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Introduction 

In considering various problems of the theory of cyclic 
accelerators we always have to do with the motion of 
particles in a magnetic field in the vicinity of a certain given 
curve. In recent years new types of cyclic accelerators 
have been suggested based on alternating-gradient focusing 
and other principles 1-7). The paths of the particles in 
these machines, even in the ideal case, are sometimes of a 
rather complex shape and are complicated still more by 
unavoidable disturbances. 

Analysis shows that despite the diversity of variations 
they all have much in common. A number of problems 
concerning the case of a plane initial curve were investigated 
at an earlier date by different methods, e.g., in the 
papers 8-11). This paper deals in general with the motion of 
a particle in a magnetic field in the vicinity of an arbitrary 
(generally speaking, space) curve. By analogy with 
simpler cases we shall call this motion betatron oscillations. 

More detailed consideration is given to certain disturbing 
resonance phenomena-both linear and non-lineararising 
in magnetic periodic systems, and primarily in 
alternating-gradient focusing ones. 

1. Natural coordinate system 

Suppose we have a space curve r0 = r0(σ) where σ is 
the length of its arc. The properties of the curve are 
characterized by two parameters : curvature k(σ) and torsion 
x (σ) 12). 

k(σ) = | r 0
" ( σ ) |, x(σ) = ( 

[r0
' (σ) r0" (σ)]r0"'(σ) 

) 
k(σ) = | r 0

" ( σ ) |, x(σ) = ( 
r0"2 (σ) ) 

(1.1) 

where ' denotes differentiation with respect to σ. x ≡ 0 
corresponds to a plane curve. In future we shall use the 
natural coordinate system, connected with this curve, for 
the unit vectors of which i1(σ), i2(σ), i3(σ) we shall take 

i1 = r0' i2 = -
ro" 

i
3

 = [i2 i1] (1.2) 
i1 = r0' i2 = -

(r") ' i
3

 = [i2 i1] (1.2) 

The vectors i1; i2, i3 determining the typical directions : 

i1 - tangent, - i2 - main normal, i3 - binormal, are related 
by Frenet's formulae 12) 

i1' = - ki2, i2' = -x i 3 + ki1; i3' = xi2. (1.3) 

We designate the coordinates corresponding to i2, i3 by 
ρ and z, so that the radius-vector of the arbitrary point 
r (σ,ρ,z) equals 

r = r0 (σ) + ρi2 + zi3 (1.4) 

From (1.3), (1.4) we obtain the relations : 
∂r/∂σ = a1 = (1+kρ)i1 + xzi2-xρi3, 

∂r/∂ρ = a2 = i2, ∂r/∂z = a3 = i3, (1.5) 

In contradistinction to the orthogonal system i1 i2, i3 
the system of vectors a1 a2, a3 , which is not orthogonal 
when x ≠ 0, possesses all the necessary proporties of curvilinear 
coordinate systems13). 

2. Maxwell's equations in natural coordinates 

We shall make use of the auxiliary coordinate system 
a1; a2, a3. Finding the square of the length element dr2 

according to (1.5) we obtain the expression for the metric 
tensor 

( 

(1 + kρ)2 + x2 (ρ3 + z2) xz -xρ 

) 
gij = 

( 
xz 1 0 

) 
gij = 

( -xp 0 1 ) (2.1) 

The value g = det (gij) determining the volume element 
dV = √g dσdρdz is equal to 

g = ( 1 + kρ)2 (2.2) 

according to (2.1). 
In compliance with the general formulae for curvilinear 

coordinates 13) the divergence and the curl of the arbitrary 
vector P equal 

div P = 

3 

div P = 
1 ∑ ∂ 

(pi √g) (2.3) 
div P = 

√g ∑ ∂u (pi √g) (2.3) 
div P = 

i = l 
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rot P = 
1 

{( 
∂p3 - ∂p2 

)a1 + ( 
∂p1 - ∂p3 ) a2 rot P = 

√g {( ∂u2 - ∂u3 )a1 + ( .∂u3 

-
∂u1 ) a2 

+( ∂p2 - ∂p1 ) a3} +( ∂u1 -
∂u2 ) a3} 

where u 1 , u 2 , u3 → σ, ρ, z; Pi = Pa i pi = Pai are 
respectively the contravariant and co-variant components 
of P ; a1 are mutual coordinate vectors 

a1 = [a2a3]/V, V = a1 [a2a3], (2.5) 

a 2 , a3 are found by cyclic permutation from the formula 
for a1. Using (1.5), all the values in (2.3), (2.4) can be 
found. Taking the magnetic field H as the vector P we 
get the equation div H and the projections of the equation 
rot H = 0 on a j , a 2 , a 3 , as 

∂H0 + kHp + (1 + kp) 
3HP + (1 + kp) 

∂HZ 

∂σ 
+ kHp + (1 + kp) 

∂p + (1 + kp) ∂z 

+ x(ρ 
∂Ha - z 

∂H0 

) = 0 + x(ρ ∂z 
- z 

∂p ) = 0 
(2.6) 

∂HZ 
-

∂Hp 
= 0 (2.7) 

∂p - ∂z 
= 0 (2.7) 

(1 + kp) 
∂Hσ -

∂HZ + x (HP + z ∂HP 
- P 

∂HZ = 0 (1 + kp) ∂z - ∂σ 
+ x (HP + z 

∂z - P ∂p) 
= 0 

(2.8) 

∂HP - k H σ - ( l + k p ) ∂Hσ + x (H Z -Z 
∂HP + P 

∂HZ 

) = 0 ∂σ 
- k H σ - ( l + k p ) 

∂p 
+ x (H Z -Z 

∂p + P ∂p ) = 0 
(2.9) 

Differentiating (2.6) - (2.9) with respect to σ, p, z as many 
times as necessary and taking into account that k = k(σ), 
x = x(σ), we obtain the relation between the highest derivatives 

of the field components with respect to the coordinates. 
Assuming that p = z = 0, we obtain this relation 
for the points of the initial coordinate orbit. Thus 
various functions characterizing the field can be expressed 
by certain functions which do not depend on a. Hz , Hσ, 
Hp, ∂Hz/∂p, ∂Hp/∂p can be selected, for example, as 
such functions, for the first order; for the second order, 

besides those just mentioned, the functions ∂2Hz/∂p2 , 
∂2Hp/∂p2 etc. can be taken. Expansion of the magnetic 
field components in powers of p, z has the form of : 

Hz (p,z) = H z o + ( 
∂HZ )0p -[( 

∂Hσ )0 +kH p o Hz (p,z) = H z o + ( 
∂p )0p -[( ∂σ )0 +kH p o 

+ ( 
∂HP 

)0]z +... + ( ∂p )0]z +... 
(2.10) 

H P ( p , z ) = H p 0 + ( 
∂HP )0p + ( ∂HZ 

) o
Z + ...(2.11) 

H P ( p , z ) = H p 0 + ( 
∂p )0p + ( ∂P ) o

Z + ...(2.11) 

Hσ(p,z) = Hσ0 + [( ∂HP )0 - kHσ0 + xHz0] p Hσ(p,z) = Hσ0 + [( 
∂p )0 - kHσ0 + xHz0] p 

+ [( ∂HZ )0 xHP0] z + ... + [( ∂σ 
)0 xHP0] z + ... 

(2.12) 

3. Equations of motion of a particle in natural coordinates 

Let us consider a space area adjacent to the curve ro(σ) 
and occupied by the magnetic field H (x, y, z). Let a 
particle be moving in this field and let its charge, momentum 
and speed be, respectively, e, , v. We presume that, 
generally speaking, the value p as well as H can change 
slowly (adiabatically) in time. The equation of motion of 
the particle can be written as : 

dv(°) + 1 dp v(°) = e 
[v(°)H] (3.1) 

dl + pdl 
v(°) = 

cp 
[v(°)H] (3.1) 

where the variable l is the arc length of particle's trajectory 
and v° the unit speed vector. In order to pass over to 
the main variable a , it should be kept in mind that 
v° = r ' / l ' and the expressions for l', l", r', r" which 
can be obtained by means of (1.3) - (1.5) should be used. 
Thus, l' equals : 

l' = [(1 +k P ) 2 + (p'+xz)2 + (z'-xP)2]½ (3.2) 

As a result of calculations from (3.1) we get the equations 
for the determination of p(σ), z(σ) solved with respect to 
the second derivatives p", z". 

p" + 
p' (p' + xz) = 

1 { el' 
[ H p (p' + xz) (z' - xp) - H 2 ( (1 + kp)2 + (p' + xz)2) + Hσ(1 + kp) (z'-xp)] + k +(2k 2 + x2)p p" + 

P (1 + kp)2 = 
1 + k p { pc 

[ H p (p' + xz) (z' - xp) - H 2 ( (1 + kp)2 + (p' + xz)2) + Hσ(1 + kp) (z'-xp)] + k +(2k 2 + x2)p 

- x'z - 2x'z' + k(k2+x2)P
2 + (k'x-kx')pz + kx2z2 + k'pp' - 2kxpz' + 3kxp'z + 2 k p ' 2 } ( 3 . 3 ) 

z" + P' (Z'-xp)l'2 

= 1 { el' 
[Hp ( (1+kp) 2 + (z'-xp)2) - Hz(z'-xP) (p'+xz) - Hσ (1+kp) ( Ρ ' + x z ) ] z" + 

P (1+kp)2 = 
kp+1 { pc 

[Hp ( (1+kp) 2 + (z'-xp)2) - Hz(z'-xP) (p'+xz) - Hσ (1+kp) ( Ρ ' + x z ) ] 

+ x'p + x2z + 2xp' + (kx'-k'x)p2 + 2kP 'z' + kxzz'}. (3.4) 
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The equations (3.3), (3.4) together with field component 
expansions of the type (2.10) - (2.12) enable us to study 
the motion in any order by p, p', z, z' ,... These equations 
are a generalization of the known equations of betatron 
oscillations for the case of motion about an arbitrary 
space curve. 

Tn linear approximation (by p, z, p'...) the equations 
(3.3), (3.4) become 

p" + 
p' p' + (2k 

eHz - k2 - x2 + 
e ∂HZ + x eHσ 

)p 
p" + 

p 
p' + (2k pc 

- k2 - x2 + 
pc ∂P 

+ x 
pc )p 

+ ( 
e ∂HZ 

+ X ' ) Z - ( 
eHσ - 2 x ) z ' = k - e H z 

+ ( pc ∂z + X ' ) Z - ( pc 
- 2 x ) z ' = k -

p c ' 

(3.5) 

z" + p' z' - (2k eHp + e ∂HP + x')p z" + 
p 

z' - (2k 
pc + pc ∂p + x')p 

[ e 

( 

∂HP -xHσ) + x2] z+ ( eHσ -2x)p' = eHσ [ PC ( ∂z 
-xHσ) + x2] z+ ( 

pC 
-2x)p' = 

pc' 

(3.6) 

which show the dependence of the frequency of the betatron 
oscillations, the connection between the p and z-oscillations 
and other characteristics on the curvature 
x, the torsion k, the momentum p and the shape of the 
field. 

4. Case of a field which has a plane of symmetry 

Of practical importance is the case where the magnetic 
field (ideal) has the plane of symmetry z = 0 in which the 
initial plane curve x ≡ 0 (4.1) 
lies 

We express the real field H as the sum of an ideal field 
H i d and the magnitude h which describes the field distortions 

H (σ,ρ,z) = H i d (σ,ρ,z) + h (σ,ρ,z), |h| « | H i d | (4.2) 

Due to its symmetry, H i d should satisfy the following 
relations : 

∂m+e+s H z
i d (σ,ρ,z) 

/ 
≡ 0, 

∂m+e H P , σ
i d (σ,ρ,z) / ≡ 0 

∂pm∂σe∂z s / z = 0 ∂pm∂σe / z = 0 

(4.3) 

where e, m are any integers, including zero and s an odd 
number. For the disturbing field h (σ, ρ, z) the derivatives 
indicated in (4.3) will be, in general, small values differing 
from zero. 

We shall assume that the momentum p can differ 
from the fixed (equilibrium) value p0 by a relatively small 
value 

p = Po(1 + ), « 1 (4.4) 

This deviation of the momentum in accelerators is due 
primarily to synchronous oscillations. Considering the 
expansions of the field components (2.10)-(2.12) for this 
case and using the Maxwell equations (2.6) - (2.9), it can 
readily be seen that the ideal field H i d in its respective order 
(according to p and z) is fully determined by the pre-set 
values 

∂m HZ
ic 

∂pm /p = z = 0 (m = 0 , l ,2 , . . . ) 

Instead of these the following dimensionless parameters, 
which are a generalization of the common field index n, 
can be employed : 

n m ( σ ) = (- l)m + 1 
1 ∂mH 

km(σ)H(σ) ∂pm /p = z = 0, H(σ) ≡ H z
i d(σ) 

(4.5) 

For the sake of brevity we introduce also the value k0(σ) 
which has the dimensions of curvature 

k0(σ) = eH(σ)/cpo (4.6) 

We denote the characteristics of the disturbing field by 

Z ( σ ) = 
h z ( σ ) 

R ( σ ) = 
hp(σ) 

S(σ) = 
hσ (σ) 

Z ( σ ) = 
H (σ)' 

R ( σ ) = 
H (σ)' 

S(σ) = 
H (σ)' 

Z ( σ ) = 
1 ∂hz 

, Rσ (σ) = 
1 ∂hp (σ) (4.7) 

Z ( σ ) = 
H ( σ ) ∂z , Rσ (σ) = H (σ) ∂σ' 

(4.7) 

etc., where the components and their derivatives are taken 
for p = z = 0. We assume the values in (4.7) to be small 
values of the first order. Under the assumptions (4.1) -(4.7) 
equations for the determination of p(σ), z(σ) in any 
order can be obtained from the initial equations (3.3) -(3.4). 
Restricting ourselves to the third order of p, z, 
p', z',..., z, R, zp,..., which is sufficient for the majority 
of practical problems, we get equations which take into 
account all the types of disturbances 

p" + p ' p' 

+ [ 
k 

- n + 2Z + 
Zp + ( n - 2 ) ] k p - ( k R + Rp + S σ ) k z - S z ' = - 1 + 

k 
- - Z + ( 2 n - l + n1 -

zpp + ...) 
ko 

+ 
P k0 + [ ko 

- n + 2Z + 
k 

+ ( n - 2 ) ] k p - ( k R + Rp + S σ ) k z - S z ' = - 1 + 
ko 

- - Z + ( 2 n - l + 
2 

-
2k2 + ...) 

× k2 p2 + (3kRp + ...) pz + ½[k2 (n1 - n) + Zp p + . . . ] z2 + [2 
k 3 (1+Z)]p'2-½(l + Z)z'2 + k' 

pp' + Rσzz' × k2 p2 + (3kRp + ...) pz + ½[k2 (n1 - n) + Zp p + . . . ] z2 + [2 
ko 2 

(1+Z)]p'2-½(l + Z)z'2 + 
k0 

pp' + Rσzz' 

- 2 ( 
k 3n 

) kpP '2 -
k 

k' P2 P' + 
kn p z ' 2 + [ ( 3n1 

- n 2 - n 1 ) + ... pz2 + (n-n1 + 
n2 ) k 3 p 3 - k n z p ' z ' + Rp ' z ' + ... - 2 ( 

k0  4 
) kpP '2 -

k0 
k' P2 P' + 

2 
p z ' 2 + [ ( 

2 
- n 2 - n 1 ) + ... pz2 + (n-n1 + 

6 
) k 3 p 3 - k n z p ' z ' + Rp ' z ' + ... 

(4.8) 
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z" + P' 
- z' + [ n ( l - ) - zP kz - (R P + 2 k R ) kp + Sp' = R + ( 2 k R p + ...) p2 + [k2 (n1 - 2n) + Z p p + . . . ] p1 z 

k0 
+ 

P 

-

k0 
+ [ n ( l - ) -

k 
kz - (R P + 2 k R ) kp + Sp' = R + ( 2 k R p + ...) p2 + [k2 (n1 - 2n) + Z p p + . . . ] p1 z 

+ ½ (kR c + …)z2 R Σ Ρ Ρ ' - Zσzρ' + (2 
k 

+ z) ρ'z' + Rp'2 + 
3 Rz'2 + (2n1 - n -n2 ) k3 p3 z k0 2 
Rz'2 + (2n1 - n -

2 ) k
3 p3 z 

1 
[k3 (n + n1 - n2) + ....] z3 -

kn 
zp ' 2 -

3kn 
zz ' 2 + ( n - 2 

k ) kpp'z' + ..., 
6 

[k3 (n + n1 - n2) + ....] z3 -
2 zp ' 2 - 2 

z z ' 2 + ( n - 2 
ko 

) kpp'z' + ..., 

(4.9) 

where in some of the coefficients the less important terms 
have been omitted, particularly those containing ∂H/∂σ, 
∂2H/∂σ ∂p etc. In the equations (4.8), (4.9) all the field 
components and their derivatives are expressed through 
certain independent functions, as indicated at the end of 
section 2. The form in which these equations are written 
facilitates their comparison with the equations for the 
simplest case of an axially-symmetrical field. The left 
parts of (4.8), (4.9) contain the linear terms with respect to 
p, z and their derivatives, and the right parts the nonlinear 

terms as well as the terms -1 + k/k0, , - Z, R determining 
the closed orbit around which the betatron oscillations 
take place. 

5. Mot ion of a par t ic le in magnet ic per iodic sys tems 

Magnetic periodic systems consist of a certain number N 
of identical (in the ideal case) periodicity elements arranged 
along a closed curve. We substitute the arc length σ by 
the generalized azimuthal angle , which is equal to 

= 2π σ/II = σ/rav (5.1) 

where II is the perimeter of the main orbit and rav, a 
certain average radius of the orbit. The characteristics 
of an ideal field repeat themselves along the main orbit 
with a periodicity of: 0 = 2π/N; the parameters of the 
disturbing field repeat, generally speaking, after each full 
revolution, i.e., with a periodicity of 2π. 

First we consider the following system of equations of 
the first order from (4.8), (4.9) 

d 2 p 
+ 

1 dp dp 
+ kr a v

2 (k-k 0n)P = r a v
2 (k-k 0 )+k 0 r a v

2 ( - z) 
d 3 + p d d 

+ kr a v
2 (k-k 0n)P = r a v

2 (k-k 0 )+k 0 r a v
2 ( - z) 

(5.2) 
d2 z + 1 dp dz 

+ kk0 rav
2 nz = k0R 

d + p d d 
+ kk0 rav

2 nz = k0R 
(5.3) 

The solutions of the respective homogeneous equations, 
which are close to Hill's equations, can be written in the 
normal form16) 

Po () } = [ p( init) ]½ [ A P , Z e i μ p , z m f p , z ( ) + c.c.] 
Zo () } = [ P ( ) 

]½ [ A P , Z e i μ p , z m f p , z ( ) + c.c.] 

(5.4) 

where m is the number of the element of periodicity, c.c. 
a complex-conjugated value and Ap z "amplitudes" 

defined by the initial conditions. The factor [ P( init) ]½ [ . P ( ) ]
½ 

describes the damping of the betatron oscillations, due to 
adiabatic growth of the momentum of the particle. The 
solution (5.4) is correct with an accuracy up to the small 
terms of the order of (dp 2 /d) 2 and d 2p/d 2 . Approximate 
expressions for fp,z and μp,z which are, however, 
sufficiently accurate as a rule for practical purposes, can be 
easily found by assuming that within a given magnetic 
sector the characteristics of the ideal field do not change 
along an intercept of the main orbit (the intercept being 
a circular arc), and that there is no field at all in the intervals 
between the magnetic sectors (the intervals being 
rectilinear). 

k ≡ k0 ≡ { l/r0 = const (magnetic sector) 
k ≡ k0 ≡ { 

0 (rectilinear interval) 
(5.5) 

Having the solutions of the homogeneous equations 
(5.4) which we shall consider to be known at (5.5) we 
obtain the solutions of the non-homogeneous equations : 

p ( ) = pM ( ) + Po ( ) , z ( ) = z M ( ) + Zo(), (5.6) 

where pM() , z M ( ) are the particular periodic solutions : 

Ρm() = ΡmO() + Ρm() + ΡmZ(); ΡmO( + O) = ΡmO(); 

Ρm( + O) = Ρm(); ΡmZ( +2Π) = ΡmZ(), 
ZM( + 2π) = Z M (? ) (5.7) 

The function p M 0 ( ) corresponding to the item in the 
right part of (5.2) describes an ideal plane closed orbit 
near which betatron oscillations occur. With momentum 
and field disturbances Z ( ) , R ( ) this orbit is distorted, 
remaining closed 

N 

PM() } = -
ieiμp zmfpz() ∑ ieiμp z(J-1) 

∫ 
Fp,iz()f *P,Z()D + c.c. 

Z M ( ) } = -2(l-eiMμp,z) ∑ ieiμp z(J-1) 
∫ 

Fp,iz()f *P,Z()D + c.c. 

j=1 -

(5.8) 
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where F p , z ( ) are the right parts of the equations (5.2), 
(5.3) and M = N (at per = 2Π) Or M = | (at per = ). 

To explain the meaning of the function pM 0 ( ) let us 
take, for example, the simplest coordinate orbit r 0 ( ) 
corresponding to (5.5). At the ends of the magnetic 
sectors facing the rectilinear sections, the characteristics 
of the ideal field change owing to edge effects. The 
rectilinear sections themselves are not, strictly speaking, 
free from the field either, due to the fringed field of the 
magnet, the windings etc. That is why the behaviour of 
the ideal field differs somewhat from the schematic picture : 
Hid = const() in the sector and Hid = 0 in the rectilinear 
interval, and the ideal closed orbit also differs from 
r0() (5.5) though these differences are as a rule very small. 

To study the betatron oscillations, we select the closed 
orbit r M 0 ( ) = r 0 ( ) + pM 0 ( ) as the "coordinate" curve 
which corresponds to : 

k ( ) = k 0 ( ) = 
e H ( ) (5.9) 

k ( ) = k 0 ( ) = 
Cpo 

(5.9) 

as can be seen from (5.2), (5.8). 

6. Equations for determining the amplitudes of betatron 
oscillations 

The equations for determining the p,z deviations from 
the closed orbit can be written as : 

d2p + 1 dp dp + k2 ( ) raver
2.[1-n()]p = k()raver

2Fp(,P,z...) 
d2 + p d- d + k2 ( ) raver

2.[1-n()]p = k()raver
2Fp(,P,z...) 

(6.1) 

d2z + 1 dp dz 
+ k 2 ( ) raver

2 n ( ) z = k ( ) r a v e r
2 Fz(,P,z,...) 

d 2 + p d d + k 2 ( ) raver
2 n ( ) z = k ( ) r a v e r

2 Fz(,P,z,...) 

(6.2) 

where the expressions for Fp , F z are determined from 
(4.8), (4.9). 

We shall seek the solution of the equations (6.1), (6.2) 
by the method of successive approximations in a form 
which is a modification of the expression (5.4) 

p ( ) } = λ() [Ap.z()e iμp ,zm .fpz() + c.c],λ() = [ 
P( in i t ) ' ]½ z ( ) } = λ() [Ap.z()e iμp ,zm .fpz() + c.c],λ() = [ 

P ( ) ]½ 
(6.3) 

Applying the requirement 

dAP,|Z 
eiμp,zm.fpz() + c.c. = 0 

d 
eiμp,zm.fpz() + c.c. = 0 

(6.4) 

we obtain the equations for determining A p , z ( ) in the 
case of the disturbed field : 

(6.5) 
dAp z ie-iμp,.zNS 

N 

dAp z 
-

ie-iμp,.zNS ∑ eiμ
p,z(j-l) 

∫ 
k()Fp , z

j(,p(), . . .)f*P ,z()d 
dS 

-

λ() ∑ eiμ
p,z(j-l) 

∫ 
k()Fp , z

j(,p(), . . .)f*P ,z()d 
dS 

J - l 0 

where S is the number of the current revolution. For 
the ideal field it is necessary to put N = 1 and to substitute 
S by m, the number of the current periodicity element. 
According to (4.8) and (4.9), the right part of (6.5), in 
which the expressions (6.3) for p, z should be substituted, 
contains the sums of items which include the products : 

λ(lP+lz-1)Ap
 l

pAz lZe
i(q

pμpqz)NS (6.6) 

where lp, lz are non negative integers, qp, qz - integers, and 
Ap, Az can be replaced by their complex - conjugated 
values. As (6.5), (6.3) and (4.8), (4.9) show, owing to 
the relative smallness of values p, z allowance for nonlinear 
terms and other disturbances lead as a rule to small 
corrections which have the nature of rapid oscillations and 
change the result (5.4), corresponding to the ideal field, 
very little. For approximate solution of the equations 
(6.5) we average them with respect to the variable S (or m) 
contained in explicit form. Such a method, applied for 
the investigation of non-linear problems by Bogoluybov 
and Krylov17), was used, for example, in the papers18,9) 

in considering some particular problems of the theory of 
weak-focusing oscillations. A considerable deviation 
from the oscillations corresponding to the solution of the 

homogeneous equations (6.1) and (6.2) may occur if any 
of the members in the right part of (6.5) remain approximately 
constant and do not become zero when averaged. 
This, according to (6.6), is possible in case of proximity 
to one of the resonance conditions : 

QPΜP + qzμz = 2kπ (6.7) 

qP(Nμp) + qz(Nμz) = 2kπ (6.8) 

where k is an integer. 

It should be noted that in definite orders (determined 
by the sum lp, lz (see (6.6)) there appear terms which 
do not contain the argument S or m explicitly, i.e., do not 
depend explicitly on the "frequencies" jxp and |xz : These 
terms, which in (6.6) correspond to 

qp = 0 qz = 0 (6.9) 

are present in the right parts of (6.5) whether averaged or 
not. Let us consider, for instance, oscillations around a 
closed orbit (5.8). The case (6.9) occurs, for example, 
for the terms : 

k 2 ( ) r2
avcr ∆ n p ( ) p and - k 2 ( ) r 2

a v c r ∆n z ( ) z 
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in the right parts of (1.1) and (1.2) respectively, where: 

∆ n p ( ) = - (n-2) -
ZP - 2z + 2 ( 2 n - l -

n1 
) kpm -

4-3n 
( 

dpM )2 -3 (n1-n-n2 
) k2p2

M + ... (6.10a) ∆ n p ( ) = - (n-2) -
k 

- 2z + 2 ( 2 n - l -
2 ) kpm - 2raver2 ( d 

)2 -3 (n1-n-
6 

) k2p2
M + ... (6.10a) 

∆ n z ( ) = - r. -
ZP + (n1 -2n)kpM -

n 
( 

d p M )2 + (2n1 -
n2 

) k 2 p 2 + - (6.10b) 
∆ n z ( ) = - r. -

k 
+ (n1 -2n)kpM -

2γ2
aver ( . d 

)2 + (2n1 - 2 ) k 2 p 2 + - (6.10b) 

The deviations ∆np, ∆nz occur inasmuch as the oscillations 
take place around a disturbed closed orbit, not 
an ideal one, and, in accordance with (6.5), cause changes 
in the frequencies of the betatron oscillations μP and μz 

N 

∆μp,z = -
r2aver ∑ ∫ k 2 ∆n p

j , z | f p , z , | 2d (6.11) ∆μp,z = -
2 N ∑ ∫ k 2 ∆n p

j , z | f p , z , | 2d (6.11) 

j = l 0 

The disturbances (6.11) may prove significant in alternate-gradient 
focusing accelerators, where the precision 
tolerance ∆μp,z is very rigid. 

7. Linear resonances 

We write now the resonance conditions and the averaged 
equations (equations of the first approximation) for determining 
the amplitudes of the betatron oscillations for linear 
resonances (with the "detuning" ). 

A. Simple Resonance together with Parametric Resonance 

NμP, z = 2kP, zπ + δp, z ; (kp, z integer) (7.1) 

dAp 
= iN∆μpAp + cpei(xp -δ pδ) + gpei(η

ρ
-2δ

ρ
s)A*

p dS 
= iN∆μpAp + cpei(xp -δ pδ) + gpei(η

ρ
-2δ

ρ
s)A*

p 

(7.2) 

where ∆μp is given by the formula (1.11), S is the number 
of the revolution and 

N 

cpe ixp 
ir2

averλ ∑ e-iμρ(j-1) 

∫ 
k(z j - )f *p d cpe ixp 

2 ∑ e-iμρ(j-1) 

∫ 
k(z j - )f *p d 

j=1 0 (7.3) 

N 

gpeinp 
ir2aver ∑ e-2iμρ(j-1) 

∫ 
k(Zp

j-2kZ j)f*2d gpeinp 
2 ∑ e-2iμρ(j-1) 

∫ 
k(Zp

j-2kZ j)f*2d 

j = 1 0 (7.4) 

A similar equation will result for Az . 
It should be noted that from the expression for p (see 

(7.3), (6.3)) it follows that the distortion of the closed orbit 
due to field disturbances does not depend on the fcator X 
as might have been expected. 

B. Parametric resonance 

Nμp, z = kP, z π + δp, z (7.5) 

dA p 

dS 
=iN∆μρ,zAρ + gρei(ηp-2δρs)A* (7.6) 

where the denotations are the same as in (6.11), (7.1) -(7.4). 
A similar equation will result for Az. 

C. Relation between the radial (p) andaxial(z) oscillations 

a) N((μz-μρ) = 2kπ + δ1 (7.7) 

dAp 
= gρei(ηρ+δs)Az, 

dAz = gzei(ηz+δs)Aρ, (7.8) 
dS = gρei(ηρ+δs)Az, 

dS 
= gzei(ηz+δs)Aρ, (7.8) 

N 

gρeiηρ = - ir2aver ∑ ei(μz-μρ)(j-i) 
∫ 

{ k [ k R j + Rp
j + S0

j]fz -
k 

SJ dfz }fp*d, (79) gρeiηρ = -
2 ∑ ei(μz-μρ)(j-i) 

∫ 
{ k [ k R j + Rp

j + S0
j]fz -

r a v e r 

SJ 

d 
}fp*d, (79) 

j-1 0 

N 

gzein
z^2 = - i r 2

a v e r ∑ e-(μz-μρ)(j-i) 

∫ 
{ k [ R P

J + 2kRj] fp + k 
Sj dfp 

}fz * d (7.10) gzein
z^2 = -

2 ∑ e-(μz-μρ)(j-i) 

∫ 
{ k [ R P

J + 2kRj] fp + 
r a v e r 

Sj 

d }fz * d (7.10) 
j=i 0 
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b) N(μz + μρ) = 2kπ + δ,(7.11) 

dAp = gpei(ηρ - δ s ) A 2 * , 
dAz 

= gzei(ηz - δs)Ap* 
dS 

= gpei(ηρ - δ s ) A 2 * , 
dS 

= gzei(ηz - δs)Ap* 

(7.12) 

where gpeiηρ is expressed by the formula (7.9) with fz, 
dfz/d changed to fz*, d f z */d , and gzeiηz by (7.10) 
with fp, dfp/d> changed to fp*, df p */d . 

The condition (7.11) for weak-focusing magnets (including 
race-tracks) can be fulfilled nowhere within the 
region of stability (0 < n < 1). 

The distortions of ideal magnetic sectors through small 
angles x() near the azimuthal direction are an example 
of a disturbance which gives a relation between the p 
and z oscillations of the type (7.7) or (7.11). 
Here 

R ( ) - X ( ) , R p ( ) - 2 n ( ) X ( ) , 

S ( ) S ( ) 0 (7.13) 

appear. 
In the case of alternating-gradient focusing (|n| 1), 

according to (7.13) we need take into account only R P ( ) , 
so that for the coefficients in (7.8), (7.12) we get the relations : 

gzeiηz = -gρe-iηρ = - ge-iη, gzeiηz = gρeiηρ = geiη, (7.14) 

8. Non-linear resonances 

It is necessary to distinguish non-linear resonances of 
two types, corresponding (A) to an ideal field, and (B) 
to a disturbed field. We write now the conditions for 
these resonances up to the third or fourth order, as well 
as averaged equations obtained with the help of (6.5) - (6.8) 
and determining the behaviour of the amplitudes for 
several cases. 

(A) Ideal field (non-linear resonances) 

Second order 

3μρ = 2π + δρ, 
dAp 

= gρei(ηρ - δρm)Aρ*2, (8 .1) 3μρ = 2π + δρ, dm = gρei(ηρ - δρm)Aρ*2, (8 .1) 

μρ - 2μz - δ, 
dAp 

= gρei(nρ - δm) Az
2 μρ - 2μz - δ, 

dm = gρei(nρ - δm) Az
2 

dAz 

dm 
=gzei(nz - δm) AcAz 

(8.2) 

ΜΡ + 2ΜZ = 2Π + Δ, 
dAp 

=gρ(nρ - δm) Az
*2, ΜΡ + 2ΜZ = 2Π + Δ, 

dm 
=gρ(nρ - δm) Az

*2, 

dAz = g ze i(nz - δ m ) A p * AZ* 
dm 

= g ze i(nz - δ m ) A p * AZ* 
(8.3) 

Third order 

4μρ,z = 2π + δρ,z, 
dAP,z 

= g P , z e i ( η ρ , z - δ p z m ) A P , z * 3 , 4μρ,z = 2π + δρ,z, 
dm = g P , z e i ( η ρ , z - δ p z m ) A P , z * 3 , 

(8.4) 

2μρ - 2μ z = δ, 

dAp 
gpei(ηρ-δm) Aρ * Az

2, 
dAz = g z e i ( η

z
- δ m ) A p

2 A z * dm 
gpei(ηρ-δm) Aρ * Az

2, 
dm = g z e i ( η

z
- δ m ) A p

2 A z * 

(8.5) 

2μρ + 2μz = 2π + δ, 
dAp = gpei(ηρ

-δm) Aρ * Az
*2 2μρ + 2μz = 2π + δ, 

dm 
= gpei(ηρ

-δm) Aρ * Az
*2 

dAz 

dm 
gzei(ηz-δm)Ap*2 Az* (8.6) 

In the third order, items also appear which do not depend 
explicitly on m (see (6.9)) 

dAp = (P1|Ap| + P2|Az|2)Ap, dm = (P1|Ap| + P2|Az|2)Ap, 

dAz = (Q 1 |A p | 2 + Q 2 |A z | 2 ) ( 8 . 7 ) dm 
= (Q 1 |A p | 2 + Q 2 |A z | 2 ) ( 8 . 7 ) 

Expressions for the coefficients gpeiηρ, P i, Qi etc., which 
hold good with random values of the parameters n, n1; n2..., 
result directly from the formulae (6.5), (4.8), (4.9). 

In the case of alternate-gradient focusing, the inequalities 

l « | n | « | n 1 | « | n 2 | , (8.8) 

are generally satisfied18). Using these inequalities, the 
expressions for the coefficients in (8.1) - (8.7) can be considerably 
simplified (for the sake of simplicity we assume 
that the energy is at its equilibrium value, i.e., = 0) 
and be reduced to 

g P e i η ρ = iλraver
2 

∫ 
k3n1fp*3d g P e i η ρ = 

4 ∫ 
k3n1fp*3d 

0 (8.1) 

gPeiηρ = - iλraver
2 

∫ 
k3n1fz

2fp*d, gzeinz = - 2gpe-inp gPeiηρ = -
4 ∫ 

k3n1fz
2fp*d, gzeinz = - 2gpe-inp 

0 (8.2') 

g P e i n p = - iλraver
2 

∫ 
k3n1fz*2fpd, gzeinz = - 2gpe-inp, g P e i n p = -

4 ∫ 
k3n1fz*2fpd, gzeinz = - 2gpe-inp, 

0 (8.3') 
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gP,zeiy;p,z = - iλraver
2 

∫ 
k4n2fρ

*4
,zd, gP,zeiy;p,z = -

12 ∫ 
k4n2fρ

*4
,zd, 

0 (8.4') 

gpe inp = 
iλraver

2 ∫ k1n2fρ
*2

,zd, gzeinz = - gpe - inp, gpe inp = 4 ∫ k1n2fρ
*2

,zd, gzeinz = - gpe - inp, 

0 (8.5') 

) 

gpeinp = iλraver
2 ∫ k4n2fp

*2fz
*2d, gzeinz = gpeinp

1 
gpeinp = 

4 ∫ k4n2fp
*2fz

*2d, gzeinz = gpeinp
1 

0 (8.6') 

P1,Q2 = -
iλraver

2 ∫ k4n2|fP,z|4d = ip1, iq2, P1,Q2 = - 4 ∫ k4n2|fP,z|4d = ip1, iq2, 

0 

P2 ,Q1 = 
iλraver

2 ∫ k4n2|fp|2|fz|M = ip2, iql P2 ,Q1 = 2 ∫ k4n2|fp|2|fz|M = ip2, iql 

0 (8.7') 

As can be seen from (8.7), (8.7'), the terms containing 
pi, qi give the non-linear effect of the dependence of the 
oscillation frequency on the amplitude (cf. (6.10)-(6.11)). 

(a) ∆μρ = P l |Ap |2 + p2 |Az |2 (8.9) 

(b) ∆μz = qi|Ap |2 + q2|Az|a 

In this approximation the oscillation frequency in a 
given (say in the p-th) direction depends, however, not 
only on the oscillation amplitude in that direction but also 
on the oscillation amplitude in another (z-th) direction 
and vice versa. This complicates investigations. Practically, 
however, the deviations (8.9a), (8.9b) can be assumed 
not to be related to each other. In fact, since the conditions 
for p and for z-motion must be approximately the 
same, the functions fp and fz obey the relations 

fp - fz+, fp
+ fz

- (8.10) 

where the indexes - and + refer respectively to sectors 

with negative and positive field gradients. Furthermore, 
it may be assumed that the parameter n2, in accordance 
with its definition (4.5), will have approximately the same 
absolute value but different signs in the negative and positive 
sectors. It follows from the above that for the coefficients 
(3.7) the approximative values 

P2 q1 0, p1, - q2, - iλraver
2 

∫ 
k4n2|f|4d P2 q1 0, p1, - q2, -

4 ∫ 
k4n2|f|4d 

0 (8.11) 

are acceptable, so that the expressions (8.9a), (8.9b) are 
separated. 

Thus the non-linear effect (3.7) in the first approximation 
under consideration is determined mainly by the parameter 
n2 (see (4.5)). The parameter n1 appears in the 
expressions (8.7) only in the second approximation which 
we shall not write because it is cumbersome. 

B . Disturbed field (non-linear resonances) 

We write out the resonance conditions for a disturbed 
field. 

Third order 

3Nμρ,z = 2kρ,zπ + δρ,z, (8.12) 

N(μρ ± 2μz) = 2kπ + δ, (8.13) 

N(μz ± 2μρ) = 2kπ + δ (8.14) 

Fourth order 

4Nμρ,z = 2kπ + δρ,z, (8.15) 

N(2μρ ± 2μz) = 2kπ + δ, (8.16) 
The equation describing the behaviour of the amplitudes 
in the vicinity of a certain resonance for an ideal field in 
the k-th approximation has the same form for the corresponding 
resonance in the disturbed field in the k + 1 - m 
approximation if we substitute m by S and take the corresponding 
coefficients gpeinp , gze inz etc. 

For example, we give the equation corresponding to 
(8.12) dAp 

dS 
=gρei(ηρ-δρs)Aρ

*2, 
(8.17) 

where 

N 

gρeiηρ = iλrav
2 ∑ e-3iμρ(j-1) 

∫ k{k2(zj + 2zρ
j + ½zρρ

j) fρ
*2 + 3 

zjf*/2
ρ} fρ

*d gρeiηρ = 2 ∑ e-3iμρ(j-1) 

∫ k{k2(zj + 2zρ
j + ½zρρ

j) fρ
*2 + 2r2

av 
zjf*/2

ρ} fρ
*d 

j=1 0 

(8.18) 
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Analogous expressions for (6.13) - (6.16) can be obtained 
from (4.8), (4.9) and (6.5) and, if necessary, for higher 
orders. 

9. Influence of non-linearity on the behaviour of amplitudes near 
linear resonances 

Let us consider the motion of particles in the vicinity 
of linear resonances, with allowance for the influence of 
the non-linear terms (8.7), (8.11). It will be shown that 
various possible cases can be investigated by a uniform 
procedure by a certain substitution of variables. For 
non-linearity up to the fourth order the solution for ap, az, 
depending on s (or m), can be expressed by elliptic 
functions. 

A. Parametric resonance 

We shall examine the method employed in greater 
detail on the example of parametric resonance. According 
to (7.5), (7.6) and (8.7), the equation for the amplitude Ap 
(and similarly for Az) may be written as 

dAp 

ds 
= iN∆μρ + gρei(ηρ-2δρs)Aρ* + iNρ1|Aρ|2Aρ (9.1) 

where the expressions for iN∆μρ, gρeiηρ, p, are given by the 
equations (6.11), (7.4) and (8.11). 

Of considerable interest, as a rule, is the behaviour of 
the absolute values ap, az of the complex amplitudes 
Ap, Az 

Ap = apeiαρ, Az = azeiαz (9.2) 

Using (9.2) instead of (9.1), we obtain a system of equations 
with respect to ap, αp 

dap 

ds 
= gpa cos wP, 

do, 
ds 

= N∆μρ - gP sin wP + Np1ap
2, 

(9.3) 

in which we change the independent variable S to w (the 
index p is omitted). 

da 
= 

ga cos w 
dw 

= 
2 (δ n -g sin w + N P l a 2 ) ' 

dα 
= 

1 
- gδ 

dw = 2 - 2(δn - g sin w + Np1 a2) (9.3a) 

where 

w = 2α - η + 2δS (9.4) 

and δn is the complete "detuning", equal to 

δn = N∆μ + δ (9.5) 

We integrate the first equation (9.3a). We then substitute 
the expression for w = w(a) in the first equation 
(9.3) and obtain its integral in the form of 

a 

s = 2 

∫ 

ada s = 
Np l ∫ [-II(a2-ai

2)]½ 
a0 i = i 

(9.6) 

where the roots ai
2 are equal to 

a2
1,2,3,4 = 

(±)g-δII ±{[g()δII]2 -2Np1a0
2(g sin w0 - δII - (Np1/2) a0

2)}½  

a2
1,2,3,4 = Np1 (9.7) 

where the upper sign in brackets refers to a2
1,2 and the 

lower one to a2
3 4 , and w0, ao are the initial values of the 

respective magnitudes. 
Thus S is expressed through a by means of an elliptic 

integral of the first kind F {φ (a2/a0
2), k (ai

2/a0
2)}, and a2/a0

2, on 
the other hand, is expressed by S with the help of one of 
the Jacobi functions Sn {u(s), k(a1

2/a0
2)}, the tables of 

which are given, for example, in 19). The amplitude a 
oscillates between two extreme values (boundaries of the 
"potential well") : al < a < a r and never tends to infinity 
if P1 ≠ 0. The values al, a r coincide with the two values 
of the roots ai (see (9.7)), which come closest to a0 from 
above and below. The period of the non-linear oscillations 
Sper equals 

ar 

Sper 

e 

∫ 

ada 
Sper Np l ∫ {- II (a2 - ai

2)}½ 
al 

i=1 
(9.8) 

and is expressed by a complete elliptic integral of the 
first kind. 

For the purpose of comparison we shall consider the 
case in which the non-linear terms are not taken into 
account 

(P1 0). 

Then instead of (9.6) we obtain the integral 

a 
ada 

S=a 0
2 

∫ 

ada 
S=a 0

2 

∫ {(g2 - δII
2) a4 - 2δ

II (g sin w0 - δII) a0
2 a2 - (g sin w0 - δII)2 a0

4}½ 
a0 

{(g2 - δII
2) a4 - 2δ

II (g sin w0 - δII) a0
2 a2 - (g sin w0 - δII)2 a0

4}½ (9.9) 
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which, depending on the relative value of the complete"detuning" δII, leads to three different results : 

(a) δII
2 > g2 (the "detuning" is large and the point representing it is outside the stop band) : 

a = a0 ( 
δII - g sin w0 

)½{δII - sin[2√δII
2 - g2 S] + arc sin 

g - δII sin w0 }½ 
a = a0 ( 

δII
2-g2 )½{δII - sin[2√δII

2 - g2 S] + arc sin 
δII - g sin w0 }½ 

(9.10) 

i.e. oscillation of the amplitude (modulation) takes place 
with the period 

Sper = π/√δII
2-g2 (9.H) 

As we approach the boundary of the stop band the depth 
of modulation and its period increase infinitely. 

(b) δII
2 = g2 (the "detuning" is small and the point 

representing it is on the boundary of the stop band : 

aδII = ± g = a0 {1 + 2gs [(1 ± sin w0) gs + cos w0]}½ 
(9.12) 

i.e., a increases infinitely with S. 
(c) dII

2 < g2 (the "detuning" is small and the point 
representing it is within the stop band : 

a ~ e√g2-δII
2 S , (9.13) 

i.e., a increases infinitely irrespective of the initial conditions. 

Thus, under condition (a), taking the non-linearity 
into consideration can lead to only small corrections to 
the amplitude, but under (b) and (c) the non-linearity 
influences the solution considerably. Let us consider the 
characteristic particular example when the representative 
point is in the middle of the instability strip δII = 0 and 
the initial conditions are such that sin w0 = 0. In this 
case the values ai etc. occur in the following sequence : 

a4
2 < a2

2 < 0 < a3
2 < a0

2 < amin
2 < a1

2, (9.14) 

where amin
2 corresponds to the minimum of the potential 

well and a oscillates within 

√g2 + N2P1
2a0

4 - g 
= al < a < a r = √g2 + N2P1

2a0
4 + g 

Np1 
= al < a < a r = 

N P l 

(9.15) 
with the period 

S p e r = 
2k(γ) , sin γ = g 

√g2 + N2P1
2a0

4 
, sin γ = 

√g2 + N2P1
2a0

4 

(9.16) 

where k(γ) is a complete elliptic integral of the first kind. 
If the maximum permissible value of the amplitude amax 
is pre-set, then with the requirement that a r < amax , 
we obtain the restriction for the initial amplitude 

a0 =[ 
(Np1a2max-g)2 - g2 ]¼ 

a0 =[ (Np l)2 ]¼ 
(9.17) 

With other values of δII, sin w0 we obtain similar results. 

B. Simple resonance coupled with parametric resonance 

According to (7.1)-(7.4) the equation for the amplitude 
may be written as 

dAp = iN∆μpAp + cpei(x
p

-δ
ρ

s) + ge i ( η
ρ

- 2 δ
ρ

s )A* 
ds 

= iN∆μpAp + cpei(x
p

-δ
ρ

s) + ge i ( η
ρ

- 2 δ
ρ

s )A* 

+ iNp1|Ap|2Ap 

(9.18) 
and similarly for Az. 
This case corresponds to a simultaneous considerable 
distortion of the closed orbit (connected with the disturbance 
cp) and an increase in the oscillation amplitude 
near this orbit (owing to parametric resonance). From 
(9.18) we obtain the system (the index p is omitted) 

da 
dS 

= ga cos w + c cos v, 

da 
dS 

= N∆μ - g sin w - c sin v + Np l a 2 , (9 19) = N∆μ - g sin w -
a 

sin v + Np l a 2 , (9 19) 

where w is expressed by equation (9.4) and 

v = α + δS-x (9.20) 

A closed orbit with a period equal to its revolution has 
the solution 

a = aM = const (9.21) 

where aM can be determined from the equation 

aM
3 + δII±g aM ± 

c 
= 0 aM

3 + N P l 
aM ± Np l 

= 0 (9.22) 

In the absence of non-linearity (ρ1 0) 

aM = | 
c | 

aM = | δII±g 
| 

(9.23) 

The appearance of the term g in equation (9.22) and in 
the expression (9.23) characterizes the influence of the 
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proximity of parametric resonance on the amplitude of 
the closed orbit. 

The effect of parametric resonance may be considered 
as in section A above. 

C. Connection between ρ and z oscillations 

For a connection of the type (7.10), taking into account 
(7.14), we get the first integral 

aρ
2 + az

2 = const, (9.24) 

which shows that in this case energy passes from the p 
to the z oscillations and vice versa, the oscillation amplitudes 
remaining limited. 

In an other case of the relation between the p and z 
oscillations (7.11) the first integral is 

aρ
2 + az

2 = c = const (9.25) 

from which it follows that the amplitudes of the ρ and 
z oscillations can increase indefinitely, and hence it may 
prove important to take the non-linear members into 
consideration. The equations (7.12), (7.14) together 
with (8.7), (8.11) may be re-written as : 

dAp 

dS 
= g e i ( η - δ s ) Az + iNp l |A p | 2 Ap, 

dAz 

dS 
= g e i ( η - δ s ) A ρ - i N p 1 | A z | 2 A z , 

(9.26) 

from which follows the system of equations (see (9.2)) 

daρ/dS = gaz cos w, dαp/dS = - (g az/ap) • sin w + Np1aρ
2, 

(9.27) 

daz/dS = gaP cos w, dαz/dS = - (g ap/az) • sin w - Np1az
2, 

(9.28) 

where 
w = αp + αz + δS - η) (9.29) 

The influence of non-linearity in this case manifests itself 
in the "detuning" value changing from δ to δ non-linear 

δ non-linear = δ + cNp1 (9.30) 

where, according to (9.25), c is determined by the initial 
conditions. The linear and non-linear problems, there­

fore, are actually solved in the same manner except that δ 
should be changed to δ non-lin. in the final expressions. 

The solution of the system (9.27) - (9.28), depending on 
the relative "detuning" value δ non-linear, results in three 
cases similar to (9.10), (9.12), (9.13) : 

(a) δ2 non-linear > 4g2 ("detuning" is high) - the 
amplitudes ap and az oscillate between their extreme 
values, determined by the value δ non-lin., the oscillation 
period being equal to 

Sper 

2π 
Sper 

√(δ + cNp1)2 - 4g2 (9.31) 

(b) δ2 non-linear = 4g2, (c) δ2 non-linear < 4g2 ("detuning" 
is low) - the amplitudes increase infinitely despite 
non-linearity. 

10. Behaviour of amplitudes in the vicinity of non-linear 
resonances 

A. Ideal field 

Using the same scheme as above, the behaviour of 
the amplitudes in the vicinity of non-linear resonances 
(8.1)-(8.6) and (8.12) - (8.16) is investigated, taking into 
account the terms of the third order in (8.7) containing 
pl (cf. (8.7'), (8.11)). 

Second order 

(a) Let us consider in greater detail the case (8.1); 
omitting the index p 

dA/dm = ge i ( η - δ s )A*2 + ip1|A|2A (10.1) 

The system for a, α is 

da/dm = ga2 cos w, da/dm = ga sin w + p1a2, (10.2) 

where 
w = η - δ S - 3 α (10.3) 

Solving the equations after the scheme (9.3) - (9.6), we 
obtain the result in the form of the quadrature 

a 

m = ∫ ada 
m = ∫ √G(a2) 

a0 (10.4) 
where 

G(a2) = - 9p1
2 
a8 + g2a6-½[ δ

2 

- 3P1a0
2 ( 

3 
PIa0

2 + 
δ 

+ ga0 sin w0)] a4 + a0
2,δ 

δ 
+ ga0 sin w0 + 3PIa0

2 

]a2 G(a2) = -
16 

a8 + g2a6-½[ 
2 

- 3P1a0
2 ( 

4 PIa0
2 + 2 

+ ga0 sin w0)] a4 + a0
2,δ 

.2 
+ ga0 sin w0 + 

4 
]a2 

-a 0
4 {g 2 a 0

2 s in 2 w 0 + δ( 
δ 

+ ga0 sin w0)] + 
3PIa0

2 

[ δ + 3PIa0
2 

+ ga0 sin w0]} -a 0
4 {g 2 a 0

2 s in 2 w 0 + δ( 
.4 

+ ga0 sin w0)] + 
2 [ 2 + 

8 
+ ga0 sin w0]} 

(10.5) 
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Thus a is expressed by s through elliptic functions which 
we shall not write out. If we do not take the P1 terms into 
account and if we assume that there is no "detuning" 
(δ 0), the expressions (10.4), (10.5) become much 
simpler and can be presented as 

a = a0 (sin w0,)⅓ [ (√3 + l)-(√3-l)cn(X,k0) 
]½, a = a0 (sin w0,)⅓ [ l+cn(X,k0) ]½, 
(10.6) 

where en (X1 k0) is an elliptic cosine, k0 = sin 15°, 

X = 24√3 a0 (sin w0)⅓ gm + F(φ0, k), 

w0 = Η - 3α0, cos c φ0 = [(√3 + 1) (sin w0)2/3 -1] [(√3 - 1) 

(sin w0)2/3 + I]-1, (10.7) 

and F(φ0, k) is an elliptic integral of the first kind. In 
the case (10.6) the amplitude may increase considerably 
in the course of a few revolutions. Thus, if the terms 
with P1 are not taken into account, the representative 
point should not be drawn nearer to the line 3μρ = 2Π 
i.e., a sufficiently large "detuning" should be taken 

δ > gamax (10.8) 

If, however, the "detuning" is small, δ 0, the non-linearity 
of the type (8.7), (8.11) must be rather large 
p1

2 g2 to limit the amplitude. The condition (8.8) can 
provide fulfilment of this inequality. 

From (10.4) and (10.5) we can obtain with some precision 
the data on the necessary value of "detuning" and 
non-linearity (8.7) for various conditions. For this 
purpose, it is necessary to require that the root of the 
function G(a2) which is closest to a0

2, should be smaller 
than a2

max, since this root gives the limit value of a2 

attainable under conditions of oscillation. 

B. Connection between non-linear p and z oscillations 

For a connection of the type (8.2), according to (8.2') 
we obtain the first integral 

ap
2 + az

2/2 = c2 - const, (10.9) 

which indicates that the amplitudes are limited. The 
same integral is obtained if we take into account the nonlinear 
members of the third order (containing p1 (8.11)). 
The value m is connected with ap = a by the same equation 
(10.4) where G(a2) (with p1 0) has the form of 

G(a2) = g2a6-(2g2c2 + 
δ2 

)a4 + [g2c4-gδa0, (a0
2-c2) sin w0 + δ

2a0
2 

]a2-a0
2(a0

2-c2)2[ a0δ 
+ g sin w o ] 2 , G(a2) = g2a6-(2g2c2 + 4 )a

4 + [g2c4-gδa0, (a0
2-c2) sin w0 + 

2 
]a2-a0

2(a0
2-c2)2[ 2(a0

2-c2) + g sin w o ] 2 , 
(10.10) 

w = -η + 2 α z - α p - δ m (10.11) 

In the simplest case of precise resonance in the absence 
of "detuning" (8 0), the roots of G(a2) occur in the 
following sequence 

0 < a 2 < a0
2 < a2

2 < c 2 < a 2 (10.12) 

For example, with sin w0 = 0, a1 = 0, a2
2. = c2; with 

sin w0 = 1, a1
2 < a0

2, a2
2 = a0

2., etc. In the transfer of 
energy from the p to the z oscillations (and vice versa) 
a2 oscillates between the roots a1

2 and a2
2 which are 

the boundaries of the corresponding potential well. 

The oscillation period of the value a2 is equal 

mper 

2 
k (γ), sin γ = √ 'a2

2-a1
2 
, mper g√a3

2 - a1
2 k (γ), sin γ = √ 

a3
2-a1

2 , 

(10.13) 

where k(γ) is a complete elliptic integral of the first kind. 
It should be noted that condition (8.2), applied to a 

weak-focusing continuous magnet, gives the relation 

√1-n - 2√n = δ i.e. n 0,2 (10.14) 

This is the well-known coupling non-linear resonance 
which plays an important part in synchrocyclotrons20). 
In this case the general and not simplified expressions 
should be used for the coefficients (8.2'), and instead of 
(10.8) we get 

ap
2 az

2 
= c1

2 = const ap
2 

4 ( l + √0,2δ 
) 

= c1
2 = const ap

2 

4 ( l + 
n1 ) 

= c1
2 = const 

(10.15) 

There is some difficulty in obtaining in this case expressions 
similar to (10.4) and (10.10) - (10.13) if we put 
m ~ , g ~ n1/2√0,2 etc. 

In case of a coupling of the type (8.3) and (8.3') we 
obtain the relation 

ap
2 - az

2/2 = C2 = const (10.16) 

so that the amplitudes (without considering the terms 
with p1) may increase indefinitely. Again the equation 
(10.3) is true, in which 
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G(a2) = g2a2 (a2-c2) - a„ (a2-c2)2 { g sin w0 -
1 

[(δ + 4p lc2)(a2-a0
2)-

3p1 (a4-a4
0)]}2 

G(a2) = g2a2 (a2-c2) - a„ (a2-c2)2 { g sin w0 -
2a0(a2-c2) 

[(δ + 4p lc2)(a2-a0
2)-

2 
(a4-a4

0)]}2 
(10.17) 

If P1 0 we obtain the same expression (10.9) but inasmuch 
as (10.8) is substituted by (10.15) we obtain (with 
δ 0), instead of an exchange of energy between the 
P and z oscillations, their unrestricted excitation. For­
mally, this corresponds to the case where instead of 
(10.12) the inequality 

a3
2 <a0

2 (10.18) 

is realized, a3
2 being the largest root of (10.10). As in 

the case of (10.1), therefore it is not permissible, generally 
speaking, to approach the line μP + 2μz = 2Π. 

The value of the required " detuning" or non-linearity 
of the third order (8.7), (8.11) is determined from (10.4), 
(10.17). 

Third order 

Non-linear resonances of the third and higher orders 
can be examined in exactly the same way as those of the 
second order. The results for the cases (8.14) - (8.6) are 
analogous to those given above for (8.1) - (8.3) respectively. 

B. Disturbed field 

Where necessary, there should obviously be no great 
difficulty in avoiding the deleterious action of the nonlinear 
resonances investigated above in an ideal field by 
selecting the working cell on the stability diagram at a 
sufficient distance from the respective resonance lines. 
In this sense, the non-linear resonances corresponding 
to the disturbed magnetic field may be more dangerous. 
The expression for the conditions of attainment of these 
resonances contains the value N, which stands for the 

number of periodicity elements of the magnet, in analogy 
to the case of, say, parametric resonances. In consequence, 
lines of non-linear resonance are found to exist 
on disturbances in the immediate vicinity of any repre­
sentative working point. This may lead to the necessity 
of increasing tolerance requirements. 

The behaviour of the amplitudes in the vicinity of 
non-linear resonances in a disturbed field is calculated 
in the same way as in the case of an ideal field, above. 
Since the corresponding equations contain functions 
describing disturbances, Z p ( ) , R p ( ) etc., these functions 
must either be pre-set on the basis of certain additional 
considerations or considered as statistical values, as in 
estimations of the linear theory. For the resonance 
3Nμp = 2kπ + δp, for example, the expectation obtained 
is naturally similar to (10.8) in which g will then stand 
for the average square value 

λNr2
ever 

∫ 
kf3d 

16 ∫ 
kf3d 

0 
(10.19) 

To limit the amplitude by non-linearity of the type 
(8.7), (8.11), the condition p1

2 > must be fulfilled where is given by the formula (10.19). 

Using the above equations for the amplitudes and 
employing, for example, the stationary phase method, it 
is possible to find the result of passing through various 
resonances with the slow change of parameters connected 
with synchrotron oscillations. 
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