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Chapter 1

General introduction: quantum
coherence with a dissipative,
out-of-equilibrium conductor

In this work, we study the coherent interaction of a dc-biased Josephson junction (JJ) with
the modes of its electromagnetic environment. We show that when carefully engineering
this environment, a JJ can provide a bright source of quantum microwave radiation.

A first description of the Josephson junction

The starting point of our work is the Josephson junction, which is a tunnel junction
between two superconducting electrodes (Fig.1.1). In a normal state tunnel junction,
electrons can cross the insulating layer thanks to the tunnel effect, giving rise to an elec-
trical current I. A tunnel junction is a quantum coherent conductor, in the sense that the
phase of charge carriers is preserved during their transmission through the barrier.

In the superconducting state, electrons pair to form the so called Cooper pairs. These
Cooper pairs undergo a phase transition analogous to the Bose-Einstein condensation,
and can be described by a macroscopic wavefunction. Cooper pairs can also tunnel
through the barrier, carrying a charge 2e. Their tunneling gives rise to the Josephson
current I = I0 sin(�) [1]. Here � is the difference of the phases of the two superconducting
condensates in each electrode, while I0 is a phenomenological quantity called the critical
current of the junction.

sc sc

Figure 1.1: Schematic drawing of a JJ between two superconducting (sc) electrodes (in grey). The
transport of current through the junction at low energy can be described as the tunneling of Cooper
pairs through the insulating barrier (slate blue layer).
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The phase difference � is itself proportional to the integral of the voltage V across the
junction, so that �̇ = 2e

~
V . This phase is thus akin to a magnetic flux.

The Josephson equation can be rewritten to link the derivative of the current I to the
voltage drop V , with: dI

dt
= I0 cos(�)

2e
~
V , or equivalently V = ~/2e

I0 cos(�)
dI
dt
. The JJ can thus

be seen as a non-linear inductance LJ(�) =
~/2e

I0 cos(�)
, while being intrinsically dissipation-

less [2]. Due to their unique properties, JJs are ubiquitous in two a priori very different
fields of research: quantum information science and mesoscopic transport.

Josephson junctions in Quantum Information devices

When a JJ is embedded in a circuit, its non-linearity can be exploited to implement a
given functionality, just as for any electrical component. JJs are in particular crucial in
the field of Quantum Information, as their coherence properties and absence of intrinsic
dissipation make them suitable for the manipulation of quantum signals.

As an example a circuit can be built where a JJ behaves in a given frequency band
as a negative impedance, so that it amplifies the incoming signals in that band. This
Josephson amplifier can be engineered to work at the quantum limit, in the sense that
it only adds to the amplified signals the minimum amount of noise required by quantum
mechanics [3][4][5]. Other types of quantum-limited devices can be built around JJs, such
as frequency converters [6][7], or single-photon detectors [8][9][10].

The non-linear response of JJs is also used to engineer effective two-level systems, known
as artificial atoms or qubits. One of the simplest ones is the dipole formed by a single
JJ in parallel with a capacitance. This device implements an anharmonic LC resonator.
Transitions between the ground state and first excited state of this oscillator can be
selectively addressed, making it effectively a two-level system.

JJ-based qubits can couple electrically to superconducting microwave resonators, which
host modes of the electromagnetic field [11]. Their field of study is called circuit-QED,
as it was inspired by cavity-QED experiments with real atoms in cavities. Circuit-QED
allow probing the light-matter interaction, in settings where the natural coupling strength
of QED can be tweaked to engineer novel effects [12].

Furthermore, superconducting qubits are a potential platform for the dawning field of
quantum computing, which motivates a great number of theoretical proposals for in-
creasingly complex experiments (Fig.1.2). The experimental effort to implement these
experiments aims notably at increasing the coherence lifetime of these artificial atoms, as
well as the fidelity of the logical gates acting on them.

These various examples illustrate how quantum coherence can be harnessed by using
JJs as non-linear dissipationless electrical dipoles. The success of these experiments rely
notably on the careful decoupling of the JJ from the uncontrolled degrees of freedom in
their environment. In these conditions the microscopic inner workings of the junction can
mostly be ignored, and it may be considered solely through the quantum engineer point
of view [13].

In contrast to this situation, in this work we will carry out experiments where the junction
is galvanically connected to a biasing circuit. Put under a dc voltage bias, the junction
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Figure 1.2: Example of a superconducting circuit where various JJs (crosses) are used to manipulate
quantum information. A JJ in parallel with a capacitance (in blue) forms an anharmonic oscillator. This
qubit can be selectively coupled to an electrical resonator (in red) through a Superconducting QUantum
Interference Device (in green), whose admittance can be quickly varied by threading a magnetic flux
through the loop (green arrow).

should be considered as a link between two electronic reservoirs kept out of equilibrium,
allowing for the flow of a dissipative dc current. This setting connects superconducting
circuits with an older field of research, the physics of coherent conductors.

Quantum transport in the mesoscopic regime

A coherent conductor is an electrical conductor small enough for the phase of the electrons
wavefunction to be preserved during their transmission. Electric transport through these
systems should then be described by the scattering of electronic waves in the sample,
opening the possibility for quantum interferences.

Early experiments in quantum electrical transport focused on evidencing electronic inter-
ference effects on the most easily accessible observables, such as the dc electrical conduc-
tance. Coherent transport has been studied in a wide variety of mesoscopic conductors:
Josephson junctions, but also normal tunnel junctions between two metallic electrodes,
p-n junctions in semi-conductors, more exotic junctions where the barrier layer is itself
semiconducting, magnetic, or displaying a strong spin-orbit interaction, 2D electron gases
that can be patterned to yield quantum dots or quantum point contacts...

The results of these experiments are well understood within the so-called Landauer-
Büttiker (LB) approach, where charge transfer through quantum conductors is proba-
bilistic [14][15][16]. Due to charge granularity, this probabilistic character induces current
noise of purely quantum origin. The observation of this shot noise was one of the most
prominent experimental confirmations of the LB approach [17][18].

Later experiments include the application of an ac voltage bias. If the frequency ! of the
ac bias is high enough so that ~! exceeds the thermal energy kBT , singularities appear
in the low frequency noise power SII(0) = hI2i � hIi2 at voltage V = k~!/e. This is an
indication of photo-assisted tunneling, where the transmission of an electron through the
sample is accompanied by the absorption of k quanta of energy ~! [19][20][21].

From current noise to microwave radiation

The current noise at finite frequency SII(!) =
R

hI(t)I(t + ⌧)iei!⌧dt is a more intricate
quantity, which also yields precious information on the system under study [16]. On
general grounds current fluctuations through the conductor can be picked up by the
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electromagnetic modes of the environment, where they are dissipated as an emission
power (Fig.1.3). If this environment is not in the vacuum state, it can also emit energy
into the conductor through this mechanism. SII(!) is then related to the emission and/or
absorption of light by the conductor.

Figure 1.3: Schematic model of a coherent conductor (represented here as a constriction in an electron
waveguide) put out of equilibrium by a dc voltage bias V . The current I flowing through the circuit
consists of a dc part Idc, due to the irreversible transfer of charges through the conductor, and of a
fluctuating part δI with spectral density SII(ω), due e.g to the granularity of charge for shot-noise. This
current noise can be picked up by modes in the electromagnetic environment, resulting in the emission
of photons by the conductor.

The shot-noise due to single-charge tunneling through an out-of-equilibrium tunnel junc-
tion [22] is the most simple example of this kind of radiation. Due to the very low
transmission probability through the tunnel barrier, each tunnel event is random, and
uncorrelated with the previous and following ones. The current I resulting from this
large number of independent events presents fluctuations that can be characterized by
the noise spectral density SII(!).

Suppose that we connect an impedance Z(!) at zero temperature in parallel with a
voltage-biased junction, in order to pick up this current noise and measure its value. In
a simple microscopic picture, electrons tunneling elastically from the source electrode to
the other one end up with an excess energy eV , which is dissipated in the sink reservoir.
The part of this energy which is dissipated in Z(!) can be interpreted as the emission of
photons ~! from the tunnel junction into the environment. Most importantly, as each
tunneling electron carries an energy which is at most eV , it can never emit photons at
frequency higher than eV/~, resulting in SII(! > 2eV/~) = 0 [16][23].

This simple result connects the properties of microscopic charges to a macroscopic observ-
able: the Joule power dissipated in an external impedance. It also links charge transport
through a conductor to the emission of light in its environment, i.e highlights the link
between electronics and optics in quantum coherent conductors.

The QED of coherent conductors

We have given a simplified description of how the JJ is considered both in circuit-QED and
in mesoscopic transport: either as a non-linear electrical dipole used to engineer quantum
information processing, or as a coherent conductor hosting microscopic processes. In both
fields the interaction of JJs with the electromagnetic field is also studied, but once again
with very different points of view.

In circuit-QED, classically coherent microwave light is commonly used to prepare a system
in a given quantum state, or to read-out this state after manipulation. The weak signals
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emitted by the quantum system are often phase-locked with the initial driving field, so
that they can be detected in a coherent way through e.g homodyne detection. The field
emitted by a quantum device may also consist of quantum light, i.e states of light that
cannot be described by classical optics: propagating single-photons, cavity Fock states,
squeezed vacuum states... with applications in quantum information processing. In all
these cases, it is very obvious that light should be considered as a signal, i.e a coherent
wave whose detection requires a phase reference.

By contrast, in the early mesoscopic transport experiments we have presented light is
seen as electrical noise, with no special care accorded to its coherence properties. In
photo-assisted transport, there is no direct link between the state of light being shined on
the conductor and the observables of the system. In the case of shot-noise radiation, the
only observable that can be predicted by a scattering theory of electron transport is the
spectral density of the emitted light SP (!) = 2Re[Z(!)]SII(!). The properties of the light
itself, such as it statistics or the existence of any form of quantum coherence, are generally
not considered, as it would require a much more complex theoretical machinery. In the
absence of coherence, light exchanged between a conductor and modes of its environment
is considered as a noise instead of a signal.

The unification of these two points of view, that would result in a consistent picture of the
interaction between quantum light and a conductor’s microscopic degrees of freedom, is
the focus point of the Quantum Electro-Dynamics of conductors. In this approach,
one can start by considering a coherent conductor, possibly out of equilibrium, and study
the interaction between charges and light. Including a description of the quantum state
of light reveals the coherence properties of this interaction. In particular it has been
shown that dissipative transport through the conductor can result in the creation of
non-classical light states [24][25][26][27][28]. It was also recently suggested that the
coupling between a cavity and a dissipative quantum conductor may be used to produce
cat states of the electromagnetic field [29].

In the example of shot-noise radiation, one may wonder if the properties of fermionic
particles are imprinted onto the radiated light, due to the microscopic coupling mechanism
behind this light-matter interaction. In the simple case of a dc-biased tunnel junction,
the emission of light occurs upon the incoherent relaxation of charges in the reservoirs.
As the photons are created randomly and independently, the statistics of the emitted
photons is that of thermal radiation, i.e a classical state of light.

However for more exotic conductors such as quantum point contacts, it has been predicted
that the Fermi statistics of the electrons may be imprinted unto the photons, leading to
the creation of strongly non-classical light with sub-Poissonian statistics [24]. The exper-
imental test of this prediction is the subject of ongoing research, requiring challenging
technological development [30].

In the work presented here, we focus on the quantum properties of light emitted by a
simple type of conductor through a mechanism closely related to shot-noise emission: the
inelastic tunneling of charges through a dc-biased Josephson junction.
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Light emission in the environment of a conductor and inelastic tunneling

In the simple picture of shot-noise emission we gave earlier, we started by describing the
emission of current noise by the conductor, then explained how this noise can be picked
up by modes of its environment. These modes play a passive role, in the sense that they
only act as a sink where the electrostatic energy of the charges can be dumped. However
as a coupling always go both ways, there should be a counter-action of the environment
onto the conductor.

Let us examine more closely the mechanism of this coupling in the case of a normal
tunnel junction. After a single electron has tunneled, the charge of each electrode changes
suddenly by ±e. This displacement of the charge state of the system can be described
by the shift operator ei�, with � the electron phase difference across the junction. This
phase is set by �(t) = e

~

R t
V (t0)dt0, with V the voltage drop across the junction.

A perfectly constant dc voltage would lead to elastic tunneling of the charges. However
in a more complete picture we must consider the voltage fluctuations coming from the
environment of the junction, described as an impedance Z(!). Even if this environ-
ment is at zero temperature, it still displays vacuum fluctuations, with a spectral density
SV V (!) = 2Re[Z(!)]~!.

These finite frequency voltage fluctuations can prompt inelastic mechanisms, where the
charges tunnel inelastically while emitting or absorbing photons from the environment.
The energy needed to create (absorb) these photons is extracted from (given to) the
bias voltage source itself, so that the junction acts as a kind of dc/ac converter. The
radiated light populates the modes of the environment, bringing them out of equilibrium
and hence modifying the value of their voltage fluctuations. This brings the questions of
under which conditions this inelastic mechanism exist, and how it modifies the transport
properties of the junction.

These questions were tackled for the first time in the early Nineties, with the development
of the so-called P (E) theory [31]. This perturbative treatment of the tunneling Hamil-
tonian assumes that the emission/absorption rates of photons are low enough, so that
the environment stays close to thermal equilibrium. Then the value of the voltage fluc-
tuations are simply set by the thermal occupation and characteristic impedances of the
environment modes. If they have a large occupation, the probabilities of photon emission
and absorption are nearly equal, so that both forward and backward inelastic tunnel-
ing occur with similar rates and the total current through the junction is not modified.
On the other hand if the environment modes are empty, they can only absorb photons,
opening up new channels for dissipative transport through the junction (Fig.1.4).

These inelastic emission processes have a significant impact on the transfer of charges
through the conductor when the environment impedance Re[Z(!)] cannot be neglected
compared to the quantum of impedance RK = h/e2 ' 25.8 kΩ. As the electromagnetic
environment of a tunnel junction is typically of the order of the vacuum impedance

Z0 =
q

µ0

✏0
' 377 Ω, the contribution of inelastic tunneling is generally much smaller

than direct elastic processes, both in the dc current and in the current noise.

Inelastic effects are much more prominent in superconducting JJ. At a bias voltage smaller
than the superconducting gap 2∆/e, no quasiparticles can flow through the junction.
Inelastic processes involving the environment modes are thus the only means by which a

10



V

I

2eV

ħωi

2e

ħωi

a) b)

Figure 1.4: a) Schematic picture of a Cooper pair inelastically tunneling through a dc-biased junction
while emitting a photon of energy ~ωi = 2eV . b) The energy to create a photon in a mode of the
environment (depicted here as a collection of LC oscillators) is extracted from the voltage source V .

dc-biased JJ can allow the flow of a dc current1. This is a simple example of a mechanism
in which the environment of a coherent conductor significantly modifies its transport
properties.

Inelastic Cooper-pair tunneling: from dissipative transport to quantum light
emission

The first experimental tests of the P (E) theory in the superconducting case thus focused
on the dc transport through the junction. A 1994 experiment by Holst and coworkers [32]
was the first one to prove that inelastic Cooper-pair tunneling (ICPT) could be enhanced
by tailoring the environment of a JJ, engineering resonances in Re[Z(!)] at microwave
frequencies. A dissipative current Ī was measured for values of bias voltage V below the
gap voltage. The Ī(V ) curve of the sample was well reproduced by simulations based on
the P (E) theory and the impedance Re[Z(!)](!) of the circuit in series with the junction.
In particular peaks in the Ī(V ) curve are associated with the emission of photons in the
modes at the environment at frequency 2eV/~, in processes where the whole electrostatic
energy 2eV provided by the voltage source upon the tunneling of a single charge 2e is
converted into photons (Fig.1.5).

Progress in the field of microwave engineering and measurement allowed for the direct de-
tection of this emitted light in a second pioneering experiment in 2011 [33]. The ”bright
side” of inelastic Cooper-pair tunneling was unambiguously proven, with the measure-
ment of photon emission rates coinciding with the Cooper-pair tunneling rates on the
single-photon Ī(V ) resonances. This experiment also proved the existence of multi-photon
processes, where the energy 2eV is shared among multiple photons created at the same
time (Fig.1.6).

The positive results of this experiment and novel techniques for detecting the emitted
light prompted the proposal of new experiments, where the statistics of the photons
themselves would be measured. These experiments aimed at broadening the field of
Josephson photonics, going beyond the reach of the P (E) theory by studying the state
of the emitted light itself, in settings where the emitted photons can modify the state of
the environment and act back onto the dc transport.

1Note also that for JJ, Re[Z(ω)] has to be compared to the superconducting quantum of impedance
RQ = RK/4, so that inelastic processes are easier to trigger compared to the normal case.
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Figure 1.5: Experimental I(V) measured in [32]. A dc current is measured below the gap voltage 2∆/2,
due to inelastic Cooper pair tunneling processes. Each peak at bias voltage Vi is associated to the
emission of light in a resonance of the environment at frequency 2eVi/~ω, in processes where one photon
is created for each transferred Cooper pair.

Figure 1.6: Results of the experiment described in [33], where both the Cooper pair tunneling rate ΓCp

and the photon emission rate Γph in a mode at ωr/2π =6 GHz were measured. On the 1-photon resonance
2eV = ~ωr, ΓCp and Γph coincide. On the 2-photon resonance 2eV = 2~ωr, the emission power at ωr is
detected, indicating 2-photon processes (inset).

In this work we present two experiments that we carried out to investigate two comple-
mentary aspects of this physics: the strong-coupling of a JJ to a single microwave mode
and the emission of entangled photons by ICPT.
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Strong-coupling of a JJ to a single mode

One of the main assumptions of the P (E) theory is that the modes of the environment are
only weakly perturbed by the inelastic photon creation processes. A sufficient criterion
for this condition to hold is that the stationary population of the modes, resulting from
the balance between photon creation and the modes intrinsic losses, stays close to its

equilibrium value n̄ = nB(T ) = (e
~!

kBT � 1)�1.

This condition on the stationary state of the modes ensures that the dc current and
photon emission rates are correctly predicted by the P (E) theory, as the excess population
due to ICPT does not modify the tunneling probability. However, in an instantaneous
picture, right after one photon has been created the mode can be greatly displaced from
its equilibrium state, in particular if it was initially in the vacuum state. If the mode is
strongly coupled to the junction, this sudden change of its occupation modifies deeply
the instantaneous voltage fluctuations, impacting the Cooper pair tunneling rate.

This back-action of the emitted light on the photon creation rate can lead to non-trivial
dynamics of the system. It is however not obvious if the resulting state of light displays
non-classical statistics: even if the voltage ZPF which prompt the photon emission are by
nature quantum, the vacuum state itself is quasi-classical. A more complete treatment
reveals that the stationary state of the modes depends crucially on their coupling strength
to the junction.

Figure 1.7: A LC resonator hosting a single mode of radiation is put in series with a dc bias source
and a JJ. The two dipoles are coupled: inelastic tunneling across the junction can be prompted by the
voltage fluctuations in the resonator. At the same time the tunnel current through the junction is directly
injected into the oscillator, creating excitations in the mode.

In a simple circuit including a JJ and a single mode at frequency !r (represented by a LC

oscillator in figure 1.7 with !r =
p
LC

�1
), the dimensionless constant characterizing their

coupling is r = ⇡Zc

RQ
, with Zc =

q

L
C

the characteristic impedance of the mode. In the

strong coupling regime r ⇠ 1, the voltage ZPF ∆V =
p
r ~!r

2e
are of the same amplitude as

the dc voltage V on the single-photon resonance 2eV = ~!r, where one photon is created
for each tunneling Cooper pair.

The strong coupling regime is predicted to yield two observable effects on the system [34].
First, even in the limit of a vanishing population of the mode, the tunneling rate is
impacted by its ZPF. This reduction of the tunneling probability appears in the Josephson
energy EJ of the junction, which is renormalized by the phase fluctuations of the mode
down to E⇤

J = EJe
� r

2 .
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Second, for low tunneling rates, corresponding to a weak driving of the mode such that
its population n̄ stays low, non-classical properties are predicted for the emitted light,
which should display both antibunching and sub-Poissonian statistics. Both can be char-
acterized by the second order coherence function of the light g(2)(⌧) = (1� r

2
e�|⌧ |)2, with

 the resonator leak rate. This effect arises from the coherent back-action of the field in
the resonator onto the junction. The presence of a first photon in the mode reduces the
probability to create a second one, leading to anti-correlations in the photon flux emitted
by the resonator (Fig.1.8).

Figure 1.8: Photon blockade mechanism in a mode strongly coupled to a JJ with r = 2. After a single
Cooper pair has tunneled, the mode ends up in its first excited state, with a wavefunction displaced in
charge space by q = 2e. This displaced wavefunction does not overlap with the next excited state, so
that the creation of a second photon is forbidden.

For high enough impedance of the resonator such that r ⇠ 2, this simple circuit imple-
ments a single-photon source. From a practical point of view, the simplicity of the
antibunching mechanism, which requires only to tune the bias voltage to V = ~!r

2e
and the

impedance to Zc =
2RQ

⇡
' 4 kΩ, could make it suited for applications where high rates

of microwave single photons are required. On the fundamental point of view, this device
illustrates the extent of dissipation engineering, an approach to quantum experiments
where dissipation is a ressource instead of a detrimental phenomenon.

The design of an experiment in the strong coupling regime was the research project of
Chloé Rolland, during her PhD stay in our team in 2014-2016 [35]. She managed to design
and fabricate a sample including a microwave mode with impedance Zc ' 2 kΩ, strongly
coupled with a flux tunable SQUID with r ' 1 (Fig.1.9). Using the microwave equiv-
alent of a Hanbury Brown-Twiss interferometer, she made preliminary measurements of
the statistics of the emitted photons in the low driving regime, indicating antibunch-
ing. However the detection setup suffered from spurious parasitic couplings between the
measurement lines, which added a considerable noise to the measurements.

This PhD thesis presents our efforts to develop a novel type of linear detection setup,
allowing not only for the measurement of the power radiated by the sample, but also
of the quadratures of these signals. By combining these quadratures in a judicious way,
we are able to reject the parasitic background noise due to spurious microwave coupling
of the lines, increasing greatly our accuracy in the measurement of correlation functions
of the signals. We could thus better confirm the measurement of antibunching of the
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Figure 1.9: Micrography of the sample fabricated by Chloé Rolland during her PhD. The microfrabricated
coil (left part) implements a resonator in the strong-coupling regime with a SQUID-like tunable JJ (inset),
with r ' 1.

photons emitted by the sample (Fig.1.10), studying the transition to classical light as the
population of the mode is increased [36].
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Figure 1.10: Second order coherence function of the photons emitted by the strong-coupling sample at
low occupation number n = 0.075 of the resonator. The value g(2)(0) = 0.32 proves the sub-Poissonian
statistics of the photon, at an emission rate Γ ' 60 Mphotons/s.

Our linear detection setup also grants us a much better resolution on the spectral proper-
ties of the light emitted by the junction, both in ICPT regime as well as for bias voltages
larger than the gap voltage 2∆/e, where the junction behaves as a source of shot-noise.
Combining these measurements with a simple modelling of the embedding circuit of the
sample, we are able to characterize carefully the environment, measuring its impedance
Re[Z(!)] and the population of its modes. We could thus check a prediction of the P (E)
theory, namely that the effective Josephson energy of the junction E⇤

J is reduced by the
equilibrium phase fluctuations of all the modes in its environment, from the rf range up
to microwave frequencies.

Beyond photon statistics, our detection setup allows us to measure arbitrary correlation
functions of the photons emitted by a sample. We used it in a different experiment to
prove the entanglement of light emitted by ICPT at two different frequencies.
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Entangled beams emitted by inelastic tunneling

The results from figure 1.6 show that when the bias voltage V on a JJ satisfies 2eV =
~(!a+!b), with !a and !b the frequencies of resonances in the environment of the junction,
a dc current can flow, through inelastic processes where for each tunneling Cooper pair
a pair of photons is created, with one photon in each resonance (Fig.1.11).

This process is reminiscent of parametric down-conversion in quantum optics, where one
photon is absorbed from a ”pump” mode at !p = !a + !b and coherently converted into
a pair of photons at !a and !b via a non-linear interaction. Depending on the form of
this interaction, the created photon pair can be in an entangled state, sharing a non-local
degree of freedom (e.g a total spin equal to zero), while local measurements on a single
photon from the pair yield incoherent results (e.g a random spin value). Such pair state
are typically used in Bell tests of non-locality in quantum physics.

Figure 1.11: Two resonators at frequencies ωa,ωb are connected to a dc-biased JJ. When 2eV = ~ωa+~ωb,
entangled photon pairs are created upon the tunneling of Cooper pairs .

Entanglement of microwave beams of light by a Josephson device has already proven that
parametric down conversion can be achieved in a circuit-QED setting [37]. The non-local
observable in this experiment is the sum of the phases of the two fields, which leads to
two-mode squeezing of their quadratures. This result proves that the non-linearity of a
Josephson device can be used to engineer a coherent two-mode drive. Nevertheless, it is
non obvious whether or not the photon pairs created by inelastic tunneling display such
non-classical properties. Indeed the ICPT mechanism has no direct equivalent in optics,
as here the role of the coherent pump mode is played by the many-body superconducting
states of the two electrodes.

The coherence of this macroscopic electronic system lies in the phase of the superconduct-
ing ground state. This phase coherence should in principle be inherited by the photon
pairs created by ICPT. In a galvanically connected junction, the time evolution of the
phase difference �̂ is set by the value of the voltage bias V across the junction. In the
simple circuits we have been discussing so far, the dc part of the voltage drives a linear

increase of this phase with: d�̂(t)
dt

= 2eV
~
, while the finite frequency voltage fluctuations

from the environment modes prompt the inelastic photon emission processes. In a more
realistic setting, the junction is also coupled to a continuum of low frequency modes, from
dc to at least kBT/~ ' 2⇡⇥400 MHz at T = 20 mK. These modes are in a thermal state
with a high occupation number, so that they add random noise to the voltage bias.
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This low frequency noise yields a random dephasing of the superconducting phase differ-
ence, which displays a very limited coherence time of at most a few hundreds of nanosec-
onds. It thus seems that this dissipative system can never yield quantum coherence effects.
However we have been able to prove that a judicious choice of observables could prove the
entanglement of the microwave light emitted by ICPT, even in the absence of a stationary
phase reference, provided the environment of the junction is carefully controlled.

We build our experiment on a previous one realized by Olivier Parlavecchio during his
PhD stay in our team in 2011-2014 [38] (Fig.1.12). In this first experiment, a JJ is placed
in series with two microwave resonators, implementing modes at 5.1 GHz and 7 GHz. The
impedance of these resonators is low enough so that the modes are only weakly coupled to
the junction with r ⌧ 1, so that their occupation do not perturb tunneling rates. On the
photon-pair resonance 2eV = h ⇥ 12.1 Ghz, the leaking microwave powers measured at
the output of the two modes show non-classical correlations, indicating that the photons
are indeed created by pairs. This result validates the pair creation mechanism, and prove
that the two resonators are coherently driven by the junction [39].

2e

1

2

Figure 1.12: Schematic representation of the setup used in to probe the non-classical statistics of photon
pairs emitted by a JJ. The microwave power leaking at the output of the two modes (red and blue) is
detected at room temperature after amplification and being split over a HBT-type setup.

This experiment relies on the fact that photon flux correlations measured at the output of
the resonators are directly linked to photon numbers inside the cavities. The connection
between propagating modes and the cavity modes can be expressed using the input-output
formalism. In this spirit, it was finally understood that non-local phase correlations
between the cavity fields would be imprinted in the outgoing photons. Thus, even if the
phase difference across the junction is prone to local noise and display a limited coherence
time, the emitted light can conserve its 2-photon coherence as it propagates away from
the sample.

The phase correlations of the photons emitted at two different frequencies can be charac-
terized by the violation of a classical inequality on 2-photon correlation functions, which
provides an entanglement witness. In an experimental setup similar to 1.12, we have
been able to detect this entanglement by using our linear detection setup (Fig.1.13). We
confirmed this simple picture of the entanglement of the propagating fields, according to
which the photons stay entangled if they leave the resonators faster that the dephasing
rate at the junction.

As this dephasing rate stems from low frequency voltage, it is not intrinsic to the sample
itself, but rather to its embedding circuit. We confirmed that the dephasing rate was
indeed limited by the value of the equilibrium thermal voltage noise on the junction, by
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Figure 1.13: 2-photon correlators proving the entanglement of the emitted fields. For separable fields
the phase correlation function (purple) is always smaller than the population correlator (orange).

actively heating or cooling down these modes (Fig.1.14). This heating/cooling mechanism
is based on ICPT through the very same junction that is creating the entangled photons.
This last result proves that a dissipative, open quantum system, actively coupled to a
bath in a deeply classical state, can still create observable entanglement. The cooling
mechanism itself could be extended to bring quantum devices to their ground state, or
perform the spectroscopy of mesoscopic systems at rf frequencies.
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Figure 1.14: Relative voltage noise as a function of the tunneling rates for different bias settings. The
junction can be used to either heat up (red dots) or cool down (blue dots) the low frequency modes of
its environment, increasing/reducing their voltage noise. This interaction can also be turned off to yield
a non-interacting regime (black dots).
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Conclusions, on-going experiments and perspectives

In this PhD work, we explore how the concepts and tools of quantum optics can be
adapted in a mesoscopic setting to yield a novel type of quantum light sources.

In our experiments we consider a dc-biased JJ, which is an out-of-equilibrium, open
quantum system interacting with the modes of its electromagnetic environment from dc
up to 2eV/~ ⇠ a few GHz. We study how to model the interaction with these modes,
which display very different time scales and equilibrium populations. We describe how
the high frequency modes, implemented by microwave resonators, act like cavities in the
vacuum state driven by inelastic transport through the junction, while the low frequency
thermal modes act like a source of random voltage noise, dephasing this drive on a slow
timescale.

We study two different kinds of samples, one with a single mode in the strong coupling
regime r ' 1 and another one where two modes at different frequencies couple to the same
junction. In each experiment, we fully characterize the environment of the sample, using
the emission properties of the junction in different regimes of bias voltage and Josephson
energy. We then measure correlation functions to prove the non-classical properties of the
light emitted by ICPT, studying the transition to a classical light source at high emission
rates.

In the strong coupling experiment, we prove the single-photon character of the light
emitted at low driving by measuring the antibunching of the photons, with a second
order coherence g(2)(0) = 0.32 < 1, the value for classical states. This experiment does
not rely on any phase coherence of the emitted photons. However we prove how our phase-
sensitive detection setup increases the accuracy of the measurement, by rejection of the
parasitic background of thermal noise from the amplification chain. We also quantitatively
measure the renormalization of the Josephson energy of the junction by the ZPF of the
modes in its environment.

In the two-mode experiment, we detect the entanglement of the emitted photons by
proving their 2-photon phase coherence. We interpret this entanglement in the frame of
two-mode squeezing, and relate the phase correlations of the emitted fields to the dy-
namics of the superconducting phase of the junction. We study the deviation to a pure
two-mode squeezer due to the finite impedance of the modes, which leads to a back-action
of the emitted photons onto the junction. We study how this back-action yields increas-
ingly classical statistics of the fields at high emission rates. We prove that the dephasing
rate at the junction, which yields the finite phase coherence time of the entangled beams,
originates from the low frequency voltage noise of the bias setup. We then increase the
value of the maximum rate at which we still detect entanglement by cooling down these
modes, hence reducing their voltage noise. This active cooling mechanism is based on
low frequency noise absorption by the junction itself through ICPT.

The results of these two experiments prove that a dc-biased JJ can be a versatile source
of microwave quantum light, even though it is coupled to a continuum of modes with
very high thermal occupation. The strong coupling experiment highlights the impact
of ZPF fluctuations from the environment on the drive implemented by the junction,
which can lead to the creation of strongly non-Gaussian states of light. In the two-
mode entanglement experiment, this non-Gaussianity reduces the fidelity of the light
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state compared to a pure two-mode squeezed state. However this non-Gaussianity could
be advantageous for the creation of strongly non-classical light, which could be used in
quantum information protocols.

We also contributed to the design of other experiments, that have not been realized yet.
The first one follows a proposal to implement an autonomous Fock-state stabilizer, using
a junction coupled to two modes, of which one is in the strong-coupling regime r = 2.
We developed a design for a sample that would implement a flux tunable microwave
resonator, allowing to reach this strong coupling condition. We also conducted a prelimi-
nary sideband cooling experiment, aiming to cool down a rf mode down to its its quantum
ground state by ICPT. These experiments would allow going further than the realization
of sources of quantum light, towards the manipulation of quantum states.

In future experiments we may try to stick closer to circuit-QED settings, by e.g adding
coherent microwave tones to phase-lock the emitted signals and remove the problems
yielded by the absence of a stationary phase reference. This kind of ICPT device would
then benefit from the intrinsic rejection of any Kerr terms in the system Hamiltonian,
which make it more suited for high photon number applications.

It may also be interesting to depart frankly from circuit-QED and explore a parameter
space forbidden to typical superconducting circuits. As an example by using JJ made
with a higher superconducting gap material we could try emitting radiation at THz
frequencies, where no coherent source is available. It may also be interesting to study
different kind of quantum conductors such as superconducting quantum point contacts,
yielding more complex interaction with the environment.
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Chapter 2

Interaction of a dc-biased Josephson
junction and its environment

All the experiments presented in this work make use of the same system: a small
Josephson junction put out-of-equilibrium by a dc-voltage bias and embedded in
an electromagnetic environment. We first describe the Josephson junction, and ex-
plain why it is important to take into account the back-action of its embedding circuit.
We present the P (E) theory which describes how in the limit of a weak tunnel coupling
charges can tunnel incoherently through the insulating barrier that defines the junction,
while exchanging electromagnetic excitations with the rest of the circuit, and predict the
associated tunnel current and photon emission rates.

We then discuss in which sense this incoherent Cooper-pair tunneling differs from the
usual ac-Josephson effect, and present two earlier experiments performed to test this
physical description of the system. We discuss the results of the second experiment, where
both aspects of this phenomenon, current and microwave radiation, were measured for
the first time simultaneously. These results prompt the idea that a dc-biased Josephson
junction can be used to create quantum states of light, with a mechanism fundamentally
different from the ones exploited in other microwave quantum optics experiments.

21



2.1 Transport through tunnel junctions

Charges can cross a tunnel junction between two conductors by quantum tunneling and
give rise to a tunnel current. We derive here the I(V) characteristic of dc-voltage biased
junctions from a microscopic picture, treating first the case of a normal junction and
then of a superconducting one. This description is semi-classical as we consider an ideal
voltage bias, without taking into account the effect of voltage fluctuations.

What is a tunnel junction?

A tunnel junction consists of two pieces of conducting materials which are separated
by a very thin insulating layer, with a thickness of the order of the nanometer. In
conventional electronics, this is the geometrical layout of a parallel plate capacitor. In a
classical microscopic picture, charge carriers in the conductors cannot cross the potential
barrier of the insulating layer. We would then expect a junction to behave as an open
circuit for low frequencies, that cannot allow a dc-current.

On the other hand, we know from quantum mechanics that a charge carrier incoming to
the barrier is described by a propagative wave packet, which fades out exponentially in
the insulating region if the particle energy is lower than the barrier height. If this layer
is thin enough, this evanescent wave can propagate again on the other side of the barrier.
There is then a finite probability for the charge to be found in the other electrode of the
junction: this is the phenomenon of quantum tunneling (Fig.2.1).

a) b) c)

L R L R L R

Figure 2.1: Schematic representation of a charge in a conductor incoming to a tunnel junction (a) and
crossing it through quantum tunneling (b). Although the wave packet is exponentially vanishing in the
insulating region, there is a finite probability of finding the particle in the other electrode (c).

Tunnel current in normal-metal junctions

The thickness of the insulating layer being generally much shorter than the electronic
phase coherence length, we can describe the transport properties of a tunnel junction
using the scattering approach [14][16]. Consider that the left and right electrodes
(labelled L and R) of the junction are connected to electronic reservoirs, feeding them
with electron waves propagating in independent 1D ballistic channels. The number of
these channels is estimated as N ' k2

FA/⇡
2, with kF the Fermi wave-vector and A the

area of the junction: it is of the order of 105 � 106 for typical nano-fabricated metallic
tunnel junctions.
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In the language of second quantization, we describe incoming electrons in a single spin-
polarized channel of the left electrode (L) with the field operator

 a
L(x, t) =

Z 1

0

eikLxp
2⇡

akLdkL, (2.1)

where akL is the annihilation operator for an electron of momentum ~kL. The associated
forward charge current is

IaL(x, t) =
e~

im⇤Re[( a
L)

†r a
L] (2.2)

with m⇤ the electron effective mass. This equation is valid only in the case of a perfectly
transmitting scatterer. In the most general case, one has to also include the reflected
electron in the field operator. The total current for spin polarization � then includes
the electron waves going away from the junction, described by annihilation operators bkL

I�L(x, t) =
e~

im⇤Re[( a
L)

†r a
L � ( b

L)
†r b

L]. (2.3)

We consider here a non-magnetic barrier that cannot flip the spin of scattered electrons.
We then simply include the other spin polarization carried by the same channel as a
factor of 2 in the total current:

I totL (x, t) = I�L(x, t) + I �̄L(x, t) =
2e~

im⇤Re[( a
L)

†r a
L � ( b

L)
†r b

L]. (2.4)

We now switch to a representation of the operators as a function of the energy of the
electrons: ✏L = ~

2k2
L/2m

⇤. The current is then expressed as integrals over ✏L instead of
kL. We make here another approximation: we consider temperatures and bias voltages
small compared to the Fermi energy: kBT, eV ⌧ EL

F , E
R
F . All excitations stay close to the

Fermi surface, such that we can use a linearized version of the energy dispersion relation.
The current is then simply

I totL (x, t) =
2e

h

Z

d✏d⌘ei[(k✏�k⌘)x�(⌘�✏)t/~], [a†L(⌘)aL(✏)� b†L(⌘)bL(✏)], (2.5)

where we suppressed terms oscillating with (k✏ + k⌘)x � (⌘ + ✏)t/~ as they involve fre-
quencies of the order of the Fermi energy, i.e much higher than (kBT, eV ) or than the
frequency range we can access experimentally.

Now we assume that the tunnel coupling between L and R is weak, such that it does
not perturb much the electronic states in the electrodes: we can still describe them with
the initial  (x, t) operators. Its only action is a linear mixing of the states, such that we
can express the outgoing mode operators bL(R) as a linear combination of the aL’s and
the aR’s. Finally, if the electrochemical potential difference between the two reservoirs
is small (compared to the Fermi energy or the potential barrier height), the tunneling is
elastic such that we can write the scattering relation

�

�

�

�
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⇥
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aR(✏)
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�
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�

. (2.6)

We can then express the current as a function of the aL(R) operators only and the trans-
mission probabilities T (✏) = t⇤(✏)t(✏). The incoming modes from the reservoirs are in a
thermal state, such that their occupation is given by

ha†L(R)(✏)aL(R)(⌘)i = fL(R)(✏)�(✏� ⌘), (2.7)
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where fL(R) is the Fermi distribution in the L(R) reservoir. The statistical average of the
current from L to R is then

hIi = 2e

h

Z

T (✏)[fL(✏)� fR(✏)]d✏. (2.8)

Suppose the two leads at the same temperature. We can set their electrochemical po-
tential difference by applying a voltage bias V to the junction, effectively shifting one
Fermi level with respect to the other by eV . If eV is small compared to the Fermi energy,
then the transmission probability can be considered energy-independent in the integra-
tion range (T (✏) = T ) and we get for the contribution of this channel to the current:

hIi = 2e

h
T

Z

[fL(✏)� fR(✏)]d✏ =
2e

h
T ⇥ eV = T

2e2

h
V. (2.9)

Here T ⇥ 2e2/h is the resulting conductance for a single 1D channel, with 2e2/h '
77.5µS ' (12.9kΩ)�1. For a normal metal tunnel junction, the density of states in each
electrode is flat around the Fermi level on the scale of eV , such that if we sum the
independent contribution of the N channels we simply get for the total current

hItoti =
N
X

i=0

Ti
2e2

h
V = GTV, (2.10)

where the tunnel conductance GT = (2e2/h)
P

Ti is the total conductance of the junction.
The average transmission of the channels being of the order of 10�6 in junctions fabricated
using standard techniques, we will study tunnel resistances in the range of a few kilo-
ohms.

We see that even if the transport properties of a tunnel junction arise from a phenomenon
which is exclusively quantum, in the simple case we considered it has the same I(V)
characteristic as an ohmic conductor (Fig.2.2.b).

E

eV
V

I

G VT

ω

SII

eV/ħ

2eI

a) b) c)

L R

Figure 2.2: a) Schematic energy bands in a metallic tunnel junction at zero temperature. A bias voltage
V shifts the two Fermi levels by eV . Irreversible elastic tunneling occurs when an electron jumps from
an occupied state to an empty one. b) I(V) characteristic of a metallic tunnel junction. c) Current
shot-noise SII(ω) of a tunnel junction at zero temperature.

Tunnel-current noise

The difference between a tunnel junction and a classical resistor may be seen in more
elaborate quantities, such as the current-noise spectral density SII(!) =

R

hI(t)I(t +
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⌧)iei!⌧d⌧ [15][40], which can also be computed in the scattering formalism [41]. A classical
resistor presents only the Johnson-Nyquist noise coming from the thermal excitation of
charges, which vanishes at zero temperature. In contrast a tunnel junction also shows
a shot-noise contribution, which results from the discreteness of charge transfer through
the junction.

The zero-frequency noise is proportional to the variance of the current I(t), averaged over
a long time. In the tunnel limit the charges cross the barrier independently, resulting in a
Poissonian distribution p(n) of the number of tunneling events n in a given time interval
⌧ , with hIi = en/⌧ . The variance of a Poisson process being equal to its mean, the low
frequency current noise is SII(! ' 0) = 2ehIi, known as Schottky noise [22].

Noise at high frequency is created when an excited electron in the leads falls back to the
Fermi level. After tunneling, the maximum excess energy of an excited electron is eV ,
such that at frequencies higher than eV/~ the noise is zero (Fig.2.2.c). The noise at a
finite frequency ! lower than eV/~ reads at zero temperature: SII(!) = 2(ehIi�GT~!) =
2GT (eV � ~!).

Superconducting tunnel junctions
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Figure 2.3: The three branches of the I(V) of a superconducting tunnel junction: a) At zero bias, the
supercurrent results from the elastic transfer of Cooper pairs from one BCS condensate to the other. b)
At V 6= 0, the irreversible transfer of Cooper pairs is prohibited: hIi = 0. c) Above the gap voltage,
normal quasiparticles can tunnel, as in a normal junction.

Josephson junctions, which are tunnel junctions between two superconductors, present
a more complex behaviour. Recall that in a superconductor, both Cooper pairs [42] of
charge 2e and normal quasi-particles can contribute to the current.

As seen before (Fig.2.2.a), the tunneling of a normal charge involves the creation of a hole-
like excitation in the first electrode, and of an electron-like quasiparticle in the second
electrode. In a standard BCS superconductor [43], the quasiparticle density of state
presents a gap 2∆ around the Fermi energy (Fig.2.3.c). At low temperature, tunneling
of quasiparticles can thus only occur if eV > 2∆. Below this gap voltage1 they cannot
contribute to the tunnel current: Iqp(V < 2∆/e) = 0. Right at V = 2∆/e, the sharp
edge of the density of states gives a strongly non-linear I(V). Far above the gap voltage,

1for standard Aluminum junctions, ∆ ' 200 µeV ' h⇥50 GHz.
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one recovers asymptotically an ohmic behaviour with the normal state conductance of
the junction GT (Fig.2.3.c).

The Cooper pairs which reside at the Fermi level on each side of the junction may also
contribute to the current, albeit in a non-trivial way. In 1962, Brian Josephson derived
the equations which rule this tunnel current [1]:

I(t) = Ic sin(�̂(t)), (2.11)

�̂(t) =
2e

~

Z t

�1
V (⌧)d⌧. (2.12)

Here �̂ is the superconducting phase difference across the junction. In a BCS su-
perconductor, a phonon-mediated electron-electron interaction leads to the pairing of
electrons close to the Fermi level, which condense to a ground state below a critical tem-
perature [43]. These Cooper pairs are all described by a single macroscopic wave function,
and all share the same phase �̂. This phase is a quantum operator, it may not have a
single well-defined value. As an example, a superconducting island with a fixed number
of Cooper pairs is in a coherent superposition of all phase values from 0 to 2⇡.

The first Josephson equation(2.11) tells us that a phase difference between the two
electrodes of the junction gives rise to a current of Cooper pairs. The scattering approach
reveals that this current is carried by Andreev bound states (ABS) [44] localized close
to the barrier, resulting from the coherent reflexion of quasiparticles at energies below
the gap [45]. Each spin-degenerate channel gives rise to a pair of ABS at energy ±Ei

with:

Ei = ∆

q

1� Ti sin
2(�̂/2). (2.13)

If we stay at a voltage bias and a temperature well below the gap energy, all the ABS are
in their ground state of energy �Ei. In the tunnel junction limit of many channels with
very weak transmissions, the phase-dependent part of the total energy writes:

ĤJ = �∆GTh

8e2
cos(�̂) = �EJ cos(�̂), (2.14)

which is called the Josephson Hamiltonian [46]. Working from ĤJ(�̂) one can prove that
the number of Cooper pairs having crossed the junction N̂ is also a quantum operator,
conjugated to �̂ with [�̂, N̂ ] = i [2]. �̂ is thus the generator of translations in the N̂
manifold, such that:

HJ = �EJ
ei�̂ + e�i�̂

2
= �EJ

2

X

|N + 1ihN |+ |NihN + 1|. (2.15)

Thus ĤJ couples states with different number of Cooper pairs having crossed the barrier.
The Josephson energy EJ gives the strength of the tunnel coupling between the two
electrodes.

The total current carried by the ABS ground state is given by the current-phase relation:

I(�̂) =
2e

~

dHJ

d�̂
, (2.16)

which leads to (2.11) with Ic =
2e
~
EJ = ⇡

2e
∆GT the critical current of the junction.
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The second Josephson equation(2.12) describes the evolution of the phase difference
�̂. We know that the wave function of a single particle of charge q moving in an elec-
tromagnetic field from xa to xb acquires a phase q

~

R xb

xa

~A · d~x, where ~A is the 4-vector
potential. In an electrical circuit, we can gauge away the 3-vector component such that
this phase is actually just given by the integral of the scalar potential, i.e the voltage
difference V (xb) � V (xa) [2]. In superconducting circuits, this phase is accumulated co-
herently by all the Cooper pairs of the condensate. The evolution with time of �̂ is ruled
by the voltage drop V on the junction. This phase is thus akin to a magnetic flux: if the
junction is put in a loop geometry, the value of �̂ can be set by threading a magnetic field
through the loop, through Lenz-Faraday law of induction.

Supercurrent in a dc-biased Josephson junction

Now that we know how the Cooper pair current depends on the phase and how to define
this phase, we can complete the I(V) characteristic of the junction below the gap voltage
2∆/e (Fig.2.3). In this first description of Josephson junctions we will neglect quantum
effects other than tunneling and treat the phase as a classical quantity: �̂! �.

As soon as there is a finite voltage drop V 6= 0 on the junction, �(t) = �(0)+2eV t/~ winds
up at a rate !J = 2eV/~, called the Josephson frequency. The current I(t) = Ic sin�(t)
is then oscillating at !J , giving in average zero dc-current.

We get a dc-current only if the phase is kept constant, so at zero dc-bias (Fig.2.3.a). The
resulting current has a value between �Ic and +Ic, set by the integral of the voltage V (t)
on the junction. This supercurrent is dissipation-less: the Joule power dissipated in
the junction P = hV (t)I(t)i is always zero.
This is because the BCS condensate is a ground state: there is no such thing as an excited
Cooper pair. In a single-particle picture, if a Cooper pair from L tunnels elastically while
a finite bias voltage is applied, there is no state in R to accommodate it, as it lands 2eV
above the Fermi level. This process cannot lead to a net charge transfer (Fig.2.3.b). On
the other hand at V = 0 Cooper pairs can tunnel irreversibly as the two condensates in
L and R do not have a fixed number of particles.

The non-linear Josephson inductance

Contrary to a normal tunnel junction, a Josephson junction biased below the gap voltage
does not behave as a resistor. As it links the evolution of the current I to the applied
voltage V , it is actually an inductor. To see it better, let us take the derivative with
respect to time of equation(2.11):

dI

dt
= Ic

2e

~
V cos(�). (2.17)

That we may put in a more familiar form:

V =
~

2eIc

1

cos(�)

dI

dt
= L(�)

dI

dt
. (2.18)

Here L(�) = LJ/ cos(�), where LJ is called by analogy the Josephson inductance. For
small excursions of � around a fixed value, the junction behaves effectively as a linear
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inductance with a value LJ/ cos(�). By tuning the phase close to ⇡/2, this inductance
can be made arbitrary high, prompting its use in some electrical circuits as a tunable
super-inductance [47]. Surprisingly, this inductance can also be negative! [2]

But more generally, because of the cos(�) term, the junction response to an applied voltage
is highly non-linear. This dissipation-free non-linearity comes from the quantum Hamil-
tonian of the junction, which means that it can preserve quantum coherence.

This property has turned the Josephson junction into a much versatile tool for the en-
gineering of quantum devices. Among many are the superconducting quantum bits such
as the Cooper Pair Box and its variant the transmon qubit, or the fluxonium qubit,
which use Josephson junctions as non-linear inductors to induce anharmonicity in a LC
oscillator.

These devices can then be operated as effective two-level systems, as a single-tone probe
can only induce coherent transitions between the first two levels of the resonator. Joseph-
son junctions are also a the heart of many devices used in microwave quantum optics,
such as quantum-limited amplifiers [3][5][4], 3 and 4-wave mixers [6][7], or single-photon
detectors [10][8][9]. In this way, any electrical device which take advantage of this type of
non-linearity could in principle be brought down to the quantum regime by implementing
it with Josephson junctions2.

2.2 Interaction of a dc-biased Josephson junction and

its environment

This simple picture of a tunnel junction under a perfect voltage bias is inaccurate as soon
as we consider a practical implementation of the biasing circuit [48][49]. Any electrical
component with a non-zero impedance yields voltage fluctuations that make it impossible
to impose a purely dc voltage on the junction. This voltage noise leads to random
phase fluctuations that can impact the tunnel current through the Josephson equations.
However what may seem like an electrical engineering problem turns out to be connected
to the rich physics of out-of-equilibrium, open quantum systems: in a dc-biased Josephson
junction subject to voltage fluctuations, Cooper-pair can tunnel inelastically and exchange
energy with the electromagnetic environment modes [31].

Electromagnetic environment of a Josephson junction

While discussing the I(V) characteristic of a tunnel junction, we had in mind the kind
of minimalist experimental apparatus depicted in Fig.2.4.a): a voltage source V directly
connected to the terminals of the junction, in series with an ammeter A�.

In a more realistic setup, the junction would be placed inside some cryogenic enclosure to
keep it a very low temperature, typically well below 1K. To connect it to the electronic
devices at room temperature without bringing too much heat, we would need some length
of resistive wire, that would also be somewhat inductive. The junction would be fabricated
on a microchip, and connected through bonding pads. To be consistent we should then

2Disclaimer: this may be much easier said than done.
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include in the circuit a model of the internal resistances of the voltage source and ammeter,
the inductance and resistance of the wires, the stray capacitance between the bonding
pads, the geometric capacitance of the junction itself... (Fig.2.4.b)

V
A

a) b)

A

V

C
J

C
P

I

Figure 2.4: a) Ideal tunnel junction I(V) measurement setup. b) Model of a more realistic version
including the internal voltage source resistance, the inductance of the dissipative leads going to the
Josephson junction (represented here and after by a ⇥ symbol), the parasitic shunt capacitances of the
bondings pads CP and the geometric capacitance of the junction CJ .

All these electric components present some voltage noise at their terminals [50]. We know
from the fluctuation-dissipation theoremthat at equilibrium, the voltage noise generated
by an isolated dipole is proportional to the real part of its impedance [51]. The thermal
noise spectral density was derived by Nyquist in 1927 [52]:

SV V (!) =

Z

hV (t)V (t+ ⌧)iei!⌧d⌧ = 4Re[Z(!)]
~!

.
e�~! � 1 (2.19)

In the low frequency limit ~! ⌧ kBT , the noise is proportional to the temperature T of
the dipole: SV V (!) ' 4kBTRe[Z(!)]. Above kBT/~ this thermal noise is exponentially
suppressed, as it is the analogue of black-body radiation for electrical dipoles. A dilution
refrigerator can typically bring a sample down to 15 mK, such that this frequency cut-off
happens near ⇠ 300 MHz.

In the high frequency range zero-point fluctuations of quantum origin start to be relevant,
with a spectral density given by: S ZPF

V V (!) = 2Re[Z(!)]~!. It is well known that one
cannot extract energy from these vacuum fluctuations. However a dc-biased Josephson
junction is a non-linear out-of-equilibrium system, that is sensitive to them, so we will
have to take them into account.

Simplifications and hypotheses about the circuit

When dipoles are combined as in our model of a biasing circuit, voltage fluctuations
add up for series elements and are divided in parallel associations. We can use standard
Thévenin-Norton conversions to cast all these elements as a single frequency-dependent
impedance Z(!), which constitutes the electromagnetic environment of the junction
(Fig.2.5).

How much of its voltage noise falls on the junction? First of all, we know that the
tunnel element in the junction is always in parallel of some capacitor, which is at least
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a) b) Z(ω)

A

V

C
J

C
P

V

Re[Z(ω)]

ω

c)

Figure 2.5: a) The complex biasing circuit of figure 2.4 can be cast through Thévenin-Norton transfor-
mations into a simpler one. b) This equivalent circuit consists of a perfect voltage source biasing the
junction in series with a frequency-dependent impedance Z(ω) c) What the real part of the impedance
seen by the junction may look like: it is non-zero at dc, there is a RC cut-off at high frequency and there
may be resonances in between.

the geometric capacitance between the two electrodes CJ . As seen by the junction, this
capacitance shorts the impedance of the rest of the circuit: Z(! ! 1) ! 0. Thus at
high frequencies the voltage noise is shunted and is never seen by the junction. A very
rough order of magnitude for impedance in circuits is 100 Ω and CJ is at least a few
femtoFarads, such that the RCJ cut-off is at most in the 100 GHz range, similar to the
gap energy.

At lower frequencies, we need to worry about the impedance of the tunnel element itself.
We have seen that below the gap voltage, a Josephson junction can be seen as a non-
linear inductor with L(�) = LJ/ cos(�). In the presence of voltage noise, which results
in a random motion of the phase, it can become very difficult to define the value of its
equivalent impedance. However we can say that in general, the dynamical admittance
of the junction scales at least like its critical current Ic.

This can be seen intuitively in some limit cases. Far above the gap voltage, the junction
behaves as a normal-metal junction with conductance GT = 2eIc/⇡∆. At zero bias, i.e
fixed phase, the junction is an inductor, with admittance / 1/LJ = 2eIc cos(�)/~. More
generally, the real part of the admittance of a tunnel element can be linked through
Rogovin-Scalapino relation to its dc-conductance [53]:

Re[Y (V,!)] = q
I(V + ~!/q)� I(V � ~!/q)

2~!
, (2.20)

where q = 2e for the contribution of Cooper pairs to the current and q = e for quasipar-
ticles. If Ic = 0, there is no Josephson effect, i.e no tunnel-current of Cooper pairs. It
is then safe to say that below the gap voltage, if we go the infinitesimal coupling limit
Ic ! 0, the tunnel element is an open circuit with zero admittance. Then all the
voltage fluctuations SV V (!) from Z(!) falls right on the electrodes of the junction.

Note also that at finite applied bias V , the Josephson inductance tends to average to zero
in a time ⇠ ~/2eV as we have: hLJ [�(t)]i / h1/ cos(2eV t/~)i = 0, which makes defining
its admittance much easier.
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In this spirit and to simplify the problem, we will study small Josephson junctions
under a dc-voltage bias and in the presence of an arbitrary electromagnetic envi-
ronment, which acts as a bath of voltage fluctuations. Indeed a small junction (area ⇠
100 ⇥ 100 nm2) has at the same time a small geometric capacitance and a low critical
current. Thus it cannot shunt away all the voltage noise coming from the environment.
At high frequencies (& 1 GHz) this noise consists of vacuum fluctuations, that can prompt
new phenomena in the junction. It is then necessary to promote the phase variable �
to a proper quantum operator �̂, to account for the zero-point fluctuations (ZPF). Our
treatment will be Hamiltonian, and will be perturbative in Ic (that we assumed small) to
second order.

A Hamiltonian description of the environment

Voltage noise arise from the real part of the impedance of Z(!), i.e its dissipative part.
At first sight it seems impossible to provide a Hamiltonian treatment of the problem,
as dissipation plays a key role in it. However we can decompose the degrees of freedom
of the environmental bath as a set of fictitious harmonic oscillators coupled linearly to
the junction, whose dynamics can be treated exactly. In the limit of a great number of
these fictitious modes, this model effectively implements a dissipative coupling between
the junction and its environment: this is known as the Caldeira-Leggett model [54].

Re[Z(ω)]

ω

Z(ω)

Re[Z(ω)]

ω

a) b)

d)c)

Figure 2.6: a) A linear impedance Z(ω) models the environment of the junction. b) It can be replaced in
the circuit by a collection of LC modes of various frequencies and impedances. c) The real part of Z(ω)
has some frequency dependence. d) Real part of the impedance of the LC modes. An infinite number of
LCs can model any Z(ω).

The environment is described by an impedance Z(!) at a finite temperature. We divide
the frequency axis in some number of bins, and associate a LC resonator to each bin. The
values of L and C are chosen such that it can effectively replace Z(!) in each frequency
bin (Fig.2.6).

The Hamiltonian describing the environmental bath is the sum of the Hamiltonians of all
the modes in the decomposition. Let us start by defining the Hamiltonian of an electrical
oscillator. The average energy stored in a LC resonator is classically given by:
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hEi = C
hV 2i
2

+ L
hI2i
2

(2.21)

=
hQ2i
2C

+
hΦ2i
2L

, (2.22)

where we switched from the standard variables of electrical engineering, the voltage V
across the capacitor C and the current I through the inductance L, to the ones that are
more convenient in quantum mechanics: the charge Q =

R

I(t)dt accumulated on the
plates of C and the magnetic flux Φ =

R

V (t)dt through the loops of L [2]. We replace
these classical variables with quantum operators who follow the commutation relation:

Q ! Q̂, Φ ! Φ̂, [Φ̂, Q̂] = i~. (2.23)

We then follow with the procedure of canonical quantization and introduce the creation
and annihilation operators â† and â through:

Φ̂ =

r

~Zc

2
(âe�i!t + â†e+i!t), Q̂ =

r

~

2Zc

âe�i!t � â†e+i!t

i
, (2.24)

where Zc =
p

L/C is the characteristic impedance of the resonator and ! = 1/
p
LC its

resonance frequency. The non-hermitian operators â and â† follow the bosonic commu-
tation relation: [â, â†] = 1. The harmonic oscillator Hamiltonian then reads:

Ĥ = ~!

✓

â†â+
1

2

◆

. (2.25)

As a consequence of the quantization procedure, the energy eigenstates of the resonator
are states where it contains a half-integer (n+1/2) number of quanta of energy ~!. These
are quanta of electromagnetic energy stored as magnetic field through the inductance L
and electric field between the plates of C.

a) b)

Figure 2.7: Comparison of electromagnetic cavities in the visible range (a) and in microwave circuits
(b). a) Two spherical mirrors define a Fabry-Pérot cavity. The electric field and the magnetic field of a
given mode form a single degree of freedom, which can be quantized and yield two conjugated quantities.
b) In a LC circuit, the magnetic field through the coil and the electric field between the plates of the
capacitor are also conjugated. It is however more practical to work with the magnetic flux Φ and the
charge through the capacitor Q.

These quanta have been known for quite some time in condensed matter physics as
surface plasmons. Indeed in a conductor the macroscopic observables such as voltage,
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current, and charge result from the continuous displacement of the electronic fluid with
respect to the underlying ionic lattice, which behaves as a plasma. However it has become
customary to describe microwave fields in superconducting circuits as made of photons,
in particular since the advent of circuit-QED [11] - even though these photons have no
polarization, i.e spin degree of freedom. In this work where we have quantum optics
experiments in mind we will stick to the latter term.

Commentary on the charge tunneling operator

From the commutation relation (2.23) we see that the magnetic flux operator Φ̂ generates
translation in the manifold of charge states:

e�iqΦ̂/~|Qi = |Q+ qi. (2.26)

This magnetic flux, which is the integral of the voltage, is proportional to the phase
difference across the dipole:

�̂ =
2e

~
Φ̂. (2.27)

We can know understand better the role of the Josephson Halmiltonian (2.14): under the

action of the ei�̂ operator, two true electrons are taken from one electrode of the junction
and put in the other one, increasing its charge by �2e. The current I is proportional to
the difference of forward and backward tunneling rates, hence it reads: I = 2eEJ(e

i�̂ �
e�i�̂)/2i~ = (2e/~) sin(�̂).

In a circuit of finite impedance, there can also be a dynamical response of the environment
to this sudden charge increase, that may prompt new tunneling mechanisms: this is the
framework of the P (E) theory [31].

The P(E) theory of a dc-biased Josephson junction

φ

Σφi

V
I

ωJt

Re[Z(ω)]

ω

Figure 2.8: The phase φ across the junction is the difference of the phase bias imposed by V and the
phase across the environment impedance.

We consider the circuit of figure 2.8 which represents a Josephson junction coupled to
an arbitrary linear electromagnetic environment. We decompose Z(!) as a sum of N

33



LC oscillators, with a set of resonance frequencies !i, characteristic impedances Zi
c and

equilibrium thermal occupation ni = (e�~!i � 1)�1. The tunnel coupling being weak, we
make the approximation that the Hamiltonian of the system is simply the sum of the
Josephson Hamiltonian (2.14) and the Hamiltonians of all the modes:

H = �Ej cos �̂+
X

i

~!i

✓

â†i âi +
1

2

◆

. (2.28)

We can compute the average dc-current across the junction by using second-order per-
turbation theory in H on Î:

Î(t) = I0(t) + o(H) (2.29)

Î(t)� I0(t) = I1(t) + o(H2). (2.30)

In the absence of tunnel coupling, the average of the first order term vanishes: hI0(t)i = 0.
We then have:

hI1(t)i =
⌧�i

~

Z t

�1
dt0[H(t0), I0(t)]

�

(2.31)

=
�i

~

Z t

�1
dt0h[�EJ cos �̂(t

0), Ic sin �̂(t)]i (2.32)

=
2ieE2

J

~2

Z 0

�1
dt0h[cos �̂(t0), sin �̂(0)]i (2.33)

=
eE2

J

2~2

Z 0

�1
dt0hei�̂(t0)e�i�̂(0) � e�i�̂(t0)ei�̂(0)i+ h.c. (2.34)

=
eE2

J

2~2

Z +1

�1
dt0hei�̂(t0)e�i�̂(0)i � he�i�̂(t0)ei�̂(0)i, (2.35)

where we have removed the terms of the form ei�̂(t
0)ei�̂(0) as they average to zero in the

absence of a phase reference at finite bias V . In the last line the first term in brackets
correspond to forward tunneling (the charge increases by 2e) and the second term is
backward tunneling: the net current is the difference of these two contributions.

To evaluate these correlators, we need to compute the phase correlation function. From
Kirchhoff laws, we know that the voltage drop on the junction is the difference between the
voltage bias V set by the source and the voltage drop across the environment impedance
Z(!) (Fig.2.8). For the superconducting phase difference �̂(t), we thus have after inte-
gration:

�̂(t)� �̂(0) = !Jt�
X

i

r

2e2Zi
c

~
(âie

�i!it + â†ie
+i!it), (2.36)

where we introduced again the Josephson frequency !J = 2eV/~. We can subtract from
the value of the phase the deterministic evolution coming from the applied voltage V :

hei�̂(t)e�i�̂(0)i = ei!J thei�̃(t)e�i�̃(0)i, (2.37)

where �̃(t) = �̂(t) � !Jt describes only the phase fluctuations coming from the environ-
ment. This last correlator may be calculated if we suppose that EJ is so weak that the
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environment stays close to thermal equilibrium, even after a tunneling event. Then �̃ is
the sum of the phases of a collection of oscillators at thermal equilibrium, i.e the sum
of a collection of gaussian variables. It is then itself gaussian, and a generalized Wick
theorem gives:

hei�̃(t)e�i�̃(0)i = eh[�̃(t)��̃(0)]�̃(0)i = eJ(t), (2.38)

where we introduced J(t) the phase-phase correlation function. As there are no corre-
lations between the fluctuations in different frequency bands, i.e associated to different
fictitious LC oscillators, we can compute the �̃(t) correlation functions at equilibrium:

h�̃(t)�̃(0)i =
X

i

h�i(t)�i(0)i =
X

i

4⇡e2Zi
c

h
(2hnii+ 1)e�i!it. (2.39)

We now express the LC parameters of the i-th oscillator in function of Re[Z(!)], and go
to the continuum limit N ! 1:

h�̃(t)�̃(0)i = 2

Z +1

�1

d!

!

Re[Z(!)]

RQ

e�i!t

1� e��~!
, (2.40)

where the superconducting quantum of impedance RQ = h/4e2 gives the natural scale of
impedance to which we should compare Re[Z(!)] to see if phase fluctuations matter or
not.

The correlation function J(t) is finally expressed as:

J(t) = h�̃(t)�̃(0)i � h�̃(0)�̃(0)i (2.41)

= 2

Z +1

0

d!

!

Re[Z(!)]

RQ

⇢

coth

✓

�~!

2

◆

[cos(!t)� 1]� i sin(!t)

�

. (2.42)

The tunnel current hI(t)i is linked to the Fourier transform of eJ(t), usually called P (E):

P (E) =
1

h

Z +1

�1
eiEt/heJ(t)dt. (2.43)

We finally have:

hI(t)i = Idc =
⇡eE2

J

~
(P (2eV )� P (�2eV )). (2.44)

Interpretation of the P (E) result

We have expressed the current through a dc-biased Josephson junction with the help of
a function P (E), linked to the phase-phase correlation function. To interpret physically
our result, let us have a look at the properties of this function in simple limit cases. First
of all, P (E) respects the detailed balance:

P (�E) = P (E)e��E. (2.45)

Such that a zero temperature, we have P (E) = 0 for E < 0. In the case of an environment
with a low impedance compared to RQ at every frequency, we can develop eJ(t) ' 1+J(t)
and find:

P (E){T=0,Re[Z]⌧RQ} '
✓

2

E

Re[Z(E/~)]

RQ

+ �(E)

◆

eJ(1), (2.46)
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which leads to:

Idc(V ) ' ⇡eE2
J

~
P (2eV ) ' ⇡E2

Je
J(1)

~V

Re[Z(2eV/~)]

RQ

. (2.47)

The work provided by the voltage source for each tunneling charge is 2eV , such that the
total power dissipated by the flow of this dc-current is:

P = V ⇥ Idc =
⇡E2

Je
J(1)

~

Re[Z(!J)]

RQ

=
I2c e

J(1)Re[Z(!J)]

2
. (2.48)

This coincides with the ac-power dissipated by a current of amplitude Ice
J(1)/2 injected

into Z(!J). This ac-current is the oscillating part of the tunnel current resulting from the
constant bias V , with an amplitude reduced by eJ(1)/2 3. The power needed to maintain
this ac-current is provided by the dc-voltage source, via the tunneling of charges through
the junction. Thus we can get an irreversible current by an inelastic process, where each
Cooper pair creates one photon in the environment at frequency 2eV/~ (Fig.2.9).

V

I

2eV

ħωi

2e

ħωi

a) b)

Figure 2.9: a) If 2eV = ~ωi, a Cooper pair can tunnel inelastically and create one photon at frequency
ωi. b) There is then a dc-current flowing in the circuit, associated to the dissipation of ac-power in the
environment.

The amplitude of this ac-current being fixed, the dc-current is directly proportional to
Re[Z(!J)], i.e to how dissipative the environment is at frequency 2eV/~.

More generally, the P (E) function can be understood as the probability density for a
single Cooper pair of exchanging the energy E with the environment. The non-linearity
coming from the expansion of ei�̃(t) means that multi-photonic processes can also occur.
Two-photon processes can be predicted by expanding eJ(t) to second order:

Idc(V ) ' ⇡E2
Je

J(1)

~V

✓

Re[Z(!J)]

RQ

+

Z

d!
Re[Z(!J � !)]

RQ ⇥ (!J � !)

Re[Z(!)]

RQ

◆

. (2.49)

We can interpret the second term on the right as a mechanism where 2eV is split between
one photon emitted at frequency ! and a second photon at !J � !, such that the total
energy is conserved. As Re[Z(!)] contains a continuum of frequency, there is an infinite
number of frequency pairs that respect this relation and thus infinitely many possible
ways of creating photon pairs. The probability associated to each process is weighted by
the product Re[Z(!J�!)]

RQ⇥(!J�!)
Re[Z(!)]

RQ
.

3The meaning of this factor will become clearer later on.
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A n-th order expansion of eJ(t) would show n-photon processes, whose magnitude is
again of order n in Re[Z]

RQ
, so less and less probable as n increases in this low impedance

hypothesis.

P (E) is not restricted to weak effects. More generally, P (E > 0) describes photon
emission by the junction while P (E < 0) is the probability for photon absorption. Equa-
tion(2.44) tells us that for a finite bias V 6= 0, we will have forward tunneling only if
the excess energy 2eV of a single Cooper pair can be dissipated in the environment,
and back-ward tunneling (giving a negative contribution to the current) if modes in the
environment can give away 2eV .

Limitations and hypotheses of the P (E) theory

We have derived analytical predictions for P (E) in the simple case of zero temperature
and a low impedance at every frequency. That last condition may be somewhat relaxed:
in equation (2.42) Re[Z(!)] is divided by RQ ⇥ !, such that if Re[Z(!)] is comparable
to RQ but only in a frequency window ∆! smaller than !, then their integrated ratio is
small compared to 1 and we may still expand eJ(t) to first order only4.

At a finite temperature, it is still possible to derive simple predictions for the dynamics
of the system. We can distinguish between the modes at frequencies well below the
thermal cut-off (! ⌧ kBT/~), where P (�~!) ' P (~!) such that photon absorption and
emission are equiprobable, which give in average zero contribution to the dc-current; and
the modes at high frequencies (! � kBT/~), which are empty at equilibrium and thus
can only absorb photons from the junction and give rise to a net dc-current. The first
ones have high occupation numbers, so they are deep in the classical regime, meanwhile
the others can be considered in the quantum regime. Modes at intermediate frequencies
require a more elaborate treatment, with e.g the numerical calculation of their P (E)
function, but we see that setting 2eV > kBT puts us in a regime where single photon
processes are simple to understand as only forward processes can happen.

The P (E) theory is perturbative in the Josephson Hamiltonian, as we had to suppose
that EJ was ”small enough” to compute the tunnel current. The higher order terms in
Ej remain much smaller than the first order one that we have derived if EJP (E) ⌧ 1.
By multiplying both sides of this inequality by EJ , we see that this condition holds if the
inelastic tunnel current (of order E2

JP (2eV )) stays small compared to Ic / EJ .

Finally, in the very simple model we used we did not explicitly include dissipation in the
collection of LC modes. In theory turning on the inelastic tunneling process should fill the
mode at frequency !J with an ever increasing number of photons, one for each tunneling
Cooper pair (plus all the other frequencies where multi-photon processes can put energy).
In practice there is of course some dissipation in the environment, which keeps the number
of photons finite. A further condition for the validity of the above calculation is that this
number should be close enough to the equilibrium value to leave the fluctuations of the
phase across the junction unaffected. We then treat cases where once a photon is created,
the mode gets empty rapidly, before another Cooper pair tunnels. In a situation where
this condition would not be respected, we can expect that photon absorption from the
environment to the junction becomes relevant, and changes the tunneling dynamics.

4this would be the case for a mode with a high quality factor.
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The semi-classical ac-Josephson effect

In the first section of this chapter, we explained that if we apply a dc-bias V on the
junction, it gives rise to an ac-current I(t) at frequency !J = 2eV/~ : this is called the
ac-Josephson effect. In that case the junction acts as a perfect dc-ac converter.

Suppose that we consider again the circuit of Fig.2.8 but decide to treat it classically, i.e
consider that the phase � is not a quantum variable but simply a quantity proportional
to the integral of a classical voltage. Such an approach would be justified for a very
low-impedance environment. The tunnel current I = Ic sin(�) through the junction is
still coupled to the impedance of the environment simply because they are in series in
this electrical circuit (Fig.2.8). Let us derive the behaviour of this circuit at increasing
order in Ic / EJ :

At zero-th order in Ic, there is no tunnel current:

I ' I0 = 0. (2.50)

If the impedance at low frequency of the environment is zero (which we will suppose for
simplicity), the voltage provided by the source drops on the junction such that:

V 0
J = V. (2.51)

To first order in Ic, the current through the circuit is then:

I1(t) = Ic sin(�
0(t)) = Ic sin(!Jt), (2.52)

where we choose �(0) = 0 for simplicity. The expression for !J = 2eV/~ looks deeply
quantum as it involves ~, however in a fully classical picture we cannot interpret this as
the result of microscopic processes, where one tunneling Cooper pair creates one photon.
Here 2e/~ is simply the dc-ac ratio of our non-linear element.

The ac-current I1(t) is injected in Z(!), which then presents an oscillating voltage drop
at its terminals which reads:

V 1
e (t) = Ic ⇥ {Re[Z(!J)] sin(!Jt) + Im[Z(!J)] cos(!Jt)}. (2.53)

There is then an additional voltage drop on the junction:

V 1
J = �V 1

e (t), (2.54)

which gives another phase term after integration:

�1(t) = Ic ⇥ {Re[Z(!J)] cos(!Jt)� Im[Z(!J)] sin(!Jt)}/V. (2.55)

If |�1| ⌧ ⇡, we have:

sin(�0 + �1) = sin(�0) cos(�1) + cos(�0) sin(�1) (2.56)

' sin(�0) + cos(�0)⇥ �1, (2.57)

which holds if |Z(!J)| ⇥ Ic ⌧ ⇡V , i.e if the voltage drop coming from the oscillating
tunnel current is small compared to the applied bias voltage V .

The current at second order is then:

I(2)(t) = I2c cos(!Jt){Re[Z] cos(!Jt)� Im[Z] sin(!Jt)}/V. (2.58)

The time average of I(2)(t) gives the value of the dc-current to second order:

Idc ' hI(2)(t)i = I2cRe[Z(!J)]/2V. (2.59)
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Comparison with the P (E) theory prediction

A semi-classical treatment of the {junction+environment} system also predicts a finite
dc-current I if the environment is dissipative at the frequency 2eV/~. This result may be
compared with the P (E) prediction (2.47) which was derived under the same hypothesis
of a low impedance environment:

I
P (E)
dc =

⇡E2
Je

J(1)

~V

Re[Z(2eV/~)

RQ

= I2c e
J(1)Re[Z(!J)]/2V (2.60)

Surprisingly, these two expressions that were derived using widely different formalisms
match very well. They only differ by the term eJ(1), which can be computed through:

J(1) = lim
t!1

h[�̃(t)� �̃(0)]�̃(0)i (2.61)

= �h�̃(0)2i (2.62)

= �
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h
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!

Re[Z(!)]

RQ

1

1� e��~!
(2.64)

With h�̃(1)�̃(0)i = 0 as correlations vanish at infinite time difference. We can inter-

pret I⇤c = Ice
�h�̃2i/2 as a renormalized critical current, that is reduced by the phase

fluctuations from the environment. A fully classical treatment of the ac-Josephson ef-
fect in the presence of a finite temperature impedance would also show some reduction
of the current, as the phase gets blurred by thermal agitation. However P (E) predicts
that this renormalization occurs even at zero temperature, where all the modes of the
environment are empty. They then contribute to the phase noise through their zero-
point fluctuations, which of course cannot be derived in a classical treatment of the
junction.

These phase zero-point fluctuations turn out to also be needed to explain the multi-
photon emission we derived through P (E). If we take to higher orders in Ic our calcu-
lation of the ac-Josephson effect, we will get additional contributions to the dc-current,
that are associated to the dissipation of ac-current at harmonics of the frequency !J , i.e
at frequencies !k = k ⇥ !J such that ~!k = k ⇥ 2eV . In a semi-classical interpretation,
we would say that k Cooper pairs tunneling together create one single photon at !k.
These co-tunneling processes were not considered in P (E), as we stayed to second order
in Ic. By contrast, P (E) predicts multi-photon processes, i.e emission at subharmon-
ics of the Josephson frequency that cannot be derived classically at zero temperature.
These processes are prompted by the zero point fluctuations of the phase coming from
the environment, and are as such of a quantum nature.

Remark: when is single-charge tunneling relevant?

The first works on Josephson junction-based circuits were free of most of these consid-
erations, as they used ”big” junctions, with areas of the order of a fraction of a square
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millimetre and relatively high critical currents, in quite low-impedance circuits. These big
junctions have at the same time a small Josephson inductance and relatively high geomet-
ric capacitance, which mean that they can easily screen the voltage fluctuations coming
from the environment5. From a dynamics point of view, this coincides with the junction
having a high Josephson energy and a low electrostatic charging energy EC = e2/2C, such
that the phase behaves as a classical variable, while the excess charging energy associated
with the tunneling of Cooper pairs does not perturb the circuit.

On the other hand, nanoscale junctions present a different kind of physics. These junc-
tions cannot shunt away the environmental phase fluctuations. This equilibrium phase
noise consists mostly of thermal fluctuations up to frequency kBT/~, but also of quantum
zero-point fluctuations, that become relevant at higher frequencies. These fluctuations
also scale as the impedance of the environment, so a small junction in series with high
impedances will be particularly sensitive to their effect and may display non-trivial dy-
namics at frequencies above the thermal cut-off. At the same time a high impedance
environment can react strongly to the tunnel current, and may give a strong counter-
action to the dynamics of the junction.

Finally, in small normal junctions connected to high impedance circuits, single-electron
tunneling can also couple to electromagnetic modes. Indeed after one tunneling event the
charge on one electrode changes by e, which can be described by the action of the operator
e�ieΦ~. One has also to take into account the kinetic degree of freedom of quasiparticles,
which make the calculation more involved. The P (E) theory was developed in the 1990’s
to describe small normal-metal junctions, where phase fluctuations from the environment
result in a reduction of the conductance of the junction. This phenomenon is called
Dynamical Coulomb Blockade (DCB) [31]. Here we used the same tools to predict a
closely related phenomenon, the apparition of inelastic tunneling processes in Josephson
junctions resulting in a dc-current below the gap voltage, that we will call Incoherent
Cooper-Pair Tunneling (ICPT) [55].

2.3 Experimental observations of ICPT

As mentioned earlier, the tools of the P (E) theory have been developed in the 1990’s in
order to describe the I(V ) of small dc-biased junctions. The first experiments focused on
the case of a normal tunnel junction in series with an ohmic resistance R, and showed a
reduction of the differential conductance of the junction for values of R comparable to the
normal quantum of impedance RK = h/e2, which plays the same role in normal junction
as RQ does in Josephson junctions.

Another way of generating strong P (E) effects in the I(V ) is to introduce resonances in
the environment of the junction. The real part of the impedance at the resonant frequency
can reach very high values, of the order of RQ, making P (E) effects more prominent. It
also gives a clearer picture of where are created the photons emitted by tunneling charges:
as excitations of the resonant mode.

These resonances can be engineered by microfabricating lumped-element resonators close

5Furthermore in low-impedance circuits the effective capacitance Ceff of the junction is renormalized
to a much higher value than Cgeo.
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to the junction. However to be above the thermal frequency cut-off and probe quantum
effects, one needs to study the emission of photons at GHz frequencies, where micro-
fabrication becomes more involved. At these high frequencies it is natural to resort to
distributed circuits, where the resonances between segments of microwave transmission
lines can implement well-defined modes. It also makes possible guiding the photons cre-
ated by the junction out of the chip, e.g to some detector.

This approach was implemented in two different experiments that we will describe now.
The first one aimed a probing the effect of a transmission line on the I(V ) of a small
superconducting tunnel junction. It validated the mechanism of single-photon emission
by inelastic Cooper pair tunneling [32]. The second experiment, based on a similar setup,
also collected the microwave photons emitted by the Josephson junction, probing for the
first time the photonic side of ICPT [33].

2.3.1 Observation of ICPT in the dc-current

Enhancing Re[Z(!)] with �/4 resonators

Figure 2.10: Circuit used by Holst et al. for the 1994 experiment. An ultrasmall Josephson junction
(box symbol ⇥) is connected to a voltage source through two segments of transmission line built on-chip.

The sample used by Holst et al in 1994 [32] is represented on figure 2.10. Two ultrasmall
Al/AlOx/Al junctions, put in parallel in a loop, form a Superconduting QUantum Inter-
ference Device (SQUID). Well below its self-resonance frequency the SQUID behaves as a
single Josephson junction, whose critical current Ic can be tuned by threading a magnetic
field Φ through the loop, with Ic(Φ) ' Ic ⇥ | cos(eΦ/~)|. This equivalent junction has a
rather small area of 60⇥ 60 nm2, resulting in a small geometric capacitance CJ ' 1.5 fF,
a high normal state tunnel resistance RT , and a small critical current Ic.

The junction is shunted to ground on one side, and biased on the other side by a voltage
source through a load impedance which is modelled as a resistor of Zx ' 110 Ω, and
two short segments of CPW transmission lines with wave impedances Z1 ' 100 Ω and
Z2 ' 28 Ω respectively. The environment of the junction is then given by Zx, transformed
by resonances in Z1 and Z2, and shunted by the parallel association with CJ .

We recall in figure 2.11 the effect of a segment of transmission line on a given load
impedance (see appendix C for a detailed derivation). The sample from Fig.2.10 presents
modes with impedance ' 1.4 kΩ at resonance and a full-width at half maximum (FWHM)
of ' 2 GHz. The fundamental resonance occurs at !r = 2⇡ ⇥ 22 GHz, where the
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Figure 2.11: a) The impedance Zl seen through some length L of transmission line Zw shows resonances.
b) If Zw > Zl, these resonances happens at odd multiples of the fundamental resonant frequency. The
impedance on top of the resonance is Z2

w/Zl, and the quality factor is Q = πZw/4Zl.

impedance given by the parasitic capacitance of the junction is (jCJ!r)
�1 ' j ⇥ 4.8 kΩ.

Thus CJ cannot shunt efficiently the voltage fluctuations coming from Re[Z(!)], and we
expect to detect ICPT in the dc-current.

Peaks in the I(V) below the gap voltage

Figure 2.12: Experimental I(V) of the sample, with the P (E) prediction shifted down by 5 pA for clarity.
Inset: the I(V) in a wider voltage range and a much bigger current scale, measured with the junction
either in the superconducting state (S), or driven normal by the application of a 1 T static magnetic
field (N). Figure taken from Holst et al., PRL 1994.

The figure 2.12 presents some results of the experiment under the form of I(V) curves,
taken with the sample placed in a dilution refrigerator with base temperature 22 mK.
In the small inset on the upper right are the large-scale I(V)s of the junction in the
superconducting and normal states (reached by applying a 1 T magnetic field to the
sample). The normal state curve gives access to the tunnel resistance of the junction:
RT ' 305 kΩ. The superconducting data shows the tunneling of quasiparticles for bias
above the gap voltage 2∆/e ' 358 µV. We can estimate the critical current of the junction
with the Ambegaokar-Baratoff formula [56]: Ic = ⇡∆/2RT ' 0.92 nA.

The rest of the figure shows peaks in the superconducting I(V) at voltages below the gap,
that we understand this way:
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At zero bias (V0) is the supercurrent peak associated to elastic tunneling. From our
discussion of part 1.1 we would expect it to go up to Ic = 920 pA. In practice it is always
quite hard to measure directly Ic, as low frequency voltage noise changes the value of the
phase � during the measurement. The finite width of this peak comes from the interplay
with the low-frequency impedance of the biasing circuit. Like the authors of the paper,
we will not comment on it any more.

At a bias voltage V1 corresponding to 2eV1 = ~!r we see a finite dc-current through the
junction, which results from the inelastic tunneling of Cooper pairs. The height of this
peak matches quite well the value predicted by P (E) for a low impedance environment:
I = I2cRe[Z(!r)]/2V ' 13 pA. The width of this peak is also in agreement with the
quality factor of the mode. Note that the dc-current stays always much smaller than
the critical current of the junction, which is a necessary condition for the P (E) result to
hold.

At a bias twice higher V2 there is a much smaller and broader peak. The authors
attribute it also to single-photon processes, where light is emitted in a low-impedance
parasitic �/2 resonance at frequency 2 ⇥ !r. One may argue that 2-photon processes
are also visible here, as the measured current is somewhat higher than the single-photon
prediction I(1). However the accuracy of the measurement is not high enough to confirm
the existence of these processes, which are anyways expected to be small compared to
the V1 resonance in this low-impedance circuit.

At biases V3, V4, V5 are similar one-photon resonances, where light is emitted in reso-
nances at frequency 3⇥ !r,4⇥ !r,5⇥ !r respectively. The height of these peaks de-
crease with increasing frequency, which can be understood from (2.47). First of all, at
fixed impedance and tunnel coupling Ic, there is a 1/V / 1/! dependence in the ICPT
current. Second, with increasing frequency the admittance of the junction capacitance
jCJ! gets higher: it is able to screen more efficiently the voltage fluctuations coming
from the environment.

All these peaks are reproduced nicely by the P (E) prediction, which only use as fitting
parameter the load impedance Zx and the high-frequency resistive losses in the CPWs,
which broaden the V3 and V5 peaks compared to V1 (Fig.2.12).

The additional peaks at Vx and Vy are attributed by the authors to parasitic resonances
on the chip.

A definitive confirmation of the ICPT mechanism?

Even though these results compare nicely with a P (E) prediction, which also describe
well data taken in the DCB regime of single-electron tunneling, the authors themselves
note that a semi-classical theory based on the ac-Josephson effect predicts the same 1-
photon peaks. The two main features of ICPT that we described earlier, namely the
renormalization of Ic by zero-point fluctuations and the existence of multi-photonic
processes, cannot be confirmed by this experiment.

To probe the first effect, one would need to compare the measured current to the one pre-
dicted using the Ambegaokar-Baratoff formula. However in this relatively low-impedance
circuit the renormalization of the critical current is of the order of a few percents, which
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is smaller than the uncertainty on RT , ∆ or the Re[Z(!)] seen by the junction, such that
this comparison cannot be done here.

2-photon processes are maybe responsible for the slightly enhanced current at bias V2,
however once again the environment of the junction is not known well-enough to make the
subtraction of the 1-photon contribution accurately. To discriminate between processes
where light is emitted as one photon of frequency 2⇥!r or 2 photons at frequency !r, the
measure of the dc-current is not enough: one need to also detect the photons emitted
by the junction.

In spite of these limitations, this experiment was the first one to prove that a small-
enough junction would be sensitive to the high-frequency voltage fluctuations from its
environment, and that quantitative predictions could be made if the impedance seen by
the junction is well-known. It was thus the basis for another experiment performed 17
years later that aimed at probing the photonic (or ”bright”) side of ICPT as well.

2.3.2 The Bright Side of Coulomb Bockade

As mentioned earlier, one of the perks of using distributed elements to implement modes
is that it makes it possible to collect the light emitted by ICPT and guide it towards a
detector. This however comes at the cost of making the experiment more complex, as the
constraints of the low frequency electrical engineering needed to measure accurately the
I(V) of the junction are at odds with the standards of microwave power measurements.
We describe here the ideas guiding the high-frequency design of such experiments.

Processing microwave photons

We gave a simple physical picture of the photon-creation process in figure 2.9: in this
model circuit, the tunnel current through the junction is directly injected in an array of
LC modes.

However this set of fictitious LC resonators is merely an effective model describing an
arbitrary impedance Z(!). In the Holst 1994 experiment, Z(!) is given by the load
impedance Zx, quarter-wavelength transformed to Z2

w/Zx at the resonance frequencies of
the Zw transmission line. At the bias V = ~!r/2e, ICPT is prompted by the vacuum volt-
age fluctuations coming to the junction at frequency !R, with SV V (!r) = 2~!RZ

2
w/Zx.

The electromagnetic excitations are then created as an ac-voltage drop at the input
of the transmission line. These propagate in the line until the load impedance Zx,
where they are dissipated as Joule power with the emission power P em = hVac(t)

2i/Zx

(Fig.2.13.a).

Thus the load impedance where the dissipation finally occurs does not need to be directly
connected to the junction. We can also envision a situation where the output of Zw is an
arbitrarily long line of wave impedance equal to Zx, terminated by a matched resistor.
This does not change the impedance seen by the junction, nor the equilibrium phase
fluctuations prompting ICPT. However it allows the routing of the emitted photons in
the line from the sample to room temperature, where they can be detected.
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Measuring the emission power

One very direct way of detecting these photons could then be to measure the voltage
drop on the load resistor, in particular its ac-component at frequency !r. This is very
unpractical to do, as digitizing voltages as such high frequencies is out of reach of most
commercially available acquisition cards.

Recall also that in an experiment, the sample is kept at very low temperature in a
cryogenic enclosure, but the electronics used to measure it is at room temperature. At
T=300 K, the occupation number for modes in the few GHz range is of the order of
kBT/~!r ⇠ 103, such that there is a considerable background of thermal photons in the
measurement lines. To stay in the assumptions of the P (E) theory one need to keep the
number of photons emitted by the junction sufficiently lower than 1 photon per mode, i.e
much lower than the background thermal occupation. More over, the connection between
the sample and the detector needs to be resistive enough to forbid heat transfer from room
temperature to the cold stage. This in turn causes a strong attenuation of the emitted
power (of the order of 10-20 dB), such that the signal to noise ratio of a direct detection
technique would be extremely low and make the experiment impossible (Fig.2.13.b).
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Figure 2.13: a) Schematics of a direct power detection setup. ICPT in the dc-bias Josephson junction
creates excitations in the transmission line (in green), which propagate until they are dissipated in a
load impedance Zx, placed at room temperature Tamb. b) Typical log-log plot of the spectral density
of the power dissipated in Zx, in units of ~ωr. Its consists mostly of thermal Johnson-Nyquist noise (in
red), which is orders of magnitude bigger than the signal from the junction (in green, exaggerated many
times). c) Schematics of a setup able to amplify the signal with a cryogenic HEMT before detection. d)
Log-log PSD plot of the Johnson-Nyquist noise of the detector at Tamb (in red), with the amplified noise
of the HEMT (in blue) and the amplified signal from the junction (in green). In a frequency window
around ωr, the noise of the amplifier can be of the order of the noise of a Tcold impedance.

It is then necessary to rely on cryogenic low-noise microwave amplifiers, such as the
commercially available HEMTs. These devices can collect weak voltage signals at their
input and amplify them (Fig.2.13.c). In their operating frequency band they can give
up to a G=40 dB gain to the signal power, while adding a parasitic noise equivalent to
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the thermal noise of a resistor at a temperature of a few Kelvins. These devices need
to be impedance matched to ensure that all the input signal is amplified and none of it
reflects back to the sample. The standard at microwaves frequencies for impedances is
Z0 = 50 Ω. The ouput of the amplifier thus consists of microwave signals with the Power
Spectral Density (PSD): SP (!) = G ⇥ (kBTN + Z0SII(!)), where SII(!) is the current
noise emitted by the junction towards Z0 and TN is called the noise temperature of the
amplifier.

The amplified signals can be brought up to room temperature for further amplification.
If we cascade two amplifiers 1 and 2, the output PSD of 2 reads: S

(2)
P (!) = G(2) ⇥

(kBT
(2)
N +G(1) ⇥ (kBT

(1)
N + Z0SII(!))). If we design the chain of amplification such that

G(1)T
(1)
N � T

(2)
N , then the signal to noise ratio is dominated by the low noise of the first

cryogenic amplifier. In this way one can overcome the 300 K temperature of the final
detector (Fig.2.13.d).

As we are not yet interested in the coherence properties of the photons emitted by the
junction, we don’t really need to access the full V (t) dependence. We can detect the
emission of photons by measuring the power emitted by the junction, which reads: P em =
R

d!Z0SII(!) = ~!rΓph, where Γph is the photon emission rate. This power can be
extracted by a square-law detector, which is a diode with a non-linear I(V) terminated
by a RC circuit. Near 0 this I(V) is approximately quadratic, such that the voltage at
the output of the detector is directly proportional to hV (t)2i / P em.

The Bright Side experiment: measuring Cooper pair tunneling rates as well
as photon emission rates

1

2

3

Figure 2.14: Generic setup used in the 2011 experiment. A bias tee allows to measure the dc-current of
Cooper pairs ΓCp as well as collecting the microwave power Γph emitted into an amplification chain.

The figure 2.14 shows a simplified version of the experimental setup used by Hofheinz
and coworkers in 2011 [33]. It includes a SQUID, acting as a single Josephson junction
tunable by an external flux Φ, connected to a bias circuit through two segments of CPWs,
implementing �/4 modes with fundamental resonance frequency ⌫0 ' ⇥6 GHz6. Between

6The higher order λ/4 modes thus occur at 18 GHz, 30 GHz, and so on.

46



the chip and the rest of the circuit is a bias-tee, which is a 3-port microwave device which
can separate the dc and the ac components of signals on the input port onto two separate
output ports. It is schematized by an inductor and a capacitor connected to the sample,
which is also a good model of its equivalent impedance.

On the low frequency part of the circuit there is a voltage source VRT at room temperature,
in series with two resistors of respectively 10 MΩ and 100 Ω. As the conductance of the
junction is negligible compared to (100 Ω)�1, the voltage at the low temperature resistor
is V ' VRT ⇥ 10�5. This allows setting precisely the value of the voltage bias on the
junction VJ ' V . Measuring the voltage across the 1 kOhm resistance on the inductive
part of the bias-tee allows accessing the dc current I and thus the rate of tunneling of
Cooper pairs ΓCp = I/2e.

The high frequency port of the bias-tee is connected to a HEMT cryogenic amplifier, with
a noise temperature of TN = 3.5 K. In between the sample and the amplifier are a set
of cryogenic circulators (only one represented). This 3-port microwave device contains
transmission lines running over a magnetic substrate. Wave propagation is thus chiral in
the circulator, such that interferences can be engineered to route all the signals coming
from port 1 to port 2 only, and as well for the signals from port 2 to port 3 and those from
port 3 to port 1 (following the arrow symbols). Circulators are used here to protect the
sample from the voltage noise coming from the amplifier. Indeed from its input the HEMT
behaves as a 50 Ω circulator at temperature TN , which thus radiates Johnson-Nyquist
noise. Without the circulator this ”hot” noise would go straight to the junction, and give
a finite occupation to the GHz modes of the environment. The circulator roots this noise
to a matched 50 Ω load which is thermalized at the fridge base temperature. The load
absorbs about 98% of this incoming power and radiates only vacuum fluctuations as it
is kept around 20 mK⌧ h⌫0/kB. Using several circulators helps in absorbing all of the
parasitic amplifier noise.

The output of the HEMT amplifier is routed to room temperature, where it is further
amplified (not shown) and finally filtered in a frequency window of 2 GHz centered on ⌫0.
The filtered signals are sent to a fast diode. The diode output voltage is proportional to
the total power out of the amplification chain, which consists mostly of the first cryogenic
amplifier noise, the comparatively much smaller noise added by the other amplifiers, and
the weak signal from the sample.

At V = 0, as the temperature is much below h⌫0/kB, we know that the junction does not
emit photons in the measurement frequency window. We consider this the OFF state of
the sample, where Γph = 0. By contrast at V 6= 0 the junction is in the ON state, as it
may radiate power. As the noise added by the amplifiers do not depend on the state of
the sample, we can extract the contribution of ICPT by performing relative ON/OFF
measurements of the power detected by the diode, and hence access the photon emission
rate Γph = P em/h⌫0

7.

This setup makes it possible to measure at the same time ΓCp and Γph, i.e the dc and ac
aspects of ICPT, for a Josephson junction with a well controlled environment.

Note that all the microwave electronics used here is designed to work only in the so-called
C band (4-8 GHz). Hence only the photons emitted in the first �/4 mode at 6 GHZ can

7As this measurement is relative, we know Γph up to the global gain of the amplification chain, that
we can calibrate in situ (see appendix B).
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be detected.

Photon rates and Cooper pair rates

Figure 2.15: On the upper part: Re[Z(ω)] of the environment seen by the junction, calibrated in situ in
the frequency band accessible for measurement 5-7 GHz. Main graph: measured Cooper pair tunneling
rates (red points) and photon emission rates (blue points) as a function of bias voltage V . Only the
photons emitted at the resonator frequency 6 GHz are detected. The P (E) theory predictions for dc-
current (cyan line) and microwave power (yellow line) use the measured Re[Z(ν)], and the electronic
temperature Tel = 60 mK and EJ=5.1 µV as fit parameters.

The figure 2.15 presents some results of the experiment. On the upper graph is the real
part of the impedance of the environment, as seen from the junction. The black line is
the results of microwaves simulation, showing a mode at ⌫0 ' 6 GHz8 with Q ' 9 which
reaches ' 1.5 kΩ at maximum. The pink line shows the experimental Re[Z(⌫)], recon-
structed from shot-noise measurement (see appendix B for details about the procedure),
which confirms the presence of the mode. The deviation to a pure Lorentzian shape is
attributed to parasitic reflections in the microwave chain.

The lower part of the figure is a graph showing ΓCp and Γph as a function of the bias voltage
V , for a given value of Ic(Φ). At low bias, ΓCp shows again the V = 0 supercurrent peak,
broaden by the interplay with low frequency modes of the circuit. Around V = 12 µV ,
corresponding to a Josephson frequency ⌫J ' ⌫0, there is a current peak, whose shape
reproduces the shape of the mode, i.e ΓCp(V ) follows Re[Z(2eV/~)]. Around V = 24 µV
is a much broader and weaker current peak, that corresponds to the V 2 peak of the Holst
experiment.

By contrast with the dc-current which is non-zero even at low bias, we don’t expect to
see any photon emission from the sample below V = h⌫0/2e. This is reflected in the
Γph(V ) curve, which is zero until 10 µV = h/2e⇥5 GHz, which corresponds to the lower

8To be consistent with the authors we switch to a description of frequencies νk in [GHz], instead of
the ωr in [2π GHz] we used before.
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edge of the frequency detection window. Around 12 µV we see a peak in Γph(V ), which
follows again the variation of Re[Z(2eV/~)] and whose amplitude agrees with ΓCp(V )
within 5%. The agreement between these two rates and their V dependence confirms
the intuitive picture we had in mind, where in average one Cooper pair creates one
photon, albeit without discriminating between ICPT and the semi-classical ac-Josephson
effect 2.2.

Finally, the most important feature of the figure is the small peak in Γph(V ) that occurs
around 24 µV (magnified in the inset), that coincides with the broad peak in ΓCp(V ).
Recall that at this bias value, each Cooper pair has to spend the energy 2eV = 2h⌫0 to
tunnel irreversibly, and that we only detect the photons emitted at frequency ⌫0. The
peak in Γph(V ) thus proves the existence of 2-photon processes, where each Cooper pair
creates two photons. At low temperature, these processes cannot be explained by a
semi-classical theory, and are therefore a clear experimental confirmation of the ICPT
mechanism of irreversible tunneling prompted by vacuum fluctuations.

The small ratio of the 2-photon to the 1-photon peak can be explained by the quite low
value of the impedance of the mode. From equation (2.49), we see that the dc-current
associated to 1-photon emission when biased at V0 = h⌫0/2e is:

I(1) =
⇡E⇤

J
2

~V
⇥ Re[Z(⌫0)]

RQ

, (2.65)

where we denoted E⇤
J = EJe

�J(1)/2 the renormalized value of the Josephson energy.
When biased at 2V0, the contribution of the 2-photon process to the current is:

I(2) =
⇡E⇤

J
2

~⇥ 2V
⇥
Z

d⌫
Re[Z(2⌫0 � ⌫)]

2⌫0 � ⌫

Re[Z(⌫)]

RQ
2 , (2.66)

where the integral is taken only over the width of the resonance. If its quality factor
is high enough, the 2⌫0 � ⌫ denominator may be approximated by ⌫0, with an error of
order Q�2. The integral becomes a convolution product of Re[Z(⌫)] times itself. We now
approximate Re[Z(⌫)] by a Lorentzian function, for which this integral is analytical, and
obtain:

I(2)

I(1)
=
⇡Zc

4RQ

' Zc

8216.5 Ω
. (2.67)

With Zc = (2/⇡)
R

d⌫Re[Z(⌫)]/⌫ the characteristic impedance of the resonator. For a
�/4 mode, we have Zc = 4Zw/⇡ ' 160 Ω in this experiment. The ratio of 2-photon to
1-photon current peaks is then of the order of ⇠ 2%. Meanwhile, as on 2V0 we have
Γph = 2ΓCp, the 2-photon microwave power peak is ⇠ 4% smaller than the 1-photon one,
which is close to the measured value (FIG.2.15).

Note that the ΓCp peak around 24 µV is approximately twice larger than the Γph peak,
which means that there are also other processes contributing to the dc-current (most
probably 1-photon processes where light is emitted at 2⌫0, i.e outside of the detection
window). Note also that the exact value of the critical current of the junction during
the experiment cannot be assessed exactly, except at the zero-frustration point of the
SQUID Φ = 0. From the 1-photon peak in figure 2.15, we can estimate its value during
the measurement from (2.47) as: Ic(Φ) =

p

2h⌫0Γph/Re[Z(⌫0)] ' 20 nA, while the dc-
current is I = 2eΓCp ' 0.3 nA, which confirms the validity of P (E).
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Two-mode processes at higher bias voltage

Figure 2.16: Results of the experiment at higher bias. The upper graph shows Re[Z(ν)] as it was designed,
with harmonics of the λ/4 resonance at frequencies νk = (2k+1)ν0. To these modes correspond 1-photon
peaks in ΓCp, at bias voltages V = hνk/2e. We see 2-photon peaks in Γph, at voltages V = h(νk+ν0)/2e.

The figure 2.16 shows the same type of data as figure 2.15 in a wider voltage range. The
critical current Ic(Φ) of the SQUID was also tuned to a higher value, in order to increase
the size of 2-photon processes, while staying in the domain where P (E) is valid9.

The Cooper pair tunneling rates shows a series of narrow peaks at regular positions, which
may be mapped to 1-photon processes where light is emitted in the harmonics of the �/4
mode (similar to the V3 and V5 peaks in Holst experiment). As such they happen at bias
voltages Vk = (2k + 1)h⌫0/2e. In between these narrow peaks are broader and weaker
resonances at even multiples of h⌫0/2e. As in the previous experiment, the measurement
of dc-current alone doesn’t allow to distinguish the contributions of single and two photon
processes.

This uncertainty is resolved when looking at the Γph(V ) data. We see narrow peaks in
the photon emission rates, which correspond to processes where one Cooper pair emits
at the same time one photon at ⌫0 and a second one in a harmonic mode at ⌫k. These
peaks prove that the junction can emit light in two different modes at the same time, in
a process similar to non-degenerate parametric down-conversion.

The confirmation of these two distinct-photons emission mechanism immediately raises
the question of the quantum coherence between the two modes: is the junction creating
entangled photon pairs? This investigation has been a major part of the work presented
in this thesis.

Entanglement (when it exists) manifest itself as non-classical correlations between quanti-
ties measured independently in the two modes, as they share a common degree of freedom.
By using the power detection setup in a more refined manner, the authors of the article

9As for a given Re[Z(νJ)] the dc-current scales as (Ic)
2, when increasing Ic there may be a point

where Idc > Ic and P (E) breaks.

50



have been able to study the spectral properties of the light emitted by the junction,
and identify a potential shared degree of freedom, which we later turned into a proper
entanglement witness.

Spectral properties of the emitted light

A heterodyne technique can be used to detect the power emitted in a narrow frequency
window �⌫. To do so, the signals right out of the microwave amplification chain are
mixed with a so-called local oscillator (LO), which is a sinusoidal signal at frequency ⌫LO
generated by a room-temperature radio-frequency source.

The PSD of the signal after mixing is then SP (⌫�⌫LO)+SP (⌫+⌫LO), where the negative
frequencies correspond to signals that have been aliased (i.e folded back onto positive fre-
quencies). A low-pass filter with a cut-off frequency �⌫/2 then selects only low-frequency

terms, such that the output power is
R ⌫LO+�⌫/2

⌫LO��⌫/2
SP (⌫)d⌫ ' SP (⌫LO)⇥ �⌫.

By scanning ⌫LO, it is then possible to reconstruct the emission spectrum Sem
P (⌫) of

the power radiated by the junction, and divide it by h⌫ to obtain the photon emission
rate density �(⌫). The results of this experiment are presented in figure 2.17, where the
voltage bias was also scanned to explore the 1-photon and 2-photon resonance of the ⌫0
mode.

Figure 2.17: Emission rate density γ(ν) map in the 5 to 7 GHz range as a function of bias V . Spectra
were taken for different EJs and normalized by the maximum γ. On the left part, the bias is swept
across the 1-photon resonance. On the middle map it crosses the 2-photon peak. The white points show
cuts along the two white lines, at 12.5 µV and 24.5 µV . The right part shows a graph of Re[Z(ν)] in the
same frequency range. The P (E) prediction for the spectra (2.73) and (2.75) are plotted as white lines.

On the 1-photon emission map we see narrow emission spectra, whose maximum follows
the 2eV = h⌫ line (white dots). The amplitude of the maximum is also modulated by
Re[Z(⌫)] (shown in the right part of the figure), in accordance with equation 2.47. At
fixed voltage, a cut through the map along the frequencies reveal the shape of the emission
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line. It is approximately Lorentzian, with a width of around 150 MHz, i.e much narrower
than the FWHM of the resonator (⌫0/Q ' 670 MHz).

Similarly the 2-photon emission maximum follows the 2eV = 2h⌫ line (white dots).
However there the emission spectrum is much broader: near 2eV = 2h⌫0, it resembles
the shape of the resonator (see cut at 24.5 µV ), with a similar width ' 600 MHz.

P(E) description of the emission spectrum

As explained by the authors, these results are well reproduced by an extension of the
P (E) theory. We described the PSD emitted by the junction into the detector as SP (⌫) =
~⌫�(⌫), where �(⌫) is the spectral density of the photon emission rate (i.e the ”number
of photons per travelling mode”). This may also be written as the Joule power dissipated
by the tunnel current I in the impedance of the environment, which plays the role of the
”detector”: SP (⌫) = 2Re[Z(⌫)]SII(⌫). The current noise density is the Fourier transform
of the current-current correlator:

SII(⌫) =

Z +1

�1
hI(t)I(0)iei2⇡⌫tdt. (2.68)

Like the tunnel current itself, this correlator can be written with the charge tunneling
operator:

hI(t)I(0)i = e2EJ

~2

�

hei�(t)e�i�(0)i+ he�i�(t)ei�(0)i
�

, (2.69)

where in the absence of a phase reference we again kept only the terms involving phase
differences. These terms can be expressed with the help of the phase correlator J(t):

he±i�(t)e⌥i�(0)i = e±i2eV t/~he±i�̂(t)e⌥i�̂(0)i (2.70)

= e±i2eV t/~eJ(t). (2.71)

Thus the current noise can also be expressed with the P (E) function, as:

SII(⌫) =
2⇡e2E2

J

~
(P (2eV � h⌫) + P (�2eV � h⌫)) . (2.72)

This expression leads to a simple physical picture of the current noise through the junc-
tion. The first P (E) term corresponds to emission processes, where photons are created
by ICPT. The second term indicates photon absorption by the junction, i.e processes
where one Cooper pair absorbs the energy 2eV +h⌫, to be able to retro-tunnel (climbing
the potential difference 2eV ) while emitting a photon at frequency ⌫. These absorption
processes are negligible as soon as the environment of the junction is cold enough, thus
empty of photons at frequencies ⇠ 2eV .

Note that the expression for the tunnel current (2.44) involved the difference of two
P (E) functions, which were associated to currents flowing in opposite directions. If
P (2eV ) ' P (�2eV ), there is in average zero current through the junction. On the other
hand both forward and backward tunneling contribute to the current noise (2.72).

Going back to the shape of emission spectra, we see that the PSD around ⌫J on the
1-photon peak 2eV = h⌫0 is directly an image of P (E) around E = 0, modulated by
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Re[Z(⌫)]:

SP (⌫) = 2⇡2E2
J

Re[Z(⌫)]

RQ

P (2eV � h⌫). (2.73)

As the width of the mode is much wider than D/h, the Re[Z(⌫)] dependence of the
emission spectrum can be neglected: we have SP (⌫) / P (h⌫0 � h⌫).

At very low energy, we cannot use the zero temperature expression 2.46 for P (E) that
we developed before. The continuum of low frequency modes with diverging thermal
occupation near ⌫ ' 0 act like a bath of voltage fluctuations with a white noise spectrum,
resulting in Brownian dynamics of the superconducting phase �. In the limiting case
where the RC cut-off of the environment impedance happens after the thermal cut-off of
the modes occupation, i.e if the impedance is ohmic and ”flat”up to kBT/h, the interaction
between � and this bath can be treated exactly [57]. P (E) is then a Lorentzian function
near zero [58]:

P (E ⇠ 0) =
D/⇡

D2 + E2
, (2.74)

with a FWHM 2D ' 4kBTRe[Z(⌫ = 0)]/RQ, where T is the temperature of the low
frequency modes. The exact setup used in the Bright Side experiment is a bit more
complex than a simple constant resistance [33]. A more accurate model for the circuit
including both lumped and distributed elements leads to an average impedance seen by
the junction between 0 and 4 GHz of around 65 Ω. Fitting the 150 MHz width of the 1-
photon spectrum with the formula for D leads to an effective temperature around 55 mK,
in good agreement with an independent calibration of the electronic temperature of the
sample Tel = 60 mK±10 mK.

This non-zero width of the emission spectrum can be understood as the result of processes
where the junction exchanges energy both with the mode at ⌫0 and with the low frequency
continuum. This spectrum is symmetric around ⌫0 as the junction is absorbing and emit-
ting energy into the continuum with equal probability, as P (E) ' P (�E) for E ⌧ kBT .
However the experiment is carried over timescales much longer than the period of these
modes, such that photon absorption and emission are averaged and cannot be resolved.
It is more instructive to consider that the low frequency modes act like some source of
voltage noise on V , leading to a widening of the �(E) in (2.46). We could alternatively
consider that the bias voltage V is perfectly noiseless but that we are changing its value
during the measurement, leading to a broadening of the emission line.

The P (E) expression of SP (⌫) also reproduces accurately the 2-photon measurements.
Here the bias is set around 2eV = h⌫0, such that SP (⌫) reproduces the variation of
P (E ' h⌫0). We can use the Re[Z(E/h)] expansion of P (E) to get the emission rate
density �(⌫) = SP (⌫)/h⌫:

�(⌫) ' (2⇡EJ)
2

h2
⇥ Re[Z(⌫)]

RQ ⇥ ⌫
⇥ Re[Z(2⌫0 � ⌫)]

RQ ⇥ (2⌫0 � ⌫)
. (2.75)

The emission rate density is symmetric around 2eV/2h = ⌫0, reflecting the fact that
photons are created by pairs. Indeed if we consider a single tunneling event, the energy
2eV ceded by the voltage source can be converted into any photon pair (⌫a, ⌫b) whose sum
of frequencies matches 2eV/h. The probability of emitting a single photon at ⌫ scaling
as Re[Z(⌫)], a particular pair process probability scales as Re[Z(⌫a)]⇥Re[Z(⌫b)].
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When biased at 2eV = 2h⌫0, the shape of the PSD is thus the product of the profile
of Re[Z(⌫)] times its mirrored image around ⌫0, Re[Z(2⌫0 � ⌫)], resulting in a FWHM
slightly lower than the width of the resonator itself. The P (E) predictions for the 1 and
2-photon process is plotted on Fig.2.17 on top of the measured spectra (white lines), using
the Re[Z(⌫)] deducted from shot-noise measurements. The only fitting parameters are
the effective temperature for the 1-photon spectra, and the Josephson energy EJ for both
processes. The expression for the PSD, integrated over the detection frequency range,
is also plotted on figure 2.15 and figure 2.16 (yellow lines), over the measured emitted
microwave power, as well as is the prediction for the dc-current on top of the measured
current (cyan lines), using the same set of fitting parameters (Tel and EJ).

The very good agreement between the predicted and measured emission spectra, photon
creation rates and Cooper pair tunneling rates is a definitive proof that the P (E) theory
describes accurately the interaction between the Josephson junction and the electromag-
netic modes in its environment.

2.4 Conclusions and open questions

Rates and statistics

These two experiments validate the idea that engineering the environment of a small dc-
biased Josephson junction prompts the emission of light by an inelastic mechanism, which
is fundamentally quantum as it relies on zero-point phase fluctuations. In the limit of low
Josephson energy ICPT is well described by the P (E) theory, which predicts intriguing
effects such as the emission of multiple photons by a single tunneling charge.

However one should note that we have only derived predictions about average quantities,
such as the value of the dc-current hI(t)i or the radiated ac-power P = ~!rΓ. Such
observables alone are not enough to prove that exactly one Cooper pair has created
exactly a given number of photons. The microscopic nature of the photon emission
process can only be definitely proven by looking at more elaborate quantities, such as the
statistics of the emitted light.

On one hand, as the tunneling events happen in a random way and are rare enough
to be considered independent, we expect the light emitted by the 2eV = k~!r process
to consist of independent packets of exactly k photons. Such light would present a
non-classical granular aspect that can be described by antibunching statistics, which
is usually characteristic of fermions, and can be used as a resource in many quantum
information protocols or fundamental tests of quantum mechanics. Two-photon states,
in particular entangled photon pairs, are also often critical for quantum communication
experiments.

On the other hand, we know that in the low impedance limit the 1-photon processes also
emerge in a semi-classical treatment of the ac-Josephson effect. In that case the junction
acts as a classical ac-current source, which can only create the so called coherent states
of light, displaying classical statistics.

The investigation of the precise nature of these statistics require a more complete theoret-
ical treatment, which could be done by identifying the right current correlators describing

54



the photon statistics and calculating them within P(E). This is however very cumbersome,
and we will see that better approaches are available.

Back-action of the populated modes

Another limitation of the P (E) theory is that it supposes that the environment of the
junction stays close to equilibrium. In practice, the mode where the photons are created
fills up at a rate Γ. Its stationary occupation number n̄ is then the ratio of this rate to its
energy leak rate  = !r/Q. As Γ is proportional to the inelastic current, the hypothesis
that n̄ stays close to zero is related to the main condition for P (E) to hold, which is that
the dc-current stays small compared to Ic. This condition also appears in our derivation
of the ac-Josephson effect, as we had to suppose that Re[Z(!J)] ⇥ Ic ⌧ ⇡V in order to
linearize the sin(�(1)(t)) term.

There is however a different impact of the population of the mode on the tunneling rate
that manifests itself only in ICPT, and not in the semi-classical picture of the effect. Even
if EJ is kept sufficiently small that n̄ ⌧ 1, and the average phase correlation function
stays close to its equilibrium form, the granularity of charge transfer in a tunneling event
means that right after one charge has tunneled, there is the sudden creation of one
photon in the mode. Even if the photon dissipates quickly out of the resonator, on some
timescale the environment cannot be considered to be empty and the instantaneous phase
correlations can be strongly perturbed. What is the impact of these fast fluctuations on
the ICPT mechanism, and when do they matter?

The understanding of these processes require a more complete description of the system,
keeping track of the state of the modes themselves. Our field of study then shifts from
the description of transport properties of a quantum conductor connected to a bath of
modes, to the study of the Quantum ElectroDynamics between a Josephson junction and
microwave resonators, where we will focus on the properties of the emitted light.
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Discussion: quantum microwave
sources

The QED of a Josephson junction coupled to microwave

resonators

Mapping to the atomic QED

A small dc-biased Josephson junction is an out-of-equilibrium quantum conductor that
can exchange energy with the modes of its environment upon the incoherent transfer of
single Cooper pairs. These modes couple with the junction through their voltage fluctu-
ations. Empty modes display zero-point fluctuations, which can trigger the emission of
photons in the mode. The junction can also absorb photons from modes with a finite oc-
cupation number, e.g. of thermal origin, allowing for the retro-tunneling of charges.

In the limit of vanishing tunnel coupling EJ , the P (E) theory predicts the strength of
these various mechanisms. It is determined by the real part of the impedance of the circuit
Re[Z(!)], which gives the amplitude of the equilibrium voltage fluctuations. P (E) is thus
limited to situations where the modes stay close to their equilibrium state.

ω

Re[Z(ω)]

kBT/ħ ωRC

R

ωr

Zc

Figure 2.18: Environment of a dc-biased Josephson junction: near zero frequency is a continuum of states
with high thermal population, while at ωr is a mode of characteristic impedance Zc in the vacuum state.
Color-coded is the thermal occupation of modes, which drops to zero above kBT/~.

Figure 2.18 illustrates the kind of environment seen by the junction in the first experi-
ments designed to detect ICPT, either by measuring tunneling rates or photon emission.
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Applying a precise value of voltage to a cold sample without bringing too much heat from
the room-temperature circuitry requires setting a finite resistance R at dc. This resistance
is eventually shunted above some frequency !RC , either by some experimental filtering
scheme, or simply by the geometric capacitance of the junction itself. Below !RC the en-
vironment Re[Z(!)] thus consists of a continuum of modes, with thermal occupation that
gets arbitrarily high at low frequency. At high frequency resonances can be engineered,
that manifest as peaks in Re[Z(!)] reaching values of the order of RQ ' 6.45 kΩ.

These resonances have a finite width, due to internal losses and/or to the coupling to
an external measurement circuit. Thus each resonance defines a continuum of modes in
its frequency window. However if its quality factor Q is high enough, it can be treated
for all purposes as a single mode of radiation at frequency !r [59], with the amplitude
of the field varying on the relatively long timescale ⌧ = Q/!r called the lifetime of the
mode.

Still, the finite width of the resonator shows up in the predictions of multi-photonic
processes, e.g. in the emission rate for the 2-photon processes:

Γ
2eV=2~!r =

⇡2E⇤2
J

2h2!r

⇥
Z

d!
Re[Z(2!r � !)]

2!r � !

Re[Z(!)]

RQ
2 . (2.76)

Γ2eV=2~!r writes as a sum over all the photon-pair creation processes that can happen
in the bandwidth of the resonator. In the case of a high Q mode, this integral may be
simplified, yielding:

Γ
2eV=2~!r =

E⇤2
J

~2

r2

2
, (2.77)

where  = !r/Q is the energy leak rate of the mode, and r = ⇡Zc/RQ is its normalized
characteristic impedance, with Zc =

2
⇡

R

d!
!
Re[Z(!)]. This is again a way of describing

all the frequencies in the bandwidth of the resonator as a single mode of radiation. Zc is
then the typical impedance of the modes in the continuum.

More generally, the emission rate for the k-photon process has a simple expression, in-
volving the same parameters (see appendix D for a derivation) :

Γ
2eV=k~!r =

E⇤2
J

~2

rk

k!
. (2.78)

The factor r is a coupling parameter, given by the size of zero-point fluctuations of the
phase across the resonator: h0|�̂2|0i = r. If one describes the resonance as a LC mode, it
is also equal to the ratio of the charging energy of a single Cooper pair on C to the energy
of a single photon in the resonator: EC/~!r = (2e2/C)/(~/

p
LC) = ⇡

p

L/C/(h/4e2) =
⇡Zc/RQ = r.

At r ⌧ 1, the ZPF of �̂ associated to the mode are small, such that it cannot trigger
ICPT easily. Correlatively, the change of electrostatic energy in the resonator upon the
tunneling of a single charge is small compared to the energy of one photon. Thus the
junction cannot excite the mode easily. On the other hand, a mode with a high char-
acteristic impedance couples efficiently to the junction, and can display multi-photonic
processes more easily.

Based on these considerations, as well as the r-dependence of (2.78), it is natural to call r
the fine structure constant of the interaction between the Josephson junction and the
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mode. This establishes a parallel between the physics of a quantum coherent conductor
coupled to modes in a circuit, and the Quantum ElectroDynamics (QED) of an atom
interacting with electromagnetic radiation. The dc-biased junction plays the role of an
atom kept out of equilibrium, that emits photons in the empty high frequency modes of
its environment.

The thermally populated low-frequency continuum does not really require this QED de-
scription, given that these modes can be described classically. Their influence can be
described by the addition of some voltage noise �V on V , which spreads the zero-energy
peak of P (E), as in (2.74). This is equivalent to blurring the energy levels of the atom
in a QED setting, thus widening the emission line and inducing a finite phase coherence
time for the emitted radiation.

Josephson photonics QED experiments

We test extensively this analogy with QED by performing the equivalent of quantum
optics experiments in the microwave domain, where we measure the properties of the
field radiated by a junction embedded in a controlled environment. First, we play with
the interpretation of r as a fine structure constant by studying a circuit with a mode
in the regime of strong coupling QED, with r ⇠ 1. This situation is far away from
the standard QED regime, where the natural structure constant ↵ ' 1/137 ⌧ 1, and
as such can create more easily non-gaussian states of light. We prove that the radiation
emitted by the junction in the mode is deeply quantum, displaying in the low photon
emission limit antibunching statistics, contrasting with the natural tendency of bosonic
particles to bunch together [36]. We also measure the emission of up to six photons
upon a single Cooper pair transfer, a result to be contrasted with the state of the art
in quantum optics which is two-photon parametric down-conversion, recently pushed to
three-photon processes in a circuit-QED setup [60]. Finally, we measure accurately the
renormalization of the Josephson energy of the junction by the sizeable phase

vacuum fluctuations from the mode (E⇤
J = EJe

�J(1)
2 ), confirming another prediction of

the P (E) theory.

In a second set of experiments, we study the emission of entangled photon pairs
into a two-mode environment. We use modes with different frequencies but similar small
impedances, to stay in the regime r ⌧ 1 where the states of light should stay gaus-
sian and the entanglement is easier to describe. We prove that in this situation, the
Josephson junction can implement a two-mode-squeezing Hamiltonian. This gener-
ates non-local correlations between the fields of the two modes, as well as between the two
beams of radiation leaking out of the resonators. We detect the entanglement between
the two emitted fields, and prove that their coherence time is essentially limited by the
voltage noise on the junction. We are able to reduce strongly the decoherence rate by
actively cooling down the low-frequency continuum of modes from their base temperature
of 21 mK down to about 2 mK, using the same Josephson junction that is creating the
entanglement as a cold low-frequency admittance.

These different results prove that the simple system of a dc-biased Josephson junction
provides bright source of non-classical light, and hints that it could manipulate coher-
ently the quantum state of microwave modes. It could potentially be useful in some
quantum information protocols, as well as for solid-state experiments, as it can perform
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spectroscopy at arbitrary frequencies. These concepts could also be extended to the THz
range, by creating Josephson junction from materials with a higher superconducting gap
[55].
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Chapter 3

Strong-coupling of a Josephson
junction to a single mode

V

2e

hv

The coupling between a dc-biased Josephson junction and a single mode with a high
characteristic impedance Zc yields a situation with no direct equivalent in atomic QED,
as the fine-structure constant r = ⇡Zc/RQ can be made of the order of 1. The light-
matter interaction is then considerably modified compared to the weakly-coupled regime:
if a charge emits a photon, the back-action of the photon on the charge is large enough
to modify its dynamics.

In an out-of-equilibrium system like a dc-biased junction, which continuously emits light,
this leads to non-classical correlations between two successive photon emission processes.
In particular for r ⇠ 2 the creation of a first photon can prohibit the emission of a second
one, which results in the emission of a beam of light with well-separated, or antibunched,
photons.

A first experiment aiming at proving this effect was carried out by Chloé Rolland during
her PhD research [35]. She managed to fabricate a simple in the strong-coupling regime
r ' 1, and used power-correlation measurements to prove the antibunching of emitted
photons. However incurable parasitic signals plagued the measurements and forbade a
fully quantitative comparison of her results to theoretical predictions.

During this PhD work, we developed a new measurement scheme, based on the linear
detection of field quadratures instead of power measurements. We could then measure
different observables, such as the moments and correlation functions of both the anti-
bunched photons and the parasitic signals. After identification and careful subtraction
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of the unwanted parasitic terms, we ended up with a much improved accuracy in our
measurements, allowing us to fully charaterize the sample and its environment.

We then present quantitative results for the measurement of the antibunching for different
occupation numbers of the mode, in good agreement with numerical simulations [36]. As
all parameters of the experiment are measured independently, there are no adjustable
parameters in the simulations. This proves the validity of our modelling of the system,
which implements a simple and bright single-photon source.
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3.1 Strong-coupling QED: from non-linear dynamics

to antibunched photons

Preamble: strong-coupling versus strong-driving

V

I

L

C

EJ

R
R

ωr
ω

Re[Z(ω)]

Zcωr
4

a) b)

Figure 3.1: a) Model circuit: a Josephson junction with energy EJ is dc-biased by a voltage source
V through a RLC resonator with frequency ωr = 1/

p
LC, characteristic impedance Zc =

p

L/C and
quality factor Q = R/Zc. b) Re[Z(ω)] of the environment of the junction. Zc is proportional to its
integral.

Consider the circuit of figure 3.1, assumed to be at zero temperature. When the bias
voltage V matches the resonance condition 2eV = k~!r, Cooper pairs can tunnel inelas-
tically through the Josephson junction while creating k photons in the resonator, at a
rate:

Γ
ph = kΓ2e = k

⇡EJ
2

2~
P (2eV ) =

E⇤
J
2

~2

Q

!r

rk

k!
, (3.1)

with r = ⇡Zc/RQ the coupling constant of the mode to the junction. In this very

simple circuit the renormalized Josephson energy is E⇤
J = EJe

�∆�̂2
r/2 = EJe

�r/2, with

∆�̂2
r = h0|�̂2

r|0i the ZPF of the phase across the resonator.

We insist on the difference between the regime of strong driving of the mode by the
tunnel current, and the regime of strong coupling of the mode to the junction. Both
result from the back-action of the field in the resonator onto the junction, leading to a
reduction of the emission rate. However the strong driving regime already appears in a
classical treatment of the dynamics of the circuit, whereas strong coupling is defined after
considering multi-photonic emission processes, triggered at zero temperature by ZPF of
quantum origin.

How strongly can the junction drive the mode?

The distinction between these two concepts already shows up for the single photon pro-
cesses, k = 1. The stationary rate in (3.1) is the product of a term characterizing the
junction, EJ

2, and one describing the ability of the environment to accomodate the energy
2eV : P (2eV ) = 2e�rrQ/⇡~!r = e�rRe[Z(!r)]/RQ~!r for 1-photon processes.

Suppose that r . 1 such that the influence of the e�r term can be neglected. Then the
resonator characteristics enter in (3.1) only through Re[Z(!r)] = QZc. It seems then
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that at fixed EJ , one could always increase the emission rate by playing either on Zc or
on Q.

However the dynamics of the system are not the same if Zc is high and Q is low or if
Zc is low and Q high. For a higher Q, the leak rate of the mode is smaller, and its
average occupation number n̄ = Γph/ at a given emission rate is larger. As the mode
is populated its phase fluctuations ∆�̂2

r = r(2n̄ + 1) differ from their equilibrium value,
eventually breaking an essential assumption of P (E) theory.

Let us derive the value of n̄ where this breakdown occur. The P (E) theory is only valid
when EJP (2eV ) ⌧ 1. Correlatively the semi-classical ac-Josephson 2.2 effect assumes
that Re[Z(!r)]Ic ⌧ ⇡V , with:

Re[Z(!r)]

⇡V
⇥ Ic =

Re[Z(!r)]

⇡~!r/2e
⇥ 2eEJ

~
= P (2eV )EJ , (3.2)

so that the two conditions are actually equivalent. Indeed, they both mean that the
voltage drop across the environment stays small compared to the dc voltage bias on the
junction.

If this condition is not met, the non-linearity of the Josephson current-phase relation has
to be taken to next order. This leads to more complex emission processes, involving co-
tunneling of several Cooper pairs at the same time. This effect reduces the tunneling rate,
both in the classical and quantum theory (see appendix J in [61]). Because it appears in
a classical treatment of the system, this effect cannot lead to the creation of a state of
light with non-classical properties.

By inserting EJP (E) ⌧ 1 in (3.1), one finds that the dc-current needs to stay small
compared to the critical current of the junction:

Idc = 2eΓ2e =
⇡EJIc

2
P (2eV ) ⌧ ⇡

2
Ic, (3.3)

which hold in particular if:

Γ ⌧ 

r
, (3.4)

with  = !r/Q the decay rate of the resonator. The breakdown occurs when the average
photon number in the mode n̄ = Γ/ is of the order of 1/r. In practice, one can avoid this
strong-driving regime by tuning down EJ so that rn̄ ⌧ 1. This weak-driving regime
is analogous to the Lamb-Dicke condition in ion trapping experiments [62]. In the same
way, for a k-photon process, one needs to ensure rkn̄ ⌧ 1.

By contrast, the strong-coupling regime r ⇠ 1 is defined entirely by the properties
of the resonator, as it amounts to Zc ⇠ RQ/⇡ ' 2.05 kΩ, but no assumption on EJ or
n̄ needs to be made. In this regime, even if the average occupation number n̄ is small
compared to 1, the vacuum phase noise ∆�̂2

r ⇠ 1 itself is large enough to reduce the
tunneling rate. This can be proven by a more complete treatment of the circuit, taking
also into account the dynamics of the state of the mode in the resonator. Note that
despite a similar name, this has nothing to do with the strong-coupling regime of cavity-
QED experiments, which occurs when the coupling between an atom and the field in a
cavity is larger than the inverse lifetime of either one.
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Figure 3.2: A dc-biased Josephson junction coupled to a single LC mode, with notations for the phase
operators across each element of the circuit.

Dynamics of a single mode driven by a Josephson junction

As in the derivation of the P (E) theory, the Hamiltonian for a Josephson junction coupled
to a single mode (Fig.3.2) is:

H = ~!r

✓

â†â+
1

2

◆

� EJ cos(�̂), (3.5)

with â (â†) the annihilation (creation) operator of the mode. The phase operator �̂ is
proportional to the integral of the voltage drop across the junction (2.12). Following
Kirchhoff’s law, this voltage is the difference between the dc voltage bias V imposed by
the voltage source and the voltage across the resonator. The phase across the junction is
thus:

�̂ =
2eV t

~
� �̂r (3.6)

= !Jt� i
p
r(â†e+i!rt � âe�i!rt), (3.7)

with the Josephson frequency: 2eV/~ = !J . The expansion of the cos term in the time-
dependent Hamiltonian yields an infinite series of terms that couple the tunnel current
to the field in the resonator �̂r = i

p
r(â†e+i!rt � âe�i!rt). To compute this expansion, we

recall that the Josephson term can also be written:

�EJ cos(�̂) = �EJ
ei�̂ + e�i�̂

2
=

�EJ

2
ei�̂ + h.c. (3.8)

We then use a special case of the Baker-Campbell-Hausdorff formula, which states that:

eÂeB̂ = eÂ+B̂+[Â,B̂]/2, (3.9)

iff the operators Â, B̂ commute with their commutator [Â, B̂] [63]. First, this means that
we can extract the linear evolution term !Jt out of the exponential:

ei�̂ = ei!J te
p
r(â†e+i!rt�âe�i!rt). (3.10)

Second, as [â, â†] = 1, we have for � 2 C:

e�â
†+�⇤â = e�|�|2/2e�â

†

e�
⇤â, (3.11)
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such that after mapping Ĥ to the frame rotating at !r in order to get rid of the
~!r

�

â†â+ 1
2

�

term, the Hamiltonian reads:

Ĥ!r =
�EJe

�r/2

2
ei!J te

p
râ†e+i!rt

e�
p
râe�i!rt

+ h.c. (3.12)

We note here that the renormalized Josephson energy E⇤
J = EJe

�r/2 naturally appears
as a consequence of the non-commutativity of â and â†. In the P (E) theory, this
renormalization is due to the vacuum fluctuations of the phase across the resonator.

A straightforward expansion of the exponential operators yields now:

Ĥ!r =
�E⇤

J

2
ei!J t

 1
X

l=0

(
p
râ†)l

l!
e+il!rt

! 1
X

m=0

(�p
râ)m

m!
e�im!rt

!

+ h.c. (3.13)

This Hamiltonian contains infinitely many terms oscillating at frequencies !J + q!r with
q 2 Z. We are interested only in the stationary state of the system, so we neglect all
terms oscillating faster than the decay rate of the mode, as they effectively average to
zero in the rotating frame. Close to a resonance condition 2eV = k~!r, we only keep
terms such that k + l �m = 0 :

Ĥ
(k)
RWA =

�E⇤
J

2

1
X

l=0

(�1)l+k(
p
r)2l+k (â

†)l

l!

âl+k

(l + k)!
+ h.c. (3.14)

This Rotating Wave Approximation (RWA) holds if the quality factor of the mode is high
enough and if the driving strength EJ/~ stays small compared to the frequency of the
mode [64].

Dynamics in a low-impedance environment

It is already instructive to consider the low impedance case (r ⌧ 1). To leading order in
r one obtains:

Ĥ
(k)
RWA ' �E⇤

J

2k!
(�

p
r)k(âk + (â†)k). (3.15)

This Hamiltonian describes a coherent k-photon drive. For k = 1, the resonance condition
of the ac-Josephson effect 2.2, the junction drives linearly the mode:

Ĥ
(1)
RWA ' E⇤

J

2

p
r(â+ â†), (3.16)

creating a coherent state |↵i in the mode with amplitude ↵ = E⇤
J

p
r/~.

For k 6= 1, this Hamiltonian creates a non-trivial state of light. The stationary photon
emission rate may still be computed through Fermi’s Golden Rule, leading to (3.1) with
Γph / E⇤

J
2rk/k! at the k�photon resonance.

Note that as for r ⌧ 1 we always have EJP (E) ⌧ 1, it is natural that we recover the
P (E) result to leading order in r.
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Taking into account the next order term in r yields:

Ĥ
(k)
RWA ' �E⇤

J

2k!
(�

p
r)k
⇢✓

1� râ†â

k + 1

◆

âk + (â†)k
✓

1� râ†â

k + 1

◆�

. (3.17)

The k-photon drive is now dressed by the operator
⇣

1� râ†â
k+1

⌘

. This additional term

reduces the driving amplitude, and hence the photon emission rate. For a low impedance
r ⌧ 1, its effect can be neglected if hrâ†âi = rn̄ ⌧ (k + 1). At k = 1 this coincides with
the condition for the system to stay away from the strong driving regime.

Full treatment of the non-linearity for an arbitrary impedance

For an arbitrary high value of the coupling parameter r, the fact that the average photon
number n̄ is small compared to 1/r is not enough to ensure that the RWA Hamiltonian
reduces to a simple linear drive. From a dynamical point of view, immediately after a
Cooper pair has tunneled, k photons are created in the mode, so that the instantaneous
expectation value of râ†â is ⇠ rk (for a k-photon process). Then the effect of higher
order terms cannot be neglected as they are comparable to the first order one, leading
to complex non-linear dynamics with a stationary state hard to predict in the general
case.

Such strong non linearities lead to non-classical dynamics of the emitted radiation: in
2013, Gramich and coworkers computed the statistics of the charge transport through the
junction, as well as those of the photon emission, for one-photon processes !J ' !r [34].
They expressed the Hamiltonian (3.14) as a linear drive (â† + â) dressed by a Bessel

function of 2
p
râ†â, and wrote a master equation describing the evolution of the density

operator of the whole system ⇢̂ [65][66]:

˙̂⇢ = � i

~
[Ĥ

(1)
RWA, ⇢̂] +



2
L[â, ⇢̂] +

�J

2
L[N̂ , ⇢̂], (3.18)

where as in 2.1 N̂ counts the number of charges having crossed the junction. In addition
to the Hamiltonian drive, this Lindblad equation contains the dissipator 

2
L[â, ⇢̂] that

describes the leakage of photons into the measurement line at a rate , and the dissipator
�J
2
L[N̂ , ⇢̂] which is due to the dc voltage noise on the junction. Here �J is a heuristic

dephasing rate of the Josephson frequency, proportional to the width of the zero energy
peak in P (E) (2.74). Its influence on the dynamics is negligible as long as �J ⌧ .

Solving this master equation, the authors of [34] were able to retrieve the results of the
P (E) theory in the limit of vanishing Josephson energy. In the opposite limit of low
impedance and high EJ , the system ends up in classical stationary orbits, also predicted
by the exact treatment of the ac-Josephson effect 2.2.

The full strong coupling regime r ⇠ 1 with arbitrary EJ has to be solved numerically.
However in the limit of low EJ , an analytical computation already shows that non-classical
anti-correlations appear in the statistics of the emitted radiation [34].

The importance of the precise value of the coupling r appears when re-writing the Hamil-
tonian (3.14) directly in the Fock basis [67], as shown by Souquet and Clerk in [68]:
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Ĥ
(1)
RWA =

�E⇤
J

2

1
X

n=0

�

hRWA
n+1,n|n+ 1ihn|+ h.c.

�

, (3.19)

with the matrix elements:

hRWA
n+1,n = hn+ 1|ei�̂|ni =

p
rp

n+ 1
L1
n(r), (3.20)

where L1
n(r) is a generalized Laguerre polynomial. The first four of these polynomials are

plotted as a function of r in figure 3.3.

In a charge basis picture, |hRWA
n+1,n|

2 is a measure of the overlap between the |ni state

displaced by 2e under the action of the ei�̂ operator and the |n + 1i state (Fig.3.4.b).
Following Fermi’s Golden Rule, the transition rate from |ni to |n+ 1i is proportional to
this overlap.

Let us look at particular values of some of these polynomials. L1
n(0) is simply n + 1, so

that for a low-impedance mode (r ⌧ 1):

1
X

n=0

hRWA
n+1,n|n+ 1ihn| ⇠

p
râ†. (3.21)

Then (3.19) reduces to a simple linear drive of the resonator, and we recover our results
of 2.2 in the case of a low impedance environment.

2
0

1

2

3

Figure 3.3: Generalized Laguerre polynomials L1
n(r) for n 2 [0, 3], which appear in (3.20). The |2ih1|

matrix element of Ĥ
(1)
RWA is proportional to L1

1(r), which vanishes for r = 2.

L1
0(r) is simply equal to 1, such that for an arbitrary r value transitions from the vacuum

to an occupied state are always possible. Higher order polynomials do depend on r, such
that transitions between some of the Fock states may be inhibited or enhanced. Then
the Hamiltonian (3.19) departs frankly from a linear drive and may lead to non-trivial
dynamics. Even more interestingly the Laguerre polynomials have roots for r > 0, so
that some transitions may be forbidden.

In particular L1
1(2) = 0 (Fig.3.3), so that for r = 2 the system can never be driven from

the |1i to the |2i Fock state. This precise r value generates an interesting photon blockade
mechanism : starting with an empty resonator, a single photon is created as soon as a
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Figure 3.4: Frank-Condon blockade of the emission of a second photon after a first one has already been
created, that occurs for r = 2.

Cooper pair tunnels. Then as long as the photon is present in the mode, no further
tunneling is possible, as the transition to a state with two photons is impossible.

In the absence of dissipation, the system undergoes Rabi oscillations between the |0i
and |1i states, with the junction coherently absorbing and re-emitting a single photon
in the mode. In practice  6= 0, due e.g. to coupling to a transmission line, so that
the photon eventually decays. Then Cooper pair tunneling is possible again and another
single photon is created, restarting the blockade mechanism. The stationary occupation
number results from the balance between the photon filling rate and the decay rate ,
and follows (3.1) in the limit of low EJ .

Characterization of single photons

This dynamics results in the creation of photons which are somewhat detached from one
another, as opposed to the natural tendency of bosons to bunch together. The radiation
leaking outside of the resonator then consists of single photons, and displays properties
which can not exist in a classical description of light [69].

Single-photons are characterised by their second-order coherence function [64]:

g(2)(t, t+ ⌧) =
hâ†(t)â†(t+ ⌧)â(t+ ⌧)â(t)i
hâ†(t)â(t)ihâ†(t+ ⌧)â(t+ ⌧)i , (3.22)

which is the normalized probability of detecting two photons in the same mode, at times
t and t+ ⌧ . As such g(2) gives the fringe contrast in some intensity-interferometry exper-
iments [70]. In the case of a stationary state of light, the ensemble average can be taken
as a time average over t, leading to:

g(2)(⌧) =
hâ†(0)â†(⌧)â(⌧)â(0)i

hâ†âi2 . (3.23)

To highlight the importance of this correlation function in quantum optics, let us start by
reviewing its properties in the classical case. Replacing the â(t) operator by the classical
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field amplitude a(t), we can reorder (3.23) without taking into account commutation
relations, leading to:

g
(2)
class.(⌧) =

ha⇤(0)a⇤(⌧)a(⌧)a(0)i
ha⇤ai2 =

h|a(0)|2|a(⌧)|2i
h|a|i2 . (3.24)

The classical version of g(2)(⌧) can be linked to the auto-correlation function of the power
radiated by the resonator P (t) = ~!r|a(t)|

2:

g
(2)
class.(⌧) =

hP (0)P (⌧)i
hP i2 (3.25)

) g
(2)
class.(0) =

∆P 2

hP i2 + 1 > 1. (3.26)

The classical power P (t) is a real number, so that it verifies:

P (0)2 + P (t)2 � 2P (0)P (t) = (P (0)� P (t))2 � 0 (3.27)

) P (0)2 + P (t)2 � 2P (0)P (t) (3.28)

) hP 2i � hP (0)P (t)i, (3.29)

i.e the fluctuations of the power in a classical beam of light are always larger than the
power correlation at two different times. This leads to the inequality:

g
(2)
class.(0) � g

(2)
class.(⌧). (3.30)

Interpreting this result in a semi-classical picture, we would say that photons tend to
bunch together.

The situation is much different if one takes into account the quantum nature of light, by
keeping track of the commutation relation of â and â† in the calculations. In that case the
inequalities (3.26) and (3.30) no longer need to hold for all fields. When g(2)(⌧) > g(2)(0),
light is said to be antibunched, because it means that photons (counted by the â†â
operator) tend to be well-separated in the beam (Fig.3.5).

The value of g(2)(0) is related to the variance of the emitted power. Due to the granular
nature of light, even a quasi-classical coherent state displays some fluctuations of its
intensity, with a Poissonian distribution of the number of photons detected in a given
time-window, leading to g(2)(0) = 1. Some other quasi-classical states, such as the thermal
states of light, display super-Poissonian statistics with g(2)(0) > 1, meaning that they
present more intensity noise than the classical minimum. On the other hand states with
g(2)(0) < 1, said to be sub-Poissonian, show less noise than the classical limit, and are
therefore useful for some metrology or quantum information protocols.

Pure Fock states, which are deeply quantum states of light containing an exact number
of photons, produce the best example of sub-Poissonian light, with g(2)(0) = 1� 1/n for
the n-photon state.

In an experimental setting, one is more often confronted with mixed states of light. The
blockade mechanism may partially fail due to imperfections in the sample, meddling the
single photons with higher number states. Such an incoherent mixture of different states
is described by a density operator :

⇢ =
X

n2N

p
pn|nihn|+

X

k 6=l

ckl|kihl| (3.31)
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Figure 3.5: Schematic picture of the photons in a beam of light displaying (from top to bottom) anti-
bunching, classical and bunchings statistics.

with pn the probability of finding n photons in the beam. We then have:

hâ†âi⇢ =
X

n2N
pnhn|â†â|ni =

X

n2N
pnn, (3.32)

hâ†â†ââi⇢ =
X

n2N
pnhn|â†â†ââ|ni =

X

n2N
pnn(n� 1). (3.33)

A value of g(2)(0) below 1/2 can only be obtained if p1 6= 0, and is regarded as a sufficient
proof that the light consists of single photons [71]. A more precise bound on the ratio of
single photon to multi-photonic emission is given by:

p1
P

n�2 pn
� 2⇥

✓

1

n̄g(2)(0)
� 1

◆

. (3.34)

Generating single photons with a high-impedance resonator

In the limit of low EJ and low occupation number n̄, the only states of the resonator
with a non-vanishing occupation probability are the |0i, |1i and |2i Fock states. Then a
simple rate model is sufficient to predict the dynamics of a Josephson junction coupled
to a single mode [72]. The second order coherence function is found to be:

g(2)(⌧) =
⇣

1� r

2
e�

⌧
2

⌘2

. (3.35)

Remarkably, the statistics of the light depends only on the value of the coupling parameter
r. If r < 4 we see that the photons are antibunched and sub-Poissonian, as g(2)(0) <
g(2)(⌧)  1 for ⌧ 6= 0. For r close to 2, g(2)(0) < 1/2, such that the emitted light has a
single-photon character, even if the transition to higher Fock states of the resonator is not
totally suppressed. For r = 2 we find g(2)(0) = 0, as the |1i ! |2i transition is perfectly
blocked and the emitted light consists only of a mixture of vacuum and the single photon
state, with perfect sub-Poissonian statistics.

Surprisingly, light containing either one or zero photon has less intensity fluctuations
than a quasi-classical coherent state with a well defined amplitude. The value g(2)(0)
is a conditional probability: it gives the probability of finding two photons in a mode,
provided that (at least) one photon has been detected.

Still it is possible to create non-classical states of light using ICPT in a circuit including
a mode with a high-enough impedance. To prove the antibunching of these photons, we
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designed an experiment where a small SQUID is coupled to a microwave resonator with
very high impedance Zc ⇠ 2 kΩ such that r ⇠ 1. At low-enough EJ(Φ) dc-biasing it
on the one-photon resonance, it can only emit single photons in the mode, which escape
before a new photon is created. By detecting the radiation leaking out of the resonator
and performing correlation measurements, we proved that this device emits antibunched
photons [36].

Remark: comparison with circuit-QED single photon sources

Potential applications for single-photon sources in the microwave domain [73][12] moti-
vated pioneering circuit-QED experiments [74][75]. In these experiments, a supercon-
ducting qubit is excited from its ground state by a classical microwave pulse. The qubit
is then tuned to be resonant with a microwave cavity at a different frequency, resulting
in the spontaneous emission of exactly one photon in the cavity. Such a source displays
good antibunching, with g(2)(0) ' 0, but with relatively low photon emission rates, up to
about 106 photons per second.

The photon emission rate is limited by the quality factor of the qubit, which need to be
high enough to ensure that no unwanted transitions to higher energy states occur. This
is an important practical difference with the ICPT single-photon source, where there are
no limits on the decay rate of the mode. Superconducting qbits are also typically limited
to the 4-8 GHz bandwidth, due to the constraints of microwave engineering and signal
processing. By contrast ICPT could be implemented in junctions made out of materials
with large superconducting gaps, allowing the creation of quantum states of light at higher
frequencies [55].

These two schemes also differ by their modes of operations. The qubit scheme amounts
to the linear driving of a non-linear oscillator, while in ICPT the resonator stays linear
(the energy spacing between levels is always ~!r) but is subject to a non-linear drive,
that turns off as soon as a single photon is created in the mode.

There are thus practical and fundamental reasons to validate our dissipation engineer-
ing approach to the generation of quantum radiation, starting by the creation of single
photons.
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3.2 Implementation of the strong-coupling regime be-

tween a Josephson junction and a single mode

The conception and realisation of the first circuit including a dc-biased Josephson junction
in series with a microwave mode in the strong-coupling regime was the work of Chloé
Rolland during her PhD research [35]. She designed and fabricating a coil resonator with
a characteristic impedance ZC ⇠ 2 kΩ, so that it was coupled to a Josephson junction in
the regime r ⇠ 1. We recall here the main challenges of the design of this sample.

High impedance microwave resonator

Microwave resonators can be designed using either lumped or distributed elements. Dis-
tributed circuits include the �/4 resonators we described in 2.3.1, where impedance
mismatches between segments of transmission line create Fabry-Pérot resonances. Cas-
cading several segments of TL allow to shape the Re[Z(!)] of the resonator. However the
characteristic impedance of the mode is approximately given by the wave impedance of the
segment closest to the junction, and cannot be increased by adding more segments.

The wave impedance of a CPW line is of the order of Zw ⇠ 100 Ω in standard electronics.
It can be increased by making the inner conductor thinner, and the ground planes farther
apart, but with a limited margin for improvements, as Zw scales approximately like the
log of the ratio of these two dimensions. Moreover, the gap between the two ground planes
must be kept small compared to the wavelength of the radiation to prevent coupling to
non-CPW modes. Nanofabrication constraints ultimately set the limit on how precisely
one can produce these dimensions, such that on a standard Si substrate only impedances
in the 25 to 135 Ω range can be reliably designed (Fig.3.6).
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Figure 3.6: a) Schematic drawing of a CPW waveguide (metallized part in orange). b) Characteristic
impedance as a function of the inner width to ground planes spacing ratio for a standard oxidized Si
wafer, with a 50 nm SiO2 capping layer.

Reaching the strong coupling regime with Zc ⇠ 2 kΩ thus requires a more complex
strategy than the one used in 2.3.2. One could boost the linear inductance of the CPW line
using either a material with a high kinetic inductance, like a disordered superconductor
[76], or a meta-material like a chain of SQUIDs [77]. However at the time of her PhD
Chloé Rolland had in mind experiments performed to test DCB in 2D electron gases,
which require high magnetic fields of the order of 1 to 10 T to be put in the Quantum
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Hall regime. Such fields are incompatible with the use of superconducting waveguides,
such that she resorted to a different strategy, using a lumped element design.

A lumped element model holds for circuit components with dimensions much less than
the wavelength of propagative modes �. At 5 GHz in a standard coaxial cable � ' 4
cm, so that conductors smaller than a few hundred of microns can be considered lumped
elements. In these conditions the resonator is well described by a LCR model, with a
resonance frequency !r = 1/

p
LC, a characteristic impedance

p

L/C and a quality factor
Q = Zc/R for a series circuit.

Aiming at !r ' 2⇡⇥5 GHz, a r = 2 mode requires L ' 130 nH and C ' 8 fF. This
value of inductance can be reached by winding a strip of metal in a coil shape. The main
difficulty is actually to reduce as much as possible the capacitance of the resonator. The
Josephson junction is also in parallel with its own geometrical capacitance, of the order
of a few fF, so that the LCR needs to be essentially capacitance-less (Fig.3.7).

L

C RCJ

Figure 3.7: A LCR resonator is connected to the junction. The effective capacitance of the mode is the
sum of the resonator capacitance C and the geometric capacitance of the junction CJ .

The solution used by Chloé Rolland was to implement the LCR as a microfabricated coil,
using only CJ and the stray capacitance of the coil to generate the capacitance of the
mode. Each turn of the coil has a high mutual inductance with the neighbouring turns,
resulting in a high total inductance of the resonator, while keeping it compact to limit
the stray capacitance to ground.

The inner pad of the coil needs to be dc coupled to the junction through a bridge supported
by a dielectric brick. This brick adds some parasitic capacitance, which tends to shunt the
coil. Chloé Rolland optimized the shape of the coil with the electromagnetic simulation
software Sonnet to find the best dimensions, with the nanofabrication constraint of having
no detail smaller than 2 µm. These simulations were needed as the resonator was not in
the lumped element regime, as the total length of the coil was still of the order of 2 cm
. �.

The optimization procedure proved impossible to reliably attain r = 2 while respecting
all the constraints of nanofabrication and microwave design, in particular due to the
unavoidable stray capacitance to ground. This capacitance was reduced by choosing
to fabricate the sample on a quartz substrate, with a relative dielectric constant ✏r =
4.2 smaller than for a Si chip (✏r = 11.8). In the end Chloé Rolland proposed and
implemented a design for a resonator reaching r = 1 at !r = 2⇡⇥ 5.1 GHz. She also
designed an impedance adaptation at the input of the coil, to be able to reduce the
quality factor of the mode down to about 30. A quality factor too high would result in
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Figure 3.8: Model used in a Sonnet simulation, implementing the circuit of figure 3.7. The Josephson
junction (not shown) is placed at port 2 between the ground and the coil, and is shunted by CJ , which
is modelled as a lumped capacitor component of 2 fF. The coil (square in this iteration of the design) is
connected to the detection chain at the input port 1, and to the junction through a bridge supported by
a micron-thick dielectric bridge (taken from [35]).

a mode leak rate smaller than the dephasing rate due to voltage noise, breaking some
assumptions of the theoretical predictions from 3.1.

Figure 3.9: Final design for the strong-coupling resonator. A 240 µm wide coil is made with 23 turns
of a 1 µm wire with 2 µm spacings between the turns. One port of the coil is connected to a 70 Ω λ/4
resonator, that raises the input impedance seen by the coil up to 100 Ω at 5 GHz. The inner pad is
connected via a supported bridge to a grounded Josephson junction (taken from [35]).

Sample fabrication

We describe here the basic fabrication process of the sample. More details can be found
in [35].
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A 100 nm thick Niobium film is sputtered on a chip, made out of quartz to reduce
its dielectric constant. Optical lithography allows to pattern the film to produce the
ground planes of the chip, the inner conductor of the �/4 resonator and the coil itself
(Fig. 3.10).

A bisbenzocyclobutene layer is deposited in a second step, and etched to create the
dielectric support of the bridge. An Al layer was then deposited to create the bridge
connecting the inner pad of the coil to junction (Fig. 3.11).

Figure 3.10: Optical image of the whole 3 mm⇥10 mm chip, showing the impedance adaptation resonator
(meanders in the middle) and the bonding pad on the left (taken from [35]).

Figure 3.11: Left: microscope image of the microfabricated coil, with the bridge above the coil turns
connecting to the junction on the right. Right: zoom-in on the SQUID implementing a tunable Josephson
junction (taken from [35]).

The photon-emitting Josephson junction is implemented as a SQUID, with two junctions
of Josephson energies EA

J and EB
J connected in parallel. Its effective ESQ

J can be tuned
by threading a magnetic flux Φ through the loop:

ESQ
J (Φ) =

s

(EA
J � EB

J )
2 + 4EA

J E
B
J cos

✓

2eΦ

~

◆2

(3.36)

With identical junctions EA
J = EB

J , E
SQ
J would be tunable down to zero. In practice

the nanofabrication of junctions is not perfectly reproducible. Dispersion in the EJ of
junctions fabricated on the same chip can be as high as 10%, in particular for very
small junctions of about 100nm⇥100nm. In this experiment the electrodes cannot be
made bigger to ensure a better reproducibility, as they would bring too much parasitic
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capacitance and shunt the high impedance mode. Thus the design of the SQUID was
made keeping in mind that it cannot be tuned down to less than Emin

J = |EA
J � EB

J | '
(EA

J + EB
J )/10.

Following (3.1), having an average occupation number n̄ requires a Josephson energy of:

EJ = ~er/2
r

n̄

r
. (3.37)

From Sonnet simulations [35], the FWHM of the mode is around 100 MHz, yielding
 ' 2⇡ ⇥ 100 µs�1. As r ' 1, a low-enough occupation number n̄ ' 0.1 requires
EJ ' 0.2 µeV. If this value is reached at a flux bias 2eΦ/~ = ⇡, the maximum Josephson
energy of the SQUID should be around 2 µeV. Using the Ambegaokar-Baratoff formula
[56] yields a normal state resistance RN = ∆RQ/2EJ ' 300 kΩ for an Al junction. This
high resistance value would be hard to reach with standard oxidation techniques, that
gives typically 300 Ω for a junction of 1 µm2. Rolland thus decided to resort to a more
complex double oxidation scheme [78]. The resulting small junctions are shown in figure
3.12.

Figure 3.12: Scanning Electron Microscopy image of the nanofabricated SQUID. The two⇠ 100⇥100 nm2

junctions are expected to add around 2 fF of geometric capacitance to the mode (taken from [35]).
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3.3 Assessing the antibunching: principles of corre-

lation measurements

V bias-tee

sample

voltage

biasing

radiation collection

Josephson

junction
resonator

Figure 3.13: Principle of the experiment: the Josephson junction is dc-biased through the high-impedance
resonator. A bias-tee at the output of the sample routes the microwave signals leaking out of the resonator
towards the detection chain, while allowing the application of a precise voltage bias V (taken from [35]).

After fabrication, the strong-coupling sample is placed in the same dilution fridge that
was used in the 2011 experiment 2.3.2, with a similar dc and RF setup. Here it can be
biased at a precise value of voltage V = ~!r/2e, where the tunneling of each Cooper pair
coincides with the emission of a single photon in the measurement chain. This radiated
power can be detected at room temperature after suitable amplification.

The second order coherence function g(2)(⌧) is generally obtained from measurements of
power fluctuations in the beam of light. In our experiments this measurement is very
challenging, in particular due to the very low energy of single microwave photons. The
detection is notably vulnerable to parasitic correlations, which can easily flood the signal
and drown it in noise.

We detail here the link between g(2)(⌧) and power fluctuations, and describe how its
measure was first implemented by Chloé Rolland. We detail the limitations of the initial
measurement scheme and the reasons why a more complete detection setup was needed.
We then present a new measurement scheme, based on the linear detection of the emitted
signals. It allows to measure arbitrary correlation functions of the field operator â(t) and
prove the antibunching of the emitted photons.

3.3.1 Obtaining g(2)(⌧) from intensity correlations

We explain here how the coherence function (3.23) can be retrieved from measurements
of light intensity fluctuations.

The original Hanbury Brown-Twiss experiment

Interferometry experiments have been used for a long time to study the properties of light.
Notably the wave nature of light was demonstrated by Young in 1801, using a double-
slit setup. In this classic experiment, monochromatic light from a point-like source is
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diffracted by two slits separated by a distance d. Light waves scattered by the two slits
interfere on an observation screen, yielding intensity fringes which can be used to infer
the wavelength of the light.

Consider the case of a source which is not point-like. Here each point of the source
generates a similar fringe pattern, shifted from the others. The intensity fringes are then
blurred, yielding a lesser contrast of the interference figure. Note that this does not
require that all points of the source emit light coherently.

Michelson proposed and successfully built a stellar interferometer, which used this phe-
nomenon to accurately determine the angular diameter of stars [79]. Figure 3.14 shows
the working principle of his interferometer under the form of a Young slits experiment.
Here the visibility of the interference figure decreases with the spacing of the slits d, which
can be used to estimate the diameter of the star.
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Figure 3.14: a) Schematics of a Michelson-like stellar interferometer. A star with angular diameter θ

illuminates a Young slits setup. The spacing of the fringes is linked to the wavelength of the light, while
their visibility (b) depends on θ and the spacing of the slits d.

The complex fringes pattern results from the superposition of the beams diffracted at
points ~r1 and ~r2. If we consider that the incident light is carried by a single mode â(~r, t),
the intensity on the screen at a given point ~r is proportional to the field correlation
function Re[hâ†(~r�~r1)â(~r�~r2)i]. Equivalently, one could study the coherence properties
of light at different points in time instead of different locations. Figure 3.15 shows a
Mach-Zehnder interferometer, which can yield the real part of the first order coherence
function:

g(1)(⌧) =
hâ†(t)â(t+ ⌧)i

hâ†âi . (3.38)

Here also the typical decay timescale in g(1)(⌧) can be related to the diameter of the light
source.

First implementations of the Michelson stellar interferometer were limited to the study of
large and bright celestial objects, as it soon appeared that fluctuations in the refractive
index of the atmosphere tend to destroy the phase coherence between the two beams of
light. To overcome this problem, Hanbury Brown and Twiss (HBT) developped in 1956
a new type of stellar interferometer [70] based on intensity interferometry.

In their experiment, the fluctuating intensity of light I(~r, t) = â†â(~r, t) was first detected
at ~r1 and ~r2. They then studied the correlation of I(~r1, t) and I(~r2, t) as a function of the
spacing |~r1 � ~r2|, which can once again be linked to the size of the ligth source. Their
results sparked a controversy in the optics community, as non-zero correlations can only
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τ
Figure 3.15: Mach-Zehnder interferometer. The incoming field â(t) is split onto two different paths by a
beamsplitter. The traversal time of the two paths differ by a certain delay τ . When recombined the two
beams interfere, with a fringe contrast proportional to Re[g(1)(τ)].

occur if pairs of photons are detected exactly at the same time at ~r1 and ~r2. This kind
of non-locality was not fully accepted at that time, and it took a long stream of fruitful
results from HBT experiments (in the visible range as well as in radio-astronomy) to
clarify and consolidate our understanding of quantum optics.

Like the Michelson interferometer, the HBT experiment can be adapted to yield the
time-domain correlation function hâ†(t)â†(t + ⌧)â(t + ⌧)â(t)i (Fig.3.16). One can thus
access not only the spatial extent of the source, but also the statistical properties of light
itself.

τ

c

d

Figure 3.16: Hanbury Brown-Twiss (HBT) interferometer. The field â(t) is split onto two different
paths. The intensity of the two beams is measured by two photo-counters. The product of the two
photo-currents is / g(2)(τ).

The link between intensity correlations and photon statistics is clear in the case of an
incident stream of single photons. The beam splitter randomly distributes the photons
over the two paths, so that the two photo-counters can never detect a photon at the same
time. The coincidence rate is then hIc(t)Id(t + ⌧)i = 0, in good accordance with the
expected g(2)(0) = 0.

To justify why the measured correlation function is exactly g(2)(⌧), we need a more
complete model of quantum interferometry. First, we show that the splitting stage is
necessary to the experiment. If one detect the intensity of light at a single point a and
compute its auto-correlation, it yields:

hIa(t)Ia(t+ ⌧)i = hâ†â(t)â†â(t+ ⌧)i, (3.39)

which is NOT proportional to g(2)(⌧), as in general â(t) does not commute with â†(t +
⌧).
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Figure 3.17: A beamsplitter couples linearly four modes of radiation: two incoming â, b̂ and two outgoing
ĉ, d̂.

On the other hand, inserting a beamsplitter generates two new modes of radiation ĉ and
d̂ (Fig.3.17), which are linearly coupled to â by a scattering relation of the form:
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Here b̂ describes a bosonic mode, incoming on the fourth port of the beamsplitter. One
need to take it into account to yield correct commutation relations for ĉ and d̂:

[ĉ, ĉ†] =
1

2

⇣

[â, â†] + [b̂, b̂†]
⌘

= 1 = [d̂, d̂†]. (3.41)

After splitting the photons travel in independent paths, so that they can be measured
separately. This independence stems from:

[ĉ, d̂†] =
1

2

⇣

[â, â†]� [b̂, b̂†]
⌘

= 0. (3.42)

Then the correlation function measured in the HBT setup (Fig.3.16) can be put under
the form:

hIc(t)Id(t+ ⌧)i = hĉ†(t)ĉ(t)d̂†(t+ ⌧)d̂(t+ ⌧)i (3.43)

= hĉ†(t)d̂†(t+ ⌧)d̂(t+ ⌧)ĉ(t)i, (3.44)

as ĉ commutes with both d̂ and d̂†, yielding:

hIc(t)Id(t+ ⌧)i / hâ†(t)â†(t+ ⌧)â(t+ ⌧)â(t)i+ hb̂†(t)b̂†(t+ ⌧)b̂(t+ ⌧)b̂(t)i, (3.45)

as the â and b̂ modes are not correlated, and finally:

hIc(t)Id(t+ ⌧)i / hâ†(t)â†(t+ ⌧)a(t+ ⌧)â(t)i (3.46)

) g(2)(⌧) =
hIc(t)Id(t+ ⌧)i
hIc(t)ihId(t+ ⌧)i (3.47)

if the b̂ mode is in the vacuum state. This last assumption is easily verified in visible
range quantum optics by shielding the fourth port of the beamsplitter from parasitic
background photons.
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HBT in the microwave domain

In circuit quantum optics the basic principle of the HBT scheme can be implemented,
albeit with some quirks due to the specificities of microwave measurements.

Photo-counters are not readily available at such low frequencies. Power measurements
can be performed by square-law detectors 2.3.2. The voltage Vdet at the output of the
detector is proportional to the square of the incoming microwave field:

Vdet / (âe�i!t + â†e+i!t)2, (3.48)

where â is not the annihilation operator for a cavity mode, but for a propagating mode
of the transmission line leading to the detector. The quantization of such modes is re-
viewed in [80]. In particular their operators fulfil different commutation relations, namely
[â(t), â†(t0)] = �(t0 � t). hâ†âi is not a photon number, but rather the photon flux for
mode a in units of s�1.

The very high frequency terms at 2! in (3.48) are removed by low-pass filtering, yielding
for the slowly varying part of the diode output:

hVdetiT / ââ† + â†â = 2(â†â) + 1, (3.49)

where the average h...iT has been taken over one period T = 2⇡/!. Vdet is proportional
to the power in the mode: Pa = ~!(â†â + 1/2), and not to the photon flux â†â. By
removing the dc component of Vdet one can access the fluctuating part of the emission
power:

Vdet(t)� hVdeti / �Pa(t) = Pa(t)� Pa, (3.50)

with the average power Pa = hPai. In this way the vacuum noise ~!/2 as well as all
uncontrolled dc offsets on Vdet can be removed. Following the original HBT scheme by
splitting the incoming power onto two different detection lines, g(2)(⌧) can be obtained by
correlating the power fluctuations �Pc, �Pd at the output of two different diodes (Fig.3.18):

g(2)(⌧) =
h�Pc(t)�Pd(t+ ⌧)i

Pc Pd

+ 1 (3.51)

as:

h�Pc(t)�Pd(t
0)i = h(Pc(t)� Pc)(Pd(t

0)� Pd)i (3.52)

= hPc(t)Pd(t
0)i � hPc(t)Pdi � hPd(t

0)Pci+ Pc Pd (3.53)

= hPc(t)Pd(t
0)i � Pc Pd. (3.54)

The physical implementation of a beamsplitter in the microwave domain is made with a
hybrid coupler (Fig.3.18). In this four-port device, propagating waves interfere so that
all the power incoming on one port is split evenly onto two output ports (provided they
are matched with the appropriate line impedance).

Another specificity of circuit quantum optics is the need to amplify the signals before
detection. The diode measures then not only the junction’s emission power Pa, but also
some parasitic noise power PN added by the amplifier itself, so that the power flowing
out of the amplifier reads:

PT (t) = G⇥ (Pa(t) + PN(t)). (3.55)
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In the single photon experiment, the signal-to-noise ratio (SNR) P̄N/P̄a is bound to be
very low. The average signal power is given by: P̄a = n̄~!r, while the average noise
power is: P̄N = kBTN∆f , with TN the noise temperature of the amplifier and ∆f the
acquisition bandwidth. Commercial HEMTs have TN ⇠ 5 K, which is already 20 times
larger than the energy of a single photon form the sample: h⇥5 GHz ' kB⇥0.25 K.
Recall that the theory predicts g(2)(⌧) ' (1 � r

2
e�⌧ )2. To resolve fluctuations of the

power on a time scale of �1 requires a bandwidth ∆f ' , so that:

SNR =
n̄~!r

kBTN∆f

=' n̄

20
. (3.56)

The photon-blockade mechanism requires n̄ ⌧ 1. A safe value n̄ ' 0.05 then yields a SNR
of the order of 1/400. This means that the fluctuations of any signal we detect are always
dominated by the noise from the amplifier, with dire consequences on the averaging time
required by the measurement.

The amplifier noise can also be detrimental to our accuracy when computing correlation
functions. As an example, suppose that we compute the auto-correlation of the total
power fluctuations at the output of the amplifier:

h�PT (t)�PT (t+ ⌧)i = G2(h�Pa(t)�Pa(t+ ⌧)i+ h�PN(t)�PN(t+ ⌧)i), (3.57)

where we assumed that PN(t) is uncorrelated with Pa(t), so that h�Pa(t)�PN(t
0)i = 0. We

can try to subtract the unwanted h�PN�PNi term by ON/OFF measurements. However
the OFF value is here much greater than the difference between ON and OFF , as:

h�PN�PNi ' P̄ 2
N ⇠ (400)2 ⇥ P̄ 2

a ⇠ (400)2 ⇥ h�Pa�Pai. (3.58)

It would practically impossible to measure an observable drowned in a noise ⇠ 105 larger.
Luckily a classical signal processing trick allows us to reduce greatly the OFF value.
Recall that the full HBT setup requires us to split the signal onto two separate lines.
If we amplify the signals after the splitting stage, then the correlation function yields:

h�Pc(t)�Pd(t+ ⌧)i+ h�PNc(t)�PNd
(t+ ⌧)i, (3.59)

where PNc(t), PNd
(t0) are independent noise powers added by the two separate amplifiers

(Fig.3.18). The correlation between these two parasitic noises is expected to be practically
zero, such that the measurement correctly gives the g(2)(⌧) function of the signal only.
This comes at the cost of dividing by 2 the signal power incoming onto on the amplifiers,
reducing furthermore the SNR.
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Figure 3.18: HBT setup for weak microwaves signals. The signal mode a, travelling in a coaxial cable,
impinges on a 3dB-coupler, whose second input port is matched to a cold 50 Ω load. This load radiates
vacuum noise carried by a mode b, which mixes with a to give two output modes c and d. The split
signals are amplified by separate HEMTs (1) and (2), with nominally independent noises, and detected
by two different diodes. The cross-correlation of the fluctuating part of the output voltages V c

det and V d
det

gives access to the g(2)(τ) function of the a mode.

Preliminary results from the PhD of Chloé Rolland

Following these principles, the microwave HBT setup was implemented by Chloé Rolland
during her PhD research and allowed her to measure for the first time the antibunching
of the photons emitted by the junction [35]. However, remaining parasitic correlations
between the two measurement channels forbade a fully quantitative comparison of her
results to the theoretical predictions of [34]. Using a new detection setup based on linear
measurements, we were able to find the origins of these unwanted correlations and subtract
them from the g(2)(⌧) function.

Figure 3.19: Results from the 2016 experiment. Values of g(2)(τ) measured via power fluctuation cor-
relations (blue squares) on top of the theoretical prediction of [34]: g(2)(τ) = (1 � re�κτ/2)2, with a
fitted r = 1 and κ = 1 ns�1. The error bars indicate half the statistical standard deviation, σ/2 (taken
from [35]).

The measurement of g(2)(⌧) from [35] shows a dip near ⌧ = 0, going down to about 0.3 with
a standard deviation of 0.2. These numbers alone indicate the antibunched character of
the photons emitted by the junction. However one can also see some parasitic oscillations
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on top of the expected g(2)(⌧). Far away from ⌧ = 0, where one should have g(2)(⌧) = 1, it
actually oscillates between about 0.85 and 1.05, with a period comparable to the lifetime
of the resonator �1. It is therefore quite difficult to be sure of the exact value of g(2)(0)
and compare it with the theoretical prediction.

The origin of these unwanted oscillations appears when considering a fully quantum model
of the signal processing. We explained earlier how an amplifier always adds some noise
power kBTN on top of the input signals. As shown by Caves in [81], this noise is a funda-
mental property of the linear amplification process. It is carried by an additional mode
ĥ that enforce the adequate commutation relation of the output mode. The amplifier
scattering relation can be cast under the general form:

b̂ =
p
Gâ+

p
G� 1ĥ†. (3.60)

The noise mode fulfils the standard bosonic commutation relation [ĥ, ĥ†] = 1, and is
supposed to be independent from the input signal mode â. This is a safe assumption,
as it originates from the inner mechanism of the amplifier and is always present, even in
the absence of an input signal. The dagger symbol on ĥ† may look weird, but is actually
required to ensure that b̂ fulfils the correct commutation relation:

[b̂, b̂†] = G[â, â†] + (G� 1)[ĥ†, ĥ] = G� (G� 1) = 1. (3.61)

The average photon number in the output mode is then:

hb̂†b̂i = Ghâ†âi+ (G� 1)hĥĥ†i = Ghâ†âi+ (G� 1)(hĥ†ĥi+ 1). (3.62)

In an ideal quantum-limited amplifier, the ĥ† mode in the vacuum state: hĥ†ĥi = 0. Note
that the quantum-limited amplifier still adds some noise to the signal, which amounts in
the G � 1 limit to the usual claim of an additional ”half photon per mode” as referred
to the input power. More often ĥ† is in a thermal state, with an occupation number
nB(TN) =

1
exp( ~!

kBTN
)�1

.

VDS

Figure 3.20: Quantum model of a linear amplifier, as described by [81]. The amplified signals are carried

by an output mode b̂, which also includes noise contribution from a mode ĥ†. The details and physical
origin of ĥ† depend on the specific implementation of the amplifier (here thermal noise from an internal
resistance).

With this model at hand, let us come back to the expression for the correlation of sep-
arately amplified signals, as in the setup of figure 3.18. To simplify a bit the reasoning,
suppose that we can detect photon numbers at the output of HEMTs (1) and (2), instead
of relying on power fluctuations. Then the instantaneous photon number on channel 1
reads:

Gĉ†ĉ+ (G� 1)ĥ1ĥ
†
1 +

p

G(G� 1)(ĉĥ1 + ĉ†ĥ†
1), (3.63)
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and on channel 2:

Gd̂†d̂+ (G� 1)ĥ2ĥ
†
2 +

p

G(G� 1)(d̂ĥ2 + d̂†ĥ†
2), (3.64)

with ĥ†
x the noise mode of amplifier (x). We insist that even if the last term averages to

zero, it gives a non null contribution to the fluctuations of the detected photon number.
When correlating the intensities measured on channel (1) and (2), one gets:

G2hĉ†ĉd†d̂i+ (G� 1)2hĥ1ĥ
†
1ĥ2ĥ

†
2i+G(G� 1)(hĉ†d̂ihĥ†

1ĥ2i+ hd̂†ĉihĥ†
2ĥ1i), (3.65)

where we kept only terms that do not average immediately to zero. As an example,
hĥ1ĥ2i = 0 as we do not expect phase coherence from the thermal noise of the ampli-
fiers.

The first parasitic term in this correlator, hĥ1ĥ
†
1ĥ2ĥ

†
2i, is present even in the absence of

input signal from the sample, i.e if hâ†âi = 0. Thus it can safely be removed by ON/OFF
measurements, the OFF state being reached by putting the bias voltage on the sample
to zero 2.3.2. On the contrary, the hĥ†

xĥyi terms are present only if hâ†âi 6= 0 and cannot
be removed easily.

It was assumed in [35] that the two amplifier noise modes were independent enough so
that their correlations could be neglected. In practice, the isolation between the two
measurement lines is finite, and is found to be at best of about -33 dB. The parasitic
correlations between the two lines are then of the order of:

|hĥ†
1ĥ2i| ' 5⇥ 10�4P̄NcP̄Nd

⇠ 0.2⇥ h�Pc�Pdi, (3.66)

so that they were responsible for the parasitic oscillations in figure 3.19.

The only way to remove these oscillations is to measure separately these noise correlators,
and to subtract them from the measurements. As these terms arise from amplitude
correlations between the two lines, they cannot be obtained using intensity detectors.
Following the pioneering work of [82], we developed a scheme based on the linear detection
of the microwave field, instead of the measurement of power fluctuations. This allowed us
to remove virtually all parasitic contributions to the g(2)(⌧) and characterize finely this
single-photon source.

3.3.2 Linear detection of the field

Complex envelope of the signals

In the experiment we are describing, the signal to be detected is the microwave voltage
generated by the sample, which reads:

Vac(t) = V0(âe
�i!t + â†e+i!t) = 2V0Re[âe�i!t], (3.67)

with V0 =
p
Zw~ the ZPF spectral density of voltage in the transmission line of impedance

Zw. It can be seen as a carrier wave e�i!t modulated by a slowly varying envelope â.
This fast oscillating signal is out of reach of standard Analog to Digital converters (ADC),
which sample at up to a few GSamples/second.
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The situation is even worse in visible range quantum optics, where the field carrier fre-
quency is in the 300 THz range. However techniques have been developed to access the
slowly varying envelope of the signal, which contains all the information about the field.
Through a non-linear process, one may multiply the voltage signal with a well-known
oscillating wave, provided by a so-called local oscillator (LO). This reference signal is
a macroscopic quantity, described by a classical field VLO(be

�i!LOt + b⇤e+i!LOt). Their
product yields:

Vmix / V0(âe
�i!t + â†e+i!t)⇥ VLO(be

�i!LOt + b⇤e+i!LOt). (3.68)

The local frequency is chosen to be close to the signal frequency: !LO = ! + �!. The
low-pass filtered mixing signal, which can be readily detected, reads:

Vmix,LP / Re[âb⇤ei�!t]. (3.69)

If !LO = !, the measured voltage is simply Re[âb⇤]. By tuning the phase of the LO �LO =
arg(b) with respect to the signal carrier wave, one can access either of the quadratures
of the signal:

Vhom / Re[âe�i�LO ] = cos(�LO)X̂ + sin(�LO)P̂ , (3.70)

with â = X̂ + iP̂ . This kind of measurement is called a homodyne detection of the field.
From their definition, it is clear that X̂ and P̂ contain all the information on â. They
are also quantum conjugated operators, with the commutation relation: [X̂, P̂ ] = i/2.
As such, they cannot be measured independently at the same time with an arbitrary
precision, which is manifest in the expression (3.70).

At microwave frequencies, the mixing operation is readily implemented via voltage-
rectifying diodes, implementing an IQ mixer. In the visible range, homodyning requires
to split the signal and the LO over two different beams, detect the light intensity in each
beam and then subtract their photo-currents (Fig.3.21). The current difference indeed
yields:

Ic � Id / (â+ b̂)†(â+ b̂)� (â� b̂)†(â� b̂) / Re[hâb̂†i]. (3.71)

Figure 3.21: Homodyne detection scheme in visible range quantum optics.

The case where !LO 6= ! is called heterodyne detection. Then the output signal is still
oscillating in time, with:

Vhet(t) / Re[âe�i(�!t+�LO)] = cos(�!t+ �LO)X̂ + sin(�!t+ �LO)P̂ . (3.72)
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In essence, this could be seen as homodyne detection where the phase of the LO is
continuously varied to measure successively X̂ then P̂ .

The signal quadratures evolve on a time scale of the order of the resonator lifetime �1.
If �! > , it seems that one could detect the heterodyne signal fast enough to measure
both X̂ and P̂ at the same time, which is impossible as they are quantum conjugated
observables. A complete model of heterodyne detection lifts this paradox (Fig.3.22):

LO

Figure 3.22: Heterodyne detection scheme in visible range quantum optics.

In the visible range, measuring X̂ and P̂ at the same time actually requires two different
homodyne interferometers. The input signal â then necessarily needs to be split over
two different beams, to create two copies of it (ĉ and d̂). As shown in figure 3.17,
the beamsplitter actually mixes â with another mode b̂, which adds at least vacuum
fluctuations to measurements of ĉ and d̂.

Thanks to this fourth mode, one can measure the X̂ quadrature on ĉ and the P̂ quadrature
on d̂ at the same time with arbitrary precision. These measurements can be combined in
a single complex envelope Ŝ = X̂c + iP̂d. The fact that Ŝ is a complex quantity does
not forbid it from being an observable, as: [Ŝ, Ŝ†] = 0 [82].

Due to the presence of the b̂ mode, a measurement of Ŝ is not equal to a measurement
of â. Indeed: Ŝ / X̂a + X̂b + iP̂a � iP̂b = â + b̂†. Each measurement of Ŝ is thus a
measurement of â blurred by the signals from b̂†, which contains at least the vacuum
level of noise.

Note that in the microwave domain, the b̂† mode corresponds to the idler signal of the
mixer, which is also always present.

The added b̂† noise is a necessity of the measurement of the quantum variable â. All
gedanken experiments aiming at removing it fail eventually. For example, at low enough
frequency, one could imagine digitizing directly the signals from the â mode. Without the
splitting (or mixing) step, one does not need to include a beamsplitter’s fourth port mode.
However voltage measurement require the choice of some load impedance Zl, across which
the voltage drop can be detected. Following Nyquist [52], Zl itself radiates some noise,
that gets picked up by the voltage detector. Thus the measured voltage also includes an
added noise term, for the consistency of quantum mechanics.
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V

Figure 3.23: Gedanken experiment: measuring directly the fast voltage drop resulting from photons
impinging on a load resistor. Even if the voltmeter is fast enough it will not detect â, but a combination
of â and an added noise term b̂†.

Correlation functions from linear measurements

Arbitrary correlation functions of â can be computed from linear measurements. Af-
ter suitable linear detection, we record time traces of the complex envelope Ŝ(t) =p
F
⇣

â(t) + b̂†(t)
⌘

, where
p
F is some experimental conversion factor. b̂† describes the

noise added by the heterodyne technique, which may not be quantum limited (i.e con-
taining only vacuum fluctuations). We can compute:

S†(t)S(t0) = F
�

a†(t)a(t0) + b(t)b†(t0) + a†(t)b†(t0) + b(t)a(t0)
�

, (3.73)

where we removed the hat notation on operators for readability. We can assume that b̂†

is independent of the signal â, so that hb(t)a(t0)i = hb(t)iha(t0)i. It is also safe to assume
that the added noise is gaussian distributed. Then the only non-zero correlators are the
ones of the form hQ b†(ti)

Q

b(tj)i, with the same number of annihilation and creation

operators. In particular here hb(t)i = hb†(t)i = 0. The auto-correlation function of Ŝ
finally reads:

hS†(t)S(t0)i = F ha†(t)a(t0)i+ F hb(t)b†(t0)i. (3.74)

Because we took care to write this correlator in the normal order, the a mode contribution
vanishes if it is in the vacuum state, i.e ha†ai = 0. Once again we can reach this OFF
state in an experiment by setting the bias on the sample to zero. Then we have:

hS†(t)S(t0)iON = F ha†(t)a(t0)i+ F hb(t)b†(t0)i (3.75)

hS†(t)S(t0)iOFF = F hb(t)b†(t0)i (3.76)

) ha†(t)a(t0)i = F�1
�

hS†(t)S(t0)iON � hS†(t)S(t0)iOFF

�

, (3.77)

such that the first order coherence function of the signal can be obtained by a normalized
combination of ON and OFF measurements:

g(1)(⌧) =
hâ†(0)â(⌧)i

hâ†âi =
hS†(0)S(⌧)iON/OFF

hS†SiON/OFF

, (3.78)

where we introduced the shorthand notation hXiON/OFF = hXiON � hXiOFF . Once
the peculiar nature of quantum signals has been taken into account by including the
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non-trivial commutation relations, this procedure is nothing more than standard signal
processing, used to recover the statistical properties of a signal corrupted by an unwanted
noise.

More generally, we know from probability theory that the distribution function of the
sum Z = X + Y of two independent random variables is the convolution product of the
two original distribution functions of X and Y . The n-th moment of Z, hZni, is then a
bilinear combination of all the moments of X and Y of order  n. If the hY ki are known
separately, the statistical properties of X can be estimated by measuring the moments
of Z up to desired order and inverting iteratively the convolution. The same goes for
generic correlation functions h

Q

X(ti)i, of which the moments are a special case.

In particular, we have:

hS†(0)S†(⌧)S(⌧)S(0)i =F 2
�

ha†(0)a†(⌧)a(⌧)a(0)i+ hb(0)b(⌧)b†(⌧)b†(0)i
+ ha†(0)a(0)ihb(⌧)b†(⌧)i+ ha†(⌧)a(⌧)ihb(0)b†(0)i
+ ha†(0)a(⌧)ihb(⌧)b†(0)i+ ha†(⌧)a(0)ihb(0)b†(⌧)i

�

(3.79)

=F 2
�

n̄2g(2)(⌧) + hb(0)b(⌧)b†(⌧)b†(0)i+ 2n̄hbb†i
+ n̄(g(1)(⌧)hb(⌧)b†(0)i+ g(1)(�⌧)hb(0)b†(⌧)i)

�

,
(3.80)

such that g(2)(⌧) can be extracted from a combination of measurements of hS†(0)S(⌧)i
and hS†(0)S†(⌧)S(⌧)S(0)i, in the ON and OFF states:

g(2)(⌧) =
hS†(0)S†(⌧)S(⌧)S(0)iON/OFF

(hS†SiON/OFF )2
�


2⇥ hS†SiOFF

hS†SiON/OFF

+ g(1)(⌧)
hS†(0)S(�⌧)iOFF

hS†SiON/OFF

+ g(1)(�⌧)hS
†(0)S(⌧)iOFF

hS†SiON/OFF

�

.

(3.81)

If the assumption of a gaussian noise with no phase reference is not verified, there are
more terms in the expression of the S(t) correlators. These terms can always also be
removed by more complex ON/OFF combinations. Experimentally it is sufficient to
check that hb†i / hSiOFF = 0 to validate this hypothesis.

In practice, how easily are subtracted the unwanted terms between brackets in (3.81)?
This depends on the nature of the b̂† mode, and its average population. True heterodyne
detection in visible range optics can be quantum-limited in the limit where the LO mode
contains a large number of photons. In microwave optics, the experiment is actually
limited by the noise added by the amplification stage. Using the expression from figure
3.20 for the field operator at the output of the amplifier, the complex envelope actually
reads:

Ŝ =
p
F (

p
Gâ+

p
G� 1ĥ† + b̂†). (3.82)

Now, as these two noise arise from different processes (and even separate parts of the
experiment), they are uncorrelated: hĥ†b̂i = hĥb̂i = 0. When computing correlation
functions of Ŝ, there are more parasitic terms to consider, but which can always be
grouped together as arising from an effective ”total noise” mode

p
G� 1ĥ† + b̂†. The

results we derived earlier, in particular the expression of g(2)(⌧) as a function of Ŝ (3.81),
are unchanged.
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This ”total noise” mode can be considered to be at thermal equilibrium with an effective
temperature ' TN , as (G � 1)hĥ†ĥi � hb̂†b̂i. Then its contribution to the Ŝ correla-
tors is much larger than the desired correlation function from the signal mode â. As
such, hŜ†ŜiOFF / nB(TN) ⇠ 103 ⇥ hâ†âi / hŜ†ŜiON/OFF , making the contrast of the
measurement quite poor.

As noted before, this very low SNR is even more detrimental to the measurement of
power correlations: hŜ†Ŝ†ŜŜiOFF / 2 (nB(TN))

2 ⇠ 106 ⇥ hâ†a†ââi. Even if unwanted
terms average to a value that can be subtracted by ON/OFF measurements, it is so
large that it requires a lot of averaging to make this subtraction finely enough to recover
properly the â correlators. In particular, measuring hŜ†Ŝ†ŜŜiOFF with a 1 part in 107

accuracy, in order to have a ⇠ 10% resolution on hâ†â†ââi, requires of the order of 1014

measurements (as the added noise is gaussian distributed). The value of hŜ†Ŝ†ŜŜiOFF

depends on TN , which actually fluctuates during an experiment, on timescales shorter
than the measurement time ⇠ 1014/fs ' 30 hours.

However using a HBT-like setup allows to rely on cross-correlations of the signals, which
average to a much smaller value than auto-correlations. By using this linear detection
scheme with the setup of 3.18, we have been able to make a quantitative measurement
of all the parasitic noise contribution to the correlators and properly extract the g(2)(⌧)
function of the emitted photons.

Microwave HBT setup with linear detection

We present in figure 3.24 the noise model of a microwave HBT experiment, including
linear detection of the field amplitudes instead of the measurement of power fluctuations:

Figure 3.24: Noise model of the microwave HBT experiment with linear detection.

To be fully consistent, we stress the distinction between the âmode describing the field in-
side the resonator (with [â, â†] = 1) and the propagating mode b̂out, with [b̂out(t), b̂

†
out(t

0)] =
�(t0 � t). The local â operator is the one whose stationary state can be efficiently sim-
ulated by the master equation approach of [34], while the b̂out(t) operators are the ones
that can be detected. The antibunching prediction applies to both, as: hb̂†outb̂†outb̂outb̂outi =
2hâ†â†ââi, so that: g

(2)
a (⌧) = g

(2)
bout

(⌧).
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The b̂out fields is routed to a beamsplitter and mixed with a mode ĥ†
bs. This mode carries

the equilibrium noise radiated by the cold 50 Ω load on the fourt port of the hybrid
coupler (Fig.3.18). Thus it can be considered in the vacuum state: hĥ†

bsĥbsi ⇠ 0.

The several amplification stages of the experiment are modelled by a single amplifier on
each channel (1) and (2), that amplifies the signal power by G1/2 while mixing it with

a noise mode ĥ†
G1/2

. These modes carry the main contribution to the total noise on the

signal, with hĥ†
G1/2

ĥG1/2
i = nB(TN1/2

).

The final heterodyne detection on each channel adds a demodulation noise ĥ†
IQ1/2

, whose

contribution is small compared to the amplifiers’ noise. We represent it here for consis-
tency.

To sum up, we consider that the experimental records of complex envelopes on the two

channels read: Ŝ1/2(t) =
p

G1/2

⇣

â1/2(t) + h†
1/2(t)

⌘

, where â1/2(t) / bout(t� t1/2) includes

the potential time delay between the two lines, and ĥ†
1/2 represent all the noises added by

the different signal processing steps.

Splitting the signals before amplification decreases the SNR by 2. However there are
benefits of having two distinct measurement lines, which already appear in the compu-
tation of the first order coherence function. As in the single channel case, g(1)(⌧) can be
extracted from the autocorrelation of a single complex envelope:

g(1)(⌧) =
hS†

x(0)Sx(⌧)iON/OFF

hS†
xSxiON/OFF

, (3.83)

with x 2 {1, 2}. Using this ON/OFF technique essentially requires to subtract two
numbers of order 103 from one another, to obtain a number ⇠ 1. The contrast of this
direct technique is quite bad, and slight drifts in the noise temperature of the amplifiers
can easily ruin the measurement. By contrast, the cross correlation of the two complex
envelopes yields:

X(⌧) = hS†
1(0)S2(⌧)i =

p

G1G2

⇣

ha†1(0)a2(⌧)i+ hh1(0)h
†
2(⌧)i

⌘

, (3.84)

so that:

g(1)(⌧) =
X(⌧)ON/OFF

X(0)ON/OFF

. (3.85)

If the two measurement chains are well isolated, the OFF term hh1(0)h
†
2(⌧)i is small, and

the contrast is much better. The amplitude of the OFF term is experimentally found to
be about 30 dB lower than the autocorrelation of the amplifiers’ noise, so about of the
same order of magnitude as the signal power in the low occupation limit n̄ ⇠ 0.1.

The parasitic coupling between ĥ1 and ĥ2 can be modelled by a linear scattering relation,
of the form:

ĥx !
p
1� ↵ĥx +

p
↵ĥy, (3.86)

where |↵| ⇠ 10�3 is the finite isolation between the two lines. ↵ is in general a complex
number, whose phase depends on the way the lines are coupled. In particular if there is an
unwanted coupling between the two lines through a path of length Lxy, noise ĥx leaking
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to the (y) line acquires a relative phase �xy = !Lxy/c, with c the celerity of signals. Then

S†
1S2 is a complex number, contrary to the auto-correlation S†

xSx.

This is true both for the average value hS†
1S2i, but also for the instantaneous S†

1(t)S2(t),
which is a complex noise with a random phase. On the other hand the desired correlator
ha†1a2i averages to a real number1. To enhance the recovery of a real signal from a complex
background noise, one one can take only the real part of the measurement, increasing the
signal to noise ratio by 2. Any relative phase between the two detection channels can
be compensated numerically if needed. For ⌧ 6= 0 g(1)(⌧) is a complex number, albeit
with a well-defined phase contrary to S†

1(t)S2(t+ ⌧), so this intrinsic noise rejection also
occurs.

Note that the instantaneous noise on S†
1(t)S2(t) is still given by

p

TN1TN2 , even if the final

value hS†
1S2i is much smaller than hS†

xSxi. This means that the SNR did not increase,
and the number of averaging needed to extract the signal from the noisy measurements is
still large. Cross-correlations simply make the OFF value to be subtracted much smaller,
so the accuracy of the measurement is increased.

Accurate g(2)(⌧) measurement from two complex envelopes

They are 24 = 16 ways of correlating complex envelopes to yield a measurement of g(2)(⌧).
We have already seen that the choice of observables like hS†

xS
†
xSxSxi is quite bad, as the

ON/OFF value is much smaller than the OFF value. The only sensible choice is a
combination where the noise of an amplifier is never directly auto-correlated.

First, one can compute the instantaneous power in the lines from: Px(t) = S†
x(t)Sx(t),

and use power-correlations as in the 2016 experiment (Fig.3.18):

g(2)pw (⌧) =
hP1(0)P2(⌧)iON/OFF

hP1iON/OFF hP2iON/OFF

�
 hP1iOFF

hP1iON/OFF

+
hP2iOFF

hP2iON/OFF

+
X(⌧)ON/OFFX

†(⌧)OFF

hP1iON/OFF hP2iON/OFF

+
X†(⌧)ON/OFFX(⌧)OFF

hP1iON/OFF hP2iON/OFF

�

.

(3.87)

Here the benefit of using linear detection lies in the inclusion of the last two terms,
which carry XOFF (⌧). They were responsible for the ripples in figure 3.19 and could not
be suppressed by a scheme based on power detection. This method does not yield the
intrinsic complex noise rejection, as here all quantities are real numbers.

Second, one can compute the cross-signal power C(t) = S†
1(t)S2(t), which is a complex

number proportional to the instantaneous
p
P1P2(t). In a record of C(t), the a†a(t)

contribution is real, while the contribution of the background noise is a complex number
with a random phase. Computing the auto-correlation function of C(t), hC†(0)C(⌧)i,
would rectify this random phase and the noise would pile up on top of the signal. It is

1or to a complex number if the delay between the two lines t2 � t1 is not compensated for, but with
a deterministic phase.
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much more interesting to use hC(0)C(⌧)i, which yields:

g(2)cs (⌧) =
hC(0)C(⌧)iON/OFF

hCi2ON/OFF

�


2⇥ hCiOFF

hCiON/OFF

+
X(⌧)ON/OFFX(�⌧)OFF

hCi2ON/OFF

+
X(�⌧)ON/OFFX(⌧)OFF

hCi2ON/OFF

�

.

(3.88)

Here, all the values to be subtracted are small, while the g
(2)
pw (⌧) expression includes terms

hPxiOFF

hPxiON/OFF
⇠ 103. The parasitic contributions are also complex while the desired g

(2)
cs (⌧)

is purely real, such that the SNR can be increased by 2 by taking only the real part of
all records.

It should be noted that this technique requires the precise compensation of all time delays
between the two lines. Indeed, if t2 � t1 � �1, then the correlation between the two
channels is lost and hC(t)i = 0. This is not a problem for the power correlation method,
where a time delay simply shifts the ⌧ = 0 point for P1(0)P2(⌧).

In practice, we compute both versions of g2(2)(⌧), (3.87) and (3.88), using the same
numerical records of complex envelopes. The comparison of the two results, which carry
uncorrelated noises, increases again the accuracy of the measurement.
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3.4 Setup of the experiment: cold-stage circuit, mi-

crowave collection chain, numerical data acquisi-

tion and treatment

3.4.1 Low-temperature circuit

1 2

15 mK

0.8 K

4.2 K

300 K

Vc

Coil bias
Applied

voltage
To the 300 K

measurement chain

Coil

Sample

Bias-tee

Circulator

Hybrid coupler

R3=345 Ω

R2=6.45 MΩ

R1=

100 MΩ

(RC)3 filter

Cu filter

LC filter

Vb

6.5 μF

LC filter

Circulators

50 Ω load

4-8 GHz filter

Dissipative filter

Circulators

Dissipative filter

HEMT amplifier HEMT amplifier

Figure 3.25: Setup used in the experiment. At the cold stage of a dilution fridge, the strong-coupling
sample (dark blue) is connected through a bias-tee to a dc-voltage bias line (green) and to a RF collection
line (dark orange). The microwave signals are split over two distinct amplification lines (1) and (2). A
current-biased superconducting coil (pink) placed under the sample allows the application of a small
magnetic field through the SQUID.

Figure 3.25 shows the setup used in our strong-coupling experiment. The sample (shown
in dark blue) is placed at the coldest stage of a homemade wet dilution fridge, with a base
temperature of 15 mK. It includes a SQUID, which is connected on one side to the cold
ground of the fridge, and to the other side to a high-impedance coil resonator and a CPW

94



segment. The CPW segment increases the impedance seen by the resonator, reducing its
quality factor.

The chip is connected to a SHF BT45 bias-tee (in black), whose properties were char-
acterized separately in a 4.2 K helium dewar. Microwave reflectometry measurements
show that at low temperature, the bias-tee behaves approximately as the association of
an inductance LBT and a capacitance CBT , with:

LBT ' 120 µH, CBT ' 42 nF, (3.89)

yielding a self-resonance frequency 1/2⇡
p
LBTCBT ' 71 kHz at cryogenic temperatures.

At this frequency, the bias-tee implements a parasitic resonant mode, with an impedance
p

LBT/CBT ' 54 Ω.

Well below this frequency, CBT behaves as an open so that the sample is connected only
to the dc-voltage bias line (in green). A voltage Vb is applied by a low-noise Yokogawa
7651 dc source at the top of the bias line. Vb can be set from 0 to 32 V with a 10�4

accuracy. The bias line includes a R1= 100 MΩ resistor at room temperature. This
resistor is in series with a R2= 6.5 MΩ resistor anchored at the still stage of the
fridge, thermalizing it at around 0.8 K. The bias line is finally in series with the parallel
association of the sample (through the bias tee), and a homemade winded resistor
R3=345 Ω placed at 15 mK.

As the tunnel resistance of the SQUID is of the order of ⇠ 200 kΩ, the admittance
of the sample is always small compared to (345 Ω)�1. Thus all the current injected
by the Yokogawa flows through R3, and the sample is effectively voltage biased. The
current in the bias line reads Vb/(R1 + R2 + R3), so the voltage drop V across R3 is
R3Vb/(R1 +R2 +R3). The division ratio of the line is then ' 3⇥ 105, which allows us to
apply precisely a voltage in the µV range across the SQUID.

Note that as depicted on the figure, R1 can easily be short-circuited to reduce the division
ratio to ' 2⇥ 104. This enables applying a much higher bias on the sample, of the order
of 8 times the gap voltage ∆/e. At this high bias value the junction behaves from a
microwave point of view as a resistor RN at an effective temperature eV/2kB. In this
shot-noise regime, we can use the emission noise of the junction to calibrate the gain of
the amplification chain (see appendixB).

The division ratio also reduces the impact of spurious voltage noise from the room tem-
perature Yokogawa. To further decrease the noise on the sample, a number of filters are
inserted in the line. Right after R2 three homemade RC lowpass filters (R = 2 kΩ and
C = 1 nF) are cascaded, giving a -60 dB/decade roll-off after the cut-off frequency ' 80
kHz. At the input of R3 are two commercial LC filters (Murata NFE61PT472C1H9L
and NFM60R00T220T1), which attenuate noise up to about 1 GHz. R3 itself is a dis-
tributed RC filter, as it was made by winding up 3.5 meters of ISAOHM resistive wire
around a copper rod. Its total capacitance to the ground is efficient to thermalize elec-
trons in the wire at the base temperature of the fridge. In addition, R3 is in parallel with
two Murata HSSC Si capacitors of 3.3 µF2, implementing another RC filter with a
frequency cut-off of about 70 Hz. All these different types of low-pass filters are needed
as they all eventually get shorted at sufficiently high frequencies. A Cu powder filter is
finally inserted right before the bias-tee. At low frequency it forms a RC filter (R = 0.3

2yielding a total 6.5 fF at low temperature.
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Ω and C = 350 pF) with a 1 GHz cut-off frequency. At high frequency (few GHz range),
it becomes a very efficient microwave absorber thanks to the skin effect in the powder
grains [83].

Far above 71 kHz LBT blocks the bias line, so that the sample is connected only to the
RF line (in dark orange). This line collects the photons leaking out of the resonator
and splits them over two distinct measurement chains (1) and (2), which include distinct
low-noise HEMT amplifiers (LNF LNC4 8C on channel (1) and LNC4 8A on channel
(2)), thermalized to liquid helium temperature. These amplifiers provide a gain of about
40 dB in the 4 to 8 GHz range, with an added noise temperature TN ' 2.5 K according
to specifications.

These amplifiers radiate noise back onto the sample. If their input impedance is matched
to Z = 50 Ω, they radiate approximately kBTN in their operating band. Outside of the
4-8 GHz band, they may give much more noise (in particular at high frequencies). If sent
directly to the sample, this noise would populate the resonator with a population around
nB(TN) ' 10, ruining the antibunching of the emitted photons.

To suppress this noise, a number of filters and circulators are inserted between the am-
plifiers and the sample. Right before the amplifiers we put dissipative filters (Marki
FX0109), which dissipate all noise out of the 1-9 GHz band. As they are thermalized
at the base temperature of the fridge, they only absorb noise power from the amplifiers,
and do not shine anything back to their input, which could lead to saturation of the
amplifiers.

Circulators (Quinstar QCY) are used to route noise in the 4-8 GHz band towards cold
50 Ω loads, which absorb the incoming noise and only reemit vacuum fluctuations. In
practice they have a finite efficiency, due to imperfect impedance matching. They still
provide at least 17d B on attenuation of the amplifiers’ noise. Putting 3 circulators in
series allows for a comfortable 50 dB reduction of this parasitic noise power.

The beamsplitter is implemented by a hybrid coupler (Pulsar QS2-05-463/2S). Its
fourth port is connected to a cold 50 Ω load, so that it only mixes the sample’s sig-
nals with vacuum fluctuations. Finally, a 4-8 GHz cavity filter (Microtronics BPC
50403) rejects all remaining noise outside of its frequency window.

When matched with a 50 Ω line, this filter presents an input impedance of 50 Ω in the 4
to 8 GHz band, and  1 Ω out of the band. Thus the remaining thermal voltage noise
seen by the sample is mostly shunted to ground, as Re[Z(!  kBT/~)] ' 1 Ω. Recall
that following (2.74), the voltage noise on the junction is directly linked to the P (E)
function, which is peaked at E = 0 with a width of the order of:

4kBT
Re[Z(!  kBT/~)]

RQ

⇠ 2e⇥ 0.5 nV ⇠ h⇥ 0.25 MHz, (3.90)

which should also correspond to the spectral width of the emitted radiation.

Finally, a small superconducting coil (in pink) is current-biased by a low-noise room
temperature voltage source Vc. This allows to thread a magnetic flux Φ through the
SQUID, tuning EJ . The currents leads of the coil are twisted, which makes it immune to
electromagnetic interferences and sufficiently noise-less for the experiment.
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3.4.2 Room-temperature chain

The outputs of the amplifiers (1) and (2) are routed towards two similar room temperature
signal processing chains, depicted in figure 3.26:
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Figure 3.26: a) Room-temperature processing chain. Microwave signals from the (1) and (2) channels
are amplified, filtered, mixed down to the 0-600 MHz band and routed towards a fast acquisition card.
Circulators and attenuators remove unwanted reflections of the amplifiers noise. b) PSD at different
points of the chain. (α) Input signals consist mostly of the flat G ⇥ TN noise of the HEMT amplifier
in the 4-8 GHz band, modulated by parasitic microwave reflections (in blue). The sample’s signals (in
red) are much smaller than TN , and reside only in a narrow frequency band. (β) The 4.1-4.7 GHz filter
reject all noise outside of the 600 MHz wide measurement band. (γ) After heterodyning at 4.71 GHz,
the transposed signals reside in the low frequency 0-600 MHz band.

A 7 m-long cable is inserted at input of channel (2). It adds a ' 35 ns delay to
signal propagating on this channel with respect to the other. This delay is corrected
for numerically during the data acquisition. This procedure removes virtually all room-
temperature crosstalk, which proved dominant in the 2016 experiment. However this
trick cannot remove the parasitic crosstalk inside the fridge.

A circulator a the input of each chain protects the cryogenic HEMT from the noise
radiated by the first amplifiers of the chain. This first amplifier (Miteq AFS3-040080-
09-CR-4) has a gain of about 35 dB. Its noise temperature is around 70 K, so that the
SNR is still determined by the 2.5 K+40dB of the HEMT amplifier.

It is followed by a 10 dB attenuator, a 4-8 GHz bandpass filter, another 10 dB
attenuator and a second amplifier (Miteq AFD5-040080-23). This amplifier yields 46
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dB of gain 3, with a noise temperature around 200 K. The bandpass filter helps rejecting
all unwanted noise out of the measurement band. The attenuators are used to suppress
parasitic reflections in the chain due to impedance mismatches, and to avoid saturation
of the next amplifier.

The second amplifier is followed by a 6 dB attenuator, a narrower 4.1-4.7 GHz band-
pass filter (Microtronics BPC 18898 and an IQ mixer (Hittite HMC-C009). The mixer
down-converts the signals to a lower frequency bands, by multiplying them with a LO
signal at fH = 4.71 GHz, provided by a RF source (Rhode & Schwarz SMR20). The
heterodyning frequency is chosen just outside of the 4.1-4.7 GHz band, so that no aliasing
occurs. Note that because we are heterodyning ”from above”, the downconverted signals
are / Re[(X̂a � iP̂a)e

�i!t] instead of / Re[(X̂a + iP̂a)e
�i!t]. As the antibunching of the

photons does not require a phase reference, this is of no consequence.

The down converted signals are attenuated by 10 dB before amplification by a dc-1
GHz amplifier with +24dB gain, filtering by a lowpass filter (Minicircuits BLP450+)
and final detection by a fast acquisition card (ADQ412), sampling on two channels A
and C at fS = 1.25 GSamples/s.

3.4.3 Numerical data processing

In Fourier space, this sampling rate yields an acquisition bandwidth of fS/2 = 612.5 MHz.
The last filter of the chain has a nominal cutoff frequency of 450 MHz, but in practice
presents a quite slow roll-off, effectively attenuating the signals only above ⇠ 600 MHz.
This is enough to avoid aliasing of the amplifier’s noise that would reduce even more the
SNR. This heterodyne method gives us access to the signals emitted by the sample in the
[fH � fS/2; fH ] = band.

Recall that there is no phase reference in the experiment, as the creation of antibunched
photons does not rely on a pump tone. Then we cannot synchronize the detection of
the signals with a clock. Our acquisition method is rather based on the principles of
noise measurement. Schematically, we acquire some length of signal, compute its PSD
numerically and store it, then repeat the measurement and average all the outputs. In the
absence of phase reference the PSD is the proper quantity to average, contrary to triggered
experiments where one can average complex Fourier components (or quadratures) of the
signal.

We then take advantage of the Wiener-Khinchin theorem, which links correlation func-
tions in the time domain to power spectra in the frequency domain:

F[hf ⇤(t)g(t+ ⌧)it](!) = (F[f(⌧)])⇤(!)⇥ F[g(⌧)](!), (3.91)

with f(t), g(t) complex valued functions, F[f(⌧)] the Fourier transform of f with respect to
⌧ , and where the average h...it is taken over t. This means that to measure hS†

1(t)S
†
2(t+⌧)i,

we simply needs to compute the Fourier transform of S†
1(t) and S†

2(t), multiply them
together and average the result.

Going to Fourier space also allows us to extract easily both quadratures of the signal.
The microwave voltage detected by the acquisition card reads: V (t) = Re[S(t)e�i!0t] =

3only 41 dB on channel (2).
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X(t) cos(!0t) + P (t) sin(!0t). Here !0 = ! � 2⇡fH is the center frequency of the signals
after heterodyning. If the measurement band is wider than the frequency support of X(t)
and P (t) (which is of the order of ), then the analytical signal S(t) = X(t) + iP (t) can
be accurately reconstructed from V (t).

To do so, we compute the numerical Hilbert transform of V (t):

H[V ](t) =

Z +1

�1

V (t0)

t� t0
dt0

⇡
= X(t) sin!0t� P (t) cos!0t, (3.92)

which holds iff: F[X](! > fS
4
) = F[P ](! > fS

4
) = 0. Then:

V (t) + iH[V ](t) = S(t)e�i!0t. (3.93)

Now the convolution product in (3.92) can be written as a product in Fourier space,
where (3.93) reads:

F[S](! + !0) = F[V ](!) + iF[V ](!)⇥ F



1

t

�

(!) (3.94)

) F [S](!) = F[V ](! � !0)⇥Θ(! � !0), (3.95)

with Θ(!) the Heaviside function. The procedure to get S(t)e�i!0t is then to acquire
some length of signal, compute its Fourier transform, set to zero all the components with
negative frequencies, and invert the Fourier transform (Fig.3.27).

T
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Figure 3.27: Principle of the numerical demodulation scheme. Starting from a time record of down-
converted voltages V (t) (in red), we compute its Fourier transform F[V ](ω) (absolute value plotted in
green). We then set to zero all components of the Fourier transform with negative frequencies, and shift
it by ω0. This yields the Fourier transform of the complex envelope with respect to ω0 (in purple). Going
back to the time domain, we obtain S(t), whose real and imaginary parts (blue and orange, shifted for
readibility) are the X(t) and P (t) quadratures.

This procedure yields the correct result only if the spectrum of S(t) lies exactly in the
heterodyning window. In practice we enforce this condition by multiplying F[V ](!) by a
filter function narrower than Θ(!). We use a 12th order Butterworth filter with 50 MHz
and 575 MHz cutoff frequencies, which provides maximum flatness in its passband.
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Let us illustrate our procedure on a specific example: we start by recording time traces of
the two voltages V1(t) and V2(t), compute their discrete Fourier transforms and suppress
all negative frequencies (Fig.3.27). We average the product (F [V1])

⇤(!) ⇥ F[V2](!) and
interpret it as the Fourier transform of hS†

1(0)S2(⌧)i, yielding the first order coherence
function. In parallel to this, we shift F[Vx](!)⇥Θ(!) by�!0, then bring it back to the time
domain to yield Sx(t). Then we compute the product S†

1(t)S2(t) to obtain the cross-signal
power, bring it to Fourier domain, and square it to yield F[hS†

1(0)S
†
1(⌧)S2(⌧)S2(0)i](!).

We average that last quantity and obtain the second order coherence function after correct
subtraction of unwanted terms.

This method allows us to get any correlation function such as g(1)(⌧) and g(2)(⌧), as well
as the power spectral densities |F[S1](!)|

2 and |F[S2](!)|
2, both in the ON and the OFF

states.

Note finally that the numerical Fourier transform assumes the periodicity of the signal
over the acquisition time T . Thus our procedure yields the correct correlation functions
only if T is longer than the coherence time of the signals. Otherwise unwanted correlations
between S(t) and S(t + T ) would ruin the procedure. In practice, the prediction of [34]
indicates a correlation timescale of �1 ⇠ 1 ns for the antibunched photons. We use a
comfortable T = 1024 f�1

S , i.e 1024 points per chunk of data. This is more than enough
to compute power fluctuations, and allows us to resolve the spectral properties of the
radiation, which vary on a 1 MHz scale.

100



3.5 Results in the strong-coupling regime

3.5.1 Power spectral density measurements

In the spirit of our measurement scheme, the PSD of the signals emitted by the sample is
computed as the Fourier transform of the first order correlation function: hâ†(0)â(⌧)i =
n̄ ⇥ g(1)(⌧). There are three ways of obtaining it from the two complex envelopes

Ŝ1(t) =
p
G1

⇣

â(t) + ĥ†
1(t)
⌘

and Ŝ2(t) =
p
G2

⇣

â(t) + ĥ†
2(t)
⌘

. One can use either the

auto-correlation of the signals from one channel:

hâ†(0)â(⌧)i = hŜ†
1(0)Ŝ1(⌧)iON/OFF

|G1|
=

hŜ†
2(0)Ŝ2(⌧)iON/OFF

|G2|
, (3.96)

or the cross-correlation of two signals:

hâ†(0)â(⌧)i = hŜ†
1(0)Ŝ2(⌧)iON/OFF

p

G⇤
1G2

. (3.97)

Recall here that the effective gains
p
G1,

p
G2 describe the action of the entire acquisition

chain, with cascaded amplifiers, attenuators, parasitic impedance mismatches, and the
numerical compensation of delays between the two channels. They are unknown complex
functions of ! - as a time delay ⌧ amounts to multiplication by e�i!⌧ in the frequency-
domain. They also slowly drift over time as the temperature of the room-temperature
amplifiers is not maintained constant.

The Fourier transform of the auto-correlators yields the power spectra:

Sp1(!) = F[hŜ†
1(0)Ŝ1(⌧)i](!) = |G1(!)|

�

hâ†(!)â(!)i+ nB(TN1)
�

(3.98)

Sp2(!) = F[hŜ†
2(0)Ŝ2(⌧)i](!) = |G2(!)|

�

hâ†(!)â(!)i+ nB(TN2)
�

, (3.99)

with the effective noise temperatures TN1 , TN2 such that hĥx(!)ĥ
†
x(!)i = nB(TNx). The

cross-correlator yields the cross-spectrum:

Cr(!) = F[hŜ†
1(0)Ŝ2(⌧)i](!) =

p

G⇤
1G2(!)

�

hâ†(!)â(!)i+ ↵(!)nB(TNc)
�

, (3.100)

with TNc =
p

TN1TN2 . Here the complex coefficient ↵(!) from (3.86) models the parasitic
coupling between the two lines, with |↵| ⌧ 1.

To remove the unknown gains G1(!), G2(!), we normalize all spectrum data by the
OFF value of the power spectra, which read |G1(!)|nB(TN1) and |G2(!)|nB(TN2). More
precisely, we use:

Sp1(!)ON/OFF

Sp1(!)OFF

,
Sp2(!)ON/OFF

Sp2(!)OFF

, and
|Cr(!)ON/OFF |

p

Sp1(!)OFFSp2(!)OFF

(3.101)

to obtain the PSD in units of nB(TNx), which can be calibrated using the junction biased
well above the gap as a calibrated noise source (see appendix B). To be insensitive to the
slow drift of the gains, we alternate between ON and OFF measurements with a period
of typically 5 minutes. Integrating the emission spectrum over frequencies finally give the
photon emission rate and, if  is known, the average occupation of the resonator.
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With these tools at hand, we measure spectra in various conditions of bias voltage and
Josephson energy. This allows us to calibrate all the properties of the sample and the
cryogenic setup in situ, so that we can fully characterize our single-photon source, and
compare measurements of correlation functions to the theoretical predictions with no
adjustable parameters.

Noise spectra in the OFF state: gain calibration
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Figure 3.28: Spectra in the OFF state of the experiment, in arbitrary units.

Figure 3.28 shows the power spectra measured in the OFF state of the experiment,
reached by setting Vb = 0. Here the heterodyne frequency was set to 4930 MHz, the ac-
quisition rate increased up to 2 GSamples/s and the last lowpass filter removed (Fig.3.26).
This in order to detect the signals in a wider frequency range and check that no important
features were missed in the narrower filtering scheme used later for correlation measure-
ments.

PSDs are expressed in arbitrary units, proportional to the mV2/Hz detected by the
acquisition card. In the OFF state Spx(!) is equal to the gain of the x chain, Gx(!),
times the spectral density of the noise radiated by the HEMT amplifier, nB(TNx). As the
two amplification chains are nominally identical, they have similar noise temperatures
and overall gain. The shape of Spx(!) is sculpted by the 4.1-4.7 GHz bandpass filter.
Additional ripples come from imperfect impedance matching in the chains, resulting in
parasitic microwave reflections. The sharp peak at 4930 MHz actually comes from a
dc-offset on the acquisition card, and is of no consequence.

The cross-spectrum Cr(!) is found to be much smaller than the direct power spectra. A
log-scale representation (Fig.3.29) shows that it is non-zero, but still 2000 times smaller
than Sp1 and Sp2. This means that the isolation between the two channels is finite, and
of the order of -33dB. Cr(!) also shows the shape of the 4.1-4.7 GHz filter, proving that
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Sp1 Sp2

Figure 3.29: Spectra displayed in logarithmic scale. The Cross-spectrum is non-zero, but still 3 orders
of magnitude lower than the amplifiers’ noise.

the parasitic coupling occurs somewhere in the analog amplification chain, and not at the
level of the acquisition card.

Calibration of noise temperatures in the shot-noise regime

We now remove the R1 =100 MΩ resistor from the room-temperature circuit (Fig.3.25)
and apply 32 V to the voltage-bias line. The voltage drop on the sample is then of
the order of ' 1.5 mV, which is about 8 times the gap voltage ∆/e ⇠ 200 µV. The
junction is then in the shot-noise regime, where it behaves from the microwave point of
view as a hot resistor RN with an effective temperature (eV � ~!)/2kB. It can then be
used as a calibrated current source to determine the gain of the microwave chain (see
appendixB).

The shot-noise radiated by the junction is filtered by the on-chip resonator. The PSD of
the sample’s emission noise, SS

p (!), is then a peak centered at the resonator frequency,
with a comparable quality factor. This radiated power piles up on top of the amplifiers
noise before amplification and detection by the acquisition card.

We present the measured spectra in Figure 3.30. Sp1(!) and Sp2(!) show the sample’s
emission power, distorted by the ripples of the gains G1(!), G2(!) and with the sizeable
background noise from SpOFF

1 , SpOFF
2 (see figure 3.28). By contrast the background

value is negligible in the Cr(!) curve, albeit ripples in G1(!), G2(!) still distort the
signals.

We remove the noise background, the ripples, as well as the slow drift of the gains, by
computing normalized spectra as in (3.101). The PSDs are then expressed in units of the
amplifiers’ background noise nB(TNx), see figure 3.31.
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Figure 3.30: Spectra taken with the junction biased far above the gap voltage.

When dividing by the OFF PSDs, the part of the spectra which lie out of the bandpass
filter gives unreliable results, as we are basically dividing by zero. Thus we do not consider
as real the artefacts that appear below 4.1 GHz and above 4.7 GHz. The emission
spectrum then looks approximately like a Lorentzian peak. The peak is narrower in Sp2

than in Sp1. We attribute this difference to microwave reflections that occur between the
sample and the cryogenic amplifiers, yielding ripples in the transmission of the chain. In
other words, the hybrid coupler is not exactly balanced and transmits a bit more power
to channel 1 than to channel 2 at some frequencies. The peaks on the two channels still
reach the same value of about 0.65 ⇥ nB(TNx), indicating that the two amplifiers have
approximately equal noise temperatures.

As expected the Cross-spectrum looks like the average of Sp1 and Sp2. To compute the
total power emitted by the sample, we use both the Cross and the average (Sp1+Sp2)/2,
which yield the same results within the accuracy of our measurements.

Fitting the central part of the emission peak with a Lorentzian function yields a resonance
frequency of !r/2⇡ = 4406 MHZ and a FWHM of ∆Fsn = 158.3 MHz. As detailed in
Appendix B this does not correspond to the width of the resonator itself, but rather to
approximately 1 + Z0/RN times this width, with Z0 = Re[Z(!r)] and RN the normal
state resistance of the SQUID. The resonance frequency !r is smaller than what was
designed during the sample’s fabrication, which we attribute to an underestimated stray
capacitance to ground.

The tunnel resistance was measured in a separate experiment, where we dipped the sample
in a liquid He dewar. At 4.2 K, the niobium part of the sample is superconducting, so
that we measure the dc-resistance of the Al bridge in series with the tunnel junction.
Given the experimental uncertainties and the unknown value of the bridge’s resistance,
we find:

RN = 222± 3 kΩ. (3.102)
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Figure 3.31: Normalized spectra far above the gap voltage. These can be seen either as true power
spectral densities in units of the HEMTs noise power, or as photon emission rate spectra in units of the
occupation number of the amplifiers noise mode: hâ†(ω)â(ω)i/nB(TNx

).

We also have access to the frequency dependence of Re[Z(!)] as seen by the junction,
through the measurement presented in 3.5.1. We find a FWHM of the resonator of
∆F = 120.3 MHz. The peak impedance of the resonator is then:

Z0 = Re[Z(!r)] = RN ⇥ ∆Fsn �∆F

∆F
= 70± 1 kΩ. (3.103)

The microwave coupling factor between the junction in the shot-noise regime and the
resonator is then:

C0 = 1�
�

�

�

�

RN � Z0

RN + Z0

�

�

�

�

2

= 0.729± 0.005, (3.104)

which enter in the expression of the PSD radiated into the measurement line far above
the gap voltage:

SP (!) =
eV � ~!

2
⇥ C0

1 + 4
⇣

!�!r

2⇡∆Fsn

⌘2 . (3.105)

For the sake of consistency, we also tried to use the same scheme without assuming that
Re[Z(!)] is exactly a Lorentzian function. To do so, we computed Im[Z(!)] by taking
the numerical Hilbert transform of its real part, assuming a (! � !r)

�1 decay outside of
the measurement window. Then we fitted the spectra to (B.2), in order to extract the
value of the coupling factor. We found C0 = 0.740 ± 0.005, which is consistent with the
previous approximate result.

Next, we scan the applied voltage Vb from 7 to 32 V and plot the integral of the normalized
Cross spectrum as a function of the applied bias Vb (Fig.3.32). This yields the total photon
emission rate Γ = hâ†âi in units of nB(TNC

), with TNC
=
p

TN1TN2 the effective noise
temperature. Far above the gap voltage V = 2∆/e ' 360 µV, which we expect to
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Figure 3.32: Photon emission rate in the shot-noise regime as a function of the applied voltage.

correspond to Vb ⇠ 8 V at the top of the bias line, the emission noise increase linearly
with V / Vb. Below the gap voltage, quasiparticles cannot tunnel and their current noise
is zero. Around V = 2∆/e, the current is a non-linear function of the bias voltage, which
in the case of a junction in a low impedance environment can be computed from the
shape of the BCS density of quasiparticles [31].

We tried to fit (3.105) to the measured total power (or, with similar results, to the PSD
at the top of the resonator SP (!r)). This requires knowing quite well the voltage division
ratio that links Vb to V . The fit was not so good, as the slope of Γ(V ) is actually increasing
with applied voltage (this can be seen as a kink in the curve of figure 3.32 around Vb = 20
V). The absolute calibration of the gain and of the amplifiers’ noise temperature that
we could extract were also about 40% off compared to what we found using a different
calibration method, described in paragraph 3.5.1.

Later on, we understood that the R2 = 6.5 MΩ resistor that defines the voltage division
bridge was actually heating up when a too large voltage was applied onto it, changing
the value of the division ratio Vb/V during the voltage scan. Even worse, the amount of
heating depends on the duration of the measurement, as the temperature of the resistor
keeps increasing while a large Vb is applied. To mitigate this effect, we resorted to use the
data taken right above the gap voltage (around Vb= 7 V) where heating is supposedly
less important.

The emission rate shows regularly spaced steps with unequal heights (Fig.3.33). An
extension of the P (E) theory to the emission noise of normal conductors [84] links dSP/dV
to P (E). We compute numerically the voltage derivative of the photon emission rate
(blue curve), and interpret its peaks as the mark of inelastic tunneling of quasiparticles.
More precisely, the k-th peak corresponds to the inelastic emission of (k� 1) photon per
quasiparticle. Note that the k = 0 peak does not appear in ICPT as elastic tunneling of
Cooper pairs is forbidden as soon as V 6= 0.
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Figure 3.33: Photon emission rate and its voltage derivative.

Coulomb blockade effects are harder to trigger in normal conductors, as the natural scale
of impedance is RK = h/e2 = 4 ⇥ RQ. The presence of inelastic k 6= 0 peaks is a
strong indication that the photon emission occurs in a high impedance mode, namely
the 4.4 GHz resonator. We thus assume that the peaks are separated by a bias voltage
∆V = ~!r/e = 18.22 µV, yielding an absolute calibration of the division ratio:

Vb

V
=

Rheated
2 +R3

R3

= 16 560± 50, (3.106)

which corresponds to a decreased resistanceRheated
2 = 4.8 MΩ, close to its room-temperature

value. We can now extract the value of the superconducting gap of the Al junction, which
corresponds to the position of the elastic peak (see figure 3.33) minus ~!r/e:

∆ = 213± 1 µeV, (3.107)

This value, which is higher than the bulk gap of 180 µeV, is typical of thin film Al
junctions. From the measurements of ∆ and of RN we can use Ambegaokar-Baratoff
formula [56] to estimate the Josephson energy of the junction in the absence of P (E)
renormalization:

EAB
J =

∆RQ

2RN

= 3.10± 0.06 µeV. (3.108)

We did not try to fit exactly the shape of the dSP/dV curve, as the population of the
resonator on the second peak is already of the order of n̄ ⇠ 2 photons. Then the full
P (E) is not applicable, as stimulated emission process increase the emission rate. Still
we can be confident that the spacing of the peaks is ~!r/e.

Next, we used an extension of Rogovin-Scalapino formula [53] to compute the dynamical
response of the junction. Due to the strong non-linearity in the transport around the

107



gap voltage, the real part of the admittance of the junction is actually larger near the
gap. This changes the value of the microwave coupling factor of the junction to the
resonator, as RN in (3.104) needs to be replaced by the full admittance of the junction
ZSIS(!, V ). We chose to fit (3.32) to the data in a voltage range around Vb = 10 V, where
inelastic processes are negligible. The full modelling yields a correction of about 10% to
the emission rate.

In the end, we could perform a quantitative fit and express the emission rates in absolute
units. As we normalize all spectra by their OFF value to remove the fluctuating overall
gain of the acquisition chain, this amounts to calibrating precisely the noise temperature
of the HEMT amplifiers. We thus found:

TN1 = 13.5± 0.7 K (3.109)

TN2 = 14.1± 0.7 K (3.110)

!TNC
= 13.8± 0.7 K (3.111)

)nB(TNC
) = 65.4± 3.3 photons. (3.112)

The ⇠ 5% uncertainty comes from inaccuracies in the modelling of the junction’s admit-
tance. With the value of nB(TN) at hand, we can know express all photon emission rate
in true units of photons/s, and the emission rate spectral densities in photons/s/Hz.

This noise temperature is much larger than the nominal temperature specified by the
manufacturers of the amplifiers, T nom

N ' 2.5 K. This comes from all the attenuation
between the sample and the input of the HEMTs. As an example, the beam splitter
already divides the sample’s power over two lines. The TN we determined is actually the
effective noise temperature as seen from the sample. We can then estimate the amount
of losses in the acquisition chain:

Losses ' TN

T nom
N

= 7.4 dB. (3.113)

Given that the hybrid coupler already yields 3 dB of attenuation, the remaining 4.4
dB can be attributed to dissipation in the microwave components inserted between the
sample and the HEMTs - in particular the circulators and the dissipative filters, which
yield about 1 dB of attenuation each.

We also use shot-noise measurement to estimate the remaining thermal occupation of
the resonator. Similarly to inelastic emission processes above the gap voltage, inelastic
absorption processes can occur, where quasiparticles tunnel while absorbing one pho-
ton from the resonator. For a voltage bias such that 2∆  eV < 2∆ + ~!r, only these
absorption processes allow the tunneling of quasiparticles with enough excess energy to
emit shot-noise at ~!r.

We measured finely the emission rate around 2∆/e and did not detect any such processes.
Given our experimental accuracy, this means that the population of the mode is below
1%, or accordingly that the temperature of the resonator is below ' 50 mK.

Emission map in the ICPT regime

We insert the R1 =100 MΩ resistor in the bias line to increase the voltage division ratio
Vb/V , and hence our precision on the bias voltage V . We now scan V across the single
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photon emission peak of ICPT, around 2eV = ~!. We detect the spectra in a frequency
window covering the bandpass filter, from 4086 MHz to 4708 MHz (see figure 3.34).
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Figure 3.34: Map of the normalized Cross-spectrum as a function of voltage bias.

The spectra are taken at a value of EJ(Φ) small enough that the population of the mode
stays ⌧ 1, so that expression (2.73) from P (E) theory is valid.

The map from figure 3.34 shows a narrow emission peak which follows the 2eV = ~!

line. Fitting the slope of this line, we can recover the value of the voltage division ratio:

Vb

V
=

2e

~

dVb

d!
= 309 700± 50 =

R1 +R2 +R3

R3

. (3.114)

Using a different map taken without the R1 resistor, we can also fit the ratio R2+R3

R3
in a

situation where the voltage on R2 is small enough to avoid spurious heating. Then we can
accurately determine the low temperature value of both R2= 6.45 MΩ and R3 = 345 Ω,
as they are given in figure 3.25.

Emission at a given frequency as a function of voltage bias

We take a cut through the map at a fixed frequency !r/2⇡ = 4406 MHz (Fig.3.35). This
yields SP (!r, V ), which is directly proportional to P (2eV � ~!r). Here P (E � ~!r) is a
narrow peak with a gaussian shape. It is not exactly centered on ~!r, which we attribute
to a remaining ' �20 nV offset of thermal origin, occurring somewhere in the bias line or
between the ground plane of the sample and the ground of the fridge. This was confirmed
by setting the bias voltage to negative values, as the offset stayed negative. Note that all
spectra shown here are shifted by this offset.

Fitting the gaussian peak yields a FWHM of 6.24 nV, which is larger than the ⇠ 0.5
nV we expected in (3.90). Recall that the cavity filter in 3.25 has an input impedance
of about 1 Ω from dc to 4 GHz. Thus it shunts most of the voltage noise seen by the
junction, and contributes to the width of P (E) following (2.74). However this is only true
far above the !BT = 2⇡⇥71 kHz cut-off frequency of the bias-tee. At lower frequencies the
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Figure 3.35: Cut through the 2D map at fixed frequency, along the voltage axis.

junction sees the impedance of the bias-line as well as the parasitic mode of the bias-tee
itself (Fig.3.36).
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Figure 3.36: Model for the low-frequency impedance seen of the environment. R3 gives the dc resistance
of the bias line. It gets shunted above 70 Hz by the 6.6 µF capacitance put in parallel. At 71 kHz lies
the self resonance of the bias-tee, with a 53 Ω impedance and a quality factor of the order of 30. At
higher frequencies the cavity filter shunts the impedance to about 1 Ω.

The impact of this environment on the junction cannot be modelled as in [58], which
assumes a constant impedance up to kBT/~. Given that these low-frequency modes are
deeply in the classical regime, the semi-classical description from [85] applies.
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Spectra are measured by digitizing signals at a rate fS =1.25 GSamples/s and computing
their Fourier transform on 1024 points. The effective acquisition time is thus Tmeas =
1024/fS= 819.2 ns. The dynamics of modes below 1/Tmeas ⇠ 1 MHz is frozen during
the acquisition of one chunk of data, so that they do not contribute to the spreading of
the emission line. However they add a random dc-offset on the junction between two
measurements.

When averaging many measurements to obtain the spectra of figure 3.34, we are summing
incoherently the impact of these voltage offsets. The situation is equivalent to having a
perfectly defined voltage bias V , whose value would be changed at random between each
measurement. Compare this with the effect of high-frequency noise, that was described
in 2.3.2 as a random change of V during the acquisition.

We now use the fact that the full P (E) function can be written as the convolution product
of a ”low-frequency” P 0(E) and a ”high-frequency” P 00(E) [85]. We assume that the high
frequency contribution is given by our initial estimate of ⇠ 0.5 nV, using (3.90). Then
the spreading of P (E) around E = 0 comes almost exclusively from the low-frequency
noise. In particular the gaussian shape of P (E) results from the gaussian distribution of
(low-frequency) voltage on the junction. The FWHM of the peak in figure 3.35 can be
converted in a standard deviation:

1

2e
⇥ FWHMP (E)

2
p

2 ln(2)
= �V = 2.65 nv. (3.115)

We subtract from �V the high-frequency contribution:

�
low freq
V =

q

(�V )2 � (�high freq
V )2 ' 2.6 nv. (3.116)

We attribute this noise mainly to the thermal occupation of the modes below 1/Tmeas, so
that:

�
low freq
V =

s

Z 1/Tmeas

0

SV V (!)d!. (3.117)

The dominant contribution to the low-frequency Johnson-Nyquist noise comes from the
bias-tee self resonance:

Z 1/Tmeas

0

SV V (!)d! =

Z 1/Tmeas

0

4kBTRe[Z(!)]d! ' kBT

CBT

. (3.118)

We can fit this expression and obtain the temperature of the mode:

T = 20± 1 mK. (3.119)

The uncertainty comes mostly from the value of CBT . This temperature value agrees
quite well with the bulk temperature of the fridge of 15 mK. It is lower than the elec-
tronic temperature Te = 55 mK that was determined in the 2011 experiment, which we
attribute to a better thermalization of the electrons in the coiled resistor R3 and a bet-
ter low-frequency filtering. In particular, using multiple filtering stages on the bias line,
with high-order filters, is crucial to cut off all the voltage noise from room-temperature
electronics.
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Stokes/AntiStokes processes with a parasitic mode

Very faint emission lines parallel to the main 2eV = ~! are barely visible on figure 3.34.
They can be discerned by re-plotting the emission map with a logarithmic colorscale
(Fig.3.37):

Figure 3.37: 2d-map of the logarithm of the emission spectra.

These emission lines seem to follow Re[Z(!)], as does the main single-photon peak. The
line occurring at higher biases is also brighter than the other one, with emission rates
about twice higher.

We interpret these as the mark of 2-photon emission processes, where for bias voltage
V = ~(!±!p)/2e, one photon is emitted at ! and one photon is emitted/absorbed from a
parasitic mode at frequency !p, in processes that we refer to as Stokes/Anti-Stokes.

From the shift of the lines we deduce !p = 2⇡ ⇥ 325 MHz. We found out that this mode
originates from a �/4 resonance between the 50 Ω line going from the junction to the rf
setup. At frequencies below 4 GHz the cavity filter presents an input impedance of about
1 Ω, so that this impedance mismatch generates the parasitic resonance. This hypothesis
was tested by changing the length of wires going from the sample to the bias-tee, and
checking that the frequency of the parasitic mode changed accordingly.

At such low frequency, this mode is populated by about 1 photon at cryogenic temper-
atures. This is why it can give energy to the tunneling Cooper pairs in the Anti-Stokes
processes. A perfectly cold mode would allow only for emission processes.

We can measure this occupation number np by comparing the strength of the emission
and absorption peaks. From P (E) theory, we expect the Anti-Stokes process to scale like
rP , while the Stokes process scales like rp(np+1) due to stimulated emission, with rp the
coupling factor of the mode to the junction.

As these emission lines are so weak, we integrate the spectra over a bandwidth of about
18 MHz. As we explored a limited voltage range during the experiment, we do not have
access to both peak measured in the same frequency band. We thus agglomerate the data
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taken at two different frequencies, and plot them on the same graph after renormalization
by the area of the single-photon peak (Fig.3.38).
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Figure 3.38: Rescaled Stokes and Anti-Stokes emission peaks.

The ratio of the area under these two peaks is 2.3 ± 0.2, which yields an occupation
number of the mode:

np =
1

2.3� 1
= 0.8± 0.1, (3.120)

corresponding to an equilibrium temperature of:

Tp = 19± 2 mK. (3.121)

This temperature agrees quite well with the temperature of low-frequency modes ( 100
kHz) that we estimated above. Together with the upper bond for the 4.4 GHz resonator
temperature we measured in 3.5.1, this is a strong indication that every part of the
experimental setup is well thermalized, close to the fridge base temperature.

Finally we estimate the impedance of the parasitic mode by comparing the area under the
Anti-Stokes peak to the main single-photon peak, which yields rp. We find Zc ' 85±8 Ω,
in reasonable agreement with the (4/⇡) ⇥ 50 Ω ' 65 Ω we would expect for a �/4
resonance.

Emission spectra as a function of bias voltage

We consider a cut in the 2d map at fixed bias Vb such that the emission peak falls at the
resonator center frequency (Fig.3.39).

Here SP (!) is given by the product of Re[Z(!)] and P (2eV � ~!). P (E) has a narrow
width ' 2e⇥ 6 nV' h⇥ 3 MHz, while the FWHM of the mode is expected to be ⇠ 100
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Figure 3.39: Cut through the 2D map at fixed bias voltage, along the frequency axis.

MHz. Thus Re[Z(!)] is flat on the scale of variation of P (2eV � ~!), and the spectrum
also appears as a narrow gaussian peak.

The width of the gaussian curve can be translated into a standard deviation of the
Josephson frequency �f = 1.28 MHz, which is equal to 2e/h times the voltage standard
deviation �V determined earlier. We can interpret emission spectra as histograms of the
Josephson frequency fJ , and hence of the voltage V = hfJ/2e drop on the junction.
We put this fact to use when investigating the origin of low-frequency voltage noise, see
Appendix E.

We repeat the fit procedure while scanning the bias across the resonator. The fit pa-
rameters are the amplitude of the gaussian peak, its width 2

p

2 ln(2)�f and its position
fJ , which corresponds to the Josephson frequency 2eV/h. The results are presented in
figure 3.40:

In panel a) are the values of the Josephson frequency fitted on each cut of the 2d-map,
as a function of the bias on the sample: fJ(V ). A linear regression fJ = A ⇥ V + B
yields the value of the dc-offset on the junction bias voltage B=-20 nV, as well a the
precise value of the voltage division ratio hfJ/2eVb =. Close to the center frequency of
the resonator, the value of fJ departs slightly from the 2eV = ~! line, with a maximum
deviation of about 2.5 MHz at the maximum of emission.

This slight deviation is easily understood: as soon as the junction emits photons at a rate
Γ, it also allows for a dc-current Idc = 2eΓ. This current is injected in the bias resistor
R3, where it creates an additional voltage drop: �V = �2eΓR3. This leads to a shift of
the Josephson frequency which depends on known parameters:

�fJ =
2e�V

h
=

�R3

RQ

⇥ Γ ' � Γ

18.7
. (3.122)

This frequency shift provides an independent determination of the emission rate, as de-
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Figure 3.40: Results of the gaussian fits of spectra from figure 3.34. As a function of the bias voltage
V , panel a), b) and c) show the fitted Josephson frequencies, peak amplitudes and standard deviations.
Panel d) combines results of the fits to display the emission rate (proportional to Re[Z(2eV/h)] as a
function of the Josephson frequency.

tailed in 3.5.1.

Panel b) shows the fitted amplitudes of the gaussian peak as a function of V . As Vb is
scanned across the resonator, the amplitude of the emitted power follows approximately
the shape of the resonator’s impedance Re[Z(!)]. The correspondence between the two
is not exact, first because as we saw fJ strays away from A⇥ V + B as soon as there is
some photon emission, and second because the width of the emission peak changes during
the scan.

Panel c) shows the variation of the standard deviation of the Josephson frequency, �f (V ).
It varies non-monotonously: starting from a value around 1.3 MHz, it decreases steadily
to about 1.25 MHz at the resonance frequency, increases to 1.4 MHz as !J crosses the
resonator frequency !r, before decreasing again to about 1.3 MHz.

We attributed most of the peak’s width to low-frequency noise of thermal origin. A
monotonous change of �f with time could be interpreted as a drift of the setup tempera-
ture, e.g. when starting the experiment it typically takes about 1 week for all the circuit
components to cool down to 15 mK. We also saw increases of �f in situations where
the mixing chamber was heating up. However this particular emission map was taken
1 month after the beginning of the run, when all the experiment was already well ther-
malized. This behavior of �f (V ) was reproduced in other experimental runs, in different
samples with resonators at various frequencies.

We understand this phenomenon as active cooling/heating of the low-frequency
modes by the Josephson junction’s own admittance. On general grounds, the small-
signal admittance of a tunnel junction can be linked to its dc Ī(V ) characteristic [84]:
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Re[YJ(!, V )] = e
Ī(V + ~!

2e
)� Ī(V � ~!

2e
)

~!
. (3.123)

The junction is biased around V = ~!r/2e with !r much higher than the frequency of
the thermal noise, so that we may use the usual form:

Re[YJ(! ! 0, V )] ' dĪ

dV
(V ). (3.124)

As we scan the bias voltage across the resonator, the dc current is proportional to
Re[Z(!)]. Its voltage derivative is thus positive below !r and negative above !r. The
real part of the admittance of the junction follows the same trend (Fig.3.41).

J

V

V

Idc

Re[Y(ω,V)]

SIIR

C

L

Y(ω,V)
a)

b)

c)

Teq =
T Y +TJYJ

Y +YJ

J

Figure 3.41: a) I(V) of the junction connected to a high frequency mode, showing a single-photon ICPT
peak. b) The real part of the low-frequency admittance of the junction is proportional to the voltage
derivative of the tunnel current. c) Model for the low frequency part of the circuit. The junction
is connected in parallel with a RLC mode at finite temperature (in green), which presents the low-
frequency current noise SII . The finite admittance of the junction (in blue) shunts part of this thermal
noise, effectively reducing the RLC temperature for V < ~ωr/2e and heating it for V > ~ωr/2e.

This admittance is in parallel with the tunnel element and the environment of the junction
Re[Z(!)]. We estimate its effective temperature TJ through the low-frequency shot-noise
of Cooper pairs, which reads:

SII(! ! 0) = 4eĪ = 4kBTJRe[YJ(! ! 0)] (3.125)

From (3.124), we estimate the value of Re[YJ(! ! 0)], so that:

kBTJ ' eĪ

✓

dĪ

dV

◆�1

(3.126)

On the single-photon resonance, Ī(V ) / P (2eV ) / Re[Z(2eV/~)], we finally have:

kBTJ ' P (E)

2

✓

dP

dE

◆�1

' ~

2
Re[Z(!J)]

✓

dRe[Z]

d!

◆�1

. (3.127)

From an analytical expression of Re[Z(!)], we estimate the maximum effective temper-
ature of the junction to be Tmax

J ' ~/4kB ' 1.5 mK. Thus it stays always much below
the fridge temperature. This admittance acts as a cold current divider, and decrease the
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thermal current noise from the environment when it is positive (below !r) (Fig.3.41). This
is equivalent to reducing the temperature of the bias-tee, hence the decrease of �f .

When fJ(V ) matches the mode resonance frequency the admittance is zero, so that
the junction is not shielded anymore from the environment and we have access to the
intrinsic voltage noise of the experiment. Finally above !r the admittance of the junction
is negative, such that it acts as an amplifier for low-frequency modes and increases the
temperature of the low-frequency modes (Fig.3.41).

This mechanism was studied more in detail in a later series of experiments 4.42 which
showed that the cooling power of the junction scales with its Josephson energy, and that
it is maximal when the voltage derivative of the dc-current is the largest, in accordance
with our model.

At a given voltage bias V , the total photon emission rate can be computed from the
amplitude of the gaussian fit and its width 2

p

2 ln(2)�f . It is plotted in panel d) in true
units of photons per second, as a function of the Josephson frequency fJ . As �f (V ) is
always much smaller than the scale of variation of Re[Z(!)], this emission rate is directly
proportional to Re[Z(2eV )/~)]:

Γ(V ) =

Z

SP (!, V )

~!
d! (3.128)

/
Z

Re[Z(!)]P (2eV � ~!)d! (3.129)

/ Re[Z(2eV/~)]⇥
Z

P (E)dE, (3.130)

where the last integral is taken only over the zero-energy peak of P (E). Thus this
subplot is a proper image of the Re[Z(!)] of the environment of the junction, in some
undetermined units. It looks approximately Lorentzian, with odd shoulders under 4.15
GHz and above 4.6 GHz that we attribute to unreliable fits out of the 8.7-9.5 µV bias
range.

Re[Z(!)] itself can be fitted, yielding a quite good agreement to a Lorentzian shape with
a center frequency of 4406 MHz and a FWHM of 120.3 MHz. The photon leak rate is
thus  ' 756 µs�1. The resonator lifetime �1 ' 1.3 ns is larger than the 1 ns estimated
in [35]. We attribute this discrepancy to a parasitic resonance of the microwave setup
that was present at that time, and that widened the resonator shape.

As detailed in 3.5.1, we can compare this curve to the PSDs measured in shot-noise regime
to yield an absolute calibration of Re[Z(!)] in Ohms, as displayed in figure 3.42.

This data shows that the sample indeed includes a mode with a very high characteris-
tic impedance. We estimate its value by computing an extrapolation of Re[Z(!)] out
of the measurement band, assuming a Lorentzian decay / (! � !r)

�1, and using the
formula:

Zc =
2

⇡

Z 1

0

Re[Z(!)]

!r

d! ' 1970± 60 Ω (3.131)

) r ' 0.96± 0.03. (3.132)

The mode is thus in the strong-coupling regime with the junction. Here the uncertainty
comes mostly from the extrapolation of Re[Z(!)] out of the measurement band. Note
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Figure 3.42: Real part of the impedance seen by the junction (blue points), plotted with Lorentzian best
fit (orange curve).

that due to Kramers-Kronig relation, this is equivalent to using Im[Z(!r)]. Such a
high-impedance value should lead to strong antibunching of the emitted radiation, with
g(2)(0) = (1� r/2)2 ' 0.27.

Scanning EJ with the applied magnetic flux Φ

The emission map from figure 3.34 was taken at a very low Josephson energy EJ(Φ), to
ensure that the sample stayed in the regime of validity of P (E). At the highest emission
rate Γ = 51 Mphotons/s the mode occupation number is n̄ = 0.067, so that rn̄ ⌧ 1
and the effect of strong-driving could be neglected. We now measure spectra at a fixed
voltage bias V = (h/2e)⇥4410 MHz while sweeping the applied magnetic field Φ.

Figure 3.43 shows spectra taken while scanning one period of the EJ(Φ) = E0
J | cos(eΦ/~)|

curve. When Φ equals half a flux quantum (h/2e), the SQUID is at full frustration:
EJ ' 0 and the emission line is practically invisible. It then lies at fJ = 4410 MHz.

When increasing EJ , the amplitude of the emission peak increases, following the P (E)
prediction of Γ / E2

J . At the same time the position of the peak shifts towards lower
frequencies, due to the finite dc-current injected by the junction into the bias resistor
R3. This frequency shifts is directly proportional to the current, and hence to the photon
emission rate: �fJ = �(R3/RQ)⇥ Γ ' �Γ/18.7.

Near zero flux, the color plot shows that the amplitude of the peak stops increasing, and
even decreases slightly while the total emission rate keeps increasing, as shown by the
shift of the emission frequency.

Cuts through the map at different flux biases show that the shape of the peak indeed
changes as EJ is varied (Fig.3.44). At low EJ , the peak has a narrow width �f ' 1.3 MHz.
At higher emission rates a sizeable pedestal appears, with a width of the order of 100
MHz. The gaussian peak eventually saturates, while the pedestal keeps growing.
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Figure 3.43: Spectra taken while sweeping the magnetic flux at fixed bias V = (h/2e)⇥4410 MHz.

4100 4200 4300 4400 4500 4600 4700

0

20

40

60

80

100

frequency [MHz]

e
m

is
s
io

n
 r

a
te

 s
p
e
c
tr

a
l 
d
e
n
s
it
y

Figure 3.44: Spectra taken at three increasing values of EJ (blue, orange and green curves). The
inset shows a zoom-in on the peak’s pedestal, which keep increasing with EJ while the peak amplitude
saturates.

By fitting the narrow gaussian peak, we can separate the contributions of the main peak
and of the pedestal to the total emission rate. These contributions are plotted as a
function of the applied flux bias Φ on figure 3.45. EJ(Φ) decreases from its maximum
value as Φ is swept from 0 to half a flux quanta, then re-increases.

Jumps in the emission rates are visible as Φ is continuously swept. We attribute these to
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Figure 3.45: Contribution of the main gaussian peak (blue) and of its pedestal (black) to the total
emission rate (red), as a function of the applied flux bias.

spurious vortex depinning in the ground plane of the sample. The Φ scale on the figure
thus does not coincide exactly with the true flux through the SQUID. The area of the
gaussian peak (in blue) departs from the | cos(eΦ/~)|2 prediction of P (E). It saturates
at about 300 Mphotons/s, and even decreases as EJ(Φ) is increased. We understand this
behavior as the signature of the strong-driving regime, where the back-action of the field
in the resonator reduces tunneling rates.

On the other hand the pedestal contribution (in black) increases more slowly at first, but
does not saturate. It even surpasses the main peak contribution. Fitting these curves is
quite hard due to the flux jumps, but its seems that the pedestal area scales as E4

J .

From this behavior and from the width of the pedestal which coincide approximately
with the FWHM of the resonator, we infer that this pedestal arises from co-tunneling
processes, where two Cooper pairs tunnel at the same time and create photon pairs in the
resonator. We expect this kind of phenomena to occur for high value of EJ . There are
neglected in the P (E) theory, which assumes that EJ is low enough so that the tunnel
Hamiltonian can be taken up to second order only. The emission of a single photon by
co-tunneling Cooper pairs was recently studied in [86].

Higher order processes generate new processes including the co-tunneling of Cooper pairs.
These are then expected to scale as E4

J . Note that in the semi-classical theory of the ac-
Josephson effect 2.2, similar contribution to the photon emission and tunneling rates can
be derived by taking to next order the phase drop across the junction.

As we did not measure EJ(Φ) during the flux sweep, we test our hypothesis by plotting
the pedestal contribution as a function of the main peak area (Fig.3.46):

As the main peak eventually deviates from the E2
J law, the comparison makes sense only

for low emission rates. We can still fit a quadratic function for Γ  200 Mphotons/s, with
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Figure 3.46: Contribution of the pedestal to the emission rate, as a function of the main peak area (in
black), with quadratic fit (red), fitted for Γ < 200 MHz. As for low emission rates the main peak scales
as E2

J , this indicates that the pedestal area scales as E4
J .

quite good agreement. We consider this an indication of the validity of our co-tunneling
hypothesis.

Finally, we can plot the emission rate as a function of the frequency shift (Fig.3.47). We
show again the separate contributions of the main peak (in blue) and of the pedestal
(in black) to the total rate (in red). Again we see the saturation of the gaussian peak
area, while the pedestal contribution is always growing. The total emission rate is a linear
function of the frequency shift for Γ from 0 to 600 Mphotons/s, which validates our model
of a voltage drop on the bias resistor. We can fit the slope of this curve to extract R3=350
Ω, which agrees well with the value determined from the slope of the fJ(Vb) curve.

Alternatively, we can consider that we are sure of the value of R3, and use the frequency
shift to determine the absolute emission rate. This amounts to a different calibration of
the HEMT noise temperature. We thus find:

TN = 14.0 K, (3.133)

which differs from the value determined earlier by about 1.5%. Note that in our reasoning,
we assumed that the additional voltage drop on the bias resistor came only from the
current associated with the emission of photons inside the resonator. In other words,
if there were processes where light can be emitted outside of our detection window,
we would see a larger frequency shift. In this experiment the 4.4 GHz resonator is
coupled so strongly to the junction that all others processes are negligible, hence the
good agreement.
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Figure 3.47: Emission rate as a function of the frequency shift.

Determination of the renormalized Josephson energy

Finally, we perform a EJ scan while the junction is biased to a higher voltage value, such
that the Josephson frequency lies in the upper tail of the resonator, at !e = 2⇡⇥5535
MHz. Then the impedance of the environment is much lower, and we expect to avoid the
saturation due to strong-driving effects.
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Figure 3.48: Emission spectra taken outside of the resonator while sweeping EJ .
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These spectra display a very small frequency shift even at maximum EJ , which indicates
that the photon emission rate stays small (Fig.3.48). The E4

J pedestal is not detectable,
as it is dwarfed by the main gaussian peak which does not saturate. We can then fit each
spectra with a gaussian function, and plot the emission rate as a function of the applied
flux bias (Fig3.49).
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Figure 3.49: Emission rate as a function of the applied flux bias.

A simple sine function fits the data with a good agreement, despite the presence of
flux jumps and the failure of the gaussian fit procedure for low EJ . We use this as a
confirmation that the emission rate does not saturate, and that it follows E2

J even at
Φ = 0. The maximum emission rate is then:

Γ(Φ = 0) = 3.55± 0.05 Mphotons/s. (3.134)

This emission rate can be related to the value of E⇤
J at zero frustration of the SQUID:

Γ(EJ) =
2⇡2(E⇤

J)
2

~!e

Re[Z(!e)]

RQ

. (3.135)

Next, we scan the bias voltage above the gap voltage and detect the power emitted at !e

(Fig.3.50):

As the impedance is much smaller than RN , we directly have (see appendixB):

dSP (!e)

dV
= 2e

Re[Z(!e)]

RN

. (3.136)

Eliminating the unknown Re[Z(!e)] between (3.135) and (3.136) yields the renormalized
Josephson energy:

E⇤
J = 1.84± 0.03 µeV, (3.137)
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Figure 3.50: Emission rate as a function of the applied voltage Vb.

in very good agreement with the Ambegaokar-Baratoff value EAB
J = 3.1 µeV renormalized

by the phase fluctuations coming from the 4.4 GHz resonator and the 325 MHz parasitic
resonance:

∆�̂2 =
X

mode i

ri ⇥ (2n̄i + 1) ' 0.96 + 0.04⇥ (2 ⇤ 0.8 + 1) ' 1.07 (3.138)

) E⇤
J = EAB

J ⇥ e�∆�̂2/2 = 1.82± 0.04 µeV. (3.139)

3.5.2 Correlation function measurements

We now turn to the investigation of time-domain properties of the photons emitted by the
junction, revealed by the measurement of correlation functions. The first order coherence
function g(1)(⌧) (3.38) is linked to the phase coherence of the light, a wave-like property,
while the second order coherence function g(2)(⌧) (3.23) reveals the statistics of photons
themselves. We first use our linear detection procedure on the shot-noise emitted by
the sample when biased far above the gap voltage and recover the usual properties of
thermal light. Our aim is to demonstrate that below the gap, on the ICPT single-photon
resonance, the light displays antibunching statistics at low occupation number. This
antibunching gets gradually washed away as we increase the emission rate.

First test of our procedure: the correlation functions of shot-noise

Biased far above the gap voltage, the Josephson junction behaves as a source of current
noise SII(!) = 2(eĪ�R�1

N ~!). This shot-noise results from a large number of independent
tunneling events, where each quasi-particle emits a photon at a random frequency between
0 and eV/~. Following the central limit theorem, the total finite-frequency current is
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a gaussian random variable, with the same statistical properties as equilibrium thermal
noise. Slight deviations from pure gaussian fluctuations arise from the discrete, Poissonian
statistics of independent quasiparticles tunneling, but are completely negligible in our
experiment.

This almost white noise filtered by the on-chip resonator, is collected in a frequency
window given by approximately the FWHM of the resonator. Since filtering does not
change the properties of a gaussian noise, we expect to measure thermal-like coherence
functions, characterized by the relation [64]:

g(2)(⌧) = 1 + |g(1)(⌧)|2 (3.140)

) g(2)(0) = 2. (3.141)

The first order coherence function (3.38) is simply the Fourier transform of the spectrum,
normalized to 1. When computing correlation functions we filter digitally the signals
(Fig.3.27), so that we miss some part of the spectra. Moreover, we do not compen-
sate for the analog filtering that occurs during amplification, i.e the ripples that can be
seen in figure (3.28). We thus only have access to distorted versions of the correlation
functions.

We test all our correlation procedure by applying a high voltage Vb = 32 V, so that the
bias voltage V ' 2 mV' 10∆/e. Then the resonator is populated by about n̄ ' 14
photons. This makes the measurements and their interpretation easier, as we do not
expect to see Coulomb Blockade effects from the high-impedance mode, and the shot-
noise power is comparable to the HEMTs noise power, making the parasitic correlations
negligible.

time τ [ns]

⟨S†
1(0)S1(τ)⟩ON/OFF⟨S†
2(0)S2(τ)⟩ON/OFF

⟨S†
1(0)S2(τ)⟩ON/OFF

Figure 3.51: Absolute value of g(1)(τ) computed from the spectra of figure 3.30.

We plot in figure 3.51 the three versions of |g(1)(⌧)| computed from the three spectra of
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figure 3.30, using the same color code. Lorentzian emission spectra would yield exponen-
tially decaying |g(1)(⌧)| function. In our experiment the Re[Z(!)] of the resonator is not
exactly Lorentzian, and neither are the shot-noise spectra. Thus the |g(1)(⌧)| functions
are cusped at ⌧ = 0. Still we can estimate a decay time constant ' 2 ns, as expected from
the 158.3 MHz width of the spectra. This is not the same as the FWHM of the resonator,
because of the frequency-dependent microwave coupling factor between the junction and
the resonator.

There are minor differences between hS†
1(0)S1(⌧)i and hS†

2(0)S2(⌧)i, as the corresponding
spectra where not exactly equal. They are both peaked at ⌧ = 0 and symmetric with
respect to ⌧ ! �⌧ , as expected for the Fourier transform of real spectra.

On the other hand the correlation function yielded by the cross-spectrum is offset from
⌧ = 0 by about 0.25 ns, and is non-symmetrical. This is because the hS†

1(0)S2(⌧)i
correlator is sensitive to time-delays between the two channels, which where not fully
compensated in this particular measurement.

Just as we have three ways of evaluating emission spectra SP (!) = hâ†(!)â(!)i, there
are three different ways of computing the instantaneous power radiated by the sample
Pa(t) = hâ†(t)â(t)i. We can take the modulus squared of a complex envelope:

Px(t) = |Sx(t)|
2 / Pa(t) + PNx(t) (3.142)

to obtain the total power carried over channel (x), which then includes the noise power
added by the HEMT. We can also compute the cross-signal power :

C(t) = S†
1(t)S2(t) / Pa(t) + PNc(t), (3.143)

where the background cross-noise power PNc(t) is a random complex number, with an
average value 2000 times smaller than P̄Nx (Fig.3.29).

From these instantaneous powers, we compute two different versions of the g(2)(⌧) function
(Fig.3.52).

The power-power correlator hP1(t)P2(t+ ⌧)i yields, after subtraction of unwanted contri-
butions, a real function (black curve). This correlator is sensitive to delays between the
two measurement lines, so that it is centered on ⌧ = 0.25 ns, like hS†

1(0)S2(⌧)i (see figure
3.51). It goes up to g

(2)
pw (0) = 2.001, with a statistical error of � = 8⇥ 10�4. We compute

this uncertainty by dividing the original raw data in many chunks, computing coherence
functions on each chunk, then averaging them and estimating the statistical dispersions
on each time value of g(2)(⌧). In particular, we found that the uncertainty is not the
same for all ⌧ values: it is twice higher at ⌧ = 0 that at ⌧ � �1.

This comes from the gaussian statistics of the HEMT noise, which dominates the instan-
taneous measurement. Basically, the experimental variance of the g(2)(⌧) function we
compute is set by the g(4)(⌧) function of the HEMT noise, which is four times higher
at ⌧ = 0 than at ⌧ ! 1. This results in twice larger error bars at ⌧ = 0 on all the
measurements presented in this work (in contrast with figure 3.19 from 2016, where this
effect was not taken into account).

The second version of g(2)(⌧) (red curve), computed from the cross-signal power hC(0)C(⌧)i,
is symmetric with respect to ⌧ = 0. Note that while hC(0)C(⌧)i is a complex function,
with a certain phase, the normalized version used in (3.88) is real (with a remaining
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time τ [ns]

⟨P1(0)P2(τ)⟩Re[⟨C(0)C(τ)⟩]

Figure 3.52: Second order coherence functions computed either from (3.87) (black curve) or (3.88) (red
curve).

imaginary part that comes only from measurement noise). Thus we can take only the
real part of (3.88), and end up with error bars which are

p
2 smaller than for the (3.87)

expression.

However, the hC(0)C(⌧)i correlator is decreased by any spurious time delay between

the two channels, as |hS†
1(t)S2(t + ⌧)i|  |hS†

1S2i|. In the end, we measure g
(2)
cs (0) =

1.995 ± 0.0006, i.e we have less statistical error than using g
(2)
pp (⌧), but uncompensated

delays between the two lines distort the correlation function so that g
(2)
cs (0) 6= 2.

In other words, we have two different ways of evaluating g(2)(⌧). One is in the spirit
of the original HBT experiment, as we correlate true power fluctuations measured over
two channels. The second scheme involves the complex cross-signal, and can only be
implemented by detection of the signal quadratures. It yields a better statistical uncer-
tainty, as the parasitic terms to be subtracted are smaller. It also provides intrinsic noise
rejection, as the uncorrelated amplifiers’ noise fluctuates randomly in the complex plane,
while the signal correlators are purely real. These advantages are counterbalanced by an
undesirable sensitivity to time delays between the two channels, so that the procedure
can miss some correlations and yield the wrong value of correlators. This effect is however
quite small, as a delay of 0.25 ns on signals with a correlation time of 2 ns yields a 0.25%
underestimation of g(2)(0).

We also checked the equality of |g(1)(⌧)|2 + 1 and g(2)(⌧) for shot-noise radiation, con-
firming the gaussian statistics of the signals. As the correlators are either sensitive or
insensitive to time delays between the lines, we find that:

g(2)cs (⌧) = 1 + g(1)pw (⌧) (3.144)

g(2)pw (⌧) = 1 + g(1)cs (⌧), (3.145)
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up to the experimental uncertainty on the g(2)(⌧) correlators.

Antibunching on the single-photon resonance at low EJ

We set the bias voltage so that !J = 2⇡⇥4407 MHz and lower EJ until there are n̄  0.1
photons in average in the resonator. At this lowest EJ value, we measured spectra and
correlations functions in two successive runs of 60 and 120 hours respectively (about 7.5
days of continuous measurement).

During the first part of the run, we alternated between ON and OFF measurement every
2.5 minutes. We then decided to reduce the time devoted to OFF correlators. Because
they describe the stationary noise from the amplifiers, we can average them over all the
duration of the experiment, where we scanned different values of EJ . This is a way to
improve the duty cycle of the measurement. In the last 5 days, we thus measured 2.5
minutes in the ON state for each 30 seconds spent in the OFF state.
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Figure 3.53: Emission spectra at low EJ on the single-photon resonance.

Figure 3.53 shows the spectra measured using either the true PSDs from channel (1)
and (2), or the cross-spectrum. Again it shows a narrow gaussian peak, with a much
wider and weaker pedestal. We attribute this pedestal to co-tunneling events, whose
amplitude scales as E4

J . The cross-spectrum shows weird shoulders approximately 35
MHz below and above the gaussian peak, which do not appear in Sp1 and Sp2. We
attribute them to parasitic microwave reflexions in the setup between the hybrid coupler
and the HEMTs.

During this week-long measurement, we acquire close to 2800 spectra at the same value
of EJ . We fit each of them with a gaussian shape to study the stability of the emitted
radiation. We plot the results in figure 3.54 as a function of time (only the data points
taken during the last 5 days are shown).

The Josephson frequency drifts away from 4407 MHz, due to random changes between the
sample electrical ground and the voltage source ground. It changes by at most 600 kHz
over the course of one day, which amounts to a shift of about 1.2 nV. The impact on the
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Figure 3.54: Results of the fits of the emission peak, as a function of time during the second run.

statistics of the radiation is completely negligible, as 600 kHz⌧120 MHz, the resonator
FWHM. The amplitude of the peak and its width �J are approximately constant, except
for two sharp spikes. These events coincide with refillings of the liquid He cold bath of
the fridge. During He transfers we perturb the experiment, as we bump into the fridge
with the transfer line. This generates vibrations, which wiggle the flux bias coil placed
below the sample and change EJ . The sample goes slowly back to its initial state after
these perturbations, which may indicate that we also heat up the cold stage during the
transfer. In definitive, the emission rate is remarkably steady, and we conclude that we
can safely average altogether all the correlators measured over the course of the run. We
also extract the average population of the resonator n̄ = 0.075 ⌧ 1, so that the radiation
should display antibunching, as predicted in 3.1.

From the spectra of figure 3.53, we can compute the g(1)(⌧) function of the signals. Here
the delays between the two lines were finely compensated, so that we can use either
the Spx or the cross-spectrum without any difference. We plot g(1)(⌧) on figure 3.55,
along with the OFF contribution hS†

1(0)S2(⌧)i/n̄, which is needed for the computation
of g(2)(⌧).
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Figure 3.55: Real part of the normalized first order correlators. The ON/OFF correlator yields the
g(1)(τ) function of the signals (in green). The OFF correlator shows the parasitic coupling between the
two channels (in blue).

The g(1)(⌧) functions is oscillating at the Josephson frequency, brought back to 300 MHz
by the heterodyning procedure. Its envelope is a gaussian function with a width given by
�t =120 ns. This indicates that the phase coherence time of the light is relatively long,
about 100 times larger than the resonator lifetime �1= 1.33 ns. In classical physics, this
would be the characteristics of a coherent light source, and we would expect the electric
field to behaves as a sine function.

However investigation of the statistics of the photons, through the measurement of the
g(2)(⌧) function, reveals the granular nature of single photons. Figure 3.56 shows the
power-power correlators in the ON and OFF states, normalized by n̄2.
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Figure 3.56: Normalized power-power correlators in the ON (black curve) and OFF (blue curve) states.

The offset value of the normalized OFF correlator is a measurement of PN1PN2 in
units of the mode occupation number n̄2. Its square root yields the value of the SNR:
1/
p
275560 ' 1/525 at this low photon number. The positive correlation peak at

⌧ = �32 ns reveals the parasitic coupling between the two lines that occurs in the
room-temperature setup, after the ' 7 m long delay line (see Fig.3.26).
In the ON correlator, the antibunching of the photons emitted by the junction manifests
as a dip near ⌧ = 0 on top of the background correlations. The offset value is also higher
by PN1 +PN2 . The fluctuations of the correlators far away from ⌧ = 0 indicate the statis-
tical error on the measurement. It is

p
5 larger in the OFF state due a five time shorter
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averaging time. Recall that we finalley averaged together the OFF data points taken
over the course of the experiment, to yield a much less noisier OFF value.

We combine all the measured correlators following (3.81) to obtain g
(2)
pp (⌧) (Fig.3.57):
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Figure 3.57: Second order coherence function g

(2)
pp (τ), measured through power-power correlations.

This correlation function is an estimation of the g(2)(⌧) function of the antibunched
photons, deduced from power fluctuations measurement. It is nominally equal to the
correlator measured in 2016 (Fig.3.19) through true power detection, albeit with the
parasitic oscillations suppressed.

To increase our accuracy on the determination of g(2)(⌧), we use a complementary cor-
relator, based on the detection of the cross-signal power C(t) = S†

1(t)S2(t). We plot in
figure 3.58 the real part of the cross-signal correlators:
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Figure 3.58: Real part of the normalized cross-signal correlators in the ON (red curve) and OFF (orange
curve) states.

The offset value of the OFF correlator is here practically zero for all times ⌧ . This comes
from the 32 ns delay between the two channels introduced at room-temperature, which
suppresses all parasitic correlations between the background noises of the two lines. The
ON correlator displays anticorrelations near ⌧ = 0, proof of the antibunching. Again
we combine these two correlators with the first order ones (Fig.3.55) to yield g

(2)
cs (⌧)

(Fig.3.59):
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Figure 3.59: Second order coherence function g
(2)
cs (τ), measured through cross-signal correlations.

The statistical error on g
(2)
cs (⌧) is

p
2 smaller than on g

(2)
pp (⌧), as the noise on C(t) is spread
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uniformly on the complex plane, while the final correlator is real. We increase again our
accuracy by averaging together these two versions of g(2)(⌧) (Fig.3.60):
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Figure 3.60: Final g(2)(τ) obtained by the average of the g
(2)
pp (τ) and g

(2)
cs (τ) (red points), plotted with

the result of numerical simulations (blue curve).

The final g(2)(⌧) function at n̄ = 0.075 displays strong antibunching of the emitted pho-
tons, with sub-Poissonian statistics as g(2)(0) = 0.32 ± 0.05. This is larger that the
(1 � r/2)2 ' 0.27 value predicted by the theory [34] at vanishing occupation number.
We attribute this discrepancy mainly to the finite bandwidth used to digitize the signals,
and to the finite value of n̄. As described in [82], a finite acquisition window distorts the
correlation function in time-domain. The effect of the filters we used in the experiment on
the signals can be simulated through extensive numerical simulations [87]. The simulated
correlation function agrees well with the experimentally measured one [36].

This good agreement validates our model of the system. The radiation emitted by the
junction in the low EJ limit displays both antibunching and sub-Poissonian statistics.
Interestingly, the relevant timescale in the g(2)(⌧) function is the resonator lifetime �1 '
1.3 ns, while the g(1)(⌧) function indicates a long phase coherence time �t ' 120 ns.
We interpret this as an illustration of wave-particle duality. When measuring emission
spectra, we detect what looks like a very weak coherent signal â(t) ⇠

p
n̄e�i!J t, with a

slowly drifting frequency. When computing the second order coherence function, we gain
information about the instantaneous power fluctuations P (t) / â†â(t). We find that P (t)
fluctuates on a much shorter timescale than â(t), which is classically incompatible with
the picture of a quiet continuous wave, but possible in a quantum picture of light.

This long phase coherence time also suggests that the single photons emitted by the
junction could be used in interferometry experiments requiring indistinguishable pho-
tons.
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Sub-Poissonian photons at higher emission rates

Using the same procedure, we measured g(2)(⌧) functions at larger emission rates, up to
about n̄ ' 0.9 where the emitted power saturates (Fig.3.61). While the photons are still
antibunched, there is a reduction of the sub-Poissonian character of their statistics, with
g(2)(0) tending towards 1 when increasing n̄.

We attribute the progressive loss of the single-photon character of the emission to the
imperfect blockade mechanism that occurs at r ' 1. As the transition to higher occupa-
tion levels of the mode is not fully blocked, there is still a probability for the resonator to
contain more than one photon. These transitions are still reduced as g(2)(0) < 1, which
proves that the radiation is non-classical.
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Figure 3.61: Values of g(2)(0) for increasing occupation number and emission rate. The vertical error
bars on the experimental data (red points) reflect the statistical error on the measurement. The hori-
zontal error bars reflect the uncertainty on the gain of the amplification chain. The result of numerical
simulations of the system is plotted in black. The effect of filtering of the signals can be included in the
simulations (dashed blue curve), revealing a good agreement with the measurements.

The shape of g(2)(⌧) itself changes at very high emission rate. We show in figure 3.62 the
function measured at n̄ = 0.9. There are additional ripples on the sides of the ⌧ = 0 dip.
We attribute them to the coherent exchange of energy between tunneling Cooper pairs
and the cavity field, i.e Rabbi oscillations. These occur when n̄⇥ r ⇠ 1, so that the field
in the resonator is big enough to impact the tunneling events.

These results demonstrate that a small dc-biased Josephson junction in a high-impedance
environment can be a bright source of non-classical radiation. The single-photon character
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τ

τ
Figure 3.62: Second order coherence function at the highest emission rate, where n̄ = 0.9. We attribute
the ripples to Rabbi oscillations between the cavity field and the tunneling Cooper pairs.

demonstrated here is not perfect as g(2)(0) > 0, due to an insufficiently high impedance
r ' 1. A better source could be implemented by reaching the regime of perfect photon
blockade r = 2, using a different technology. The emission of single photons could also
be triggered by pulsing the Josephson energy EJ(Φ), leading to the emission of exactly
one single photon on demand. This on-demand mechanism was successfully implemented
in another single-photon source based on ICPT [88]. In this experiment, the blockade
mechanism resulted not from large ZPF phase fluctuations coming from a high impedance
mode, but from the charging dynamics of a large on-chip resistor in series with the
junction.
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3.6 Conclusions and outlooks

We have developed a measurement setup and signal processing tools to investigate the
properties of the radiation emitted by a dc-biased Josephson junction. Below the gap
voltage the junction emits photons through Incoherent Cooper Pair Tunneling (ICPT)
processes: each pair transfer distributes the energy 2eV in the modes of the environment,
as described by the P (E) perturbative theory. Above the gap voltage, quasiparticle
tunneling takes place and the junction behaves as a source of shot-noise current (cf Ap-
pendix.B). In both cases the properties of the emitted radiation depend on the impedance
Re[Z(!)] of the environment of the junction, and on the occupation of its modes.

By measuring emission spectra at different values of voltage bias V and flux applied
through the SQUID Φ, we can characterize accurately the sample and its environment.
We calibrate in situ the gain and the noise power of the microwave amplification chains,
as well as the spurious parasitic coupling between the two lines. We measure Re[Z(!)]
as seen by the junction in the 4-8 GHz range, and prove that it is strongly coupled with
r = 0.96 to a single mode with vanishing thermal occupation. Thanks to the efficient
filtering of the bias line, the small emission frequency jitter on the single-photon resonance
is only limited by the thermal occupation of the low-frequency modes of the environment.
We find that the Josephson energy is renormalized by the quantum phase fluctuations
across the environment impedance, as predicted by the P (E) theory.

Measurements of the second order correlation functions of the outgoing microwave field
shed light on its statistics. In the shot-noise emission regime, the classical photon bunch-
ing statistics of thermal light is found, with g(2)(0) = 2. In the ICPT emission regime, pho-
tons emitted in the high-impedance mode display non-classical sub-Poissonian statistics
as well as antibunching, with g(2)(0) = 0.32± 0.05. Perfect antibunching with g(2)(0) = 0
is not reached due to residual transitions to higher occupation states that occur at r < 2.
Numerical simulations with no free parameter reproduce well our results, in particular
the impact of the finite acquisition bandwidth on correlation functions.

Potential applications in quantum information processing would require a perfect on-
demand source of single photons. The quality of the antibunching could be improved
by fabricating a resonator with a higher impedance, that would be tunable to reach the
exact value r = 2 that ensures g(2)(0) = 0. On-demand emission could be triggered by
controlling the resonance condition for single-photon emission on a short timescale, by
tuning either the bias voltage V or the Josephson energy of the SQUID.

Experiments requiring undistinguishable single photons in a row could also be considered,
as the phase coherence time of the emitted radiation �t ' 120 ns is much longer than the
resonator lifetime �1 ' 1.3 ns. This feature illustrates strikingly the wave-particle du-
ality of light, as revealed by complementary correlation measurements: on one hand, the
first order coherence function g(1)(⌧) shows that the phase of the emitted radiation, inher-
ited from the superconducting phase difference across the junction �(t) =

R

2eV (t0)dt0/~,
is well-defined over a long coherence time. On the other hand, the g(2)(⌧) function in-
dicates that the photon flux â†â(t) fluctuates strongly on a a short timescale, as proven
by the observed antibunching of the photons. Both aspects are not contradictory, this is
just the quantum nature of light.

This long, albeit finite phase coherence time is not crucial to the production of anti-
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bunched photons, which only requires �t  �1. Nevertheless, one can wonder if the lack
of a proper phase reference because of low-frequency modes with thermal occupation� 1,
precludes any experiment relying on quantum coherence. We have proved this conjecture
false in another set of experiments where we detect the creation of entangled light beams
by a junction placed in series with two microwave modes, as described in the following
chapter.
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Chapter 4

Emission of entangled beams of light
by inelastic Cooper-pair tunneling

2e

From the emission of non-classical photon pairs to the measurement of their
entanglement

The energy 2eV transferred from the voltage bias to the rest of the circuit upon the
inelastic tunneling of a Cooper pair can be split between different modes of the environ-
ment, creating multiple photons at once. This process generates quantum correlations
between the photons created, as found in optics for the photons produced by parametric
down-conversion. It is natural to wonder if the resulting multipartite state of light can
present non-classical properties, such as entanglement or non-local features.

An earlier experiment performed by our team [39][38] considered a Josephson junction
in series with two microwave resonators with distinct frequencies !a,!b. When biased
at 2eV = ~(!a + !b) the junction emits photon pairs, with one photon being created
in each resonator. Non-classical correlations between the photon emission rates at the
two frequencies were measured. This result confirms that the photons are created by
pairs, and then leak independently in the measurement lines. This experiment, although
proving the non-classical character of the emitted radiation, did not demonstrate the
entanglement of the outgoing modes.
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We build on this experiment to probe the entanglement of the two outgoing microwave
fields. Using our linear detection setup, we measure non-classical phase correlations
between the two beams. This proves not only that the photons are created by pair at
the same time, but also that their field quadratures share a non-local phase, inherited
from the superconducting phase across the junction �. After the two photons have left
the resonators, this phase is imprinted in the subsequent photon pairs. This leads to the
continuous creation of two entangled beams of light.

We prove that the decoherence of the two entangled beams stems from the slow dephasing
of �, which itself comes mostly from thermal low-frequency voltage noise on the junction.
Furthermore, we actively cool down these low-frequency modes to reduce their voltage
noise, increasing by more than a factor 3 the coherence time of the entangled beams. This
cooling mechanism relies on the absorption of low-frequency photons by the junction itself
through ICPT, at the same time as it is emitting entangled photons.
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4.1 Entanglement of photon pairs created by ICPT

4.1.1 Choice of the system and its non-classical observables

In this experiment, we investigate the coherent emission of photon pairs by a Josephson
junction placed in an environment including two low-impedance modes, with r ⌧ 1. We
describe here the reasons that motivate the choice of this system.

From P (E) theory to coherent k-photon drives

Non-trivial correlations between different modes appear naturally in the multi-photon
processes predicted by the P (E) theory. When biased at a dc-voltage V = ~!J/2e, the
spectral density of light SP (!) emitted by a Josephson junction is the sum of distinct

contributions S
(k)
P (!), associated to the different k-photon processes. The first-order term

S
(1)
P (!) / Re[Z(!)] describes the emission of one photon for each tunneling Cooper pair.

The 2-photon processes yield:

S
(2)
P (!) / Re[Z(!)]⇥ P (2eV � ~!)

/ Re[Z(!)]⇥Re[Z(!J � !)].
(4.1)

In particular S
(2)
P (!) = S

(2)
P (!J � !), which indicates that photons are created with

symmetric emission around !J/2. This yields correlations between modes of the elec-
tromagnetic field at different frequencies: if we detect a photon in a mode at !, there
should also be a photon at the mirror frequency !J � !, created by the same tunneling
event.

Higher order terms generate inter-frequencies correlations, that do not allow for such a
simple interpretation. As an example the 3-photon processes give:

S
(3)
P (!) / Re[Z(!)]⇥

Z

Re[Z(!0)]Re[Z(!J � (! + !0))]d!0. (4.2)

Detection of a photon at ! is accompanied with beatings of the total photon flux at
frequency !J � !, an effect which is harder to demonstrate experimentally.

The P (E) theory alone cannot predict the quantum state of light created by ICPT. Un-
derstanding these correlations require a more complete treatment of the system, including
a description of the state of the modes, whereas the P (E) theory assumes them to stay
in a trivial thermal state. We will thus present a more sophisticated treatment of the
emitted light, using the so called input-output formalism.

As in 3.2, we start by writing a Hamiltonian for the simple system consisting of a dc-
biased Josephson junction and a single resonator with frequency !r and impedance r.
At bias voltage 2eV = k ⇥ ~!r, the effective Hamiltonian in the rotating frame of the
resonator mode reads:

Ĥ
(k)
RWA ' �E⇤

J

2k!
(�

p
r)k

 

X

i

(�râ†â)ik!

(k + 1)!
⇥ âk + (â†)k ⇥

X

i

(�râ†â)ik!

(k + 1)!

!

(4.3)
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This expression emphasises the action of the junction on the resonator: it implements
a coherent k-photon drive âk + (â†)k, with a driving strength set by E⇤

J

p
r
k
, dressed by

non-linearities proportional to râ†â.

Coherent k-photon drives with k 6= 1 also appear in some quantum optics experiments,
e.g in parametric down-conversion processes. They can generate states of light with
intriguing properties [89]. Starting from a mode in the vacuum state |0i, a k-photon
drive creates a coherent superposition of the |i ⇥ ki Fock states, with i 2 N. Due
to interferences between the quadratures probability distribution of the different Fock
states, the resulting state displays an odd phase portrait, see figure 4.1.

X

P

Figure 4.1: Probability contours for joint measurements of field quadratures X and P of a generalized
squeezed state, created by the action of a 3-photon drive on an empty mode (taken from [89]).

The issues of non-Gaussianity

For k � 3, the distribution of quadratures of the state is non-gaussian, i.e it cannot be
written as a product of gaussian functions of X = â+â† and P = i(â†�â). Such states are
intrinsically quantum, and are a resource for quantum information protocols [90][91][92].
Characterizing their coherence properties requires the measurement of high-order corre-
lation functions, of the form h(â†)m(â)ni with m+ n � 6.

Could we demonstrate the creation of this type of states using ICPT? In our experiments,
the signal-to-noise ratio is dominated by the amplifier noise power, with a SNR ⇠ 1/50
at a mode occupation number n̄ = 1. The number of acquisitions required for the precise
measurement of h(â†)m(â)ni scales as (1/SNR)m+n, which becomes very large for high-
order correlators. It would thus be harder for us to detect strongly non-gaussian states
of light.
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By contrast, a pure 2-photon drive creates gaussian states, which are fully characterized
by their correlation functions up to order m + n = 4 only [93]. We should be able to
measure these with the same procedure that we used for the measurement of g(1)(⌧) and
g(2)(⌧) functions, so that we will focus on the emission of photon pairs only.

Note that as soon as the drive is not exactly of the form â2 + (â†)2, the stationary light
state may show non-Gaussian features. In the Hamiltonian 4.3, the coherent drive is
dressed by non-linear terms, which depend on the occupation state of the resonator.
These describe a coherent back-action of the population of the mode onto the junction.
This effect adds a non-linearity to the k-photon drive, creating a more complex stationary
state of the resonator. In general this state is non-gaussian, resulting in e.g the emission
of antibunched k-uplets of photons.

Measurement of correlation functions up to order 4 are enough to reveal the statistics of
the emitted light, but not to determine the coherence properties of non-gaussian states. To
avoid this non-gaussianity and keep measurement times reasonably short, our experiment
is in the low-coupling regime r ⌧ 1. Then we expect back-action of the cavity field
onto the junction to stay small, as long as rn̄ ⌧ 1.

Properties of a single mode in a two-photon coherent state

The stationary state of a mode driven coherently by a 2-photon drive is a coherent
superposition of all the even-numbered Fock states. It is better known as a quantum-
squeezed state, due to the asymmetric distribution of its field quadratures [94].

X

P

0 1-1

0

1

-1

ΔX

ΔP

Figure 4.2: Probability distribution for the quadratures of a quantum squeezed state (red cloud). The
standard deviation (red line) of X/P is larger/smaller than for the vacuum state (dashed gray).

The properties of this state of light are best described through its wavefunction in the
quadrature basis. The wavefunction in the X✓ = e�i✓â + e+i✓â† basis is obtained by
integrating the Wigner quasiprobability distribution of the mode over the orthogonal
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quadrature X✓+⇡/2 [65]. A mode in the vacuum state has a radially symmetric wavefunc-
tion (Fig.4.2):

 |0i(X✓) =  |0i(X) =

✓

2

⇡

◆1/4

e�X2

. (4.4)

The variance of any quadrature for the vacuum state is equal to ∆X2
✓ = ∆X2 = 1/4.

This state reaches the lower bound of the Heisenberg inequality for quadratures:

∆X✓ ⇥∆X✓+⇡/2 �
1

4
. (4.5)

By contrast, a squeezed state of light displays uneven variance of its quadratures: ∆X2
✓ 6=

∆X2
✓+⇡/2. In particular, a 2-photon drive acting on the vacuum state generates a squeezed

vacuum, with quadrature wavefunctions of the form:

 sq(X) =

✓

2

⇡

◆1/4

e�(
X
R )

2

,  sq(P ) =

✓

2

⇡

◆1/4

e�(RP )2 . (4.6)

For R > 1, the variance of the P quadrature is smaller than its value in the vacuum
state: ∆P 2

sq = 1/4R2 = h0|P 2|0i/R2 (Fig.4.2). Surprisingly, there is less noise on P in
this state of the mode than in the vacuum state. This is a purely quantum property,
that cannot arise in a classical theory of light. Squeezed vacuum states can be used
in high-precision interferometry measurements, as they allow to increase the SNR of a
homodyne measurement beyond the standard quantum limit [95]. They could bring great
advances in various domains such as the detection of gravitational waves [96] or electron
spin resonance experiments at the single-spin limit[97].

To ensure (4.5), the orthogonal quadrature X displays amplified fluctuations with respect
to the vacuum state: ∆X2

sq = R2/4 = R2 ⇥ h0|X2|0i (Fig.4.2). As ∆X2
sq 6= ∆P 2

sq, the
squeezed state shows a preferential phase orientation. This phase is defined with respect
to a phase reference, set by the driving field. In particular the state (4.6) is created by
turning on an interaction Hamiltonian Hsq / â2+(â†)2 at time t = 0. Another interaction
of the formH 0

sq / i(â2�(â†)2) would create a squeezed state in the orthogonal orientation,
where the X quadrature is squeezed below the vacuum level and the P quadrature is anti-
squeezed. The quadrature angle showing the smallest variance is called the squeezing
angle.

In practice, effective squeezing interactions are typically realized through a three-photon
process, where a pump field at frequency 2!r drives a non-linear element [94]. The non-
linear element acts as a frequency converter, continuously absorbing one photon from
the pump and adding one photon pair to the mode. The squeezing angle is thus set by
the phase of the pump field (Fig.4.3). The pump can then be used as a phase refer-
ence for homodyne measurements of the squeezed mode, or its application in a quantum
protocol.

Blurring of single-mode squeezing in the absence of a phase reference

Measuring quantum squeezing requires knowing at which angle lies the squeezed quadra-
ture, as well as being able to follow spurious drifts of the squeezing angle during the
measuring time. In typical experiments the pump field provides a control of this angle,
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a) b) c)

Figure 4.3: a) Typical setup for the generation of a squeezed vacuum state. A pump mode b (in green),
prepared in a bright coherent state, is coupled to mode a (in red) by a χ(2)-type crystal (black box). b)

The effective Hamiltonian of the system is proportional to b̂(â†)2 + h.c. As b is kept in a quasi-classical

coherent state, b̂ ' hb̂i = b0e
iθ. c) The squeezing angle θ is then set by the phase of the pump mode.

which can be corrected for if the dephasing is slow enough. Furthermore, the pump field
is often also used as a phase reference for the homodyne detection of quadratures, so that
random drifts of the pump phase drop out in the final measured observables.

The situation is much different if we consider a squeezing experiment based on ICPT.
In the simple model of the interaction between a dc-biased junction and a single low-
impedance mode, setting the bias voltage on the junction such that 2eV = ~!r implements
an effective squeezing Hamiltonian:

Ĥ
(2)
RWA ' �E⇤

J

2
re�i!J t(â†e+i!rt)2 + h.c =

�E⇤
J

2
r(â†)2 + h.c (4.7)

As there is no coherent pump field here, the squeezing angle is simply set by the time
t = 0 at which the bias voltage is suddenly applied.

Given the bias line is heavily filtered, with a RC time of a few ms, the moment at which
the squeezing interaction is turned on is not known, nor is the squeezing angle ✓. This is
the the analogue of the unknown propagation time of a microwave pump along a pump
line of unknown length.

If this angle was kept constant, this problem could be circumvented by sweeping the phase
of the homodyne detection until we measure a minimum of quadrature noise. However
in our experimental setup the junction is also coupled to a continuum of low-frequency
modes, which add thermal voltage noise to the voltage bias1. As the modes carrying this
noise are much slower than any timescale of the interaction between the junction and the
resonator, their impact can be modelled by replacing !J in (4.7) by !J(t) = 2eV/~+ �!,
with �! a centered Gaussian random variable. Then:

Ĥ
(2)
RWA ' �E⇤

J

2
re�i�!⇥t(â†)2 + h.c, (4.8)

so that the squeezing angle ✓ =
R t

0
�!(t0)dt0 drifts randomly over time [98] (Fig.4.4).

It should be noted that the stationary linewidth �f ' 1.3 MHz is not equal to the rate
at which the squeezing angle dephases. From our results of the antibunching experiment

1as we have seen in 3.5,this σV ' 2.6 nV noise yields a stationary spectral width of the Josephson
frequency σf ' 1.3 MHz
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t

Figure 4.4: a) Due to thermal voltage noise on the junction, the Josephson frequency ωJ fluctuates
randomly. The e�iωJ (t)t driving term (real part in red) in the squeezing Hamiltonian (4.8) dephases
slowly with respect to a pure sinusoidal tone (dashed grey). b) The squeezing angle θ drifts randomly
with time, making a direct measurement of quantum squeezing impossible.

3.5, we found that most of the voltage noise comes from a single mode of the bias setup,
around !BT = 2⇡⇥71 kHz ' (2 µs)�1. On a time scale much shorter than 2 µs, the
voltage noise from this mode is frozen so ✓ is approximately kept constant.

There are two possible ways we could try to detect directly single-mode quantum squeez-
ing in our setup. We could either measure quadrature variance with less than 2 µs of
averaging, letting the squeezing angle drift at random between measurements. This would
require a much better SNR that our current one, which could be reached using wide-
band quantum-limited amplifier instead of our commercial HEMTs. We could also try to
measure on the fly the value of �!(t), by detecting the low-frequency voltage fluctuations
across the junction, and compensating the homodyning frequency accordingly.

Both strategies would require considerable technical developments, with limited new in-
sights on the physics of quantum conductors coupled to radiation. We decided to study
the creation of two-mode squeezed states, and prove that they could yield non-local
correlations even in the absence of a stationary phase reference.

Two-mode squeezed states

An intriguing non-local state of light is created by a two-mode drive of the form âb̂+â†b̂†,
which drives coherently two different modes a and b at the same time. Acting on two
cavities initially in the vacuum state, this drive creates a two-mode squeezed vacuum,
with the bipartite wavefunction [99]:

 TMSV (Xa, Xb) =

r

2

⇡
e
�
⇣

Xa+Xbp
2R

⌘2

e
�
⇣

R
Xa�Xbp

2

⌘2

. (4.9)

By tracing over the state of mode b, the statistical properties of a alone can be computed.
Like in the vacuum state, the distribution of a quadratures are independent of the angle:

∆X2
a,✓ = ∆X2

a =
R2 +R�2

8
. (4.10)

For R > 1, this gaussian state always presents more fluctuations than the vacuum state,
with an occupation number n̄ = (R2 +R�2 � 2)/2 6= 0. In fact, it can be shown that the
a field presents the statistics of a thermal state at temperature kBT = ~!a/2 ln(

R2+1
R2�1

),

with g(2)(0) = 2. Tracing over a leads to similar properties for the b mode.
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However, joint measurement of quadratures from the two modes reveal non-classical fea-
tures. From (4.9), it can be seen that a linear combination of Xa and Xb presents a
variance below the vacuum level:

∆

✓

Xa �Xbp
2

◆2

=
1

4R2
, (4.11)

while:

h0|a ⌦ h0|b
✓

Xa �Xbp
2

◆2

|0ia ⌦ |0ib =
h0|X2

a |0i+ h0|X2
b |0i

2
=

1

4
. (4.12)

which follows from the independence of Xa and Xb when the two modes are in the vacuum
state. Conversely, the symmetric combination Xa + Xb shows an increased variance in
the two-mode squeezed state:

∆

✓

Xa +Xbp
2

◆2

=
R2

4
= R2 ⇥ h0|a ⌦ h0|b

✓

Xa +Xbp
2

◆2

|0ia ⌦ |0ib. (4.13)

This state then still obeys the Heisenberg inequality for joint quadrature measurements.
The reduction of the variance of Xa � Xb means that Xa and Xb are correlated, i.e
they tend to have the same value when measured at the same time, see figure 4.5. The
wavefunction in the Pa, Pb basis, which can be computed from (4.9), reveals that Pa and

Pb are anti-correlated, with: ∆
⇣

Pa+Pbp
2

⌘2

= ∆

⇣

Xa�Xbp
2

⌘2

.
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Figure 4.5: Wavefunctions of a two-mode squeezed vacuum (TMSV) with squeezing angle θ = 0, in
different pairs of quadrature bases. In the Xa, Pa basis, the TMSV shows no preferential orientation,
and more noise than the vacuum state (not pictured). Same goes in the Xb, Pb basis. Wavefunctions in
composite bases show correlations between Xa and Xb, and anti-correlations between Pa and Pb.

In the limit of infinite squeezing R ! 1, joint measurement on the two modes show
perfect (anti)correlations: Xa = Xb and Pa = �Pb. At the same time, quadratures
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measured separately have no well-defined value: ∆X2
a = ∆P 2

a = ∆X2
b = ∆P 2

b ! 1.
This kind of bipartite state can be considered in the more general framework of the EPR
paradox [100], the first thought experiment to pinpoint the existence of entanglement in
quantum physics.

Non-local properties of two-mode squeezed states can be put to use in quantum infor-
mation and quantum communication protocols [101][93]. They have been performed
experimentally in quantum optics setup since 1985 [102], and more recently at microwave
frequencies using circuits based on Josephson non-linear elements [103][37].

In these experiments, three modes of radiation a, b, c are coupled by a non-linear element,
with an effective Hamiltonian Htmsq / â†b̂†ĉ+h.c. The ĉ mode is put in a bright coherent

state, so that ĉ ' hĉi = c0e
i✓. Htmsq ' c0e

i✓â†b̂† + h.c then implements a two-mode drive

of â and b̂. The driving strength is set by the occupation number hĉ†ĉi = c20 of the pump
mode, while its phase sets the two-mode squeezing angle ✓.

In the single-mode case, the value of ✓ indicates directly which quadrature has a variance
below the vacuum level. The situation is a bit different for two-mode squeezing, as any
quadrature combination of the form X�

a � X✓��
b displays a reduced variance,

for � 2 [0, 2⇡]2. In other words, local states of the â and b̂ fields do not have a prefer-
ential phase orientation, but they share a hidden, non-local phase. Measuring two-mode
squeezing below the vacuum level still requires knowing the value of ✓.

Two-mode non-classical correlations through ICPT

A coherent two-mode drive can be implemented by putting a Josephson junction in series
with two different resonators at frequencies !a,!b and setting a voltage bias 2eV = ~(!a+
!b), such that each tunneling Cooper pair creates one photon in each mode (Fig.4.6).

Figure 4.6: A two-mode ICPT circuit implements two-mode squeezing, with the bias voltage V set on
the photon-pair resonance 2eV = ~(ωa + ωb) at t = 0.

2This is what defines the squeezing angle.
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The junction is coupled to both modes at the same time, as its phase difference �̂ now
reads:

�̂ =
2eV

~
t�p

ra(âe
�i!at + â†e+i!at)�p

rb(b̂e
�i!bt + b̂†e+i!bt). (4.14)

Expanding the Josephson Hamiltonian �EJ cos(�̂) in the frame rotating at !J , one ob-
tains the effective Hamiltonian:

Ĥ
(a+b)
RWA = �E⇤

JRe

"

e+i!J t

1
X

k=0

(raâ
†â⇥ rbb̂

†b̂)k

[k!⇥ (k + 1)!]2
p
rarbâb̂e

�i!ate�i!bt

#

, (4.15)

which implements a coherent two-mode driving of the a and b resonators dressed by
non linear terms proportional to raâ

†ârbb̂
†b̂. For low impedances ra, rb ⌧ 1 and small

enough occupation numbers hâ†âi ⌧ r�1
a , hb̂†b̂i ⌧ r�1

b , we can effectively neglect the
non-linearities and obtain a true two-mode squeezing Hamiltonian:

Ĥ
(a+b)
TMS = �E⇤

J

p
rarbe

�i!J t(â†e+i!at)(b†e+i!bt) + h.c = �E⇤
J

p
rarbe

�i�!ta†b† + h.c, (4.16)

The driving strength is set by E⇤
J

p
rarb, and the squeezing angle by the time t = 0 at

which the voltage bias is tuned on resonance. In this simple thought experiment, we
consider that the bias voltage is turned off after some time, such that the number of
photons created in the modes stay finite.

As in the single-mode squeezing case, thermal noise �V (t) from the low-frequency modes
of a real setup yields a continuous drifting of the squeezing angle ✓(t) =

R t

0
2e�V (t0)dt0/~.

In our experiment, this dephasing blurs the two-mode squeezing on a timescale ⇠ 2 µs,
precluding the direct observation of squeezing below the vacuum level using longer mea-
surement times.

However, some non-classical properties of the two-mode squeezed state can survive despite
the absence of a stationary squeezing angle. Indeed the simultaneous creation of photons
in the two modes generates non-classical correlations between their respective photon
numbers na = â†â, nb = b̂†b̂. These correlations manifest when writing the pure TMSV
state in the joint Fock state basis [99]:

| iTMSV =
1

cosh r

1
X

n=0

�

ei✓ tanh(r)
�n

|nia|nib, (4.17)

where r = ln(R) is the squeezing parameter. This expression highlights the entanglement
between the two modes: even though the exact photon number of each cavity is not well
defined, with ∆n2

a/b = na/b(na/b+1) 6= 0, simultaneous measurements of na and nb would
always yield the same value. This amplitude-squeezing can be characterized by the noise
reduction factor (NRF) [104]:

NRF =
∆(na � nb)

2

hna + nbi
. (4.18)

For independent coherent states of the modes, NRF = 1. A value below 1 is a proof
of non-classical correlations between the populations of the modes. For pure two-mode
squeezing, na = nb such that NRF = 0.

When averaging over many copies of this state with random phase ✓, the coherence
between different components of the Fock basis wash out, but the occupation probabilities
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pk = |hn| iTMSV |
2 at a given time remain unchanged. In particular it should still be

possible to detect non-classical photon number correlations between the two modes. This
motivated the first experiment to probe the non-classical emission of photon pairs by
ICPT [39].

4.1.2 Photon pairs emitted by ICPT: from non-classicality to
entanglement

First measurements of non-classical photon number correlations

During his PhD research in Saclay, Olivier Parlavecchio [38] designed an experiment to
study the joint statistics of photon pairs emitted by a dc-biased Josephson junction in a
two-mode environment (Fig.4.7). Measuring the covariance of na, nb inside the cavities
would require a complex scheme, e.g using dispersively coupled qubits for readout. It
is simpler to let the photons leak out of the modes and relate their statistics to the
measurement of correlation functions, in the spirit of the antibunching experiment (see
3.13).

2e

1

2

Figure 4.7: Schematic microwave setup for the detection of emission power correlations between the two
resonators. When 2eV = ~(ωa + ωb), the junction creates photon pairs in the a and b modes. These
photons leak into two detection lines, which implement the microwave version of a HBT experiment.
By inserting after the amplifiers bandpass filters centered around ωa (ωb), the correlation of V c

det(0) and

V d
det(τ) yields g

(2)
a(b)(τ). Setting one filter at ωa and the other one at ωb yields g

(2)
ab (τ).

Each resonator is connected to a bias tee, with the rf port feeding one port of a beam-
splitter. Like in the microwave HBT setup of figure 3.18, detecting the correlated power
fluctuations at the outputs c, d of the beam splitter gives access to the second order coher-
ence function of the emitted photons. At first sight, one would need to use two different
HBT setups (including two beamsplitters, four amplifiers and four power detectors) to

measure both g
(2)
a (⌧) = hâ†(0)â†(⌧)â(⌧)â(0)i

n2
a

and g
(2)
b (⌧) = hb̂†(0)b̂†(⌧)b̂(⌧)b̂(0)i

n2
b

. In practice, one

can route the a and b signals to the two inputs of a single beamsplitter, and use filtering
at room temperature to detect either power fluctuations at !a or at !b. The beams re-
combining in figure 4.7 do not yield interferences of the a and b photons, as they belong
to different frequency bands.
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Correlations between the populations of the a and b modes can also be detected by setting
on one line a filter centered around !a, and on the other line a filter centered around !b.
In this configuration, the correlation of power fluctuations detected on the two lines at
the same time yields:

1 +
h�P1(0)�P2(⌧)iON/OFF

hP1iON/OFF hP2iON/OFF

=
hâ†(0)â(0)b̂†(⌧)b̂(⌧)i

n̄an̄b

= g
(2)
ab (⌧). (4.19)

Auto- and cross-correlation functions of the leaking photons are linked to the NRF of the
cavities state through [39]:

NRF = 1 +
n̄2
ag

(2)
a (0) + n̄2

bg
(2)
b (0)� 2n̄an̄bg

(2)
ab (0)

n̄a + n̄b

= 1 + n̄
g
(2)
a (0) + g

(2)
b (0)� 2g

(2)
ab (0)

2

(4.20)

for equal populations of the modes n̄a = n̄b = n. In this particular case, a classical bound
on the NRF can be derived from the Cauchy-Schwarz inequality applied to na, nb:

2hnanbi  hn2
ai+ hn2

bi
) 2g

(2)
ab (0)  g(2)a (0) + g

(2)
b (0)

) NRF � 1,

(4.21)

where the first inequality is only valid if na, nb are scalars and not quantum operators, i.e
for classical states of light. Breaking the inequality, or equivalently measuring a NRF<1,
is then a sign of non-classicality of the radiation, in the sense that the Glauber-Sudarshan
P function of the two modes is non-positive.

Figure 4.8 shows the results of the experiment [39]. The g
(2)
a (⌧) and g

(2)
b (⌧) (not dis-

played) functions prove the bunching and super-Poissonian statistics of the radiation,

with g
(2)
a (0) ' g

(2)
b (0) ' 2 as predicted for gaussian states of light. By contrast the cross-

correlation coherence function g
(2)
ab (⌧) proves the correlated emission of photons in the

two modes, with g
(2)
ab (0) � 2.

Zero-time values of these three correlation functions are plotted as a function of the emis-
sion rate Γ = n̄, tuned by threading a flux Φ trough the SQUID. The NRF, computed
following expression (4.20), is also shown on the figure. Within its statistical deviation
it is found to be constant, with NRF ' 0.7 < 1. This proves that the photon numbers
na, nb are more correlated than what is possible for classical observables, reflecting the
photon-pair creation processes.

As the NRF is found to be approximately constant, by inverting (4.20) one gets:

g
(2)
ab (0) =

g
(2)
a (0) + g

(2)
b (0)

2
+

1� NRF

n̄
' 2 +

0.3

n̄
. (4.22)

The 1/n̄ divergence of g
(2)
ab (0) is visible on figure 4.8. At low occupation numbers, the

correlated fluctuations of na and nb are relatively more important. At higher photon
numbers, Poissonian shot-noise overcomes these correlations.
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Figure 4.8: Results of the photon-pair experiment. Insert: g
(2)
ab (τ) correlation function for n̄ ' 0.11,

with measured data points (pink points) and numerical simulations, for a zero (dashed black) of finite

(pink line) response time of the quadratic detectors. Main frame: photon number correlators g
(2)
a (0) (red

dots), g
(2)
b (0) (blue dots) and g

(2)
ab (0) (pink dots) as a function of the pair emission rate Γ and of the

mean occupation of the cavities n̄. From these values the NRF is computed according to (4.20). Data
points are plotted along the results are numerical simulations (full lines) (taken from [39]).

All these results are well described by an analytical theory and numerical simulations [104][105].

At low driving EJ ! 0 (with n̄ ! 0), the value of g
(2)
a (0) is given by:

g(2)a (0) = 2
⇣

1� ra
2

⌘2
✓

1� 5

8
rb +

r2b
8

◆

' 1.79, (4.23)

and a similar result for g
(2)
b (0). This value lower than 2 reflects the reduction of tunneling

due to phase vacuum noise from the resonators, it is similar in essence to the antibunching
described in the previous chapter. Numerical simulations are needed to compute the value
of g

(2)
a/b(0) at finite emission rates. It is found that the increased phase fluctuations due

to the occupation of the modes, reduce even more the tunneling rates. This lowers the
correlation between subsequent photon creation processes, leading to g

(2)
a/b(0) ! 1 as

n̄ ! 1.

Time-domain simulations reproduce well the measured correlation functions. The inset
in figure 4.8 shows the measured cross-correlator g

(2)
ab (⌧) at a given n̄ ' 0.11, along

with its numerical simulation. The 0.4 ns response time of the quadratic detectors is
responsible for a reduction of g

(2)
ab (0), from its predicted value ' 6.5 down to a measured

' 4. Following (4.20), this leads to an increase of the measured NRF from 0.5 to 0.7. We
comment later on the value predicted for infinitely fast detectors NRF = 1/2, as opposed
to the NRF = 0 expected in 4.1.1. The effect of a finite response time is consistent all
over the range of measured data, from n̄ ' 0.03 up to 1.5.

Another key ingredient for the description of photon-detection statistics is the coupling of
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the cavities to the measurement lines. First of all, this coupling sets the leak rate  of the
resonators, also known as the inverse cavity lifetime. This timescale appears as the decay
constant in the population correlators, see the inset of figure 4.8. For auto-correlators
g
(2)
a/b(⌧), this means that c�1 is the typical length of a wavepacket propagating in the

lines, i.e the ”length” of a photon. In the case of g
(2)
ab (⌧), 

�1 is also the typical timescale
over which the fluctuations of the a and b emission rates are correlated. Thus there are
no number correlations between two successive photon-detection events.

Second, this coupling dictates the dynamics of the field inside the cavity. The master
equation formalism of [104] highlights that the resonator field â(t) (resp. b̂(t)) is contin-
uously driven by the two-mode squeezing Hamiltonian while leaking in the transmission
line, as described by a Lindblad operator L[â] (resp. L[b̂]). The photons are created by
pairs, but then leak independently from the resonators. Because of their independent
leaks, the correlation of the cavities occupations is only partial. This leads to a reduction
of the NRF for the cavities, down to NRF = 0.5.

Non-local properties of the propagating radiation

We presented the results of [39] within the same perspective used by the authors, which
does not make a distinction between the states of the cavity modes and the state of the
outgoing radiation. As the photon emission rate Γx = xn̄x is simply proportional to
the occupation number n̄x of cavity x, measuring correlation of the emitted powers is
equivalent to measuring correlations of the two resonators photon numbers. However the
link between the cavity modes and the propagating modes is more complicated for other
observables, such as the field quadratures.

The input-output formalism [59] allows to describe more comprehensively the emission of
photons in the measurement lines. In this picture, the evolution of the fields â(t) and b̂(t)
is governed both by the coherent two-mode drive and by the injection of random noise
carried by the incoming mode operators âin(!) and b̂in(!). Both the cavity field and the
incoming field are linked to the outgoing field by the input-output relations:

p
â(t) = âin(t) + âout(t) =

Z 1

0

�

âin(!) + âout(!)
�

⇥ e�i!td!

2⇡
(4.24)

p
b̂(t) = b̂in(t) + b̂out(t) =

Z 1

0

�

b̂in(!) + b̂out(!)
�

⇥ e�i!td!

2⇡
. (4.25)

As we detail in a later section 4.1.3, pairs of outgoing modes display perfect photon
number correlations, with ∆(â†outâout(!) � b̂†outb̂out(!J � !))2 = 0, leading to a NRF = 0
for this pair of modes at ! and !J � !.

We have here a novel picture of the partial correlation between na and nb: the cavities
are continuously leaking perfectly correlated photon pairs in the lines at a rate , while
absorbing uncorrelated vacuum noises at the same rate . Their photon numbers are thus
in average only 50% correlated, yielding a NRF = 1/2.

In essence, the master equation formalism describes only the cavity states, and tells us
that half of the correlations have been lost. The input-output formalism tells us exactly
where did these non-classical correlations go: they travel in the line, away from the
cavities. Most importantly, as the photons do not interact once they have been emitted,
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their state stops evolving, and their non-classicality is preserved along their journey -
until they are eventually detected.

What about the non-local phase correlations of two-mode squeezed states? The two
cavities do not display measurable squeezing below the vacuum level, as their squeezing
angle ✓ drifts continuously due to low-frequency voltage noise. However once photons have
left the cavities, they are decoupled from this voltage noise and conserve their squeezing
angle. We thus expect the propagating modes to display a form of phase coherence,
revealing their entanglement.

The nature of this entanglement appears in a naive setp-by-step picture of the photon pair
emission process. Consider that at t = 0 a photon pair is created, displaying perfect two-
mode squeezing correlations. After a typical time �1 the two photons have independently
left their respective cavities. While propagating they keep track of the shared phase ✓(t),
accessible through joint measurements of the âout and b̂out modes (Fig.4.9).

Figure 4.9: Simplified picture of the emission of entangled photon pairs. The dc-biased Josephson
junction squeezes vacuum incoming from the transmission lines at frequencies ωa,ωb and reemit a non-
local state of light, pictured here as entangled photons (colored dots). At position x on the propagation

line, squeezing manifests as non-local correlations, with âoutb̂out(x, t) / eiθ(t�x/c). The squeezing angle
θ(x, t) is given by the phase φ(t� x/c) on the junction. Successive photon pairs, emitted on a timescale
shorter than the phase coherence time σt, have approximately the same squeezing angle.

If the dephasing is slow enough compared to the rates at which photons leave the cavities,
then we expect the next pair of emitted photons to display a very close value of ✓. There
are then correlations not only between photon pairs at different frequencies, but also
between successive photon pairs emitted over a time equal to the inverse dephasing rate
�t ' 2 µs. As light is continuously emitted by the cavities, this leads to the creation of
two correlated beams of light (Fig.4.9).

This picture is a bit too naive because the Hamiltonian (4.16) does not write naturally in
the basis of discrete photon number states. It rather acts like a smooth drive of the fields
â(t), b̂(t). We should then rather think of continuous amplitudes âout(t), b̂out(t) carrying
a field of non-local phase ✓(t), rather than in terms of single photons with individual
quadrature phases. This is because a low-impedance environment does not promote the
granularity of light. Only observables sensitive to the statistics of light, like the g(2)(⌧)
functions, reveal the short timescale associated with photon wavepackets.

This new point of view helps us understanding the squeezing angle ✓(t) not as a property
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of ponctual measurements of the quadratures, but rather as pertaining to the propagating
fields âout(t), b̂out(t). In particular we can link its value to the argument of the complex
observable hâoutb̂out(t)i. We start by noting that if:

arg(hâb̂i) = ✓, (4.26)

then:
hâe�i✓b̂i 2 R. (4.27)

We rewrite this expression using the quadratures with â = Xa + iXa,⇡
2
, b̂ = Xb + iXb,⇡

2
:

hâe�i✓b̂i = hXaXb,✓ �Xa,⇡
2
Xb,⇡

2
+✓i+ ihXaXb,⇡

2
+✓ �Xa,⇡

2
Xb,✓i. (4.28)

From (4.27), we know that the last term is zero. The first term can be linked to the
variance of linear combinations of a, b quadratures:

∆

✓

Xa ±Xb,✓p
2

◆2

=
∆X2

a +∆X2
b,✓

2
± hXaXb,✓i (4.29)

∆

✓

Xa,⇡
2
±Xb,⇡

2
+✓p

2

◆2

=
∆X2

a,⇡
2
+∆X2

b,⇡
2
+✓

2
± hXa,⇡

2
Xb,⇡

2
+✓i. (4.30)

For a pure two-mode squeezed state, the right choice of quadrature phase ✓ and ± sign
of the linear combination reveals squeezing below the vacuum level. This means that the
squeezing angle ✓ of a and b appears directly in the phase of hâ b̂i.
This phase is simply the sum of the phases of â and b̂. In the meantime the phases of a and
b alone are random, with hâi = hb̂i = 0. This is the essence of the non-local entanglement
of the two fields: if we were to measure the local phases of the signals arg(hâi), arg(hb̂i),
we would find only random noise, averaging to zero, while a joint measurement would
yield always the same value for the sum of the phases: ✓.

If the phase across the junction was fixed, the sum of the phases of the two emitted fields
would stay constant through time. The finite coherence time of ✓(t) leads to a finite
coherence length of the two propagating beams of figure 4.9. This means that we cannot
measure and average the sum of the phases of âout(t), b̂out(t) longer than the ✓ coherence
time, as it averages down to zero. However, we can build a correlation function that
reveals the existence of these phase correlations over a finite time:

g
(2)
� (⌧) =

hâ†outb̂†out(x, t)âoutb̂out(x� c⌧, t)i
hâ†outâoutihb̂†outb̂outi

=
hâ†outb̂†out(t)âoutb̂out(t+ ⌧)i

hâ†outâoutihb̂†outb̂outi
, (4.31)

where we used the invariance of the field through propagation to map observables taken
at different positions into a measurement of the same observable at different times. The
input-output relations link this correlator to the field inside the cavities:

g
(2)
� (⌧) =

hâ†b̂†(t)âb̂(t+ ⌧)i
hâ†âihb̂†b̂i

. (4.32)

Contrary to the value of the squeezing angle or the hâb̂i correlator, g(2)� does not average
to zero when ✓ drifts randomly. Consider two times values t1, t2 such that |t2 � t1| � �t,
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i.e separated by such a long time that ✓(t1) and ✓(t2) are completely uncorrelated. Then
for short times ⌧ ⌧ �t:

â†b̂†(t1)âb̂(t1 + ⌧) / e�i�!(t1)⇥t1ei�(t1+⌧)⇥(t1+⌧) ' ei�!(t1)⇥⌧ , (4.33)

while:
â†b̂†(t2)âb̂(t2 + ⌧) / ei�!(t2)⇥⌧ . (4.34)

Averaged together, these two measurements of â†b̂†(t)âb̂(t + ⌧) yield constructive inter-
ferences for ⌧  h�!i�1 ' 125 ns. By looking at a higher order correlation function,
including a conjugated a†b̂†(t) term, we are compensating for the phase drift between
times t1 and t2. In a sense a†b̂†(t) is used as a local phase reference to demodulate

âb̂(t + ⌧). We then expect g
(2)
� (⌧) to average to a finite value, despite the drifting of the

squeezing angle during the measurement.

Link with the Franson two-photon interferometer

The phase correlation function g
(2)
� (⌧) appeared for the first time in the description of a

new type of two-photon interferometer [106] due to Franson. In a Franson interferometer,
the light source is an atom with three energy levels g, e, f , with Ef > Ee > Eg, where

Ei = hi|Ĥ|ii is the energy of the i state (Fig.4.10). These states also have different
lifetimes, with the e level being much more short-lived than the f and g levels: ⌧e ⌧ ⌧f , ⌧g.
Following Heisenberg uncertainty principle, this implies that the energy of the atom in
the e state is less defined than in the f and g levels: ∆Ee ' ~/⌧e � ∆Ef ,∆Eg.

The experiment starts with the atom in the doubly excited state f . In a typical time
⌧f , it relaxes to state e while emitting a first photon at frequency !fe = (Ef � Ee)/~.
After a much shorter time ⌧e, the atom emits a second photon at !eg = (Ee � Eg)/~
while relaxing to the ground state g. The two photons are then in a time-frequency
entangled state: because both f and g are long-lived, the total energy released by the
atom Ef � Eg is well-defined. On the other hand the energy of each photon is less
well-defined: ∆(Ef � Ee)

2 ' ∆(Ee � Eg)
2 ' ∆E2

e � ∆(Ef � Eg)
2.

In this situation, the frequency of each photon is ill-defined, while their sum is well-
known. As the atom relaxes in a coherent process, the two propagating photons are in an
entangled EPR state, where only a shared observable (the sum of their frequencies) has
a physical meaning, while local measurements of !fe and !eg yield random results.

This non-local frequency entanglement is mirrored by a time-domain entanglement: be-
cause f is long-lived, there is a considerable uncertainty on the exact moment at which
the first photon is emitted. However we know that the second photon is emitted im-
mediately after, as ⌧e ⌧ ⌧f . Each photon is then in a highly delocalized state, with a
position uncertainty of the order of ∆x(1) ' c ⇥ ⌧f . But immediately after one photon
has been detected, the position of the second one is instantly known with a precision
of ∆x(2) ' c ⇥ ⌧e ⌧ ∆x(1). The complementarity of entanglement between conjugated
variables (such as time and energy, or position and momentum) is again a feature of EPR
states.

In the original experiment proposal by Franson, each photon is routed towards an im-
balanced Mach-Zehnder interferometer (MZI) (Fig.4.10). The difference of length D
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Figure 4.10: Original Franson experiment. An atom (green dot) undergoes a relaxation cascade, emitting
successively two photons (red and blue wavepackets). Each photon is routed towards an unbalanced
Mach-Zehnder interferometer. The imbalance of the short (S) and long (L) paths is larger than the
one-photon coherence length. Nevertheless, coincidences of the detection rates at photo-counters (1) and
(2) reveal non-classical two-photon coherence.

between the short (S) and long (L) paths yields as time delay ⌧ = D/c, chosen such that:
⌧e ⌧ ⌧ ⌧ ⌧f . Consider the first photon from the emitted pair, carried by a propagating
mode â(x, t). Its wavefunction at the detector is the sum of two probability amplitudes,
associated with the photon travelling either through the short or the long path:

â(x = xdet1 , t) =
âS(t) + âL(t)p

2
=

âe�i!fet + âe�i!fe(t�⌧)

p
2

(4.35)

The (L) amplitude shows an additional phase factor, due to a longer propagation time.
As ∆!fe ' 1/⌧e � 1/⌧ , this phase fluctuates randomly, so that there are no stationary
interferences of the two amplitudes. The final detection rate at photocounter (1) reads:

p(1) = hâ†â(xdet1 , t)i =
hâ†S âS(t)i+ hâ†LâL(t)i

2
= hâ†âi. (4.36)

The condition ⌧e ⌧ ⌧ hence ensures that there is no single-photon coherence in the MZI.
Same goes for the second photon at !eg, carried by a mode b̂.

If the two photocounters ”click” at different moments, it means that the two photons took
different paths: one went in the short arm, and the other in the long arm of its MZI.
These events are discarded as they do not lead to quantum interference. On the contrary
if the two detectors register a photon at the same time, it means that the two photons
made the same choice. Now as ⌧ ⌧ ⌧f ' ∆x1/c, events where the pair travelled through
both short or both long arms are indistinguishable. The photon pair detection rate is
then:

p(1)&(2) = hâ†â(xdet1 , t)b̂
†b̂(xdet2 , t)i

=
hâ†S âS b̂†S b̂Si

4
+

hâ†LâLb̂†Lb̂Li
4

+
hâ†LâS b̂†Lb̂Si

4
+

hâ†S âLb̂†S b̂Li
4

=

"

hâ†âb̂†b̂i
4

+
hâ†(t� ⌧)â(t)b̂†(t� ⌧)b̂(t)i

4

#

+ h.c.

(4.37)

The second term is the g
(2)
� (⌧) 2-photon phase coherence function (4.32). It leads to

interferences in the coincidence count, which can be either reduced or enhanced compared
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to the coincidence count for photons emitted independently:

p(1)&(2) = hâ†âb̂†b̂i ⇥ 1 + cos
�

(!fe + !eg)⇥ ⌧
�

2
(4.38)

The Franson interferometer illustrates how a bipartite system can exhibit two-photon
coherence effect, in settings where there is no single-photon coherence. Franson advocated
it as a tool to study the non-locality of quantum mechanics, as a change of the length
D1 of interferometer (1) should affect instantly the coincidence count at interferometer
(2). Despite his affirmation, it is still up to debate wether or not this kind of experiment
could show a violation of Bell’s inequalities [107].

Entanglement witness for correlated beams of light

In the ICPT experiment that we are considering, the entangled subsystems are not single
photons but rather continuous beams of light. As discussed before, the Wigner function
of two-mode squeezed state is a gaussian function of the quadratures Xa, Pa, Xb, Pb. It is
always positive, and as such can never lead to a violation of Bell’s inequality.

Nevertheless, we learn from the Franson experiment that the entanglement of the a and
b mode can also be expressed as a non-local relation for the instantaneous frequencies
of the propagating wavepackets. We can link this relation to the ICPT mechanism for
2-photon processes. Each tunneling event generates electromagnetic excitations in the
environment of the junction with a total energy 2eV . In the 2-photon case, this energy
can be shared among a continuum of pairs of modes.

The P (E) theory yields the emission rate spectral density (4.1), which is a quantity av-

eraged over many tunneling events. The equality S
(2)
P (!) = S

(2)
P (!J � !) indicates that

photons tend to be created by pairs, with hâ†outâout(!)i = hb̂†outb̂out(!J � !)i, but tells
nothing about the coherence between these photon pairs. A more complete treatment
(detailed in section 4.1.3) shows that the coherent 2-mode drive actually creates a quan-
tum superposition of all the photon pair states of the outgoing radiation whose sum
of frequency is equal to !J .

The instantaneous fields âout(t) =
R1
0

âout(!)⇥e�i!t d!
2⇡

and b̂out(t) =
R1
0

b̂out(!)⇥e�i!t d!
2⇡

thus have an ill-defined frequency. On the other hand the sum of their instantaneous
frequency is much better defined, as: hâoutb̂out(t)i / e�i!J t. This works because all
frequency components of âout and b̂out(t) agree on the values of !J and of the squeezing
angle ✓.

Furthermore, the Franson experiment teaches us that entanglement between the two
fields is characterized by having two-photon coherence in the absence of single-photon
coherence. The long-lived value of the sum of frequencies of the two fields is revealed
within the phase correlation function g

(2)
� (⌧)(4.32). The short phase coherence time of

each field (or, in other terms, its large frequency uncertainty) appears in the population
g(2)(⌧) functions, which indicate fluctuations of the emission rates on the short timescale
�1 (see the inset of figure 4.8).

These two kinds of correlation functions can be combined to yield an entanglement
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witness for the two beams. Following the work of [108], the inequality:

|hA1A2B1B2isep.|2  hA1A
†
1B

†
2B2isep. ⇥ hA†

2A2B1B
†
1isep. (4.39)

is valid for all separable states of a bipartite system {a ⌦ b}, where the operators Ai

(resp. Bi) act only on subsystem a (resp. b). For two beams of light in a separable state,
we can thus write:

|hâ†out(x1, t)âout(x2, t)b̂
†
out(x1, t)b̂out(x2, t)isep.|2


hâ†outâout(x1, t)b̂
†
outb̂out(x2, t)isep. ⇥ hâ†outâout(x2, t)b̂

†
outb̂out(x1, t)isep..

(4.40)

This expression means that for separable states, the correlation between the sum of the
phases of the fields measured at two different points of space (x1, x2) is smaller than the
correlation between the populations of the two beams, taken at these points. As in (4.31),
we can map the position difference x2 � x1 onto a time delay ⌧ = (x2 � x1)/c, yielding
after normalization:

|g
(2)
� (⌧)sep.|

2  g
(2)
ab (⌧)sep. ⇥ g

(2)
ab (�⌧)sep.. (4.41)

As this inequality is true for any separable state, its violation provides an entanglement
witness.

Probing the entanglement of the two beams

In which conditions could the two beams of light violate this inequality? As g
(2)
� (0) =

g
(2)
ab (0), the two correlators have the same value at ⌧ = 0. We know that in our experiment,

g
(2)
ab (⌧) decays to 1 in a typical time �1. We also expect g

(2)
� (⌧) to display the long-lived

phase correlations between the two beams, with a phase coherence time ⇠ h�!i�1 ' 125
ns. If this dephasing rate h�!i is smaller than the decay time of the resonators, then
correlation functions measured on the two beams should break the inequality, proving
their entanglement.

In other words, the two beams are entangled if the emitted photons leave the cavities
before having lost their shared phase ✓. This constrains both the value of the voltage
noise in the experiment (which yields the dephasing rate), and the design of the two
cavities (which should have short enough lifetimes).

We thus aim to prove that the two beams are entangled by measuring a violation of
(4.41), using the same kind of sample as in [39] and our new linear detection setup.

The main difference between our system and true TMSV is that due to a slow dephasing
of the squeezing angle, we can only prove the entanglement of a slice of length L ⇠ c/h�!i
of the two beams. Photon pairs which are more than L apart in the beam do not agree
on the value of ✓ (or equivalently !J), and do not yield a violation of (4.41).

Note also that the entanglement witness deduced from (4.39) does not apply to the
state of the cavities, as it requires the operators A1 and A2 (resp. B1 and B2) to be
independent. This is true for the propagating operators â†out(x1, t) and âout(x2, t) (resp.
b̂†out(x1, t) and b̂out(x2, t)), but not for the cavity operators, which evolve non-trivially
under the Hamiltonian (4.16).
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The stationary state of the cavities is indeed hard to describe. Their Wigner function is
approximately the Wigner of TMSV, averaged over all values of ✓. This state is a priori
non-gaussian, so that we lack the tools to describe simply its properties. We then resort
to numerical simulations to predict and interpret the values of observables.

Moreover, we know from the results of figure 4.8 that non-linear terms in the driving
strength, due to the finite impedance of the resonators, make even the propagating modes
depart from pure gaussianity. This is manifest in the value of g

(2)
a (0), g

(2)
b (0) 6= 2. However

these deviations are small at moderate occupation numbers of the cavities, and more
importantly they do not affect the validity of our entanglement witness, which applies to
any state of the outgoing modes, Gaussian or not.

To complete the predictions of numerical simulations for the cavities, we derived an an-
alytical scattering model for the propagating modes, assuming pure two-mode squeezing
and perfectly gaussian states. This simple model helps us interpreting our results at low
emission rates, and allow for an independent calibration of some parameters of the exper-
iment. It also allows us to estimate the amount of instantaneous entanglement between
the cavities, and to propose a value for the entanglement rate in this experiment.

4.1.3 Scattering model for a pure two-mode squeezer

We present here a simple scattering model that describes the generation of entangled
beams by a pure two-mode squeezing Hamiltonian, i.e in the absence of any non-idealities
such as higher-order non-linearities. Our treatment is based on the work of [7] (Chapter 5).
We use the same tools (Langevin equation for the cavities fields, scattering approach...)
to describe the properties of the radiation emitted by the junction, adapting it to our
own implementation of the squeezing Hamiltonian. A similar work was done in [109],
although not in the context of the generation of two-mode squeezing.

Scattering coefficients from the input-output model and Langevin equations

In this model, the dc-biased Josephson junction is seen as a non-degenerate parametric
amplifier, which absorbs the vacuum noise incoming from the transmission lines and
reflects two photons at !a,!b. The energy needed to create these photons is taken directly
from the dc bias upon the inelastic tunneling of a Cooper pair. The main feature of this
amplifier is its use of a dc pump rather than a microwave tone at !p = !a + !b.

The resonance condition 2eV = ~(!a + !b) yields the effective Hamiltonian (4.16), valid
for small modes impedances ra, rb ⌧ 1 and low-enough cavity occupation numbers, so
that rana, rbnb ⌧ 1. Even in the absence of voltage noise (�! = 0), the bias voltage may
be detuned from the sum of frequencies of the two modes. We thus consider here the
more general Hamiltonian:

Ĥ = �E⇤
J

p
rarbe

�i!J t(â†e+i!at)(b̂†e+i!bt) + h.c = �E⇤
J

p
rarbe

�i∆tâ†b̂† + h.c, (4.42)

with the detuning ∆ = !J � (!a + !b).
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Figure 4.11: Input-output model for the two-resonator experiment. The a (b) cavity is driven by the
effective Hamiltonian (4.16), is subject to incoming vacuum noise from the transmission line at frequency
ωa (ωb), and re-emits photons in the line.

In closed systems, the time evolution of an operator Ô(t) under Ĥ is set by the Heisenberg
equation of motion:

dÔ

dt
=

i

~
[Ĥ, Ô]. (4.43)

For open systems, this equation can be modified to include coupling to the environment.
The evolution of the cavity fields is then given by the quantum Langevin equations:

dâ

dt
=

i

~
[Ĥ, â]� a

2
â+

p
aâin (4.44)

db̂

dt
=

i

~
[Ĥ, b̂]� b

2
b̂+

p
bb̂in, (4.45)

where the �a

2
â term models the leaking of the field out of resonator a at a rate a,

while
p
aâin describes the incoming vacuum noise from the transmission line. This non-

conservative equation of motion can be derived in a Hamiltonian setting, by modelling
the environment as an infinite collection of harmonic oscillators {âin(!)} linearly coupled
to â. Tracing out the environment degrees of freedom yields (4.44). This treatment of
the dissipative coupling to the environment is similar to the Caldeira-Leggett model used
in the derivation of the P (E) theory.

The Hamiltonian Ĥ yields the commutator:

[Ĥ, â] =

�E⇤
J

p
rarb

2
(e�i∆tâ†b̂† + e+i∆tâb̂), â

�

=
�E⇤

J

p
rarb

2
e�i∆t ⇥ [â†, â]⇥ b̂†

=
E⇤

J

p
rarb
2

e�i∆tb̂†

(4.46)

and similarly:

[Ĥ, b̂] =
E⇤

J

p
rarb
2

e�i∆tâ†, (4.47)
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so that the Langevin equations are coupled linear differential equations:

dâ

dt
=

i

~

E⇤
J

p
rarb
2

e�i∆tb̂† � a

2
â+

p
aâin (4.48)

db̂

dt
=

i

~

E⇤
J

p
rarb
2

e�i∆tâ† � b

2
b̂+

p
bb̂in. (4.49)

The effective Hamiltonian Ĥ being written in the reference frame of the cavities, it does
not include the EM fields energy term ~!aâ

†â + ~!bb̂
†b̂. In the laboratory frame of

reference, the fields write â(t)e�i!at + â†(t)e+i!at and b̂(t)e�i!bt + b̂†(t)e+i!bt. We define
the Fourier decomposition of the fields as:

â(t)e�i!at =

Z 1

0

a(!)e�i!td!

2⇡
) a(!) =

Z

â(t)ei(!�!a)tdt, (4.50)

b̂(t)e�i!bt =

Z 1

0

b(!0)e�i!0td!
0

2⇡
) b(!0) =

Z

b̂(t)ei(!
0�!b)tdt. (4.51)

The Langevin equations write in Fourier space:

�i(! � !a)a(!) =
i

~

E⇤
J

p
rarb
2

b†
�

!b +∆� (! � !a)
�

� a

2
a(!) +

p
aain(!) (4.52)

�i(!0 � !b)b(!
0) =

i

~

E⇤
J

p
rarb
2

a†
�

!a +∆� (!0 � !b)
�

� b

2
b(!0) +

p
bbin(!

0). (4.53)

We introduce the dimensionless variable:

� =
E⇤

J

p
rarb

~
p
ab

. (4.54)

which plays the role of the reduced pump amplitude of the parametric amplifier. We
rewrite the system of equations, taking the complex conjugate of the second one, as:

0 =
h

i(! � !a)�
a

2

i

a(!) +
i�

2

p
abb

†(!J � !) +
p
aain(!) (4.55)

0 =
h

i(!0 � !b) +
b

2

i

b†(!0) +
i�

2

p
aba(!J � !0)�p

bb
†
in(!

0) (4.56)

We aim to eliminate the b†(!J �!) term from the expression of a(!). For the rest of this
section we set !0 = !J � !. We also introduce reduced frequencies:

�a = 2
! � !a

a
, �b = 2

!0 � !b

b
, (4.57)

We then have:

0 = (i�a � 1)a(!) + i�

r

b

a
b†(!0) +

2p
a

ain(!) (4.58)

0 = (i�b + 1)b†(!0) + i�

r

a

b
a(!)� 2p

b
b†in(!

0), (4.59)
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so that:

(1� i�a)a(!) = i�

r

b

a
b†(!0) +

2p
a

ain(!) (4.60)

) (1� i�a)(1 + i�b)a(!) = (1 + i�b)



i�

r

b

a
b†(!0) +

2p
a

ain(!)

�

= �2a(!) +
2i�p
a

b†in(!
0) + (1 + i�b)

2p
a

ain(!)

(4.61)

)
�

(1� i�a)(1 + i�b)� �2
�

a(!) =
2i�p
a

b†in(!
0) + (1 + i�b)

2p
a

ain(!), (4.62)

where we used (4.59) to substitute b†(!0) in (4.61). Now the Fourier component a(!) of
the cavity field operator â(t) depends only on the incoming fields ain(!) and b†in(!

0). A
similar expression can be obtained for b(!0):

�

(1� i�b)(1 + i�a)� �2
�

b(!0) =
2i�p
b

a†in(!) + (1 + i�a)
2p
b

bin(!
0). (4.63)

Let us discuss this result. In the absence of tunnel coupling through the junction, E⇤
J = 0

so that � = 0. Then we have the decoupled equations:

p
aa(!) =

2

1� 2i!�!a

a

ain(!) (4.64)

p
bb(!

0) =
2

1� 2i!
0�!b

b

bin(!
0). (4.65)

The field inside cavity a is simply given by the incoming field ain(!) times a trans-
mission factor 2p

a�2i!�!ap
a

. This is what we expect for a resonator connected at the

output of a transmission line. If the ain(!) operators carry only vacuum noise, then
â(t) =

R1
0

a(!)e�i(!�!a)t d!
2⇡

is also in the vacuum state:

hâ†âi =
Z 1

0

ha†a(!)id!
2⇡

=

Z 1

0

�

�

�

�

�

2p
a � 2i!�!ap

a

�

�

�

�

�

2

ha†inain(!)i
d!

2⇡
= 0, (4.66)

and similarly for b̂(t). On the other hand as soon as E⇤
J 6= 0, a(!) depends also on the field

incoming from the b transmission line at frequency !0, while b(!0) becomes dependent
on ain(!

0). There are thus correlations between the fields in the two cavities, associated
with the creation of photons in the resonators even if ain(!) and bin(!

0) are in the
vacuum state:

ha†a(!)i / hbinb†in(!0)i = 1 + hb†inbin(!0)i 6= 0 (4.67)

)hâ†âi =
Z 1

0

ha†a(!)id!
2⇡

6= 0, (4.68)

and similarly for b̂(t). In this picture, the vacuum noise carried by ain(!) and bin(!
0)

impinging on the junction prompts the inelastic tunneling of Cooper pairs and correlated
emission of photons in the two modes at the same time. These photons eventually leave
the cavities, feeding the transmission lines with signals carried by the output modes
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aout(!), bout(!
0). To describe the state of these modes, we now write the input-output

relations [59] in the frequency domain:

p
a(!) = ain(!) + aout(!) ) aout(!) =

p
a(!)� ain(!) (4.69)

p
b(!) = bin(!) + bout(!) ) bout(!) =

p
b(!)� bin(!). (4.70)

We can finally write a scattering relation for the output operators as a function of the
input operators:



aout(!)

b†out(!
0)

�

=



µa(!) ⌫a(!)
⌫⇤b (!

0) µ⇤
b(!

0)

�

⇥


ain(!)

b†in(!
0)

�

, (4.71)

with the scattering coefficients:

µa(!) =
(1 + i�a)(1 + i�b) + �2

(1� i�a)(1 + i�b)� �2
, (4.72)

µ⇤
b(!

0) =
(1� i�a)(1� i�b) + �2

(1� i�a)(1 + i�b)� �2
, (4.73)

⌫a(!) =
2i�

(1� i�a)(1 + i�b)� �2
, (4.74)

⌫⇤b (!
0) =

�2i�

(1� i�a)(1 + i�b)� �2
. (4.75)

Gain and emission spectra of the non-degenerate parametric amplifier

The scattering formalism above is reminiscent of the Caves model of a quantum linear
amplifier [81]. Incoming signals carried by ain(!) are reflected by the junction as aout(!) =
µa(!)ain(!)+⌫a(!)b

†
in(!

0). The coefficient µa(!) is the amplitude gain of this parametric
amplifier, ⌫a(!) is the cross-gain and b†in(!

0) is the idler mode. The idler is responsible
for the unavoidable noise added by the amplification process. If b†in(!

0) is in the vacuum
state, then the amplifier is quantum-limited.

In a similar fashion bout(!
0) is an amplified version of bin(!

0), where ain(!) plays the role
of the idler. As the aout(!) and bout(!

0) inhabit different frequency bands and separate
transmission lines, the amplifier is said to be spatially and temporally non-degenerate.
This means that the modes never overlap, and can thus demonstrate non-local entangle-
ment.

The power gains Ga(!) = |µa(!)|
2 and Gb(!

0) = |µb(!
0)|2 depend on the decay rate of

the resonators a,b, the detuning ∆, and the reduced pump amplitude �.

In the simple case of zero detuning ∆ = 0, the on-resonance gain is:

Ga(!a) = Gb(!b) = G(�) =

✓

1 + �2

1� �2

◆2

, (4.76)

which diverges for � ! �� = 1. This limit sets the threshold of the parametric transition
of the amplifier, where the driving strength E⇤

J

p
rarb overcomes the decay rate

p
ab.

The parameter C = �2 is also known as the cooperativity of the amplifier.
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At a finite detuning ∆ 6= 0, the divergence arises for a higher pump strength [110]:

��(∆) =

s

1 +

✓

2∆

a + b

◆2

. (4.77)

In the limit of � ' ��, the gains have approximately a Lorentzian shape, with a 3dB-
bandwidth given by:

∆ΩG(�) '
2ab
a + b

⇥ 1� �2

1 + �2
=

eff
p

G(�)
, (4.78)

with the effective decay rate eff = 2ab

a+b
. This is the well-known constant amplitude

gain⇥bandwidth product rule for amplifiers.

The photon emission spectral density is given by:

�a(!) = ha†outaout(!)i
= |µa(!)|

2ha†inain(!)i+ |⌫a(!)|
2hbinb†in(!0)i

= |µa(!)|
2ha†inain(!)i+ |⌫a(!)|

2
⇣

hb†inbin(!0)i+ 1
⌘

,

(4.79)

�b(!
0) = |µb(!

0)|2hb†inbin(!0)i+ |⌫b(!
0)|2
⇣

ha†inain(!)i+ 1
⌘

. (4.80)

Even if ain(!) and bin(!
0) are in the vacuum state, the junction radiates light, with:

�a(!) = |⌫a(!)|
2 = |µa(!)|

2 � 1 = Ga(!)� 1, (4.81)

�b(!
0) = |⌫b(!

0)|2 = |µb(!
0)|2 � 1 = Gb(!

0)� 1. (4.82)

where the last equality follows from the symplectic character of the scattering matrix.
Thus in the limit of high gain � ' ��, the emission spectral density follows closely the
power gain, with a FWHM given by the 3dB-bandwidth of the gain (Fig.4.12.b). In the
weak pumping limit � ⌧ 1, the gain is approximately constant G(!) ' 1, i.e the junction
simply reflects incoming signals without amplification. In this limit, the shape of the
emission PSD is:

�a(!) = |⌫a(!)|
2 ' 4�2

(1 + �2a)(1 + �2b )
=

(2⇡E⇤
J)

2

~!a~!b

Re[Z(!)]

RQ

Re[Z(!J � !)]

RQ

, (4.83)

which coincides with the P (E) expression (2.75) for high quality factors of the modes
and small detuning. The emission spectra then have the shape of a Lorentzian function

squared, with a FWHM 0 '
pp

2� 1eff (Fig.4.12.a).

To illustrate this behaviour, we plot in figure 4.12 the power gain and emission spectra
around !a in the simple case of symmetric cavities a = b and zero detuning, for two
different values of �.

The integral of the emission spectra yields the total photon pair emission rate Γ:

Γ =

Z

�a(!)d! =

Z

�b(!
0)d!0. (4.84)
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Figure 4.12: a) Power gain Ga(ω) (red curve) and photon emission spectral density γa(ω) (blue curve)
for a pump strength β = 0.3, with zero detuning and equal leak rates of the cavities, plotted along the
Re[Z(ω)] of the environment (dashed black). At this low pump value, the emission spectra follow the

prediction of the P (E) theory, with a FWHM
pp

2� 1κa ' 0.64⇥κa. b) Same curves for a high pumping
strength β = 0.9. The emission spectrum is much narrower, with a FWHM' κa/

p

Ga(ωa) ' κa/10.
The gain Gb(ω

0) and emission spectra γ(ω
0) around ωb have a similar behaviour.

which yields:

Γ =
eff�

2

2

✓

1� �2 +
⇣

2∆
a+b

⌘2
◆ =

eff�
2

2(��2 � �2)
. (4.85)

From this rate we can compute the occupation number of the two cavities:

n̄a = hâ†âi = Γ

a
=

�2

(1 + a

a
)(��2 � �2)

(4.86)

n̄b = hb̂†b̂i = Γ

b
=

�2

(1 + b

a
)(��2 � �2)

. (4.87)

Like the power gain, the occupation numbers diverge at the threshold of the parametric
transition � ! ��. Note that while the emission rates n̄aa and n̄bb are always equal,
the population of the two cavities differ if a 6= b.

Two-mode squeezing

When the incoming modes ain(!), bin(!
0) are in the vacuum state, the non-degenerate

parametric amplifier squeezes the cavity field and re-emit two-mode squeezed vacuum
over the outgoing modes aout(!), bout(!

0). The degree of squeezing depends on the value
of the scattering coefficients.

By redefining the phase origin for the field operators at every frequency, the scattering
matrix can be put under the simpler form:



aout(!)

b†out(!
0)

�

=



cosh(r[!]) ei✓[!] sinh(r[!])
e�i✓[!0] sinh(r[!0]) cosh(r[!0])

�

⇥


ain(!)

b†in(!
0)

�

. (4.88)

Then one has:

aout(!)± ei✓[!]b†out(!
0) = e±r[!] ⇥

�

ain(!)± ei✓[!]b†in(!
0)
�

. (4.89)

166



Taking the real part of both sides yields:

Xout
a (!)±Xout

b,✓[!](!
0) = e±r[!] ⇥

�

X in
a (!)±X in

b,✓[!](!
0)
�

, (4.90)

The variance of the asymmetric combination Xout
a (!)�Xout

b,✓[!](!
0) is then squeezed below

the vacuum level by a factor e2r[!], while the symmetric combination Xout
a (!)+Xout

b,✓[!](!
0)

is anti-squeezed.

The squeezing parameter r[!] and the squeezing angle ✓[!] depend on the frequency !.
As �a(!) = |⌫a(!)|

2 = sinh(r[!])2, r[!] can be linked to the emission spectra:

r[!] = sinh�1(
p

�a(!)) = ln(
p

�a(!) + 1 +
p

�a(!)). (4.91)

The spectral density of squeezing is thus higher where the emission rate is the strongest,

i.e on resonance for ∆ = 0. We then have r[!a] = ln
⇣

1+�

1��

⌘

. Away from the resonance,

where the gain G(!) drops to 1, the squeezing vanishes.

As the emission rate diverges as � ! ��, the degree of squeezing could in theory be
made arbitrary large. In practice, non-idealities such as higher-order non-linearities of
the Hamiltonian limit the degree of squeezing. In the case of the dc-biased junction, we
estimate that non-linear terms in the Hamiltonian (4.3) are the main limitations to the
maximum squeezing. These terms become relevant as soon as n̄a ⇠ 1/ra. A typical Zc =
100 Ω resonator yields ra ' 0.05, so n̄a should be kept well below 20, or equivalently
Ga(!) well below 38 dB3.

For symmetric cavities a = b, we have �2 = 2n̄a

1+2n̄a
. The emission rate on resonance is

then �a(!a) = 8n̄a(1 + 2n̄a). A conservative n̄a = 2 (with Ga(!a) ' 19) leads to �a = 80
photons/s/Hz, and a degree of squeezing r[!a]= 25 dB. This number could be increased
by fabricating very low-impedance resonators.

By contrast, the degree of squeezing inside the cavities is limited to at most 3 dB [65].
This can be understood as a consequence of the simple input-output balance: even if the
output field is infinitely squeezed, with a null variance, there is still trivial vacuum noise
incoming to the cavity. The variance of the quadratures for the cavity fields is then only
reduced to half the vacuum value.

Entanglement of the two-mode squeezed state

Two-mode squeezing is a manifestation of the entanglement between the modes, which
can be quantified both for the cavity modes and the outgoing modes.

The logarithmic negativity (log-neg) has been proposed as a quantitative measure of the
entanglement between two systems [111]. It is defined as the logarithm of the trace norm
of the partially transposed density operator of the total system:

EN(⇢) = log(||⇢Ta ||1) = log(||⇢Tb ||1). (4.92)

For entangled 2-level systems (qubits), the base-2 logarithm (log2) is typically used in the
definition of EN . The log-neg is then expressed in units of entangled bits (e-bits). For

3In practice, if one aim to maximize the gain of this device, Zc could easily be decreased by a factor
of about 10. The constraint on the gain is then Ga(ω) ⌧ 58 dB
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continuous variables such as the electromagnetic field, it is more natural to work with
the natural logarithm (ln): EN is then expressed in e-nats, with ln(2) e-nat = 1 e-bit. It
is an upper bound of the distillable entanglement, i.e the usefulness of the TMSV source
for quantum information protocols [101][93].

For a pure two-mode squeezed state, EN can be computed from the covariance matrix of
the two modes [93]. We map these covariances to field operators, yielding [112]:

EN [A,B] = � ln(1 + hA†Ai+ hB†Bi �
p

(hA†Ai � hB†Bi)2 � 4|hABi|2), (4.93)

where A and B stand for the field operators of two modes, being either output modes
aout(!), bout(!

0) or cavity modes â(t), b̂(t). It can be proven that EN [A,B] is also linked
to the squeezing parameter rAB, with:

EN [A,B] = 2rAB. (4.94)

For a pair of propagating modes aout(!), bout(!
0), (4.93) yields a spectral density of

log-neg:

EN [!,!
0] = � ln(1+�a(!)+�b(!

0)�
p

(�a(!)� �b(!0))2 � 4|haout(!)bout(!0)i|2). (4.95)

From the scattering matrix, we compute:

|haout(!)bout(!0)i|2 = |µa(!)|
2|⌫b(!)|

2 = (�a(!) + 1)�b(!
0). (4.96)

As �a(!) = �b(!
0) we get:

EN [!] = � ln(1 + 2�a(!)� 2
p

(�a(!) + 1)�a(!)). (4.97)

Assuming perfect two-mode squeezing, EN [!] could in principle be estimated from a mea-
surement of the emission spectra �a(!). Of course this would be a very crude estimation,
as any non-idealities such as thermal occupation of the incoming modes, or losses in the
microwave cables carrying the signals, reduce the quantum efficiency of this device.

For zero detuning, the maximum value of EN [!] is:

EN [!a] = 2r[!a] = 2 ln

✓

1 + �

1� �

◆

. (4.98)

It can be arbitrary large as the pumping strength approaches the threshold � ! ��.

The amount of entanglement inside the cavities follows a different trend:

Ecav
N = � ln(1 + n̄a + n̄b �

q

(n̄a � n̄b)2 + 4|hâb̂i|2). (4.99)

The last correlator can be computed either using (4.62) (4.63) and the scattering coeffi-
cients, or using the following equality:

|hâb̂i|2 = hâ†âb̂†b̂i � hâ†âihb̂†b̂i, (4.100)

which is true for gaussian states of light. From the 2016 experiment 4.1.2, we know that
for the cavity fields NRF = 1/2, which brings:

hâ†âb̂†b̂i = n̄an̄b ⇥ g
(2)
ab (0) = n̄an̄b ⇥

✓

2 +
1

n̄a + n̄b

◆

, (4.101)
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so that:

|hâb̂i|2 = n̄an̄b ⇥
✓

1 +
1

n̄a + n̄b

◆

. (4.102)

Then we have:

Ecav
N = � ln

✓

1 + n̄a + n̄b �
s

(n̄a � n̄b)2 + 4n̄an̄b ⇥
✓

1 +
1

n̄a + n̄b

◆◆

. (4.103)

This can be expressed as a function of the pump strength and decay rates:

Ecav
N = � ln

 

1 +
�2

1� �2
�
s

�2

1� �2

⇢

�2

1� �2
+ 4

ab

(a + b)2

�

!

. (4.104)

There is a striking difference between Ecav
N and EN [!]: if the cavities have very asymmetric

decay rates, with e.g a � b, then their log-neg tends to zero, whatever the value of �.
This is in contrast to EN [!], which can always be made arbitrary large by increasing �.
In the limit a/b ! 1 and � ! ��, we are in a seemingly paradoxical situation where
the cavities are in a separable state (Ecav

N = 0) while emitting perfectly entangled light
(EN [!a] = 1)!

The log-neg of the cavities is maximal in the symmetric case a = b, with:

Ecav
N = � ln

✓

1 + 2n̄� 2

s

✓

n̄+
1

2

◆

n̄

◆

, (4.105)

with n̄a = n̄b = n̄. As � ! ��, n̄ ! 1, and Ecav
N ! ln(2) e-nats, or 1 e-bit. This is

again a major difference with the entanglement of the output modes, which is unbounded.
Finally the zero detuning case ∆ = 0 yields the simple expression:

Ecav
N = ln(1 + �). (4.106)

Defining an entanglement rate

A non-degenerate parametric amplifier is a continuous source of light in a two-mode
squeezed state. It seems natural to define an entanglement rate to quantify the rate
at which this device creates entangled photons.

In the first article describing the emission of entangled beams in the microwave range [37]
(using a Josephson mixer [7]), Flurin et al. estimated this entanglement rate by multiply-
ing the entropy of formation of the pair of modes aout(!a), bout(!b), i.e the propagating
modes with the largest entanglement, by the dynamical bandwidth of the power gain
G(!).

The entropy of formation EF is an upper bound on the usable entanglement of the beams.
It can be linked to the squeezing parameter:

EF = cosh(r)2 ⇥ log2(cosh(r)
2)� sinh(r)2 ⇥ log2(sinh(r)

2)

= (�a + 1)⇥ log2(�a + 1)� �a ⇥ log2(�a).
(4.107)

It is approximately equal to EN at large pump strength � ! ��.
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Flurin et al justify their approach by stating that the FWHM of G(!) (' �a(!) at large
pump strength) yields the inverse timescale of propagating modes. In this picture, the
amplifier emits pairs of entangled wavelets containing EF ⇠ EN [!a] e-nats every ∆Ω

�1
G

seconds. Their entanglement rate is thus EF ⇥∆ΩG/2⇡
4.

As EF ⇠ EN [!a] = 2 ln
⇣

1+�

1��

⌘

increases with � while ∆ΩG ' eff ⇥ 1��2

1+�2 decreases,

this rate displays a maximum of ' 0.21 eff e-nats/s for � ' 0.54. For higher pump
strengths, the dynamical bandwidth reduces faster than EN [!a] increases.

A more recent paper [113] suggests using the average of EN [!] over the emission spectra
bandwidth ∆ΩE (' ∆ΩG at large pump strength), instead of its maximum value EN [!a].
This may be a more realistic bound on the useful entanglement one can extract out of
the beams, as all pairs of modes aout(!), bout(!) do not have the same amount of log-neg
(Fig.4.13.a).

Figure 4.13: a) Emission spectrum (blue line) and log-neg spectral density (green line) for β = 0.9,
plotted with Re[Z(ω)] of the environment (dashed black, same scale as figure 4.12). Here κa = κb and
∆ = 0 for simplicity. The double-headed arrows highlight the difference of FWHM of these two curves.
Flurin et al. estimate the entanglement rate by multiplying the maximum value of the log-neg, EN [ωa],
by the FWHM of the emission spectra. The authors of [113] use the value of EN [ω] integrated over the
same FWHM. Deng et al. suggest integrating EN [ω] over all frequencies, yielding a much larger value.
b) Integrals of the emission spectra γa(ω) and the log-neg spectral density EN [ω] over an integration
bandwidth ∆Ω, for the curves of panel a). Integrating in the resonator bandwidth ∆Ω = κa is enough
to catch most of the emitted photons, but captures only about half of the total entanglement rate.

These two approaches are in a sense application-oriented, as they estimate the amount
of log-neg one can extract in a practical experiment, where the measurement bandwidth
is limited to typically the FWHM of the resonators. A concurrent theoretical proposal
suggests a way to estimate the total entanglement generated by the device [112]. As the
log-neg is an additive measure of entanglement, Deng et al. proposed integrating EN [!]
over all frequencies to yield the total entanglement rate:

ΓE =

Z 1

0

EN [!]d!. (4.108)

As the FWHM of EN [!] is larger than the FWHM of the emission rate, ΓE is typically
larger than the other estimates for the entanglement rate (Fig.4.13.b). In the simple case

4The use of an additional factor 2π by Flurin et al. is not justified in this wavelet picture.
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of equal leak rates and zero detuning, we find:

ΓE = �. (4.109)

As � ! 1, ΓE !  e-nats/s. However, accessing all this entanglement requires captur-
ing light in a very wide frequency band, larger than the resonator FWHM and typically
much larger than the emission spectra (Fig.4.13). In a practical measurement, this re-
quires opening up the acquisition bandwidth to detect non-classical correlations out of
the resonance, where the emitted power is effectively zero. One may wonder what is the
meaning of an entanglement measure which depends so crucially on signals carried by
what is essentially modes in the vacuum state.

Finally, note that due to their different dependence on �, there is no obvious way to link
the entanglement of the cavities Ecav

N = ln(1 + �) to either definition of an entanglement
rate.

Comparison with the Josephson mixer

The derivation above of the scattering matrix of the sample and its properties closely
follows the work of Flurin [7], adapting it to the specificities of our system and adding
the effect of a finite detuning ∆ on the expression of the scattering coefficients.

The experiments described in [7] were performed using a Josephson mixer, which is a
non-linear device where three microwave resonators a, b, c are coupled by a Josephson
ring modulator [114]. The effective interaction Hamiltonian of this device depends on the
electromagnetic phases across the three resonators:

H3WM = ~�(ae�i!at + a†e+i!at)(be�i!bt + b†e+i!bt)(ce�i!ct + c†e+i!ct) (4.110)

with !c = !a + !b. The mode c is put in a bright coherent state |c0e
i✓i so that (ce�i!ct +

c†e+i!ct) can be considered as a classical variable. After expansion of this triple product,
a Rotating Wave Approximation yields a two-mode squeezing Hamiltonian for modes a
and b, with a pump strength set by ~�|c0|

2 and a squeezing angle ✓:

HTMS = 2~�|c0|
2ei✓a†b† + h.c. (4.111)

The main limitations of this amplifier are the exhaustion of the Josephson non-linearity,
the depletion of the pump and the various spurious non-linearities. It is instructive to
see how these translate to our own ICPT amplifier.

The exhaustion of the Josephson non-linearity occurs if the amplified current Iac flowing
through a Josephson junction of the device is of the order of the critical current I0 of the
junction. As the emitted power in one cavity reads Pa = ~!an̄aa = QZcI

2
ac/2, we have:

Iac =

s

2~!an̄a
QZc

⌧ I⇤0 =
2e

~
E⇤

J =
2e�

p
abp

rarb
. (4.112)

For symmetric cavities a = b, ra = rb we find:

Iac ⌧ I⇤0 , rn̄ ⌧ 1 (4.113)
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which is the condition to stay far away from the strong driving regime that we derived in
the previous chapter.

In the Josephson mixer, the depletion of the pump occurs if the photon emission rate
becomes larger than hc†cic. Then the population of the pump mode decreases down
to zero, so that it cannot provide energy for the amplification of signals. In a dc-biased
junction, the tunneling Cooper pairs play the role of the pump. The equivalent condition
would be that the dc-current Idc through the junction must stay small compared to I⇤0 ,
which yields:

Idc = 2eΓ = 2en̄⌧ I⇤0 , rn̄ ⌧ 1. (4.114)

We find the same condition on the occupation of the cavities, which should stay small
compared to 1/r.

In all devices, the two-mode squeezing Hamiltonian is derived from a truncated expansion
of the cos(�) Hamiltonian of a Josephson junction. Higher order terms of the expansion
modify the dynamics of the system, and are generally detrimental to the quality of the
squeezing (or amount of entanglement) generated by the device. In the case of the
Josephson mixer, various Kerr terms (quadratic in the photon numbers a†a, b†b, c†c) render
the resonators anharmonic. These anharmonicities limit the maximum occupation of the
modes.

The full expansion of (4.3) reveals non-linearities which are not of the Kerr type: �(2)(a†a)2,
but rather reminiscent of the Lamb-Dicke effect [62]: :: ra†a(a + a†) :: . These non-
linearities can safely be neglected if rn̄ ⌧ 1. Note that the total absence of any Kerr
terms is a unique feature of the dc-biased Josephson junction Hamiltonian. Devices used
in circuit-QED experiments can be made practically Kerr-free at some operation points,
at the price of an increased complexity [115][116]. They also suffer from the spurious
ac-Stark shift, where the frequency of the modes depends on the population of the pump
mode. In our system, the shift depends on the field inside the cavities themselves, so that
we could potentially drive much harder the junction.

Remarkably, it seems that the very simple mechanism of parametric amplification by
ICPT is quite robust, as a single condition rn̄ ⌧ 1 is enough to tame all adversary
effects. An additional constraint of the design of the Josephson mixer is the stiff pump
hypothesis, which requires that the leak rate of the pump mode be much larger than
the leak rates of the two cavities. This limits the maximum bandwidth of the amplifier.
An ICPT device does not require this condition, and may provide wideband parametric
amplification at the quantum limit [117].

Remark: renormalization of the parametric transition

The simple model described here predicts a divergence of the occupation number of the
cavities at the threshold of the parametric transition:

n̄ =
�2

2(1� �2)
��!
�!1

1. (4.115)

This non-physical divergence is the result of the truncation of the full Hamiltonian (4.3)
to the lowest order. Non-linearities scaling as / rn̄ tend to reduce the effective two-
photon drive. As � ! 1, this reduction becomes more and more important, so that n̄
never diverges.
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This renormalization of the divergence is predicted to depend crucially on the coupling
constant r [104]. The Fano factor of the photons is also predicted to be renormalized at
the parametric transition. In this situation the non-equilibrium phase fluctuations in the
environment modify the statistics of the emitted photons.

173



4.2 Implementation of the entanglement experiment

We use standard fabrication techniques for superconducting circuits to create a sample
where a small SQUID is put in series with two microwave modes a and b at different
frequencies: !a 6= !b. This sample is put at the cold stage of our dilution fridge and
connected to the measurement circuitry presented in 3.4. After a careful calibration of
the environment of the junction (from dc to the GHz range), it is biased on the two-
photon resonance condition: 2eV = ~(!a + !b). We then measure correlation functions
of âout(t) and b̂out(t) to prove their entanglement.

4.2.1 Design and fabrication of the sample

Constraints on sample parameters

The sample for the experiment must implement the simple circuit from figure 4.11: a small
Josephson junction with Josephson energy EJ in series with two microwave resonators a
and b, characterized by their normalized impedances ra, rb, their frequencies !a,!b and
their leak rates to the detection lines a,b.

The resonators must have different frequencies !a 6= !b for the junction to emit entangled
photons. If !a ' !b, then the two-mode driving is in competition with other two-photon
processes, where the two photons are created in the same resonator. The choice !a/2⇡ '
5 GHz and !b/2⇡ ' 7 GHz put the output signals in the 4-8 GHz band, the working
range of our detection setup, with a comfortable margin for safety: even a 30% error on
either frequency would not bring the resonators too close to each other.

The quality factors of the modes should be high enough for the RWA to hold, with
Qa, Qb � 10 so a,b ⌧ 2⇡⇥500 MHz. On the other hand, we argued that the output
fields are entangled if the cavity leak rates are larger than the dephasing rate of the
instantaneous squeezing angle ✓. This dephasing rate was about �f = 1.3 MHz in our
strong coupling experiment 3.5. Leak rates between 2⇡⇥50 MHz and 2⇡⇥100 MHz satisfy
these two conditions, so that we target Q factors of the order of 50-100.

The reduced impedance of the modes r = ⇡Zc

RQ
should be small compared to 1, to avoid

non-gaussianity of the created light states. We can use conventional microwave resonator
designs yielding Zc ⇠ 100 Ω, corresponding to a coupling factor r ⇠ 0.05.

The Josephson junction can be implemented by a SQUID, whose effective Josephson
energy EJ(Φ) is tunable by threading a magnetic flux Φ through the sample. Tuning
EJ(Φ) downs to almost zero allows us to use the calibration procedure detailed in 3.5 to
extract all relevant information about the sample and its environment. A SQUID with a
tunnel resistance RN ⇠ 25 kΩ and a typical residual asymmetry of its junctions ⇠ 10%
would yield a Josephson energy tunable between EJ(0) ⇠ 25 µeV and EJ(h/4e) ⇠ 2 µeV.
This should be enough to reach a low occupation number of the cavities n̄ ⇠ 0.1. At the
maximum value of EJ(Φ), the reduced pump strength for the parametric amplifier model
is then � ⇠ 5, far above the parametric threshold. This allows us to explore a wide
range of values of the pump strength, testing extensively our physical description of the
system.
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Interestingly, while our simple amplifier model predicts that the entanglement of the fields
grows with the pump strength, the results of the 2016 experiment (Fig. 4.8) show that
the violation of the Cauchy-Schwarz equality is more pronounced at low emission rates.
It is thus useful being able to explore both the weak and strong driving regime of the
experiment.

Design of the sample

All constraints on the parameters of the experiments can be fulfilled by the same kind of
sample as in the 2016 experiment [39]. We thus simply used a Si chip from the same wafer,
covered with a thin Nb film patterned with resonators. Each resonator is implemented
as three sections of CPW transmission lines with equal lengths but different impedances
Z1, Z2, Z3, as indicated in the table below (Fig.4.14).

Z1
b
Z2
b
Z3
b
Z0Z0 Z1

a
Z2
a

Z3
a

Figure 4.14: Microwave electrical model of the sample. The small Josephson junction acts as an open
circuit. The segments of CPW on the left (right) side have a length such that their first λ/4 resonance
occurs at ωa (ωb).

Z1 Z2 Z3 !r/2⇡
resonator a 121 Ω 24 Ω 101 Ω 5.1 GHz
resonator b 121 Ω 24 Ω 121 Ω 7.0 GHz

The series combination of �/4 resonators yield a resonance with characteristic impedance
Zc ' (4/⇡)⇥Z1 ' 150 Ω (r ' 0.07) and a quality factor set by the impedance mismatch
Q = (⇡/4) ⇥ Z1/ZL, with ZL = (Z2)

2 ⇥ Z0/(Z3)
2 and Z0 = 50 Ω the impedance of the

measurement lines. The value of Z3 on each side is adjusted so that the two modes have
similar decay rates: a = !a/Qa ' b = !b/Qb ' 800 µs�1.

frequency [GHz]

R
e
[Z

(ω
)]

 [
Ω

]

Figure 4.15: Impedance seen on each side of the junction, computed with the transmission line formula
for impedance transforms [118]. The two modes at 5.1 GHz and 7.0 Ghz have similar FWHM ' 120
MHz.
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The impedance Re[Z(!)] seen by the junction is then the sum of the impedance seen
on each side. It can be computed using the transmission line formula for impedance
transforms [118] (Fig.4.15). Higher Q factors could be reached by adding more cascaded
�/4 segments on each side, at the detriment of making fabrication errors more probable.
Lower values of Zc could be reached by lowering Z1, to the detriment of the quality
factor.

Fabrication

The microwave resonators were fabricated by optical lithography of a 150 nm Nb thin film,
sputtered on an oxydized Si [3 mm⇥10 mm] chip (Fig.4.16). To fit the ' 20 mm total
length of CPW segments, these are designed with equidistant windings. Electromagnetic
simulations of the CPW geometry with the finite-element analysis software Sonnet prove
that these close windings do not impact at all the �/4 resonances.

Figure 4.16: Zoom-in of an optical micrography of the sample before evaporation of the Al SQUID.
The green box indicates the future position of the junction, connecting the inner conductors of the two
CPWs. On each side are three cascaded λ/4 CPW segments, implementing resonators a and b. Bonding
pads on each side of the chip will allow connecting the sample to the measurement circuit.

The Al/AlOx/Al SQUID was fabricated using standard electron-beam lithography and
double-angle evaporation techniques, yielding junctions of about ' 200 nm⇥200 nm
(Fig.4.17). This small area ensures a small geometric capacitance of the squid CS '
8 fF, which cannot shunt the ' 8 kΩ impedance of the environment at the frequency ⇠ 6
GHz of the signals we will be measuring.

As we did not want to take risks with the Josephson junction, we did not measure its
dc resistance. Thus we do not know the exact value of the tunnel resistance RN . We
estimate it from room-temperature measurement of test junctions put on the same chip
to RN ' 16± 4 kΩ, which yields a Josephson energy EJ ' 40± 10 µeV. The value of EJ

can be calibrated in situ as we will see later.

After fabrication, the sample is glued with UV-III resist to a PCB board and wire-bonded
to 50 Ω transmission lines.
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Figure 4.17: Electronic micrography image of the SQUID connected between the two resonators.

4.2.2 Cold stage setup

After fabrication, the sample is placed at the cold stage of our dilution refrigerator and
connected to the measurement setup.

We use the same cold temperature setup as in the strong-coupling experiment (Fig.3.25),
with minor modifications. This two-mode sample has two ports, at the output of res-
onators a and b. We thus add a second bias-tee to the setup, connected to ground on the
dc-port and to the hybrid coupler on the rf port (Fig.4.18).

On the dc bias line, we replaced the 6.45 MΩ bias resistor by a 1 MΩ one. The previous
resistor was heating up when applying voltages above ⇠ 7 Volts, which affected its value.
The new resistor has a lower resistance, such that it heats up about 6.5 times less. It is
also made using a different technology, with a measured resistance change of less than 1
kΩ between room temperature and 1 K. The dc bias applied to the sample can thus be
controlled much more precisely.

The soldering of the 3rd-order RC filter on the bias line broke at some point in a previous
run. It had became brittle due to thermal cycling. As we believed that this filter was
not crucial to the reduction of noise on the voltage bias, we simply removed it entirely.
This proved later to be detrimental to the voltage noise, which went up by about 40%
compared to what we expected for a two-port sample.

The rest of the setup was left unchanged. As in the previous experiment, signals leaking
from the sample are split by the hybrid coupler, amplified by the two HEMTs and routed
towards room temperature via channels (1) and (2).
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Figure 4.18: Cryogenic part of the experimental setup. A pair of bias-tees allows setting a dc-voltage
bias on the sample while collecting the microwave radiation leaking out of the resonators. Signals from
modes a and b are split by the hybrid coupler over the same two amplification lines. As they reside in
different frequency bands (around 5.1 GHz and 7 GHz respectively), they do not interfere and can later
be easily separated by bandpass filtering. A small current-biased superconducting coil placed below the
sample allows tuning its Josephson energy EJ(Φ) via the applied magnetic flux Φ.
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4.2.3 Room-temperature setup

Channels (1) and (2) carry microwave signals from the cryogenic circuit to the room
temperature signal processing and acquisition chains. The room temperature setup (see
figure 4.19) is similar to the one used in the antibunching experiment (Fig.3.26). It
includes several stages of amplification and filtering of the signals, down-conversion to
the dc-600 MHz range by an IQ mixer, further amplification and filtering, then detection
of the voltage signals by an ADQ412 acquisition card (Fig.4.19).

The main difference with respect to the strong-coupling experiment is that we need to
detect two different signals: those emitted by resonator a around !a/2⇡ ' ⇥ 5.1 GHz
and those from resonator b around 7 GHz. Due to splitting by the hybrid coupler at
cold temperature, both signals are carried by both channels (1) and (2). To detect them
separately, we split channels (1) and (2) at room temperature, and bandpass the signals
around either 5.1 GHz or 7 GHz (Fig.4.19). We use adjustable microwave filters with
bandwidth ranging from 660 MHz to 700 MHz. Filtered signals are down-converted by
two LO at 5.35 GHz and 7.15 GHz respectively.

Finally we use the four ports A,B,C,D of the acquisition card to detect down-converted
signals from the two channels and two frequency bands. We use a sampling frequency of
1.25 GSamples/s, yielding a Nyquist frequency of 612.5 MHz. Numerical filtering reduces
the acquisition bandwidth down to 525 MHz.
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Figure 4.19: Room-temperature setup. After amplification, filtering and down-conversion, a and b signals
carried by the two channels (1) and (2) are separated by bandpass filtering and detected separately on
four acquisition channels. The attenuation and length of each channel is adjusted to yield balanced signal
powers and propagation times.
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4.2.4 Numerical computation of the correlation functions

We adapt the linear detection procedure developed in 3.4.3 to measure different corre-
lation functions of the four propagating fields, yielding g

(2)
a (⌧), g

(2)
b (⌧), g

(2)
ab (⌧) and g

(2)
� (⌧)

after numerical processing.

First we record chunks of microwave voltages VA(t), VB(t), VC(t), VD(t) of length 2048
(corresponding to an acquisition time ⌧acq ' 1.64 µs) and compute their numerical Hilbert
transform. This yields the complex envelopes SA(t), SB(t), SC(t), SD(t), which are
observables related to the fields operators aout(t) and bout(t). We model this relation
as:

SA(t) =
p

GA

�

aout(t� tA) + h†
A(t)

�

(4.116)

SB(t) =
p

GB

�

bout(t� tB) + h†
B(t)

�

(4.117)

SC(t) =
p

GC

�

bout(t� tC) + h†
C(t)

�

(4.118)

SD(t) =
p

GD

�

aout(t� tD) + h†
D(t)

�

, (4.119)

where the Gi are conversion factors between the field amplitudes and the voltage de-
tected by the acquisition card. The h†

i (t) operators model all the noise terms added by
the different steps of signal processing on channel i (as in figure 3.24). All delays be-
tween the channels are included in the time differences t � ti, which we compensate for
numerically.

The main contribution to the noise operators arise from the cryogenic HEMT ampli-
fiers. In a given frequency band, noise operators from two different amplifiers commute:
[hA, h

†
D] = [hB, h

†
C ] = 0. Noise operators from two different frequency bands always com-

mute, even if they originate from the same amplifier: [hA, h
†
B] = [hC , h

†
D] = 0. Due to the

finite isolation '-33 dB, there are parasitic correlations between the four channels.

After compensation of the different time delays, cross-correlations of signals in the same
frequency band yield the first and second order correlation functions, following (3.85)
and (3.88) respectively. The correlation functions which appear in the entanglement
witness (4.41) are computed from cross-correlations of the signals in different frequency
bands:

180



ha†a(0)b†b(⌧)i / hS†
ASD(0)S

†
BSC(⌧)iON/OFF �

⇢

hS†
ASDiON/OFF hS†

BSCiOFF

+hS†
BSCiON/OFF hS†

ASDiOFF

+hS†
A(0)SC(⌧)iON/OFF hSD(0)S

†
B(⌧)iOFF

+hSD(0)S
†
B(⌧)iON/OFF hS†

A(0)SC(⌧)iOFF

�

(4.120)

ha†b†(0)ab(⌧)i / hS†
AS

†
B(0)SCSD(⌧)iON/OFF �

⇢

hS†
A(0)SD(⌧)iON/OFF hS†

B(0)SC(⌧)iOFF

+hS†
B(0)SC(⌧)iON/OFF hS†

A(0)SD(⌧)iOFF

+hS†
A(0)SC(⌧)iON/OFF hS†

B(0)SD(⌧)iOFF

+S†
B(0)hSD(⌧)iON/OFF hS†

A(0)SC(⌧)iOFF

�

(4.121)

where the terms in brackets arise from the parasitic contribution of the amplifiers noise.
After suitable normalization by hS†

ASDihS†
BSCi, these expressions yield g

(2)
ab (⌧) and g

(2)
� (⌧).

Remark: classical interpretation of the correlators

As detailed in 3.4.3, we actually compute correlation functions of the form CXY (⌧) =
hX†(0)Y (⌧)i as the inverse Fourier transform of X†(!)Y (!), where X(!) and Y (!) are
the direct Fourier transform of X(t) and Y (t) respectively. It is instructive to consider

the form the g
(2)
ab (⌧) and g

(2)
� (⌧) correlators take in the frequency domain.

For simplicity we consider here â(t) and b̂(t) not as quantum operators, but as classical
complex amplitudes. We have:

F[ha†a(0)b†b(⌧)i](!) = F[a†a(t)]†(!)⇥ F[b†b(t)](!). (4.122)

The frequency spectrum of g
(2)
ab (⌧) is thus the product of the spectra of the instantaneous

emission rates a†a(t) and b†b(t) (Fig.4.20). These emission rates fluctuate over a short
timescale �1, which is the duration of a photonic wavepacket. Hence the population
correlator has a decay time of the order of �1.

On the other hand the Fourier transform of the phase correlator is:

F[ha†b†(0)ab(⌧)i](!) = F[ab(t)]†(!)⇥ F[ab(t)](!) = |F[ab(t)](!)|2. (4.123)

F[g
(2)
� (⌧)](!) is directly the PSD of the observable ab(t) / e�i!J t (Fig.4.20). In the case

of ideal two-mode squeezing, hab(t)i is simply a complex number, whose argument yield
the squeezing angle after demodulation. In the absence of phase diffusion ab(t) is thus a
signal, i.e a quantity which, given a phase reference, can be averaged over time to yield
a better SNR.
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ωJ

Figure 4.20: Classical model of the correlations between the a and b fields. In a classical picture, a(t) and
b(t) are a sequence of pulses at frequency ωa and ωb respectively. The instantaneous intensities a†a(t)

and b†b(t) are correlated. The spectrum of the population correlator g
(2)
ab (τ) is the product of the spectra

of these intensities. The Fourier transform of the phase correlator g
(2)
φ (τ) is the power spectral density

(PSD) of the observable ab(t).

In our experiment, the squeezing angle drifts slowly. Averaging hab(t)i over a long time
simply yields zero. The observable ab(t) is thus not a stationary signal, but is rather akin
to a noise, i.e a random process. Contrary to a signal, a noise cannot be averaged over
arbitrary long times. It also cannot be described by its Fourier components, which all
average to zero.

A random noise process X(t) can however always be characterized by its PSD SX(!) =
F[hX†(0)X(t)i](!) 6= 0, even if hF[X(t)](!)i = 0. This is the fundamental principle
behind all noise measurements.

Our detection scheme thus consists in adapting the tools of noise measurements to mea-
sure a quantity which usually requires a phase reference. Instead of detecting and averag-
ing the squeezing angle ✓, we measure the spectrum of its fluctuations. The entanglement
witness then gives us a criterion which indicate wether or not the fluctuations of ✓ are
slow enough for the two signals to stay entangled.
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4.3 Two-photon emission experiment

We present in this section the results of our experiment except those related to the en-
tanglement of the modes. We calibrate accurately the electromagnetic environment of
the Josephson junction, measure emission spectra in the single-photon and two-photon
regimes, and study the joints statistics of photon pairs. Experimental results are system-
atically compared to the predictions of the parametric amplifier model, highlighting the
renormalization of the pump strength � due to the environment phase fluctuations.

4.3.1 Calibration of the environment of the junction

We use the same tools presented in 3.5 to calibrate precisely the environment of the
junction, which consists of the on-chip microwave resonators and the lower frequency
modes of the bias circuit.

Shotnoise calibrations

We put the junction in the normal quasiparticle regime (see Appendix B) by applying a
voltage bias much higher than the gap voltage, and measure its emission spectra around
5.1 GHz and 7 GHz. This yields the frequency-dependent microwave coupling factor
between the junction and the two resonators:

C(!) = 1�
�

�

�

�

Z(!)�RN

Z(!) +RN

�

�

�

�

2

. (4.124)

Figure 4.21: Emission spectra around ωa (panel a) and ωb (panel b) in shotnoise regime yield the
microwave coupling factor between the junction and the resonators, as defined by (4.124).

As in 3.5, the value of C(!) on resonance is extracted by comparing these spectra
(Fig.4.21) to the Re[Z(!)] measured in the ICPT regime. We find:

C(!a) = 0.929± 0.005 (4.125)

C(!b) = 0.989± 0.005, (4.126)

with the resonance frequencies !a/2⇡ = 5092 MHz and !b = 6955 MHz. The
derivative of the emitted power with respect to the bias voltage yields a calibration of
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Figure 4.22: Total emission rate in the a mode (red curve) and the b mode (blue curve) as a function
of the bias voltage. At bias voltage V = (2∆ + ~ω0)/e larger than the gap voltage, quasiparticles can
tunnel through the junction, generating shot-noise with a spectral density SII(ω) 6= 0 for ω  ω0. The
emission power at ωa is thus shifted by (ωb � ωa)/e with respect to the emission power at ωb.

the noise temperature of the HEMT amplifiers (1) and (2), T
(1)
N and T

(2)
N , which we use

to calibrate the gain of the microwave detection chains.

We find that these noise temperatures depend on the frequency at which we evaluate them,
even within one resonance. We interpret this as an imbalance of the hybrid coupler, which
instead of splitting exactly in half the incoming power, distributes a fraction ↵(!) on one
channel and 1�↵(!) on the other channel. We thus resort to always using the sum of the
emission spectra measured over channel (1) and channel (2), which should yield the total
emission power from the sample. We find the equivalent noise temperature:

T 1
N + T 2

N

2
' TN = 12.4± 0.6 K @ 5.1 GHz (4.127)

= 17.4± 0.9 K @ 7 GHz. (4.128)

We attribute the different values of TN at !a and !b to a larger attenuation between the
sample and the HEMT amplifiers at higher frequencies, due in particular to a low pass
dissipative filter meant to avoid stationary parasitic standing waves ocuring outside of
the 4-8 GHz band, where the various elements of our detection are not specified.

The derivative of the total emitted power with respect to the voltage bias also allows us
to pinpoint the value of the superconducting gap. We find:

∆ = 201± 2 µeV, (4.129)

which is a typical value for Aluminum thin films. Finally we estimate the equilibrium
thermal occupation of the resonators by measuring the emitted power due to inelastic
absorption processes. We find an equilibrium occupation of the modes below 2 ⇥ 10�3,
which means a temperature below 40 mK.
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Emission maps on the single-photon resonance

We scan the bias voltage V across the single-photon resonances, where one photon per
tunneling Cooper pair is emitted in one mode. The emission spectrum map shows a
narrow line following 2eV = ~!. For each value of the applied voltage we fit the emission
peak with a Gaussian function.
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Figure 4.23: Emission maps around the 2eV = ~ωa (panel a) and 2eV = ~ωb (panel b) resonances.

The value of the Josephson frequency !J = 2eV as a function of the applied voltage
Vb yields the voltage division ratio of the bias line. We use it to calibrate the value of
the cold resistor R2 = 1.014 ± 0.003 MΩ. The bias voltage across the junction is not
exactly proportional to the applied voltage, due to the finite dc-current flowing through
the sample when it emits photons. This deviation yields an independent estimation of
the emission rate, as in 3.5.1.

The width of the Gaussian peak �f varies with V , due to the mechanism described in
3.41 where the junction itself actively cools/heats up the low frequency modes of the bias
line. The intrinsic width �f = 2.6 MHz, measured in the tail of the resonance, is twice
larger than in our strong-coupling experiment.

The area under the peak yields the total emission rate, which is directly proportional to
Re[Z(!)]. We compare this data with the coupling factor extracted in shotnoise regime
to obtain an absolute calibration of the Re[Z(!)] of the resonators.

As we do not know exactly the value of RN , we have to follow a more complex procedure
than in 3.5. We use the fact that the emitted power for single-photon process reads:

Pem(2eV ) =

Z

SP (!)d! ' Re[Z(!J)]⇥ (I⇤0 )
2

2
, (4.130)

while the critical current of the junction is linked to its normal resistance by the Ambegaokar-
Baratoff relation:

I0 =
⇡∆

2eRN

. (4.131)

We start by assuming that the renormalization of the critical current due to environment
zero-point phase fluctuations is small: I⇤0 = I0 ⇥ e�∆�2 ' I0. Then we combine (4.124),
(4.130) and (4.131) to yield a first estimation of Re[Z(!)] around !a and !b. We compute
the characteristic impedance Zc = (2/⇡)

R

Re[Z(!)]d!/! of the resonators, and obtain
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Figure 4.24: Re[Z(ω)] of the environment of the junction, showing the two microwave resonances.

an approximate value for the phase ZPF: ∆Φ2 ' ra+rb. We use this value to estimate the
value of the renormalized critical current I⇤0 , and re-inject it into the calculation. After
a few iterations, the procedure converges to yield the true value of Re[Z(!)], see figure
4.24. We improve furthermore its accuracy by including in the computation of ∆Φ2 the
low frequency modes of the setup around 300 MHz and their harmonics.

The Re[Z(!)] of the resonators are fitted with Lorentzian functions, yielding:

!r/2⇡ Q  Zc r
a 5092 MHz 60.8 526.2 µs�1 144.2 Ω 0.070
b 6955 MHz 97.0 450.5 µs�1 125.7 Ω 0.061

This procedure also yields the normal state resistance: RN = 16.0 ± 0.3 kΩ, as well as
the values of the critical current and Josephson energy:

I0 = 19.7± 1 nA ! I⇤0 = 15.7± 0.8 nA (4.132)

EJ = 40.4± 0.8 µeV ! E⇤
J = 32.3± 0.6 µeV. (4.133)

The SQUID on this sample does not manifest the same hysteretic behaviour and spurious
flux jumps as in the strong-coupling experiment. We are thus able to pinpoint the precise
value of E⇤

J that is used for each measurement. Note that the maximum value of E⇤
J

yields a value of � = 6.6, i.e above the parametric threshold.

Stokes and Anti-Stokes processes with 300 MHz modes

The two emission maps from figure 4.23 show faint secondary emission lines, parallel to
the main 2eV = ~! line. The upper line at 2eV = ~(! + !p) results from two-photon
emission processes, where one photon is emitted at ! and one photon is created in
a parasitic mode of the setup at !p ' 300 MHz. The lower line at 2eV = ~(! � !p)
corresponds to absorption processes, where one photon is absorbed from the 300 MHz
mode and one photon is emitted at !. For both the Stokes and Anti-Stokes processes,
we can only detect the light emitted at ! ⇠ !a/b.

We plot in figure 4.25 two spectra measured at 2eV = ~(!±!p), so that either the Stokes
or Anti-Stokes peak is located at !a. We observe that the emission peak is actually
double. These double peaks originate from �/4 resonances of the 50 Ω cables connecting
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the two sides of the sample to the bias-tees. As the length of the wound CPW resonators
on the chip are not the same, these two resonances have slightly different frequencies.
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Figure 4.25: Photon emission rate spectral density measured at 2eV = ~(ω±ωp), maximizing either the
Stokes process (orange curve) or the Anti-Stokes process (blue curve).

We fit the shape of the spectra as the sum of two Lorentzian functions to obtain the
frequencies and quality factors of these two resonances. We also compare the area under
the Anti-Stokes peaks to the emission rate due to direct single-photon processes, which
yield the characteristic impedances of the modes:

!r/2⇡ Q  Zc r
p1 292 MHz 30± 1 61.2± 2 µs�1 86± 5 Ω 0.04
p2 307 MHz 30± 1 64.3± 2 µs�1 86± 5 Ω 0.04

In the limit of low E⇤
J , the tunneling rates follow the P (E) theory. It predicts that the

emission rate du to Anti-Stokes processes scales as rp ⇥ n̄p, while the Stokes processes
yield a rp⇥(n̄p+1) scaling. Here the extra 1 is the mark of spontaneous emission process.
If the mode is empty at equilibrium with n̄p = 0, absorption processes are impossible, as
no energy can be extracted from the vacuum. The ratio of absorption power to emission
power n̄p/(n̄p + 1) allows us to extract the equilibrium population: n̄p = 0.58 ±
0.03, corresponding to a temperature of T= 14.5 ± 0.5 mK. Spectra measured at
!b yields a similar temperature.

On figure 4.25 we see that the Stokes peak corresponding to the lower frequency mode
!p1 = 292 MHz is larger than the peak associated to !p1 = 307 MHz, while the Anti-
Stokes peaks have similar height. We attribute this discrepancy to the back-action of the
out-of-equilibrium phase fluctuations from the modes onto the junction.

As these modes arise from �/4 resonances, they have higher harmonics at odd multiple of
their fundamental frequency, i.e near 900 MHz, 1.5 GHz, and so on. The (2k+1)⇥!p mode
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has a characteristic impedance which is 2k + 1 times lower than !p. We estimate their
occupation number from the temperature T = 14.5 mK of the fundamental resonance,
and compute their contribution to the phase fluctuations on the junction. This yields a
correction of a few percents on the value of E⇤

J , and on the Re[Z(!)] determined from
the emission maps.

Remark: voltage noise on the junction

The value of the dc-voltage noise on the junction, �V = h�f/2e, was monitored repeatedly
during the run by measuring the width of the Josephson radiation. It decreased contin-
uously over the first few weeks, as all the microwave components inside the fridge were
thermalizing. Its final value was �V = 5.4 nV, corresponding to �f = 2.6 MHz. This is
twice higher than the equilibrium value we had in the strong-coupling experiment.

We attribute most of the low-frequency voltage noise to the parasitic LC resonance of
the bias-tee at !BT ' 71 kHz, with Zc ' 50 Ω and n̄ ' 5000. When putting a second
bias-tee in series with the sample, their random voltage fluctuations add incoherently,
increasing ∆V 2 = �2

V by 2 and hence �V by
p
2. Hence we would have expected a value

of �V closer to 7.6 nV, and a dephasing rate �f of about 1.8 MHz, given that the bias-tee
stays at approximately the same temperature.

This increased noise could come from a higher temperature of the bias-tees. But as we
find that the 300 MHz modes are thermalized at the fridge base temperature, we estimate
that the modes at !BT should also be cold.

The main difference in our dc-bias line compared to the previous experiment is the removal
of the homemade (RC)3 filter, which broke after thermal cycling. We thus suggest that
the extra voltage noise in this experiment comes from room temperature, and that it was
previously well filtered by the (RC)3 filter.

4.3.2 Two-photon emission in the a and b modes

Emission map at low E⇤
J

We now scan the bias voltage across the two-photon resonance 2eV = ~!a + ~!b, where
each tunneling Cooper pair emits one photon in mode a and one in mode b simultaneously,
and measure the corresponding emission spectra (Fig.4.26). The Josephson energy is
tuned down to a low value of E⇤

J(Φ) = 2.65 µeV, which should yield a driving strength
� ' 0.54 and a population of the modes of n̄ ' 0.20 ⌧ 1 on resonance according to
(4.87), with the average population n̄ =

p
n̄an̄b.

On panel (a) of figure 4.26, the light is mostly emitted along two intersecting lines. The
first line follows 2eV = ~! + ~!b, the second line is fixed at ! = !a. This illustrates the
competition between the two modes: at a finite detuning ∆ = !J � !a � !b, it is more
favorable for the junction to emit light on top of a resonance, rather than at !a + ∆/2
and !b +∆/2. The same observation can be made on panel (b).
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Figure 4.26: Two-photon emission map around ωa (panel a) and ωb (panel b).

At low EJ , the emission spectra are well described by the P (E) theory, with:

�(!) =
SP (!)

~!
=

(2⇡E⇤
J)

2

~2
⇥ Re[Z(!)]

RQ ⇥ !
⇥ Re[Z(!J � !)]

RQ ⇥ (!J � !)
. (4.134)

On resonance !J = !a + !b, the shape of the emission spectra is thus the product of
the Re[Z(!)] of the two modes (Fig.4.27). As the modes have approximately Lorentzian
shapes, we fit the spectra by a Lorentzian function squared. We find a FWHM of 72 MHz
for the Lorentzian function, in good agreement with the width of the narrower resonator.
This yields a FWHM of about 46 MHz for the spectra.

Note that using a more complex fit function, like the product of two Lorentzian with
different widths, does not increase much the agreement of the fit, as the resonators already
have similar FWHM.

Non-degenerate parametric emission at higher E⇤
J

The probability of ICPT accompanied with emission of light at frequencies {!i} depends
on the occupation of the modes of the environment at {!i}. As soon as light is emitted,
the population of the modes increases, modifying the tunneling rates, and hence the
emission rate itself. We already described how in the strong-driving regime of a single
mode, when n̄ ⇠ 1/r, the tunneling rate is decreased by the enhanced phase fluctuations
of the mode. On the other hand it is known that parametric processes, such as the
two-mode driving, are stimulated by the build-up of field inside the resonators, yielding
enhanced emission rates. Finding the stationary state of the modes is thus a complex
problem, whose solution should be self-consistent.

The perturbative P (E) theory works around this issue by assuming that the stationary
state of the modes stays close to the thermal equilibrium that exists in the absence of
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Figure 4.27: Emission spectra at a voltage bias 2eV = h⇥ 12.05 GHz. The spectra are fitted by a
Lorentzian function squared, reproducing the Re[Z(ω)]⇥Re[Z(ωJ � ω)] shape.

tunneling, i.e for E⇤
J ! 0. This generally implies n̄ ⌧ 1. The self-consistency is assured

by the condition that the dc and ac current through the junction stay much smaller than
its critical current I⇤0 .

The P (E) prediction (4.134) reproduces well the shape of the emission spectra at low

pumping strength �, with a FWHM '
pp

2� 1 ⇥ eff = 2⇡ ⇥ 50 MHz5 (Fig.4.27), as
well as the emission rate Γ ' �2 eff

2
for �2 ⌧ 1. The population of the modes is then

n̄ ' �2

2
.

As soon as E⇤
j is large enough to have a � not much smaller than 1, the P (E) theory fails

to predict the correct emission rate. This is manifest in the spectra of figure 4.27, where
the integrated PSD yields Γ = 100±5 Mphotons/s, while �2 eff

2
' 70 Mphotons/s.

Meanwhile, our simple non-degenerate parametric amplifier model 4.1.3 captures the
impact of stimulated emission from the finite occupation of the cavities. We predict the
correct emission rate Γ = �2

1��2

eff

2
= 99.8 ± 5 MPhotons/s for � = 0.54, corresponding

to an occupation number n̄ = 0.20± 0.01.

At larger pumping strength �, the shape of the spectra changes from a Lorentzian function
squared to a true Lorentzian. At the same time it becomes narrower. This effect is visible
on the four spectra of figure 4.28. Here the Josephson frequency is slightly detuned by
∆ ' �10 MHz with respect to the sum of the resonance frequencies. The value of E⇤

J is
increased from 3.30 µeV up to 6.88 µeV, corresponding to � ranging from 0.67 up to 1.4,
i.e above the threshold for the parametric transition6.

The evolution of the shape of spectra is also captured by the parametric amplifier model,
whose dynamical bandwidth is ∆ΩG ' eff

1��2

1+�2 . We fit the spectra of figure 4.28 with

5with κeff = 2κaκb

κa+κb

= 485 µs�1.
6A this finite detuning, the threshold is β�(∆) = 1.015.
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Figure 4.28: Emission spectra at a voltage bias 2eV = h⇥ 12.035 GHz and increasing pump strength β.
The independent fits in panels (a) and (b) yield the same value of the detuning ∆ ' �10 MHz and of
the emission rates, corresponding to n̄ = 0.4, 1.0, 1.5 and 5.0 photons respectively (± 5%).

the expression for the PSD (4.81). In our fit procedure the resonance frequencies and leak
rates of the modes are fixed, having been determined in 4.3.1. The only free parameters
are the detuning ∆ and the pump strength �.

These fits reproduce extremely well the emission spectra. In particular the independent
fits around !a and !b yield the same value for the detuning, and equal emission rates
within our accuracy ± 5%. However, the effective value of � extracted from the fit differs
from the applied pump strength, being systematically lower.

Applied pump strength

Figure 4.29: Results of the fit of 25 emission spectra, with the pump strength β varying from 0.41 to
2.87 and various values of the detuning ∆. The fitted pump strength (black dots) agrees well with the
true β (red line) at low driving, but disagrees for strong driving.

We plot in figure 4.29 the result of the fit procedure applied on 25 pairs of spectra, taken
with � varying from 0.41 up to 2.87 and in various conditions of detuning, ranging from
∆ = -42 MHz to ∆ = +7 MHz. Here we compensate for the detuning, so that �� = 1 is
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the parametric threshold for each point. The fits yield the correct value of � at very low
driving only, when n̄  1, and disagrees strongly for strong driving.

This result illustrates the limits of our simple parametric amplifier model. As � ! 1,
non-linearities of the driving Hamiltonian slow down the emission rate, so that n̄ never
diverges [104]. This means that in practice we can always increase � above the parametric
threshold and measure a finite emission rate. On the other hand for small detuning ∆

the fit procedure can never yield a � well above 1, hence this disagreement.

Figure 4.29 suggests that this effect is equivalent to a re-definition of the pump strength,
as while the fits yield an incorrect value of �, they give the correct value for the emission
rates and the right shape for the spectra. We plot in figure 4.30 the measured occupation
number n̄ as a function of �, along with the prediction of the parametric amplifier model,
which illustrates the smooth renormalization of the parametric divergence.

Figure 4.30: Occupation number of the cavities n̄ as a function of the pump strength β. The measured
values (black dots) agree well with the parametric amplifier model (red line) at low β. Close to the
parametric transition β = 1, the simple model predicts a divergence of n̄. In the real system.

4.3.3 Photon statistics

In the same condition of pump strength and detuning than in 4.29, we measure correlation
functions of the a and b fields, revealing their non-classical statistics.

Studying the two modes separately: g(2)(⌧) functions and Fano factors

The simple scattering of a parametric amplifier predicts chaotic statistics for the emitted
radiation, with:

g(2)a (0) = g
(2)
b (0) = 2. (4.135)
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In the simple case of equal leak rates a = b and zero detuning, the time-dependence of
the correlation functions is [119]:

g(2)a (⌧) = g
(2)
b (⌧) = 1 + e�|⌧ |

�

� cosh(�|⌧ |/2) + sinh(�|⌧ |/2)
�2

�2
. (4.136)

At low driving � ⌧ 1, we have g
(2)
a/b(⌧) ' 1+e�|⌧ |. For intermediate pump strength g

(2)
a/b(⌧)

is the sum of terms of the form e�|⌧ |, e�(1+�)|⌧ | and e�(1��)|⌧ |. As � ! 1 the exponential
decay constant in the last term tends to zero, so that g

(2)
a/b(⌧) ! 2, 8⌧ 2 R.

This model is found to be too naive to describe our data, where even at low driving
the back-action from the finite impedance of the resonators reduce the bunching of the
emitted photons, with a zero-time value following (4.23). This is visible on panel (a)
of figure 4.31, where the g(2)(⌧) functions have been measured at a low driving strength

� = 0.46, yielding n̄ = 0.13. Their initial value are g
(2)
a (0) = 1.95 ± 0.1 and g

(2)
b (0) =

1.85± 0.07.

Furthermore, for finite occupation number n̄, the back-action of the cavity fields onto the
junction modifies the photon emission rate, yielding photon statistics closer to the one
of coherent light, with g

(2)
a (0), g

(2)
b (0) ! 1. This is visible in panels (b) and (c) of figure

4.31, where the correlators were measured at pump strength � = 0.87 and 1.13, yielding
occupation numbers of n̄ = 1.0 and 3.0 photons respectively.

Figure 4.31: Second order coherence functions of the a (red) and b (blue) photons, measured at occupation
numbers of n̄ = 0.13 (panel a), 1.0 (panel b) and 3.0 (panel c) photons, with phenomenological fits.

The zero-time value of the correlators decreases steadily from a value of about 1.8 down to
1 at high occupation numbers, which is characteristic of quasi-classical radiation. We plot
in figure 4.32 the values of g

(2)
a (0) and g

(2)
b (0) for increasing occupation pump strength

�, which illustrates this trend toward classical statistics of each mode considered sepa-
rately.

We fit each correlator with a phenomenological fit function, which is a version of (4.136)
with an extra parameter:

g
(2)
fit(⌧) = 1 + A⇥ e�|⌧ |

�

� cosh(�|⌧ |/2) + sinh(�|⌧ |/2)
�2

�2
. (4.137)

The fit parameter A = g(2)(0)�1 encodes the reduced value of g(2)(0) with respect to the
TMSV prediction of g(2)(0) = 2. The evolution of the decay rate of the correlation func-
tions is well reproduced by (4.137), although here again the fits yield an underestimated
value of �, close to the results of figure 4.29.
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Figure 4.32: Zero-time value of the second order correlation functions g(2)(τ) (red dots) and g(2)(τ) (blue
dots) as a function of the pump strength β.

Finally from the measurement of the g(2)(⌧) functions we estimate the Fano factors of
the emitted photons, with [119]:

Fx = 1 + �x

Z

d⌧g(2)x (⌧)� 1. (4.138)

The Fano factor is a measure of the slow fluctuations of the occupation number of the
modes. Like the photon number n̄ it is predicted to diverge at the parametric transition.
For a finite impedance of the environment, this divergence is washed out by the phase
fluctuations from the modes [104].

The Fano factors for the two modes are plotted in figure 4.33. Fa and Fb increase strongly
from about 1.5 at low � to 8 at the parametric threshold, then decrease slowly.

Occupation numbers cross-correlations

We study the non-classical correlations between the occupation of the two modes na and
nb. They are characterized by the cross-correlation function g

(2)
ab (⌧) = hna(0)nb(⌧)i

n̄an̄b
. The

parametric amplifier model predicts [119]:

g
(2)
ab (⌧) = 1 + e�|⌧ |

�

cosh(�|⌧ |/2) + � sinh(�|⌧ |/2)
�2

�2
. (4.139)

The zero-time value reads: g
(2)
ab (0) = 1+ 1

�2 = 2+ 1
2n̄
, which diverges at low driving n̄ ! 0.

This value also yields a NRF = 1
2
, i.e partial correlation between na and nb.

We plot in figure 4.34 the measured g
(2)
ab (⌧) cross-correlation function, for the same values

of occupation numbers than in figure 4.31. The time dependence follows the same trend
as the g

(2)
a/b(⌧) correlators.
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Figure 4.33: Fano factors of the a (red dots) and b (blue dots) photons as a function of the reduced pump
strength. As β is increased, the Fano factors increase strongly from about 1.5 at low driving to 8 near
the parametric transition threshold. Above the threshold, they decrease slowly. The parametric model
prediction (black line) diverges at β = 1.

Figure 4.34: Cross-correlation function g
(2)
ab (τ), measured at occupation numbers of n̄ = 0.13 (panel a),

1.0 (panel b) and 3.0 (panel c) photons, with phenomenological fits.

At low driving, the zero-time of g
(2)
ab (⌧) is much larger than 2, breaking the classi-

cal Cauchy-Schwarz inequality g
(2)
ab (0)  g

(2)
a (0)+g

(2)
b (0)

2
 2. At increasingly high pump

strength, g
(2)
ab (0) goes down to 1, while the decay time in g

(2)
ab (⌧) decreases (Fig.4.31).

The measured correlation functions deviate once again from the predictions of the naive
amplifier model, as g

(2)
ab (0) goes well below 2. They are however well fitted by a phe-

nomenological fit function:

g
(2)
ab,fit(⌧) = 1 +B ⇥ e�|⌧�⌧0|

�

cosh(�|⌧ � ⌧0|/2) + � sinh(�|⌧ � ⌧0|/2)
�2

�2
, (4.140)

which reproduces the evolution of the decay time with increasing pump strength. The
parameter B describes the deviation to the parametric model, while ⌧0 ' 0.2 ns is the
uncompensated time delay between the measurement lines. The effective value of �
extracted from the fits is lower than the true value, close to the results of figure 4.29.
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Noise reduction factor

We plot in figure 4.35 the zero-time value of the three correlation functions g
(2)
a (0), g

(2)
b (0)

and g
(2)
ab (0) as a function of the occupation number of the cavities. The classical Cauchy-

Schwarz inequality on na, nb is violated in all measurements, which extends the previous
results of Olivier Parlavecchio (Fig.4.8) up to high occupation numbers n̄ ' 9.

photon number 
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Figure 4.35: Auto and cross-correlations of the populations of the two modes. We use a log-scale on the

y-axis to better display the violation of the classical inequality g
(2)
ab (0) 

g(2)
a

(0)+g
(2)
b

(0)

2 up to n̄ = 9.

The non-classicality of the radiation can be quantified by the noise reduction factor
(NRF), which is computed from the measured correlation functions following (4.20). We
plot its value in figure 4.36 as a function of n̄.

Figure 4.36: Noise reduction factor as a function of the occupation number. The value NRF 1 proves
the two-mode amplitude squeezing of the radiation.

At low occupation numbers, we have NRF=0.625 ± 0.03. We attribute the discrepancy
with the predicted value NRF=1

2
to the finite acquisition bandwidth of our experiment,
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as detailed in 4.4.1. As n̄ is increased, the NRF increases towards 1, the value for classical
independent beams of light. This transition to the classical regime was not probed in the
2015 experiment by Olivier Parlavecchio and coworkers, as they stayed in a low occupation
regime n̄  1.5 (Fig.4.8).
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4.4 Results on the emission of entangled photons

We turn to the study of the non-classical phase correlations between the two beams,
accessible through the non-local observable ab(t). In our simple parametric model, its
auto-correlation function reads:

g
(2)
� (⌧) =

(

1

�2
+ e�|⌧ |1 +

�

� cosh(�|⌧ |/2) + sinh(�|⌧ |/2)
�2

�2

)

⇥ e�i!J⌧ . (4.141)

As expected its zero-time value g
(2)
� (0) = 1

�2 + 1 = 2 + 1
2n̄

coincides with g
(2)
ab (0). For

any ⌧ 6= 0, the model predicts |g
(2)
� (⌧)| > g

(2)
ab (⌧), i.e a violation of the Cauchy-Schwarz

inequality for separable states (4.41).

4.4.1 Preliminary experiment in the heating regime

We describe here the results of a preliminary experiment in the low-driving regime
�  0.63 (yielding occupation numbers n̄  0.33), where the acquisition bandwidth was
reduced from 525 MHz down to 180 MHz. This increases greatly the SNR, as all the
background noise outside of the measurement bandwidth is rejected, while the signal PSD
is almost entirely contained in a band of ⇠ 3⇥  ' 225 MHz.

Figure 4.37: Measurement of the entanglement witness correlators g
(2)
ab (τ) (orange curves) and |g

(2)
φ (τ)|

(purple curves) as a function of time τ in nanoseconds, for n̄ ranging from 0.06 up to 0.33.

We present in figure 4.37 the measured g
(2)
ab (⌧) and |g

(2)
� (⌧)| functions for a pump strength

� between 0.32 and 0.63, yielding occupation numbers ranging from 0.06 up to 0.33. For
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each set of curves, there is a time window of varying length (from about 340 ns down
to 125 ns) where the phase correlator is larger than the population correlator, i.e where
the inequality (4.41) is broken. This is a direct witness that in each measurement the
emitted a and b fields are entangled.

There are noticeable differences between the measured correlators and the predictions
(4.139) and (4.141) of our parametric amplifier model. The fact that the inequality is
violated only over a finite time window is unexpected. At higher pump strength � > 0.63
the fields do not display entanglement, while we predicted |g

(2)
� | � g

(2)
ab � ��2 � 1 > 0

as long as �  1. To understand better these phenomena, we focus on a single set of
correlation functions, measured at � = 0.55 with n̄ = 0.22.

Figure 4.38: Correlation functions g
(2)
ab (τ) (orange points) and |g

(2)
φ (τ)| (purple points) measured at an

occupation number n̄ = 0.22, with theoretical predictions of the parametric model (dashed curves).

We plot in figure 4.38 the measured correlators, along with the predictions of (4.139) and
(4.141) for this value of pump strength. Both theoretical curves start at ⌧ = 0 at a larger
value (' 4.3) than the experimental data (' 2.85). The initial decay of both measured
curves is close to the decay time of the theoretical predictions. However, while the phase
correlator is predicted to tend to a finite value at long times: |g

(2)
� (⌧ ! 1)| ! ��2, the

measured correlator tends to zero. It is this slow decay that limits the time window over
(4.41) is violated, i.e over which we can prove that the fields are entangled.

At this low pump strength, the antibunching contribution to number correlations is small
but finite (Fig.4.32), with g

(2)
a/b(0) ' 1.8 instead of 2, so that we expect g

(2)
ab (0) ' 4.1

instead of 4.3. We attribute further discrepancies between predictions and measurements
to two main causes that we discuss below: the finite frequency window of our detection
setup and the spurious drifts of the Josephson frequency due to voltage noise.

Impact of a finite acquisition window on the correlation functions

When studying frequency-dependent quantities such as the spectral density of quadrature
squeezing (4.91), it is advantageous to filter out the incoming fields a(t) =

R

a(!)e�i!td!/2⇡,
b(t) =

R

b(!0)e�i!td!0/2⇡ to select only the field components a(!), b(!J � !) displaying
the greatest amount of correlations.
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On the other hand the study of time-dependent observables such as correlation functions
require capturing the full time dependence of the field operators a(t), b(t). Any filtering
stage in the experimental data acquisition rejects a fraction of the field components,
so that we miss part of the correlations. This amounts to having a finite detection
efficiency, and leads to a lower value of the measured correlators compared to theoretical
predictions.

When the shape of the effective filtering function F (!) applied to the signals prior to
acquisition is known, its impact on measured correlation functions can be calculated [82].
The filtered field operators read:

afilt.(t) =

Z

F (! � !a)a(!)e
�i!td!

2⇡
=

Z

Fa(t� t0)a(t0)dt0 (4.142)

bfilt.(t) =

Z

F (! � !b)b(!)e
�i!td!

2⇡
=

Z

Fb(t� t0)b(t0)dt0 (4.143)

so that:

ha†filt.(t1)afilt.(t2)b
†
filt.(t3)bfilt.(t4)i =

⌧
Z

F †
a (t1 � t↵)a

†(t↵)Fa(t2 � t�)a(t�)⇥

F †
b (t3 � t�)b

†(t�)Fb(t4 � t�)b(t�)dt↵dt�dt�dt�

�

=

Z

F(t1, t2, t3, t4)ha†(t↵)a(t�)b†(t�)b(t�)id4t↵���
(4.144)

The filtered correlation function can be expressed as a generalized convolution product
of its unfiltered version times a multi-dimensional filter function F. In the relevant case
where two of the dummy time variables t1�4 are equal, the calculations require extra care
due to the non-trivial commutation relations of a(t), b(t).

Our theoretician collaborators at Ulm University have developed a framework to com-
pute efficiently these convolution products, mapping it to a simpler two-dimensional in-
tegral [87]. In addition to the back-action of the finite impedance of the resonators, their
simulations reproduce well the reduction of the initial value of the correlators compared
to the naive parametric amplifier model due to filtering effects.

A simple, classical picture of the signals allows us to understand this reduction and how
it depends on the width of the acquisition window. Consider the time-dependent part
of the population correlator: f(⌧) = g

(2)
ab (⌧) � 1. Within our acquisition procedure, we

actually measure and average its Fourier transform F[f(⌧)](!) = f̃(!).

In a classical picture, f̃(!) is the product of the Fourier transforms of the instantaneous
populations na(t), nb(t) (Fig.4.20). As f(⌧) is the sum of terms of the form e�|⌧ |,
e�(1+�)|⌧ | and e�(1��)|⌧ |, its Fourier transform is the sum of Lorentzian functions with
widths , (1 + �) and (1� �).

Due to the slow decay of the Lorentzian function/ |+ i!|�2, reconstructing exactly f(⌧)
would require an infinite acquisition bandwidth. In practice, an integration bandwidth
∆! = 2⇡⇥ is required to capture about 90% of f̃(!), which amounts to losing between

5% and 10% of the correlations in g
(2)
ab (⌧) = f(⌧) + 1.

200



Figure 4.39: a) The Fourier transform of g
(2)
ab (τ) is a Lorentzian function of width κ at low driving β ⌧ 1.

The bandpass filtering used in the experiment amounts to low-pass filtering F[g
(2)
ab (τ)](ω). The shape of

the low-pass filter (dashed) depends on the detail of the bandpass filters. b) The measured correlator of
filtered signals (dashed curve) shows less correlations than for the unfiltered fields (full curve).

In our experiments, the Nyquist frequency !N (equal to half the sampling rate) sets
a first upper limit on the effective integration bandwidth: when digitizing signals at a
rate of 1 sample every T nanoseconds, we can never detect features of the correlation
functions varying on a scale smaller than T . A second stage of effective low-pass filter in
the acquisition of correlation function results from the bandpass filtering of the signals
a(t), b(t) with filter F (!). The low-pass cut-off frequency is approximately set by the
width ∆! of the bandpass filters, while its shape is given by the auto-convolution product
F (!)⌦ F †(!0) (Fig.4.39).

In the preliminary experiment whose results are presented in figure 4.37, the narrow
bandpass filters with ∆! = 2⇡ ⇥ 180 MHz were only about 2.5 times wider than .
As a result we missed a considerable amount of correlations between the a and b fields,
hence the reduction of the zero-time value of normalized correlation functions in figure
4.38. In later experiments we used the filtering scheme presented in figure 4.19, with
∆! = 2⇡⇥ 525 MHz ' 7⇥ , which is enough to capture most of the correlations.

Our finite sampling rate and measurement bandwidth impact the short-time features of
correlation functions, in particular the initial decay from their zero-time value (Fig.4.38).
However their long times behaviour, carried by the zero-frequency Fourier components,
is not affected by filtering. The decay down to zero of |g

(2)
� (⌧)| is actually explained by

the low frequency voltage noise on the junction.

Impact of the voltage noise on the phase correlations

The Josephson frequency !J = 2eV/~ appears in the phase correlator with:

g
(2)
� (⌧,!J) = |g

(2)
� (⌧)|⇥ e�i!J⌧ . (4.145)

Even though the entanglement witness involves only the absolute value |g
(2)
� (⌧)|, fluctu-

ations of !J(t) = 2eV/~+ �!(t) during the acquisition and averaging of g
(2)
� (⌧,!J) lower

its value.

Through the calibration of the environment of the junction and our results on the spectral
width of the Josephson radiation 3.5, we developed a simple model for the low-frequency
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voltage noise in our experiments. The emission spectra in the single photon regime have
a Gaussian shape with a FWHM = 2

p

2 ln(2)�!, reflecting the Gaussian statistics of
thermal voltage noise on the junction. The measured value �! = 2⇡ ⇥ 1.3 MHz can be
quantitatively explained by attributing most of the voltage noise �V = ~�!/2e to the very
low frequency modes of the impedance of the environment, dominated by the spurious
LC resonance of the bias-tee at 71 kHz.

When measuring correlation functions, our effective measurement repetition time is much
shorter than 1/(71 kHz), so that when acquiring one chunk of data !J(t) = 2eV (t)/~ is

kept constant and we truly measure g
(2)
� (⌧,!J(t)). However when repeating many times

the acquisition we average together correlators corresponding to different values of !J(t),
taken at different values of the detuning ∆(t) = !J(t)�!a�!b. The averaged correlator
reads:

hg(2)� (⌧)i∆ =

Z

|g
(2)
� (⌧,!J +∆)|e�i(!J+∆)⌧p(∆)d∆. (4.146)

Here p(∆) is the probability density function for having the value of detuning ∆ during
one acquisition. Following our model of purely thermal, Gaussian noise, we have:

p(∆) =
1p
2⇡�!

e
� ∆

2

2�2
! . (4.147)

As ∆!2
J ⌧ , we can estimate the averaged correlator as:

hg(2)� (⌧)i∆ ' g
(2)
� (⌧,!J)

Z

e�i(!J+∆)⌧p(∆)d∆

' g
(2)
� (⌧,!J)⇥ e�

(�!⌧)2

2 .

(4.148)

Hence the decay to zero at long times of g
(2)
� (⌧) originates directly from the Gaussian

noise �V . This correlator can be interpreted as the auto-correlation function of the sum
of the phases of the a(t) and b(t) fields, which is itself equal to the squeezing angle ✓.
The random motion of ✓(t) through time, due to thermal noise on the junction, results
in a finite phase coherence time for the propagating beams.

The total voltage noise on the junction may also result from non-equilibrium events, or
from the thermal occupation of modes up to kBT/h ' 400 MHz which impact V (t)
faster than the measurement rate. Taking these phenomena into account would require a
more complex treatment and numerical simulations. However the simple picture of slow
Gaussian noise is enough to explain the bell shape of the measured phase correlators
(Fig.4.37). In particular the value of the phase coherence time at low driving, obtained

from a complex Gaussian fit of g
(2)
� (⌧), agrees very well with the voltage noise �V deduced

from single-photon spectra. We thus find that the entanglement of the a and b beams is
limited only by the low-frequency thermal noise on the bias voltage, in agreement with
the simple picture presented in figure 4.9.

Evolution of the phase coherence time in the preliminary experiment

To validate this picture, we fit the Fourier transform of the phase correlators from figure
4.37 with Gaussian functions. It is easier to perform these fits in the frequency domain,
where the short-time features of |g

(2)
� (⌧)| near ⌧ = 0 can be neglected.
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Figure 4.40: Gaussian fits of the Fourier transforms of the phase correlators, measured at occupation
numbers ranging from n̄ = 0.33 (blue points and curve) down to n̄ = 0.033 (brown points and curve).

The agreement of the Gaussian fits is excellent for values of n̄ ranging from 0.33 down to
0.033, see figure 4.40. The slight difference between the data and the fits comes from our
neglecting of the short-time features of g

(2)
� (⌧)|, which adds a low pedestal to the Fourier

transform.

The position of the peaks is the Josephson frequency !J = 2eV/~. As we increase the
photon emission rate it is shifting from 12.082 GHz towards lower frequencies, see figure
4.41 panel (a). The width of the Gaussian peaks, which is equal to the dephasing rate
�! of the time-domain correlation functions, is found to be about 2⇡ ⇥ 1.8 MHz at low
occupation of the modes. It increases up to 2⇡⇥ 2.7 MHz at n̄ = 0.33 (Fig.4.41.b).
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Figure 4.41: a) Josephson frequency as a function of the emission rate Γ and the occupation number n̄.
b) Standard deviation of the Josephson frequency σω/2π, extracted from the Gaussian fits of figure 4.40.

The shift of the Josephson frequency with increasing emission rate is easily under-
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stood. The emission of photon pairs at a rate Γ is accompanied with the flow of a dc
current Idc = 2eΓ through the junction. This dc-current is extracted from the voltage
bias line, resulting in a lower voltage drop across the bias resistor R3, see figure 4.18.
Then the voltage bias on the junction shifts by �V = R3 ⇥ 2eΓ, resulting in a frequency
shift �!/2⇡ = 2e⇥ �V/h = Γ⇥R3/RQ ' Γ/18.7.

As the emission rate itself depends on the value of the detuning ∆ through (4.85), there
may be several possible stationary states for the system. In particular if Re[Z(!J)] ⌧
Re[Z(!J ��!)], the junction may either be emitting photons at !J ��!, or fall in a ”dark
state” where Γ ' 0 and ∆ = 0. Jumps between the two possible states of this bi-stable
system become more probable at higher bias voltage noise.

The standard deviation of the Josephson frequency at low driving is very close top
2 times the value we had in the strong-coupling experiment (3.5). This is exactly what

we expect when adding a second bias-tee in series with the sample, as the variance of
independent random variable add up. This agreement confirms furthermore our model
for the low frequency noise on the bias voltage. In later experiments, the noise was higher
due to the removal of a stage of lowpass filtering in the bias line.

We attribute the increase of �! with Γ to the interplay between the low frequency modes
and the admittance of the junction itself. From the determination of the Josephson
frequency at low driving (Fig.4.41.a), we see that the bias was actually blue-shifted from
the resonance condition !J = !a + !b = 2⇡ ⇥ 12047 MHz by about +2⇡ ⇥ 35 MHz. In
these conditions, the derivative of the emission rate with respect to the bias voltage is
negative, see (4.85). The equivalent low-frequency admittance of the junction itself is
also negative, see figure 3.41. Then the junction acts as a negative resistor in parallel to
the low-frequency modes, i.e an amplifier for low-frequency voltage noise.

As these modes are in a thermal state, this amounts to increasing their temperature,

from about Tcold = 18 mK at equilibrium up to
�

2.7
1.8

�2 ⇥ Tcold = 40 mK at the highest
pump strength. The bias condition !J > !a + !b thus yields a heating regime of the
low-frequency modes.

Conclusions of the preliminary experiment in the heating regime

The increase of the dephasing rate of the phase correlators with increasing pump strength
(Fig.4.37) is not an intrinsic property of the system itself, but rather of its interaction with
the bias setup. The misguided choice of a bias voltage above the resonance condition
2eV = ~!a + ~!b results in the amplification of low-frequency voltage noise, to the
detriment of the phase coherence of the emitted photons.

This heating mechanism limits the maximum emission rate of entangled photons: at high
bias voltage noise �V , the probability that the system jumps to a bi-stable”dark state”
increases. For the bias conditions of this experiment, this limits the maximum emission
rate to Γ = 0.33 ' 150 MPhotons/s.

Having understood this phenomenon, we went on to perform a second series of measure-
ments, carefully keeping the bias voltage at the resonance condition 2eV = ~!a + ~!b.
In particular we monitored closely the value of !J during the experiment, compensating
the bias voltage for the frequency shift at a finite emission rate.
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We also decided to use wider bandpass filters, going from a 180 MHz acquisition window
up to 525 MHz. This is the measurement setup that was used for all the results presented
in section 4.3. With this very wide frequency band we expect to miss fewer correlations,
increasing the maximum emission rate at which we detect entanglement.

4.4.2 Emission of entangled photons at equilibrium voltage noise

Determination of the bias neutral point

In order to determine the exact position of the voltage bias neutral point, i.e the value of
!J such that the junction does not interact with the low frequency modes, we measured
the g

(2)
� (⌧) correlation function at different values of bias V and pump strength �.

For each curve, we fit the time constant of the gaussian decay at long times of the phase
correlator, that we interpret as the dephasing rate �! of the squeezing angle. The results
of these fits are plotted as a function of the Josephson energy in figure 4.42.
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Figure 4.42: Dephasing rate σω/2π of the phase correlator for different values of β, as a function of the
Josephson frequency. The red arrow indicates the bias voltage used in the preliminary experiment, which
lies in the heating regime. The grey arrow indicates the bias neutral point ωJ = ωa + ωb. The light blue
arrow points to the optimal cooling point at ∆ = �κa+κb

2
p
3
.

Each curve of a given colour indicates points measured at the same value of �, with the
yellow points indicating the lowest value and the green points the largest one. For each
curve, we started the measurement with the bias voltage far below ~(!a + !b)/2e, and
increased it steadily until we hit the bi-stable regime of the system, where we lose the
Josephson emission. Due to the emission rate dependent frequency shift, at a given value
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of voltage V the effective Josephson frequency !J = 2eV/~� 2⇡ΓR3/RQ is not the same
for all � values, so that the curves do not line up along the x axis.

We find that for all � values the curves cross approximately at the resonance condi-
tion !J = !a + !b, indicated by the grey arrow, where the low frequency admittance
of the junction is zero and it does not impact the voltage noise from the environment
modes. This defines the neutral point, or non-interacting regime for the junction and
low frequency modes.

Below this neutral point, the dephasing rate is reduced compared to the non-interacting
value of �!/2⇡ ' 2.6 MHz. The noise reduction is larger at higher � (compare the yellow
to green curves), yielding �!/2⇡ ' 0.8 MHz at the highest pump strength. The optimal
cooling point (light blue arrow) is close to the value of !J where dΓ

d∆
is the largest, which

lies at ∆ = �a+b

2
p
3

' �2⇡ ⇥ 43 MHz according to (4.85).

Above the neutral point, the dephasing rate increases steadily, corresponding to the
heating regime, where the junction amplifies the low frequency voltage noise. At large
�, the voltage noise becomes so high that the system becomes unstable and the Josephson
frequency jumps out of the measurement window. The red arrow indicates the bias voltage
used in the preliminary experiment, which is close the ”optimal” heating point, i.e the
worst possible choice to try and witness the entanglement.

In this section, we describe experiments performed close to the neutral point !J = !a +
!b. In these conditions we consider that the junction decouples from the low frequency
modes and interact only with the a and b modes, simplifying the interpretation of our
results.

Correlators at the bias neutral point

We present in figure 4.43 the witness correlators measured close to the neutral point
!J ' !a+!b. At this bias voltage, we are able to push the driving strength up to a much
higher value � = 1.385, yielding an occupation number n̄ = 4.8.

Even at this very high occupation number, corresponding to an emission rate Γ = 4.8 '
2.3 Gphotons/s, the emitted photons are still entangled. Figure 4.44 shows a close
zoom-in on the witness correlators near ⌧ = 0 for the n̄ = 4.8 measurement. Each point
is plotted with an error bar, showing twice the statistical measurement uncertainty �.
For ⌧ < 12 ns, the inequality (4.41) is violated by as much as 20 �.
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n=0.08 n=0.10 n=0.14

n=0.19 n=0.40 n=0.69

n=1.02 n=1.49 n=4.80

Figure 4.43: Measurement of the entanglement witness correlators g
(2)
ab (τ) (orange curves) and |g

(2)
φ (τ)|

(purple curves) as a function of time τ in nanoseconds, for n̄ ranging from 0.08 up to 4.8.

n=4.8

Figure 4.44: Entanglement witness correlators at n̄ = 4.8. The phase correlator (purple curve) is larger
than the number correlator (orange curve) by 20 σ, which is a proof of entanglement.

The maximum emission rate where we detect entanglement is limited by the decrease
of the initial value |g

(2)
� (0)| = g

(2)
ab (0) with increasing �. This phenomenon, which is not

predicted by the naive parametric model, comes from the impact of the resonators’ phase
fluctuations on the junction. As the occupation of the cavities grows, they reach the
strong-driving regime, where the statistics of the radiation becomes close to the one of a
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coherent field, with:

|g
(2)
� (0)| = g

(2)
ab (0) = g(2)a (0) = g

(2)
b (0) ���!

n̄!1
1. (4.149)

At the same time, the time constant in the initial decay of |g
(2)
� (⌧)| and g

(2)
ab (⌧) both tend

to infinity, so that we cannot witness the violation of the inequality (4.41) before the
Gaussian dephasing takes place.

Improvements compared to the preliminary experiment

The curves presented in figure 4.43 were measured over the course of several weeks.
During this time, the value of the bias voltage noise was drifting considerably, starting
at about �!/2⇡ = 5.5 MHz at the beginning of the run, then cooling down progressively
to an equilibrium value ' 2.6 MHz. Due to the removing of a crucial filtering stage of
the bias line, this value is even higher than the amplified voltage noise measured in the
heating regime (Fig.4.41).

However we could check that after these few weeks of thermalization, when the bias
voltage was kept at the neutral point, the dephasing rate was consistently equal to 2.6
MHz for all � values, see figure 4.42. This value coincides with the voltage noise measured
in the single photon regime, through the width of the Gaussian emission spectra.

Thanks to the wider acquisition bandwidth used in this experiment, the distortions of
the measured correlators due to filtering effects are reduced. We plot in figure 4.45 the
value of g

(2)
ab (0) = |g

(2)
� (0)| as a function of the inverse occupation number 1/n̄ for the two

experiments. Data points measured in the the preliminary experiment are in red, those
taken at the neutral point are in black. Along them is the theoretical prediction for an

infinite detection bandwidth: g
(2)
ab (0) =

g
(2)
a (0)+g

(2)
b (0)

2
+ 1

2n̄
, associated with NRF = 1

2
.
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Figure 4.45: Zero-time value of the population correlators as a function of 1/n̄ for the two experiments,
using either narrow filters (red points) or wide filters (black points), along with the theoretical prediction

g
(2)
ab (0) =

g(2)
a

(0)+g
(2)
b

(0)

2 + 1�NRF
n̄ . Fewer correlations are missed when using wider filters.
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For the experiment in the heating regime, the missed correlations due to a too narrow
measurement bandwidth lead to NRF = 0.72 at vanishing photon number, i.e a loss of
about 0.72�0.5

0.5
= 44% of the correlations. With wider bandpass filters, we have NRF =

0.625 at low photon number (Fig.4.36), so that we miss only about 25 % of the correla-
tions. This effect is quantitatively accounted for by numerical simulations.

Numerical simulations at the neutral point

Our theoretician collaborators from Ulm University have developed a theoretical frame-
work and numerical tools to simulate efficiently the evolution of the cavity states under the
full Hamiltonian (4.3). Within a master equation formalism, they can compute correla-
tion functions for the cavity fields, which are linked to the measured correlation functions
of propagating modes by the input-output relation.

Their approach captures the back-action of the finite impedance of the resonators onto
the system’s dynamics, and are then closer to the real system than our naive parametric
amplifier model. They can also incorporate the impact of bandpass filtering of the signal
on the correlation functions, in very good agreement with our experimental results.

However these simulations with filtering effects are quite expensive in time and numerical
resources, in particular at high photon number. They are in practice limited to about
n̄ = 2.

We show in figure 4.46 the results of the simulations of the phase correlator |g
(2)
� (⌧)| at

� = 0.409 with n̄ = 0.10, along with the measured data (purple curve). The full black
curve corresponds to the ideal case of an infinite detection bandwidth and a perfect dc
voltage bias, with �! = 0. Its long times value is close to the prediction of the parametric
model, with: |g

(2)
� (1)| = ��2 ' 6. The only parameters of this simulation are the leak

rates of the cavities a,b, their coupling constants ra, rb and the pump strength �, which
were all determined independently. There is no adjustable parameter.

Figure 4.46: Measurement of the entanglement witness correlators g
(2)
ab (τ) (orange curves) and |g

(2)
φ (τ)|

(purple curves) as a function of time τ in nanoseconds, for n̄ ranging from 0.08 up to 4.8.
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The dashed curve shows the impact of filtering, still in the case of a perfect dc bias. As
some of the correlations are missed due to bandpass filtering of the signals, the normalized
correlator is lowered by about 1.5 compared to the unfiltered one. The initial value goes
from 6.9 to about 5.4, and coincides with the ⌧ = 0 value of experimental data. The
amount of missed correlations 6.9�5.4

6.9�1
' 25% agrees with our previous estimate.

The dotted curve shows the impact of voltage bias noise on the correlation function. It
was obtained by simulating many copies of g

(2)
� (⌧), each with a different value of detuning

∆, then averaging them together with a Gaussian weight following (4.147). The value
of �! used in the averaging of simulation results was fitted from experimental data. It
agrees very well with the experimental measurement of the correlator.

σω=2.6 MHzn=0.10 σω=2.7 MHzn=0.13

σω=2.7 MHzn=0.14 σω=2.6 MHzn=0.19

σω=2.5 MHzn=0.39 σω=5.5 MHzn=0.69

σω=3.4 MHzn=1.01 σω=4.0 MHzn=1.49

Figure 4.47: Entanglement witness plotted along numerical simulations (black curves). The only fit
parameter is the voltage noise, yielding the dephasing rate σω.

The same procedure is used for the simulation of the number correlator g
(2)
ab (⌧), yielding

similar agreement. We repeat it for all measurements at the neutral bias point (Fig.4.47),
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except for the n̄ = 4.8 point which cannot be simulated in a reasonable time.

Taking into account the dc voltage noise, the simulated curve agrees very well with
the measured data. Simulations captures accurately the impact of bandpass filtering,
which systematic reduces the amount of correlations by about 25%. The voltage noise is
consistently equal to about 2.6 MHz, except for the data measured at the beginning of
the run (in red) where it is higher.

This quantitative agreement validates our description of this simple system. A dc-biased
Josephson junction implements a non-degenerate parametric amplifier. When fed with
vacuum fluctuations, it generates two-mode vacuum squeezing in the two resonators.
The leaking fields are then entangled, sharing a non-local phase ✓ inherited from the
superconducting phase difference of the junction. Thermal voltage noise on the bias
yields a finite phase coherence for the junction, which limits the entanglement of the
propagating beams. The back-action from the non-zero impedance of the resonators add
non-linearities to the two-mode drive, making the light states non-gaussian.

Quantifying the amount of entanglement

Even though we cannot detect stationary entanglement of the two cavities due to slow
dephasing of the squeezing angle, we can still estimate their instantaneous amount of
entanglement. The log-negativity between the two cavities is given by:

Ecav
N = � ln(1 + n̄a + n̄b �

p

(n̄a � n̄b)2 + 4|habi|2). (4.150)

We can measure easily the occupation numbers n̄a, n̄b. The value of the |habi|2 correlator
can be estimated by the long times value of the phase correlator:

ha†b†(0)ab(⌧)i ���!
⌧!1

ha†b†ihabi = |habi|2. (4.151)

Now, all the measured g
(2)
� (⌧) functions tend towards zero at long times, indicating that

the stationary entanglement is zero. However we can estimate the value it would have in
the absence of voltage noise. To do so, we simply fit the Gaussian decay of g

(2)
� (⌧),

and deconvolve it to estimate |g
(2)
� (1)|.

This approach is justified by the good agreement of independent numerical simulations of
the system with experimental data. We also check that the deconvolved |g

(2)
� (1)| agrees

up to 2% with the result of simulations at long times.

The estimated log2 negativity is plotted in figure 4.48 (black dots). We also show the log-
neg computed from the simulated density matrix, assuming or not Gaussian statistics of
the modes (blue and green curves). We also plot the log-neg estimated from simulations
of the signals including the impact of the bandpass filters (purple line). The estimated
log-neg reaches about 0.5 e-bits for the experimental data.

The estimated log-neg is systematically lower for the experimental points compared to
simulations. This discrepancy may be due to the crudeness of our modelling of the
filtering, or to the sensitivity of the fit procedure to noise in the experimental data.

As our measurement of the entanglement is not frequency-resolved, we cannot estimate
directly the entanglement rate. We will only give the very rough following estimate:
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Figure 4.48: Logarithmic negativity EN of the two cavities as a function of the photon number n̄. The

black dots are extracted from the estimated value of the g
(2)
φ (τ) correlators at long times, compensating

for the gaussian dephasing. The blue and green curve show the log-neg calculated from the density matrix,
obtained by numerical simulations of the full Hamiltonian (4.15), assuming or not Gaussian statistics
of the light. The purple curve shows the log-neg estimated from simulation of the phase correlator,
including filtering effects.

at n̄ = 0.69 where we have the largest log-neg for the cavities Ecav
N ' 0.5 e-bits, the

dynamical bandwidth of the emission spectrum is about 20 MHz. We estimate the log-
neg of the propagating modes at !a,!b following (4.97) to be: EN [!a] ' 6 e-bits/s/Hz.
Then the entanglement rate delivered in the emission bandwidth is ΓE ' 120 Me-bits/s,
one order of magnitude above current state of the art [37][113]. This very crude estimation
assumes perfect quantum efficiencies both in the generation and detection of the entangled
photons, which we do not claim to have in this experiment.

4.4.3 Emission of entangled photons in the cooling regime

Figure 4.47 shows that we can detect the entanglement of the beams if the dephasing
rate �! yielded by the voltage noise is smaller than the leak rate of the cavities . This
dephasing rate is not intrinsic to the system itself, but to how good is the filtering of the
bias line. However the junction itself can interact with the low-frequency modes of the
setup, increasing or reducing the voltage noise.

In a final series of experiments, we placed the bias voltage below the resonance condition
!J = !a + !b, at the optimal point of the cooling regime (Fig.4.42), and measured
the entanglement of the emitted photons. We then expect the dephasing rate to be
reduced, slowing the Gaussian decay of the phase correlator and allowing us to witness
the entanglement up to higher emission rates.

We plot in figure 4.49 the witness correlators measured at the same photon number
n̄ = 1.0 both at the neutral point (full lines) and in the cooling regime (dashed lines). We
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see that the emitted photons are still entangled in the cooling regime, as |g
(2)
� (⌧)| > g

(2)
ab (⌧)

for |⌧ | < 60 ns. At the same time the junction is interacting with the low frequency modes
and cooling them down, as the dephasing rate �!/2⇡ = 1.8 MHz is lowered compared to
the neutral point value �!/2⇡ = 3.4 MHz.
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Figure 4.49: Entanglement correlators measured at n̄ = 1.0 both at the neutral point (full lines) and
in the cooling regime (dashed lines). The Gaussian decay rate of the phase correlator is reduced in the
cooling regime, yielding a longer entanglement time.

The persistence of entanglement in the cooling regime is remarkable. In a microscopic
picture, Cooper pairs tunnel inelastically across the junction, absorbing energy from the
low frequency noise while emitting entangled photon pairs in the microwave resonators.
The low frequency modes are in a thermal state with occupation number nB ' 5000, and
thus deeply in the classical regime. One would naturally expect that actively coupling a
quantum device to this highly excited bath should destroy any kind of quantum coherence.
To the contrary, we prove that a well-tailored interaction can actually increase the
coherence time, by reducing the dephasing rate in our entanglement witness.

The reduction of the dephasing rate has an immediate consequence on the correlators,
as it extends the range over which the inequality (4.41) is broken, from ∆⌧ = 70 ns at
the neutral point up to ∆⌧ = 120 ns in the cooling regime for this value of n̄ = 1.0.
Following the picture we developed in figure 4.9, this time window can be converted into
a coherence length c ⇥ ∆⌧ over which the two beams of light agree on the value of the
squeezing angle, i.e over which they are entangled.

It should be noted that the ⌧ = 0 time value of the correlators is slightly lower in the
cooling regime than at the neutral point. This effect is not predicted by the simple
parametric model. It may be a mark of the classical statistics of the absorbed low-
frequency noise, which pollute the entangled states and reduce their correlations. As of
today numerical simulations cannot include both the dynamics of the GHz modes where
the entanglement is created and of the kHz modes being cooled down, due to the vastly
different timescales involved and the very large number of photons in the low frequency
modes.

As the Josephson admittance of the junction is proportional to dΓ
dV

, we expect the cooling
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power of the junction to increase at higher emission rates. We plot in figure 4.50 the
witness correlators measured in the cooling regime at increasing pump strengths, up to
an occupation number n̄ = 5.3.

n=0.8 σω=1.8 MHz n=1.0 σω=1.8 MHz

n=1.5 σω=1.47 MHz n=2.0 σω=1.55 MHz

n=2.6 σω=1.45 MHz n=3.0 σω=1.37 MHz

n=3.5 σω=1.27 MHz n=3.9 σω=1.26 MHz

n=4.6 σω=1.25 MHz n=5.3 σω=1.17 MHz

Figure 4.50: Entanglement correlators measured in the cooling regime. As the pump strength β is
increased, the τ = 0 value of correlators decreases down to 1. At the same time the dephasing rate σω

is reduced, due to cooling of the low frequency modes by the junction.
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As expected, the dephasing rate �! decreases steadily with increasing occupation number
n̄. At the same time, the zero-time value of correlators decreases towards 1, which limits
the visibility of the entanglement witness. Up to n̄ = 5.3, corresponding to a high emission
rate of 2.57 Gphotons/s, the inequality (4.41) is violated by at least 11 �, proving the
entanglement of the emitted beams.

n=5.3

Figure 4.51: Witness correlators measured at n̄ = 5.3 in the cooling regime. The witness inequality
(4.41) is violated by 11 σ, despite the presence of parasitic oscillations in the correlation functions.

However the structure of the entanglement seems to differ at high emission rates compared
to what we observed at the neutral point. We plot in figure 4.51 the correlators measured
at the highest occupation number n̄ = 5.3. Contrarily to what was observed in the earlier
experiments, the witness inequality is not broken at very short times ⌧ < 2.5 ns, but only
over a limited range 2.5 ns < ⌧ < 10 ns. This is due to parasitic oscillations with a period
' 7.5 ns and amplitude ' 10�3 that appeared on top of the correlation functions.

We show in figure 4.52 the Fourier transform of the phase correlator at a high photon
number n̄ = 9.25, where the entanglement is not witnessed. In addition to the main
Gaussian peak at !J/2⇡ = 12.005 GHz, it reveals the existence of secondary peaks at
!J ± !P , with !P/2⇡ = 135 MHz.

These peaks are visible in the Fourier transforms of all phase correlators measured in
the cooling regime for n̄ > 2. At lower occupation number they may be present but fall
below the noise floor of the measurement, so that they do not appear in the time domain
correlators.

We attribute these peaks to parasitic Stokes/Anti-Stokes processes involving a mode at
!P/2⇡ = 135 MHz, which contains about nB = 2.3 photons at equilibrium. In a Stokes
process, the junction emits three photons upon each tunneling event, in the a, b and P
modes. In an Anti-Stokes process, the junction absorbs one photon from the P mode
while emitting entangled photons in a and b. In both processes, the junction is also
cooling down the kHz modes of the bias line by absorbing voltage noise, so that we may
argue that we witness here the coherent exchange of four photons between modes at
widely different frequencies.

As all these processes are coherent, the system is actually entangling together the a, b
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Figure 4.52: Fourier transform of the phase correlator at n̄ = 9.25. In addition to the main Gaussian
peak at 12.005 GHz due to the direct emission of entangled photons, Stokes and Anti-Stokes processes
are visible at 11.87 GHz and 12.14 GHz respectively, as well as a single Anti-Stoke peak at 12.11 GHz.

and P modes. The description of the stationary state of these modes is far beyond the
reach of this work, although it may exhibit some intriguing features.

From a practical point of view, these oscillations reduce the visibility of the entanglement
witness between the a and b modes. One could argue that in the measurements of figure
4.51, the parasitic oscillations add an uncertainty to the correlation functions, which is
much bigger than the statistical error � = 8 ⇥ 10�4. To prove the entanglement in an
unambiguous manner, we reduced the bandpass filters’ bandwidth down to 300 MHz, in
order to reject the signals from the Stokes/Anti-Stokes processes.

n=5.1

Figure 4.53: Witness correlators measured at n̄ = 5.1 with narrower filters. Parasitic oscillations in the
correlation functions have been reeduced. The witness inequality (4.41) is violated by 13 σ.

The results of the experiment with narrower filters at n̄ = 5.1 is plotted in figure 4.53.
The parasitic oscillations due to indirect processes have greatly decreased, such that the
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entanglement can be witnessed without ambiguity. At the same time, the initial time
decay of the population correlator has lengthened, due to the impact of the filters. For
even narrower filtering, this time decay becomes slower than the g

(2)
� (⌧) dephasing rate,

such that the inequality is not violated anymore.

Finally we estimate once again the log-neg of the cavities from the value of the phase
correlator at long times. In figure 4.54, we add the log-neg estimated in the cooling regime
to the results of figure 4.48. It is non-zero up to n̄ = 3.5. Albeit the decay of Ecav

N with
n̄ seems to follow a lower slope in the cooling regime than at the neutral point, this does
not lead to an increase of the maximum entanglement rate.

Figure 4.54: Logarithmic negativity as a function of the photon number n̄. Experimental data measured
in the cooling regime (blue dots) have been added to figure 4.48.

Dephasing rate in the cooling regime

At higher occupation number, we do not witness the entanglement anymore. There is a
competition between different time scales, namely the dephasing rate �! and the initial
decay constant ' (1� �), which gets even shorter for narrower acquisition bandwidth.
The ⌧ = 0 value of the correlators also reduces down to 1 at high emission rates, so that
we cannot witness the violation of 4.41 with our limited accuracy.

After heuristically optimized the filters’ bandwidth, the emission rate and the averaging
time, we detect unambiguous proofs of the entanglement up to n̄ = 5.1, corresponding
to an emission rate Γ = 2.470 Gphotons/s. At higher emission rates, even if we do not
witness the entanglement, we still measure a reduction of the dephasing rate �!. We
went on to study how low we could decrease it, even if it did not yield entanglement
proof anymore.

Figure 4.55 shows the dephasing rate extracted from the phase correlators as a function
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of the occupation number in the cooling regime (blue dots). It goes from the equilib-
rium value �!/2⇡ = 2.6 MHz at low driving down to �!/2⇡ = 0.8 MHz at high pump
strength.
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Figure 4.55: Dephasing rate measured in the cooling regime as a function of the occupation number
(blue dots), along with the prediction of the Josephson admittance model (black line).

We compare this data to the prediction of our simple model for the cooling mechanism,
based on the Josephson admittance of the junction (Fig.3.41). As we know the Josephson
energy of the junction and the impedance of the environment at !a and !b, we can
compute the equivalent admittance of the junction YJ(!) following Rogovin-Scalapino.
We estimate the equivalent temperature TJ of the Josephson admittance through the
shot-noise of Cooper pairs:

SII(! ! 0) = 4Re[YJ(! ! 0)]kBTJ = 4eIdc, (4.152)

and find TJ  1 mK for all �. The only unknown parameter of the model is the value
of Re[Z(!)] at low frequency. Making the simplifying assumption that all voltage noise
is carried by the bias-tee LC mode, we simply need to know its quality factor Q, which
should be somewhere between 10 and 30.

We fit the data from figure 4.55 with our simple model, having as a single adjustable
parameter this quality factor. We find Q ' 25 and a very good agreement between the
measured dephasing rates and our model. Our prediction holds up to n̄ ' 7, where
r ⇥ n̄ ' 1

2
. This is the onset of the strong-driving regime, where non-linearities in (4.3)

become sizeable and our simple model should not apply anymore.

This very good agreement confirms furthermore our understanding of the main limiting
mechanism for the entanglement of photons, which is thermal noise from the bias setup.
This voltage noise can be either increased or reduced by inelastic Cooper pair tunneling,
which can emit or absorb energy from the low frequency modes. In particular the tem-
perature of these modes can be reduced down to 1/10 of its equilibrium value. We plot
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in figure 4.56 the voltage noise �V 2 measured in the three experiments, normalized by its
equilibrium value at � = 0. This voltage noise translates to an equivalent temperature of
the low frequency modes, which can be reduced from about 20 mK down to 2 mK.
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Figure 4.56: Relative voltage noise δV 2 measured in the heating regime (red dots), at the neutral point
(black dots) and in the cooling regime (blue dots) as a function of the emission rate Γ. Points measured
at the neutral point but in non-equilibrium conditions are indicated in grey.
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4.5 Conclusions and perspectives

Our results prove that a dc-biased Josephson junction in series with two resonators a
and b can generate continuous entanglement between the two light beams leaking out
of the resonators. The energy needed to create this entanglement is extracted from the
voltage bias in an inelastic process where for each tunneling Cooper pair, one photon
is created in a and another one in b. The shared degree of freedom between the two
entangled subsystems is the sum of their two instantaneous frequencies, which is fixed by
the voltage difference across the junction. On the other hand the instantaneous frequency
of each beam is less well-defined. In a simple picture, the two beams show 2-photon phase
coherence in the absence of 1-photon phase coherence.

As the two beams propagate away from the sample they conserve these frequency correla-
tions, even though voltage noise at the junction precludes any stationary entanglement of
the two resonators. By measuring normalized correlation functions of the emitted signals
we prove their entanglement. In particular the time window over which the equality 4.41
(valid for separable states) is violated indicates the length over which the two beams are
entangled.

At low emission rates our results are quantitatively described using a simple two-mode
squeezing Hamiltonian, with a driving strength set by the tunable Josephson energy of
the junction E⇤

J(Φ). At higher driving, non-linearities in the real Hamiltonian become
relevant and modify the dynamics of the system, reducing coherently the driving strength
and bringing the two fields closer to coherent states.

Our results are well reproduced by independent numerical simulations of the system,
which captures the deviation from pure two-mode squeezing due to these non-linearities,
as well as the impact of experimental bandpass filtering on the signals and of voltage
noise on the phase correlations.

This voltage noise is not an intrinsic property of the system itself, but rather of its low-
frequency environment. We also prove that the junction itself is able to interact with this
noise. We demonstrate various regimes of this interaction, where the junction if either
heating up the environment or cooling it down by absorbing photons from its modes. We
use this active cooling mechanism to decrease the value of the voltage noise, improving
the 2-photon phase coherence time of the entangled signals by a factor of 3.

This finite phase coherence time severely limits the relevance of our entangled photon
source in the context of two mode squeezing. However it may be interesting to enhance
the non-linearities by fabricating resonators with high enough impedances. Following
this line of research could yield a simple source of strongly non-Gaussian entangled light
beams, enabling the study of more complex states of light.

The heating/cooling mechanism in itself could be developed into a tool to either perform
the spectroscopy of electromagnetic modes at arbitrary frequencies, or to cool down a
system down to its quantum ground state.
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Chapter 5

Conclusions of this work,
preliminary experiments and
perspectives

In this work, we have studied the creation of quantum states of light by inelastic Cooper-
pair tunneling. We considered experiments where a small Josephson junction is dc-biased
below the superconducting gap 2∆/e, and embedded in a circuit with a high-enough
impedance Re[Z(!)] at microwave frequencies.

The inelastic mechanism responsible for light emission arises from the granularity of the
charge 2e transferred upon each tunneling event. This charge displacement is described
by the operator ei�, where � is the superconducting phase difference across the junction.
If the junction is small enough, so that it has a negligible geometric capacitance and a low
critical current I0, then it cannot shunt the phase fluctuations imposed by the embedding
circuit, which constitues its electromagnetic environment.

This environment can be described as a collection of bosonic modes, which display phase
noise even if they are in their quantum ground state due to zero-point fluctuations (ZPF).
Modes with the highest impedance exhibit the largest ZPF, with a spectral density given
by: S��(!) =

2
!

Re[Z(!)]
RQ

. If Re[Z(!)] cannot be neglected compared to RQ at frequencies

larger than the thermal cutoff kBT/~, then � has to be promoted to a full quantum
operator �̂ and the dynamics of the junction treated accordingly.

Computing the steady state of this system is in general a complex problem, as the junction
is an out-of-equilibrium quantum system which can interact with all the modes of its
environment, from dc up to at least 2eV/~. These modes get populated due to photon
emission by the junction, which modifies their occupation numbers and, subsequently,
the amplitude of their phase ZPF.

The perturbative P (E) theory

In Chapter 2, we have presented the theoretical apparatus developed in the early Nineties
to predict the transport properties of small dc-biased tunnel junctions, the so-called P (E)
theory [31]. One of the main assumptions of this theory is that the environment is only
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weakly perturbed by the photon creation/absorption processes. Its spectral density of
phase fluctuations in this out-of-equilibrium situation is then still described by Re[Z(!)],
which yields the phase autocorrelation function J(t) = h(�̂(t)� �̂(0))�̂(0)i. The Fourier
transform of eJ(t) is the P (E) function, which weighs the probability for the junction
to exchange the energy E with the environment upon inelastic tunneling of a single
charge.

From the knowledge of Re[Z(!)], one can compute the P (E) function, from which result
the values of the dc-current Idc and of the current noise SII(!) as a function of the bias
voltage V . The current noise generates the emission of power in the environment of the
junction, with a power spectral density (PSD)SP (!) = 2Re[Z(!)]SII(!). It can then
be checked in an auto-consistent way wether or not the photon emission rate density
�(!) = SP (!)

~!
is low enough compared to the environment intrinsic loss rate for P (E) to

hold.

The P (E) theory is perturbative in the Josephson energy of the junction - or equivalently
in its critical current. As an example, for the single-photon processes, I0 should be at
least much smaller than V/Re[Z(!J)], so that Idc ⌧ I0. This limits P (E) to the case of
low single-charge tunneling rates. On the other hand if its conditions of validity are met,
this theory can deal with an arbitrary environment. The dc-current and photon emission
rates can then be predicted up to arbitrary high order in Re[Z(!)]

RQ
, revealing multi-photon

processes.

We describe two pioneering experiments [32][33], where a SQUID device with tunable
Josephson energy is placed in series with microwave resonators. These resonators generate
peaks in the Re[Z(!)] seen by the junction. When EJ is tuned down low enough, the
Idc(V ) characteristic of the junction is well reproduced by a P (E) calculation, showing
peaks as a function of V associated to the emission of photons in modes of Re[Z(!)].
A P (E) calculation also reproduces the power spectral density SP (!) measured in the
second experiment. In particular as SP (!) / Re[Z(!)]⇥P (2eV �~!), the PSD measured
on a single-photon resonance is linked to the low frequency modes at E ' 0, which can
be treated by P (E).

The PSD measured on a 2-photon resonance reveals the symmetric emission of light
around the frequency !J/2, indicating that photons are created by pairs in a process
similar to parametric down-conversion. This photon-pair emission processes motivated
the experiment described in Chapter 4, where we study their entanglement. This inves-
tigation requires a description of the quantum state of the light created by ICPT. This
could be done by extending the formalism of P (E) to describe current-current correlators
of higher order, although this would be very cumbersome.

Aside from the particular case of photon-pair emission, it would be interesting in the
general case to study the statistics of photons emitted by ICPT. In a simple picture, there
should be a competition between the Poissonian statistics of the incoherent single-charge
tunneling, and the coherent back-action of the electromagnetic field from the modes of
the environment. This back-action is neglected in the frame of the P (E) theory, where
the environment stays close to its equilibrium state.

In Chapters 3 and 4, we introduce a different formalism to treat the questions both of the
properties of the light emitted by ICPT, and of the coherent back-action of the emitted
photons, going beyond the P (E) theory. This allows us to build experiments where a
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Josephson junction acts as a bright source of quantum radiation.

Strong-coupling of a junction to a single mode

Although the P (E) theory links the transport properties of a junction to the impedance
of its environment at all frequencies, the results of [33] can be reproduced using a smaller
number of ingredients. In particular the tunneling rates and emission PSDs can be
explained by considering only the low-frequency part of Re[Z(!)] up to kBT/~, and the
impedance near the resonances in the microwave range. This is a consequence of the
conservation of energy: at zero temperature, the emission of a single photon of energy
~!J = 2eV depends only on Re[Z(!J)]. At finite temperature, thermally excited modes
up to kBT/~ may contribute to the tunneling rate, although their impact can be taken
into account as a simple voltage noise �V on the voltage bias V .

In experiments where we use ICPT as a mechanism for the emission of photons, it is
thus reasonable to simplify our description of the environment Re[Z(!)], by considering
only a small number of modes. The starting point of Chapter 3 is a very simple circuit,
including only a voltage source V , a Josephson junction of energy EJ and a single mode,
described as a LC oscillator. This simple model allows for a Hamiltonian description
where the stationary state of the mode can be studied.

The amplitude of k-photon processes, that is the relative probability for a tunneling
Cooper pair to create k photons at once in the mode, scales as rk

k⇥k!
, where r = ⇡Zc

RQ
is the

dimensionless coupling constant between the mode and the junction, with Zc =
q

L
C
. .

In the framework of the QED of conductors, r can be seen as the fine-structure constant
of this interaction.

In this Hamiltonian system, we introduce dissipation in the mode by considering an
effective leak rate , which enters in the master equation describing the evolution of the
density matrix of the system. This leak rate is necessary to link this simple model to any
real world experiment, where there is of course dissipation at some point. It also helps us
in understanding exactly how the back-action of the cavity field on the junction impacts
tunneling rates.

A finite leak rate  induces the existence of a cavity lifetime �1, which is the typical time
over which a created photon stays in the mode. In a simple dynamical picture, we see
that even if the photon emission rate is sufficiently low that the average photon number
in the mode is always close to its equilibrium value, on a timescale �1 the occupation
number is suddenly increased by 1 upon a tunneling event.

One may wonder in which conditions does adding a single photon to a mode modify
significantly its phase fluctuations. In the equilibrium state, the phase noise from a single
mode reads: ∆�̂2 = r(2̄n + 1), with n̄ the average occupation number. Hence a single
photon added to the mode strongly modify its instantaneous phase fluctuations if this
mode is strongly coupled to the junction, with r ⇠ 1.

The impact of this single added photon is more pronounced if the mode is initially in
the vacuum state with n̄ = 0. In that case the probability of emitting a second photon
in the mode, given that a first one is already present, is reduced by a factor of (1 � r

2
)2

compared to the weak-coupling case. This coherent photon blockade leads to the emission

223



of antibunched photons in the mode for r ⇠ 2, with a second-order coherence function
g(2)(0) = (1� r

2
)2. At finite emission rates such that n̄ 6= 0, the system cannot be treated

analytically. However numerical simulations reveal that the antibunching is progressively
reduced as n̄ is increased to the strong-driving regime n̄ ⇠ 1/r.

We test extensively these predictions in a microwave quantum optics experiment, where
we measure the statistics of the light emitted by a Josephson junction coupled to a
single mode in the strong-coupling regime r = 0.96. In this experiment, we calibrate
in situ the environment of the sample and the gain of the microwave acquisition chain
by using the junction itself as a calibrated light source, described notably by the P (E)
theory. Correlation functions of the microwave fields detected at room-temperature after
amplification by a HBT like setup allows us to characterize the quantum properties of
the emitted light.

We prove that the phase coherence properties of the photons, revealed by their g(1)(⌧)
function, depend essentially on the amount of voltage noise added by the low-frequency
modes of the setup. The phase coherence time ��1

! ' 120 ns greatly exceeds the typical
timescale of intensity fluctuations, revealed by the measurement of the g(2)(⌧) function
to be �1 ' 1.3 ns. These intensity fluctuations are lower than for a classically coherent
beam of light, proving that the emitted photons display both antibunching and sub-
Poissonian statistics. This is a manifestation of the quantum nature of light, revealing
either wave-like or particle-like properties depending on the type of measurement.

Finally we test another prediction of P (E) by measuring the renormalized Josephson

energy of the junction E⇤
J = E

�J(1)/2
J . This renormalization results from the equilibrium

phase fluctuations from the environment, which blurry the value of �̂ and effectively
reduces the critical current of the junction.

Emission of entangled beams of light

Our theoretical treatment of the strong-coupling experiment differs from the P (E) in
that we used a simplified model for the environment of the junction. Instead of including
a continuum of modes described by Re[Z(!)], with various occupation numbers, we con-
sidered a single mode at !r, and summed up the impact of all the low-frequency modes
as a random contribution to the voltage bias V .

This simplified model allows us to keep track of the quantum state of the mode at !r.
In the limit of low occupation numbers, we can analytically describe the photon emission
processes at arbitrary high order in r, recalling the multi-photon processes predicted by
P (E). There is another way of going beyond the P (E) theory, which is to simplify again
the problem by considering an experiment in the weak coupling regime r ⌧ 1. Then the
dynamics of the system can be calculated at finite occupation number n̄.

This is what we describe in Chapter 4, where we consider a Josephson junction put in
series with two low-impedance resonators with different frequencies !a,!b. When biased
on the two-mode resonance 2eV = ~!a + ~!b, the effective RWA Hamiltonian of the
system takes the form of a two-mode squeezing Hamiltonian HTMS / â†b̂†+h.c. The
next order terms in this Hamiltonian are of the form raâ

†ârbb̂
†b̂. Their influence may

safely be neglected if the occupation numbers of the cavities stay low enough, so that:
ran̄a, rbn̄b ⌧ 1.
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We derive a scattering model of the sample, which is described as a non-degenerate para-
metric amplifier with a noisy pump. The predictions of our model agree with the P (E)
theory in the low-driving regime n̄a, n̄b ⌧ 1. As soon as the occupation of the modes
is finite, the P (E) theory fails to account for the value of the photon emission rates or
the shape of the emission PSDs. On the other hand our model, which takes into ac-
count the back-action of a finite occupation of the mode, agrees well with experimental
data, provided that ran̄a, rbn̄b ⌧ 1. However this model fails to capture the slight an-
tibunching contribution to the light statistics inherited from the finite impedance of the
resonators.

Nevertheless this simple two-mode squeezing picture helps us understands how entangle-
ment is generated in this experiment. From P (E) theory, we know that for each tunneling
Cooper pair, the energy 2eV is ceded to the environment. On the 2-mode resonance, this
energy is shared among a photon pair, created in the two resonators. It was already
understood that as the emission process is coherent, each photon in the pair would be in
a superposed state with an ill-defined frequency, while the sum of the two frequencies of
the two photons would be well-defined. This is the type of quantum light studied in a
Franson interferometer, where non-local interferences arise from the pair 2-photon phase
coherence.

The simple parametric amplifier model reveals that this particle-like picture of the photon
creation is not suited in a low-impedance environment. It is more instructive to consider
that the junction continuously pumps energy into the two microwave fields, in a phase-
coherent way. The entanglement of the fields is revealed by the measurement of the same
2-photon correlator used in the Franson experiment, which can yield an entanglement
witness when compared to the hna(0)nb(⌧)i correlator. These correlation functions do
not show any granularity of the emitted light, i.e they do not prove that the junction
is emitting entangled photon pairs. On the other hand these correlators indicate that a
slice of the microwave beam at frequency !a is entangled with a slice of the beam at !b,
validating this picture of a continuous entanglement of the fields.

In the two-mode squeezing model of the system, the Cooper pair condensate acts the
pump field, which drives the continuous entanglement of the modes. The two-mode
squeezing angle ✓ is fixed by the value of the superconducting phase �̂ at the junction.
We prove that the finite coherence time of the two emitted beams directly originates
from the voltage noise on the junction, which dephases ✓ randomly. We proved that
this dephasing rate can be reduced by cooling down the low-frequency modes of the
setup.

This active cooling mechanism is activated by simply red-shifting the bias voltage on the
junction. Then the junction tends to absorb low-frequency noise while emitting entangled
photons, reducing the voltage noise and increasing the coherence time of the entangled
beams. We proved that this mechanism can reduce the effective temperature of the modes
from 20 mk down to 2 mK. However this does not increase the amount of entanglement
of the cavities, computed from an estimation of their logarithmic negativity.
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Preliminary experiments on the manipulation of quantum states

We have presented two experiments where a dc-biased Josephson junction is used a source
of quantum microwave light. Here the modes coupled to the junction act as cold baths
where the electrostatic energy 2eV can be dumped. Other kinds of experiment based on
the ICPT mechanism can be considered, where the quantum state of light stored in a
mode can be manipulated.

During this PhD research we worked on two such preliminary experiments, devoted to the
manipulation of quantum light. The first one is the application of the cooling mechanism
described in 3.41 to cool down a rf mode from a thermal equilibrium population of n̄ ' 1
down to its quantum ground state n̄ ' 0. We obtained results indicating a form of cooling,
however their interpretation was complicated by the spurious coupling to another mode
at a close frequency. At this point we did not have theoretical grounds firm enough to
fully understand this experiment, so that it was discontinued.

We also designed a more complex experiment, that could yield the autonomous stabiliza-
tion of the Fock state |n = 1i by an ICPT mechanism. This experiment was proposed
by Souquet and Clerk in [68]. It is implemented by coupling a Josephson junction to two
modes with well-chosen properties. The storage mode s must have a rather high quality
factor Qs � 1 and a characteristic impedance Zs

c =
2RQ

⇡
, so that it is strongly coupled

to the junction with rs = 2 exactly. The ancilla mode a must have a much lower quality
factor Qa ⌧ Qs and lie at a different frequency than s. The two modes should also have
zero population at thermal equilibrium.

When the junction is voltage biased on the 2-mode resonance 2eV = ~!s + ~!a, one
photon is created in each mode upon the tunneling of a single Cooper pair. The two
modes thus go from their initial empty state |0is ⌦ |0ia to the state |1is ⌦ |1ia. After
a short time Qa

!a
the ancilla photon has left its resonator, so that the modes end up in

the state |1is ⌦ |0ia. In this state, both forward and backward tunneling of Cooper are
blocked: on one hand, as r = 2 the transition from |1is to |2is by ICPT is forbidden, so no
photon can be emitted. On the other hand, the absorption of photons from the modes to
promote retro-tunneling is also forbidden, as it would require the energy 2eV = ~!s+~!a

to be taken from the environment and only ~!s is available.

As long as the single photon stays in the storage mode, the system is thus blocked, and
the storage mode stays in the Fock state |1is. After a long time Qs

!s
this single photon

leaks out of the resonator, so that the system is once again in the vacuum state |0is⌦ |0ia,
and the mechanism starts again. What we gave here is a naive picture of the dynamics
of the system, which insists on the granularity of light. Actually, as both photon creation
and photon leakage are coherent processes, the Fock state |1is is continuously created
and maintained in the mode, leading to its autonomous stabilization.

This mechanism utilizes dissipation engineering to stabilize a pure quantum state of light.
Its simplicity is striking: once the right parameters have been set, mainly rs = 2 and
2eV = ~!s + ~!a, the Fock state stabilization is completely autonomous. This contrasts
with usual circuit-QED experiments where complex series of fine-tuned pulses must be
used to achieve similar effects.

We worked on a conceptual design of the sample, yielding a choice of the parameters
EJ , rs,!s, Qs, ra,!a, Qa that would lead the maximum fidelity of the stationary state of
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the storage mode to the Fock state |1is, given the experimental constraints on each of these
parameters. We optimized the design of the experiment by running numerical simulations
of the system’s evolution, using the QuTiP library. We found out in particular that the
dynamics of the system were greatly impacted by non-RWA terms in the Hamiltonian,
which made the photon blockade mechanism imperfect. In the end we proposed a choice
of parameters that should yield a fidelity greater than 90%.

We then worked on a practical implementation of this experiment, using microwave design
tools. We propose to use a chain of densely packed SQUIDs to implement a CPW line
with a very high and flux-tunable lineic inductance. A segment of this Josephson-CPW
line host �/4 modes, with a characteristic impedance that can be tuned up to rs = 2.
We ran numerical simulations of the microwave response of the sample, showing that we
could implement the theoretical design that we had optimized earlier.

In the end we fabricated a first Fock stabilizer sample and ran a preliminary experiment.
Its results proved that we had underestimated the stray capacitance to ground of the
resonators, which prevented reaching the r = 2 regime of Fock state stabilization. This
can be compensated in future design by packing more densely the SQUID array.In the
future the updated design could be measured with the setup we developed for the anti-
bunching experiment. In particular we propose to estimate the fidelity to Fock state |1is
by measuring the g(2)(⌧) function of the emitted photons, which yield a lower bound on
the fidelity.

Further perspectives

In this work, we have shown how the complicated interaction between a quantum con-
ductor and its environment can be treated in a framework reminiscent of cavity-QED
experiments. Provided that this environment is well-controlled and kept clean, we can
map the high-frequency part of the environment to a finite number of modes, and treat
the low-frequency modes as a random voltage source. In the end a Hamiltonian descrip-
tion of the system, combined either with a full master equation treatment, or a simpler
Langevin equation for the fields, allow to predict the quantum properties of the light
emitted by the junction.

We demonstrate the interest of these quantum light sources by probing the non-classical
properties of the emitted photons, demonstrating antibunching and sub-Poissonian statis-
tics in on experiment, and entanglement of propagating beams in the other. These prop-
erties are probed via the measurement of stationary correlation functions, as the absence
of phase reference in these experiments forbid using the standard tools from circuit-QED,
such as homodyne detection of the quadratures.

In the future, it may be interesting to push further the comparison to circuit-QED.
By reducing the impedance of the resonators, the simulation of parametric Hamiltonians
could be made more precise, allowing e.g to reach high levels of quantum squeezing. ICPT
devices may hold a competitive advantage, as they exploit the Josephson non-linearity in
a different way, which naturally rejects any Kerr terms in the Hamiltonian. However its
seems that the harmful effect of unavoidable voltage noise would make the competition
with circuit-QED very challenging.

It may also be worth it to develop ICPT-devices that could work in frequency ranges where
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no coherent light is available. As an example, the ICPT mechanism may be exploited in
Josephson junction made with higher-gap materials such as NbTiN (with ∆ ⇠ 1 THz), to
produce quantum light sources or quantum-limited amplification in the THz range.

It may also be interesting to explore more fundamental aspects of the QED of coherent
conductors. In this work we have studied a very simple kind of conductor, that cannot
host any excitations or dissipate energy by itself. We also considered very simple models
for the environment, including at most a few modes of radiation. The general problem of
the coupling between a conductor and its environment is still ill-understood. In particular,
if we consider a more complex conductor such as a QPC, then our theoretical treatment
based on the expansion of the effective Josephson Hamiltonian cannot be used.

It may be interesting to start by checking to which extent the P (E) theory, which hold
also for normal conductors, can predict the quantum state of the emitted light. This cal-
culation could help us work out the link between charge carriers statistics and properties
of the radiation. On the applicative point of view, understanding better this interac-
tion could lead to the design of new types of mesoscopic devices, where the coherence
properties of conductors are exploited to yield novel quantum effects.

228



Appendix A

Résumé en français : cohérence
quantique dans un conducteur
électrique dissipatif hors-équilibre

Dans cette thèse, nous étudions l’interaction entre une jonction Josephson polarisée par
une tension continue et les modes de son environnement électromagnétique. Nous prou-
vons lors de différentes expériences que ce système simple peut donner une source brillante
de rayonnement micro-onde quantique.

Une première description de la jonction Josephson

Le point de départ de nos travaux est la jonction Josephson (JJ), c’est-à-dire une jonc-
tion tunnel entre deux électrodes supraconductrices (Fig.A.1). On sait que les électrons
présents dans chaque électrode peuvent traverser la barrière isolante grâce à l’effet tunnel,
ce qui génère un courant électrique. Cette jonction tunnel est un conducteur quantique-
ment coherent : la phase de la fonction d’onde des porteurs de charge est préservée après
leur passage à travers la barrière.

À l’état supraconducteur, les électrons sont associés pour former des paires de Cooper.
Ces paires d’électrons émergent d’une transition de phase analogue à la condensation
de Bose-Einstein, et peuvent être décrites par une fonction d’onde macroscopique. Leur
effet tunnel donne naissance à un courant, dont la valeur est donnée par l’équation de
Josephson: I = I0 sin(�) [1]. Ici, � est la différence de phase entre les deux condensats
d’électrons de chaque électrode, tandis que I0 est une grandeur caractéristique de la
jonction appelée courant critique.

La différence de phase � est proportionnelle à l’intégrale de la différence de potentiel V
aux bornes de la jonction, avec �(t) = 2e

h

R

V (t0)dt0. Cette phase décrivant des particules
microscopiques est donc proportionnelle au flux magnétique aux bornes de la jonction,
une grandeur électrique macroscopique.

L’équation de Josephson peut être réécrite pour relier la dérivée du courant I à la chute
de tension V , avec : dI

dt
= I0 cos(�)

2e
~
V , ou de manière équivalente V = ~/2e

I0 cos(�)
dI
dt
. La

JJ peut donc être considéré comme une inductance non linéaire valant LJ(�) =
~/2e

I0 cos(�)
,
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sc sc

Figure A.1: Schéma d’une JJ entre deux électrodes supraconductrices (sc) (en gris). Le transport du
courant à travers la jonction à basse énergie peut être décrit comme le passage par effet tunnel de paires
de Cooper à travers la barrière isolante (couche bleu ardoise).

qui est intrinsèquement dépourvue de dissipation [2]. Grace à ces propriétés, les JJ sont
omniprésentes dans deux domaines de recherche distincts : le traitement de l’information
quantique et le transport mésoscopique.

Les jonctions Josephson dans les dispositifs d’information quantique

Lorsqu’une JJ est intégrée dans un circuit, sa non-linéarité peut être exploitée pour
réaliser une application donnée, comme pour tout composant électrique. Les JJ sont
particulièrement cruciales dans le domaine de l’information quantique, car leurs propriétés
de cohérence et l’absence de dissipation interne les rendent aptes à la manipulation des
signaux quantiques.

En guise d’exemple, on peut construire un circuit dans lequel une JJ se comporte dans une
bande de fréquence donnée comme une résistance négative, de sorte qu’elle amplifie les
signaux incidents. Cet amplificateur Josephson peut fonctionner à la limite quantique,
en ce sens qu’il n’ajoute aux signaux amplifiés que le minimum de bruit requis par la
mécanique quantique [3][4][5]. D’autres types de dispositifs à la limite quantique peuvent
être conçus à partir des JJ, tels que des convertisseurs de fréquence [6][7], ou des détecteurs
à photon unique [8][9][10].

La non-linéarité des JJ est également utilisée pour fabriquer des systèmes à deux niveaux,
appelés atomes artificiels ou qubits. Le plus simple d’entre eux est le dipôle électrique
formé par une seule JJ en parallèle avec une capacité. Ce circuit se comporte comme un
résonateur LC anharmonique. La transition entre l’état fondamental et le premier état
excité de cet oscillateur quantique peut être adressée de manière sélective, ce qui fait qu’il
se comporte de manière effective comme un système à deux niveaux.

Les qubits à base de JJ peuvent être couplés électriquement à des résonateurs micro-
ondes supraconducteurs hébergeant des modes du champ électromagnétique [11]. Leur
domaine d’étude est appelé circuit-QED, par analogie avec les expériences de cavity-
QED où des atomes ”naturels” sont placés en cavité. La circuit-QED a permis de sonder
l’interaction lumière-matière dans des régimes où la force de couplage naturelle entre
électrons et photons peut être grandement augmentée, mettant en évidence de nouveaux
effets physiques [12].

De plus, les qubits supraconducteurs constituent une plateforme potentielle pour le do-
maine naissant de l’informatique quantique, ce qui a motivé un grand nombre de propo-
sitions théoriques ainsi que des expériences de plus en plus complexes (Fig.A.2). L’effort
expérimental mis en œuvre lors de ces expériences vise notamment à augmenter la durée
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de cohérence de ces atomes artificiels, ainsi que la fidélité des portes logiques.

Figure A.2: Exemple de circuit supraconducteur où plusieurs JJ (symbole croix) sont utilisés pour
manipuler l’information quantique. Une JJ en parallèle avec une capacité (en bleu) forme un oscilla-
teur anharmonique. Ce qubit peut être sélectivement couplé à un résonateur électrique (en rouge) par
l’intermédiaire d’un dispositif supraconducteur appelé SQUID (en vert), dont l’admittance peut être
rapidement ajustée en faisant passer un flux magnétique dans la ligne de flux (boucle noire).

Ces exemples illustrent comment la cohérence quantique peut être exploitée en utilisant
les JJ comme des dipôles électriques non linéaires et sans dissipation. Le succès de ces
expériences repose notamment sur un découplage contrôlé entre une JJ et son environ-
nement. Dans ces conditions, les mécanismes microscopique à l’œuvre au coeur de la
jonction peuvent être ignorés, et il est possible de les considérer uniquement du point de
vue de l’ingénierie quantique [13].

A rebours de ce point de vue, nous détaillons dans cette thèse des expériences où la
jonction est directement reliée à un circuit de polarisation continue. Dans cette situ-
ation, la jonction peut être vue comme le lien entre deux réservoirs électroniques hors
d’équilibre, permettant le passage d’un courant continu et dissipatif. Ces expériences
relient les circuits supraconducteurs à un domaine de recherche plus ancien, la physique
des conducteurs mésoscopiques.

Transport quantique dans le régime mésoscopique

Un conducteur cohérent est un conducteur électrique suffisamment petit pour que la phase
de la fonction d’onde des électrons soit préservée pendant leur transmission. Le transport
électrique à travers ces systèmes doit alors être décrit par la diffusion d’ondes électroniques
à travers l’échantillon, ouvrant la possibilité d’interférences quantiques.

Les premières expériences de transport électrique quantique se sont intéressées à la mise
en évidence des effets d’interférences électroniques sur les grandeurs observables les plus
facilement accessibles, tels que la conductance électrique en courant continu. Le transport
cohérent a été étudié dans une grande variété de conducteurs mésoscopiques : les jonctions
Josephson, mais aussi les jonctions tunnel normales entre deux électrodes métalliques, les
jonctions p-n dans les semi-conducteurs, des jonctions plus exotiques où la barrière est
elle-même semi-conductrice, magnétique ou présentant une forte interaction spin-orbite,
les gaz électroniques 2D qui peuvent être structurés pour former des bôıtes quantiques
ou bien des contacts ponctuels quantiques...

Les résultats de ces expériences sont bien compris dans le cadre de l’approche dite de
Landauer-Büttiker (LB), où le transfert de charge par des conducteurs quantiques est
probabiliste [14][15][16]. En raison de la granularité de la charge, ce caractère probabiliste
induit un bruit de courant d’origine purement quantique. L’observation de ce bruit de
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grenaille a été l’une des plus importantes confirmations expérimentales de l’approche
LB [17][18].

Les expériences ultérieures incluent l’application d’une polarisation en tension alternative.
Si la fréquence ! de la polarisation en courant alternatif est suffisamment élevée pour
que ~! soit supérieure à l’énergie thermique kBT , des singularités apparaissent dans la
densité spectrale de bruit électrique à basse fréquence SII(0) = hI2i � hIi2 à la tension
V = k~!/e. C’est une indication de l’effet tunnel photo-assisté, où la transmission d’un
électron à travers l’échantillon est accompagnée de l’absorption de k quanta d’énergie
valant ~! [19][20][21].

Du bruit électrique au rayonnement micro-onde

Le bruit en courant à fréquence finie SII(!) =
R

hI(t)I(t + ⌧)iei!⌧dt est une observable
qui fournit également des informations précieuses sur le système étudié [16]. En général,
les fluctuations de courant dans le conducteur peuvent être captées par les modes élec-
tromagnétiques de l’environnement, où elles sont dissipées sous forme de bruit d’émission
(Fig.A.3). Si cet environnement n’est pas dans son état fondamental, il peut également
transférer de l’énergie au conducteur par ce mécanisme. SII(!) est alors aussi relié à
l’absorption de lumière par le conducteur.

Figure A.3: Schéma d’un conducteur cohérent (représenté ici comme une constriction dans un guide
d’onde électronique) mis hors équilibre par une tension continue de polarisation V . Le courant I circulant
dans le circuit est formé d’une composante continue Idc, due au transfert irréversible des charges dans
le conducteur, et d’une composante fluctuante δI de densité spectrale SII(ω), due à la granularité de
la charge dans le cas du bruit de grenaille. Ce bruit en courant peut être capté par des modes dans
l’environnement électromagnétique, ce qui entrâıne l’émission de photons par le conducteur.

Le bruit de grenaille dû au passage incohérent des charges à travers une jonction tunnel
hors équilibre [22] est l’exemple le plus simple de ce type de rayonnement. En raison de
la très faible probabilité de transmission à travers la barrière tunnel, chaque événement
tunnel est aléatoire et non corrélé avec les évènements précédents et suivants. Le courant
I résultant de ce grand nombre d’événements indépendants présente des fluctuations qui
peuvent être caractérisées par la densité spectrale de bruit SII(!).

Supposons que l’on connecte une impédance Z(!) à température nulle en parallèle avec
une jonction polarisée en tension, afin de capter ce bruit de courant et de mesurer sa
valeur. Dans une image microscopique simple, les électrons qui passent par effet tunnel
élastique de l’électrode source à l’électrode drain se retrouvent avec un excès d’énergie
eV , qui est dissipé dans le réservoir du drain. La partie de cette énergie qui est dissipée
dans Z(!) peut être interprétée comme l’émission de photons ~! par la jonction tunnel
dans l’environnement. De manière étonante, comme chaque électron tunnel porte une
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énergie qui est au maximum de eV , il ne peut jamais émettre de photons à une fréquence
supérieure à eV/~, ce qui entrâıne que SII(! > 2eV/~) = 0 [16][23].

Ce premier exemple relie les propriétés des charges microscopiques à une grandeur macro-
scopique : la puissance dissipée par effet Joule dans une impédance externe. Il établit
également un lien entre le transport de charges à travers un conducteur et l’émission de lu-
mière dans son environnement, c’est-à-dire qu’il met en évidence le lien entre l’électronique
et l’optique dans les conducteurs cohérents quantiques.

L’électrodynamique quantique des conducteurs cohérents

Nous avons donné une présentation simplifiée de la manière dont la JJ est considérée
pour la circuit-QED ainsi que pour le transport mésoscopique : soit comme un dipôle
électrique non linéaire utilisé pour le traitement quantique de l’information, soit comme un
conducteur cohérent accueillant des processus microscopiques. Dans les deux domaines,
l’interaction des JJ avec le champ électromagnétique est également considérée, mais une
fois encore avec des points de vue très différents.

En circuit-QED, il est typique d’utiliser un champ micro-onde classiquement cohérent
pour préparer un système quantique dans un état donné, ou bien pour lire son état après
manipulation. Les signaux réfléchis ont une relation de phase fixe par rapport aux signaux
incidents, de sorte qu’ils peuvent être détectés de manière synchrone, par exemple par
détection homodyne. Le rayonnement émis par un dispositif quantique peut également
être constitué de lumière quantique, c’est-à-dire d’états de la lumière qui ne peuvent
être décrits par l’optique classique : on peut citer les photons uniques, les états de Fock
de la cavité, la création d’un vide comprimé ou quantum squeezed vacuum ... ayant
des applications dans le traitement de l’information quantique. Pout tous ces différents
exemples, il est clair que la lumière doit être considérée comme un signal, c’est-à-dire une
onde cohérente dont la détection repose sur une référence de phase bien connue.

En revanche, pour les expériences de transport mésoscopique que nous avons évoquées
plus haut, la lumière est considérée comme un bruit électrique, sans qu’aucune attention
particulière ne soit accordée à sa cohérence classique. Pour le transport photo-assisté,
il n’y a pas de lien simple entre l’état de la lumière incident sur le conducteur et les
grandeurs électriques observables. Dans le cas du rayonnement de shot-noise, la seule
grandeur prédite par la théorie de la diffusion du transport d’électrons est la densité
spectrale de la lumière émise SP (!) = 2Re[Z(!)]SII(!). Les propriétés de la lumière
elle-même, telles que ses statistiques ou l’existence d’une forme quelconque de cohérence
quantique, ne sont généralement pas prises en compte, car cela nécessiterait un appareil
théorique beaucoup plus complexe. En l’absence de cohérence, la lumière échangée entre
un conducteur et les modes de son environnement est considérée comme un bruit plutôt
que comme un signal.

L’unification de ces deux points de vue, qui permettrait d’obtenir une image cohérente
de l’interaction entre la lumière quantique et les degrés de liberté microscopiques d’un
conducteur, est le point central de l’électrodynamique quantique des conducteurs.
Dans cette approche, on peut commencer par étudier un conducteur cohérent, éventuelle-
ment hors équilibre, et introduire l’interaction entre les charges et la lumière. L’inclusion
d’une description quantique de la lumière révèle les propriétés de cohérence de cette inter-

233



action. En particulier, il a été prouvé que le transport dissipatif à travers le conducteur
peut entrâıner la création d’états non classiques de la lumière [24][25][26][27][28]. Il a
également été suggéré récemment que le couplage entre une cavité et un conducteur quan-
tique dissipatif pouvait être utilisé pour produire des états de type ”chat de Schrödinger”
du champ électromagnétique [29].

Dans l’exemple du shot-noise, on peut se demander si les propriétés des particules fermion-
iques influent sur la lumière rayonnée, en raison du mécanisme de couplage microscopique
derrière cette interaction lumière-matière. Dans le cas simple d’une jonction tunnel polar-
isée en courant continu, l’émission de lumière se produit lors de la relaxation incohérente
des charges dans les réservoirs. Comme les photons sont créés de manière aléatoire et
indépendante, la statistique des photons émis est celle du rayonnement thermique, c’est-
à-dire un état classique de la lumière avec une statistique chaotique. Cependant, pour
des conducteurs plus exotiques tels que les contacts de points quantiques, il a été prédit
que les statistiques de Fermi des électrons peuvent être imprimées aux photons, con-
duisant à la création d’une lumière fortement non classique avec des statistiques sub-
poissoniennes [24]. Le test expérimental de cette prédiction fait l’objet de recherches
intensives, nécessitant un développement technologique poussé [30].

Dans les travaux présentés ici, nous nous concentrons sur les propriétés quantiques de la
lumière émise par un mécanisme étroitement lié à l’émission du shot-noise : l’effet tunnel
inélastique des paires de Cooper à travers une jonction Josephson polarisée en tension
continue.

Emission de lumière dans l’environnement et effet tunnel inélastique

Dans l’image simple du rayonnement de shot-noise que nous avons donnée plus tôt, nous
avons commencé par décrire l’émission de bruit de courant par le conducteur, puis nous
avons expliqué comment ce bruit pouvait être capté par les modes de son environnement.
Ces modes jouent un rôle passif, en ce sens qu’ils n’agissent que comme un drain où
l’énergie électrostatique des charges peut être déversée. Cependant, comme un cou-
plage va toujours dans les deux sens, on peut s’attendre à ce qu’il existe une réaction
de l’environnement sur le conducteur.

Examinons de plus près le mécanisme de ce couplage dans le cas d’une jonction tunnel
normale. Après qu’un électron a traversé la jonction, la charge de chaque électrode change
soudainement de ±e. Ce déplacement de l’état de charge du système peut être décrit par
l’opérateur de décalage ei�, avec � la différence de phase des électrons à travers la jonction.
Cette phase est définie par �(t) = e

~

R t
V (t0)dt0, avec V la chute de tension aux bornes de

la jonction.

Une tension continue parfaitement constante entrâınerait un effet tunnel élastique des
charges. Cependant, dans une image plus complète du système, nous devons considérer
les fluctuations de tension provenant de l’environnement de la jonction, décrit par une
impédance Z(!). Même si cet environnement est à température nulle, il présente toujours
au moins les fluctuations de vide, qui ont une densité spectrale donnée par SV V (!) =
2Re[Z(!)]~!.

Ces fluctuations de tension à fréquence finie peuvent déclencher des mécanismes inélas-
tiques, où les charges creusent traversent la jonction de manière inélastique tout en émet-
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tant ou en absorbant des photons de l’environnement. L’énergie nécessaire pour créer
(absorber) ces photons est extraite de (donnée à) la source de tension elle-même : la
jonction se comporte comme un convertisseur dc/ac. La lumière émise peuple les modes
de l’environnement, les plaçant hors équilibre et modifiant ainsi la valeur des fluctua-
tions de tension. Cela soulève la question de savoir dans quelles conditions ce mécanisme
inélastique existe et comment il modifie les propriétés de transport de la jonction.

Ces questions ont été abordées pour la première fois au début des années 90, avec le
développement de la théorie dite P (E) [31]. Ce traitement perturbateur du Hamiltonien
tunnel suppose que les taux d’émission/absorption des photons sont suffisamment faibles,
de sorte que l’environnement reste à chaque instant proche de l’équilibre thermique. Ainsi,
la valeur des fluctuations de tension est simplement fixée par l’occupation thermique des
modes de l’environnement, ainsi que par leur impédance Z(!). Si les modes ont une oc-
cupation élevée (kT ⌧ ~!), les probabilités d’émission et d’absorption des photons sont
quasi-égales, de sorte que les processus tunnels inélastiques d’absorption et d’émission se
produisent à des taux similaires. En revanche, si les modes de l’environnement sont ini-
tialement vides, ils ne peuvent qu’absorber des photons et jamais en fournir, ce qui ouvre
de nouveaux canaux pour le transport dissipatif à travers la jonction (Fig.A.4).

Ces processus d’émission inélastiques ont un impact significatif sur le transfert de charges
à travers le conducteur lorsque l’impédance de l’environnement Re[Z(!)] est non nég-
ligeable devant le quantum d’impédance RK = h/e2 ' 25, 8 kΩ. Comme cet impédance

est typiquement de l’ordre de l’impédance du vide Z0 =
q

µ0

✏0
' 377 Ω, la contribution

de l’effet tunnel inélastique est généralement beaucoup plus faible que celle des proces-
sus élastiques directs, tant pour la valeur du courant continu que pour celle du bruit en
courant.

V

I

2eV

ħωi

2e

ħωi

a) b)

Figure A.4: a) Image schématique d’une paire de Cooper traversant inélastiquement une jonction po-
larisée en courant continu tout en émettant un photon d’énergie ~ωi = 2eV . b) L’énergie pour créer
un photon dans un mode de l’environnement (représenté ici comme une collection d’oscillateurs LC) est
extraite de la source de tension V .

Les effets inélastiques deviennent cependant considérables pour une jonction supracon-
ductrice. À une tension de polarisation inférieure au gap supraconducteur 2∆/e, aucune
quasiparticule ne peut traverser la jonction. Les processus inélastiques sont donc le seul
moyen par lequel une JJ polarisé en tension continue peut permettre le passage d’un
courant continu1. Il s’agit d’un exemple simple de mécanisme dans lequel l’environnement
d’un conducteur cohérent modifie considérablement ses propriétés de transport.

1De plus dans le cas de la JJ, Re[Z(ω)] doit être comparé au quantum d’impédance supraconducteur
RQ = RK/4, de sorte que les processus inélastiques sont plus faciles à déclencher par rapport au cas
normal.
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Effet tunnel inélastique des paires de Cooper : du transport dissipatif à
l’émission de lumière quantique

Les premières expériences visant à tester la théorie P (E) dans le cas supraconducteur
se sont concentrés sur la valeur du courant continu à travers la jonction. L’expérience
de 1994 par Holst et al [32] a été la première à prouver que l’effet tunnel inélastique
des paires de Cooper (ICPT) pouvait être exacerbé en adaptant l’environnement d’une
JJ, par la création de résonances de Re[Z(!)] aux fréquences micro-ondes. Un courant
dissipatif Ī est alors mesuré pour des valeurs de tension de polarisation V inférieures à la
tension de gap. La courbe Ī(V ) de l’échantillon est bien reproduite par des simulations
basées sur la théorie P (E) et l’impédance Re[Z(!)](!) du circuit en série avec la jonction.
En particulier, les pics de la courbe Ī(V ) sont associés à l’émission de photons dans les
modes à l’environnement à la fréquence 2eV/~, dans des processus où toute l’énergie
électrostatique 2eV fournie par la source de tension lors du passage d’une seule charge 2e
par effet tunnel est convertie en photons (Fig.A.5).

Figure A.5: I(V) expérimental mesuré en [32]. Un courant continu est mesuré en dessous de la tension
de l’écart 2∆/2, en raison des processus inélastiques d’effet tunnel des paires de Cooper. Chaque pic à la
tension de polarisation Vi est associée à l’émission de lumière dans une résonance de l’environnement à
la fréquence 2eVi/~ω, dans des processus où un photon est créé pour chaque paire de Cooper transférée.

Les progrès réalisés dans le domaine de l’ingénierie et de la mesure micro-ondes ont permis
la détection directe de cette lumière émise lors d’une deuxième expérience pionnière en
2011 [33]. Le ”versant lumineux” de l’effet tunnel inélastique des paires de Cooper a
été prouvé sans ambigüıté, la mesure des taux d’émission de photons cöıncidant avec
les taux d’effet tunnel sur les résonances à un seul photon de la courbe I(V). Cette
expérience a également prouvé l’existence des processus multi-photoniques, où l’énergie
2eV est répartie entre plusieurs photons créés en même temps (Fig.A.6).

Les résultats probants de cette expérience et les nouvelles techniques de détection de la
lumière émise ont incité à proposer de nouvelles expériences, où la statistiquea des photons
eux-mêmes serait mesurée. Ces expériences visent à élargir le champ de la photonique
Josephson, en sortant du cadre de la théorie P (E) par l’étude de l’état même de la lumière
émise, dans des conditions où les photons émis peuvent modifier l’état de l’environnement
et agir en retour sur le transport de courant continu.
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Figure A.6: Résultats de l’expérience décrite dans [33], où ont été mesurés à la fois le taux d’effet tunnel
de la paire de Cooper ΓCp et le taux d’émission de photons Γph dans un mode à ωr/2π =6 GHz. Sur la
résonance à 1 photon, 2eV = ~ωr, ΓCp et Γph cöıncident. Sur la résonance à 2 photons 2eV = 2~ωr, la
puissance d’émission à ωr est détectée, indiquant des processus à 2 photons (encadré).

Dans ce travail, nous présentons deux expériences que nous avons menées pour étudier
deux aspects complémentaires de cette physique : le régime de couplage fort d’une JJ
à un seul mode micro-onde et l’émission de photons intriqués par effet tunnel inélas-
tique.

Couplage fort d’une JJ à un mode unique

L’une des principales hypothèses de la théorie P (E) est que les modes de l’environnement
ne sont que faiblement perturbés par les processus inélastiques de création de photons. Un
critère suffisant pour que cette condition se maintienne est que la population stationnaire
des modes, résultant de l’équilibre entre la création de photons et les pertes intrinsèques

des modes, reste proche de sa valeur d’équilibre n̄ = nB(T ) = (e
~!

kBT � 1)�1.

Cette condition sur l’état stationnaire des modes garantit que les valeurs du courant con-
tinu et d’émission de photons sont correctement prédites par la théorie P (E), car l’excès
de population dû à l’effet tunnel inélastique ne modifie pas la probabilité de creusement
de tunnels. Cependant, dans une image instantanée, juste après la création d’un photon,
le mode peut être fortement déplacé de son état d’équilibre, en particulier s’il était ini-
tialement dans l’état vide. Si le mode est fortement couplé à la jonction, ce changement
soudain de son occupation modifie profondément les fluctuations de tension instantanées,
ce qui a un impact sur le taux d’effet tunnel de paires de Cooper.

Cette rétroaction de la lumière émise sur le taux de création de photons peut conduire
à une dynamique non triviale du système. Il n’est cependant pas évident de savoir si
l’état de la lumière qui en résulte présente des statistiques non classiques : même si les
fluctuations de point zéro qui provoquent l’émission de photons sont par nature quan-
tiques, l’état du vide lui-même est quasi-classique. Un traitement plus complet révèle
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que l’état stationnaire des modes dépend de façon cruciale de leur force de couplage à la
jonction.

Figure A.7: Un résonateur LC hébergeant un seul mode du rayonnement est placé en série avec une
source de tension continue et une JJ. Les deux dipôles sont couplés : un effet tunnel inélastique à la
jonction peut être provoqué par les fluctuations de tension dans le résonateur. En même temps, le courant
tunnel à travers la jonction est directement injecté dans l’oscillateur, ce qui crée des excitations dans le
mode.

Dans le circuit simple comprenant une JJ et un mode unique à la fréquence !r (représenté

par un oscillateur LC dans la figure A.7 avec !r =
p
LC

�1
), la constante sans dimension

caractérisant leur couplage est r = ⇡Zc

RQ
, avec Zc =

q

L
C

l’impédance caractéristique du

mode. Dans le régime de couplage fort r ⇠ 1, les fluctuations de point zéro de la tension
∆V =

p
r !̄r

2e
sont de la même amplitude que la tension continue V sur la résonance à

photon unique 2eV = ~!r, où un photon est créé pour chaque effet tunnel de paire de
Cooper.

ce régime de couplage fort doit produire deux effets observables sur le système [34].
Premièrement, même dans le cas d’une population moyenne proche de zéro, le taux d’effet
tunnel est influencé par ses fluctuations de point zéro. Cette réduction de la probabilité
d’effet tunnel apparâıt dans l’énergie Josephson EJ de la jonction, qui est renormalisée
par les fluctuations de phase du mode à la valeur E⇤

J = EJe
� r

2 .

Deuxièmement, pour des faibles taux tunnel, correspondant à une faible excitation du
mode telle que sa population n̄ reste petite devant 1, des propriétés non classiques
sont prévues pour la lumière émise, qui présente une statistique de dégroupement sous-
poissonienne.Cet effet est caractérisée par la fonction de cohérence du second ordre de la
lumière g(2)(⌧) = (1� r

2
e�|⌧ |)2, avec  le taux de fuite du résonateur. Cet effet résulte de

la rétroaction cohérente du champ dans le résonateur sur la jonction. La présence d’un
premier photon dans le mode réduit la probabilité d’en créer un deuxième, ce qui entrâıne
des anticorrélations dans le flux de photons émis par le résonateur (Fig.A.8).

Pour une impédance suffisamment élevée du résonateur telle que r ⇠ 2, ce simple circuit
crée une source de photons uniques. D’un point de vue pratique, la simplicité du
mécanisme de dégroupement, qui ne nécessite que de régler la tension de polarisation à
V = ~!r

2e
et l’impédance à Zc =

2RQ

⇡
' 4 kΩ, pourrait le rendre utile pour des appli-

cations où des taux élevés de photons micro-ondes uniques sont recherchés. D’un point
de vue fondamental, ce dispositif illustre la puissance de l’approche dite de dissipation
engineering, où la dissipation est vue comme une ressource plutôt qu’un phénomène
nuisible.

La conception d’une expérience dans le régime de couplage fort a été le projet de recherche

238



Figure A.8: Mécanisme de blocage des photons dans un mode fortement couplé à un JJ avec r = 2.
Après qu’une seule paire de Cooper a été tunnellisée, le mode se retrouve dans son premier état excité,
avec une fonction d’onde déplacée dans l’espace de charge de q = 2e. Cette fonction d’onde déplacée ne
chevauche pas l’état excité suivant, de sorte que la création d’un deuxième photon est interdite.

de Chloé Rolland lors de son séjour doctoral dans notre équipe en 2014-2016 [35]. Elle a
réussi à concevoir et à fabriquer un échantillon comprenant un mode micro-ondes avec une
impédance Zc ' 2 kΩ, fortement couplé avec un SQUID accordable en flux avec r ' 1
(Fig.A.9). En utilisant l’équivalent micro-ondes d’un interféromètre Hanbury Brown-
Twiss, elle a fait des mesures préliminaires de la statistique des photons émis dans le
régime de faible excitation, prouvant le dégroupement des photons. Cependant, ce dis-
positif de détection souffrait de couplages parasites entre les lignes de mesure, ce qui
ajoutait un bruit non-négligeable aux mesures.

Figure A.9: Micrographie de l’échantillon fabriqué par Chloé Rolland lors de son doctorat. La bobine mi-
crofabriquée (partie gauche) implémente un résonateur en régime de couplage fort avec une JJ accordable
de type SQUID (en médaillon), avec r ' 1.

Cette thèse de doctorat présente nos efforts pour développer un nouveau type de système
de détection linéaire, permettant non seulement de mesurer la puissance rayonnée par
l’échantillon, mais aussi les quadratures de ces signaux. En combinant ces quadratures
de manière judicieuse, nous sommes en mesure de rejeter le bruit de fond parasite dû au
couplage micro-ondes parasite des lignes, ce qui augmente considérablement notre préci-
sion dans la mesure des fonctions de corrélation des signaux. Nous pourrions ainsi mieux
confirmer la mesure du dégroupement des photons émis par l’échantillon (Fig.A.10), en
étudiant la transition vers un état classique du rayonnement au fur et à mesure que la
population du mode augmente [36].
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Figure A.10: Fonction de cohérence de second ordre des photons émis par l’échantillon à fort couplage
à faible nombre d’occupation n = 0, 075 du résonateur. La valeur g(2)(0) = 0.32 prouve la statistique
sub-posissonienne du photon, à un taux d’émission Γ ' 60 Mphotons/s.

Notre dispositif de détection linéaire nous permet également d’obtenir une bien meilleure
résolution sur les propriétés spectrales de la lumière émise par la jonction, tant en régime
d’effet tunnel incohérent que pour les tensions de polarisation supérieures à la tension de
la jonction 2∆/e, où la jonction se comporte comme une source de bruit de grenaille. En
combinant ces mesures avec un modèle simple du circuit de l’échantillon, nous sommes
en mesure de caractériser soigneusement l’environnement, en mesurant son impédance
Re[Z(!)] et la population de ses modes. Nous avons ainsi pu vérifier une prédiction de
la théorie P (E), à savoir que l’énergie Josephson effective de la jonction E⇤

J est réduite
par les fluctuations de phase de tous les modes de son environnement, de la gamme rf
jusqu’aux fréquences micro-ondes.

Au-delà de la statistique des photons, notre dispositif de détection nous permet de mesurer
des fonctions de corrélation arbitraires des photons émis par un échantillon. Nous l’avons
utilisé dans une autre expérience pour prouver l’intrication de la lumière émise à deux
fréquences différentes.

Faisceaux intriqués émis par effet tunnel inélastique

Les résultats de la figure 1.6 montrent que lorsque la tension de polarisation V sur une JJ
vérifie 2eV = ~(!a+!b), avec !a et !b les fréquences de résonances dans l’environnement
de la jonction, un courant continu peut circuler, grâce à des processus inélastiques où
pour chaque paire de Cooper une paire de photons est créée, avec un photon dans chaque
résonance (Fig. A.11).

Ce processus est similaire à la conversion paramétrique de l’optique quantique, où un
photon est absorbé à partir d’un mode ”pompe” à !p = !a + !b et converti de manière
cohérente en une paire de photons à !a et !b via une interaction non linéaire. Selon
la forme de cette interaction, la paire de photons créée peut être dans un état intriqué,
partageant un degré de liberté non local (par exemple une polarisation totale égale à
zéro), tandis que les mesures locales sur un seul photon de la paire donnent des résultats
incohérents (par exemple une valeur de polarisation aléatoire). De tels états de paires sont
couramment utilisés dans les tests de Bell de la non-localité en physique quantique.
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Figure A.11: Deux résonateurs aux fréquences ωa,ωb sont connectés à une JJ polarisé een courant
continu. Lorsque 2eV = ~ωa + ~ωb, des paires de photons intriqués sont créés par effet tunnel des paires
de Cooper.

L’intrication de faisceaux de lumière micro-ondes par un dispositif Josephson a déjà
prouvé qu’une conversion paramétrique pouvait être réalisée dans une expérience de
circuit-QED [37]. La grandeur intriquée dans cette expérience était la somme des phases
des deux champs micro-ondes, ce qui prouve la compression sous la limite quantique
standard d’une combinaison linéaire de leurs quadratures. Ce résultat prouve que la non-
linéarité d’un dispositif de Josephson peut être utilisée pour concevoir une excitation co-
hérente des deux modes. Néanmoins, il n’est pas évident de savoir si les paires de photons
créées par effet tunnel inélastique présentent ou non de telles propriétés non-classiques.
En effet, le mécanisme tunnel inélastique n’a pas d’équivalent direct en optique, car ici
le rôle du mode de pompage cohérent est joué par les condensats supraconducteurs des
deux électrodes.

La cohérence de ce système électronique macroscopique réside dans la phase de l’état fon-
damental supraconducteur. Cette cohérence de phase devrait en principe être héritée par
les paires de photons créées par effet tunnel. Dans une jonction connectée galvanique-
ment, l’évolution temporelle de la différence de phase �̂ est fixée par la valeur de la
polarisation de tension V à travers la jonction. Dans les circuits simples dont nous avons
parlé jusqu’à présent, la partie continue de la tension entrâıne une augmentation linéaire

de cette phase avec : d�̂(t)
dt

= 2eV
~
, tandis que les fluctuations de tension à fréquence finie

des modes d’environnement déclenchent les processus d’émission inélastique de photons.
Dans un cadre plus réaliste, la jonction est également couplée à un continuum de modes
de basse fréquence, du dc jusqu’à au moins kBT/~ ' 2⇡ ⇥ 400 MHz à T = 20 mK. Ces
modes sont dans un état thermique avec un nombre d’occupation élevé, de sorte qu’ils
ajoutent un bruit aléatoire considérable à la polarisation de la tension.

Ce bruit à basse fréquence produit un déphasage aléatoire de la différence de phase
supraconductrice, qui affiche un temps de cohérence très limité de quelques centaines
de nanosecondes au maximum. Il semble donc que ce système dissipatif ne puisse ja-
mais produire d’effets de cohérence quantique. Cependant, nous avons pu prouver qu’un
choix judicieux d’observables pouvait prouver l’intrication de la lumière micro-onde émise
par effet tunnel inélastique, même en l’absence d’une référence de phase stationnaire, à
condition que l’environnement de la jonction soit soigneusement contrôlé.

Nous avons conçu une expérience à partir de celle réalisée par Olivier Parlavecchio lors
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de son doctorat dans notre équipe en 2011-2014 [38] (Fig.A.12). Dans cette première
expérience, une JJ est placé en série avec deux résonateurs à micro-ondes, qui crée des
modes à 5 GHz et 7 GHz. L’impédance de ces résonateurs est suffisamment faible pour
que les modes ne soient que faiblement couplés à la jonction avec r ⌧ 1, afin que leur
occupation ne perturbe pas les taux d’effet tunnel. Sur la résonance des paires de photons
2eV = h ⇥ 12 Ghz, les puissances micro-ondes mesurées à la sortie des deux modes
montrent des corrélations non classiques, indiquant que les photons sont effectivement
créés par paires. Ce résultat valide le mécanisme de création de paires, et prouve que les
deux résonateurs sont entrâınés de manière cohérente par la jonction [39].

2e

1

2

Figure A.12: Représentation schématique de la configuration utilisée pour sonder les statistiques non
classiques des paires de photons émises par un JJ. La puissance micro-onde qui s’échappe à la sortie des
deux modes (rouge et bleu) est détectée à température ambiante après amplification et répartition sur
une installation de type HBT.

Cette expérience repose sur le fait que les corrélations de flux de photons mesurées à
la sortie des résonateurs sont directement liées au nombre de photons à l’intérieur des
cavités. Le lien entre les modes de propagation et les modes de la cavité peut être exprimé
à l’aide du formalisme input-output. Avec ce formalisme, il a finalement été compris que
les corrélations de phase non-locales entre les champs de la cavité sont imprimées dans les
photons sortants. Ainsi, même si la différence de phase à travers la jonction est sujette
au bruit local et présente un temps de cohérence limité, la lumière émise peut conserver
sa cohérence à 2 photons lorsqu’elle se propage loin de l’échantillon.

Les corrélations de phase des photons émis à deux fréquences différentes peuvent être
caractérisées par la violation d’une inégalité classique sur les fonctions de corrélation à
2 photons, qui fournit un témoin d’intrication. Dans un dispositif expérimental similaire
à celui de 1.12, nous avons pu détecter cette intrication en utilisant notre dispositif de
détection linéaire (Fig.A.13). Nous avons confirmé cette image simple de l’intrication
des champs propageant, selon laquelle les photons restent intriqués s’ils quittent les ré-
sonateurs plus rapidement que le taux de déphasage à la jonction.

Comme ce taux de déphasage provient d’une tension à basse fréquence, il n’est pas intrin-
sèque à l’échantillon lui-même, mais plutôt à son circuit de mesure. Nous avons confirmé
que le taux de déphasage était effectivement limité par la valeur du bruit de la tension
thermique d’équilibre sur la jonction, en chauffant ou en refroidissant activement ces
modes (Fig.A.14). Ce mécanisme de chauffage/refroidissement est basé sur l’effet tun-
nel inélastique par la même jonction qui crée les photons intriqués. Ce dernier résultat
prouve qu’un système quantique dissipatif et ouvert, activement couplé à un bain dans un
état profondément classique, peut encore créer une intrication observable. Le mécanisme
de refroidissement lui-même pourrait être étendu pour amener les dispositifs quantiques
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Figure A.13: Corrélateurs à 2 photons prouvant l’intrciation des champs émis. Pour des champs sé-
parables, la fonction de corrélation de phase (en violet) est toujours plus petite que le corrélateur de
population (en orange).

à leur état fondamental, ou effectuer la spectroscopie de systèmes mésoscopiques aux
fréquences rf.
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Figure A.14: Bruit relatif de tension en fonction des taux tunnel pour différentes valeurs de polarisation.
La jonction peut être utilisée pour chauffer (points rouges) ou refroidir (points bleus) les modes basse
fréquence de son environnement, en augmentant ou en réduisant leur bruit de tension. Cette interaction
peut également être désactivée pour obtenir un régime sans interaction (points noirs).
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Conclusions, expériences en cours et perspectives

Dans ce travail de doctorat, nous explorons comment les concepts et les outils de l’optique
quantique peuvent être adaptés dans un cadre mésoscopique pour produire un nouveau
type de sources de lumière quantique.

Dans nos expériences, nous considérons une JJ polarisée en tension continue, qui est un
système quantique ouvert, hors équilibre, interagissant avec les modes de son environ-
nement électromagnétique depuis dc jusqu’à 2eV/~ ⇠ quelques GHz. Nous montrons
comment modéliser l’interaction avec ces modes, qui présentent des échelles de temps
et des populations d’équilibre très différentes. Nous décrivons comment les modes à
haute fréquence, créés par des résonateurs micro-ondes, agissent comme des cavités dans
l’état vide excités par le transport inélastique à travers la jonction, tandis que les modes
thermiques à basse fréquence agissent comme une source de bruit de tension aléatoire,
déphasant les champs sur une échelle de temps lente.

Nous étudions deux types d’échantillons différents, un avec un seul mode dans le régime de
couplage fort r ' 1 et un autre où deux modes à des fréquences différentes se couplent à la
même jonction. Dans chaque expérience, nous caractérisons entièrement l’environnement
de l’échantillon, en utilisant les propriétés d’émission de la jonction dans différents régimes
de tension de polarisation et d’énergie Josephson. Nous mesurons ensuite des fonctions
de corrélation pour prouver les propriétés non classiques de la lumière émise par effet
tunnel, en étudiant la transition vers une source de lumière classique à des taux d’émission
élevés.

Dans l’expérience de couplage fort, nous prouvons le caractère granulaire de la lumière
émise à faible taux d’émission en mesurant le dégroupement des photons, avec une fonc-
tion de cohérence du second ordre g(2)(0) = 0, 32 < 1, la valeur pour les états classiques.
Cette expérience ne repose sur aucune cohérence de phase des photons émis. Cependant,
nous prouvons que notre dispositif de détection résolue en phase augmente la précision
de la mesure, en rejetant le bruit de fond thermique parasite de la châıne d’amplification.
Nous mesurons également quantitativement la renormalisation de l’énergie Josephson de
la jonction par les fluctuations de point zéro des modes de l’environnement.

Dans l’expérience à deux modes, nous détectons l’intrication des photons émis en prouvant
leur cohérence de phase à deux photons. Nous interprétons cette intrication dans le cadre
de la compression à deux modes, et nous mettons en relation les corrélations de phase
des champs émis avec la dynamique de la phase supraconductrice de la jonction. Nous
étudions la correction à la compression à deux modes pure due à l’impédance finie des
modes, qui conduit à une rétroaction des photons émis sur la jonction. Nous étudions
comment cette rétroaction produit des statistiques de plus en plus classiques des champs
à taux d’émission élevé. Nous prouvons que le taux de déphasage à la jonction, qui
donne le temps de cohérence de phase fini des faisceaux intriqués, provient du bruit de
tension à basse fréquence du circuit de polarisation. Nous augmentons ensuite la valeur
du taux maximal auquel nous détectons encore l’intrciation en refroidissant ces modes,
réduisant ainsi leur bruit de tension. Ce mécanisme de refroidissement actif est basé sur
l’absorption du bruit à basse fréquence par la jonction elle-même par le biais de l’effet
tunnel inélastique.

Les résultats de ces deux expériences prouvent qu’une JJ polarisée en tension continue
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peut créer une source de lumière quantique micro-ondes polyvalente, même s’elle
est couplée à un continuum de modes de haute occupation thermique. L’expérience de
couplage fort met en évidence l’impact des fluctuations de point zéro de l’environnement
sur l’excitation du mode créé par la jonction, qui peut conduire à la création d’états
de lumière fortement non-gaussiens. Dans l’expérience d’intrication à deux modes, cette
non-Gaussianité réduit la fidélité de l’état lumineux par rapport à un pur état comprimé
à deux modes. Cependant, cette non-Gaussianité pourrait être avantageuse pour la créa-
tion d’une lumière fortement non classique, qui pourrait être utilisée dans des protocoles
d’information quantique.

Nous avons également contribué à la conception d’autres expériences, qui n’ont pas encore
été réalisées. La première fait suite à une proposition de mise en œuvre d’un stabilisateur
autonome d’état de Fock, utilisant une jonction couplée à deux modes, dont l’un est en
régime de couplage fort r = 2. Nous avons développé un plan pour un échantillon qui
mettrait en œuvre un résonateur micro-ondes accordable en flux, permettant d’atteindre
cette condition de fort couplage. Nous avons également mené une expérience préliminaire
de refroidissement en bande latérale, visant à refroidir un mode rf jusqu’à son état fonda-
mental quantique par effet tunnel inélastique. Ces expériences permettraient d’aller plus
loin que la réalisation de sources de lumière quantique, vers la manipulation des états
quantiques.

Dans les futures expériences, nous pourrions essayer de nous rapprocher du domaine de
la circuit-QED, par exemple en ajoutant des tons cohérents micro-ondes pour verrouiller
la phase des signaux émis et éliminer les problèmes liés à l’absence de référence de phase
fixe. Ce type de dispositif bénéficierait alors du rejet intrinsèque des termes Kerr dans
le Hamiltonien, ce qui le rendrait plus adapté aux applications à nombre de photons
élevé.

Il peut également être intéressant de s’écarter franchement de la circuit-QED et d’explorer
un espace de paramètres interdit aux circuits supraconducteurs typiques. Par exemple,
en utilisant des JJ fabriqués avec un matériau supraconducteur à gap plus élevé, nous
pourrions essayer d’émettre des radiations à des fréquences THz, là où aucune source
cohérente n’est disponible. Il peut également être intéressant d’étudier différents types
de conducteurs quantiques tels que les contacts supraconducteurs à points quantiques,
qui permettent une interaction plus complexe avec l’environnement.

245



Appendix B

Shot-noise measurements and
calibration

V
RN

Figure B.1: Model circuit of the experiments in the shot-noise regime. Biased far above the gap voltage,
the Josephson junction behaves as a normal junction with tunnel resistance RN (box symbol). A bias-tee
defines low-frequency and rf branches of the rest of the circuit, with a dc resistance Re[Z(0)] = 0.

The shot-noise regime is reached when applying on a Josephson junction a bias V much
larger than the gap voltage 2∆/e (see figure 2.3). The transport through the junction is
then dominated by normal quasiparticles, with a dc-current Ī ' V/RN .

The transfer of charges by quantum tunneling is a stochastic process. For each tun-
nel event, a charge �e is abruptly transferred from one electrode to the other. This
granularity results in the finite-frequency current noise SII(!) = 2(eĪ � R�1

N ~!) for
! < eV/~.

V
RN

I

RN

SII

Figure B.2: A dc-biased tunnel junction give rise to a tunnel current, which includes an average value
Ī = V/RN as well as a noise spectral density SII(ω).

If the impedance of the rest of the circuit Re[Z(!)] � RN at finite frequency, the junction
can be considered isolated, as its own admittance R�1

N shunts the environment. The
current noise is entirely dissipated through RN itself, heating the junction with the Joule
power spectral density SP (!) = RN ⇥ SII(!) (Fig.B.2).
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On the other hand if Re[Z(!)] is of the order of RN or smaller, the environment can
collect a part of the current noise. The circuit can be cast in a form where Z(!) is in
parallel with the junction, forming a current-divider with RN (Fig.B.3). The junction
then behaves as a current source with output impedance RN .

V RN RN

SII

Z(ω)

Figure B.3: At finite frequency ω 6= 0 the junction behaves as a current source with an output impedance
RN , feeding the environment Re[Z(ω)].

The fraction of SII(!) radiated into the environment reads: SII(!)⇥ |RN/(RN +Z(!))|2.
The PSD associated to this current noise is:

Sp(!) = Re[Z(!)]⇥ SII(!)⇥
�

�

�

�

RN

RN + Z(!)

�

�

�

�

2

(B.1)
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Perfect matching occurs when Re[Z(!)] = RN . Then the PSD collected by the environ-
ment is (eV � ~!)/2. In the case of a low impedance environment Re[Z(!)] ⌧ RN , we
have:

Sp(!) ' 2(eV � ~!)
Re[Z(!)]

RN

. (B.3)

The shape of the PSD follows then Re[Z(!)]. This can be use to determine the resonance
frequency !r and quality factor Q of a mode in the environment of the junction.

If Re[Z(!)] ⇠ RN , information about a single mode can still be extracted from Sp(!).
The impedance near a resonance frequency reads:

Z(!) =
Z0

1 + 2iQ!�!r

!r

, (B.4)

Such that:

Re[Z(!)] =
Z0

1 + 4Q2
⇣

!�!r

!r

⌘2 . (B.5)

Then:
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eV � ~!
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1 + 4
⇣

Q
1+Z0RN

⌘2 ⇣
!�!r

!r

⌘2 . (B.6)

The shape of the PSD is still a Lorentzian, but with a quality factor divided by 1+Z0/RN .
If RN and the shape of Re[Z(!)] are known, the absolute value of the impedance Z0 of
the mode can be computed.

If the two quality factors (shape of the mode and shape of the shot-noise PSD) are
measured, the ratio Z0/RN can be extracted. Then we also know the coupling factor
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. Finally, this allows us to calibrate the absolute gain of the microwave

collection chain. The voltage derivative of the PSD, measured at the resonance frequency,
reads:

dSp(!r)

dV
=

e

2
⇥
 

1�
�

�

�

�

RN � Z0

RN + Z0

�

�

�

�

2
!

. (B.7)

It is more convenient to use the voltage derivative that the absolute value of (B.6), at
it is insensitive to potential dc-voltage offsets in the bias line and as it removes the ~!

component of the expression.

In our experiments we measure this voltage derivative to calibrate the photon emission
rate of the samples.
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Appendix C

Transmission line resonators

In a TL, electrical waves can propagate at speed v with a given ratio between the voltage
amplitude V ±(x± vt) and the current amplitude I±(x± vt), called the wave impedance
Zw of the line. This ratio is positive for waves travelling in one direction and negative
for counter-propagating waves: V ±(x± vt) = ±Zl ⇥ I±(x± vt). If we terminate a TL at
x = 0 with a load impedance Zl, we impose a boundary condition to stationary waves in
the line, namely that at x = 0:

V +(0, t) + V �(0, t) = Zl ⇥ (I+(0, t) + I�(0, t)) (C.1)

If Zw 6= Zl, then a wave incoming onto Zl has to be partly reflected to ensure the boundary
condition.

The interference between the reflected and incoming waves produces a certain ratio of
V (�L, t)/I(�L, t) at the other end of the line. As the wave vector k is proportional to
the frequency of the wave, this mean that different frequencies will have different V/I
ratios after a length of propagation L, or different input impedances as seen from x = �L.
This can be summed up by the transmission line equation:

Z(! = kv) = Zw
Zl + jZw tan(kL)

Zw + jZl tan(kL)
= Zw

Zl + jZw tan( ⇡!
2!r

)

Zw + jZl tan(
⇡!
2!r

)
(C.2)

At frequencies such that kL = ⇡/2 (mod 2⇡), the tan(kL) terms diverge. If Zw > Zl,
there is then a peak in Re[Z(!)]. These resonances appear for frequencies which are
odd multiples of the fundamental resonant frequency !r = ⇡v/2L, whose wavelength
�r = 2⇡v/!r = L/4 is one quarter of the length of the line L: these are called �/4
resonances. The impedance at the top of the peaks is then Z2

w/Zl, and the quality
factor of the first resonance is Q ' ⇡ZW/4Zl.
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Appendix D

Multiphotonic emission rates

Here is a derivation of the tunneling rate in a dc-biased Josephson junction in series
with a single mode, on the k-photon resonances 2eV = k~!0. It was extracted from a
note by Philippe Joyez, which was first published in the supplementary material of our
antibunched photons article [36].

The spectral density of the emitted radiation is given by [33]:

�(V, ⌫) =
2Re[Z(⌫)]

RQ

⇡

2~
E2

JP (2eV � h⌫), (D.1)

where Z(⌫) is the impedance across the junction, RQ is the superconducting resistance
quantum RQ = h/4e2, EJ is the Josephson energy of the junction, and P (E) represents
the probability density for a Cooper pair tunneling across the junction to dissipate the
energy E into the electromagnetic environment described by Z(⌫)[58]. P (E) is a highly
nonlinear transform of Z(⌫):

P (E) = 1
2⇡~

R1
�1 exp[J(t) + iEt/~]dt

J(t) =
R +1
�1

d!
!

2ReZ(!)
RQ

e�i!t�1
1�e��~! ,

(D.2)

where � = 1/kBT . For an LC oscillator of infinite quality factor at zero temperature,
P (E) is given by

P (E) = e�r
X

n

rn

n!
�(eV � n~!0) (D.3)

where r = ⇡
q

L
C
/RQ and !0 = 1/

p
LC.

Here, we consider the case of a mode of finite linewidth, so that near the resonance the
real part of the impedance can be approximated as

2ReZ(!)
RQ

' rL(!,!0, Q). (D.4)

where

L(!,!0, Q) ⌘ 2

⇡

Q

1 + 4Q2
⇣

!
!0

� 1
⌘2

denotes a Lorentzian function centered at !0 with a maximum value 2
⇡
Q and a quality

factor Q = !0

∆!
. Note that

R

L(!,!0, Q)d! = !0.

250



For such a finite-Q mode, we aim to get a formula similar to Eq. D.3, i.e. we look for an
expansion

P (E) = P0(E) + P1(E) + P2(E) + . . .+ Pn(E) + . . . (D.5)

where each Pn(E) / rn. However, from the integral expressions (D.2), accessing the
different multiphoton peaks, i.e. calculating P (E ' n~!0) is not straight-forward. Such
an expansion can be obtained using the so-called Minnhagen equation [58], which is an
exact integral relation obeyed by P (E), valid for any impedance. We first establish the
Minnhagen equation starting from

eJ(t) � eJ(1) =
R t

�1 d⌧J 0(⌧)eJ(⌧) ,

which, using the definition (D.2) of J can be recast as

eJ(t) � eJ(1) = �i

Z +1

�1
d!0h(!0)

Z 1

�1
d⌧e�i!0⌧eJ(⌧)✓(t� ⌧)

where ✓ is the Heaviside function, h(!) = 1
1�e��~!

2ReZ(!)
RQ

and using the fact that J(�1) =

J(1). The rightmost integral being the Fourier transform of a product, we replace it by
the convolution product of the Fourier transforms and use the detailed balance property
of h and P to simplify the r.h.s.:

eJ(t) � eJ(1) = �i

Z +1

�1
d!0h(!0)

Z

du

✓

⇡�(u) +
ieit

0u

u

◆

P (�!0 � u)

=

Z +1

�1
d!0h(!0)

Z

du
eitu

u
P (�!0 � u).

Finally, we take the Fourier transform on both sides and rearrange, which yields the
Minnhagen equation

P (E) = ~

E

R

P (E � ~!) 1
1�e��~!

2ReZ(!)
RQ

d! + �(E)eReJ(1) . (D.6)

At zero temperature 1
1�e��~! ! ✓(!) and P (E) is zero for negative energies, so that the

Minnhagen equation is most frequently found written as

P (E) = ~

E

R E

0
P (E � ~!)2ReZ(!)

RQ
d! + �(E)eReJ(1) . (D.7)

Plugging the expansion (D.5) into Eq. D.6, one immediately gets

P0(E) = �(E)eJ(1)

P1(E) =
1

E

Z 1

�1
P0(E � ~!)

rL(!,!0, Q)

1� e��~!
d~!

' eJ(1)

~!0

rL

✓

E

~
,!0, Q

◆

where the approximation of the last line was obtained assuming that kBT ⌧ ~!0 and
taking the value of the denominator at E = ~!0 –where L (and P1) peak– which is
reasonable if the Q is large enough. By repeated replacement in Eq. D.6 and with similar
approximations, one systematically obtains the higher orders terms of (D.5) as shifted
Lorentzians of constant Q

Pn>1(E) ' eJ(1) r
n

nn!

L(E/~, n!0, Q)

~!0

251



whose value at each peak are

Pn>1(E = n~!0) =
2

⇡
eJ(1) r

n

nn!

Q

~!0

yielding a tunneling rate at the peaks

Γ2e(eV = n~!0) =
1

~

E2
Je

J(1)

~!0

rn

n!

Q

n
.

Note that the Cooper pair rates at different orders scale with an extra Q/n compared to
the naive rates obtained from Eq. D.3.

In the main text, E2
Je

J(1) is called E⇤2
J . This renormalization of the Josephson energy is

obtained from the zero point phase correlator

J(1) = �h'(0)'(0)i = �
Z +1

0

d!

!

2ReZ(!)

RQ

coth
�!

2

which in the limit of kBT = 0 and for an RLC parallel resonator (it is important that
ReZ(! ⇠ 0) / !2 for proper convergence) yields

J(1) = �
Qr

✓

1 + 2
⇡
atan 2Q2�1p

4Q2�1

◆

p

4Q2 � 1
= �r

✓

1� 1

⇡Q
+O

✓

1

Q2

◆◆

,

in agreement with the expression E⇤
J = EJe

�r/2 used in the main text (The finite-Q
correction to this renormalization is of order of 1%, beyond the precision of our measure-
ments). In [33], E⇤2

J was given with an approximate first-order expansion of the phase
correlator valid for small phase fluctuations (and which was correct for the small r value
in that paper).
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Appendix E

Spectrum of low-frequency noise

In a series of different experiments, we measured the width of the emission peak as a
function of the acquisition time Tmeas. We found that the width of the peak decreases
abruptly when Tmeas goes below about 1 µs, indicating that most of the noise occurs on
longer timescales:
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Figure E.1: Acquisition time is varied.

We also looked at fast fluctuations of the position of the peak, in and out of an integration
window:
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Figure E.2: F-Spectrum of peak jumps.
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Here a clear peak occurs around 70 kHz, which is consists with random noise from the
bias-tee mode. A harmonic appears at 140 kHz, which is an artefact of the integration
method. Finally we looked at the full spectrum of the positions of the peak:
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Figure E.3: F-Spectrum of peak position.

Which indicates the same peak at 70 kHz, albeit widened by the averaging.
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Résumé : Le passage aléatoire des charges à travers 
une jonction tunnel génère un bruit en courant, qui 
peut être capté par l'environnement de la jonction où 
il crée des excitations électromagnétiques appelés 
photons. Dans cette thèse, nous démontrons qu'une 
jonction tunnel supraconductrice couplée à un 
environnement bien choisi peut implémenter une 
source brillante de rayonnement micro-onde 
quantique. L'énergie nécessaire pour créer les 
photons est fournie par la source de tension continue 
lors du passage tunnel inélastique d’une paire de 
Cooper à travers la jonction. 

Nous détectons cette lumière émise et étudions ses 
propriétés avec des outils de l’optique quantique 
adaptés au domaine micro-onde. Nous 
caractérisons le dégroupement des photons émis 
dans un seul mode fortement couplée à une 
jonction, ainsi que l’intrication de paires de 
photons émis dans deux modes à des fréquences 
différentes. Outre une meilleure compréhension du 
couplage charge-lumière dans les conducteurs 
cohérents, ces travaux pourraient déboucher sur de 
nouvelles façons de manipuler l'information au 
niveau quantique. 
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Abstract: The probabilistic charge transfer in tunnel 
junctions is a source of current noise, which can be 
picked up by the environment of the junction where 
it creates electromagnetic excitations - or photons. In 
this thesis, we demonstrate that a superconducting 
tunnel junction coupled to a tailored environment 
can act as a bright source of quantum microwave 
radiation. The energy required to create photons is 
extracted from a DC voltage source during the 
inelastic tunneling of Cooper pair through the 
junction. 

We detect this emitted light and study its 
properties with quantum optics tools adapted to 
the microwave domain. We characterize the single-
photon nature of the light emitted in a single mode 
strongly coupled to a junction, as well as the 
entanglement of photon pairs emitted in two 
modes at different frequencies. In addition to a 
better understanding of the charge-light coupling 
in coherent conductors, this work could lead to new 
ways of manipulating information at the quantum 
level. 
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