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Abstract: The effects of vacuum polarization associated with a massless scalar field near pointlike
source with a zero-range potential in three spatial dimensions are analyzed. The “physical” ap-
proach consists in the usage of direct delta-potential as a model of pointlike interaction. We use
the Perturbation theory in the Fourier space with dimensional regularization of the momentum
integrals. In the weak-field approximation, we compute the effects of interest. The “mathematical”
approach implies the self-adjoint extension technique. In the Quantum-Field-Theory framework we
consider the massless scalar field in a 3-dimensional Euclidean space with an extracted point. With
appropriate boundary conditions it is considered an adequate mathematical model for the description
of a pointlike source. We compute the renormalized vacuum expectation value (¢2(x))ren of the
field square and the renormalized vacuum averaged of the scalar-field’s energy-momentum tensor
(Tuv(x))ren. For the physical interpretation of the extension parameter we compare these results
with those of perturbative computations. In addition, we present some general formulae for vacuum
polarization effects at large distances in the presence of an abstract weak potential with finite-sized
compact support.

Keywords: singular potential; self-adjoint extension; dimensional regularization; zero-width interac-
tion; renormalization

1. Introduction

The standard problems of research within the quantum (field) theory, to which physi-
cists return through decades, are the effects of the vacuum polarization on backgrounds
with nontrivial local or global structure, boundaries and external fields. These problems
in fact have a number of nontrivial features. The main of those is that the problems are
determined by the solutions of partial differential equations on the manifold as a whole.
So, the effects become essentially non-local. This non-locality leads to the non-trivial effects
even when one considers the Euclidean space with a discrete number (finite or infinite)
of subtracted points y. In this case the adequate boundary conditions enable to consider
quantum systems given by Hamiltonian of the form

H=-A+)Y A (x—y), 1)
Y

where A is the self-adjoint Laplacian in Lz(Rd) with domain Hzfz(]Rd), d=1,2,3,is the
dimensionality of the configuration space, ?(x — y) is the Dirac d-function localized at v,
Ay is a corresponding coupling constant.

Models, which are heuristically given by Hamiltonian of the form (1), are known in
the literature as ”contact interaction models”, “zero-range interaction models”, ”delta-like
interaction models”, “point interaction models” and “Fermi potential models”. Mod-
els of this type have been widely discussed in physical and mathematical literature in

connection with problems of solid-state physics (Kronig—Penney model [1]), atomic, and
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nuclear physics (description of short-range nuclear forces [2]). Encoding of the boundary
conditions by a J-like potential made it possible to investigate the Casimir interaction of
two parallel perfectly conducting plates [3-9], of two pointlike or linear sources with a
zero-range potential [10-13]. Similar situations arise in consideration of field-theoretical
effects near topological defects. Indeed, the space-time of an infinitely thin straight cosmic
string has a conical structure with a J-like singularity at the top of a cone [14], and in
suitable coordinates the equation for a massless scalar field with nonminimal coupling
takes the form of Equation (1) but with a ”"curved” Laplacian [15,16]. Notice, already
in consideration of FT-processes on the cosmic-string background, as well as within the
analogous (2 + 1)-dimensional problems [17-20], it was crucial a question, in what sense
one should regard the expression (1). In particular, by one way or another, it was proposed
the smoothening of the singularity at conical apex, i.e., in fact to regard the Ad-potential
as a distributional limit of an appropriate delta-like sequence [19-22]. Some conceptual
problems of the Ad-potential introduction were discussed in [23,24].

Similar singular configurations were previously analyzed in the recent literature. Among
the notable are the effective action of pointlike interactions [25], the delta-potentials at finite
temperature [26], Casimir interactions of manifolds with diverse codimensionalities [27], the
Casimir effect with a boundary hyperplane [28], zeta regularization approach to various
Casimir problems [10-12,29], and so forth.

It is known [30-32] that for d > 4 any self-adjoint extension (SAE) of the H = —A,
for which one uses the formal form —A + A, is nothing but —A. For d = 2,3 the free
operator —A is self-adjoint when acting on the finite functions. But for two and three
dimensions H remains to be self-adjoint even when the eigenfunctions blow up at r = 0,
preserving the local square-integrability. The self-adjointness of H is guaranteed by the
specification of boundary conditions. For these two dimensions there exits a one-parameter
family of self-adjoint operators, labeled by a parameter of the self-adjoint extension «,
which is related with the renormalized value of the coupling constant A. Namely, any
operator of this family describes the s-wave zero-range scattering, while the corresponding
scattering length is proportional to —1/a [17,18,30,31]. The basic difference of the two-
and three-dimensional cases from the one-dimensional case is the fact that for d = 1 the
SAE-parameter « represents not the inverse scattering length but the coupling constant
of the J-interaction. We will consider the case where the set of J-singularities consists
of the single point-like source localized at the coordinate-system origin and restrict our
consideration by the case d = 3.

The paper is organized as follows—the Introduction is the first section. The pertur-
bation theory we use is described in the Section 2—the approximated Green’s function
is constructed and preliminary results for the vacuum averages of interest are computed.
Here we work within the approach proposed in [15,16] and substitute the delta by a non-
singular function with finite-sized compact support; then we transit to the zero-width
limit. Section 3 is devoted to the computation of the renormalized vacuum (¢ (x))ren and
(T (X))ren in the self-adjoint scheme. We use the direct mode summation to construct
the Hadamard'’s function for the SAE of the Hamiltonian and points-splitting procedure
for the computation of VEVs. We try to present our computational scheme and results
in more detail. The renormalized EMT reproduces the result computed previously by
Pizzocchero and Fermi [10] by zeta regularization technique. The comparison with the
analogous results obtained in the perturbation theory method, is presented in the last
Section 4, the Discussion. Here we summarize the results and point out some prospects.

We use the units 1 = ¢ = 1 and metric with the signature 7, = diag(1, -1, -1, —1).
The notation g;,, will denote the same Minkowski metric in arbitrary curvilinear coordinates.

2. Perturbation Theory over Potential

In the model we consider the quantized massless scalar field ¢(t, x), living in the static
(3 + 1)-dimensional bulk with the point-like spherically-symmetric potential located at the
single point. With no loss of generality we set this point as origin of a coordinate system.



Universe 2021, 7, 127

3o0f24

We start with the Klein-Gordon-Fock equation for the massless scalar field in the
presence of a static §3-potential:

[02+A8%(x)]¢(t,x) =0, 9% = y"9,0, =7 — A, )

with A as constant real-valued coupling.

It is to be mentioned that é should be regarded as no more than just a symbol until
one decrypts the rule of its usage. We mention the following basic approaches to treat the
d-symbol (it concerns derivatives of ¢ as well):

(i) J may appear as a solution for some kernel of the subsequent integration (like in the
Green's function); in this case the definition of actual usage of J is formulated in terms
of some continuous functional acting on the proper test function (a source);

(ii) J may be considered as limiting state of locally integrable “common” functions (the
delta-like sequences);

(iii) J may be considered just as a rule, which extracts the locus of delta from consideration
but sets some requirements on the admissible solutions and/or their derivatives (like
in Quantum Mechanics).

In our problem of vacuum polarization we have no “source” to be integrated, so we
pay attention to cases (ii) and (iii). Concerning case (ii), we shall consider some abstract
arbitrary static potential U (x), with properties close to the pointlike delta. It is natural
to set the requirement for I to be of finite size and have a compact support. Due to the
arbitrariness we solve the problem iteratively by means of the Perturbation Theory.

The proper mathematical apparatus for case (iii), known in the literature on mathemat-
ical physics, implies the construction of a self-adjoint extension of the field operator ( —A as
0 restricted on the hyperplane t = const in our case, which is a symmetric Hamiltonian).
We postpone the computation by this type to Section 3.

2.1. Abstract Static Potential

Let us start with perturbative calculations working with abstract potential U/ (x).
It appears in the action as

7 = [dix[pup9"p —U(x)p?]. 3)

If U = const > 0 then it may be regarded as a mass square ( = m?) and we return
to the massive real scalar field. If the potential is a negative constant, we have a massive
scalar field with tachyon. In what follows, the sign of value of the potential plays a crucial
role. It also will be of emphatic significance in our consideration.

The action (3) has the following equation of motion:

(02 +U(x)]¢p(t,x) =0.
The Feynman propagator for the scalar field satisfies the equation!
[02+U(x)] GF(x,x') = —6(t — ') 63 (x — ¥') .

Denoting the field operator in the coordinate representation as £(x) = 9% + U (x) and
representing the corresponding equation in the Schwinger (operator) form

£6=—1, 4)

where
(x| 2]x)=L(x)d(x —x), Ghx,x)=(x|®]|x),

1

In what follows we define the Feynman propagator as GF (x, x') = —i(T[¢ (x) ¢ (x')])

vac®
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it admits the operator solution & = —£~!. If operator £ allows to be expressed as
£ = £9+ 4, where 4 is considered as a small perturbation (in some sense) of £y, one
can represent the solution to Equation (4) in the form

® = [—£o(1 - Gotl)| | = 0+ 6 4B + B U UBy + .. 5)
with &9 = —g~ L.

In the case under consideration £y = 92 is determined by the zeroth order in the
small “quantity” U < 1 (somehow directly related with the small operator /). In the
problem-at-hand the function G{ (x,x’) = (x| &y | x’) = —(x | 972 | x’) in Fourier basis
takes the form?:

d4p e—ir(x—x)
F _ p
Go(x—x’)—/(2n>4 e ©)

and for the first-order correction to the Green'’s function from (5) we get the following expression:

d4p e—ip (x—x')
2m)* (p2 +ie)[(p +q)* + ie]

4 )
Gl (%) = (x| @01y | ) = [ d7q e_’qxu(q)/( )

(2m)*
where g = (¢°, q) , p* = (p°, p); g and p are 3-dimensional Euclidean vectors.

2.2. First-Order VEV:s for Static Potential

If the perturbation operator depends on the spatial coordinates only (that is, the case
in our problem), its Fourier-transform reads

U(g) =2ms(q°) U(q), (8)
and from (7) we get

d3q d4p e—ip (x—x')

(27‘[)3 equu(q)/(zn,)4 (P2+l€) [P%— (p+q)2+l£] +O(u2)

GF(x, %) :Gg—i-/

All the quantities we are interested in, are expressed via the Feynman propagator
GF(x,x") and its derivatives, evaluated in coincident points [33]. The contribution of
GE (x,x') (6) contains the single propagator and vanishes in regularization (see e.g., the
Appendix of [15]); we refer these terms as to “tadpole”-contributions.

In terms of G (x, x'), the vacuum field-square average reads

<472(x)>reg = 1x1,1£nm G (2, X" )reg = ixlliinx GF(x,x").

Thus we obtain, that with our accuracy

2 dSq igx d4p 1
P =1 | Grp ™0 [ G rraG T ©

where §" = (0, q) was introduced to keep the 4-dimensional covariant form. The corre-
sponding expressions diverge, and for their evaluation we make use of the dimensional-

2 Hereafter the 4- and 3-dimensional direct Fourier-transforms are defined as

ol9) = / d'x p(x) e, ¢(q) = /d3x P(x) e ix,
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regularization method. The internal integral with two propagators has a standard form in
the dimensional-regularization scheme (see e.g., [34]), and the regularized value is given by

. de 1 _ ‘FZ(%) r<_%) 5D/2-2
Jla) = / @m)D (p2+ie)[(p+q)2 +ie]  (4m)D/20(D —2) 7] 10
which for D = 4 — 24 and q = § yields
_ . T()
J(lql) = a2l [1+0(9)]. (11)

Plugging it into (9) one obtains

_ r(é) qu igx Z/{(q)
<4’2(x)>reg = a2 / (2n)? e a?

which has a form of an inverse 3-dimensional Fourier-transform, but with infinite pre-
factor I'(9) (as & — +0). To fix it, represent U/ (q) as a 3-dimensional Fourier-transform with
respect to new variable x’.

Integrating over g with help of the table Fourier-transform [35]

)

(3)

/ , ey _ oNn—Apn/2 T

(
gl = Ty .

one has

5, 01 A 1
8 g = 1G5 s 1+ OO

so we check that undesirable I'(§) have disappeared. Therefore after the regularization
removal (6 = 0) one arrives at

<¢2(x>>ren _ _3217T3 /dax/M (13)

lx — /3"

The integral is obviously convergent if the potential has a compact support and we
consider the observation points outside it. In this case Equation (13) has a form, reminiscent
to the zeroth-order term of the multipolar expansion of electrostatic potential. Nevertheless,
the integral diverges for the observation points inside the compact potential. Therefore if R
is a size of the potential’s support, we get an apparent requirement

r > R.

However, this condition may become even more stronger if take into account the
possible convergence of the whole series: indeed, it may appear some another lengthy
constants from the concrete problem-at-hand.

Renormalized EMT. Following the same ideology, we compute the VEV for the
components of the energy-momentum tensor of the massless real-valued scalar field. In
terms of the Green’s function, the regularized vacuum expectation value of the energy-
momentum tensor in a flat space is given by

g F 1 F
(T}) en = lellgx D} G (x,x")reg = 1xl,1£nm D}, Gy (x,x),
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where D}, stands for the appropriate differential operator [33,36] (V;, and Vj, denote
the covariant derivative over x* and x¥, respectively, while 9, and 8;, stand for the
corresponding ordinary derivatives) with no curvature:

DY, = (1-28)9"9), — (% - 25) 5y, — g(vvay + v’”a;,) + (zgvAaA - %) 5. (14)

Notice, despite the spacetime is flat, the coordinate system may be non-Cartesian, and
the Christoffel symbols may well survive. Therefore we keep the covariant derivatives
as well.

Therefore the first-order (with respect to /) contribution to the EMT consists of two
parts: the first, which already sits in the operator D), (14), and the second, which appears
as the first correction to the Feynman propagator times the non-i/ terms in Equation (14).
For self-consistency, the first contribution should be computed with the help of the zeroth-order
Feynman propagator Gf (x, x'), whose coincidence-point limit corresponds to the tadpole
diagram and has to be neglected. Thus we are left with the second-type contribution.

Acting by (14) on (7) and taking the coincidence-point limit, one obtains for the

vacuum energy density:

Crodyq
<T00> :l/ (27_[q>4 e—quz,{(q)x
<[ dlp pytpoqot 86+ (26— 12 +p-a) —2%(pa?
(2m)* (p?+ie)[(p +q)* +ie] '

Making use of the fact that the potential is static (Equation (8)), all terms containing qo,
disappear from (15). As before, the internal integral is evaluated within the dimensional-
regularization technique, where the p?- and (p + g)*-terms in numerator are considered as
tadpole-like ones and thus should be neglected. By this reason, we may completely ignore
the last term in (14). Therefore the non-vanishing contribution reads

i [P i dip P+ (28 —-1/2)p-q
(Ton) =1 | s ¥4 [ Gt G v+ 27 i

For the internal integration we encounter the vectorial and tensorial two-propagator
integrals, also familiar for the dimensional regularization (see, e.g., the textbooks [34,37]
on QFT or Appendix of [15]); their regularized values are

_ [ dPp Pu ]
Ju :/(271)’J (p2+ie)[(p+q)2 +ie] I
_ [ dPp PuPv ]

(16)

o = / @D T lp i - &D 1) 7 8w~ D)

(where ] is given by (11) in our case), to obtain

3 )

Operating along the same lines as for (¢*(x))__, we arrive at the following coordinate-

representation formula

ren

(To0(%)) oy = 16%(6 - %) / a3y U] (17)

|x — /5"
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For the spatial components of the renormalized EMT with lowercase indices we have (in
cartesian coordinates) the following non-vanishing expression:

3, .
(1) == [ oy " o)

X/ d*p (E—=1)gipj — pipj + (26 —1/2) p- 4 6;; — S(pidj + G:d;)
(2m) (p2+ie)[(p +q)% + ie]

After the computation of the internal integral one obtains:

(1) = =i~ 5) [ s uta) () (1785~ ) 18)

The first term in the parentheses, after the subsequent integration, equals <T00>ren5ij'

For the second one we differentiate (12):3

/d”qequiQ':— il ‘zniAfn/zr(nEA)
lg[* ™ ayiayl [y["t T(3)

RS E SYPRSSLTT

‘y‘n—)urz F(%) ) :

Combining all terms, the renormalized spatial sector of the EMT is given by

3 1 5, UR) XiXj — 2X(jX}) + X]x]
(T ren = 33,3 (é a 5) /d v lx —x'[5 > lx —x/2 “3%)- @)

The mixed components in cartesian coordinates are determined by the following
effective expression:

2% g d'p _ (£—1) podi — popi
(To) =1 [ s ™40 | s G2 v p + 2

which, upon the p-integration, reduces to superposition of §y4;- and #g;-monomials. Both
them vanish:
(Toi) o = 0-

Hence we conclude that the total EMT, to the first order of PT, is proportional to
the factor ({ — 1/6). It implies that for the conformal coupling the EMT does not vanish
completely, but just scales at large distances not as >, but at least as r~° or even weaker.
Thus for the conformal case one requires the computations in the next order of PT, what
is beyond our goal here. We advertise the confirmation of these notes in the next Section,
being applied to the particular case of pointlike interaction.

The trace can be computed from cartesian coordinates: the spatial-sector trace is
given by

. 3 1 , U
SN(Tij(%)) ron, = @(‘3‘ 6) /d3" |_(xx/)|5

3

Here g is n-dimensional Euclidean vector and g; stands for its i-th component. In Equation (18) the monomial g;4; (or, equivalently, §;7;) is constructed

from the components of the Minkowski vector g/, where the sign changes in dependence of the index kind. But since g enters quadratically, the
lowercase Minkowski tensor ¢;4; is identical to the Euclidean g;4;, where q is the spatial sector of g* with uppercase index. This equality does not

give rise to any confusion.
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In what follows, the total trace equals

Sp(T(0) n = ~ 105 (6~ 5) /d?’x"”(x')

x—x'°
= 3(To0(%)) rep, - (20)

Therefore for any static potential with compact support the trace is thrice the temporal
component (to the first order with respect to the small potential).

The conservation law of the constructed renormalized energy-momentum tensor
reduces to the spatial sector, given by (18), since (Tpo)ren does not depend upon time and
all mixed components vanish ((Tj;)ren = 0). Computing the spatial divergence

/

T3 = ~ 555 (£~ ) /d3x'u(x’)a(S(x"_xf)(xf_xf) P )

0x; x— x| |x — x'|°

one easily verifies that the expression vanishes already in the integrand, thus
0 (T (x)).. = 0.

2.3. Weak-Field Approximation for Zero-Range Potential

The simplest case of the static spherically-symmetric potential is where the support
consists of the single point; with no loss of generality we may choose it as origin of the
coordinate system:

suppU(r) = {0}.

According to the main theorem of the Theory of generalized functions [35], the tem-
pered distribution concentrated on the single point, represents the finite sum of the deriva-
tives of delta-function with locus at this point:

N ok 5
3(x)zkzzocwk/5kvkm5 (%), ap + P+ =k

The corresponding restriction on the spherically-symmetric generalized functions
reduces the condition to

N k
gr) =Y ansP ), 0< N <o,
k=0

Now we restrict ourselves by the simplest case of this class, with N = 0. The potential
is given by

Ux) = A 8%(x) = Af;r(; )

(21)

in cartesian and spherical coordinates, respectively. Thereby the coefficient A plays a role
of the potential’s strength.

Apparently, for A > 0 we deal with repulsion, while the A < 0 is the case of attrac-
tion. If we consider the Schrodinger equation for the quantum non-relativistic “unit”
mass m = 1/2 in a spherical finite-size potential well with width a (radius) and depth
3|A|/ (47ta®) inside the well, then in the limit 2 — +0 the well becomes infinitely narrow
and infinitely deep. For A > 0 we have the limiting case of the potential barrier.
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From dimensional-analysis consideration (in 77 = 1 units), one has
A& (x)] =L =[O =[L77,

and thus A has a dimensionality of length. The usage of the perturbation theory implies
that || = |A|63(x) is “sufficiently small”. Translating it to A as to the only parameter, we
conclude that A is to be sufficiently small with respect to some another length parameter. It
is not hard to deduce that the only such a parameter in the problem-at-hand, is the radial
distance 7, since the problem has radial symmetry and no other lengthy parameters are
involved. Therefore the self-consistence of the PT usage is (naively)

u= |L| , r> Al

In the sequel we will test this requirement, deduced heuristically.

Now we see that we started from the case (ii) of interpretation of J, but in the process
of computation we get actually the potential as a source test function to be integrated
with some kernel (Equations (13), (17) and (18), etc.). What corresponds to the paradigm
(i) discussed above in the beginning of the Section.

Due to the delta-function, the application of the generic formulae, obtained above, is
straightforward. For the renormalized field-square, we plug (21) into (13) to obtain:

5 _ A
<¢ (r)>ren - 32 77313 " (22)

The renormalized vacuum energy density is obtained from the generic static Formula (17);
computing, we get:

3A 1
<T00(7’)>ren = 16505 (C - 8) . (23)

Substituting (21) into (18), the spatial components of the renormalized EMT are
given by

(T0) e = 5577 (& — 3) (51 = 31785 24)

Transforming the tensor to spherical coordinates, the renormalized EMT with mixed
indices reads:

A6E—1) 33
<T;j(t,7’, 9, (P)>ren = Wdlag(l, —1, E, 2) (25)

Therefore, to the first order of the Perturbation Theory, the renormalized EMT of

the conformal field vanishes. Computing the trace directly from here, or making use of
Equation (20), the total trace equals

_ BA(62 1)

< ;‘l>ren T 32345 (26)

Now return to the problem of convergence and validity of the technique. We notice:

1.  The effect vanishes in the limit # — oo, hence the weak-field approximation works at
least at very high (with respect to some lengthy constant) distances;
2. The only such a constant for the problem-at-hand is A, deduced above;

3. From dimensional consideration, the 2nd-order correction to <<p2 (r)),.. is expected to

ren
be of order O(A2/r*). In other words, the parameter of formal series is A /7.

Combining all them, we therefore expect the convergence at A /r < 1.
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Summary: Within the Perturbation Theory, we derived some general formulae for the
vacuum polarization of the massless scalar field in the presence of a static potential. We got,
that for any static potential, the ratio of the trace of the renormalized energy-momentum
tensor* and its temporal component equals 3, independent of the potential distribution. The
generic expressions were applied to the case of zero-width potential. Nevertheless, as it is
well-known, the perturbative solution may produce the series converging everywhere, or to
give the asymptotic series, or the series with finite (or zero) convergence radius. Therefore
the methods which may yield the non-perturbative solution, are of particular importance.

3. Self-Adjoint Extension

More satisfactory, especially within a mathematically-correct framework, the con-
sideration of point-like interaction should be considered as a self-adjoint extension of a
non-interacting Hamiltonian, defined on a space with the extracted point of the potential’s
locus. The parameter of such extension (if it is unique) could be related with the strength
of this interaction.

In what follows, now we consider the non-negative operator H = —A defined on
R3\ {0}. The Klein-Gordon-Fock equation with the extracted origin reads:

Og(t,x) =0 |x| > 0. (27)

As it was seen in the previous Section, the vacuum polarization of the massless field
in this potential represents the effect, which is (i) static, (ii) spherically-symmetric, and
(iii) rapidly decays with growth of a radial distance. Therefore the quantum-field effects
are expressed in terms of the modes with no temporal-coordinate influence and free-wave
behavior at infinity. In other words, we are in the situation where the difference between
the QFT and Non-relativistic Quantum mechanics looks insufficient. Thus it is natural to
consider the problem in the framework of Quantum Mechanics. To proceed, we factorize
the time-dependence of a scalar field in a standard way by the following ansatz:

P (%) = 79 Uy (%),

which distinguishes the positive- and negative-frequency solutions. Plugging it into
Equation (27) one obtains

Hug(x) = w?ue(x). (28)

Consequently, we get the equation on the eigenvalues and eigenfunctions of the
appropriate non-relativistic Hamiltonian. Equation (28) has a form of non-relativistic
Schrodinger equation for a quantum-mechanical particle (m = 1/2) under the influence of
a contact potential created by a point source located at the origin. Parameter A plays a role
of the strength of interaction, while w? has physical meaning as the energy of a wave.

Since we deal with the spherically-symmetric potential, we introduce spherical coor-
dinates, where the Laplacian has well-known decomposition on the spherical harmonics.
Thus one obtains the resolution of the operator’s definition space:

[e9)

L*(R%) = @@ L((0, 00); 2dr) Q [Y1,—1, -, i),

1=0

where L2((0, 00); 7?dr) (standard denotation) means the set of functions, which are locally
quadratically-integrable on R with the measure 7. Dots |...] denote a linear span of the
vectors in brackets.

4

Excepting the conformal field.
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With respect to this decomposition, the closure of H in L?(IR®), H, equals the direct sum

H=PHET1, (29)
=0
where the “partial Hamiltonians” are defined as

& 2d  1(+1)

H=—Gn =zt n

7 120,1,2,

By the well-known results [30,31], for I > 1 each operator H, is self-adjoint itself,
whereas the operator Hy admits a family of self-adjoint extensions Hy, labeled by single
real-valued parameter a:

2 24

HOa:—ﬁ—;E (30)

with the following domain of definition:

D(Hy,) = {ua € L2((0,00);7%dr) ; 4rtar im 11y (r) = lim (g + ru) } (31)
r—0+ r—0+
Thus we deal with the same operator Hy, but defined on the extended space of
functions. Each extension is labeled by the single real-valued extension parameter «, which,
eventually, will restrict the possible eigenfunctions (labeled by pairwise index ) of
a Hamiltonian.
Now we can go back and combine the self-adjoint Hy, with other H; (I > 1) and
obtain the analogue of resolution (29) for the total extended Hamiltonian as a completely
self-adjoint operator:

Hy = <H0“EB@H1> ®1.
=1

In these equations the parameter of self-adjoint extension « takes the values —oo < & < o0,
where the case “a = c0” corresponds to the free Hamiltonian. The boundary condition
allows for the wave eigenfunctions with [ = 0 to blow up at the origin, preserving for them
to be still squared-integrable locally. The set of eigenfunctions, corresponding to the higher
harmonics (Y}, for I > 1), is the same as for free the Laplacian.

The rigorous relation of the abstract extension parameter a with the original strength
parameter A of the delta-potential is to be detected below.

Therefore the change due to SAE may happen in the eigenfunctions of Hy, i.e., for
I = 0; that quantum state is traditionally marked by letter s. The corresponding modified
solution is then called the “s-wave”.

3.1. Eigenfunctions and the Green’s Function

Given that the s-wave corresponds to I = 0, whose angular part is trivial Ypo = 1
and spherically-symmetric, now proceed to the solutions to the radial part of the partial
extended Hamiltonian with | = 0:

HOucuwzx(r) = wzuw“(r) . (32)

Substitution of (30) into Equation (32) yields:

2
Uoa (7) + T Ugpg + WPl = 0.

5

For the mathematically satisfactory consideration of the problem and more details see [31,32] and literature therein.

5
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Introducing Xwa () by twa = Xwa(r)/r, one obtains x/,, = —w?xwa , which, indeed,
has solutions (w? € R)

Uy Sinwr 4 vy cos wr, w? > 0;
Xwa = y_e—|w|r + V_e+|w|r, w? < 0;
Mot + 1o, w=0.

where the coefficients are to be verified by the boundary condition and integrability. The
latter condition kills v_, iy and vy.

For w? > 0 the s-wave eigenfunction differs from the regular one sin wr/r and instead
of (14, v+) we conveniently write the radial part in the form

Ua(r) = C(Sm “T 4 tans < wr>
(with some mixture angle /), where the boundary condition at the origin yields
w
tand = — .
an 4re

Normalizing our positive- and negative-frequency solutions with respect to the
scalar product

i/d3x¢>%>* ?;4)(35) = +6(w— '),
or equivalently, in the form

(w—uw')
2w

/d3x Uy Uy = ,
we get C = cosd/(2my/w) . Thus, the s-wave solution reads

1 sin(wr +9)

Vo

Let {u . } be the complete eigenfunction set of the free Hamiltonian. Note that

Uwa(7) = (33)

Uw00 = Uwa ’a:oo .

By well-known results, if & > 0, the self-adjoint operator Hy, has no negative eigenval-
ues and it’s complete set of generalized orthonormalized eigenfunctions consists of {1, }
for ] > 0and uy(r) for I = 0, where u,;,, is

. 2
Uplm = leYlm ’ Hlvwl = WUy -

By physical arguments this case describes a repulsive interaction.
If —oco < & < 0, Hy, has the single negative eigenvalue (a bound state),

E, = —(4mx)2, —c0o < <0,

with
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as corresponding normalized eigenfunction. By physical arguments, this case describes an
attractive interaction. Below we’ll restrict our consideration by the repulsive case. In this
case the two-point Hadamard’s function takes the form:

DO (x,v') = 2 {p(0)9() + 9 )px)) =

vac

—I%e/lhuelw“”>Pum(x)u;a0ﬂ>+-fi 25 Ui (X) g (X) | (34)
0 I=1m=-I
Thus we can represent the Hadamard function as a sum
DW(x,x') = DX (x,2') + DV (x,x'),
(1)

where Dq,’ (x, x') denotes the free (flat space) Hadamard’s elementary function,
Dé};)(x, x') = Re/dw e iw(t=t) E 2 U () 15, (1)
0

(1)

In what follows Dy’ is of interest for us just at its null level. It defines the vacuum
state, since the renormalized values of this function, as well as of its derivatives, in the
coincidence-points limit are equal to zero. Thus, we shall define Dr(gé as a difference

D) =W -pl) =pY,

and we obtain
D (') = Re. [ dewe ™ ) [t () 10 () = 1o (%) 1 (x')]
0

Rescaling of the integration variable w = 47az gives an eventual form

Dp(él) (x,x)

1 / cos [4raz(t — t')] (sin [47az(r +1')] +2z cos [47mz(r+1’/)}>- (35)

- 4n2rr’.0 1+ 22

3.2. Field-Square VEV

Taking the limit t = ¢’ and ' = r, we reexpress the result as

2 _p _ J(8mar)
<q> (x)>rer1 - D“ (x’ X) - 47-[21/2 ’
in terms of introduced function
J(B) = 70! L (sinpz+ )
B) = Zl+zz (smﬁz zcos Pz ).
0

This integral is to be computed in terms of special functions. Namely, we make use of
the table integral [38] [f.3.723-1]:

e}

[ a5 = 2 e PEi(p) — P Ei(—p)|sgnp, (36)
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where Ei(x) is the exponential integral function

X
.et

Fi(x) = / S at,

well-defined for x < 0 and analytically-continued to C except the cut [0, +o0), with
x = 0 to be the branching point. The values at the cut (on the main sheet) are Ei(x) =
= [Ei(x 4 i0) + Ei(x — i0)]/2, and for any positive x both Ei and Ei in (36) are unambigu-
ously presented by converging series

. = () - =
EBi(—x) =y+Inx+ ) h El(x):'y—i—lnx—i—zm,
k=1 k=1 ’

where y ~ 0.5772 is the Euler —Mascheroni constant. Differentiating (36) with respect to
one obtains

[T E = 5l PRp) + PR Cp), 7
0

Combining (37) with (36), the total integral equals

_ | —€PEi(-p), B>0;
J(ﬁ)—{ e PE(B), F<0. (38)

In order to don’t deal with the multivalued function Ei, for positive argument (),
which is of our interest here, the Ei-function on the main sheet reduces to the modified (not
analytic) exponential integral function E;:®

(o]
—Ei(— /eT = E1(x), x>0.
X

The vacuum field square then reads

8mer 87T
(§20)) = S EETT). (39)

The plot of (¢?(r) >ren for different values of « is presented on the Figure 1. As it seen,
each curve rapidly decays. In order to reveal some characteristic regimes of them, we will
use the logarithmic coordinates (Figure 4 below).

Asymptotic regimes. The limit « — +oco corresponds to flat space with no potential.
Therefore the regime r >> a~! corresponds to the case where the interaction is weak.
For the exponential integral the asymptotic representation [38]

J(El —

Y

o0 k |
% k x>1 (40)

is available, thus at large distances (r > a~!) the VEV (¢?)en reads

(@), = 32711W [1+0(7)]. (41)

6 Notice, we use the definitions of [39]. Not to be confused with the 1st Euler’s polynomial.
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<¢2>ren

0.1 0.2 0.3 0.4 0.5 0.6

Figure 1. Plots of <4>2>ren as function of r for & = 1 (red), « = 10 (black) and « = 100 (green).

A necessary note should be done: the expansion (40) is asymptotic, but the infinite
series obviously diverges for any x. Nevertheless, for fixed value x the highest precision is
achieved for the partial sum with kmax(x) = [x] instead of infinity in (40):

1 Bl kg

2 —
<¢ (7’)>ren - 32 3nr3 = (871'061’)]( : (42)

If truncate the series at this recommended value, the relative error for <4>2(r)>ren is

O (V4r2ar e 8™"). We can not approach the true value more closely, but such an error
exponentially decreases. Thereby we consider it as a good approximation.

The different approximations to (¢?(r))ren by the asymptotic Formula (40) are pre-
sented on the Figure 2.

<¢2>ren r2

0.20

0.154

0.104

0.05 1

Figure 2. Plots of (¢?)ren (times %) for & = 0.1: computed exactly (by Equation (39), red dashed
curve), for the main asymptotic term (kmax = 0, by Equation (41), black curve) and for kmax = 3 (in
Equation (40), green).

The difference between the best approximation (by Equation (42)) and the worst one
(by Equation (41)) is shown in Figure 3. In order to reveal the difference we plot the small
domain and for small value of « in doubly logarithmic mode. The miser drawback of the
usage of the r-dependent truncation for the best approximation consists in the obvious fact
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that being plotted on some domain, the curve is not continuous. Indeed, when the product
8mar reaches an integer, the number of retained terms shifts by one and the plot becomes
piecewise (Figure 3, the blue curve has discontinuities at Inr ~ 1.903 and 1.217).

1.08 1.10 1.12 1.14 1.16 1.18 1.20 1.22 1.24 1.26
| | | | | | )

-2+ Inr

-2.05

-2.154

-2.20
tan =-1

-2.257

In (<¢2>ren ,,.2)

Figure 3. Plots of In(r?(¢?)ren) versus Inr for « = 0.1, computed exactly (by Equation (39), red
dashed curve), for the main asymptotic term (kmax = 0, by Equation (41), black curve), for kmax = 3
(in Equation (40), green) and for the r-truncated series (by Equation (42), blue). The plotting domain
corresponds to ar = 0.29...0.35. For higher r, « and more wide range the curves become closer to
each other.

For the opposite case of small distances (r < a~!) one uses the series [38]

o (_ .\k
Ei(x) =|Inx[—y— ) (ki{)' , 0<xx1. (43)
k=1 "™

Thus the vacuum averaged ($?)ren takes the form

1

(020 en = gz (= In (B77ar) + Oar|Inacr) ) .

The behavior of {(¢?)en With respect to asymptotic regimes is shown in Figure 4 in
doubly logarithmic mode.

ln <¢ 2 >ren

-404 tan =-3

Figure 4. Plots of In <(j)2>ren versus Inr for & = 1 (red), « = 10 (black) and « = 100 (green). Dots on
each curve correspond to the value r = a—1and distinguish two characteristic regimes.
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It contains two characteristic regimes with tangents approximately equal to —2 (that
corresponds to r < &~ 1) and —3 (respectively, to 7 > a~!), and some transition area across
= (8ma) L.

3.3. Vacuum Energy-Momentum Tensor

The vacuum energy-momentum tensor for a massless field in a flat space-time may be
determined by the application of the differential operator (14) to the constructed Green'’s
function (35), i.e., already in the regularized form. We notice, that for r,7 > 0 D,Ecl) (
satisfies the free d’Alembert equation:

x, x)

0.0 (x,x') = 0 = O.DY (x, ')

and thus the last term in (14) may be omitted:

1
v T _ vy (1 vaAal v iy (1) /
(T4 o = lim | (1-22) "9, (2 zg)(sﬂa 9, g(v A+ V ay)} DY (x,x'). (45)

The covariant derivative here is essential, since we use the curvilinear (spherical)
coordinates, and the Christoffel symbol do not vanish.”

Computing the derivatives over t(#') and r(#’), and so on, the integral (35) accumulates
z in numerator and becomes UV-divergent. At the other hand, we can not differentiate
J (B) directly since it is defined already with the coincident points. Since p{M (x,x") is
angular-independent, we need to regularize derivatives over r (') and t ('), then setting
the limits t =/, r =r'.

Start with the spatial derivatives: we separate the integral in (35) as

I(t—t,r+71")
42 rr!

2~

D¢

x,x') =

/ cosdrmacz(t — t')] (sin [4mtaz(r +1")] + z cos [4maz(r + r')]) ,
0

1+22

which in the coincident-point limit becomes:
1(0,2r) = J (8mtar) . (46)
Both radial coordinates enter in the integrand as a sum, thus

ot —t,r+7) ol(t—t,r+7v") oI(t—t,r+71")

or o or' o o(r+1')

Therefore if to introduce the new single variable R = r + 7/, then one notices that the
computation of the limit » = #’ does not change the total independent R, while the limit
t = t' does not involve the differentiation variable R and just transforms I to 7. In other
words, the two operations—differentiation over R and the coincident-point limit-commute.
So one can differentiate (46) in the form

I(t—t,R) = J(4maR)
to obtain the correspondence rules

al(t—t,r+1") _ 1 9J(8mar) I(t—t,r+7") _ 1327 (8mar)
or Y=y 2 or ’ or? v=x 4 or? .

7 Namely, the actual non-vanishing Christoffels for us will be I'y; = —r and l“zw = —rsin6.
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The first time-derivatives are proportional to sin(t — ') and thus vanish in the limit:

A(t—t,r+7")
ot

_al(t—t’,r—i—r’)

= =0.
=t ot’

t'=t

For the second time-derivatives we note that the constituents of the integrand of
I satisfy
<82 02 ){ cos[c(t —#)]sin[c(r+1")] } 0

92 3r2 )| cos[c(t — #)] cos[c(r +1')]

(c = 4maz), and the same for (9/0t-9/0t' +9/dr-9/9r"). Since both r(r') and ¢ (#') are not
the integration variable, the same properties hold for the total integral. Thus we convert
time-derivatives into the r-derivative and reduce the problem to the already solved.
Thereby, we reduce all valuable derivatives in (45) into the form of derivatives of
J (B). Namely, in the limit x — x’, apart from 7 (), one encounters the derivatives [7'(8)
and J"(B). To simplify the routine computations, we define the convenient combinations:

2
J1(B) = 5diéﬁ) , D (B) = ﬁzd 23(2/3) :

With help of the them the straightforward calculation leads to the following result for
the components of the renormalized energy-momentum tensor in spherical coordinates:

<Ttt>ren = ﬁ (; - 26)](87(”) + (2(',‘ — %)ﬁ(Smw) - CJz(Smxr)]
(T} ) o = ﬁ :(4@ - %)j(8mxr) + (% — 25) J1(87mr)} (47)
(T8 sen = ﬁ (; —4€>~7(8”M) + (36 - %)%(SWW) + G - t?)Jz(Snar)]

= (T9) en (48)
(T sen =0

where the direct differentiation of (38) yields
Ji(B) =BT (B) -1, D (B) =BT (B) — p+1. (49)
From the diagonal components we find that the trace equals

27 (8mtar) — 271 (8mar) + Jo (87ar)
8724

(T4) e = (1 - 68) . (50)

Thus, for the conformal, { = 1/6, field the trace vanishes, in agreement with the
generic expression for the conformal anomaly in the flat background [33,36] .8

Conservation law. After some straightforward computation one can check that the
renormalized energy-momentum tensor is conserved:

VilTY),., =0. (51)

ren

More concretely, the covariant divergence of the symmetric tensor,

_ 1
VAT = 18177200 (181 2T ) = 5 (T8 e P00

8 Here we are not interested in the problem whether the potential, being an energy source, produces own gravitational field.
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in our static case with the dependence upon the radial coordinate only, is trivial for
i =t,0, ¢. The conservation of 4 = r component reduces to

BR'(B) +2[R(B) + ®(B)] =0, (52)

where R = 4 712r4T!, ® = 4 7°r* T([,(P (the square parentheses in Equations (47) and (48)). To
satisfy (52), one easily verifies that the two following necessary conditions hold: (i) R does
not contain 7, and (ii) (R + ®) does not contain J directly. It follows from the fact that 7,
J1 and J, have different asymptotic behavior at infinity.

Plugging (47) and (48) into (52) one verifies that the condition does hold, resulting
in (51).

Asymptotic regimes. For large values of its argument the condition [J (x) = 1/x +
+ O(x72) for B > 1 reduces to

(T(t,7,0,9)),., = _m% (c- %) diag(l, -1, g i)[l + 0(%)} , (53)

where we imply that || does not take large values.
We notice, that the exact result for EMT does not vanish for the conformal coupling,
in contrast with the (53). Now we can get the corresponding asymptotic for this case:

- 1 . 1 2 2 1
<T;f(t,1’,9,(p)>ren—wdlag(l, g, —g, _3)|:1+O(M):|, 621/6 (54)

Thus the renormalized EMT of the conformal field decays faster. The trace, indeed,
vanishes. For the estimates of approximation of EMT by the asymptotic series, all the
arguments presented above for (¢?), are still valid.

In fact, the expression (54) represents an asymptotic to the corresponding exact tensor
(Ty)) =(T}) ¢—1/6 50 that the following splitting holds:

() = T+ (6 ) THE),

thus Tﬁ and T;j (¢) may be regarded as conformal and “anti-conformal” parts of the renor-

malized EMT, respectively. From (50) we conclude that

T
2

g
P = .

The plot of the non-zero components of the conformal part (T;{ ) is given on the
Figure5.

In the limit » — oo the conformal tensor scales as T;f o r~® while the “anti-conformal”
one as T;{ o 2. In what follows T;{ dominates (for ¢ # 1/6) and thus its asymptotic
behavior is determined by Equation (53). The plot of the non-zero components of the
”anti-conformal” part (T};(¢)) is presented in Figure 6.

For the opposite case, B < 1, we use expansion (43). Since the derivatives of J contain
extra powers of r, by virtue of Equation (49), for < 1 the behavior of the renormalized
EMT components is governed by the [J-coefficients. Retaining the two basic terms, we get:

1

1 . 1 1 1
<T;4/(t,1’,9, (P)>rel’1:m [dlag(ZC - E, E 74@,4(: — 5,467 2) 1n87'[0¢1’+ (55)

wiag (157 +22y-3), 17 + e, T wac-0, T a0,

2 4

plus the remainder of order O (aIn(ar)/r%).
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Figure 5. Plots of the conformal part of (Tﬁ )ren (normalized by the overall factor r°) for a = 1: T}
(red), T/ (black), and —T(Z) (green). Horizontal asymptotes at r — co and their ratio correspond to
Equation (54).

L RS SR L ELE
0.016- — -

0.014 /7

o024 /

0.0104 /

0.008 -

0.0061

0.004 1

0.002 1

Figure 6. Plots of the ”anti-conformal” tensor T;f (&) (normalized by the overall factor 7°) for minimal
coupling (¢ = 0) and a = 1: —T (red), + T/ (black), and 7T$ (green) and for the trace —Sp T (blue
dashed). Horizontal asymptotes at r — oo and their ratio correspond to Equation (53). The ratio
Sp T/ T} asymptotically corresponds to Equation (20).

The behavior of the renormalized vacuum energy density for the total EMT (T};)ren
and its constituents (T;,’ and T};()) is shown in Figure?7.

To summarize, the problem of vacuum polarization of the massless scalar field in
the external zero-width barrier may be solved exactly for the case of repulsive potential,
by means of the Laplacian’s self-adjoint extension. The final answer for the renormalized
vacuum (¢?) and (T, ) is expressed in terms of the exponential integral E. The extension
parameter « and the observation point r enter the formulae in the dimensionless combi-
nation § = 87ar. Therefore from the behavior of E; (pure mathematical, not related to
any physical problem) there exists a natural domain g ~ 1 which distinguishes asymptotic
regimes of the problem at hand. At fixed r, the “almost-free-Hamiltonian” regime is get
for the extremely large extension parameters; in terms of the exponential integral it corre-
sponds to the large-f asymptotic regime (8 > 1). In turn, for fixed extension parameter
«, such a regime corresponds to the large distances from the source (r 3> a~1). In other
words, the extension parameter « plays the role of the inverse “characteristic radius” of the
point-like interaction. Thus (41) and (53) correspond to the weak-field approximation.
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tan ~- 1 1041n | Ty 73|

Figure 7. Plots of the vacuum energy density (times overall factor r%) in doubly logarithmic mode
(¢ = 1): for the total EMT (Tog)ren (¢ = 0, red), for conformal tensor Tyg (black), and for ”anti-
conformal” tensor —Tgo(¢) (€ = 0, green).

The exact EMT trace is proportional to the factor ({ —1/6) and vanishes for the
conformal coupling ¢ = 1/6, in accordance with the conformal anomaly. The full answer
for the total EMT is not proportional to the factor (¢ — 1/6) and thus does not vanish for
the conformal field. Results for the renormalized EMT coincide with the ones obtained by
the heat kernel technique in [10].

4. Discussion

We have considered a problem of the vacuum polarization of a scalar field in the
presence of zero-width potential within two different frameworks. The first considers the J-
like potential as a distributional limit of potentials with compact support tending the width
to zero and fixing the source’s field strength; it works in the weak-field approximation.
The second implies the heuristically written operator —A + A¢ as a self-adjoint extension
of the free Laplacian on the space with extracted point; the results obtained here, are non-
perturbative. The results of both approaches are expressed in terms of “own” couplings:
via delta-field coupling A in Section 2 and via the SAE-parameter « in Section 3.

Making the comparison of the renormalized <4>2 (r) >ren in (13) (which is valid atr > A)
and the corresponding weak-field asymptotics (41) from Section 3, one deduces that the
relation of constants (if it does take place!) is given by

x=—1/A. (56)

Comparing the corresponding results for the vacuum energy density (Formula (23)
versus (53)), as well as for the spatial components of the renormalized EMT, we arrive at
the same conclusion.

Thus a question arises of whether one can consider both approaches as adequate
descriptions of the same zero-width potential, if in both cases the absence of bound states
is identified with the positive values of the corresponding coupling. One might suppose
that the solution lies in the necessity of renormalization of the “bare” coupling A.

In fact, let the perturbed operator Hy = —A + AJ has an eigenfunction u,(x), which
corresponds to the continuous spectrum. The general solution for the central field is a
superposition of functions u (x) = R;(r)Y},, (9, ¢). Integrate an eigenfunction equation
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Hjuw(x) = w?uy(x) over a ball B, with radius e centered at x = 0. Applying the Gaufy’

theorem, one obtains:

_ / Viug,dZ + Auy(0) = (Uew(x))e,
9B,

where (1, (x)) stands for the average value of u,, over a ball. In what follows

—amR()RY) + A (0) = TS ()R O)1 4 0(),

where (Y},,,) is a mean value of Y},,, over s2. Admitting the extension of the definitiondomain
onto a class of (locally) square-integrable functions which go like ~ r~! as r — 07 and

taking into account the well-known radial-function behavior R; ~ 7!, we convince ourselves
that the extension affects on the s-wave only:
_fa :
Ro(T) = 7+f0 +f17’+ vy (57)

r

indeed, a shift of the power of r by one less does not make irregular the functions with
I > 1. Then for the s-state one has Yy = 1 and u,, = Ry is a spherically-symmetric function.
Tending € — 07, in the limit we obtain a constraint

4nf 1+ Afo=0.

In fact, we have reproduced here the same ideology, which is of use in the SAE
approach, for the perturbed Hamiltonian H,. Then in the assumption of the equivalence
(correspondence) of both approaches in Sections 2 and 3 * we have to identify the s-wave
1y, of the perturbed Hamiltonian with the s-wave 1, of the free-Hamiltonian’s SAE (33).
Hence we write the same coefficients f_;, fy for both radial functions. In terms of the SAE
parameter of the free Laplacian with extracted origin, from Equation (31) it follows

4t lim rug(r) = Wm (ug +ruy), fo=4naf 1.
r—0+ r—0t
Thus, we conclude the relation aA = —1, which coincides with (56) but the absence

of bound states (which is considered as repulsion) should correspond to both A > 0 and
« > 0! The resolution consists in the fact that in the formal integration of the eigenfunction
equation the term AJ yields A fy before the application of SAE. If to do it with account of (57),
it appears an addendum Af_; /€, where € tends to 0" and has no relation with the radius
of an integration domain B;.!® An account of this infinite contribution indicates on the
necessity of renormalization of coupling A:

1 1 1

Aren A + 47e’

The need of this renormalization at the QM level was discussed in several works. The
relation of “bare” coupling with the SAE parameter was considered in [17,18,40]. In [25]
it was pointed out that such a renormalization eliminates the leading divergence in the
effective action.

°  What represents a goal of our issue.

10" The parameter € appears from reexpressing (21) as

84+ (r) .1 é6(r—e)
3 _ 9+ _ il
(x) = 47mr? eli%k 47 2
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Hence it is natural to suppose that the resolution of the sign paradox consists in the
substitution of the "bare” A by Aren. In terms of the renormalized coupling, the relation
with the SAE parameter is given by & = —A;.L.

Though no renormalization was necessary within both computations, we must do it
now in order to achieve self-consistent results and adequate interpretation of them. The
main achievement of the work is a computation of non-perturbative effects with SAE,
where the SAE-parameter is to be connected with the renormalized strength coupling.
In what follows, the coupling A in the results of Section 2 should also be regarded in the
renormalized sense. The general formulae for the abstract weak potential with a compact
support may have an independent significance for the non-singular cases.

The related problems for the case of presence of the bound states, including the
two-dimensional and higher-dimensional spatial delta-model, still await a resolution and
proper interpretation. In particular, it represents an emphatic importance in the case of SAE
for the conical space with linear angular deficit; it corresponds to the cosmic string. The
unperturbative exact solutions for the vacuum polarization effects represent an apparent
goal of the subsequent issues.
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Abbreviations

The following abbreviations are used in this manuscript:

FT Field Theory

QFT  Quantum Field Theory
OM  Quantum Mechanics

PT Perturbation Theory

SAE  Self-Adjoint Extension
EMT Energy-Momentum Tensor
VEV  Vacuum Expectation Value

References

1.  Kronig, R.L.; Penney W.R. Quantum Mechanics of Electrons in Crystal Lattices. Proc. Roy. Soc. A 1931, 130, 499.

2. Demkov, Y.N,; Ostrovskii, V.N. The Usage of Zero-Range Potentials in Atomic Physics; Nauka: Moscow, Russia, 1975. (In Russian)

3. Mamaeyv, 5.G.; Trunov, N.N. Vacuum Expectation Values of the Energy Momentum Tensor of Quantized Fields on Manifolds with
Different Topologies and Geometries III. Sov. Phys. ]. 1980, 23, 551. [CrossRef]

4. Mamaev, S.G; Trunov, N.N. Quantum Effects in the External Fields Determined by the Potentials with Point-like Support. Yad.
Fiz. 1982, 35, 1049. (In Russian)

5. Bordag, M.; Henning, D.; Robaschik, D. Vacuum energy in quantum field theory with external potentials concentrated on planes.
J. Phys. A 1992, 25, 4483. [CrossRef]

6. Bordag, M.; Mohideen, U.; Mostepanenko, V.M. New developments in the Casimir effect. Phys. Rep. 2001, 353, 1205. [CrossRef]

7. Bordag, M.; Klimchitskaya, G. L.; Mohideen, U.; Mostepanenko, V. M. Advances in the Casimir Effect; Oxford University Press:
Oxford, UK, 2009.

8. Mufios-Castafieda, J. M.; Moteos Guilarte, J.; Moreno Mosquera, A. Quantum vacuum energies and Casimir forces between
partially transparent J-function plates. Phys. Rev. D 2013, 87, 105020. [CrossRef]

9. Grats, Y.V. Casimir Energy in Contact-Interaction Models. Phys. Atom. Nucl. 2018, 81, 253-256. [CrossRef]

10.  Fermi, D.; Pizzocchero, L. Local Casimir Effect for a Scalar Field in Presence of a Point Impurity. Symmetry 2018, 10, 38. [CrossRef]


https://www.mdpi.com/ethics
http://doi.org/10.1007/BF00891938
http://dx.doi.org/10.1088/0305-4470/25/16/023
http://dx.doi.org/10.1016/S0370-1573(01)00015-1
http://dx.doi.org/10.1103/PhysRevD.87.105020
http://dx.doi.org/10.1134/S1063778818020096
http://dx.doi.org/10.3390/sym10020038

Universe 2021, 7, 127 24 of 24

11.

12.
13.
14.
15.

16.

17.

18.
19.

20.

21.
22.

23.
24.
25.
26.

27.

28.

29.
30.

31.
32.
33.
34.
35.
36.

37.
38.
39.

40.

Fermi, D.; Pizzocchero, L. Local Zeta Regularization and the Scalar Casimir Effect. A General Approach Based on Integral Kernels; World
Scientific Publishing Co.: Singapore, 2017.

Fermi, D. Vacuum Polarization with Zero-Range Potentials on a Hyperplane. Universe 2021, 7, 92. [CrossRef]

Grats, Y.V. Vacuum Polarization in a Zero-Range Potential Field. Phys. Atom. Nucl. 2019, 82, 153-157. [CrossRef]

Sokolov, D.D.; Starobinsky, A.A. The structure of the curvature tensor at conical singularities. Sov. Phys. Dokl. 1977, 22, 312.
Grats, Y.V,; Spirin, P. Vacuum polarization and classical self-action near higher-dimensional defects. Eur. Phys. J. C 2017, 77, 101.
[CrossRef]

Grats, Y.V.; Spirin, P. Vacuum polarization in the background of conical singularity. Int. . Mod. Phys. A 2020, 35, 2040030.
[CrossRef]

Jackiw, R. Delta function potentials in two-dimensional and three-dimensional quantum mechanics. In M. A. Beg Memorial Volume;
Ali, A., Hoodbhoy, P, Eds.; World Scientific: Singapore, 1991; 15p.

Jackiw, R.W. Diverse Topics in Theoretical and Mathematical Physics; World Scientific: Singapore, 1995.

Allen, B.; Ottewill, A.C. Effects of curvature couplings for quantum fields on cosmic string space-times. Phys. Rev. D 1990,
42,2669. [CrossRef] [PubMed]

Kay, B.; Studer, U.M. Boundary conditions for quantum mechanics on cones and fields around cosmic strings. Comm. Math. Phys.
1991, 139, 103 [CrossRef]

Allen, B.; Kay, B.S.; Ottewill, A.C. Long range effects of cosmic string structure. Phys. Rev. D 1996, 53, 6829. [CrossRef]
Khusnutdinov, N.R.; Khabibullin, A.R. Zero point energy of a massless scalar field in the cosmic string space-time. Gen. Rel. Grav.
2004, 36, 1613. [CrossRef]

Berezin, F.A.; Faddeev, L.D. Remark on the Schrodinger equation with singular potential. Soviet. Math. Dokl. 1961, 2, 372.
Zel’dovich, Y.B. Scattering by a singular potential in perturbation theory and in the momentum representation. JETP 1960, 11, 594.
Solodukhin, S.N. Exact solution for a quantum field with delta-like interaction. Nucl. Phys. B 1999, 541, 461. [CrossRef]
Spreafico, M.; Zerbini, S. Finite temperature quantum field theory on noncompact domains and application to delta interactions.
Rep. Math. Phys. 2009, 63, 163. [CrossRef]

Scardicchio, A. Casimir Dynamics: Interactions of Surfaces with Codimension > 1 Due to Quantum Fluctuations. Phys. Rev. D
2005, 72, 065004. [CrossRef]

Albeverio, S.; Cognola, G.; Spreafico, M.; Zerbini, S. Singular perturbations with boundary conditions and the Casimir effect in
the half space. J. Math. Phys. 2010, 51, 063502. [CrossRef]

Fermi, D. The Casimir energy anomaly for a point interaction. Mod. Phys. Lett. A 2020, 35, 2040008. [CrossRef]

Reed, M.; Simon, B. Methods of Modern Mathematical Physics. 1. Fourier Analysis. Self-Adjointness; Academic-Press: New York, NY,
USA; London, UK, 1975.

Albeverio, S.; Gesztesy, R.; Hoegh-Krohn, R.; Holden, H. Solvable Models in Quantum Mechanics; World Scientific: Singapore, 1995.
Gitman, D.M; Tyutin, 1.V.; Voronov, B.L. Self-Adjoint Extensions in Quantum Mechanics; Springer: New York, NY, USA, 2012.
Birrell, N.D.; Davies, PC.W. Quantum Fields in Curved Space; Cambridge University Press: Cambridge, UK, 1982.

Itzykson, C.; Zuber, J.B. Quantum Field Theory; Mcgraw-Hill: New York, NY, USA, 1980.

Gel’fand L.M.; Shilov, G.E. Generalized Functions: Properties and Operations; Academic Press: Waltham, MA, USA, 1964.
Christensen, S.M. Vacuum expectation value of the stress tensor in an arbitrary curved background: The covariant point-separation
method. Phys. Rev. D 1976, 14, 2490. [CrossRef]

Peskin, M.E.; Schroeder, D.V. An Introduction to Quantum Field Theory; Westview Press: Pod, FL, USA, 1995.

Gradshteyn, L.S.; Ryzhik, I.M. Table of Integrals, Series, and Products; Academic Press: New York, NY, USA, 2007.

Abramowitz, M.; Stegun, I. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; U.S. Government
Printing Office: Washington, DC, USA, 1964.

Park, D.K. Green’s-function approach to two- and three-dimensional delta-function potentials and application to the spin-1/2
Aharonov-Bohm problem. J. Math. Phys. 1995, 36, 5453. [CrossRef]


http://dx.doi.org/10.3390/universe7040092
http://dx.doi.org/10.1134/S106377881902008X
http://dx.doi.org/10.1140/epjc/s10052-017-4647-6
http://dx.doi.org/10.1142/S0217751X20400308
http://dx.doi.org/10.1103/PhysRevD.42.2669
http://www.ncbi.nlm.nih.gov/pubmed/10013137
http://dx.doi.org/10.1007/BF02102731
http://dx.doi.org/10.1103/PhysRevD.53.6829
http://dx.doi.org/10.1023/B:GERG.0000032153.48990.3f
http://dx.doi.org/10.1016/S0550-3213(98)00789-5
http://dx.doi.org/10.1016/S0034-4877(09)00011-1
http://dx.doi.org/10.1103/PhysRevD.72.065004
http://dx.doi.org/10.1063/1.3397551
http://dx.doi.org/10.1142/S0217732320400088
http://dx.doi.org/10.1103/PhysRevD.14.2490
http://dx.doi.org/10.1063/1.531271

	Introduction
	Perturbation Theory over Potential
	Abstract Static Potential
	First-Order VEVs for Static Potential
	Weak-Field Approximation for Zero-Range Potential

	Self-Adjoint Extension
	Eigenfunctions and the Green's Function
	Field-Square VEV
	Vacuum Energy-Momentum Tensor

	Discussion
	References

