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Counting initial conditions and degrees of freedom in nonlocal gravity
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Nonlocal quantum gravity is a class of fundamental theories whose classical and quantum
dynamics is specified by ”form factors”, operators with infinitely many derivatives. After
briefly reviewing this paradigm and its role in the resolution of big-bang and black-hole
singularities, we count the number of nonpertubative field degrees of freedom as well
as the number of initial conditions to be specified to solve the Cauchy problem. In
particular, in four dimensions and for the string-related form factor, there are 8 degrees
of freedom (2 graviton polarization modes, which propagate, and 6 nonpropagating rank-
2 tensor modes) and 4 initial conditions. The method to obtain this result is illustrated
for the case of a nonlocal scalar field.

1. Introduction

“Nonlocal quantum gravity” is an umbrella name including at least two different

settings. The first group, which includes general relativity, consists in classically

local gravitational theories which receive quantum corrections such that the effec-

tive one-loop action is nonlocal (i.e., it is made of operators with infinitely many

derivatives). In this brief review of recent results, we will confine ourselves to the

second meaning of the term, where nonlocality is fundamentally present already

at the classical level and, thanks to the suppression of the graviton propagator in

the ultraviolet (UV), the theory is renormalizable or finite. Nowadays, nonlocal

quantum gravity has achieved a high degree of independence both from these an-

tecedents and from other proposals, to the point where it can be considered as one

of the most promising and accessible candidates for a theory where the gravita-

tional force consistently obeys the laws of quantum mechanics. In particular, there

exist several renormalization results, both at finite order and to all orders in a per-

turbative Feynman-diagram expansion, which showed that the good UV properties

guessed at the level of power-counting indeed hold rigorously (e.g., Ref. 1).

Despite the investment of much effort in taming fundamental nonlocality, several

questions remain open to date: (i) Is the Cauchy problem well-defined? (ii) If so,

how many initial conditions must one specify for a solution? (iii) How many degrees

of freedom are there? (iv) How to construct nontrivial solutions? (iv) Is causality

violated? (v) Are singularities resolved at the classical or quantum level?

Here we will give the following answers to some of these issues: (i) Yes, for

the form factors appearing in fundamental theories (not for all conceivable form

factors). (ii) Two or higher for a scalar field theory and four or higher for gravity

(depending on the form factor), but finite. (iii) Eight (in D = 4 dimensions), but

only the graviton modes propagate. (iv) Via the diffusion method. Let us now

examine where these cryptic responses come from. The main results can be found

in Refs. 2, 3.
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2. Action and form factors

The classical fundamental (not effective) action of the theory is

S =
1

2κ2

∫
dDx
√−g [R+Gμνγ(�)Rμν ] , (1)

where Gμν is the Einstein tensor and γ(�) is a weakly or quasi-polynomial nonlocal

form factor. Formally, γ is an analytic function that can be expressed as an infinite

series with infinite convergence radius, γ(�) =
∑

n cn�n, although this expansion

does not actually span the whole space of solutions in general.4 As long as we require

good properties at the quantum level (in particular, locality of the counterterms),

the coefficients cn can be selected in a subclass of entire functions having special

asymptotic properties.1,5–9 There are several form factors that preserve perturbative

unitarity in (1) (see Table 1). In general, we can parametrized γ as

γ(�) =
eH(�) − 1

� , H(�) := α

∫ P (�)

0

dω
1− f(ω)

ω
, (2)

where H(�) depends on the dimensionless combination l2� and l is a fixed length

scale. The profile H(�) can be defined through an integral where α > 0 is real and

P (�) is a generic function of l2�. The parameter α will not play any important role

in what follows, but we included it to reproduce some form factors in the literature.

Table 1. Form factors in nonlocal gravity.

H(�) P (�) f(ω) Form factor name

Hpol(�) := α{lnP (�) + Γ[0, P (�)] + γE} −l2�
O(�n)

e−ω Kuz’min6

Tomboulis5,8

Hexp(�) := αP (�)
−l2�
l4�2 1− ω

string-related10

Krasnikov11

All these form factors share the common property of blowing up in the UV in

momentum space. In general, this implies asymptotic freedom, i.e., interactions are

subdominant at short scales.

3. The wild beast of nonlocality

Consider the scalar field theory on Minkowski spacetime

Sφ =

∫
dDx

[
1

2
φ�γ(�)φ− V (φ)

]
, (3)

where V is an interaction potential. How could one explore its classical dynamics?

As a first attempt, one can try to truncate the nonlocal operator up to some

finite order, γ(�) �∑N
n=0 cn�n = c0 + c1� + · · ·+ cN�N . However, the resulting
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finite-order dynamics is physically inequivalent to the original one and there is no

smooth transition between them. The free (V = 0) case illustrates the point well:

γ(�) = e−l
2� ⇒ dispersion relation: − k2el2k2φk = 0

⇒ propagator: − e−l
2k2

k2
⇒ 1 DOF , (4)

g(�) � 1− l2�⇒ dispersion relation: − k2(1 + l2k2)φk = 0

⇒ propagator: − 1

k2
+

1

l−2 + k2
⇒ 2 DOF, 1 ghost . (5)

This example provides a good occasion to comment also on how to determine the

number of field degrees of freedom (DOF). In the free case, there is only one double

pole, corresponding to 1 DOF. This can also be seen by making a nonlocal field

redefinition φ̃ :=
√
γ(�)φ, so that the free Lagrangian reads L̃φ = (1/2)φ̃�φ̃. This

operation is safe if γ is an entire function; if γ is not entire (for instance, γ = �−n),

then the field redefinition may result in the elimination of physical modes or the

introduction of spurious ones. The Lagrangian L̃φ is second-order in spacetime

derivatives and features one local field φ̃, hence there is only 1 DOF and solutions

are specified by two initial conditions. However, when V is nonlinear of cubic or

higher order the field redefinition does not absorb nonlocality completely and one

is left with a possibly intractable problem, with extra nonperturbative degrees of

freedom12 and an infinite tower of Ostrogradsky modes.

In fact, the Cauchy problem can be näıvely stated as the assignment of an infinite

number of values at some initial time ti,

φ(ti), φ̇(ti), φ̈(ti),
...
φ (ti), . . . . (6)

Thus, paradoxically, we can solve the dynamics only if we already know the solu-

tion:13

φ(t) =

+∞∑
n=0

φ(n)(ti)

n!
(t− ti)n . (7)

If we do not specify all the initial conditions, the solution may be non-unique.

Finally, a word on how to rewrite nonlocalities as a convolution. It is well known

that infinitely many derivatives can be traded for integrated kernel functions:

γ(�)φ(x) =

∫
dDy F (y − x)φ(y) . (8)

However, by itself this operator bears no practical advantage. Hiding infinitely many

derivatives into integrals does not help in solving the Cauchy problem, unless the

kernel F could be found by solving some auxiliary, finite-order differential equations.

This is precisely the leverage point we will focus on.
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4. Diffusion method

The diffusion method was proposed some years ago4,12,14,15 to solve nonlocal scalar

field theories with exponential form factor (4), a very specific nonlocal operator

that arises in string theory. By trading nonlocal operators with shifts in a fictitious

extra direction r, the method allows one to count the number of DOF and of

initial conditions (which are finite) and to find nonperturbative solutions. All these

features can be easily illustrated by the scalar field theory

Sφ =

∫
dDx

[
1

2
φ(x)�e−l2�φ(x) − V (φ)

]
, (9)

where l2 is a constant. The equation of motion is

�e−l2�φ− V ′(φ) = 0 . (10)

Define now a localized system, a priori independent of (9), living in D + 1 di-

mensions and featuring two scalars Φ(r, x) and χ(r, x):

S[Φ, χ] =

∫
dDx dr (LΦ + Lχ) , (11)

LΦ =
1

2
Φ(r, x)�Φ(r − l2, x)− V [Φ(r, x)] , (12)

Lχ =
1

2

∫ l2

0

dq χ(r − q, x)(∂r′ −�)Φ(r′, x), r′ = r + q − l2. (13)

The equations of motion are

0 = (∂r −�)Φ(r, x), 0 = (∂r −�)χ(r, x), (14)

0 =
1

2
[�Φ(r − l2, x) + χ(r − l2, x)] +

1

2
[�Φ(r + l2)− χ(r + l2)]− V ′[Φ(r, x)].

(15)

The first line is telling us that the fields are diffusing along the extra direction.

At this point, one assumes that there exists a constant β such that the equation

of motion (15) coincides with the one of the nonlocal system (9), Equation (10),

on the slice r = βl2 (the physical slice). This is achieved provided the following

conditions hold:

Φ(βl2, x) = φ(x), χ(βl2, x) = �Φ(βl2, x) . (16)

The conclusion is that the localized system has 4 initial conditions Φ(r, ti,x),

Φ̇(r, ti,x), χ(r, ti,x), χ̇(r, ti,x) and 2 field DOF Φ and χ. On the physical slice,

because of (16) the number of DOF reduces to 1 and the initial conditions are on the

field φ and its first two derivatives (the initial conditions of χ are not independent):

φ(ti,x), φ̇(ti,x) . (17)

With traditional methods, only perturbative solutions of the linearized EOM

or what we call “static” (in the extra direction r) solutions are available to in-

spection. By this name, we mean solutions where nonlocality is, in one way or
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another, trivialized, such as when �φ = λφ. In contrast, the diffusion method

gets access to nonperturbative solutions valid in the presence of nonlinear interac-

tions and nontrivial nonlocality. These solutions are, in general, only approximate,

and are found by searching for the value of β minimizing the equations of mo-

tion4,15,16. Examples are: φ(t) = Kummer(t) on a Friedmann–Robertson–Walker

(FRW) background; rolling tachyon φ(t) =
∑
n ane

nt in string field theory, V = φ3;

kink φ(x) = erf(x), V = φ3; φ(t) = γ(α, t) (incomplete gamma function), V = φn

on FRW background; instanton φ(x) = erf(x), V = φ4 (brane tension recovered at

99.8% level); kink φ(x) = erf(x), V = (e�φ2)2; various profiles φ(t) in bouncing

and singular cosmologies.

The main reason why diffusion works is that nonlocal operators are represented

as a shift in an extra direction rather than as an infinite sum of derivatives. The

latter representation does not span the whole space of solutions, as one can see by

a toy example.4 Consider a D = 4 FRW background with Hubble expansion H =

ȧ/a = H0/t, the Laplace–Beltrami operator � = −∂2t −3H∂t, and the homogeneous

power-law profile φ(t) = tp. If we try to calculate the object er�φ as a series,

the result diverges: er�φ =
∑∞

n=0(r�)nφ/n! = ∞. On the other hand, with the

diffusion method one interprets φ(t) = Φ(t, 0) as the initial condition in the diffusion

scale r and the profile er�Φ(t, 0) = Kummer(t, r) is a linear superposition of well-

defined Kummer functions.

5. Initial conditions and degrees of freedom

The diffusion method has been extended to the case of gravity in Ref. 2 for the

string-related and Krasnikov exponential form factors and in Ref. 3 for the asymp-

totically polynomial (Kuz’min and Tomboulis–Modesto) form factors. The reader

can consult those papers for technical details; here we only quote the bottom line,

which is that, for the string-related form factor, the localized system associated

with (1) has 6 initial conditions gμν(ti,x), ġμν(ti,x), Φμν(r, ti,x), Φ̇μν(r, ti,x),

χμν(r, ti,x), χ̇μν(r, ti,x), two for each rank-2 symmetric tensor field (the metric

gμν and the tensors Φμν and χμν). Since, on the physical slice, Φμν(βl2, x) = Gμν
and χμν(βl2, x) = Rμν , the initial conditions on these fields are not independent.

However, while χμν is an auxiliary field of the localized system and depends on

the dynamical degrees of freedom of the nonlocal system, Φμν is an auxiliary field

already at the level of nonlocal dynamics and it encodes the two derivatives hidden

in the Ricci tensor and scalar. Therefore, the solutions of the nonlocal system (1)

are characterized by 4 initial conditions:

gμν(ti,x), ġμν(ti,x), g̈μν(ti,x),
...
g μν(ti,x) . (18)

Regarding the degrees of freedom, the counting for the exponential form factor

is the following. (i) Graviton gμν : symmetric D × D matrix with D(D + 1)/2

independent entries, to which one subtracts D Bianchi identities ∇μGμν = 0 and D

diffeomorphisms (the theory is fully diffeomorphism invariant). Total: D(D− 3)/2.
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In D = 4, there are 2 degrees of freedom. (ii) Tensor φμν : symmetric D×D matrix

with D(D+1)/2 independent entries, to which one subtractsD transverse conditions

∇μφμν = 0. Total: D(D − 1)/2. In D = 4, there are 6 degrees of freedom. Similar

results hold for the asymptotically polynomial Kuz’min form factor, although in

that case the diffusion method requires more elaboration.3

The grand total is D(D − 2). In D = 4, there are 8 DOF. Two of them (the

graviton) are visible already at the perturbative level, while the other 6 are of

nonperturbative origin. Their role in phenomenology3 has been determined only

recently.17 It was shown that the extra D(D − 1)/2 tensor degrees of freedom do

not propagate on Ricci-flat backgrounds, at any perturbative order.

6. Conclusions

The number of degrees of freedom and of initial conditions of fundamentally nonlocal

gravitational theories with “well-behaved” form factors is finite. In the diffusion

method, infinitely many initial conditions are traded for boundary conditions in an

extra direction. Solving the diffusion equation and algebraic relations is way simpler

than solving nonlocal equations. By making sense of the Cauchy problem in this

class of theories, the doors of classical top-down phenomenology may open up.
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