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Abstract. The interferometric gravitational wave detector Virgo is currently completing its commission-
ing phase and it is close to start scientific observations. Among the signals to be searched for, those emitted
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by coalescing binary systems are particularly promising and require a considerable computational effort
to optimally search the parameter space. The Virgo collaboration has decided to implement an on-line
analysis strategy capable of processing the interferometer data in-time. In this communication we present
a component of the analysis pipeline, a parallel computing system based on the Message Passing Interface
(MPI). We describe its capabilities, underlining its strength and flexibility, and we illustrate its relation with
the other components of the pipeline. The on-line analysis chain, including the presented parallel system,
has been run for the first time successfully during the Virgo commissioning run C5 in December 2nd to
December 6th 2004[1].

1. Introduction
Virgo[1] is a detector built to observe gravitational waves coming from various sources. The neutron
stars coalescing binaries are among the best candidates. To detect the signal emitted by them we plan
to use the matched filter algorithm, comparing the data acquired with a bank of reference signal called
templates; as described in [2] [3][4] this is an heavy computationally demanding technique. One of
the main goal for Virgo is the realization of a reliable real time observation strategy in order to use the
interferometer as a Gravitational Waves observatory. At this aim we carefully designed the computational
strategy by addressing the size of the problem, the computational power required and the constrains due
to the in-time condition. In the paper we present a particular solution implemented in Virgo; this is based
on a parallel-distributed applications environment, the Distributed Signal Analyzer (DiSA) [3], known as
Merlino. This framework is composed by several processes communicating via MPI [5] with a SIMD1

like logical architecture. Merlino distributes and controls user algorithms and data and is based on a
Beowulf cluster of PCs.

This software device has been tested in the online chain during the Virgo commissioning engineering
run C5 in the period 2nd-6th December 2004. There are also others in-time analysis code to perform
coalescing binaries detection, see e.g. MBTA[6].

2. Hardware and software environment
At Virgo site, a Beowulf cluster, dedicated to the online detection activity is installed. This system
is based on Dual Opteron Processor 2.2GHz model 248; Opteron processor provides very good
performance on concurrent processing and IO memory operations [7]. The operating system environment
and the software libraries installed are reported below:

• Linux Red Hat 3.4.x distribution

• Kernel 2.6.8 (64bit)

• gcc 3.4.1,

• MPI (lam-7.1.1),

• FFTW 3.0.1

• others Virgo packages

Merlino framework processes run on this cluster, using 20 nodes (40 processors).

2.1. Merlino main goals
Merlino is composed by six different processes types (Fig. 2), communicating through message passing
interface primitives (MPI). The aim of this plan is to realize something analogous to a programmable
and distributed digital signal processing.
The goals of this project can be summarized:

1 simple instruction multiple data
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(i) Realize a parallel signal analyzer, to optimize this type of problems: single data versus multiple
data 2.

(ii) Optimized design to reduce data handling latency and gain performance: in-time analysis

(iii) Portability and scalability

(iv) Use of standard library

(v) General filtering algorithms (using dynamic library loaded at run-time)

(vi) General filters parameterization

(vii) Hide the parallel architecture to the user

(viii) Provide to the user a single control point to start/manage/stop the environment3

(ix) Provide to the user a simple way to customize the filters algorithms, using the plug-ins philosophy4

2.2. Merlino processes composition
Regarding the firsts versions [2] [3] [8] [9], Merlino (fig. 2) is now upgraded. There are two new
processes, one to interface the VIRGO online, the FdMPIServer, and the other to improve the output
data handling like results and internal messaging, the MSGServer.

Some of these processes are present as single instances inside the environment, these are:
FdMPIServer, MSGServer, loader and the GroupManager; others are present as multiple instances
of the same process, like the fbuild and fproc processes.

Following we present a brief description of each:

• GroupManager(GM) process is the manager and scheduler of the environment. It serializes
opportunely and in the right order the logic flow and processes and distributes the real-time user
commands.

• loader(LD) process loads data and performs pre-processing activity and data conditioning like PSD
estimation, whitening initialization, double whitening[10]. After that input data are sent to the
GroupManager and to the fproc processes (fig. 2) for the processing.

• fbuild processes afterwards build filters data, starting from: filter generator code (loaded via plug-
ins) and filters definition data(ASCII file), both written and defined by the user. Each filter5 is
transfered to the fproc process memory (fig. 1)6. In the environment each fbuild process is linked to
an fproc process; this mean that the number of fbuild processes started in the Merlino framework is
equal to the number of the fproc processes.

• fproc processes apply the filters stored in their memory to the incoming data from
loader/GroupManager. At this aim they use the logic written in the user processing algorithms
loaded from the plug-ins.

• FdMPIServer is a stand alone server. It interfaces the Cm (Communication manager) with MPI
and permits to connect Merlino to the online chain. Cm is the data communication protocol used in
Virgo to exchange messages via network between processes.

• msgServer is a stand alone server that gathers the outputs data coming from each fproc processes
and performs some post processing operation like: sorting events in-time, clusterizing and packing
in frame format. Hence, the results can be sent to the online chain through Cm communication.

2 single data stream is processed using a bench of filters.
3 e.g. the user effort to run Merlino with 1000 CPUs or 1 CPUs is the same
4 To customize Merlino is possible to: change the merlino.cfg configuration file, wrap the user (serial) algorithms with a
specific API and plug at run-time these into Merlino using the shared library. It is also possible to send run-time commands to
control the framework.
5 In the matched filter schema, the filters are the templates
6 Filters are stored in single precision to gain space
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Figure 1. This figure shows the Merlino processes environment and the relation with the ONLINE chain.
These are also the steps describing the generation phase

Figure 2. This figure shows the steps, describing the generation phase. Merlino read data from the
online, using the FdMPIServer process. LD process perform pre-processing and data conditioning on
input data, GM sends these data to the fproc processes with a broadcast communication. Results are sent
to the msgServer.

2.3. Merlino scheduler: generation phase and processing phase
There are two main phases defined inside Merlino, the generation of the filters and the effective data
processing. 7

The generation phase is naively described in fig. 1. It is possible to highlight 5 main steps:

1a FdMPIServer loads data for the online chain after the h-reconstruction [11][12]. If necessary data

7 This is more complex, because each phase is like a macro operation, composed by micro operations or sub-tasks. Each of
these can be called autonomously also at run-time. Follow that the sequence of the micro-operation define each phase, because
logically ordered to produce the required logic behavior.
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are downsampled and Butterworth filtered.

2a LD loads data from FdMPIServer process. It performs some pre-processing activity, one of these is
the power spectrum (PSD) estimation (AR model)[10].

3a PSD and others informations are distributed to the fbuild and fproc processes.

4a GM sends the filters definition data to the fbuilds; there, these data are processed with the generator
plug-ins in order to build the filters.

5a Filters data are sent to the fproc processes memory.

The generation phase ends when all the filters defined by the user in an ASCII table are generated.

When merlino uses the coalescing binaries detection plug-ins, it generates and normalizes the templates
and produces and stores the χ2 [13] bands information for each of them.

The processing phase is naively described in fig. 2. It is possible to highlight 6 main steps:

1b FdMPIServer loads data for the online chain after the h-reconstruction. If necessary data are
downsampled and Butterworth filtered.

2b LD loads data from FdMPIServer process. It performs pre-processing activity, such as Double
Whitening filtering.

3b GM asynchronously loads data from LD, and packs some information about the data for the next
step.

4b GM sends broadcasts data to the fproc processes. fproc processes elaborate the incoming data with
the filters stored in memory, using the user processing algorithm loaded with the plug-ins.

5b The results generated by fproc processes are sent to the msgServer

6b msgServer gathers the output data, post processes and saves them

2.4. Merlino and the overlap-add method
To speed-up the convolution/correlation computation Merlino arranges data inside the framework in
order to use the overlap-add procedure with the FFT correlation(if activated) [14] [15].

The overlap-add method decomposes the signal into simple components, processes each of the
components in some useful way, and recombines the processed components into the final signal
overlapping the results on each step.

This method permits not only to remove the problem of spurious wrap-around and periodicity
effects [15] after an FFT convolution/correlation, but uses these effects to process the data like a
continuous data stream. Thus we don’t loose computed data segments and computation time.

2.5. Coalescing Binaries detection strategy
In the following a brief description of the strategies and methods implemented to perform the coalescing
binaries signals detection will be presented.

In Fig. 3 are shown the logical steps involved inside the fproc processes with the coalescing
binaries(CB) plug-in. This uses the matched filter algorithm to detect the signals and use the theoretical
gravitational waves signals (templates) as filters. Each fproc process matches all the filters(templates),
loaded in its memory, with the data coming from the (GM); the output is called correlator output. When
the correlator output is higher than a defined threshold8, fproc executes a χ2 reconstruction over several
frequency bands. After that, the event is returned to the msgServer. χ2 can be used online as a second
level trigger, comparing its value to another threshold to decide if send or not an event to the msgServer.

8 Threshold can change at run-time
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Figure 3. Coalescing binaries detection plug-ins involve the following operations inside the fproc
processes. fproc processes loop the matched filter algorithms and χ2 (two plots in the inset) over all
the assigned templates. For each template, when the matched filter output is higher than a defined
threshold, fproc executes χ2 reconstruction over several frequency bands. This compares its value with
another threshold and then decides if to accept or reject the event. If an event is accepted, it is sent to the
msgServer.

The template bank is presently produced using the grid generator described in the reference [16] [17];
this provides an optimized template bank distribution using the stars masses range, detector noise PSD,
frequency cut-in and the minimal match as input parameters. The gravitational waves templates are
generated with the inspiral Virgo software package [18]. It provides the post-Newtonian and Effective
One Body approximation to produce the required waveforms. Usually to analyze data, we use the
0th order post-Newtonian approximation in amplitude, and 2nd order post-Newtonian approximation
in phase [19].

In orer to follow the online, Merlino controls the trigger rate and the time spent on each step, because
the computation must end inside the time window established by the online demands; this window is
long as the input data length.

The nonstationary and/or nongaussianity of the input data changes the matched filters trigger rate.
This can produce a delay in the computation. To reduce this effect there are many possible ways:
the threshold can change, following this rate; another strategy is to remove, when needed, the most
computational demanding function, the χ2, in order to store only all the triggers coming from the matched
filter algorithms.

Another method that will be implemented and tested soon is to use a double layer templates grid.
The idea is to have two layered grids. e.g. these joined together provide a 98% minimal match coverage
of the parameters space and they are used in normal detector noise condition. If it happens that for a
certain time the interferometer is noisier, an higher trigger rate is produced. In this case one layer can
be removed in order to have less point to process (e.g.95%). This smaller grid is used until normal noise
conditions are restored.

It is important also study how to manage changes of the template grid due to the Virgo sensitivity
changes. In fact we need to maintain the minimal match coverage nearly constant, without losing
performance. An interesting strategy will be implemented and tested soon: use a reference grid slowly
updated, and follow the detector sensitivity, adding only few templates on the grid. These are placed in
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grid regions where minimal match coverage is decreased due to Virgo sensitivity changes.
Triggers handling is one of the most critical problem, because the fproc processes produce many

data that must be re-united and elaborated in-time. msgServer is the dedicated process studied to do
that. It gathers the outputs data coming from each fproc processes and performs some post processing
operations. It is obvious that the stress over this component depend on the number of fproc processes
connected and more on the trigger rate. The msgServer operations are:

• sorting events, this operation is necessary in the following steps. The list of events stored in the
msgServer memory is initially not ordered. This is due to the fproc processes communication,
because they sends events autonomously and asynchronously.

• clusterization, reduce the number events clusterizing them in time.

• events reconstruction, reconstruct the informations about the physical events: GPS time, distance,
masses and others.

• post-processing, Here is possible to introduce others post-processing operations as other veto
algorithms [20] [21].

• packing, the events are packed in frame format or ASCII format and stored.

To gain in performance, we wrote msgServer as a multi-thread asynchronous MPI communicating
process, and each operation has been optimized. Moreover it is possible to define more than one
msgServer inside the same Merlino environment, in order to distribute the computational load 9. The
results can be sent to the online chain through Cm communication or stored on files.

3. Merlino and the C5 engineering run
Before describing Merlino test done during the C5 run, it is important to introduce the concept of in-time
factor. This is the relevant parameter describing the performance of the in-time analysis. The in-time
factor is the ratio between the time length of data and the time needed to process it.

3.1. The online engineering test
C5 has been a technical test to verify the Merlino on-line connections processes and to stress the code.
During the Virgo Commissioning run C5 Merlino runs continuously for 7 days (Fig. 4) 10 and no
malfunctioning was noticed. The run parameters used in this test were: grid size of 10481 templates
(in order to stress the system, we set the minimal match to produce this high templates number. The
ammount of used memory is equivalent to 150GB of RAM, allocated over 34CPUs), a starting frequency
of 40Hz, sampling frequency of 4kHz, χ2 algorithm disabled and threshold of 6.5;

During the run the mean value of the in-time factor was 1.8; in this configuration and with the actual
detector noise, Merlino was able to online process data up to 1.8 time faster than the acquisition rate.

3.2. The off-line engineering test
The C5 off-line analysis [12] has been performed with 6677 templates, a starting frequency of 60Hz,
sampling frequency of 4kHz, minimal match of 98%, mass range [0.9−10]M�. Applying the matched
filter alone, with 34 CPU the in-time factor is 4 (Fig. 5); instead adding the χ2 test (15 bands) it
decreases down to 3. The χ2 is computed only on the correlators events over threshold, in this way
the computation time follows the trigger rate. If the noise is quite stable this strategy provides good
performance. It is possible to compute the χ2 information over the whole correlators, using a different
algorithm implementation. With this implementation the loss of performances is inversely correlated and
independent to the number of bands.

9 A single process can produce a time latency (bottleneck) in the computation and reduce the effective in-time window available
10 it stopped once, because of an hardware crash of a cluster node
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Figure 4. This plot shows Merlino performance during the Commissioning run C5. A single timeslice
processing step is ∼ 300s. In the vertical axis there is the number of templates per second processed by
Merlino. It is visible the hardware crash of one cluster node at step 600.

Figure 5. Applying the matched filter alone and 34 CPU, the in-time factor is 4, instead with the
χ2 test enabled with 15 bands, we are able to be up to 3 time faster than the data acquisition. The
performance difference is about 21%. The overall Merlino performances are 215.2 template/s in the first
case and 171.4 template/s in the second case; These numbers are the number of templates processed by
the Merlino per second.

4. Conclusions
In this paper we have presented the Distributed Signal Analyzer (DiSA) also know as Merlino project.
It is one of the on-line code in the Virgo pipeline. Now it is employed for searching inspiralling binaries
events using matched filter techniques and χ2 test, but due to the plug-ins design, it can be programmed
to run also others vetoes and detection algorithms. The C5 run allowed to perform some online and
offline tests on the Merlino and on-line code [12].

C5 run noise was particularly challenging respect those found during the previous run C4 [22], with
significant nonstationarity. This has evidenced that more work is required in order to improve the way

42



algorithms adapt to the noise level, handle the templates bank upgrade, and tune the veto procedures;
very promising results have been obtained and useful lessons for the future upgrades have been learned.
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