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Nonlocal quantum gravity is a class of fundamental theories whose classical and quantum
dynamics is specified by ”form factors”, operators with infinitely many derivatives. After
briefly reviewing this paradigm and its role in the resolution of big-bang and black-hole
singularities, we count the number of nonpertubative field degrees of freedom as well
as the number of initial conditions to be specified to solve the Cauchy problem. In
particular, in four dimensions and for the string-related form factor, there are 8 degrees
of freedom (2 graviton polarization modes, which propagate, and 6 nonpropagating rank-
2 tensor modes) and 4 initial conditions. The method to obtain this result is illustrated
for the case of a nonlocal scalar field.

1. Introduction

“Nonlocal quantum gravity” is an umbrella name including at least two different
settings. The first group, which includes general relativity, consists in classically
local gravitational theories which receive quantum corrections such that the effec-
tive one-loop action is nonlocal (i.e., it is made of operators with infinitely many
derivatives). In this brief review of recent results, we will confine ourselves to the
second meaning of the term, where nonlocality is fundamentally present already
at the classical level and, thanks to the suppression of the graviton propagator in
the ultraviolet (UV), the theory is renormalizable or finite. Nowadays, nonlocal
quantum gravity has achieved a high degree of independence both from these an-
tecedents and from other proposals, to the point where it can be considered as one
of the most promising and accessible candidates for a theory where the gravita-
tional force consistently obeys the laws of quantum mechanics. In particular, there
exist several renormalization results, both at finite order and to all orders in a per-
turbative Feynman-diagram expansion, which showed that the good UV properties
guessed at the level of power-counting indeed hold rigorously (e.g., Ref. 1).

Despite the investment of much effort in taming fundamental nonlocality, several
questions remain open to date: (i) Is the Cauchy problem well-defined? (ii) If so,
how many initial conditions must one specify for a solution? (iii) How many degrees
of freedom are there? (iv) How to construct nontrivial solutions? (iv) Is causality
violated? (v) Are singularities resolved at the classical or quantum level?

Here we will give the following answers to some of these issues: (i) Yes, for
the form factors appearing in fundamental theories (not for all conceivable form
factors). (ii) Two or higher for a scalar field theory and four or higher for gravity
(depending on the form factor), but finite. (iii) Eight (in D = 4 dimensions), but
only the graviton modes propagate. (iv) Via the diffusion method. Let us now
examine where these cryptic responses come from. The main results can be found
in Refs. 2, 3.
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2. Action and form factors
The classical fundamental (not effective) action of the theory is

1 D, /—

S = ﬁ d”z\/—g [R+ Guu’Y(D)le] ) (1)
where G, is the Einstein tensor and (0) is a weakly or quasi-polynomial nonlocal
form factor. Formally, v is an analytic function that can be expressed as an infinite
series with infinite convergence radius, v(O) = ), ¢,0", although this expansion
does not actually span the whole space of solutions in general.* As long as we require
good properties at the quantum level (in particular, locality of the counterterms),
the coefficients ¢, can be selected in a subclass of entire functions having special
asymptotic properties. > There are several form factors that preserve perturbative
unitarity in (1) (see Table 1). In general, we can parametrized v as

JHD) PO
'y(D):Tl, H(D) :a/o dwle(), @)

where H () depends on the dimensionless combination /2(] and [ is a fixed length
scale. The profile H () can be defined through an integral where o > 0 is real and
P(0O) is a generic function of 20J. The parameter a will not play any important role
in what follows, but we included it to reproduce some form factors in the literature.

Table 1. Form factors in nonlocal gravity.

H(O) | P(O) | f(w) | Form factor name
-1’0 _ Kuz’'min©®
HPoY(O) := ofln P(O) +T[0, P(O)] + v} o@m e—w T 58
—1?0 string-related 10
exp ([ .= _
HoP () = aP(0) 1402 l-w Krasnikov 11

All these form factors share the common property of blowing up in the UV in
momentum space. In general, this implies asymptotic freedom, i.e., interactions are
subdominant at short scales.

3. The wild beast of nonlocality

Consider the scalar field theory on Minkowski spacetime

5= [ aPs [gom@6-veo)] | ®)

where V is an interaction potential. How could one explore its classical dynamics?
As a first attempt, one can try to truncate the nonlocal operator up to some
finite order, y(O) ~ Zﬁ[:o 0" =co + 10+ - - - + exyON. However, the resulting
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finite-order dynamics is physically inequivalent to the original one and there is no
smooth transition between them. The free (V = 0) case illustrates the point well:

~(O) = e’ = dispersion relation: — k2el*K* oL =0
—1%K?
= propagator: — ek—2 = 1 DOF, (4)
g(0) ~ 1 — 1?0 = dispersion relation: — k?(1 4+ 1?k%)¢y, = 0
1 1
= propagator: — e + e = 2 DOF, 1 ghost. (5)

This example provides a good occasion to comment also on how to determine the
number of field degrees of freedom (DOF). In the free case, there is only one double
pole, corresponding to 1 DOF. This can also be seen by making a nonlocal field
redefinition ¢ := \/~v(0)¢, so that the free Lagrangian reads L4 = (1/2)¢0¢. This
operation is safe if «y is an entire function; if 7 is not entire (for instance, v = OJ~™),
then the field redefinition may result in the elimination of physical modes or the
introduction of spurious ones. The Lagrangian £~¢ is second-order in spacetime
derivatives and features one local field q~5, hence there is only 1 DOF and solutions
are specified by two initial conditions. However, when V' is nonlinear of cubic or
higher order the field redefinition does not absorb nonlocality completely and one
is left with a possibly intractable problem, with extra nonperturbative degrees of
freedom'? and an infinite tower of Ostrogradsky modes.

In fact, the Cauchy problem can be naively stated as the assignment of an infinite
number of values at some initial time t;,

é(t:), (), d(t:), d(t), ... . (6)

Thus, paradoxically, we can solve the dynamics only if we already know the solu-

tion: 13

I ) (4
o) =3 Uy @

n

If we do not specify all the initial conditions, the solution may be non-unique.
Finally, a word on how to rewrite nonlocalities as a convolution. It is well known
that infinitely many derivatives can be traded for integrated kernel functions:

(0) b(z) = / Py F(y — ) d(y) . (8)

However, by itself this operator bears no practical advantage. Hiding infinitely many
derivatives into integrals does not help in solving the Cauchy problem, unless the
kernel F' could be found by solving some auxiliary, finite-order differential equations.
This is precisely the leverage point we will focus on.
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4. Diffusion method

The diffusion method was proposed some years ago*2:14:1% to solve nonlocal scalar
field theories with exponential form factor (4), a very specific nonlocal operator
that arises in string theory. By trading nonlocal operators with shifts in a fictitious
extra direction 7, the method allows one to count the number of DOF and of
initial conditions (which are finite) and to find nonperturbative solutions. All these
features can be easily illustrated by the scalar field theory

5= [ % | Joe)0ePol) - V(o) 0

where 12 is a constant. The equation of motion is
Oe "o —V'(¢) =0. (10)

Define now a localized system, a priori independent of (9), living in D + 1 di-

12

mensions and featuring two scalars ®(r, z) and x(r, z):

S[@,x] = /dD:z:dr (Lo+Ly) ) (11)
Lo— %fb(r, 2)00(r — 12, 2) — V[D(r, 2)], (12)
l2
L, = %/0 dg x(r — q,x) (0 — O)®(r', x), P =r+q-1%> (13)
The equations of motion are
0= (0, —0)®(r,x), 0= (0, — O)x(r,x), (14)
0= 2080 — .2) + x(r — .2)] + S[08(r + ) — x(r + )] = VV[(r, )]

(15)

The first line is telling us that the fields are diffusing along the extra direction.
At this point, one assumes that there exists a constant S such that the equation
of motion (15) coincides with the one of the nonlocal system (9), Equation (10),
on the slice r = BI? (the physical slice). This is achieved provided the following
conditions hold:

(B, x) = ¢(x),  x(B1*x) =DOP(BI% x). (16)

The conclusion is that the localized system has 4 initial conditions ®(r,;,x),
d(r,t;,x), x(r,ti,x), x(r,t;,x) and 2 field DOF ® and y. On the physical slice,
because of (16) the number of DOF reduces to 1 and the initial conditions are on the
field ¢ and its first two derivatives (the initial conditions of x are not independent):

(b(ti,X), (b(tiv X) . (17)

With traditional methods, only perturbative solutions of the linearized EOM

or what we call “static” (in the extra direction r) solutions are available to in-
spection. By this name, we mean solutions where nonlocality is, in one way or
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another, trivialized, such as when ¢ = A¢. In contrast, the diffusion method
gets access to nonperturbative solutions valid in the presence of nonlinear interac-
tions and nontrivial nonlocality. These solutions are, in general, only approximate,
and are found by searching for the value of S minimizing the equations of mo-
tion®1%:16 Examples are: ¢(t) = Kummer(#) on a Friedmann—Robertson—Walker
(FRW) background; rolling tachyon ¢(t) = > a,e™ in string field theory, V = ¢?;
kink ¢(z) = erf(z), V = ¢3; ¢(t) = v(a,t) (incomplete gamma function), V = ¢"
on FRW background; instanton ¢(x) = erf(x), V = ¢* (brane tension recovered at
99.8% level); kink ¢(x) = erf(x), V = (eP¢?)?; various profiles ¢(t) in bouncing
and singular cosmologies.

The main reason why diffusion works is that nonlocal operators are represented
as a shift in an extra direction rather than as an infinite sum of derivatives. The
latter representation does not span the whole space of solutions, as one can see by
a toy example.* Consider a D = 4 FRW background with Hubble expansion H =
a/a = Hy/t, the Laplace-Beltrami operator O = —9? —3H9;, and the homogeneous
power-law profile ¢(t) = tP. If we try to calculate the object e'H¢ as a series,
the result diverges: e™™¢ = > °°° (r0)"¢/n! = co. On the other hand, with the
diffusion method one interprets ¢(t) = ®(t,0) as the initial condition in the diffusion
scale 7 and the profile e"P®(¢,0) = Kummer(t,7) is a linear superposition of well-
defined Kummer functions.

5. Initial conditions and degrees of freedom

The diffusion method has been extended to the case of gravity in Ref. 2 for the
string-related and Krasnikov exponential form factors and in Ref. 3 for the asymp-
totically polynomial (Kuz'min and Tomboulis—-Modesto) form factors. The reader
can consult those papers for technical details; here we only quote the bottom line,
which is that, for the string-related form factor, the localized system associated
with (1) has 6 initial conditions g, (ti,X), Guw(ti,X), @u(rti,%), D (r,ti, %),
X (7, 6, %), Xpuw (7,65, %), two for each rank-2 symmetric tensor field (the metric
guv and the tensors @, and X, ). Since, on the physical slice, ®,, (812, z) = G,
and X, (BI%,x) = R, the initial conditions on these fields are not independent.
However, while x,, is an auxiliary field of the localized system and depends on
the dynamical degrees of freedom of the nonlocal system, ®,, is an auxiliary field
already at the level of nonlocal dynamics and it encodes the two derivatives hidden
in the Ricci tensor and scalar. Therefore, the solutions of the nonlocal system (1)
are characterized by 4 initial conditions:

gHV(ti7X)7 gHV(ti7X)7 gul/(tivx)a guu(tiax) . (18)

Regarding the degrees of freedom, the counting for the exponential form factor
is the following. (i) Graviton g,,: symmetric D x D matrix with D(D + 1)/2
independent entries, to which one subtracts D Bianchi identities V#G,, = 0 and D
diffeomorphisms (the theory is fully diffeomorphism invariant). Total: D(D —3)/2.
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In D = 4, there are 2 degrees of freedom. (ii) Tensor ¢,,: symmetric D x D matrix
with D(D+1)/2 independent entries, to which one subtracts D transverse conditions
VH¢u, = 0. Total: D(D —1)/2. In D = 4, there are 6 degrees of freedom. Similar
results hold for the asymptotically polynomial Kuz’min form factor, although in
that case the diffusion method requires more elaboration.?

The grand total is D(D — 2). In D = 4, there are 8 DOF. Two of them (the
graviton) are visible already at the perturbative level, while the other 6 are of
nonperturbative origin. Their role in phenomenology?® has been determined only
recently.!” It was shown that the extra D(D — 1)/2 tensor degrees of freedom do
not propagate on Ricci-flat backgrounds, at any perturbative order.

6. Conclusions

The number of degrees of freedom and of initial conditions of fundamentally nonlocal
gravitational theories with “well-behaved” form factors is finite. In the diffusion
method, infinitely many initial conditions are traded for boundary conditions in an
extra direction. Solving the diffusion equation and algebraic relations is way simpler
than solving nonlocal equations. By making sense of the Cauchy problem in this
class of theories, the doors of classical top-down phenomenology may open up.
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