Telemetry for Quantum Systems in HPC Centers

Hossam Ahmed* @, Burak Mete*f
Muhammad Nufail Farooqi*

, Helmut Heller*

, Mahmoud Abuzayed*

, Matthew Tovey* @, Xiaolong Deng* @, Asim Zulfigar*
, Martin Schulz*t ®, Laura Schulz*

*QCT Department
Leibniz Supercomputing Centre of the Bavarian Academy of Science and Humanities (LRZ)
Garching b. Miinchen, Germany.
t Chair for Computer Architecture and Parallel Systems (CAPS)
Technical University of Munich (TUM)
Garching b. Miinchen, Germany.

Abstract—Quantum systems have traditionally operated within
highly controlled laboratory environments to minimize internal
noise and maximize stability. However, when these systems are in-
tegrated into High Performance Computing (HPC) environments
and setup for continuous operation, they encounter significantly
higher levels of external noise and instability coupled with higher
demands. This paper introduces a comprehensive framework to
counter the challenges of maintaining the stability of operational
quantum computers in such noisy HPC settings. We propose
a novel system architecture that monitors and manages the
environmental conditions of quantum computing systems using a
broad set of sensors, enhancing their robustness and reliability.
Our architecture is open and can be extended to other setups.
It can serve as a blueprint for other sites as it spans quantum
technologies and offers broad coverage. Ultimately, this data will
be essential to facilitate advancements in machine learning to
drive real-time error mitigation.

1. MOTIVATION

Current quantum computers often fail to achieve their
advertised levels of fidelity due to a range of factors, including,
in part, often overlooked environmental conditions. This issue
becomes particularly significant when integrating Quantum
Computers (QC) with High-Performance Computing (HPC)
systems.

Ideally, these systems should be closely co-located, as such
hybrid HPCQC setups enable fast and efficient network con-
nectivity between the two [1]-[4], which is helpful in tightly
coupled hybrid algorithms. Further, it allows for easier and
more efficient operation as a single system with one scheduling
domain. However, such placement in HPC centers and around
noise-inducing HPC systems presents vastly different envi-
ronmental requirements compared to the controlled physics
lab environments. As a result, treating quantum computers
as accelerators housed within HPC environments necessitates
further analysis and detailed characterization to ensure better
performance.

Characterizing environmental noise and its impact on Quan-
tum Processing Unit (QPU) efficiency presents a significant
challenge. In particular, the different time scales of com-
putation vs. environmental sensors, the inability to directly
measure inside the QC, and the unknown effects between
the environment and the QCs lead to substantial challenges.
Current environmental data collection solutions are often too

coarse-grained and limited in their data sources to map the
qubits’ susceptibility to external factors, This limitation is
particularly critical given that precise characterization requires
continuous monitoring of qubit decoherence times (on the
order of milliseconds) during data acquisition. This disconnect
limits our ability to establish crucial correlations between
environmental parameters and the QC’s performancee xhibited
through key metrics, particularly when evaluating operational
benchmarks such as qubit error rates, readout fidelity, and
single- or two-qubit gate fidelities—metrics that directly reflect
system reliability under real-world conditions.

To address this challenge, a tightly integrated system is
required—one that seamlessly connects environmental data
acquisition systems with QPU operations. By correlating the
collection of environmental data with quantum experiments,
we can analyze anomalies and irregularities in qubit or gate
behavior, enabling a more precise characterization of the
impact caused by environmental noise.

The process of noise characterization involves designing
specific patterns for QPU operations and evaluating how
environmental noise distorts their operation results. Through
this approach, the effective noise can be classified as either co-
herent noise which arises from deterministic unitary processes,
whose effects are still characterized by unitary operations (e.g.,
over-rotations in rotation gates), or incoherent noise which
is non-unitary and arises from stochastic interaction with the
environment. This classification is a fundamental step towards
understanding the sources of noise and developing effective
mitigation strategies given the environmental setup parameters.
By achieving this level of characterization, we ease the way
for optimizing QPU performance in real-world conditions,
ensuring higher fidelity and robustness in quantum computing
applications.

This paper introduces a telemetry project that is currently
monitoring over 508 sensor readings at intervals ranging from
one to sixty seconds in an HPCQC setup of a superconducting
QC system. The project is organized into several components
to facilitate the transfer of Internet of Things (IoT) sensor data
to a central database, where the data is subsequently processed
using machine learning techniques, enabling the characteriza-
tion of environmental parameters crucial to quantum comput-

bl

Data Collection Telemetry Applications

Import/Export
script
'
'

DCDB

I \ ! -
loT | Hardware Enabelement | 1 Query and Processing
' ' ' I

Vendor MQTT
Broker

\

|

1

|
‘Quantum ' ML
Telemetry L .
Interface H Applications

i

! H

! H

I

' H

'

Prometheus &
Alert Manager

Nodé
Exporter

Fig. 1. Overview of the quantum telemetry project.

ing. An overview of the framework of the telemetry project’s
structure is presented in Fig. 1.
Specifically, this paper makes the following contributions:

e We deduce the requirements and needs for telemetry
around quantum systems.

o We detail our comprehensive sensor setup and its techni-
cal implementation in a real HPCQC setup at our center.

¢ We explain the needed network infrastructure in a real-
world setting that enables continuous monitoring and
analysis.

o We describe and implement the needed software setup to
gather, process and analyze the data gathered from our
Sensors.

« We give a first look into how the data can be used for
error mitigation and correction of QC systems.

Overall, this paper presents a practitioner’s blueprint of how
to setup comprehensive monitoring beyond what is currently
available or even feasible in pure HPC environments. With
this, it provides a comprehensive overview on how to co-
design lab space, QC systems and analysis software with
the goal of improving and stabilizing QC systems outside of
controlled lab environments.

The remainder of the paper is organized as follows. In
Sec. I we motivate the work by showing two case studies
in which monitoring was essential to understand system be-
havior. In Sec. III we introduce our comprehensive IoT setup,
followed in Sec. IV by the needed network setup and in Sec. V
with the notification mechanisms connecting the sensors to the
network. In Sec. VI we discuss the matching software setup,
completing the overall solution. In Sec.VII we then show how
the data can contribute to stabilizing QC systems, before, in
Sec. VIII, concluding the paper with final remarks.

II. MONITORING AND CHARACTERIZING QC
PERFORMANCE

Characterizing qubit performance is one of the key tasks
in the design of any quantum computer. However, it is typi-
cally executed when designing and testing the actual QPUs,
while being in a controlled physics laboratory environment,
and not under production conditions. Additionally, these ap-
proaches typically focus on isolating and analyzing a single

environmental factor. In contrast, our objective is to capture
data from all relevant environmental factors in a production
environment. Rather than establishing direct correlations, our
goal is to uncover and analyze the underlying relationships
and interactions between these factors, recognizing that some
correlations may depend on others. This novel approach aims
to provide deeper insights into the complex interplay between
environmental influences and qubit performance.

Our approach is currently employed at our HPC center
where we have three superconducting QPUs and one trapped
ion quantum system co-located near one another. In this setup
of multiple quantum systems, we deploy and monitor over 500
sensors for different environmental data using a comprehensive
IoT setup. Some of these sensors directly record physical
room properties (e.g., temperature or humidity), while others
record one or a group of specific quantum system parameters
available from the QC setups themselves (e.g., stemming from
the cryostat controller).

A. Motivating Case Study: Superconducting Systems

Advancing quantum computing requires addressing the crit-
ical challenge of identifying and characterizing the noise
sources that affect quantum systems. These sources are broadly
classified into coherent noise [5], which arises from predictable
and systematic errors, and incoherent noise, which stems from
random, uncorrelated disturbances. The latter is particularly
problematic as it destabilizes quantum operations and reduces
fidelity.

As one example for incoherent noise, we used our setup
to observe changes in the vacuum can pressure of a cryostat,
as it is used for superconducting QC systems, which had a
direct correlation to qubit fidelity, i.e., quality of the targeted
qubit. This led us to examine additional parameters, including
the ambient temperature of the room housing the compressors
and the gas handling system of the cryostat. Notably, we
identified a correlation between room temperature and solar
activity (Fig. 2), as indicated by the light intensity sensor. This
represents an instance of incoherent noise affecting quantum
systems, which must be mitigated to ensure optimal operation.

Characterizing and understanding such noise sources are
critical steps in improving the environmental control of quan-
tum systems. Incoherent noise, such as that caused by environ-
mental temperature fluctuations and light intensity variations,
disrupts the quantum states by introducing random, uncor-
related errors that accumulate over time. By identifying the
coherence properties of these disturbances, we can implement
strategies to isolate and counteract their effects. For example,
we started implementing solutions for controlling the temper-
ature also in the room that is housing the gas handling systems
(which is separate from the room housing the QC system
itself) to mitigate this incoherent noise. These efforts enable
us to achieve higher fidelity and more stable performance in
quantum computing applications, underscoring the importance
of thorough environmental noise analysis.

300000 lux

275000 lux

250000 lux

225000 lux

200000 lux

175000 lux

150000 lux

Light Intensity

125000 lux

100000 lux

75000 lux

50000 lux

25000 lux

omx—fr.MM‘N

05/08 00:00 05/08 12:00

05/09 00:00 05/09 12:00 05/10 00:00

6.40 nbar

6.20 nbar

6 nbar

5.80 nbar

5.60 nbar

5.40 nbar

Pressure of Vacuum Can

5.20 nbar

5 nbar

4.80 nbar

4.60 nbar

05/08 00:00 05/08 12:00 05/09 00:00 05/09 12:00 05/10 00:00

21.2°C

Temperature

20 °C

05/08 00:00 05/08 12:00 05/09 00:00 05/09 12:00

05/10 00:00

05/10 12:00 05/11 00:00 05/1112:00 05/12 00:00 05/1212:00

05/10 12:00 05/11 00:00 05/1112:00 05/12 00:00 05/1212:00

21°C
20.8 °C
20.6 °C
20.4°C
20.2°C

05/10 12:00 05/11 00:00 05/1112:00 05/12 00:00 05/12 12:00

Fig. 2. visual representation for data within specific time frame between the changes of vacuum can pressure, light intensity and temperature showing the

direct correlation between them.

B. Motivating Case Study: Trapped-Ion Systems

However, in quantum systems, noise is rarely purely co-
herent or incoherent; instead, it often manifests as a combi-
nation of both. Coherent noise, which stems from systematic
and predictable disturbances, can be analyzed and mitigated
through careful design and sensor integration. For instance,
we investigated electromagnetic field interference as a form
of coherent noise in a Trapped Ion quantum computer. In
this study, we placed an electromagnetic sensor near the
lasers responsible for trapping the ions. The electromagnetic

sensor allowed us to detect specific noise effects, such as state
detection errors correlated with the Y-axis of the magnetic
field sensor or phase shifts corresponding to the X-axis of the
laser sensor. These correlations provided insights into how the
electromagnetic field interacts with quantum states, enabling
targeted strategies to minimize the interference, such as the
strategy discussed in Sec. VII.

Identifying and mitigating coherent noise is critical for
maintaining the stability and accuracy of quantum operations.
One observed example of what is considered a coherent noise

Samstag

21-23 0 1

Stunde 18 19 20

Garch.Forschungsz. @ 16 26 36 46
Garching @ 19 29 39 49
Garchine-Hochbriick @ al 31 41 51

56 06 16 26 36 46 53 03 13 3 53 13 33 53
59 09 19 29 39 49 56 06 16 36 56 16 36 56
01 11 21 31 41 51 58 08 18 38 58 18 38 58

133301 ¢
16 36 04
18 38 06

Fig. 3. Correlation between electromagnetic field intensity and train schedule.
The electromagnetic sensor readings show a distinct pattern corresponding to
train arrivals every 10 minutes compared to train arrivals every 20 minutes,
highlighting the impact of train activity on the electromagnetic field intensity.

is the electromagnetic noise induced by subway trains passing
near our lab, which we observed by comparing the schedule
of the train and the occurrence of electromagnetic noise, as
shown in Fig. 3. Since we can predict the timing and intensity
of this noise, it is possible to mitigate its effects by analyzing
how the trapped ion system responds to these disturbances.
By applying corrective changes at specific timestamps aligned
with the train schedule, the impact of this noise on the system
can be effectively mitigated.

III. INTERNET OF THINGS FOR TELEMETRY

Investigating the effects of environmental changes on quan-
tum computation is an active field of research [6] and it not
clear, yet, which environmental quantity will have an influence.
As a consequence, we designed a system setup that can collect
a wide variety of physical quantities, some of which may and
some of which may not influence the behavior of our QC. We
refer to our installed sensor setup and its supporting systems
that enable continuous monitoring, collection and analysis as
“telemetry”, since it gives us remote insight into the QC and
its environment, similar to other telemetry setups, e.g., in
automotive, aviation, or space applications. This will ensure
that we get a complete overview of all possible factors, so
that our analysis can determine which effects are impactful and
which are not. Our goal hereby is to a) detect possible impacts
onto the performance of our own quantum systems, and b) help
co-design QC systems by suggesting key mitigation needs, and
c) support future HPCQC setups by guiding their monitoring
requirements.

The installation of such a plethora of sensors is a long
process that includes sensor selection, ordering, delivering,
installation, configuration, and finally data transmission and
analysis. Further, the set of sensors has to evolve as we learn
more about the system’s behavior and as more sensor types
become available. Hence, the setup of our sensor suite is an
ongoing project, and we will add more sensors to it over time,
as needed. However, the current setup (described below in
Sec. III-B) already reflects a very wide range of sensors that
capture—to our current knowledge—all relevant elements. It
is currently employed in our compute center, which houses
a 5 qubit and a 20 qubit superconducting QPU, a 20 qubit
ion-trap system, as well as an HPC system in close proximity.

In our setup, the sensors are located close to the cryostat of
the superconducting system, the control electronics of both
systems, and the gas handling system (GHS) for the croystat.
As additional QC systems are added to our set-up, additional
sensors will be placed in close proximity to them to assess
environmental quantities close to the respective QCs.

A. Telemetry Embedded Control System

A Raspberry Pi 4B (RPI) is running as the central IoT
gateway. It runs Raspberry Pi OS lite 64-bit (for RPI-4),
Debian GNU/Linux 11 (bullseye). The sensors are connected
to the RPI and the RPI sends the data to a central database
for collection, storage and analysis. For this we use the openly
available Data Center Data Base (DCDB) [7]. To monitor its
health, it is running a Prometheus node-exporter [8], which
is monitored by a central Prometheus instance, as outlined in
Sec. V.

The RPI and its associated platform provides flexibility
to integrate a wide range of sensors of different types and
connectivity. For example, the 1-wire bus for our temperature
sensors (of type DS18B20) was connected to the serial port of
the RPI, while our I2C-capable sensors are directly connected
to the RPI’'s I2C bus. Further, the microphone’s ADC is
connected to the USB of the RPI.

Where possible, measurements are triggered by CRON in
regular intervals. The respective interval depends on the sensor
and its needed granularity. For example, this is done

« every minute for the 1-wire temperature sensors,
« every 5 minutes for the liquid nitrogen scales, and
« every 30 minutes for the heat meters.

Using CRON has the advantage that the program is started
over and over again and thus can recover from temporary
crashes.

However, some programs must run continuously and they
are run as daemons. These are:

« Movement detector via a Passive InfraRed (PIR) sensor,
triggered by an interrupt whenever the PIR changes its
output state. To avoid triggering by spurious signals, each
trigger event is verified by reading the pin status shortly
after the interrupt. An event is only recorded if the pin is
read to be in the active state.

« Doors and windows contacts. Here, the same logic as for
the PIR sensor is used.

o Magnetometer data are constantly read with maximum
speed, resulting in a measurement every two seconds.

« Light intensity, air pressure, air humidity, and air temper-
ature are read every minute via 12C.

o The loudness sensor is read every second.

The current status is described for each sensor in the
following sections.

B. Environmental Sensors

After the general setup description, we now detail all
currently available sensors installed in the quantum lab for
the telemetry project.

Fig. 4. Superconducting quantum computer column with 35 temperature
sensors temperature column.

a) Temperature: While the main purpose of the croystat
of a superconducting QC is to isolate its contents from the
environment, some coupling is still present, as evidenced by
the rising internal temperature once the active room cooling
has been switched off. Keep in mind that the same quantum
devices used for QC are also used in quantum sensors to
measure the smallest quantities.

To assess the temperature fluctuations outside the cryostat,
we install 35 temperature sensors of type DS18B20 from
Analog Devices (formerly Maxim Electronics, formerly Dal-
las Semiconductor) in various heights ranging from Ocm to
340 cm above floor height in increments of 10 cm. This allows
us to quantify the temperature fluctuations in the immediate
vicinity of the fridge in all relevant heights of the room.

The DS18B20 sensors are all connected via the so-called
I-wire bus to our IoT gateway in our lab, a Raspberry Pi
computer. The connection between the 1-Wire devices and the
RPI is made via a serial port to the 1-Wire interface chip,
the DS2480B. We employ this specialized chip instead of bit-
banging the 1-Wire bus with an IO pin of the RPI because it
allows for much better control of the signals on the bus and
can thus address a much greater number of devices in a much
larger network.

A second temperature sensor of type DS18B20 is placed in
the adjacent machine room to monitor the GHS environment.
The physical distance is ca. 15 m, which is no problem for
the 1-Wire bus.

A third temperature sensor of type BME280 from Bosch is
placed at the other end of the room on top of a computing
rack to assess the temperature variations within the room. It
is connected via an I2C bus to the Raspberry Pi.

The temperature in the room is regulated by one or two AC
cooling units (if needed) in proximity to the cryostat.

b) Air Pressure: The BMS280 is a combined tempera-
ture, pressure, and humidity sensor and is also used to measure
the air pressure in the room. Since the room is connected to
the outside (of the building) environment through its air ducts,

the pressure in the room varies with the outside pressure and
thus with the weather.

¢) Relative Humidity: The relative humidity (rh) is also
measured by the BMS280. Proper humidity is important for
the proper operation of the QC electronics. It must be within
strict limits given by the vendor and cannot be too dry or
too wet. Initially, the humidity in the room was not regulated,
but only measured. A new humidifier is now installed to keep
the humidity level in the room stable regardless of the change
in the seasons. Regulation of temperature and humidity is a
must, especially in our case, where we have a superconducting
quantum computer and an ion trap quantum computer in
the same space with very different temperature and humidity
requirements.

d) Movement: The presence of humans next to the
QCs might influence them through vibrations or electromag-
netic fields, e.g., from their cell phones, which operate in
a frequency range comparable to the frequencies used in
superconducting QCs. We use a passive infrared (PIR) sensor,
type HC-SR501, which is used in millions of outdoor lights
to turn them on when people approach. It passively senses
the body heat of living beings and closes contact if a change
of the surrounding heat distribution is detected. The sensor is
mounted centrally in the lab room at about 4 m height to give
it a good view of most of the room. We tested its sensitivity
and it triggers reliably from anywhere in its field of view. Its
output pin is directly connected to the RPIL.

e) Doors: The two entrance doors to the lab are fitted
with magnetic contacts to indicate whether they are open
or closed. Additional mechanical contacts in the door locks
indicate whether the door is locked or not. These simple
switches are directly connected to GPIO pins on the RPI and to
the ground on the other side. A programmable pull-up resistor
in the RPI’s GPIO network pulls the pin to HIGH when the
switch is open.

f) Light Intensity: Light intensity can give information
about whether the fluorescent ceiling lights are switched on
or off, whether the sun is shining into the room through the
windows, and in general, whether it is dark in the room or
not.

The fluorescent ceiling lights are known to emit a wide
electromagnetic interference spectrum so knowing whether
they are on or off at any given time is interesting. Since we
don’t have sensors on the lights or switches themselves, we
use this indirect method to deduct their state.

Sunshine can increase the temperature of vacuum pipes or
the outside of the fridge without really increasing the room
temperature itself (since the room is actively cooled and the
room temperature is regulated), so it is good to know whether
the sun is shining in or not.

We install a sensor of type BH1750 [9] on top of a
computing rack, looking upward towards the ceiling, close to
the RPI so that the I2C connection is only about one meter
long.

g) Noise Intensity: Sound is pressure vibrations of the
air, which, in turn, can couple to the QC through the frame or

the cryostat vessel and influence the computations. Therefore,
we measure the acoustic noise level in the room, that is
the peak values of the sound intensity. In order to avoid
complications with data protection issues we only record the
low pass filtered noise level in the room, but not the direct
sound itself, which would allow us to reconstruct conversations
held in the lab.

We use the Grove loudness sensor [10]. Since this sensor
only delivers an analog output signal and since the RPI has
no analog input at all, we need an analog-to-digital converter
(ADC). We used the Grove Pi Plus HAT [11], which has
three ADCs (and seven digital connections). The Grove Pi
Plus uses the I2C bus to connect to the RPI. We record the
sound intensity every second and store the data in the DCDB.

h) Magnetometer: Magnetic fields play a major role in
superconducting QCs, in ion trap QCs, and neutral-atom QCs.
The magnetic fields involved are very small, so good magnetic
shielding of the QCs is important. However, even the best
conventional shielding can never exclude external magnetic
fields completely, only dampen it. A small coupling of external
magnetic fields to the active parts of QCs is unavoidable and
since the QCs are very sensitive to even small magnetic fields
permeating their active quantum parts (resonators, ions, atoms,
etc.), external magnetic fields can influence the fidelity of the
QC.

Since already small magnetic fluctuations can influence
the QC, we do not use a cheap chip-type sensor, like the
BMM 350 [12], which can be bought for under 2€, but
only has a resolution of 30nT. These sensors have become so
cheap because every cell phone has one inside as a magnetic
compass. Instead, we opted for an industrial magnetometer
from Bartington, the MAG-13MS100 [13] with a resolution
well into the pico Teslas. This sensor needs a power sup-
ply and a special pre-amplifier. We select the SCU-1 [14]
from Bartington, which offers also signal amplification up to
1,000 X. This still leaves us with an analog signal that we have
to convert to digital. The ADC from the Grove Pi Plus HAT
only has a 10-bit resolution, which is not good enough for our
usage, so we decide to use a separate high-resolution ADC
for the magnetometer. We use a HAT from Waveshare [15]
with a phenomenal 32-bit resolution, allowing us to see the
smallest fluctuations down in the electric noise. The board uses
an ADS1263 chip [16] from Texas Instruments.

i) Electrical Power Monitoring: Energy consumption is
a key performance metric in today’s HPC environments. Ex-
isting supercomputers consume power in the megawatt (MW)
range, such as Frontier‘'s 23 MWs and Fugaku‘s 30 MWs.
Compared to these supercomputers, quantum computers (QCs)
consume power in the kilowatt (KW) range. For instance,
superconducting QCs operate at extremely low temperatures,
while neutral atom QCs and trapped ion QCs operate in ultra-
high vacuums, both of which require special conditions to
maintain. We briefly discuss the main core components of
QCs and their power consumption. The core components of
superconducting include dilution refrigerators and classical
control systems, with a power consumption of approximately

25 KW and 2 KW, respectively, as shown by our setup. The
core components of trapped ion QCs include ion traps, lasers,
vacuum systems, and control electronics, with power con-
sumption estimated to be around 2 KW. Similar to trapped ion
QCs, neutral atom QCs have optical lattices and tweezers, laser
cooling, vacuum generators, and control electronics. Their
power consumption is also estimated to be approximately 2-
3 KW. In our lab, these three different types of quantum
systems have been deployed or are being deployed. The core
and other components are connected through their respective
PDUs to the power supplier and their energy consumption is
monitored in real-time and recorded into our DCDB system.
All of the data and graphs can be checked and seen via
Grafana, as well. We also monitor the power consumption
of the nearby elevators and all the servers connected to our
quantum computers as well as the controller electronics in
order to notice any changing behavior or power consumption
in relation to events on the machines.

J) Air Conditioning Heat Meters: The heat meters are
intended to measure the amount of heat coming from the GHS
and its compressors, and also the amount of heat from the
two air conditioning units (AC) in the laboratory space. They
measure the temperatures of the inflowing and outflowing
cooling water as well as the amount of water flowing and
compute the amount of heat transferred to the cooling water.

We use Sontex Supercal S5 heat meters with the MODBUS
module. RS485 connections are then used to connect MOD-
BUS to the RPI, which then stores the values in DCDB.

k) Sound in Machine Room: During the operation of
the cryostat, it turned out that the GHS and the compressors
in the machine room emitted a characteristic noise envelope.
We pick up this sound with a Thomann microphone of type
Behringer SL85S. It is mounted on a tripod and can easily
be positioned in the room. It has an XLR connector and
the analog sound signal is routed to the RPI via a shielded
audio cable. The analog-to-digital conversion is done in a
professional ADC converter, also from Thomann, type t.bone
MicPlug USB (XLR to USB). The digitized sound signal
is then available on a sound device on the RPI for further
analysis or transmission to DCDB. Since we have a pipeline
that captures audio input on the Raspberry Pi (RPI) and routes
it through a USB audio interface, the approach might start
simply with FFT-based analysis and thresholding: establish a
baseline spectrum, measure deviation from it, and raise alerts
if a certain frequency band spikes above normal. Over time, we
can refine this by implementing more sophisticated methods
to reliably detect unusual frequency components in the lab’s
hardware noise signature.

l) Liquid Nitrogen Supply: To cool the dirt traps on
our cryostats we use liquid nitrogen in Dewars, which are
open to the atmosphere, thus nitrogen is constantly evaporating
and the Dewars need to be replenished from time to time. A
third, bigger Dewar is used as a reservoir to fill the smaller
ones when needed. To know when we have to refill either
Dewar, we put them on electronic scales (two from Kern,
type IFB 60K-3L-2023e - TIFB 60K-3L-B; the bigger one

wwwwwwwwwwwwwwwwwwwwwwwwwww

2024-12-2312:36:18 2024-12-3114:11:15

gen Weig!

Fig. 5. Liquid nitrogen refilling and evaporation. The blue line and orange
line show the dispersion rate at two different locations.

from Henk Maas Wegschalen B.V., type NH8486-400kg),
interrogate them every 30 minutes from the RPI and write
the weight minus the respective empty weight to our DCDB
instance. The evaporation is quite regular, so we calculate the
projected date when a refill is needed and send out alarms to
our operators to order new nitrogen from our supplier when the
reservoir is running empty. Fig. 5 shows two refilling events
on December 3rd and December 6th. This also shows how the
dispersion rate of liquid nitrogen varies in different locations.

m) Dust: Dust particles can affect the performance of
different quantum computing technologies. Whether warming
up the cryostat for maintenance or affecting the performance
of the tweezers in Ion-traps and neutral atoms quantum
computing systems, dust particles cause damage to quantum
systems. We, therefore, also check for dust particle count and
size around the QPU to avoid potential damage.

n) Cryogenic Measurements: The data from the cryostat
sensors are collected through a rest API to which we configure
our DCDB instance to get the most important sensor readings
that are important for the health of the cryostat and through
observations to the correlation with superconducting QPU
fidelity, as also observed by [6]. The monitored cryostat
pressure metrics are: 1) P1, Vacuum can pressure, 2) P2, still
line pressure, 3) P3, condensing pressure which is the pressure
of the gas inside the condensing line. 4) P4, Back pressure
5) P5, Mixture tank pressure 6) P6, Service line manifold
pressure which is used for pumping and cleaning the traps, or
recharging the tank. This pressure is very important to monitor
during maintenance.

Further, we record flow of the circulation of the helium
mixture inside the cryostat. and the temperature at different
flanges in the cryostat such as:

MC-Temperature, Mixing chamber temperature is the low-
est temperature in the cryostat (around 8mK) where the QPU
is located. Still-Temperature, is the temperature at the still
flange (1K Kelvin). 4K-Temperature, the temperature at the
4 Kelvin flange. SO0K-Temperature, the temperature at the 50
Kelvin flange.

C. Data Transfer to DCDB

Data are sent to our DCDB instance via the MQTT protocol.
Since DCDB can only store integers, float values must be
multiplied by a large enough number so that they can be
truncated to integers without loss of accuracy [7].

a) Data Exchange with Outside Vendors: Access to our
Data Center Database (DCDB) instance is restricted to the

internal network, limiting direct data exchange with external
groups. To address this limitation, we adopt an indirect ap-
proach for data sharing. A device provided by the outside
vendor, comprising an STM32 microcontroller, temperature
and humidity sensors, an accelerometer, and a magnetometer,
is installed in our lab. This device publishes its data to an
MQTT broker. We have access to all vendor MQTT brokers
(of all QC systems in our lab) and have developed two Python
scripts for data import and export. These scripts run as user-
defined system services to ensure continuous operation.

The import script connects to the vendor MQTT brokers
using the Python Paho MQTT client. It subscribes to all
device topics using the wildcard STM32/#. When a message is
received on a subscribed topic, the script decodes the payload,
appends a current timestamp, and stores the value in the DCDB
under the topic /planqc/gic/warmlab/.

The export script also connects to the vendor MQTT brokers
using the Python Paho MQTT client. It retrieves data from the
DCDB and publishes it to the corresponding MQTT broker
topics. The messages are formatted in JSON for consistency.
The data exported includes various sensor readings such as
magnetometer, humidity, temperature, pressure, light, loud-
ness, movement, dust, door lock status, and power usage
metrics.

D. System Capacity

Currently data are being read from about 500 sensors for
QC systems at intervals of one second to one hour, which is
well below the capability of telemetry systems that can process
100,000 sensor readings per second [7]. Furthermore, for real-
time analysis of environmental effects on quantum systems,
only specific readings that are highly correlated with the target
quantum system (superconducting or trapped ions) are used.
However, if required, the system can be scaled horizontally to
handle higher loads.

IV. NETWORK INFRASTRUCTURE

Virtual Extensible LAN technology (VXLAN) is being used
in order to be able to provide a particular VLAN on a particular
port of any switch in the infrastructure. We make heavy use of
multiple VLAN:S, either routed or unrouted, in the lab. Routed
VLANS are assigned a particular subnet and a gateway address
will be supplied through which the rest of our instititional
backbone network Munchner Wissenschaftsnetz (MWN) [17]
can be reached. Unrouted VLANS build a private L2 network
that is only accessible via whatever systems are connected to
those ports.

Most subnets in the infrastructure sit behind a NAT device
for security, so private network addresses are used most of the
time.

A. Layout example

As an example of our network layout, Fig. 6 shows the
current configuration of a switch in our lab. The separate
VLANSs are listed in Table I. Of note for this article are the
following points.

’—\] gan01 e
VLAN
4000
qan02
VLAN VLAN
2934 2249
VLAN
A%

—Intemnet— VLAN
100

VLAN
ni
VLAN
2311

qan03

AQT server

kokopu 1QM server

Axis PC

Switch SWL1-KWC

Fig. 6. Different clouds are indicators for different backbones, IoT sensors
and QPUs

e The Quantum Access Nodes (QANs) generally run a
supplier’s software and serve as the interface between
our QC infrastructure and the supplier’s hardware.

« VLAN 4000 is the network that joins two QANs with the
instrument rack of the SC system. The switch is used to
convert the copper Ethernet into optical, for the purpose
of electrical isolation of the instrument rack. In this case,
there are two control systems installed in one rack, so
two QANSs are in this VLAN. Such a copper-to-optical
bridge is also used in the case of linking one QAN to a
QC station.

« Any hardware connected to the network switch in the su-
perconducting QC instrument rack can only be accessed
from the QANs in VLAN 4000. This becomes relevant
when we look at the telemetry sensors.

o Our dust sensors have been procured as part of a site-wide
project. These are connected to a separate VLAN that
is used to gather data from those sensors to an external
Prometheus instance.

e Our QC vendors each have a direct link to their devices,
and use firewall devices to protect their systems.

o The Raspberry Pi used for telemetry is connected to the
same network also used for the electronic scales that
measure liquid nitrogen consumption.

e VLAN 4002 connects a second NIC in a Windows PC
to the subnet that also serves the Axis people-counter
cameras. While nearly all of our VLANs are untagged,
there is a tagged VLAN 4002 connection available on
one of the QAN connections - this allows the QAN node
to also access the people-counter cameras directly.

o Our DCDB server sits in yet another VLAN, accessible
from within our institutional backbone.

B. A QAN as telemetry data collector

As already mentioned, the Telemetry Raspberry Pi has
many directly connected sensors plus some network-connected
sensors and delivers that data to our DCDB instance. However,

Purpose
23 PC network
41 Dust sensors
109 Superconducting Vendor

284 Ion-Trap Vendor
2249 Management systems
2311 Guest
2934 Isolation of installation location
4000 Optical Isolation
4002 People Counter Cameras

TABLE I
LAB NETWORK VLANS

QIC status webpage

——————————

Monitoring VM

Prometheus Python
client
(HTTP endpoint)

Prometheus

Alertmanager

Fig. 7. Monitoring system architecture

there are other sensors that cannot be reached from the RPI,
and a number of those sensors are inside a vendor’s rack. For
example, a typical QC control rack will contain a smart PDU,
and a UPS, and the active rack-cooling also can be connected
to the network (MODBUS TCP). All of these devices can
deliver data points that we’re interested in.

To this end, a “dcdbpusher” service runs on a QAN. As
a part of the DCDB software suite, the dcdbpusher gathers
data from those devices only reachable from the QAN, and
forwards it to the DCDB server.

Of course, since the QAN also runs the vendor’s software,
this can also be a point from which data can be read from the
vendor’s API and passed on to DCDB. Another example is the
case of the dust sensors, where data is gathered by an external
Prometheus instance, and then forwarded to the DCDB server.

V. DATA MONITORING AND SENSOR NOTIFICATION

In this section, we present a comprehensive approach to
data monitoring and sensor notifications, as shown in Fig. 7.
Notifications are generated by the system under the following
conditions:

1) When data transmission interrupts (status alerts).
2) When a sensor value exceeds or falls below predefined
thresholds (threshold alerts).

These notifications are facilitated by the integration of
open source tools, Prometheus and Alertmanager [18], which
provide robust monitoring and alerting capabilities.

A. Prometheus & Alertmanager Integration

To ensure reliable monitoring and timely notifications, our
system uses Prometheus and Alertmanager for data collection,
storage and alerting. Prometheus continuously scrapes metrics
from various sources and evaluates predefined rules to detect
the critical conditions. When such conditions are met, alerts
are triggered and sent to Alertmanager, which manages alert
delivery and escalation.

a) Metrics: Metrics is the way Prometheus collects data
for monitoring. It provides real-time insights into the system’s
or database or sensors performance and health. In our system,
metrics are generated through two primary mechanisms.

1) Prometheus Python Client: we utilize a python script
leveraging Prometheus client library [18] to collect sensor
data from the DCDB. This data is converted into two
distinct types of numerical metrics.

o Status Metrics: A Boolean metric that indicates
whether data has been received within a specific time
interval (1 for data received, O otherwise).

o Threshold Metrics: A metric that records the actual
value of the sensor data.

2) Node Exporter: To monitor the health and status of
devices, such as the Raspberry pi (RPI) units deployed
in the system, Node Exporter [19] is deployed. It collects
system level metrics, including:

« Device activity (active/down status).
« Resource utilization, such as CPU, memory, and stor-
age.
These metrics are then scraped by Prometheus and inte-
grated into the monitoring framework.

b) Prometheus Workflow: Prometheus scrapes the met-
rics generated by the Python script and Node Exporter through
its HTTP endpoints [6]. These metrics are stored in a time-
series database and evaluated against alerting rules using
PromQL, Prometheus query language [18]. Examples of rules
include:

« Detecting sustained high sensor value (e.g., temperature
of the cryostat is above a threshold value for 5 minutes).

o Identifying access to the lab after allowed times. (e.g.,
door sensor was triggered, i.e., lab was accessed after the
allowed times).

« Identifying device failures (e.g., Raspberry pi not report-
ing metrics within a specific time frame).

o Sensor missing data (e.g., Temperature sensor does not
receive any data for one hour).

c) Alertmanager: The triggered alerts are forwarded to
Alertmanager, which manages the notification process. This
includes:

« Configuring delivery methods (e.g., email, webhooks, or
internal chat channels).

o Managing timing (e.g., suppressing alerts during mainte-
nance windows).

« Silencing redundant alerts and escalating critical once to
ensure timely response.

The machine hosting Prometheus and Alertmanager is also
monitored by a Checkmk program, ensuring the overall moni-
toring solution is highly available and efficient. Alerts originate
from actual incidents encountered during system operations:
whenever a malfunction occurs or a metric exceeds its con-
figured threshold, a corresponding alarm is generated. This
alarm is then integrated into the sensor reporting workflow,
facilitating proactive maintenance measures and improving the
system’s operational reliability.

B. Data Visualization

a) Status Page: A status page has been developed to
provide an overview of the environmental sensors’ state.
This page displays the status of all sensors and records the
timestamp of the last received value. It is built using the
status metrics generated by the Prometheus client in the Python
script.

b) Grafana: We are using Grafana as a primary tool for
data visualization. The DCDB is connected to the Grafana and
we have created dashboards to visualize the sensors data, as
described in Sec. 2.

VI. SOFTWARE ARCHITECTURE

Data received from DCDB are stored and retrieved in an
integer format as we can save significant space, especially
for telemetry systems where thousands of readings are being
regularly collected. However, we cannot feed this format
directly into our machine learning models. Instead, we require
a pipeline to automate the extraction of a clean dataset from
DCDB for Machine Learning (ML) applications, specifically
for real-time applications as mentioned in Sec. VII-A. The
pipeline shown in Fig. 8 is designed specifically for machine
learning applications targeting the optimization of different
quantum computing metrics (e.g., fidelity analysis, mid-circuit
measurements).

Fig. 8. Software architecture showing the pipeline for data collection and
transformation from DCDB to prepare them for use in real-time analysis
machine learning models

A. Software Components

« DCDB (Data Center Database): The database that stores
all the telemetry values in a time series manner [7].

« Preprocessing: The preprocessing consists of a DCDB
modifier that converts integer values from the DCDB into
floats with the correct identified units. This conversion is
crucial for ensuring that the data is accurately represented
and usable in further processing steps. The data will then
be normalized and standardized to prepare it as suitable
input for use in machine learning models.

e QAnalyzer: QAnalyzer has several quantum analysis
components, like the Fidelity Analysis component, which
performs a basic fidelity check by running two Hadamard
gates as a cron job every half hour. This check verifies
that the system is functioning correctly and provides
a basic indication of system performance. The fidelity
analyzer can be adapted to incorporate more advanced
fidelity analysis techniques, providing a deeper under-
standing of system performance and identifying areas
for improvement. It can also include cost functions from
the output checker to enable data reduction techniques
to optimize the management of the data earlier in the
machine learning pipeline.

o Time Stamps Collector: The Timestamp Collector
queries the timestamps of quantum jobs to retrieve rele-
vant changes of events data from the DCDB. By collect-
ing data between the start and end timestamps of each
submitted quantum job, this component ensures that the
analysis is based on an accurate data collection period.

o Output Checker: According to the model adapter, an
output checker can be specified for faster execution,
allowing the system to ignore outliers in results and skip
to the next one when necessary. This approach is particu-
larly crucial for some quantum mid-circuit measurement
techniques to stop the process of running circuits if there
is skewing from expected results.

« Data Labeling: This component processes the collected
data, normalizing and formatting it for use in machine
learning models. It ensures that the data is clean and ready
for analysis. The labeled data can be output in various
formats: directly to the end user, submitted to the job
runner, or passed to a profiler for correlation analysis.

o Serialization: Data serialization formats the data for
robust transfer to the machine learning model. This step
ensures that the data is transmitted accurately and effi-
ciently, minimizing the risk of errors during the transfer
process.

« Model Adapter: The Model Adapter identifies all de-
pendencies needed from the rest of the system (e.g.,
the output checker) and loads the data into the machine
learning model. This component ensures that the model
has access to all necessary data and resources for accurate
and effective analysis.

This system facilitates the tailored use of telemetry data in
quantum machine learning, enabling the execution of real-time
analysis techniques.

VII. TELEMETRY BASED APPLICATIONS

The development of a carefully designed system and sup-
porting tools has facilitated the effective utilization of en-
vironmental data. Key applications have emerged, including
the transformation of environmental parameters into actionable
features and their ranking based on importance scores relative
to the Hellinger fidelity of quantum circuits.

A. ML-based Error Mitigation Scheme

Error-mitigation is a prominent technique in NISQ-era, that
aims to improve the accuracy of the quantum computation.
The mitigation techniques could be applied at various lev-
els; namely as a pre-processing or post-processing step. For
instance, applying optimized pulse sequences for a given
quantum circuit [20] could enhance the solution accuracy and
it acts as a pre-process of the quantum computation. On the
other hand, there are also methods where there are multiple
versions of the quantum circuit are prepared by inserting
different numbers of gates, aiming to extrapolate to a noiseless
result as a post-process technique [21], [22]. There also have
been methods where the optimized gate implementation is
done via learning-based error mitigation methods [23].

Unoisy (@, 3,7)

Fig. 9. The environmental values captured are continuously fed to the already
trained neural network, to produce single-qubit gate mitigation unitaries, that
can be fused with the single-qubit gates in the original input circuit.

In the context of telemetry, we are investigating how the
environmental data could alleviate the noise on superconduct-
ing circuits and build a hybrid quantum-classical machine
learning pipeline to mitigate coherent single-qubit errors. The
hybrid model takes 9 different environmental parameters and
produces a single qubit unitary that can then be appended
to the gate to be improved, which is demonstrated in Fig. 9.
This pipeline requires a seamless integration with the telemetry
database, since the goal is to build the pipeline as a real-
time error mitigation scheme within the quantum compilation
stack. As the method uses the telemetry data as an input, and
produces error-mitigated circuits on-the-fly, it works as a pre-
processing step and is included in the compilation stack, which
acts as the final pass after the circuit is already tailored for
the target hardware.

B. Environmental Features Ranking

The deployment of 508 environmental sensors poses a sig-
nificant scalability challenge, as replicating this dense sensor
network across multiple quantum computing installations is
impractical. To address this, we employ a Random Forest

machine learning algorithm to identify and rank the environ-
mental features most strongly correlated with quantum device
performance. This approach enables targeted sensor deploy-
ment by prioritizing variables critical to the specific qubit tech-
nology platform. To analyze further correlation a single qubit
gate experiment was implemented with two Hadamard gates
on different random qubits. This experiment is implemented to
investigate the effect of decoherence and dephasing errors of
environmental variances, and Hellinger fidelity of GHZ state
for 5 qubits mapped to the QPU architecture is defined as
the target variable. Environmental features are ranked by their
relative contribution to reducing variance in the GHZ state
fidelity metric. This analysis reveals which parameters most
strongly influence 1) single-qubit decoherence/dephasing and
2) correlated errors in two-qubit gates, providing a pathway
to optimize sensor configurations for noise mitigation.

The highest importance scores are:- Cryostat Vaccum can
pressure: 0.495, Single qubit gate circuit: 0.335, Room Tem-
perature: 0.095, Mixing Champer Temperature:0.075. Iden-
tifying the most important environmental factors provides
valuable insights into managing the quantum environment and
exploring underlying relationships to quantum computation.
The data was collected at 5-minute intervals over a 64-hour
period. Seven sensors were queried at these timestamps, and
the data was converted into features for use in a random forest
algorithm. The total querying time for this duration was 5.365
seconds, which is faster than the 6-second update interval
of the quickest sensor in the group. This shows that real-
time telemetry processing is feasible given the variance of
environmental parameters.

VIII. CONCLUSIONS

The integration of an IoT-based telemetry system into the
quantum computer environment has been demonstrated as a
scalable and efficient solution to monitor and characterize
QPUs. By making use of widely available sensors and micro-
controllers, we ensure efficient data collection which can be
further used for alerts or for creating machine learning models
to characterize and mitigate the environmental noise. Our
findings highlight the importance of environmental parameters
in the operation of QPUs, across all modalities, as evidenced
by our deployment in a joint lab with superconduction and
trapped ion systems alongside an HPC system. This shows
the need to include these data as metadata for QPUs and
announced fidelity results. By characterizing and integrat-
ing environmental parameters into our system, we identified
specific needs for specific modalities and with that we can
improve the stability and performance of the QPUs. This drives
the development of an infrastructure that leads to environment-
aware quantum computing software tailored specifically for
co-locating quantum computers with HPC servers.

ACKNOWLEDGMENTS

The work was funded by the Munich Quantum Val-
ley (MQV), which is supported by the Bavarian State Gov-
ernment with funds from the Hightech Agenda Bayern.

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]
[11]
[12]

[13]
[14]
[15]
[16]

[17]

[18]
[19]

[20]

(21]

(22]

(23]

REFERENCES

M. N. Farooqi and M. Ruefenacht, “Exploring hybrid classical-quantum
compute systems through simulation,” in 2023 IEEE International
Conference on Quantum Computing and Engineering (QCE), vol. 02,
2023, pp. 127-133.

M. Ruefenacht, B. G. Taketani, P. Lihteenmiki, V. Bergholm,
D. Kranzlmiiller, L. Schulz, , and M. Schulz, “Bringing quantum
acceleration to supercomputers,” May 2022, accessed: 27-03-
2025. [Online]. Available: https://www.quantum.lrz.de/fileadmin/QIC/
Downloads/IQM_HPC-QC-Integration- Whitepaper.pdf

J. R. Cruise, N. I. Gillespie, and B. Reid, “Practical quantum
computing: The value of local computation,” 2020. [Online]. Available:
https://arxiv.org/abs/2009.08513

T. S. Humble, A. McCaskey, D. I. Lyakh, M. Gowrishankar, A. Frisch,
and T. Monz, “Quantum computers for high-performance computing,”
IEEE Micro, vol. 41, no. 5, pp. 15-23, 2021.

J. K. Iverson and J. Preskill, “Coherence in logical quantum channels,”
New Journal of Physics, vol. 22, no. 7, p. 073066, 2020.

H. Ahmed, X. Deng, H. Heller, C. Guillen, A. Zulfiqar, M. Ruefnacht,
A. Jamadagni, M. Tovey, M. Schulz, and L. Schulz, “Quantum computer
metrics and hpc center environmental sensor data analysis towards
fidelity prediction,” in 2023 IEEE International Conference on Quantum
Computing and Engineering (QCE), vol. 02, 2023, pp. 154-160.

A. Netti, M. Miiller, A. Auweter, C. Guillen, M. Ott, D. Tafani,
and M. Schulz, “From facility to application sensor data: modular,
continuous and holistic monitoring with dcdb,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC *19. ACM, Nov. 2019, p.
1-27. [Online]. Available: http://dx.doi.org/10.1145/3295500.3356191
“Prometheus node exporter on raspberry pi: How to install,”
accessed: December 5, 2024. [Online]. Available: https://linuxhit.com/
prometheus-node-exporter-on-raspberry- pi-how- to-install/

“Sensorb h17 loudness sensor,” accessed: December 5, 2024.
[Online]. Available: https://cdn-reichelt.de/documents/datenblatt/A300/
SENSORB%20H17

“Loudness sensor, grove,” accessed: December 5, 2024. [Online].
Available: https://wiki.seeedstudio.com/Grove-LoudnessSensor/

“Grove pi plus,” accessed: December 5, 2024. [Online]. Available:
https://wiki.seeedstudio.com/GrovePiPlus/

“16-bit 3-axis magnetometer, 1.7-1.9v smd bmm350,” accessed:
December 5, 2024. [Online]. Available: https://cdn-reichelt.de/
documents/datenblatt/C900/BST_BMM350_FL000-00.pdf

“Datasheet ds3143,” accessed: December 5, 2024. [Online]. Available:
https://bartingtondownloads.com/wp-content/uploads/DS3143.pdf
“Datasheet ds2519,” accessed: December 5, 2024. [Online]. Available:
https://www.bartingtondownloads.com/wp-content/uploads/DS2519.pdf
“High-precision ad hat,” accessed: December 5, 2024. [Online].
Available: https://www.waveshare.com/wiki/High-Precision_AD_HAT
“Ads1263 - precision adc by texas instruments,” accessed: December 5,
2024. [Online]. Available: https://www.ti.com/product/ADS1263
“Mwn-netzkonzept 2019, accessed: December 5, 2024. [On-
line]. Available: https://www.lrz.de/services/netz/mwn-netzkonzept/
mwn-netzkonzept-2019.pdf

“Prometheus Python Client,” github.com/prometheus/client_python,
2015, accessed: December 05,2024.

“Node Exporter,” github.com/prometheus/node_exporter, 2014,
cessed: December 5,2024.

L. Viola, E. Knill, and S. Lloyd, “Dynamical decoupling of open
quantum systems,” Physical Review Letters, vol. 82, no. 12, p. 2417,
1999.

Y. Li and S. C. Benjamin, “Efficient variational quantum simulator
incorporating active error minimization,” Physical Review X, vol. 7,
no. 2, p. 021050, 2017.

K. Temme, S. Bravyi, and J. M. Gambetta, “Error mitigation for short-
depth quantum circuits,” Physical review letters, vol. 119, no. 18, p.
180509, 2017.

P. Czarnik, A. Arrasmith, P. J. Coles, and L. Cincio, “Error mitigation
with clifford quantum-circuit data,” Quantum, vol. 5, p. 592, 2021.

ac-

