sub-
traction. However, a linear term in y now remains, which as a part of the Hamiltonian
constraint requires U = (. The second-order term in y then implies imaginary solutions
for ¢; if C' # 0, making the remaining coefficients complex as well. (If we choose C' = 0,
we have a real ¢; = 0 but also remove all quantum corrections.)

For U o 1/x?, we obtain

— 302 302 Cle C1C2 3Cld1 1502 12U0 302
HIN — 2 941 o 3 o . 1
Nl =y < 1602 16b2> < R R T R T oI
1 4 303d1 % B g% _ 156163 _ 802d1 _ 301d2 1 590162 I 15C1d1 _ 5010%
AT [ TR b b Ab3 b2 1602
30U, 9C?
' <_ pPC? 1662> HOw) 0

after removing a second-order term in y as per our vacuum subtraction. The remaining
quadratic term implies imaginary ¢;, and complex values for the remaining coefficients.
This behavior remains the same if we use larger exponents x > 2 because the first
non-zero U-term then appears in higher-order contributions in y and do not change the
imaginary nature of the resulting ¢;. As a power law, the form U(x) = Uy/x is therefore

uniquely determined by solvability conditions.
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Chapter 4
Current work: Quantum corrected
black hole volume

Studying the volume inside the event horizon can have interesting implications for
information theory, black hole evolution, and the importance of quantum effects. For
this reason, I have recreated an established volume calculation from [99] and applied it
to a black hole spacetime with a covariant quantum correction A [100]. This spacetime
is derived using similar covariant methods to those in the previous chapter, and has
the benefit of an interior solution with the potential to affect these volume calculations.
This volume definition has an interesting feature, convergence at a radius of r = 3M /2,

subject to the influence of said quantum corrections.

4.1 Summary

Our goal is to use established definitions for the volume inside the event horizon as
maximal spatial hypersurfaces [99] and recreate that volume calculation for the spacetime
model in [100]. Broadening the scope of my work, this current paper draft utilizes
a distinct, though related, modified spacetime [100]. This spacetime is valid for the
non-static case, and therefore has a full interior solution, with a quantum parameter

introduced using covariant methods similar to those utilized in Chapter 2.

4.1.1 Calculations

Defining volume as maximal spatial hypersurfaces, we start with the definition of this

slicing, contracting extrinsic curvature (K;;) with the spatial metric (v*) and setting it
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to zero.

We then utilize the Hamiltonian constraint, diffeomorphism constraint, and an
equation of motion for the quantum-corrected spacetime. With these equations, together
with the trace condition, we are able to solve for the radial component of the spatial

metric () in terms of the modification (A) and a function of time (7).

42

M* M4

(4.2)

4T2 2 5T2
M4>+)\2<—37‘+4r2—T : )

7_1—<1—27’+r

From the structure of expressions for lapse and shift, we can argue that the roots of the
inverse of the radial component of the spatial metric coincide at the new convergence of

spatial leaves. The following is a preliminary result for the modified radius of convergence

(i ) »

Note that when the quantum modification A goes to zero, we recover the original result

x=3M/2.

of spatial volume slices (z).

4.1.2 Results

The quantum modification, A, shifts the radius at which these spatial leaves converge,
which could offer insights into both the information paradox and the late-stages of black
hole evaporation. We are in the final stages of this calculation, with preliminary results

of first-order corrections in .

4.2 Paper Draft: Volume of a Quantum Corrected Black
Hole

Abstract:

We seek to refine which types of black hole models are successful by exploring the
information capacity/entropy/computability of a quantum-corrected black hole interior
[100,101]. Confirming established definitions for the volume inside the event horizon, we
calculate the maximal spatial hypersurfaces used in [99]. This foliation used to define
volume has interesting features inside the horizon, notably a convergence at r = 3M /2 in

the classical case. We recreate this calculation with the quantum-corrected black hole
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spacetime. We derive the quantum correction’s effect on the slicing convergence result.
The quantum modification has unique interactions with the convergence of these spatial
leaves, in certain limits, which could offer insights into both the information paradox

and the late-stages of black hole evaporation.

4.3 Introduction

We can test possible theories of quantum gravity by studying black hole spacetimes,
because settings with dramatic spacetime curvature make the mathematics of general
relativity relevant on the small quantum-mechanical scales. Many areas of study will
benefit from a better understanding of these environments, including the phenomena
of Hawking radiation, information loss, removing singularities, and speculation about
black hole "deaths." Many approaches to these problems, such as non-perturbative
approaches to string theory, loop quantum gravity, and effective field theories [14—16]
have been investigated. We seek to refine which models work by exploring the information
capacity /entropy /computability of a particular black hole interior.

Building on the canonical quantum black hole models in [100, 101], we recreate
the volume calculations conducted in [102], using the definitions outlined in [99]. By
defining the volume inside the event horizon using maximal spatial hypersurfaces, we
can explore the shift of the 3M /2 boundary (to which these slices converge)due to the
quantum-correction.

We are particularly interested in the late-time limit approaching the final stages of
evaporation, when these boundaries inside the horizon approach each other. This is
explored in a limited capacity, given the static assumption for some of these spacetime

models. There is ample opportunity for further studies of this type.

4.4 Background and Motivation

General relativity and quantum mechanics are essential to modern life, from GPS and
space travel, to nuclear power and quantum computing. GR works well on large scales
and quantum mechanics works well on small scales, but they are at odds. It is one
of the largest open questions on the frontiers of physics to find a way to reconcile the
two, taking the parts that work and combining them into a cohesive theory of Quantum
Gravity. Black holes are an excellent testing ground for such theories because the extreme

curvature of spacetime makes the mathematics of general relativity relevant on the small
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quantum mechanical scales.

There is a great deal of motivation for studying black hole volumes, as they determine
the potential for information storage, remnants post-evaporation, and whether the
divergences inherent in singularities can be removed. We hope to address big questions
about information paradox, singularity removal, and black hole death.

For this investigation, we chose to analyze the covariant spacetime in [101]. Covari-
ance is necessary for results to be coordinate independent, as discussed in [103]. We
are interested in the interpretations/applications of the A modification in [100]. This
spacetime model has the necessary properties from a canonical derivation method, similar
to [103]. In addition, this model has the advantage of not being restricted to the static
case. The absence of this restriction means that the spacetime is valid on the interior of
the horizon, where the temporal and radial properties switch. This complete solution
allows us to analyze the interior region, including implementing this volume calculation.

Introducing modifications directly into the Hamiltonian and/or Diffeomorphism
constraints allows one to impose the covariance condition by requiring that the Poisson
brackets between these constraints are closed. Covariance is necessary for any results
to be coordinate independent. One can consider the physical interpretations of these
constraints as conservation laws for energy and momentum respectively. They can also be
considered the generators of temporal and spatial translations respectively. For example,
taking the Poisson bracket of canonical variables with the Hamiltonian constraint results
in the time derivative of that variable.

Note that in these calculations, we will be using smeared constraints and tetrad

coordinates.

4.5 Verifying the foundation

We recreated the calculations in [99] to verify the relationships. We first attempt to
rederive the classical boundary using the method and definitions from [99]. We begin
with the trace condition:

YK =0 (4.4)

The extrinsic curvature is given by:

1
2

where o is the lapse function, 7;; is the spatial metric, commas denote partial

Kij = = a (=0 + Ls7i5) (4.5)
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derivatives, and Lz denotes the Lie derivative with respect to the shift vectors 3;. We

expand the Lie derivative so it simplifies to:

;i op* op*
B’“a,§+ Wi ik (4.6)

Lgyij =

We apply these conditions to the new line element in [101]. Note the notation
differences: N represents the lapse function, N* represents the shift vector, and E* and
E? represent two independent components of a densitized triad, with K, and K, as their

respective conjugate momenta.

VE*) E*

The length scale 7, in terms of the quantum correction A and mass M, is given by:

—1
dSQ _ —N2dt2 + (1 _ "o > Eiw(dx + det)Q —+ EdeQ (47)

2M N>
14 A2

We also make use of the Hamiltonian constraint, diffeomorphism constraint, and

(4.8)

To =

equations of motion [101]. To rederive the classical case. We set A = 0, giving the

following constraints:

 E(14K3) - 1 ((EY, =, —((E7)Y
H_—Wb—szK¢@+2<2E¢(¢E_) +\/E_< o )) (4.9)

D = —K,(E*) + E°K], (4.10)
In this case, the equations of motion reduce to:

Er = (E*)'N® + 2V E*K4N (4.11)

2E°%
2V E*

E¢ = (N*E?Y + 2VE*K,N 4+ K4;N (4.12)

K, = (N"K,) +

VE*N" \/E*N' [(E*)E? ,
2B | 2E% ( 2E" <E¢)>
2 4.13
N (E¢ (1 +€<¢) N 1 (_ (Ex)/(Eqﬁ)/ - F=2 . (Ew)//> - Kquj) ( )
4(E*)2 4 ErE9 E? AE® VE®
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; VET(ET) K} ((E*))?
K, = N*K' + N’ N NN
¢ ¢ 2E92 WET &JETE®

Using time as our Oth coordinate, we then expand the maximality constraint (the

(4.14)

trace condition) in terms of E*, E?| K,, and K, . The maximality constraint can then

be solved for K,:
_ E°K,
xr T E‘r

Setting E* = 22 and making use of the fact that the time derivative of this expression

(4.15)

is zero allows us to solve for the shift vector, N*. Note that the sign of the shift vector

was changed to be consistent with the conventions in [99].
N® = K,N (4.16)

The diffeomorphism constraint is left as a differential equation for K. Solving gives
Ky = x%, where the constant of integration 7T is dependent only on time. This expression
allows us to eliminate K from the expression for N*, which in turn allows us to transform
the Hamiltonian constraint into a differential equation for £%. We set the second constant
of integration to be —2M and time-independent (add more about this). We then define

(E)?
Er

our radial component of the spatial metric as v = so that v can be explicitly

written as:
o

T 2MaB Tt ot

We are now equipped to replicate the calculations used to determine the boundary [99].

0l (4.17)

Using our expressions for [variables|, we then reduce the maximality constraint to be in
terms of T, M, N, and x:

T (-2Ma® + 1% + 2%) (a2 N' (-2M2® + T% + o) + N2'(3M — 22) + Tat) o7

+ -
Nzt (24 — 2M a3 + T2)? 3
(4.18)

0=

This is a differential equation for N. Solving for N’, the expression reduces to:

2?(3M — 2x) 2 Tx?
N' = (=N -] = 4.19
( )<—2Mw3+T2—|—x4+x —2Ma3 + T2 + x* (4.19)
We know that a%(ow%) = aly? 4 %cw_%%. We also have an explicit expression for ~y

and can compute its partial derivative with respect to x. Through careful manipulation
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of equation (alpha’ eq), we arrive at

0

, s T
— (N~2) = —~2 4.2
8:17( 7?) 7$2 (4.20)

After integrating out the partial derivative in this equation and making the substitution

_ M .
x = <=, we get:

Max—
N = (—2M2® + T? + %) (1 + —/ (1= 2+ TM4 Y E ) (4.21)

The roots of the polynomial inside the integrand lead to the desired result: we confirm

that the two real roots of the quartic coincide at T" = 3‘[M

, which, when plugged back
in, yields a root at r = % Therefore, the boundary is conﬁrmed to occur at x = %]\/[ .
We solve for alpha and note that the 3M/2 condition arises from roots of the

polynomial in the square root within the integral.

4.6 Applying volume calculation to modified spacetime

We now recreate these calculations using the modified black hole in [101]. This spacetime
is interesting because of the unique boundary inside the horizon, characterized by the
parameter \.

Conceptually, we know that the mass of the black hole should not be changing with
time, so time derivatives of M can be removed from our equation.

Hamiltonian (non-expanded):

cos? (\Ky) (\/ﬁ ((E )’ ) 4 EXéﬁ’)
2N 1
| VE K sin (20K,) () +1)  (-02) (=65 1)
WP T E

H—

(4.22)

Motion equations:

-~ . X\ 2
E“’:EX’N”—l—N E7sin (20K,) (()\E ) +1) (4.23)

A2+ 1 2F¢
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The following equation is needed to solve for /.

: INVE®K. IAK A\ 2
oo DT (1))

VA2 +1 2E¢

(Nsin (20K,)) (1, _ (B BB B¢
WA <2A (\/E_<E¢) R )Jrz\/ﬁ)

(4.24)

The trace condition, v;; K% = 0, is calculated using the same constraint in the previous

section: (need trace condition definition included or cited here first

z 2(1—-"m —9)2 2
2N +:v(1 5)( 2B e INK, (22 4 1) (1 - 2X%s(t, 2)?)

Ne ' 2NE? | (1 x) NoYES
2Ns(t,x)y/1 — N2s( ( ( (l 2255’) %) + %’) BN 4 o 42 !

+

L moE® 2B 0% B
N ( :(;4(1—%0)2 1’3(1—;0)—’_1:2(1_7;))) (4.25)

Solving Trace Condition = 0 for K,:
V1+ NE?
20 (55 +1) (1 - 2\2%s(t, 2)?)
(zs(t’x) s 02 (12 (2 (& - 2B + ) + &)

K, =—

VA2 + 1E?

$2N$ (1 - LO) <_ 4TOE¢(2) 2 32E¢20 + §E¢Eq;l )
Eg x - x - x ) E¢/N1‘ 2Nx
(0-2F ~#0-1) " =20-9)) ) (4.26)

IN E92 NE¢ Nz
Solving E* = ( for N* :

N ()\2x2 + E¢2) s(t,x)y/1 — N2s(t,x)?
V1+ N E?

Plugging N into K, then plugging in K,to solve the diffeomorphism constraint for

N® = —

(4.27)

s, which represents Ky:

25 (A2a2 4 B92) (4.28)
A2 A2

J Arg 2 E4T2 42 EPAT2 4 X429 42)0227 E92 5 E94
1
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The next step is then to solve the Hamiltonian for E%. However, this differential
equation is not solvable. We instead use a second-degree Taylor expansion about A =0
of the Hamiltonian and Taylor expanded all results.

Here, we have the Hamiltonian, Taylor expanded around A = 0:

3EPT? — 22"E? + 32°E¢ — 2 E%3 A2

_ _ 3g3m2 A T2 o6 e
H= YT + oo (16Ma® EPT? — 4 EVT? - 200 BOT
— 30! ET? 4+ 14EST 4 20" B — 301°E° + 2* %)
(4.29)
We Taylor expand the key equations around A = 0:
1 1 1 3/2
E? = 2° N2 (Ma2® + 17 ( ) 4.30
ng\/—2]\4x3—|—T2+x4—1_2 * ( v ) —2Mux? + T? + 24 (4.30)
N7* (beta, in [99]):
Ta  Na(2MT? + 2T?)
N = —— 4.31
x? * 23T (4.31)
s(t, x), representing Ky:
T N (=2Mz3T? + 22472 + T*
s(t,z) = L N EMET 4+ 3T+ T7) (4.32)
x? 22T
K, =— L
o/ —2Mx3 + T2 + 2*
L2 1 (6M*T2® — TMT3z3 — 8MTa™ + 2T° + 3T3x* + 2T2®)
—2Max3 4+ T? + 24 225 (=2Mx® 4+ T? + %)
(4.33)
1 1 1 3/2
E? = 2° N2 (Ma® + 17 ( ) 4.34
I\/—2Mx3+T2+x4+2 . ( v ) —2Mux? + T? + 24 (4:34)
We now have an explicit expression for :
3/2\ 2
(5133 Y 72M$3}|’T2+5E4 + %)\2‘%‘3 (M'rg + T2) (72M:r3irT2+x4) )
7 = 2 N2 M (435)
v (1 - (1+A2)x)
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Making the substitution = | taking the inverse of the above equation, and Taylor

r

expanding, we have:

42

vl = (1 —or 4t (4.36)

4T2 2 5T2
M4>+)\2 (—37‘+4r2—r T)

Mt MA
By setting the discriminant of this polynomial in r equal to zero, solving for T, and

once again Taylor expanding the result, we find that the roots of the above equation
3v3M?2 | 9v3M2 2
1T s AT

coincide at 1" =
7=t is of the form p(r) + A%q(r). Evaluated at r = r. + Adr, close to the classical root
2

T = 3, it then takes the form:

1
= ip”('r’c))\%'rz + XNq(r,) (4.37)

To first order in A, setting this to zero gives:

2q(re)
or=,|— 4.38
r p//(rc) ( )
From the above expression for v~!, we have:
12r2 (3v3M2  9v3M? )\’
1" 2
= 4.
) =g (2 (4.30
4 2 2\ 2
B , ot (9V3M? ., 3V3M
N (4.40)
27 (9VBME, | 3V3M
M* 8 4

It has already been established that at the classical root 7. = 2, p(r.) = 0. Since
local extrema can occur where two roots coincide, the additional condition p'(r.) = 0 is

implied. To first order, ¢(r.) and p"(r.) reduce to:

p'(re) =9 (4.41)

q(r.) = —1 (4.42)
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We then have:
or =+

[

This gives us a final root at:

2 2
Sincex:%:
3M
r= —
2+ A2

Taylor expanding this result for x gives:

2

4.7 Preliminary Conclusions

3 A
=M1
v (jF\/i

(4.43)

(4.44)

(4.45)

(4.46)

This is a preliminary result, subject to change as we review our calculations and finalize

this paper for submission to Physical Review D. However, these calculations are promising,

and we are confident that we have found first order, and perhaps also second order,

corrections to the volume convergence boundary in terms of the quantum correction \.

This is an exciting outcome, indicating that the volume inside the event horizon of black

holes maybe subject to quantum corrections. This has implications for the information

capacity of black holes, potentially providing a resolution to the information paradox.

Further study is warranted and particularly intriguing for the late-stages of black hole

evaporation.
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Chapter 5
Results and Future Projects

In this dissertation, I have used canonical gravity methods to: (1) construct a modified
black hole spacetime with nonlocal quantum corrections, (2) reinterpret this spacetime
as a quantum superposition of masses which produce modifications in the Newtonian
potential in the asymptotic limit, and (3) calculate the implications for black hole volume
slices when another quantum correction modifies a black hole interior. Each of these
papers has produced novel results and opened new avenues for further exploration. These
projects provide many avenues for further research: extending our modified spacetime
solution, applying superposition and volume analyses to additional black hole models,

and calculating a variety of potentially observable quantum effects.

5.1 Results

5.1.1 Chapter 2 results

In Chapter 2, we obtained a theory for two independent fields, representing a single
classical metric component and its quantum fluctuation, using canonical methods in the
spherically symmetric, static case. We analyzed the asymptotic behavior around the
event horizon and at infinity, surrounding our canonical quantum-corrected black hole,
and found that our quantum corrections have a ripple effect that extends beyond their
local area. Our work is unique because we modify the spacetime via the Hamiltonian
constraint, we do not violate energy conditions, we avoid common instabilities, and
we preserve covariance by maintaining that the brackets of canonical constraints are
closed. The quasiclassical approximation breaks down before one reaches the horizon,
meaning that non-local effects may be crucial for horizon dynamics of quantum black

holes. We need higher-order quasiclassical approximations to confirm this, but we have
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demonstrated that quasiclassical methods are promising for inhomogeneous models of
quantum gravity, allowing explicit derivations of quantum corrections with only canonical
quantization requirements. Our quasiclassical methods are promising for future work
on inhomogeneous models of quantum gravity. There are many more future avenues for

study discussed at the end of this chapter.

5.1.2 Chapter3 results

In Chapter 3, our goal was to interpret our quantum-corrected spacetime as providing
covariant formulations of the gravitational force implied by a distribution of black holes
in superposition, or by quantum matter constituents in superposition around a single
black hole. Our detailed analysis in the weak-field limit reveals quantum corrections to
Newton’s potential, enables us to construct a spacetime with quantum uncertainty in
the temporal and spatial components, and paves the way for a broad range of potential
predictions. Our results also corroborate the fall-off behavior of the Casimir function,
U(z), from the numerical analysis in our previous paper described in Chapter 2. Without
constructing a geometrical space-time picture of these superposed Newtonian potentials,
one could not derive the relevant restrictions imposed by general covariance. Preexisting
formulations for quantum reference frames, which emphasize test object properties,
cannot address the question of whether the space-time has an action principle or other
fundamental description with solutions involving gravitational field superpositions. This
is an important field-theoretical question we address with our novel approach.

Our equations are implied by the covariance conditions, implemented in a model of
curved space-time, which could not have been derived from quantum mechanics alone.
Without our work, said equations would not suggest any bounds for C' and dpy, on top
of the uncertainty principle. General covariance, specifically the existence of a curved
space-time geometry for gravitational force of a quantum superposition of masses, implies
non-trivial conditions. This work forms a bridge, connecting spacetime models with
quantum corrections to superpositions of mass with uncertainties in the metric and
potential. This connection broadens the applicability of results in both areas and sets
the stage for a new connection to quantum switch experiments.

In the black hole superposition I derived in Chapter 3, the time and space components
of the metric are affected differently by our quantum corrections. Our results imply a
more precise geometry combining interrelated gravitational and quantum effects. This can
be used for consistent descriptions of quantum superpositions, defined by suitable values

of the moments or parameters C' and Uy. Spherical symmetry implies a superposition
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state can only be formulated for masses at the same position, defining the center of
symmetry. The quantum fluctuations given indirectly via mass fluctuations, rather than
via position fluctuations. The final line element can be analyzed by computing geodesics

and proper-time intervals.

5.1.3 Chapter 4 results

In chapter 4, using a related canonical quantum-corrected black hole model with a full
interior extension, we calculated the first-order quantum effects on the volume inside the
event horizon. This volume is defined by maximal spatial hypersurfaces, which converge
at a specific radius. We show that this radius shifts depending on the quantum correction
A. We also found a second-order quantum correction to the redefined time function. This
is the start of many such investigations of other quantum-corrected spacetimes. These
quantum effects on black hole volume will have implications for information storage,

black hole evaporation, and post-evaporation remnants.

5.2 Future Projects

Future projects fall into three general categories. The first is generalizing quantum-
corrected spacetime models beyond static, spherically symmetric, and/or asymptotic
regimes. The second is applying our interior volume and mass superposition calculations
to more of these quantum-corrected models. The third is connecting these modified black
holes to other work relevant for making testable predictions, such as gravitational wave

quasinormal modes and quantum switch experiment designs.

5.2.1 Extending our quantum black hole model

We plan to extend our quantum-corrected spacetime to a full solution, adding complexity
one step at a time. The extendability of this approach to the non-static case has already
been established, with the addition of another scalar field in the Hamiltonian constraint,
modifying the metric field ¢;. The foundation for this extension is provided in the 2019
Masters Thesis by Manuel Diaz, Semiclassical consistent constraints with moments in
spherically symmetric quantum gravity. This provides proof of concept that this modified
black hole model can be extended beyond the static case, with additional corrections.
There are plenty of open questions to pursue from here. It is not clear whether the

extra factor between the Dirac and Poisson brackets, which rescales all time derivatives,

95



will appear in the non-static case because it depends on which gauge conditions we
choose. If generalised by superposition states, can the geometric formalism retain its
classical form of Riemannian geometry? Do these geometric concepts eventually have to
be generalized in a suitable way? Once we can talk about time evolution, we can explore
formation and evaporation scenarios. And once we can extend beyond the spherically
symmetric case, we can then consider quantum effects on rotating black holes.

It will also be interesting to explore whether our quantum corrections can be adapted
to the context of a cosmological singularity. Preliminary steps have been taken in Quasi-
classical model of inhomogeneous cosmology by Martin Bojowald and Freddy Hancock.
There is more to investigate about how the quantum effects manifest in a cosmological
context, and there are many open questions about the formation and evolution of the
universe which could be affected by quantum fluctuations around the cosmological sin-
gularity. These include primordial fluctuations, cosmological black holes, gravitational

radiation from the early universe, and the formation of supermassive black holes.

5.2.2 Expanding upon black hole superposition model

I propose a geodesic follow-up at smaller radii for our black hole superposition. It is a
natural next step to analyze the non-asymptotic approximation near the horizon. Then
we could expand to the non spherically symmetric case, incorporating rotation, as in a
Kerr spacetime. I am also interested in whether the spacetime used in Chapter 4 would

be well-suited to a similar reinterpretation as a quantum superposition of masses.

5.2.3 Applications to other quantum black hole models

Increasing complexity by removing statisticity and spherical symmetry is the natural
progression for expanding upon other modified spacetimes as well. Generalizations of
astrophysical black hole models to cosmological singularitiy models is another natural
line of enquiry for extending the applicability for other models, such as for the spacetime
considered in Chapter 4. Once our spacetime, outlined in Chapter 2, is fully extended to
the non-static case, we expect to be able to recreate this volume calculation to calculate
the effect of the quantum fluctuations in the metric field on the interior volume slices.
This is yet another way to probe the validity and impact of various black hole quantum

corrections.
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5.2.4 Delocalized particles near quantum-corrected black holes

Our work is also promising in combination with that of Joseph Balsells’ work considering
the varied gravitational effect of black hole curvature near the horizon on particles
viewed as probability distributions [104]. This work involves the interplay of geodesic
moment terms, test mass moments, central mass moments, and correlations between
two quantum objects [104]. I am interested in analyzing these particle probability
distributions in the presence of various quantum-corrected black holes, including my own.
This could be repeated with the other canonical quantum-corrected black hole spacetimes
mentioned, which include modifications to the lapse function and the addition of scalar

field corrections.

5.2.5 Gravitational Waves

Karim Noui at Université Paris-Saclay has been building on our, and related, modified
black hole spacetimes [105]. Hugo Roussille, in his related doctoral dissertation, presents
novel quasinormal mode computations in modified gravity. This is the start of a new
calculation method, enabling quasinormal mode computations for a large class of modified
gravity, potentially including loop quantum gravity. We have designed a collaborative
project around this shared topic of modified gravity, while introducing their quasinormal
mode work. In a merger of two black holes, such as those constructed in Chapter 2,
there could be modifications in the properties of quasinormal modes. For example,
their frequency spectrum could be affected, which is not highly constrained by current
observations. I have begun reconciling our formalisms to calculate quasinormal modes of
the gravitational wave signals from black hole merger ring-down, using the same modified
spacetime derived in Chapter 2.

We know that the static spherically symmetric constraints are closed, with a non-
rotating background. Quasinormal modes are not static. Nor are they exactly symmetric;
the plane of coalescence breaks symmetry, but we are using spherical symmetry with
perturbations. Starting from a static, spherically symmetric background, we will introduce
a small perturbation in all canonical fields. Then, we will expand the constraints to
get new equations. We will solve these linear partial differential equations, not the full
nonlinear Einstein equations. Even with the spherically symmetric inhomogeneity, we
will ensure that covariance is maintained. It should be possible to derive quasinormal
modes with our modified spacetime directly from the modified Hamiltonian constraint

by determining the correct gauge condition. Deriving this procedure is the first stage of
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our work. I will apply this procedure to my calculations of quasinormal modes.

My goal is to adapt this novel derivation method for quasinormal mode equations
from Hugo Roussille’s Dissertation, making it applicable to a wide variety of modified
spacetimes. I will then calculate gravitational wave quasinormal mode signals detectable
by next generation detectors, as predicted by each of the spacetimes discussed in this
section. We expect that these predicted gravitational wave signals will be visible to the
next generation of detectors, such as LISA, and therefore testable on that timescale.
These measurements could either rule out or support certain modifications, limiting

possible theories of quantum gravity.

5.2.6 Quantum Switch

There is a promising line of enquiry calculating Quantum switch predictions in the
context of our (and related) black hole mass superpositions. If the quantum switch
experiment in [81,82] were conducted outside one such black hole superposition, how
would the uncertainty within our quantum-corrected metric components impact the
quantum switch experimental output? We would go about defining the measurement
events in terms of proper time, which will have some uncertainty inherited from the metric
components. Measurements would have to be made far enough apart in space and time for
the quantum switch order to be distinct, despite the uncertainties in radial position and
time. Increasing these distances should, in principal, improve the result of the quantum
switch measurement, as long as the necessary mass entanglement is preserved over the
course of the event separation, throughout the necessary time and over the necessary
distances. Said quantum switch experiment would need to be conducted repeatedly to
generate statistics on the results and associate any variation in output with the mass

(and therefore metric) uncertainty from the space-time quantum corrections. [81, 82]
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Chapter 6
Contributions to Teaching,
Service, and Advocacy

The work in this section is neither required, nor universally valued, but I believe it is
just as important as my quantum gravity research. I hope that, one day soon, sections
like this will be standard components of dissertations. I am passionate about generating
new knowledge through research, and I share my passion through teaching, mentorship,
and outreach. Throughout this work, I smooth the way for those who come after me by
advocating for equitable systemic change and furthering an inclusive cultural shift. This
chapter contains materials and resources I have written for students, instructors, and
mentors. These documents cover advice and activities for teaching, research, outreach,

mentorship, and allyship. If you make use of them, I would love to hear about it.

6.1 Teaching and Education Research

I have actively developed my teaching skills, including taking a Physics Pedagogy course,
attending physics education research talks, and serving as a TA for six years. I have
implemented these skills by contributing to the curricula, course designs, and overall

culture of the department. I have even conducted a physics education research study.

6.1.1 Teaching Philosophy

My teaching philosophy centers on promoting growth mindset, scientific identity, and
belonging. I teach physics as a skill learned through effort, rather than as an innate ability.
I foster adaptable problem solving skills and expert-type thought patterns, emphasizing

curiosity, creativity, and collaboration. I am always learning and adapting, in order to
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utilize the latest evidence-based pedagogy. You can read my full statement of teaching

philosophy in Appendix A.

6.1.2 Building Inclusive Communities: Presentation and Physics

Education Research Study

I created a Building Inclusive Communities presentation to uplift all students, particularly
underrepresented groups, by providing tools to build inclusive communities. I set an
open and inclusive tone by addressing the existence of systemic bias, its manifestations as
microaggressions, and healthy ways to respond. I have presented for my students over the
last five years, with unanimously positive feedback on my anonymous surveys. I am in the
process of formalizing this effect by measuring the impact of this intervention on students’
sense of belonging, scientific identity, and class performance. Several colleagues at various
universities have already adopted and adapted this presentation, and I am working to
increase its use and impact to uplift more students. I am currently collaborating with
Eric Hudson to study the impact on students’ sense of belonging, STEM identity, and
overall course performance. You can access this presentation and slides introducing the

study in Appendix B.

6.1.3 Adaptable Activities/Worksheets

I designed several adaptable class activities. The first teaches students how to write
their own practice questions, which has been shown to be one of the most effective
study methods. The second is a worksheet designed to train students in an expert-type
problem-solving process. Both of these activities are highly adaptable and available in

Appendix C.

6.1.4 "Hidden Curriculum" Course Design

I created a syllabus draft for an extended grad student orientation/survival guide. It is
crucial that institutions provide instruction on the "hidden curriculum" of navigating aca-
demic bureaucracies, connecting with support systems, and generally setting themselves
up for success. This was intended as a redesign of the first-year grad "seminar course,"
known as PHYS590 at Penn State, but it can easily be implemented as an orientation
course at any institution, even adapted for other departments and fields of study. The

curriculum I designed is available in Appendix C.
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6.2 QOutreach and Science Communication

I believe outreach is both a serious responsibility and a great joy. I have organized,
designed, and led countless workshops and demos for events such as AstroFest, Envision,
Haunted University, Young Women in STEM, ArtsFest Kids’ Day, local schools, etc.
Promoting science literacy is crucial for building public trust, promoting science funding,
and improving science policy. I have engaged in continuous science communication work,
presenting for organizations and events such as Astronomy on Tap, the Osher Lifelong
Learning Institute, the Central Pennsylvania Observers, Astro Night, Nerd Nite, etc. I
even visit my high school, Chico Senior High, on occasion to present for the Science Club
which I founded there.

[ am including a list of opportunities I found for presenting outreach. I hope this list
makes it easier for future students and educators to engage in outreach surrounding Penn
State and inspire others to connect with their communities elsewhere. I really enjoyed
sharing my work and/or fun science topics at Nerd Nite, Astronomy on Tap, the Osher
Lifelong Learning Institute, the Central Pennsylvania Observers, and high school science
clubs. Good places to propose outreach are local schools, museums, libraries, community
centers, and relevant organizations for the topic you want to share. I encourage everyone
to contribute to, or create, science demos for students at various levels, particularly
underrepresented students and underserved communities. Some examples from my
outreach at Penn State are Young Women in STEM, ENVISION, the Special Olympics,
and PAW Pals. There are also often annual community events to get involved in. Some
examples from what I have done are AstroFest, Astro Night, Haunted University, Science
U, and ArtsFest Kids’ Day.

I have made various worksheets, slides, opportunities, and advice documents available
in Appendix D, for others’ future use and adaptation. I encourage everyone to keep
intersectional representation in mind when creating or adapting such educational materials.

It is also important to make sure our outreach efforts reach underserved communities.

6.3 Allyship

As a queer, neurodiverse woman in physics, I have faced bias, harassment, and lack of
support at every stage of my education, and I am committed to improving accessibility
and inclusion for those who come after me. To enact change, I engage with the system

at all levels, joining professional development programs, serving on committees, founding
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organizations, and supporting my peers in various capacities. Throughout this work, I
place an emphasis on community-building and adaptable support structures.

I am always working to improve my allyship with other underrepresented groups
through professional development and service, such as joining the Rainbow Science
Network and serving as a Gender Equity Center Ambassador. I have posted countless
informational brochures and fliers around the department, especially the grad/undergrad
lounges and study rooms. These contain crucial information about university resources,
community support systems, professional development, and opportunities to get more
involved. I created and improved community spaces like the grad lounge to make them
more welcoming and inclusive, strengthening community and connection, particularly
among students.

Resources I collected for underrepresented groups and allies can be found in Appendix
F. My primary advice for allyship is to learn about the experiences of underrepresented
groups you are unfamiliar with by seeking out resources created by members of those
groups. Use any privileges and platforms you have to make space for marginalized voices,
from large-scale public forums to small-scale group conversations. Empower them and
follow their lead.

6.4 Leadership and Service

I work on various committees and initiatives at the departmental, university, national,

and international levels, emphasizing equity and inclusion in my service and advocacy.

6.4.1 Committee Work

I have been a member of the Eberly College of Science Climate Committee Grad Student
Subcommittee, the Physics Climate, Inclusion, and Diversity Committee, the American
Institute of Physics TEAM-UP program, and the American Physical Society IDEA Team.
Together, we have replaced an installation of Nobel prize posters, representing a biased
and exclusionary history of physics, with colorful art and informational posters celebrating
women and underrepresented groups in science history. We organized a successful APS site
visit to the physics department, which produced a wealth of actionable items to improve
our department and strengthen our community. We enabled town halls, created weekly
Community Lunches, and are continuing to find ways to improve communication within

the department, such as committee reports at these lunches. We created a Community
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tab on the department website and filled it with resources for underrepresented students,
including an optionally anonymous online dropbox for sharing feedback and concerns. I
also coauthored guidelines to make colloquiums throughout the university more inclusive.

These guidelines can be found in Appendix E.

6.4.2 Student Organization Leadership

I emphasize community building and mutual support through my work as President
of PSU Physics and Astronomy for Women+-, my membership in Graduate Women in
Science, and my participation in a variety of professional organizations.

In my five years as PSU Physics and Astronomy for Women+ President, we have more
than doubled the size of the leadership team and increased undergraduate participation.
I implemented evidence-based shared leadership practices to empower each member with
more agency to benefit the community. I earned an APS Women in Physics Group
Grant and used it to launch an ongoing poster series, which celebrates underrepresented
scientists throughout history. These posters, and the means to make more, are available
on the PAW+ website.

Our leadership team continues to thrive, despite the pandemic. We hosted the
2023 APS Conference for Undergraduate Women+ in Physics, with such success that
we were asked to share our efforts with hosts for the following year. We re-launched
a peer mentorship program, expanding it to all physics grad students. We are also
supporting the Society of Physics Students in structuring their own mentorship program
for undergraduates. We collaborated with the Physics Grad Student Association to
establish regular Town Halls and elect representatives to share our suggestions with the
department, greatly improving communication, student involvement, and the potential
for improvements to the graduate program. We also expanded our outreach efforts,
creating PAW Pals to regularly bring volunteers to present science demos for local
elementary school students, and we are creating a database of demos to reach a wider
and less-privileged audience online.

I have researched, written, and edited many PAW+ posters celebrating women and
minorities in science, now displayed around the department and other universities. I
have designed many inclusive and uplifting physics-themed stickers for PAW+, which
will continue to be printed and distributed for years to come, including at outreach and
recruiting events, such as conferences. I also sourced, printed, and posted countless
mini-posters of underrepresented physicists and astronomers around the physics and

astronomy department bulletin boards. These collections are available through PAW+.

103



6.4.3 Founding an International Organization

[ am Co-Founder of Women+ International in Theoretical Physics, an online community
for networking and mutual support among women and gender minorities in theoretical
physics. Please share and join either the group or our upcoming networking list of allies!

https:/ /sites.google.com /view /withphys/home

6.4.4 Proposals

I have written and coauthored numerous proposals to improve our program, most notably,
a proposal for an Equity, Diversity, and Inclusion Assistantship. This would be a
funded TA position for at least two grad students to implement initiatives to improve
the department climate, serve as a liaison between grad/undergrad students and the
department, and be a friendly point of contact to connect students with vital resources.
My proposals for these EDI Assistantships, a grad student retreat, and improvements to

the grad lounge are included in Appendix E.

6.5 Mentorship

I believe each of us have a responsibility, at whatever level we are able, to give those who
come after us the benefit of our experience. I approach this through personal mentorship,
sharing resources, creating resources, and advocating for positive change. I consider
myself a mentor and advocate in all my professional roles, supporting my students,
undergraduate Learning Assistants, friends, collaborators, and formal mentees alike. I
take pride in facilitating others” mentorship work as well.

My mentorship extends to all my students, providing resources and advice on study
strategies, allyship, research, and grad applications, earning me TA of the Year. I have
drafted many documents of advice and resources for mentors, mentees, students, and
educators, shared on the PAW+ resources website, enabling me to reach more people
and provide lasting support. I mentor students, helping them connect with university
resources, empowering them to seek accommodations, and encouraging them to seize
professional development opportunities.

I mentor undergraduate researchers, helping my students connect with research
opportunities or publishing papers with them myself. I mentor student leaders, recruiting
more student engagement and building a lasting structure within groups like PAW+,

to continue our work after I leave. I mentor friends and peers, helping them navigate
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the hidden curriculum of academic bureaucracies and persevere through personal and
professional challenges. This is exhausting work, but very rewarding, and the more
people step up, the more distributed this emotional and intellectual labor will be.

I donate my time and share my experiences through mentorship, creating lasting
resources, and by presenting and serving on panels, both at conferences and within the
department. I organized and presented a physics colloquium and panel discussion about
the experiences of underrepresented students, sharing my presentation about building
inclusive communities. I also served on countless panels for advising undergrads, incoming
grad students, and young women in STEM.

My advice and resources for mentors, mentees, and students are available in Appendix
F. You can also find the structure and resources for the PAW+ peer mentorship program

on our website.

6.6 Feedback

We each have the power to shape our communities, so it is important to use our voices,
share our insights, and collectively envision the future we want to create. I have been
providing continuous feedback to the department and university throughout my PhD,
advocating for policy changes to uplift our community and set a positive example for
other institutions. My current list of feedback is available in Appendix G, for use by

Penn State, future advocates, and other institutions.
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Appendix A
Statement of Teaching Philoso-

phy

I love sharing my passion through teaching. As a mentor and role model, I set a re-
spectful and inclusive tone, designing the classroom and curriculum to encourage active
engagement and collaboration. My goal as an educator is to foster critical thinking skills
and growth mindset. I teach physics, not as a collection of facts, but as a process and
a set of tools with which to explore. I use well-tested, innovative strategies, such as
Active Learning, which been shown to benefit all students, with additional benefits for
underrepresented groups (Freeman 2014). My teaching strategy is adaptive, as I continu-
ously incorporate new advances in the field, and respond to feedback from students and
colleagues. I am particularly eager to implement SCALE-UP practices and an Integrated

Peer Leadership Program, as presented at APS April Meeting.

For course planning, I use Backward Design as described in "Understanding by De-
sign" by Wiggins and McTighe: Starting from students’ background, I create learning
objectives for concepts and skills I want them to gain. I then plan how to assess that
progress and design learning activities around each assessment. I gauge the starting
context, while simultaneously demonstrating to the students that they are valued and
respected, by creating a survey of background material as well as students’ goals and
interests, asking them to articulate what they want to get out of the class. These
responses are taken into account when constructing learning objectives for both subject

knowledge and general skills.

I value clear goals and expectations, publishing learning objectives, course timeline,

code of conduct, and resources like accommodations in the syllabus. I emphasize mutual
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respect and inclusion by modeling allyship strategies such as Amplification, and I find
that being vulnerable about my own struggles creates space for students to ask for the
support they need. I want my classes to be empowering experiences each student carries
forward to uplift their future communities. I promote Growth Mindset (recognizing
that physics is a skill acquired through perseverance, as opposed to an innate ability
with a limit) by embracing mistakes as part of the learning process. Through positive
reinforcement focused on effort, creativity, and follow through, I change how students
define success. This allows me to train them in expert-type thinking by empowering
them to interrogate their own understanding, identify misconceptions, and follow up with

questions.

Assessing student progress towards objectives is essential for assessing the success of
my teaching. For formative assessments, students collaborate on i-clicker questions,
worksheets, homework, and lab activities. For summative assessments, students solve
short-answer and multiple choice questions in small Objective Checks throughout the
semester. These assessments are presented as learning opportunities for students to gauge
their mastery of a topic, and they are offered continuously throughout the semester.
Rather than moving on from material that has not been mastered after a traditional
exam, students can do additional tutorials on a topic to access another objective check
until they have understood the material. It is wonderful to see things “click” for different
students at various points in the semester and watch them reach similar mastery by the

end.

Readings are assigned to prepare students for group worksheets and labs, accompa-
nied by small pre-class assignments, which the students share with each other at the
beginning of class and submit a group copy for feedback. When readings are assigned
digitally, participation can be tracked automatically. Homework assignments with imme-
diate feedback systems, such as Mastering Physics, are useful for practice, self-assessment,
and monitoring participation outside of class. Participation is also tracked by routinely
spot-checking notebooks and grading how well the work is communicated. Pre-class
assignments are graded primarily on completeness, to incentivize making an attempt,
while in-class assignments are graded primarily on correctness, to incentivize students
supporting each other and doing their best work. In class, students complete hands-
on, collaborative activities, consulting with the teaching team. Labs have scaffolding

questions, but are largely open-ended and exploratory. Worksheets are derivations and
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calculations, broken into questions designed to prompt metacognition. For example,
students are encouraged to look for multiple routes to a solution and to ask, “What if

there were X change in the setup?”

I have developed an activity in which students choose a learning objective and fol-
low a flow-chart to construct their own practice assessment. Creating questions in this
way engages students in all levels of Bloom’s Taxonomy, and self-testing is the most
effective study strategy (What Works, What Doesn’t by Dunlosky). Ideally students will
incorporate this into their study habits. They each write a question before class, then
engage in small group discussion before building a question together. After implementing
feedback from TA’s and myself, they solve and provide feedback on another group’s
question. After revisions, all questions are posted for practice, and at least one question
will be included as an assessment. I have received remarkably positive feedback on these
activities in anonymous student surveys, and they are now being implemented by other

instructors as well.

The physical space can be used to optimize learning and encourage collaboration. Stu-
dents sit in discussion groups, with boardspaper to solve problems together. I avoid
having a focal pointfront of the room, since students seated in the back dramatically
underperform (Perkins & Wieman 2005). It is also beneficial to broaden the physical
boundaries of the classroom through office hours, scheduled study spaces for homework
collaboration, and extra review sessions. I engage students in research, teaching, and
community service. I connect students with labs for tours and research, encourage and
provide opportunities for volunteering/outreach, and prompt students to synthesize their
learning by teaching others. Students are encouraged to attend colloquia and can earn

extra credit for researching topics relevant to course material.

I look forward to learning from, and collaborating with, colleagues who share these
values, improving the classroom experience for all by focusing on the needs of underrep-
resented students. WPI has unique initiatives aligned with my work, such as Project

Based Learning, and I am eager to contribute to these programs.
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Appendix B
Physics Education Research Study:
Building Inclusive Communities

Abstract:

Collaborating with Eric Hudson and Jackson Henry, and I conducted an IRB-approved
physics education research study to measure the impact of my equity, diversity, and
inclusion presentation, administered at the beginning of the semester in an intro physics

course, on students’ sense of belonging, STEM identity, and overall performance.

B.1 Introduction

As members of a society, we have all been conditioned to have a variety of conscious and
unconscious biases, which manifest as systemic obstacles, harassment, and microaggres-
sions. In order to build an inclusive and supportive community, which facilitates the best
learning environment for all students, we must acknowledge the presence of these biases,
learn how to identify their manifestations, and provide our students with constructive
ways to engage with these issues. Having created a presentation on these topics for
my courses over the last several years, which has been consistently well-received. We
have now conducted a physics education research study to quantify the impact such
an intervention can have on students’ sense of belonging, scientific identity, and class

performance.

B.2 Motivation

As a neurodiverse woman in physics, facing microaggressions, imposter syndrome, stereo-

type threat, and harassment throughout my educational career, I wanted to create safer
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environments for my students and provide context for their experiences. I sought to
establish the institutional acknowledgement, baseline awareness, and healthy dialogue
about systemic bias, and access to wellness resources, that I lacked as a student.

My presentation covers the existence of systemic bias in society, implicit bias in
ourselves, and common manifestations as microaggressions. Next, we discuss how we can
respond, support victims, and care for ourselves. Then, we go over how to be allies, be
called out, and educate ourselves.

I created this presentation for my classes, to facilitate building inclusive communities.
I workshopped it over the last five years in the intro Mechanics and E&M courses for
physics majors. Now 50% of current undergrad physics majors have experienced it,
and I believe this has contributed to a meaningful cultural shift. I designed it to be
easily adaptable to any class, field, or workplace, so feel free to adopt or adapt. After
overwhelmingly positive feedback, I conducted this Physics Education Research Study to

measure the impact on students’ sense of belonging, identity, and course performance.

B.3 Experimental Design and Implementation

Our goal is to measure the impact of this intervention on students’ sense of belonging,
STEM identity, and grades, via anonymized surveys. We collected data for the Newtonian
Mechanics course for non physics majors, for larger sample. In the first lab/recitation
sections, half received this intervention and half had a placebo activity (a peer discussion
of Chegg and Al ethics, with no participation from the TA). These discussions were
administered by volunteer TA’s from other courses (two for each type of presentation).
Surveys administered before, after, and at the end of the semester.

We chose the PHYS 211 intro physics course on classical mechanics because we wanted
an intro course to shape students’ first experience of the department. We also wanted a
large course (1,000 students) to have statistically significant results, particularly being
able to do a demographics analysis without identifiable data.

Using before/after surveys, we have students self-report their sense of identity and
belonging. Survey responses were associated with student ID’s and matched with final
grades, for those who consented to grade collection. A third party combined the data
and removed the ID’s and any other identifying information before sharing the statistical

results included here.
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B.4 Results and Analysis

We are currently processing the data. We documented a strong positive responses in-
person: Students thanking the TA’s and expressing appreciation for the presentation
topics, particularly underrepresented students. Students followed up for community,
advice, and accommodations.

We ran a two sample independent T tests used to determine statistical significance in
changes before and after the presentation. Many survey questions were inconclusive but
very significant effect for some measures. Making plots of changes in question responses,
the effect was varied, but the most statistically significant results are in support of the
intervention’s effectiveness. Data still being analyzed, but we have included a special
preview of some of the results.

End of semester effect analysis is limited by lower participation in the final survey, but
we have plans for addressing this in further studies. Analysis of changes from before to
after the initial intervention have trends of varying statistical significance. The strongest
change noted so far is included below as an example.

This is a bar graph showing the responses to whether students identify as a Physics
Person, and how the number of positive and negative responses changed between the first
and second survey. P value: 0.017 << 0.05 Mean test difference: 0.166 Mean control
difference: 0.0348 While not all survey questions had statistically significant changes,
this P value is well below the 0.05 threshold for statistical significance. The figure shows

a clear positive trend in the test case receiving my presentation.

B.5 Conclusions

This intervention has received unanimously positive feedback during development, and
this study begins to quantify the impact on students identity and experience of the
course.

Many colleagues at Penn State, and at other universities, have used or adapted this
intervention in their own classes. The content is designed to be generally applicable, so
that only the local resources for support and community building need be updated for
use elsewhere. We hope that the results of this study will encourage others to adopt this,
or similar interventions, and help shape academic culture and communities in a more
inclusive and uplifting direction.

For future studies, we would like to repeat this experiment with other classes including
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Figure B.1. Bar graph showing responses to whether students identify as a Physics Person,
and how the number of positive and negative responses changed between the first and second
survey, before and after the interventions. The blue columns to the left of each pair represent
the responses of the test group before the presentation, with the smaller orange bar showing the
change in number of responses after the presentation. The green columns to the right of each
pair represent the responses of the control group, and the smaller red bars show the change in
responses after the placebo discussion.

the intro courses for physics majors (hypothesizing stronger results in a course with a
pedagogical structure aligned with the values of the presentation), other departments
(to demonstrate a transferable effect), grad students (to see how past experience in a
variety of physics department cultures changes the effectiveness), and other institutions
(any statistically stronger or weaker affect could point us in the direction of policies
or practices to adopt or avoid, to best support the values of the presentation in our
community). We are also interested in creating a related intervention focused entirely
on mental health and accommodations, as that portion prompted the most students to
reach out for support. Finally, we would like to do a longer study to measure long-term

impacts over four years or beyond.
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Our takeaway is that making space in science classes for dialogue about systemic
bias, and providing relevant resources, has a positive impact on students’ sense of physics
identity— potentially belonging and course performance as well. This effect may be
stronger for underrepresented groups! This type of intervention is worth implementing

widely and studying further.
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Thank you to Dan Costantino for allowing us to conduct this study on his class. Thank
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developed it, and offered such thoughtful and supportive comments.
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Appendix C
Course Design and
Adaptable Activities

This Appendix contains some of my most useful and adaptable course and activity
designs. First, an outline for an extended orientation, teaching students about the
'hidden curriculum." Second, an activity designed to teach students a useful study
strategy: writing their own practice questions. Third, an example of a worksheet
structured to teach matery-level problem solving procedures. Fourth, pre-class and

in-class activities to accompany my Building Inclusive Communities presentation.

C.1 "Hidden Curriculum'" Extended Orientation Course

Design

C.1.0.1 Redesigning grad first year seminar

This originated as my Department Feedback on PSU PHYS 590, but I now see it as
a general guide for an intro/orientation course for any program, particularly graduate
programs, though it could easily be adapted for undergrads. This course is a valuable
way to get important information to the first-years all together, and the scope should

include an extended orientation: “Student Survival Skills” or “The Hidden Curriculum.”

 Start with a presentation/discussion about creating an inclusive community, like the
one I created in APPENDIX. This will set the tone and expectations for conduct

and community in the department.

o Make sure students understand the flexibility in course scheduling: taking undergrad

courses, testing out of classes, signing up for research credits while focusing on
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coursework, medical leave, etc. Assign creating a tentative schedule for their course
credits over a few years, in consultation with their faculty mentors. This will also

help establish who is getting a successful start in their mentorship relationship.

Highlight the importance of community-building and have a day where you invite
representatives from a variety of student groups, especially on a departmental level
and university groups supporting underrepresented students, to talk about their
events, both to support students and to offer edification for allies. GPSA, Coalition
of Graduate Employees, and Coalition for a Just University should be included in

this as well.

Incorporate lessons on growth mindset and study strategies, similar to the freshman
FYS. (This could be covered in the Pedagogy course instead, as long as it’s towards

the beginning of the program, to shape the formation of their study habits.)

Have guests from CAPS and the Accommodations Office present about mental
health and accessibility. Perhaps have students volunteer to share their experiences

to have a peer reinforce these messages.

Have someone from the Title IX office and related campus organizations talk about

best-practices for community growth as well as reporting.

Have students do small activities/discussions in a variety of groups during class
to get to know their cohort, facilitate the formation of study groups through
schedule surveys, the grad student discord channel, and other platforms, and
encourage students to share other interests with the class to build community
(groups interested in Dungeons and Dragons, hiking, cooking, etc). Emphasize the

importance of work-life balance.

Outline the bureaucracy of the department/university so students understand how
to navigate it: funding, reporting, feedback, and participation. Highlight the

optionally anonymous department and college drop-boxes.

Assign students to investigate/try a few various campus resources like libraries, the
writing center, etc. and share what they find with the class, to make sure everyone

is aware of what is available for support.

Have the Ombuds present about healthy relationships, warning signs, and conflict

resolution strategies, as well as explain their role as confidants and mediators.
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(Note, the Ombuds program needs to be improved; students are generally not
satisfied with the results when they ask for help, and are sometimes traumatized by
breaches of trust.) Highlight that ombuds in other departments are also available,

and students are encouraged to talk with whomever they choose.

Have a day where representatives from all committees open to grad students share
a brief description of their purpose and work, recruiting present or future grad
student participation. Have students sit-in on a committee meeting of their choice

and write a paragraph proposing an initiative for the committee.

Have student and PI representatives from research groups taking new students
present, not just about their work, but about the group (community, expectations,
opportunities, and general experience). Highlight resources for connecting with
research groups, like the newly organized department website and pages like the

Rainbow Science initiative.

Discuss how to approach potential advisors, assign practice emails, offer mock-
interviews, etc. to build confidence and guide students through the process of
finding an advisor. (Some of this could be optional, since some people will already
have these skills.)

Assign a short report in which students identify research groups they are interested
in joining. Offer to make introductions, if students are hesitant to reach out
themselves. You could even invite some PI’s to class, put the students in groups,

and run little "speed-dating" interviews so the class can meet the potential advisors.

Offer strategies for productive research meetings (take notes, prepare questions
beforehand, ask at least one question and push forward with follow-up questions,
assert your ignorance rather than trying to seem like you understand something
that you do not, send a recap email summarizing the discussion and action items for
both parties, etc.). Outline the expectations for treatment, like not being routinely
stood-up for meetings and having support for professional development like grant
applications and conferences. Spell-out that it is normal and ok to change advisors
and that they should never feel stuck on a research path; consider bringing in a

student to share their experience changing projects, to make the message tangible.

Discuss the ideals and expectations of advising and mentoring experiences. Have

students share some advice they found valuable from a mentorship experience, to
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learn from each other. Check-in that mentors are in productive contact with the

students.

Encouraging colloquium attendance is good, especially now that the quality and
diversity of invited speakers has gone up, but it does not need to be weekly and
could be broadened to include seminars: Attend X colloquiums/seminars of your
choice and write about them, perhaps for a variety of audiences. You could specify

a few that everyone should attend, like the climate colloquia.

Practicing presentation skills is also important: Give one presentation at the end
of the semester (perhaps one in the middle too, so there is time and opportunity
for implementing feedback) on a physics topic of your choice, like a colloquium or

prospective research project.

These assignments can also be used to practice strategies for reading/skimming and
interpreting physics publications (reference a paper and at least one of the papers

it cites, summarize the main arguments, recreate a calculation from a paper, etc.)

Require them to submit some anonymous feedback on their first-year experience
at the end of the class, for participation points. Remind students about the

drop-boxes.

Foster physics identity throughout. Maybe have them write about some future

plans in consultation with their mentor?

Consider requiring students to attend at least one discussion event hosted by PAW+

or a related group and report on it in class discussion.

Have supplemental workshops focused on the needs of different groups, like inter-
national students, students with disability, neurodiverse students, first-generation
students, etc. There could be professional development workshops too, like a journal
club, critical reading, scientific writing, outreach, etc. Require students to attend

at least X number of these workshops, whichever are most relevant to them.

C.2 Adaptable Activities/Worksheets

I will be using versions of these activities regularly in all my courses, and they can be

easily adapted for others” use as well. I designed them to train students in evidence-based

study strategies and expert-type problem solving processes.
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C.2.1 Writing Practice Questions

Studies show that writing and solving practice problems is one of the most effective ways
to study physics. I made a flowchart to assist students in this process. Then I built a
class activity around it to introduce the students to the process. I usually incentivise this
activity by including at least one of the student problems in an upcoming assessment. I
usually introduce this activity before the first assessment of the semester and repeat it
before each, to keep build students’ skills, keep them engaged, and keep this resource in

the forefront of their minds as they study.

C.2.1.1 Pre-Class Question Writing Activity

Physicist (Your) Name:
Group Number:
Question Writing PLA

1. Read and Review the Learning Objectives for the recent class material.

2. Choose a learning objective from the recent class material relevant for the next
exam and use the flow-chart to construct a question for the next exam. You will
use this question for group discussion/feedback and to create a new question as a

group, which will be reviewed in class.

3. When you come to class, work with your groups of three. Rotate questions among
your group, and write feedback for at least one other group member. Staple the
feedback that you receive to your question, with any adjustments that you make to

your question.

4. You can earn extra credit by deconstructing a question from a past assessment
(re-create the flow-chart that was used to generate the question) and handing it in

at the beginning of class.

Choose a learning objective from the recent class material and use the flow-chart to
construct a practice question assessing that learning objective.
Chosen Objective:
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Flow Chart :

Practice Writing Your Own
Exam Questions

Choose topic or concept
from Learning Objectives

J

What knowledge and skills
are you testing ?

|

Choose Question Type

\wtion )

( conceptual

( short)

Multiple choice

What will the decoy
answers be ?
Why ?

/

\

How involved ?

unit
error ?

algebra
error ?

physics
misconception ?

Some or all of
the above ?

C.2.1.2 In-Class Question Writing Activity

Physicist (Your) Names:

Group Number:
Question Writing LA
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Show calculation
and explanation .

What will the solution
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Figure C.1. Flowchart for constructing practice questions



1) Write Question:
Working from the PLA questions and the i-clicker questions from recent lectures, create
a finalized question that you want to propose for the next exam. Use the flow-chart as an
outline, then write your finalized question on a separate page. Write your solution/rubric

on another separate page.

2) Self-Check:
Make sure you have a clearly drawn and labeled diagram illustrating your question, with
a defined coordinate system. If any values are needed for the problem, define them (as
variables and/or numbers). Could your setup be confused with anything else? Eliminate

ambiguities.

3) TA Check:

Have two TA/LA’s review your question and solution/rubric in detail.

LA initials 1:
LA initials 2:

4) Trade:

Trade questions with another group.

5) Test:
Solve their question individually and record how long it took you. (You are not graded
on the time, we just want to be sure it is a reasonable length for the exam. If we don’t
catch it now, exam questions could take too long.) Average these times and record them

in your feedback.

6) Feedback:
Discuss the question with your group and write feedback. Reconstruct their flow chart
and add any constructive comments that you have. Return their question with your
feedback attached, including the average time it took the members of your group to solve

the problem.
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C.2.2 Problem Solving Procedure Training Activity

I introduce background information on slides, with lots of class discussion questions
throughout, to build-up to a multi-stage problem. Then, I distribute this worksheet for
the students to start in groups of three. Whatever doesn’t get done in class becomes
homework, still to be done in groups. Most of the questions are general prompts for

approaching a physics problem, with a few topic-specific questions sprinkled in.

C.2.2.1 In-Class Worksheet

Exoplanets are winking at us!

Physicist (your) name:

Names of collaborators (inside and outside of class):

Useful concepts from class:
What is the gravitational force between masses M and m, separated by r?
What is Newton’s 2nd Law?
What net force and acceleration cause circular motion?
How is centripetal acceleration related to tangential velocity?

How is period related to tangential velocity?

Group Problem Solving: For a planet of mass m, in a circular orbit around a star of

mass M, you measure an orbital period T. What is the radius of the orbit?

What are you trying to find? What information is given? Draw /label a diagram.

What physics is relevant here? (Laws, geometry, types of motion, etc.) What physical

relationships exist between the given values and the value you want to find?

How do these relationships connect? Use them to derive the relationship between the
orbital radius and the given variables. Write out your steps and reasoning. (This is good
practice for communicating your thoughts, will help you catch mistakes, and will make it

easier to correct errors).
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Reality check your result and explain: (ex: Are the units and limits reasonable?)

What do you notice about the relationship between the period T and the planet’s

mass m, in this calculation?

Discuss your work with classmates/instructors. What thoughts/comments stood out

to you? What have you learned?

Useful concepts from class, for reference and study:

What is the gravitational force between masses M and m, separated by r?

F=GMm/r?
What is Newton’s 2nd Law?
F =ma

What net force and acceleration cause circular motion?
Centripetal force and centripetal acceleration (radially inward)
How is centripetal acceleration related to tangential velocity?
a=V?/r

How is period related to tangential velocity?

V =2xpixr/T

C.3 Building Inclusive Communities Activity

I created a presentation on Building an Inclusive Community for the class that I TA,
and I'd love to see similar presentations done in intro courses of every university and
every subject. It’s a great way to set the tone and give students tools for constructive
dialogue and allyship as they join the university community. Informally, I have collected
very positive (anonymous) feedback from students, and I am planning a pedagogy study
to officially measure and publish the impact of this intervention.
Presentation for my class: https://docs.google.com/presentation/d/1LOCLXmSfwBe PvuFeqzMT
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Pre-class activity: Choose an underrepresented group you are not a part of. Find
at least two sources by people in that community discussing their experiences with
bias/prejudice (articles, blogs, videos, podcasts, etc.), and reflect on any privileges you
may have (financial stability, parents experienced with higher education, cicgender, etc.)

This can also be assigned as a follow-up to the presentation with a brief discussion the
next day to share what people learned, perhaps with a shared document where students
can access the sources that their classmates found.

When in-person, the discussion slide can also include an activity in which each
participant writes anonymously about a time they witnessed bias, on a provided note
card, which is then shuffled, and redistributed. This way everyone starts with an
anonymous experience of a classmate to share with their group and start discussion.
(Once the ice is broken with the anonymous experiences, students are encouraged to
share their own.)

I also adapted this presentation for a PSU Physics Colloquium, preceding a panel dis-
cussion on the experiences of underrepresented students: https://science.psu.edu/physics/equity-

and-inclusion/dialogues-and-media
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Appendix D
Outreach Activities, Slides,
and Advice

Here is my advice, resources, and examples for the outreach activities I have curated
over the years. I focus on intersectional representation when talking about scientists, and
I design activities to build kids’ growth mindset and scientific identity. Feel free to adapt

these activities yourselves and reach out for slides I could not include in this format.

D.1 Advice for Designing Outreach

Curriculum design:

1-3 General physics concepts (color mixing, magnetism, center of mass/balance, etc.)
Hands-on demos of these concepts (the physics department has class demos you can check
out) Craft activity that generates something they can take home (like a constellation
tube or paper orbit demo, etc.)

Real astrophysics research that the students can do (identify exoplanets from light
curves, or citizen science projects like classifying galaxies, etc.) Feature a female or
nonbinary physicist, preferably from an additionally underrepresented group, who is
leading research in that area (include a photo and use empowering language, like refer-

ring to said researcher as a “leader” and using their titles, such as “Doctor” or “Professor”)

Presentations:
Whenever using photos in a presentation, make sure that the people featured represent a
lot of different demographics.
Ask lots of simple questions for the students to answer to keep them engaged. Dedicate

a lot of time to their exploration and discussion of demos.
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Have all presenters/volunteers introduce themselves at the beginning as physicists/as-
tronomers and say a little about their research. Invite questions about their work at the

end of the presentation.

Demo stations:
Modify the content of the presentation to fit a short activity
Focus on hands-on demos and craft activities and have something they create that they
can take home and use to teach others

Print a few visual aids

General tips:
Always refer to the participants as scientists, encourage them to make predictions and
test their hypothesis, then say things like “Now you are a physicist!”
Compliment students on their questions and problem-solving processes (don’t just call
them smart, be specific and complement their effort and thought process).
Emphasize that engaging in the science is a success, regardless of whether they made the

correct prediction, because we all learned something in the end.

D.2 Edible Science Activities

Food always gets people interested and is a great way to engage young kids in science.

Here are a few examples of activities I have refined over the years.

D.2.1 Cake Core Sampling

This can be accompanied by a presentation, or simply a few visual aids, about geology
and the many contexts in which cores samples are used (the moon/asteroids/mars for
astronomy, coral reefs for marine biology, salt marshes for ecology, glaciers for climate
science, etc.). Try to use photos of diverse scientists engaged in taking cores samples.

Bake cupcakes (with opaque wrappers) which have uneven layers of different types
of cake, bits, and fillings. Have participants use straws to take core samples and sketch
what they think the interior looks like, before testing their hypothesis by slicing and
eating it.

Discuss the different strategies: What if you take all your samples along one line? Is

it more useful to take a lot of samples in one area, or spread them out? How could you
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get more information with fewer samples?
You can use a frosted confetti sheet cake for a group collaboration, having each

participant contribute a data point to a larger effort to map the interior.

D.2.2 Cookie Phases of the Moon

Using "oreo" cookies, have participants open them up and scrape the frosting into a phase
of the moon: waxing/waning, crescent/gibbous, full/new, first/third quarter.

Have a movable model solar system handy, to illustrate how the position of the sun
and moon create the phases. You can discuss the offset of the moon’s orbit/Earth’s
rotational axis from the plane of the solar system/ecliptic to explain the "tilt" of the
moon.

Ask questions to lead people to the realization that the right hand side is illuminated
when the moon is waxing, and the left hand side is illuminated when the moon is waning.
Challenge them to notice and name the phase of the moon when they are out at night.

This is also a good lead into discussion of equinoxes and eclipses!

D.2.3 Frosting the Sun

Frosting cookies to look like suns is a great open-ended opportunity to discuss solar
features. Mixing colors, crating textures, and adding various sprinkles can be associated
with sunspots, flares, prominences, granulation, etc. Color can be used to discuss the
type, age, and temperature of stars. More advanced discussion can include the coiling of
the sun’s magnetic field from differential roation rates, and how that creates the eleven

year sunspot cycle.

D.3 Science Crafting Activities

I try to include craft activities in my outreach, particularly for young audiences, because
it is engaging, gives them a sense of accomplishment, and continues the educational
experience beyond the lesson. When children create their own demonstration apparatus
or artwork and take it home, they are more likely to share it with siblings, parents,

friends, and teachers. This reinforces and spreads the learning experience.
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D.3.1 Glittering Galaxies Activity

These are talking points for a science craft activity, in which attendees use glitter,
glue, and stickers to draw their own galaxy on black construction paper. The different
colors and sizes of stars, structure of spiral arms, density of objects, etc. create many
opportunities to interpret their creations with a scientific lens. For example: Are there
more red stars? Then it’s an old galaxy without a lot of new, blue stars!

Glittering Galaxies:
Galaxies are collections of billions of stars orbiting around a central, super-massive black

hole. Our galaxy, the Milky Way, is a spiral galaxy.

Spiral galaxy: Spiral galaxies are flat and can have different numbers of spiral arms,
which can be wound tightly or loosely. Some spiral galaxies have a round bulge of stars
in the center, and some may also have a bright bar of stars across the center. There tend

to be older stars in the central bulge and newer stars in the spiral arms.

How many spiral arms does your galaxy have? And how tightly wound is your spiral?
Is there a central bulge?

Is there a bar across the middle? Is the bar large or small?

Elliptical galaxy: Elliptical galaxies are not flat. Instead, they are large balls of stars,
which can be round like a soccer ball, or longer like a football. Elliptical galaxies tend to

be large and have more old, red stars and fewer young, blue stars.

Is your galaxy round or long?

Is it large or small?

Irregular galaxy: Irregular galaxies are strange shapes, often resulting from two

galaxies passing near or through each other, and sometimes merging.

Was your galaxy a spiral or elliptical that warped into a new shape?
Is your galaxy actually two galaxies that have run into each other and are combining
into one galaxy?
Are the two black holes near each other or far apart?

Does it have a lot of hot, blue stars or colder, red stars?
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D.3.2 Planet Planning Activity

These are talking points for a science craft activity in which attendees use watered-down
glue to layer colorful tissue paper over a small paper plate, adding geographic features
and pipecleaner rings. This is an open-ended opportunity to discuss the types of planets
(terrestrial or gaseous?), extreme environments (acid rain, frozen nitrogen, etc.), and

other engaging features of exoplanets and planets in our own solar system.
Planet Planning
Size: Is your planet large like Jupiter, small like Mercury, or in-between?
Temperature: Is your planet close to the sun and boiling hot, like Venus? Is it far
from the sun and freezing cold, like Mars? Or is it in the habitable zone, where liquid

water can exist, like Earth?

Type: Is your planet a gas giant, like Jupiter, Saturn, Uranus, and Neptune? Or

is it a small, terrestrial planet with a rocky surface, like Mercury, Venus, Earth, and Mars?

Atmosphere: Is there air for an atmosphere, and what is it like? Is there oxygen to

breathe, like on Earth? Or is there poisonous gas, like on Venus?

Water: Is there water on the surface? If so, is it frozen solid, flowing liquid, or clouds

of gas?

Life: Is there life on your planet? If so, what is it like? You can draw pictures!

D.4 Outreach Proposals

Here are a couple of example proposals from successful outreach activities and workshops
I have led.

D.4.1 Exoplanet Workshop

Girl Scout Workshop Proposal Spring 2019
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On Behalf of the Physics and Astronomy for Women at Penn State
By: Kallan Berglund, PAW Outreach Chair

Finding Planets Dancing with the Stars

This activity focuses on physics that is not visible to the human eye, not because it
is small, but because it is so far away from us. Exoplanets are so small in the sky that
they can barely be seen with the most powerful telescopes, so we need to be clever in
how we detect them. We will be teaching the students about how planets are detected
around other stars, when they are too small, dark, and far away to be observed directly.
This lesson incorporates the topic of center of mass through tangible, hands-on demos,
includes building a take-home demo, and culminates in applying the detection method

to simulated data to engage in the research themselves.

We will introduce ourselves as grad students and mention the topics of our own
research, as examples of the things they could do in the future. We will introduce the
concept of center of mass, with a moment of dance demonstration and a few hands-on
activities to get them engaged. We will encourage them to reflect on the demos with

questions about why and how things are balanced.

We will have a powerpoint for visual aids throughout the discussion, but the time
will be spent alternating between hands-on activities and discussion/reflection on the
activities. First we will have them hold hands and lean back, with their feet together, to
see how taller people can’t lean back as far relative to their shorter partners, because the
center of mass has to remain over their base of support between their feet. We will then
have them assemble miniature exoplanet orbit demos from paper to take home, placing

the point of rotation where the center of mass should be.

We will then discuss Doppler shift of light, using audio examples of passing carr sirens.
Next we will introduce the application of all this to how exoplanets are detected from
Doppler shift of the sun’s light as it orbits the center of mass of the sun-planet system.
We will talk about Debra Fischer, as an example of a scientist conducting this research,

and as a role model for the students.

The lesson culminates in the students being given example data from doppler shift
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detections to identify which samples contain exoplanet signals, engaging in Dr. Fischer’s
research themselves. They will also be directed to a Citizen Science project where they
can help identify real exoplanets that have never been seen before, using a website
accessible from home. Time will be saved for additional questions and discussion of the

activity and the research conducted by volunteers.

D.4.2 Stellar Spectra Workshop

Envision STEM Workshop Proposal 2018
By Kallan Berglund and Parul Maheshwari
PAW Outreach Coordinators

Workshop Type: Place an ‘X’ by the type of workshop that you would like to develop
60-minute hands-on STEM workshops for MIDDLE SCHOOL audience (grades 6-8)
Workshop Scheduling: We are available for presentations as needed.

Workshop Title: Decoding the Secrets of Stars from Starlight

Workshop Leads (names and emails): Kéllan Berglund (kallan_berglund@alumni.brow.edu)
and Parul Maheshwari (parul.dkm@gmail.com)

Other Volunteers (names and emails): TBD

Objective #1: Participants will learn about light and optics through hands-on demon-

strations.

Objective #2: Participants will apply this understanding and creative problem solving

in the context of determining stellar composition and evolution.

Objective #3: Participants will learn about the historical narrative of how this
knowledge was originally discovered by pioneering female astronomers Cecilia Payne and
Annie Jump Cannon who overcame many societal obstacles to have their discoveries

recognized by the scientific community.

Content Area/Discipline: Physics; specifically optics, astronomy, and history.
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INTRODUCTION (5-10 min): We will introduce ourselves by name, educational
history, area of study, and a few personal research topics (which can be revisited in
general questions at the end). We will present the goal of understanding what stars are
made of and how they evolve, along with the intermediate goal of understanding light in
order to decode information about the stars. We will present some demonstrations of
optical phenomena, comparing them to “magic tricks,” but explaining that today we are

all physicists who *will* reveal the secrets to magicians’ tricks.
MAIN ACTIVITY (30-40 min):

Demos:
Prism and flashlight separating white light into a color spectrum.
CD reflecting light of different colors at different angles.
Dipping pencil in water to see it appear to bend at the surface.
Small spheres with the same refractive index as water disappear when submerged.
Cardboard tubes with constellations poked through tape at one end to simulate stargazing
and help students relate to specific stars of a given type.

Example spectra of red giant, blue dwarf, and main-sequence stars to study and interpret.

We will have students seated in small groups within view of a demo station. Students
will come up in small groups to conduct demonstrations of refraction and scattering
of light. (We are working to gather enough materials, so that each demo can be done
at each table simultaneously, instead of at one station.) The students will have a few
minutes to discuss each demo with their groups and fill out a worksheet designed to
prompt connections between the observed phenomena. Volunteers will be leading class
discussions to introduce the concept of different types/colors of light and how they
interact differently with surfaces and boundaries to create rainbows and (prisms and

CD’s) optical illusions (bent pencil and disappearing sphere).

A powerpoint presentation will be incorporated into the workshop for visual aids
when introducing the applications of optics and spectroscopy to stellar astronomy and
astrophysics, as well as the historical figures associated with the material. The interactive
constellation demo will be introduced to connect the new ideas to specific stars. The
students will be asked to use their new knowledge, and some example spectra, to identify

different stellar types/compositions from the patterns of light that were measured, putting
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themselves in the shoes of those pioneering astronomers, Cecilia Payne and Annie Jump

Cannon, who first observed these patterns.

CONCLUSION (5-10 min): After recreating the discoveries of influential women
in astronomy, the students will record some of their own questions to be discussed as
potential research areas. Volunteers will reiterate their interests/experience and the
students will have the opportunity to ask questions about their career path, research,
and experiences. If time permits, the students will have a chance to revisit the earlier

demos for further inspection and questions.

Materials: We have most of the necessary materials already, though we may need a
few more glass prisms and flashlights in order to have materials for each demo at each
table. Some sharing may be possible without significant loss of time. We will also need
to print a worksheet for each student and a few sheets of example spectra, but this will

not be expensive.

Facilities needed /requested: We would prefer a classroom with group seating, like

round tables, but we do not need any special equipment besides a projector.
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Appendix E
Proposals for Improvements

E.1 Introduction

This Appendix contains proposals for initiatives intended to improve equity, diversity, and
inclusion (EDI). The first is a general proposal for an EDI Assistantship, funding grad
students to be liaisons between students and the department, participate in departmental
service like committees, and connect students with essential resources. I hope that similar
roles are implemented widely at Penn State and at other institutions. The latter two
proposals are specific funding proposals for improvements to the grad lounge and for a

grad student retreat.

E.2 Equity, Diversity, and Inclusion TA Roles

Proposal for Inclusivity Assistantships

E.2.1 Grad-Focused EDI TA

Building on the Grad Pedagogy TA role

Beyond but including being a TA for 590

Full-time appointment

Facilitating grad peer mentorship program

Weekly hybrid office hours

Updating grad handbook

Friendly face to help new grad students feel welcome
Ease transition into grad school

Connect students with mental health, community building, and professional development
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resources
Call out the fact that everyone has imposter syndrome and their needs are valid
Facilitate self-advocacy to help students express and stand up for their needs

Open up conversations about mental health and accommodations

Synthesize and offer feedback to professors and the department on the workload and
student struggles, keeping an eye on the big picture of the grad courses collectively
Maintaining bulletin board postings of EDI info and professional opportunities in the
first year office, grad lounge, and department website

Nurture sense of belonging and physics identity

Facilitate connections like organizing a Q&A with underrepresented postdocs

Relay student needs to the department

E.2.2 Undergrad-Focused EDI TA

Full-time appointment

Present for intro courses about building an inclusive community

Facilitate presentations each year about how to find summer research, applying to grad
school, and other relevant topics for undergrad physics majors

Friendly face

Ease transition into college

Connect students with mental health, community building, and professional development
resources

Call out the fact that everyone has imposter syndrome and their needs are valid
Facilitate self-advocacy

Open up conversations about mental health and accommodations

Hold weekly hybrid office hours for students to seek support, resources, and advice
Maintain postings in plastic sleeves in bathroom stalls (rotating info on Autism Acceptance
Month, Pride Month, etc.) and by the sinks (resources like CAPS and accommodations)
Propose other such EDI initiatives, as needs become clear

Nurture sense of belonging and physics identity

Facilitate connections like a Q&A with underrepresented grad students

Relay student needs to the department
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E.2.3 General Notes

Advertise these people/roles/resources in posters and on each syllabus, with a QR code
and link directing people to a page on the department website (updating bio and contact
info as new people take on the role)

These roles will help fill the Robinett void (lighten the load for program heads)

This will help with retention of underrepresented students and support all students’
success in the program

Serve on or keep in contact with various departmental committees and student organiza-
tions

Each managing a page on the department website with resources or simply making
recommendations to committees like EDI on what content is needed online

Ideally there would be two of each role, to support each other, provide an additional
point of contact if someone is uncomfortable approaching one for any reason, and cover
for each other when ill.

Starting with the Graduate Inclusivity Assistantship focused on supporting the grad
student population, with a focus on first-years, would be a good start to trial this

program.

E.2.4 Addressing Potential Objections

Money: pay as TA’s

TA supply: Pay more LA’s to reduce demand for TA’s (separate, critical EDI issue that
LA’s should be paid, at least after an initial semester of LAing for credit and training,
supplemented by a book scholarship to offset opportunity cost of not working a paying
job)

Stepping on Ombud’s toes: These fill a different role and would help connect more
students with Ombuds. Students are already working to meet this need but are getting
burned out because this labor is not accounted for in their responsibilities.

Not enough labor to justify payment: I can list more ideas, but this should be plenty.
Liability for...? Bad recommendations, mishandling information. Solution: Proper
training. And there’s less liability than untrained TA’s already being approached about

sensitive topics.

135



E.2.5 Final appeal

As previously stated, students are currently doing this work because the need is there
and we cannot stand by while others struggle and suffer, but it is hurting us, and we are
getting worn out. Please pay us for this essential labor and account for the time and
energy required by making this an official assistantship and recognizing it as part of our

workload.

E.3 Funding Proposals for Programs and Improvements

These proposed initiatives are intended to build community and gather feedback for the

department. These could also be adapted for other applications.

E.3.1 Upgrading the Grad Lounge

Dear Alumni Society Board,

We, the leadership of Physics and Astronomy for Women+ and the Physics Graduate
Student Association, request $5,000 to facilitate making our small grad student lounge a

more welcoming, inclusive, and effective space.

The lounge, 120 Osmond Lab, was formerly a storage closet and is currently furnished
with discarded furniture and broken chairs. We would like to create a sensory corner for
neurodiverse students and a more welcoming gathering space that students can be proud

of. This is part of our plan to build back a healthy community post-pandemic.

This space is heavily used for student meals, Physics and Astronomy for Women+
Tuesday Tea, and even hosting discussions with guest speakers. Thus, these upgrades
will have a wide-reaching impact on the lives of physics grad students, recruitment, and

the university’s public-facing image.

We will source basics like tables, shelves, and chairs from Lion Surplus to keep costs
down, and we have already taken steps to save costs by soliciting donations of smaller
luxuries, like fidget toys/pillows from professors and graduating students. Salvage will
remove the non-functional items we currently have to make room for new items to

be brought in. Our organizations will host a free food event to recruit students for
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assembling/moving new pieces into place.

Most of the budget will be used for key items to make better use of the small space and
to accommodate various sensory needs among our current and future student populations.

We have the support of the Climate, Inclusion, and Diversity Committee.

Kitchenette:$770
Furniture:$1510
Lighting:$263
Sensory Needs:$135
Recreation/Community Building:$1365
Health /Safety:$390
Decor and Contingency:$555
Total:$4,988

Sincerely,
The Physics Graduate Student Association
& Physics and Astronomy for Women+

E.3.2 Grad Student Retreat

The Physics Climate, Inclusion, and Diversity Committee
February 23, 2024

Dear Alumni Society Board,

On February 14th the Physics Climate, Inclusion, and Diversity (CID) Committee
released a proposal for overhauling the graduate student qualifying process and solicited
feedback from students. We, the CID, request $3,000 to fund a weekend retreat, with
transportation, food, and lodging provided, for as many members of the graduate program
as possible to attend. Your funding will reduce barriers to attendance and encourage
participation in community building and feedback collection from the physics graduate
students as we finalize major policy changes in our department. It is crucial to collect
feedback from graduate students on these issues that will affect their community deeply

moving forward.

137



The physics graduate students have previously demonstrated excellent community
organizing and self-advocacy in self-organized town halls. These culminated in electing
representatives to share prioritized concerns and suggestions with our new Department
Head. We would like to recognize and further this effort. Because mental health is a
known issue among graduate populations and getting physical distance from campus in
a peaceful, natural setting is known to have positive effects, we believe that a weekend

retreat is a natural and useful tool for our goals.

Through the retreat, our graduate students will connect with one another over meals,
hikes, and games, while spending an allocated amount of time reading the proposal draft,
discussing ideas, making comments, and thinking ahead to propose other initiatives. An
active and engaged grad student community is essential to the success of our educational
mission and fostering this will help significantly with creating a healthy climate in our

department and the university.

We are already taking steps to make this trip affordable, such as using buses, volun-
teers to pick up food, cooking simple meals ourselves, and reserving university lodging.
A summary budget for the full event includes:

Transportation:$400 Lodging:$1000 Food:$1136 Total:$2536

Sincerely,

The Physics Climate, Inclusion, and Diversity Committee
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Appendix F
Advising and Mentorship Resources

Students looking for support and advice, or instructors looking for resources to share
with their students, here are resources I compiled to share with my students. Some of
the links have university-specific information, but most universities will have similar
programs and policies that you can look up. Fellow mentors, feel free to take inspiration
from any of this and adapt your own versions to meet your needs. If you choose to use
any of these materials, please cite me as appropriate, and I'd love to hear how it goes. I
welcome any feedback you would like to share. These resources will continue to evolve

throughout my career.

F.1 Facilitating Advisor/Advisee Communication

Seek resources to educate yourself about the experiences of underrepresented groups by
looking up sources *by* the group you want to learn about, such as how to properly
support neurodivergent students. There are lots of existing trainings related to these
topics, such as the Rainbow Science Network. The department should provide time and
incentives for professions to engage in such professional development. To get started, look
up resources by, for, and about some underrepresented groups. There are many groups
to consider in this way, such as students of color, first generation students, indigenous
students, international students, students with disabilities, etc.

There are often small changes you can make to the environment or your word choice,
which can have a big impact on a student’s experience. Discuss potential stressors with
the accommodations office, such as buzzing/bright lights, making sure students are not
cornered away from the door, etc. Remember that positive feedback (particularly focused
on effort and growth) goes a long way towards building students’ physics identity, sense

of belonging, and growth mindset. To get things started, here are a few suggestions to
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facilitate advisor /advisee communication during research meetings:

Questions to facilitate a successful advising meeting:

1.

9.

How are you doing in general? Is there anything about your life or work that you

would like to share with me?

. How are you feeling about your work?

. What questions do you have? (not “Do you have any questions?”)
. Are there any resources I can provide that would be helpful?

. What challenges have you faced recently? I'd like to offer support.

. Are these meetings helpful? Are there any adjustments we can make for the better?

Do you feel that we have good communication?
How would you summarize our objectives?

What is your understanding of the next steps?

Agree on each person’s action-items for the next meeting, ideally over a follow-up email.

F.2 Advice and Resources for Students

F.2.0.1 Approaching Physics Problems

Here is a general guide for approaching physics problems and writing up your work well:

1.

What do I want?

. What do I know? (Draw and label a diagram, or several for different stages)
. Make sure you are using uniform and compatible units.

. What tools do I have? (Look for equations that contain only things you know

and the thing you want to know; sometimes you’ll need several. This can include

physics relationships and mathematical relationships, like geometry.)

Break the problem into stages of motion or stages of conserved quantities.
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10.

Break the problem into single dimensions (like separating motion in the x and y

direction)

. Take advantage of symmetries, conservation laws, and transition states.

Write out your steps and reasoning (This is good practice for communicating your

thoughts, will help you catch mistakes, and will make it easier to correct errors).

Reality check your result and explain (Are the units correct? Is this a reasonable

order of magnitude?...)

Discuss your work with a classmate or instructor.

F.2.1 Tips for lab work

1.

10.

Safety first. Read instructions, treat equipment with respect, and ask if you are

unsure.

Keep in mind that someone should be able to understand and recreate your work,

so be clear and thorough.

Make sure you draw and label diagrams for all stages of your experiment. This is

the most useful for communicating your experimental design.
Clearly define all variables in the equations you use and be consistent.
Include units on all your numbers and be consistent.

Include all your graphs (with title, axis labels with variables and units, scaled

appropriately to display your data).

Interpret all features of your graphs/data; label notable features in your graphs
and describe what is physically happening at that point (including but not limited
to: maxima, minima, inflection points, plateaus, spikes, x intercepts, asymptotes,

slopes, noisy data)
Consider and explain possible sources of error in your data.
Suggest alterations to improve future experiments or ideas for follow-up experiments.

Ask for help if you are stuck.
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F.2.2 Tips for research progress

These are strategies I have found helpful and recommend trying out to establish healthy

habits. But the most important thing is to pay attention to your own needs and build

from there, from your ideal work environment to your preferred communication styles.

Keep notes on useful terminology and tools, ideally collaborating with mentors and

collaborators. Some examples I created from my group are tips for Mathematica and a

living dictionary of useful terminology.

Start the document you’ll be using to write your paper/dissertation and write a few

sentences of paragraphs each week to track your progress and document your insights.

Overleaf is a useful platform to collaborate on LaTeX files. To collaborate on code, setup

a GitHub repository.

Meetings:

1.

Have a consistent place for research work (notebook, tablet folder, etc.)

Prepare question(s) ahead of time.

. Take quick notes during meetings (have your advisor/collaborators draw/write,

photograph the board, etc.)

M W

Consolidate your notes into “insights,” “questions,” and “action items.”

Send a follow-up email to communicate and document your understanding of the

action items for each person, or at least yourself.

Communication:

. Be brave and vulnerable enough to express your confusion and assert your ignorance

until it is adequately explained /resolved.

Revisit questions if past explanations are insufficient.

Establish clear communication channels and expectations with coworkers.
Consider collaborative workflows, like Github and Overleaf.

Having a written record of action items is very helpful, and perhaps shared docu-

ments for notes and/or paper writing.
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Independent work:

1.

10.

11.

12.

Learn what environments support your focus. For example, I work best with other

people co-working in the space with me. This is known as "body doubling."

Prioritize your action items and break them into small steps.

. Work through steps until you get stuck.

. Write out why you are stuck, any questions you have, and ideas about how to move

forward. Articulating this usually gives you an idea of what to try next.
Repeat.

Pretend you are explaining the problem to a lay person and/or your advisor to

fully articulate your confusion.

. Try multiple approaches to see what works. If you are missing a piece of information;

you could assume one way, then the other, and see how that goes.

Look up terms, ask for help/clarification, and/or take a break and look at it again

with a fresh perspective.

. Work on other action items to make progress in as many areas as you can between

meetings.

Write up your questions/sticking points for each, to discuss at the next meeting, or

send them in an email to your advisor/team.

Have different types of work that you can switch between for variety: reading,

writing, calculations, coding, etc.

Have readings you can go through, take notes on, and generate questions from to

switch to when stuck on calculations/coding/etc.

Setting yourself up for success:

1.

2.

3.

Be kind to yourself.
Prioritize your physical and mental health. Make sure you have good care providers.

Make sure you are getting good food, sleep, hydration, and exercise.
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Build community, drawing support from multiple sources (friends, family, clubs,
etc.)

Pay attention to your needs (Sensory stimuli, fidgets, quiet/music, comfortable

workspace, etc.)

Cultivate and maintain a Growth Mindset in yourself and others.
Don’t hesitate to ask for help from a variety of sources.

Use the resources available for support and community building.

Practice acknowledging progress in all of these areas and celebrating those successes.

F.2.3 Guide to reading scientific papers

This document is a tool for learning, not judgment. Use it as much or as little as is

helpful. My students are encouraged to share their reports for me/their advisor to learn

from and answer questions.

Strategy for reading papers, with different levels of depth:

1.

Title

. Abstract

Figures/labels

If you have background/context questions, read the Introduction
If you have follow-up questions/clarifications, read the conclusion
If you want to know more, read the whole paper

If you want more context, explore the sources,* especially those cited in the

introduction, conclusion, and/or written by the same authors.

*Citations are made for various reasons. If a source is cited as being wrong/disproven,

skip it. If it’s cited as the foundation/previous work being built upon, or as being related

work, check it out.

My students: As you find unfamiliar or key terms, look them up in the living dictionary.

Other researchers: Create a living dictionary for your own research area/collaborators.
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Be courageous about acknowledging confusion and asking questions, to help mentors

and collaborators communicate better with you and improve everyone’s learning.

Comprehension Reflections:

Essentials:

10.

11.

12.

. Subject: What is the topic?

. Objective: What is the goal?

Motivation: Why does it matter?

Uniqueness: What makes this work stand out?
Result: What do they accomplish?

Deeper reading:

Context: What is the starting point?

. Toolkit: What tools are used? (formalism, properties, constraints, assumptions,

etc.)

Obstacles: What challenges were faced?

Adaptations: How were the challenges resolved?
Observables: How can this theory be proven/disproven?

Future: What can/will be investigated next?

As you read, note what works and what does not in the writing, for when you write your

own papers.

F.2.3.1 Tips for finding research

Everyone approaches this differently, with varying amounts of time/energy to spare,

so prioritize your physical and mental health and find what works for you. *Some of

these resources are specific to Penn State. **Unfortunately, some are restricted to US

citizens/permanent residents.

Congratulations on pursuing research experience! You're on your way.
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General good practices for networking and building your CV /resume throughout

undergrad (but don’t put too much pressure on yourself, just take one step at

a time and you’ll get where you want to go):

1.

Seek research experience whenever you are interested; it is very valuable, particularly

if you want to go to grad school

. Reach out for mentors among peers and faculty for support and advice

Get to know advisors/professors, to learn and to get letters of recommendation

Go to office hours and seminars, challenge yourself to ask questions and figure out

your interests
Seek professional development opportunities like conferences

Participate and take on leadership roles or found student groups like the Society of
Physics Students and PAW+

Build your math and/or computer skills (Python is valuable, particularly in Astro-
physics. Mathematica is useful for classes and research. LaTeX will be useful for
all CV’s and publications. . .)

. Work on communication skills with community outreach and presentations (opportu-

nities available through PAW-+ and other groups https://science.psu.edu/outreach

)

Be proactive about your mental health, and seek accommodations if needed!

Education is a lifelong endeavor, so pace yourself.

Applications:

1.

2.

Request letters of recommendation in advance (two week minimum in general, a
month or two is better), and send reminders as the deadlines approach. Sharing
a spreadsheet of application materials and deadlines is useful. Providing your

transcript, CV, and/or application essay(s) can be useful resources for letter-writers.

Always have at least one person edit your statement/application materials (family,

friend, or university writing support services)

Use active verbs that keep the focus on your initiative, highlighting your persever-

ance
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4. Mention a few specifics about the program you are applying for to demonstrate

your interest and highlight how you are a good fit for this opportunity.

5. Connect with potential advisors in advance if you can.

Places to look for research:

1.

Talk to older students, grad students, and mentors about their past research, and

ask for email introductions to their contacts.

Look up universities and talk to professors you're interested in working with and

search the corresponding university website for funding opportunities.

Read professors’ web pages and abstracts of their papers to see what you're
interested in working on and reach out to them and/or their grad students to talk
about their work. (Don’t be intimidated if you don’t understand the papers! Just
ask for explanations of a few key terms to get the conversation going.) Ask if they

have funding or can arrange course credit for an undergrad researcher.

The remainder of these lists are particular programs, funding sources, or searches.

1.

Perimeter Institute

. **Research Experience for Undergraduates, REU’s. These are available at other

universities!

. **NASA Space Grant, PA. These are available in every state! (Pro-tip: smaller

states tend to have smaller application pools for the same funding.)

. **One Stop Shopping Initiative, OSSI

. JPL/NASA

. *Site to help with your search: https://urfm.psu.edu/

. *PSU Eberly College of Science Undergraduate Research Program

. *More sources for opportunities in the PSU College of Science: science.psu.edu and

scienceengagement.psu.edu

PSU Summer Research Opportunities Program, SROP (focused on underrepresented
students)
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10.

11.

12.

13.

The PAW+ website resources page will be updated with additional suggestions like

this soon, so keep an eye out for that.
ECoS SURE
The American Physical Society

The American Institute for Physics

This is not an exhaustive list. If you find opportunities that should be added to this

list, particularly for international students, please contact the PAW+ president and web

chair.

F.2.3.2 Advice for applying to grad school

Everyone approaches this differently, with varying amounts of time/energy

to spare, so prioritize your physical and mental health and find what works

for you.

Thinking ahead as an undergrad:

1.

10.

Get as much research experience as you can (REU, NASA Space Grant, OSSI, etc.)

. Reach out for mentors among peers and faculty

Get to know advisors/professors to learn and to get letters of recommendation

. Go to office hours and seminars, challenge yourself to ask questions

Seek professional development opportunities like conferences
Participate and take on leadership roles in student groups

Build you math and/or computer skills

. Work on communication skills with community outreach and presentations (like

PAW

. Pals through Physics and Astronomy for Women+ —All are welcome!)

Be proactive about your mental health, and seek accommodations if needed
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Things to look for/ask about:

Advisors:

Make sure there are at least 2-3 people you would like working with at each school you
apply to. Reach out to discuss what type of work you would do with them and connect
with their grad students to learn about the environment and professional development
opportunities. Make sure the professors are taking new students and not retiring soon.
Open a dialogue with potential advisors, and mention that in your applications. If a
professor tells the admissions committee they’d work with you, that can help a lot. In
person discussions are most effective, then video chatting, then phone calls, then email.
Try to schedule a visit or video call with prospective advisors to talk about their work.
People love to talk about their work. Responsiveness to your emails can also be a gauge
of how welcoming/helpful professors are, but don’t take it personally if they are too
overwhelmed to respond. Send a follow-up email or two at 1-2 week intervals. How well
funded are an advisor’s students? Have to TA a lot? Summer support? What are a

potential advisor’s past students doing now?
Climate:
1. Is there an inclusivity webpage? What kind of info/resources does it have?
2. Is the GRE required? (good sign if not)
3. Are there underrepresented student groups/clubs?

4. Are there department/university climate committees?

5. Is there a grad student union? How does the university respond to student

organizing?
6. Is there a faculty or peer mentoring program?

7. What percentage of incoming grad students actually complete the PhD? (Some
schools intentionally admit more than they intend to graduate to use them for TA
labor and force them out with a masters degree.) What is the average time to

graduate?

8. How did the university /department respond to covid? Did they prioritize money

or safety?

9. What recent changes have been made in response to activism?
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10. What is the representation like among professors, postdocs, grads, undergrads, etc?
Opportunity:
1. What professional development opportunities does the department support?
2. Conference funding?
3. Networking events?
4. Giving presentations?
5. If you might change research areas, is the program strong in many areas?

Money

Fees:

Many places accept unofficial transcripts/scores, at least until you are admitted. You
can order an official transcript/test scores to yourself and scan it instead of sending
one to every school. Many places accept this. If you have been on financial aid or can
demonstrate financial need, you can apply for fee waivers for sending test scores like the
GRE. You can also often get fee waivers for ordering transcripts. You need to arrange
these in advance. Many schools offer application fee waivers upon request. Even if a
program doesn’t list application fee waivers available, you can often get one by reaching
out to the people in charge of applications. If that fails, you could ask them to review

your application unofficially and then submit the application & fee only if they accept you.

Funding:
Apply for as many fellowships and scholarships as you can. Sometimes they aren’t well
advertised, but most schools have internal fellowships/scholarships you can apply for.
You can ask the program directors about opportunities if the school doesn’t have a
website for it. If you get a fellowship like NSF GRFP that isn’t attached to a school,
it makes you a more appealing applicant because you come with funding. Even if you

haven’t gotten results from fellowship apps, mention what you applied for in your grad

apps.

Applications:

1. Request letters of recommendation in advance (two week minimum in general, a

month or two is better), and send reminders as the deadlines approach. Sharing
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a spreadsheet of application materials and deadlines is useful. Providing your
transcript, CV, and/or application essay(s) can be a useful resource for letter-

writers.

Always have at least one person edit your statement/application materials (family,

friend, or university writing support services)

Use active verbs that keep the focus on your initiative, highlighting your persever-

ance

Mention a few specifics about the school you are applying for (advisors, research,

university programs, etc.)

Connect with potential advisors in advance.

F.2.3.3 Tips for professional development

This is a checklist to go over yourself or with advisors/mentees to encourage seeking pro-

fessional development opportunities. You can ask about these opportunities or research

them yourself to see what interests you.

Skills to learn and develop, according to your interests:

Computer skills, particularly programming, especially Python

Math (different fields depending on your research/career interests)

Mathematica
LaTeX

Categories of opportunities to consider/research:

1.

Conferences

. Colloquia

Seminars

. Workshops

Panel discussions

Meetings/meals with speakers
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7. Professional Organization Memberships (like the American Physical Society)
8. University Groups/Clubs (like Physics and Astronomy for Women+-)
9. Community Organizations

10. Awards (Put yourself out there! You're awesome. You won’t get what you don’t
ask for.)

11. Funding Sources

12. Employment /jobs

13. Other/related research

14. Readings (journals, papers, newsletters, etc.)

15. Publications

16. Initiatives (departmental and beyond)

17. Committees (departmental and beyond)
Forms of engagement:

1. Attending (remotely or in person)

2. Asking questions

3. Networking

4. Submitting posters

5. Presenting slides

6. Nominating and/or inviting speakers

7. Leadership roles

8. Teaching

9. Outreach

10. Advocacy
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11.

Collaboration

Logistics: Time

Subject/content of presentations

Transportation

Funding

Relevance /usefulness

Opportunities:

Some are specific to field /institution, relevant for my students, or examples for others.

Professional Organizations:

1.

2.

3.

4.

D.

American Physical Society (APS) (Free membership for Student Ambassadors)
American Astronomical Society (AAS)

Women+ International in Theoretical Physics (WIThPhys)

Basic Research Community for Physics (BRCP)

Women in Quantum

Student Groups:

1.

2.

D.

6.

Physics and Astronomy for Women+ (PAW+)

Society of Physics Students (SPS)

. Women+ in Astronomy (W-+iA)

. Towards a More Inclusive Astronomy (TaMIA)

More: orgcentral

Graduate Women in Science (GWiS)

Conferences and Symposiums:

1.

Graduate Women in Science (GWiS) Empower (Open to undergrads and other
genders)
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d.

6.

. APS Conference for Undergraduate Women+ in Physics (CUWIiP) (Also open to

other genders, and lots of ways to get involved/volunteer too!)

. APS General

. AAS Meeting

LOOPS conference on loop quantum gravity and related work (every two years)

Departmental, College, or University Research Symposiums (present posters/talks)

Workshops/summer schools (in person and/or virtual):

1.

D.

6.

Summer School on Quantum Gravity (every two years before LOOPS, varying
hosts)

Indian Association for GR Gravitation School on Gravitation and Cosmology
Informational Architecture of Spacetime

Sejny Summer Institute on the Foundations of Physics

Lindau Nobel Laureate Meeting

Perimeter Institute

Colloquia/seminars (live and/or recorded, in person and/or virtual):

1.

2.

d.

6.

Department Colloquia
GAPP Seminars

PUG Seminars

. Astro Colloquia/Seminars

Quantum Information Structure of Spacetime (QISS)

Quantum Gravity Across Approaches (QGAA)

Outreach opportunities:

1.

2.

PAW Pals

MRSEC
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3. Envision

4. Haunted University

5. ArtsFest Kids” Day

6. Reach out to science communicators you admire online

7. PAW+ posters

8. Science comics (put up online or submit to journals/campus literary outlets)

Mentorship (sign up or step up to be a mentor and/or mentee):

Research group

Student groups (SPS should launch undergrad mentorship program soon)
Organizations like APS

Presentation venues:
1. Outreach events like AstroFest and AstroNight
2. Local schools (often science clubs looking for presenters; reach out!)
3. Clubs on campus or at other Universities
4. Astronomy on Tap
5. Nerd Nite
6. Central Pennsylvania Observers
Awards/funding:
1. Student org leadership awards
2. PAW+ Travel Award
3. NASA Space Grant
4. Philanthropic Education Organization (PEO) International
5. Chateaubriand Fellowship

6. Penn State listings for Scholarships/Fellowships:
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7. APS Women in Physics Group Grant
Readings/journals:

1. Notice which papers are cited the most in the ones you are working on and read

those.
2. Look for papers by the same authors as ones you find interesting.

3. Read more papers by your advisor or potential advisors, starting with the most

recent.

4. Set ArXiv and google alerts for key words you're interested in to be notified when

new articles are posted

5. Universities and organizations like APS typically provide access to many publica-
tions. Talk to your mentors, advisors, professors, and librarians about the options.
(I recommend Physical Review D, but it’s good to keep tabs on general publications
like Nature too0.)

Trainings (google/ask librarians):
Workshops on coding, public speaking, scientific writing, etc.
Workshops on teaching, outreach, science communication, etc.

Workshops on mentorship, allyship, negotiating, collaboration, etc.

Initiatives:
APS IDEA Team/Program

Quantum Information Structure of Spacetime (QISS)

Committees:
Departmental Climate, Community and Diversity Committee
Eberly College of Science Climate Committee, Sub Committees
Reimagine Committee
Admissions Committee

And more! Talk to your mentors, advisors, professors, and/or department head.

Thinking ahead to other research:
Consider what topics you're most interested in. (It’s ok if it’s not what we work on.)

What do you like/dislike about your current work? Coding? Calculations? Predictions?...

156



What kind of people/groups do you want to work with? 1-on-17 Big collaborations?...
Where do you want to work/live? Institution size, climate, weather, country... Network

with your mentors, advisors, professors, and peers with these goals in mind.

F.2.3.4 Advice for writing a CV

Career Services at has workshops and resources on this, and the Writing Center is available

for proofreading/editing. *ask for an example CV and Resume *ask for an example poster

Content:
A resume is typically a page and is geared towards industry jobs. A CV is a longer
academic resume with more emphasis on research, publications, presentations, etc. Very
similar when you are first starting, but CV’s will grow long. You can rearrange/reformat
the content depending on your audience. Ask more experienced peers/mentors for exam-
ples and have your advisor and/or Career Services representatives proofread and edit

your draft.

As an early-career scientist, your CV will be sparse, so include everything from high
school and this year, phrasing it all to emphasize your skills and experience relevant to
the jobs you want. Include things that are current, like your status as a Penn State

physics major (or other major).

Don’t overlook or dismiss any of your achievements or experience. Voted “Best Team
Player” by a team/club? List it. Wrote a blog? You can present it as “writing exercises.”
Play Dungeons and Dragons? — “Co-founded community group where I met regularly
with peers for team-building and problem-solving exercises.” You can list languages you

are learning; you can specify your level of proficiency if you like.

Think about how you want to be perceived. Your strengths that you want to showcase.
Think about how you have spent your time, and what you gained from it. What are the
transferable skills? Leadership? Creative thinking? Working independently or with a

team?...

Choose a format/template that includes the date and location of any experiences you
list. Keep this up-to-date, so you don’t have to track down random calendar events or

emails to figure out when you did things. Make sure your name and contact info are at
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the top.

When describing activities, be concise; they don’t have to be complete sentences.
Start with an action word emphasizing your involvement /contribution and include info
about what skills you used (computer programs, lab equipment, etc.), and who you

worked with (this is the place to name-drop).

Formatting/presentation:
You can use Word or Google Docs if you like, but I recommend getting familiar with the
markup language LaTeX, which is used for most scientific publications (and is a skill
you can list!). LaTeX is a markup language, so it looks a bit like code, but don’t be
intimidated. There’s just a little syntax to learn and you can google anything you want
to know how to do. I like using the online LaTeX editor Overleaf. They have lots of
templates you can start from:

https://www.overleaf.com/gallery/tagged /cv

Put your name and contact info at the top.
You can also create a “tag line” with a few words that describe you.
Put the most important /relevant sections first (usually education).

Make hyperlinks to any relevant websites/publications.

If you don’t have much in a category, combine it with something else, so you have
longer lists. For example, outreach and volunteer work can be combined, etc. Format to

make the space look full. You can include a photo if you want to.

List things from most recent to least recent (with some wiggle room to put the most

relevant /impressive information at the top)

Category ideas for CV sections (need at least some form of education, experience,
and skills):

1. Education (Official degrees and diplomas, but can include additional summer ,
trainings, and workshops, like the “Professional Development Workshop” I did over

zoom covering this CV advice for you)

2. Research Experience

158



10.

11.

Employment /Work Experience (Any official role or something you got paid for:

tutoring, babysitting, selling jewelry, being a Learning Assistant for this class etc.)

Professional Organization Memberships (like the Society of Physics Students,
American Physical Society, American Astronomical Society, Physics and Astronomy
for Women+-... Most memberships aren’t citizenship restricted, so don’t let that

stop you from joining.)

Publications (School paper? Science blog? Grant applications? You can include

stuff line that until you have scientific papers to include.)

. Awards/Honors (any time you were singled-out for recognition; make up a name

for it if there wasn’t an official one)

Presentations/Invited Talks (Conference posters, invited to present for a club,

outreach talks, etc. Later this will be only talks at conferences or colloquia.)

Outreach and/or Volunteer Work (PAW Pals;, MRSEC, judging local science fairs,

any community service. . . )

Computer Skills (operating systems, coding languages, useful programs, electron-

ics...)
Certifications (like metal shop, wood shop, first aid, etc.)

Additional Skill and Interests (everything else that shows who you are, your values,
your skills, your work ethic, etc. Ex: athletics, art, outdoors work, crafting,
readings. . . you can even include general skills and/or personality traits. You never

know what will catch someone’s attention and make your application stand out.)

F.3 Resources for Mental Health and Community Building

F.3.1 Connecting with community

(some info specific to Penn State) General healthcare: studentaffairs.psu.edu/health /myuhs

Connecting with peers:

Org Central is a database of student groups always happy to have new members and

working hard to stay connected remotely. Physics and Astronomy for Women+ (which
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welcomes all genders) has many community-building events (including Tuesday Teas in Os-

mond 120 at 3pm) and a growing collection of resources, particularly for underrepresented

groups. The Physics Department has a similar list or resources. Stay connected, use the

resources available, and reach out to the teaching team, department, and university for

support.

F.3.2 Mental health resources

1.

Crisis line: studentaffairs.psu.edu/counseling/crisis-intervention

. PSU has Case Managers to help you navigate the process of getting care.

CAPS has resources for students in crisis, group counseling events, free therapy
appointments, and more, though they can take a while to schedule for non-crisis

case.

. The Herr Clinic may be faster to access care, offered by doctoral and master’s level

students in the Counselor Education program: https://ed.psu.edu/epcse/cedar-

clinic/cedar-clinic

Penn State Psychological Clinic has a longer intake process, but it is guaranteed to
connect you with a long-term care provider: https://psych.la.psu.edu/psychological-

clinic/services-1

. The Office of Educational Equity has groups, such as Student Disability Resources,

with specialists to help you determine what policies would help you succeed. A
lot of people don’t expect to qualify for accommodations, but actually do, so it’s

always good to ask. They also have an online calendar of events.

F.3.3 Resources for women in physics

Groups/Organizations:

1.

PSU Physics and Astronomy for Women—+

2. Women+ International in Theoretical Physics

3.

4.

Penn State Specific Resources

Center for Women Students
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5. Penn State Commission for Women

6. Committee on the Status of Women in Astronomy

Blogs/Websites:
APS Women in Physics website
Women in Astronomy blog
Ohio State Women in Physics blog

ArXiv Papers:
arxiv.org/abs/0804.2026 - A Case Study of Gender Bias at the Postdoctoral Level in
Physics, and its Resulting Impact on the Academic Career Advancement of Females
arxiv.org/abs/1206.4112 - Gender and Sexual Diversity Issues in Physics: The Audience
Speaks
arxiv.org/abs/1403.3091 - Studying Gender in Conference Talks - data from the 223rd

meeting of the American Astronomical Society

F.3.4 Resources for underrepresented physicists

Resources for underrepresented groups in physics/STEM (some are USA specific)

Organizations:

1. Women+ International in Theoretical Physics
2. National Society of Black Physicists

3. National Society of Hispanic Physicists

4. Society of Indegenous Physicists

5. Out in Physics

6. Nonbinary in STEM

7. Neurodivergent in STEM

8. Disabled in STEM

Examples of resources to educate yourself about the experiences of underrepresented
groups: Look for any sources *by* members of the group whose experiences you want to

learn about.
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. Black Lives Matter: https://blacklivesmatter.com /resources/

. National Indigenous Women’s Resource Center: https://www.niwrc.org/
. LGBT+ community: https://lgbtphysicists.org/media.html

. Neurodiversity: https://www.facebook.com/EdWiley AutismAcceptance

. Unmasking Autism by Devon Price, PhD
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Appendix G
Feedback

This is my cumulative feedback and recommendations for Penn State and the physics

department, much of which would be useful to other institutions. Many of the challenges

these suggestions address originate from the inherent biases in our society, the imbalanced

power structures we have inherited, and the perverse incentive structures present in

for-profit education. Thus, these are common topics that other institutions are trying to

address as well.

G.0.1 University level suggestions

Rebuild the community’s trust in the university as an institution. Earn it by
implementing shared leadership, decentralizing power away from the overpaid
people who are not involved in, or even aligned with, the university’s educational

mission.

Start with transparency (in hiring, committee membership, promotions, awards,
budgeting, funding decisions, handling of feedback and misconduct, etc.) (There
has been some progress, such as Dean Langkilde’s involvement and increased

community involvement in the hiring of the IGC Director and Physics Department
Head.)

Follow through with accountability for misconduct and failures of the system (such

as addressing instances of bias) (Recommended reading: Complaint! By Sarah

Ahmed)
Increase funding and staffing for CAPS, Title IX, and the accommodations office

Create and fully support a title VI office
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Increase scholarships and fellowships for underrepresented students. (The relatively
new fellowship in the physics department to support incoming grad employees
working on equity, diversity, and inclusion is fantastic for the students, community,

and recruiting.)

Provide funding to continue the very successful trial program in the physics depart-
ment in which first-year TA’s take a pedagogy class instead of teaching their first
semester. This helps them adjust to grad school, become better TA’s, and become
better students.

Strengthen rules surrounding hate speech in codes of conduct and regulations on
student organizations by limiting what university funds can be used for. Separate
the concept of free speech from the distinct concept of to whom we as a community,

and as an institution, provide a platform for their speech.

Make sure all identities and write-in options are represented when soliciting demo-

graphic information on university forms.

Gender inclusive bathrooms should be as plentiful as any others. All should have

well-stocked menstrual products available for free
Changing tables in all bathrooms. Safe, comfortable, accessible spaces for nursing.

Make Penn DOT invest in pedestrian-first infrastructure and traffic calming, partic-
ularly on East Beaver Ave, where the university’s negligence has been responsible
for many instances of injury and death from traffic disasters. We need raised
crossings, narrower lanes, protected bike lanes, barriers like large planters between

traffic and pedestrians. See https://sthv.org/

Advocate for local governments to invest in public transportation/bike infrastruc-
ture, improving mobility /accessibility, particularly for underserved, low-income

populations.

Advertise thoroughly and consistently to all grad employees that our stipends are
exempted income and citizens qualify for SNAP benefits (food stamps). Pay grad
employees equitably; imagine the research/community building possible if we were

not rent-burdened.
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G.0.2 Department level suggestions

o Implement shared leadership by decentralizing power, enabling more democratic
selection of leaders and committee members, and including more grad employees,

staff, undergrads, and postdocs on committees.

» Be transparent about the selection processes and open about the membership of
committees, keeping an up-to-date list of members, with one or two designated
contact people per committee. Be explicit about the overarching responsibilities of

each committee and their short and long term goals.

« Make information accessible to grad employees that: (1) grad employees can join
Physics Department committees. (2) How to do that. (Email grad employees each
year asking for committee participation. Add a lecture to the first year colloquium
course about committee participation, perhaps with members from the committees
to talk about what they do. Add a statement to the committee websites and the
grad employee canvas page welcoming grad employee participation and explaining

the process.)

« Find funding to continue the experimental first-year pedagogy course instead of

immediate teaching duties. This is a wonderful step and will help a lot of people!

o Alter the grad first year seminar to be an extended orientation, teaching students

how to navigate academia and connect with advisors.

« Modify /remove the qualifying exam. Let students choose a few from a selection
of problems in each subject. Allow flexibility such as letting students opt into a
verbal assessment instead, or a presentation project. There are many options to
work around the grad school imposed requirements. The UNC Chapel Hill physics
department made the final exams of core grad courses count as the qualifying exam,
so there were no extra tests. The astro department has the qual split over two tests,
a year apart, one on the material of the core courses the students have taken in grad
school, and one as an exercise in reading comprehension and deeper investigation
into the sources and methods of a published paper (both of these exams are untimed,

take-home over the course of three days, open-book, open-internet, closed-people).

« Value mentorship more formally in the hiring and promotion process for faculty.

Have guidelines for mentors and mentees to meet at least once per semester, more
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often in the first year. A good portion of the meetings should be one-on-one, but
meeting in groups with other mentees or professors for discussion and professional
development is good too. Good progress is being made on strengthening the
mentorship program; keep it up. We need oversight, transparency, follow-through,

and accountability.

 Keep going with the new hiring practices (community nominations for search/hiring
committees, anonymous feedback opportunities from students after potential hire
presentations, etc.) Make sure all members of the community are participating
in the nomination and feedback processes (grad employees, staff, etc.). Screen all

potential hires to make sure they have a growth mindset.

o Train all advisors and mentors on strategies for communicating with students of
different backgrounds, whether it is navigating a language/cultural barrier, or
ways to make autistic students more comfortable in the conversation. (example
resource: https://cimerproject.org/training/) Provide questions for professors and
students to prompt discussion and open communication during meetings. I have
written example questions myself, but this should be supplemented with professional

training and advice.

o Assign a trained, volunteer peer mentor to each incoming grad employee and
each undergrad (including satellite campuses!) when they declare their major, in
addition to a faculty mentor (opt-out not opt-in). Good steps are being taken on

this! Include undergrads at satellite campuses to help recruit them into the major.

e Open lines of communication between student groups in the department and
undergrads at satellite campuses. Normalize professors advertising student groups

like PAW+ at the beginning of each semester.

o Provide more flexibility in course scheduling, especially for first year grad employees
(reducing credit minimum or offering more research credits to focus on classes;
There could be ways around the credit minimum that are within the department’s
power, like creating a credit-filler course to help students concentrate on their other
classes, allowing students to sign up for research credits without much expectation
of research, or perhaps increasing the number of credits for the colloquium course?)

Reducing the required courses was an excellent step!

o In consultation with a psychologist, create a mandatory in-person workshop series
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for faculty, staff, grad employees, and undergraduates to discuss A: that systemic
bias exists, B: the common manifestations such as microaggressions, and C: how
to have a constructive conversation about these issues when they arise. Introduce
people to the different kinds of bias: sexism, racism, ableism, heteronormativity,
xenophobia, islamophobia, etc. Bring in professionals to explain the concepts and
importance of neurodiversity, the gender spectrum, etc. Example presentation I
created for my class: Inclusivity Presentation I would like to see something similar
implemented in all classes, especially intro courses and first-year-seminars for grad

and undergrad employees.

Create paid positions for grad employees and undergrads to function as equity,
diversity, and inclusion liaisons who can help people report misconduct and access
support resources within the university, these individuals can also propose their own
initiatives, like posting educational information and support resources in bathroom

stalls, or providing empowering posters for common spaces, etc. EDI TA Proposal

Hire more professors for their teaching skills, and train all professors to use good
teaching practices like active learning, flipped classrooms, and growth mindset.

Provide more classrooms designed for this group work, like 207 Osmond.

Train faculty, staff, and students to default to gender-neutral pronouns (they/them)
when referring to students, especially if a student has not stated their gender identity:.
Use a mix of pronouns in examples and homework problems, so the assumption is
not always that students and scientists are male. Make sure nonbinary options are

available on university forms as well.

Make sure that gender neutral bathrooms are as equally accessible as each of the
gendered bathrooms. Ex: make one bathroom on each floor gender-inclusive, and

alternate m/f for the other one on each floor.

Making pads/tampons available in all bathrooms is an excellent step in the right
direction! Please persist in replacing the supply when vandalized and take appropri-
ate action to address the hate crime of some people putting the basket of products

from the men’s rooms in the trash.

Have the department engage the community more on occasions like Autism Ac-
ceptance Week, Pride, and other such occasions that provide an opportunity for
dialogue about inclusivity. (the EDI TA roles can help with this)
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Create additional orientation, geared towards first-generation and international
grad employees that outlines the terminology and bureaucracy of the department.
This benefits everyone, especially individuals with additional challenges like social

anxiety.

Create a matching system like online dating or an in-person speed-dating forum to
help students find advisers with matching research interests. Keep in mind that
some students have social anxiety or other concerns which make reaching out to

professors on their own much more of an obstacle.

Require students to sit-in on a few meetings with different research groups in the
department to find a good fit. —this could be incorporated into the colloquium
course. See MIT for a good example. (Note, advisors should receive departmental

guidance to build community within their groups and have effective group meetings.)

Host free food events to boost attendance and invite CAPS to come present about
mental health best practices and the resources available inside and outside the
university to support students. Mental health is a huge problem in academia,
especially among grad employees, and many people go undiagnosed. Relationship
violence and abuse is also a significant factor in cases where underrepresented
students left the department or delayed their degrees. Teaching about red flags,

green flags, and how to look out for your friends and peers could go a long way.

Train instructors to appropriately discuss the syllabus section on accommodations,
explain what accommodations are and how to get them, without implying any

stigma. Normalize discussion of mental health and accommodations.

Listen to and act on the concerns expressed by the Coalition for a Just University
and the Coalition of Graduate Employees about topics ranging from Covid safety

and to social justice.

Hire LA’s to assist in recitations and labs for courses like 211 and 212 to reduce

demand on grad TA’s there.

The Wednesday Community Meetings are a great forum for general community
building and discussing and addressing challenges in the department! Incentivse

more participation from all stakeholder groups.
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Reserve a few community meetings annually for each of the committees to present
who they are, what they do, what their goals are, and solicit ideas and feedback

from the department.

Schedule a community meeting each year with departmental student groups to

share their work and recruit participation.

Use a community meeting each year for a town hall for each of the department
groups: staff, faculty, postdocs, grad employees, undergrads, underrepresented

groups, etc.

Schedule meetings to accommodate families (no committee meetings/colloquiums

after elementary school days end, etc.)
Maintain hybrid event structures to accommodate health challenges, families, etc.

Provide more detailed information on the “hidden curriculum,” university resources,
and community beyond the university to help students adjust upon arrival and be

less isolated.

G.0.3 Additional Feedback

G.0.3.1 Useful precedents from UMass Lowell

ACTIVE GRADUATE ADVISORY COMMITTEES supporting students and

advocating to the department

Supportive departmental faculty and leadership present and involved

More people means a more distributed workload

GRAD UNION provides organizational structure for mutual aid and advocacy
DEI grad representative on committees

Peer mentorship (currently opt-in) well advertized and run jointly by faculty, and

grad employees
Grad representatives are PAID FOR THEIR LABOR

People serve on the committee 1-2yrs (self-nominate in January)
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« Grad reps involved in admissions
o Grad reps have EQUAL VOTING POWER
e Department head established these committees

o Permanent lecturer position serving as a DEDICATED STUDENT ADVOCATE

and grad program coordinator in charge of the research credit course

G.0.4 Recruitment

We want to expand our existing efforts in outreach and recruitment.

Children: Conducting outreach and providing role models for children of all ages to
engage in physics and see themselves as physicists: PAW+, ENVISION, Young Women
in STEM, AstroNight, AstroFest, Haunted University, Education U, etc.

Grad and undergrad applicants: Eric’s conference (specific name?) recruiting as an
example of success (do we have data on increased applications from students of color?).
List of other opportunities to build on that, reaching out to organizations like Women in

Science and Engineering, Historically Black Colleges, Women’s Colleges, etc.

G.0.5 Climate

We want to continue making institutional changes to improve climate, and we are
advocating for improvements on multiple fronts: physical, environmental, bureaucratic,
pedagogical, and cultural.

Changes to infrastructure:

new building

o more gender inclusive bathrooms

o more classrooms configured for active learning and group work
» greater accessibility like ramps

e automatic doors
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o elevators

» wheelchair accessible tables for labs

o improving grad and undergrad lounges

« small & large posters of underrepresented scientists in all three buildings
Bureaucratic changes:

« removing GRE requirements

« modifying/removing the qualifying exam (There are some options to work around
the grad school imposed requirements. The UNC Chapel Hill physics department
made the final exams of core grad courses count as the qualifying exam, so there

were no extra tests. That idea sounds great to me, but there are other options.)

 adding more accountability to mentoring (I would like mentorship to be valued
more formally in the hiring and promotion process for faculty. I also think it would
be useful to have guidelines for mentors and mentees to meet at least once per
semester, perhaps more often in the first year. A good portion of the meetings
should be one-on-one, but meeting in groups with other mentees or professors for

discussion and professional development is good too.

o [ would also support a training for all advisors and mentors on strategies for
communicating with students of different backgrounds, whether it is navigating a
language/cultural barrier, or ways to make autistic students more comfortable in

the conversation)
o adding a peer mentor in addition to a faculty mentor

 providing more flexibility in course scheduling especially for first year grad employees
(reducing credit minimum or offering more research credits to focus on classes;
There could be ways around the credit minimum that are within the department’s
power, like creating a credit-filler course to help students concentrate on their other
classes, allowing students to sign up for research credits without much expectation

of research, or perhaps increasing the number of credits for the colloquium course?
 improving the TA experience (scheduling, workload, class preferences. .. )

Pedagogy changes:
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o active learning

o Flipped classrooms

e learning assistants

e group work

 training teachers and students “growth mindset.”
Cultural changes:

« education and communication (awareness and allyship)

« Generating dialogue about systemic bias (meal discussions and guest speakers)

allyship workshops on implicit bias for all members of the department community
« class presentations on subconscious bias for students

Retention: Having recruited applicants and worked to create a welcoming and inclusive
climate, there are additional steps we can take to actively support underrepresented

students and improve attrition rates.

o Departmental and student organization mentoring matching students with peers

who share their demographic experiences.

o Check-ins with mentors, advisors, and advisees to make sure students are on track
and teams have good communication about goals and professional development

opportunities.

o Funding professional development opportunities like students attending conferences
and workshops about their research as well as about supporting underrepresented

groups.

Mentoring: Mentoring is a key part of improving climate and retention of vulnerable

students, and we have plans to build on our existing programs.
o Check-ins and accountability for regular, clear communication
o Responsibility to recommend professional development opportunities

» Peer mentors as well as faculty mentos (opt-out not opt-in)
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e Group and individual mentoring meetings
e Providing mentors with as much as possible in common with a student’s experience

Advising:
I think we should have the grad-student activity report and advisor evaluation required,
with someone in charge of looking them over and conducting an annual check-in, like an
Ombudsperson, to make sure there is good communication about goals, performance,
and professional development. It might help to update and/or have an in-person review
of the responsibilities of mentors and mentees.

For Mentors, Advisors, and Instructors:
Landmark College has a wonderful teacher training program for these topics that
has been utilized successfully by other universities. Send a few faculty and have
them present what they have learned in faculty meetings, colloquiums, and TA train-
ings. Here are some useful links recommended to me by advocates in other uni-
versities: https://www.landmark.edu/news/landmark-college-professors-present-world-
of-learners-wheel-poster https://www.landmark.edu/research-training/blog/supporting-
college-students-with-adhd-an-introduction https://anautismobserver.wordpress.com/
https://www.youtube.com/watch?v=GZp459zssr0

Community: Creating space for underrepresented groups and building the department
community as a whole.
Student groups have expanded inclusivity efforts, and we would like to support more
groups creating community, camaraderie, and mutual support for traditionally underrep-
resented groups. We also want to continue building community between faculty, staff,
students, and postdocs by improving communication paths and continuing to organize

social events like the holiday potluck.
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