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Introduction

In considering various problems of the theory of cyclic
accelerators we always have to do with the motion of
particles in a magnetic field in the vicinity of a certain given
curve. In recent years new types of cyclic accelerators
have been suggested based on alternating-gradient focusing
and other principles *-7), The paths of the particles in
these machines, even in the ideal case, are sometimes of a
rather complex shape and are complicated still more by
unavoidable disturbances.

Analysis shows that despite the diversity of variations
they all have much in common. A number of problems
concerning the case of a plane initial curve were investi-
gated at an earlier date by different methods, e.g., in the
papers 811, This paper deals in general with the motion of
a particle in a magnetic field in the vicinity of an arbitrary
(generally speaking, space) curve. By analogy with
simpler cases we shall call this motion betatron oscillations.

More detailed consideration is given to certain disturbing
resonance phenomena—both linear and non-linear—
arising in magnetic periodic systems, and primarily in
alternating-gradient focusing ones.

1. Natural coordinate system

Suppose we have a space curve ry = ro(s) where o is
the length of its arc. The properties of the curve are
characterized by two parameters : curvature k(s) and tor-
sion » (o) 1%,

[ry (o) ry” (6)]ro"'(6))
ry"? (o)

K@) — |1 @ |, x(0) = (
(1.1)

where ' denotes differentiation with respect to o. » =0
corresponds to a plane curve. In future we shall use the
natural coordinate system, connected with this curve, for
the unit vectors of which i,(s), i,(s), i;(c) we shall take

”

Iy . -
s by = iy )]

" (1.2)
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The vectors i;, i,, I; determining the typical directions :

i, - tangent, - i, — main normal, i; - binormal, are related
by Frenet’s formulae 12

ill = —ki,, ;" = —xiy + ki, iy" = xi,. (1.3)

We designate the coordinates corresponding to i., i; by
p and z, so that the radius-vector of the arbitrary point
r (o,p,2z) equals

r=ro(0) + pi, + i, 14
From (1.3), (1.4) we obtain the relations :
or/Sc = a, = (1+kp)i; + wzi, - el ,

or/dp =a, =1, , or/oz=a; =i, , (1.5)

In contradistinction to the orthogonal system i, i,, i3
the system of vectors a,, a,, a; , which is not orthogonal
when » 5= 0, possesses all the necessary proporties of cur-
vilinear coordinate systems®,

2. Maxwell’s equations in natural coordinates

We shall make use of the auxiliary coordinate system
a,, a,, a;. Finding the square of the length element dr?
according to (1.5) we obtain the expression for the metric

tensor
(1 + kp)? + 2 (p* + 2B) xz —xp
gi; :( XZ 1 0)
@n

—%p 0 1

The value g == det (g;;) determining the volume element
dV = 4/g dodpdz is equal to

g = (1 + ke 2.2

according to (2.1).

In compliance with the general formulae for curvilinear
coordinates '® the divergence and the curl of the arbitrary
vector P equal

3

. 1 3 .~
divP = vz Z u r've), 2.3)
i=1
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: 2.4)
where u',u?,u® - o,p,z; p; = Pa;; pl = Pai are

respectively the contravariant and co-variant compo-
nents of P; a; are mutual coordinate vectors

= [a,a5}/V, V = a, [a,a;], 2.5)

a,,a; are found by cyclic permutation from the formula
for a'. Using (1.5), all the values in (2.3), (2.4) can be
found. Taking the magnetic field H as the vector P we
get the equation div H and the projections of the equation

rot H=0ona,,a,,a;, as
oH,
+ ke 2
oHgq oH,
T ( oz de ) =0
(2.6)
8H, oH,
—_ -0 :
op oz @7
®H, @H,
-p— ) =0
cz op
2.8)
oH, 3] 3]
e KH,- (H —z—He—i- H)=o
oo o
2.9)

Differentiating (2.6) - (2.9) with respect to o, p, z as many
times as necessary and taking into account that k = k(s),
»x = x(c), we obtain the relation between the highest deri-
vatives of the field components with respect to the coor-
dinates. Assuming that p = z = 0, we obtain this rela-
tion for the points of the initial coordinate orbit. Thus
various functions characterizing the field can be expressed
by certain functions which do not depend on s. H,, Hg,
H,, oH,/Qe, O0H,/0p can be selected, for example, as
such functions, for the first order; for the second order,

o 4 1_)_' e +xz) 1 {el'

besides those just mazntioned, the functions 062H,/cg?,
82H,/0p? etc. can be taken. Expansion of the magnetic
field components in powars of p, z has the form of :

aggz)op_[(a;jc)o + kH,,
+ (a—g—p)o] z+ ..

(2.10)

H; (p,2) =Hgo + (8—8?)09 + (aa}:f)oz t 11

H. (e = Hao + (

oH
He(p,2) = Hoo + [('5;3) ~kHgo + “Hzo] P
o

N [(a;z)omm] ——

(2.12)

3. Equations of motion of a particle in natural coordinates

Let us consider a space area adjacent to the curve r, (o)
and occupied by the magnetic field H(x, y, z). Let a
particle be moving in this field and let its charge, momentum

and speed be, respectively, e, : v. We presume that,
generally speaking, the value p as well as H can change
slowly (adiabatically) in time. The equation of motion of
the particle can be written as :

dv(® 1de
dl odl

Vo) = 2 [v(°) H] 3.1

where the variable [ is the arc length of particle’s trajectory
and v the unit speed vector. In order to pass over to
the main variable o, it should be kept in mind that
v* = r’/l’ and the expressions for ', I”, ¥, r” which
can be obtained by means of (1.3) - (1.5) should be used.
Thus, !’ equals :

I'=[(1+ke)* + (¢'+%2)* + (Z-xp)]/? (3.2

As a result of calculations from (3.1) we get the equations
for the determination of p(s), z(s) solved with respect to
the second derivatives p”, z

—[Ho (¢" + %2) (2" %) — Ho (1 +kp)* + (o' +%2)* ) + Ho(1 + kp) (2/—xp)] + k +(2k® + »x*)p

p(+kep 1+ke
— %'z - 207+ k(k2+xD)p? + (k'n=kx)oz + kn?z? + koo’ — 2kxpz’ + 3kxp'z + 2kp'2}, 3.3)
p’ (Z'—xp)l'® 1

N\

p (tkeP  Kpt1

I
{e [He ((I+ke)* + (Z-%p)*) — Hy(z'-2p) (¢'+x2) - Ho (1-+kp) (¢ +x2)]

+'p + %%z 4+ 2xp” + (kn'-K'%)p? + 2ko'z’ + kxzz'}. (34
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The equations (3.3), (3.4) together with field component
expansions of the type (2.10) - (2.12) enable us to study
the motion in any order by p, ¢’, z, Z’,... These equations
are a generalization of the known equations of betatron
oscillations for the case of motion about an arbitrary
space curve.

In linear approximation (by ¢, z, ¢’...) the equations

(3.3), (3.4) become
I e OH, eH,

e + P + ( + = + % )p
pc ap pc

e oH, eH, eH,
— - 2x) Z=k-—7,
C pc

pc Oz
(3.5)

Z _KkP—xn2

+

e oH, ,)
2w ),
pc o

) , e¢Ho
- 2% P = T s
pc

(3.6)

P H
'+ 2 ’—(2k5—°+
pc

EHC

which show the dependence of the frequency of the beta-
tron oscillations, the connection between the p and z-
oscillations and other characteristics on the curvature
%, the torsion k, the momentum p and the shape of the
field.

+x |z +

4. Case of a field which has a plane of symmetry

Of practical importance is the case where the magnetic
field (ideal) has the plane of symmetry z = 0 in which the
initial plane curve x = 0 “4.1)
lies ’

We express the real field H as the sum of an ideal field
Hid and the magnitude h which describes the field distor-
tions

H (0,6,2) = Hid (5,0,2) + h (p,0,2), |h|< |Hid| (4.2)
Due to its symmetry, Hid should satisfy the following
relations :

mies Hid(o,p,) | 8 Hool (002 |
2pmioedzs —0 Gpmaae 2=0
4.3)

g
ko K,

x kK2e? + 3kR, + ...) oz + +[K2 (1, —n) + Zgo +

—2<11(0 T)l\p —k%k’p +—pz’2% |:(3r11

k
+ | —-n+2Z+ —T (n—Z)C:l ke— (kR + Ry + So) kz-Sz' =

where e, m are any integers, including zero and s an odd
number. For the disturbing field h (s, ¢, z) the derivatives
indicated in (4.3) will be, in general, small values differing
from zero.

We shall assume that the momentum p can differ
from the fixed (equilibrium) value p, by a relatively small
value

p=po{l + 9, t«1 (4.4)

This deviation of the momentum in accelerators is due
primarily to synchronous oscillations. Considering the
expansions of the field components (2.10) - (2.12) for this
case and using the Maxwell equations (2.6) - (2.9), it can
readily be seen that the ideal field Hid in its respective order
(according to p and z) is fully determined by the pre-set
values

amHzid
- =0,1,2,...
o /9=Z—0 (m )

cpm

Instead of these the following dimensionless parameters,
which are a generalization of the common field index n,
can be employed :

1 omH
k™(a)H(s) Sp™

e (0) = (~1ym*1 [, o HO=H.)
4.5)

For the sake of brevity we introduce also the value k(o)
which has the dimensions of curvature

ko(s) = eH(s)/cp, 4.6)
We denote the characteristics of the disturbing field by

_h,(9) _ hy(9) o — h, (o)
Z (o) = H o R(6)~———~H(G),S()——H(6),
1 an, N 1 oh,(6) (@7
Z() = H(os) oz R"()"H(c) 3

etc., where the components and their derivatives are taken
for p = z = 0. We assume the values in (4.7) to be small
values of the first order. Under the assumptions (4.1) -
(4.7) equations for the determination of p(s), z(s) in any
order can be obtained from the initial equations (3.3) -
(3.4). Restricting ourselves to the third order of ¢, z,
¢, Zse.y 2, R, 7g,..., which is sufficient for the majority
of practical problems, we get equations which take into
account all the types of disturbances

k z
2 C-Z 4 (Qnol e

ko 2 2k2+ )

'

k 3 , kK, ,
W22 2= (I + DI -3+ Z)y 2%+ — pp” + Roz2
ko 2 ko

+ ...:lpz2 -+ (nfn1 + r—é—z) k® e — knzp'z’ + Rp'Z + ...

4.9
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z” "z z
o + % K -+ [n (1-9)- f:l kz-(R; + 2kR) ke + Sp" = R -+ (2kR, + ..} % + [K®(n; - 2n) + Zop + ...} 1 2
1] 0

k 3 s
KR, )7 Rope o’ (20 -1-z) @7 3R IRZe - (2o ke
0

1
e [k*(n + ny—ny) + .0]2% -

where in some of the coefficients the less important terms
have been omitted, particularly those containing oH/ds,
0*H/ds ¢p etc. In the equations (4.8), (4.9) all the field
components and their derivatives are expressed through
certain independent functions, as indicated at the end of
section 2. The form in which these equations are written
facilitates their comparison with the equations for the
simplest case of an axially-symmetrical field. The left
parts of (4.8), (4.9) contain the linear terms with respect to
e, z and their derivatives, and the right parts the non-
linear terms as well as the terms -1 + k/k,, { - Z, R deter-
mining the closed orbit around which the betatron oscil-
Iations take place.

5. Motion of a particle in magnetic periodic systems

Magnetic periodic systems consist of a certain number N
of identical (in the ideal case) periodicity elements arranged
along a closed curve. We substitute the arc length ¢ by
the generalized azimuthal angle 9, which is equal to

9 =27 ofll = o/ryy ;.0

where T is the perimeter of the main orbit and r,,, a
certain average radius of the orbit. The characteristics
of an ideal field repeat themselves along the main orbit
with a periodicity of : 9y = 2n/N; the parameters of the
disturbing field repeat, generally speaking, after each full
revolution, i.e., with a periodicity of 2.

First we consider the following system of equations of
the first order from (4.8), (4.9)

d2p 1dpdp
d 92 I;a\(—} 55 +kryv? (k—kon) p = ryy® (k—ko) Ko Tav? (£-2)
(5.2)

TR kky rpv? nz = kR (5.3)

The solutions of the respective homogeneous equations,
which are close to Hill’s equations, can be written in the
normal form?®

N
ieite.2mf L, (9)
2(1-e™¥0,2)

pu(™) }

Zy(9)
ji=1

E(E 7p'2 - &1 77" + (

k ! ! N
3 > n—2k—) kep' 2" + ...,

0

4.9)

o (¥ Pini E: )
zo E**; } - [% [Ap‘z etz fo, (H) + c.c.]
5.4

where m is the number of the element of periodicity, c.c.
a complex-conjugated value and A, , “amplitudes”
P(91ni) ]
P(®)
describes the damping of the betatron oscillations, due to
adiabatic growth of the momentum of the particle. The
solution (5.4) is correct with an accuracy up to the small
terms of the order of (dp?/d9)? and d2p/d92. Approximate
expressions for f,, and u,, which are, however,
sufficiently accurate as a rule for practical purposes, can be
easily found by assuming that within a given magnetic
sector the characteristics of the ideal field do not change
along an intercept of the main orbit (the intercept being
a circular arc), and that there is no field at all in the inter-
vals between the magnetic sectors (the intervals being
rectilinear).

defined by the initial conditions. The factor [

1/r, = const (magnetic sector)

0 (rectilinear interval)
(5.5)

kEkQE{

Having the solutions of the homogeneous equations
(5.4) which we shall consider to be known at (5.5) we
obtain the solutions of the non-homogeneous equations :

e(®) = pu (®) + p0 (9), 2(9) = zy(9) + zo(9), (5.6)

where py(9), zy(9) are the particular periodic solutions :

pu(®) = Puo (9 + PMc(s) + euzr(®; Pmo(‘()‘!‘so) = oyo (M)
ez (B +80) = pur(9); puz(®+21) = pyy(9),
Zy(d+2r) = Zu(9) (5.7

The function py,(®) corresponding to the item in the
right part of (5.2) describes an ideal plane closed orbit
near which betatron oscillations occur. With momentum
and field disturbances Z(9), R(9) this orbit is distorted,
remaining closed

&)

Ciu'P,Z(j*l)\/‘Fp,jz(i)f*p,z(&)dg + ¢.C. (58)

9-9,
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where F, ,(9) are the right parts of the equations (5.2),
(5.3)and M = N (at Yy == 21) or M = | (at dpep = J).

To explain the meaning of the function py,(%) let us
take, for example, the simplest coordinate orbit r (%)
corresponding to (5.5). At the ends of the magnetic
sectors facing the rectilinear sections, the characteristics
of the ideal field change owing to edge effects. The
rectilinear sections themselves are not, strictly speaking,
free from the field either, due to the fringed field of the
magnet, the windings etc. That is why the behaviour of
the ideal field differs somewhat from the schematic picture :
Hid = const(%) in the sector and Hid = 0 in the recti-
linear interval, and the ideal closed orbit also differs from
r (9) (5.5) though these differences are as a rule very small.

To study the betatron oscillations, we select the closed
orbit ryo(#) = ry(®) + eyo(®) as the “coordinate” curve

which corresponds to :
eH(») (5.9)
p()

K(®) = ko(9) =

as can be seen from (5.2), (5.8).

6. Equations for determining the amplitudes of betatron
oscillations

The equations for determining the g,z deviations from
the closed orbit can be written as :

N
. —ipy N8
dA, ie” ez
~

dS — An®)

j=1

where S is the number of the current revolution. For
the ideal field it is necessary to put N = 1 and to substi-
tute S by m, the number of the current periodicity element.
According to (4.8) and (4.9), the right part of (6.5), in
which the expressions (6.3) for p, z should be substituted,
contains the sums of items which include the products :

)\(lp+lz71) A pIp Azllei(qp TR TR ( 6.6)

where /,, I, are non negative integers, q,, q, — integers, and
A, A, can be replaced by their complex — conjugated
values. As (6.5), (6.3) and (4.8), (4.9) show, owing to
the relative smallness of values g, z allowance for non-
linear terms and other disturbances lead as a rule to small
corrections which have the nature of rapid oscillations and
change the result (5.4), corresponding to the ideal field,
very little. For approximate solution of the equations
(6.5) we average them with respect to the variable S (or m)
contained in explicit form. Such a method, applied for
the investigation of non-linear problems by Bogoluybov
and Krylov'"), was used, for example, in the papers®.®
in considering some particular problems of the theory of
weak-focusing oscillations. A considerable deviation
from the oscillations corresponding to the solution of the

d?p l(_igdp

g T pasas T KOG Il = kO Fe(02..)
6.1
d2z 1 dp dz . . 3
— 4 = — — + kYD) 1,2, n(®z = k(M2 F.(%¢.7,...
a T pasas K3(9) 1,0 n(®)z = k(D o Fu9,6,2,...)

(6.2)

where the expressions for F,, F, are determined from
(4.8), (4.9).

We shall seek the solution of the equations (6.1), (6.2)
by the method of successive approximations in a form
which is a modification of the expression (5.4)

ZE;};} A5, ) + = | P
6.3)
Applying the requirement
(6.4)

dA z 1
—C—if}’—e Ho 2™, (8) + cc. =0

we obtain the equations for determining A...(%) in the
case of the disturbed field :

9, (6.5)

Zew@” f KOF ) (5,00 00

0

homogeneous equations (6.1) and (6.2) may occur if any
of the members in the right part of (6.5) remain approxi-
mately constant and do not become zero when averaged.
This, according to (6.6), is possible in case of proximity
to one of the resonance conditions :

dette T Qzitz = 2km 6.7)
qe(Nue) + qz(Nu,) = 2kn (6.8)

where k is an integer.

It should be noted that in definite orders (determined
by the sum I, I, (see (6.6)) there appear terms which
do not contain the argument S or m explicitly, i.e., do not
depend explicitly on the “frequencies” p, and p.,: These
terms, which in (6.6) correspond to

Q=0 ¢.=0 (6.9)

are present in the right parts of (6.5) whether averaged or
not. Let us consider, for instance, oscillations around a
closed orbit (5.8). The case (6.9) occurs, for example,
for the terms :

k%(9) rPver Ang(®)e and — KE(9)r2yyerAny,($)z
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in the right parts of (1.1) and (1.2) respectively, waere:

A (D) = — (n-2)¢ -
. Zp
Any () = - rl - M + (n; —2n)kpy -

The deviations Ang, An, occur inasmuch as the oscilla-
tions take place around a disturbed closed orbit, not
an ideal one, and, in accordance with (6.5), cause changes
in the frequencies of the betatron oscillations u, and u,

N 8

b = - aveYkaAnp,!fpzld‘i (6.11)

=10

The disturbances (6.11) may prove significant in alter-
nate-gradient focusing accelerators, where the precision
tolerance Ay, , is very rigid.

7. Linear resonances

We write now the resonance conditions and the averaged
equations (equations of the first approximation) for deter-
mining the amplitudes of the betatron oscillations for linear
resonances (with the “detuning” 3).

A. Simple Resonance together with Parametric Resonance
Nip, 2 = 2Kp, 2 7 + 8¢ 43 (Ko, , integer) v

dA, i(x -8
22 L iNApA, + ce (PR

8) i(n —28 8)A*
e [ - T -}
ds 8¢

(7.2)

where Ay, is given by the formula (1.11), S is the number
of the revolution and

o

N
; ir? E
goeine = - — 2 SO 1)

=1

N "90

. iaver 2( ) . . k . dfp} *
Lein, = _ Z2Ver — (1, ) (i-1) i i i —etf,*dg
gz€ > e (B f{k[Rp—FZkR]fp—kraverS dsl®

ji=1 [

2242 <2n—1— %) Kpm —

2‘{2av er N9

4-3n dpy?
- ( P;‘) -3 (nl—n— E) K2t L. (6.10a)

aver

‘E’E)Z L (2;1141— 2—2) ke + ... (6.10b)

N

ix ir avet;\ —iw (J b
cee © e k(z-0)f*; d&

i=1 (7.3)

N o
N ir? —oi j—
gl — Fan Ze B (D f K(Zh-2KZI)f*2dE
o 0 (7.4)

A similar equation will result for A,.

It should be noted that from the expression for g (see
(7.3), (6.3)) it follows that the distortion of the closed orbit
due to field disturbances does not depend on the fcator A
as might have been expected.

B. Parametric resonance

Nip 2= kg 27+ 35 2 (1.5)

dA, 1(1,-28%)
_d__ = iNAy, zAp+gpe ¢ PTA* (7.6)

where the denotations are the same as in (6.11), (7.1) -
(7.4). A similar equation will result for A,.

C. Relation between the radial (¢ ) and axial(z ) oscillations
@) Nugitg) = 2kn + 8, .7

dA, ) dA,
ds = 2 ds

= g, A, (7.8)

. k df’
i i nf JEAL #
{ KIKR? + R’ + 5011 Taver S do }fp az, (7.9

(7.10)
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b) N(u, + p) = 2kn - 3, (7.11)
dA, s dA, i
—F i(n,-38) ¥ =g, N7~88) A _*
dS gpe e A b dS g ( ) P
(7.12)

where goel”o is expressed by the formula (7.9) with f,,
df,/d% changed to f,*%, df,*/d9, and g™z by (7.10)
with f,, df,/d9 changed to f *, df,*/d9.

The condition (7.11) for weak-focusing magnets (in-
cluding race-tracks) can be fulfilled nowhere within the
region of stability (0 < n < 1).

The distortions of ideal magnetic sectors through small
angles X(9) near the azimuthal direction are an example
of a disturbance which gives a relation between the ¢
and z oscillations of the type (7.7) or (7.11).
Here

R(9)~ - X(8), Re(8) =~ — 2n(H)X(#H),
S(9) ~S4(8) ~0 (7.13)

appear.
In the case of alternating-gradient focusing (|n| >1),

according to (7.13) we need take into account only Ry(9),

so that for the coefficients in (7.8), (7.12) we get the rela-

tions :

gzei"']z = gpe“)p = gei'f)

(7.14)

g€z = - geelo = —ge ',

8. Non-linear resonances

It is necessary to distinguish non-linear resonances of
two types, corresponding (A) to an ideal field, and (B)
to a disturbed field. We write now the conditions for
these resonances up to the third or fourth order, as well
as averaged equations obtained with the help of (6.5) - (6.8)
and determining the behaviour of the amplitudes for
several cases.

(A} Ideal field (non-linear resonances)

Second order

dA .
3up = 2m o+ B, % = g LM AR, g

Ap — gpei(npfsm) Af

-2, = 8§, —F
3] 1 dm
dA.
z . i(n,+8m) A A*
dm BT e (8.2)
dA,
o 20, = 27 + 8, S = g eI A ¥,
dA
z _ Zei(v,z.-Sm)A *Az*
dm & ° (8.3)

Third order
Yoy = 21 + 85 5, —dnpl' = gp,ze‘(”p,z“sp,zm) A, %3,
(8.4)
20, -2y, =3,
dA, i(n,-Smy A * A2 z i(ny,i8m) A 2 A ¥
dm o'l Ag* AL, am g etz Al A,
(8.5)

dA .
e goei(np-3m) Ac* A%,

2Hp+2¥*z:2"+87 .
dm

dA, e
—_— gzel(nz~ m}) Ap*z Az*

dm (8.6)

In the third order, items also appear which do not depend
explicitly on m (see (6.9))

dA, 5 .

dm :(PllApI +P2|Az')Ap,

dA, " .

am = QA+ Q.]A ) .7

Expressions for the coefficients geel%, Pj, Q; etc., which
hold good with random values of the parameters n, n,, n,...,
result directly from the formulae (6.5), (4.8), (4.9).

In the case of alternate-gradient focusing, the inequalities
1< |n|<]n < |n, ], (8.8)

are generally satisfied!®). Using these inequalities, the
expressions for the coefficients in (8.1) - (8.7) can be consid-
erably simplified (for the sake of simplicity we assume
that the energy is at its equilibrium value, ie., £ = Q)
and be reduced to

¥y
3 2
goeito — m—4-‘— / K, f,*3dE
0 8.1
%,
. iArs ) )
gﬁ%z’“f?/mwﬁfﬂ,gww=—%wﬂm
0 8.2)
o
) iar?, ) .
g.elto = — —Zm—/kanlfz*zfpdi, g ez = 2g eito,
0 (8.3
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9
i D‘r‘;‘) ver . -
L€' e,z = — - l; ‘/‘k‘lnzfofzd’é,
0 (8.4")

[y
B 0

i i)\r:ver v i
goellic = 5 ki f JF2dE,  geelz = -ge it
0 8.5)
9,
i i)\r‘zver * * i i
gelo = T“ f kinf 7f%dE, g.els: - geelte
0 8.6")
Do
ML [, . .
PLQ. = *T k nzlfp,zl d€ = ipy, iq.,
0
9,
D‘r:ver 1 2 2 . .
P,,Q, = T k nzlfpl Ile d€ = ip,, iqy
0 (8.7)

As can be seen from (8.7), (8.7'), the terms containing
Pi, Qi give the non-linear effect of the dependence of the
oscillation frequency on the amplitude (cf. (6.10) - (6.11)).

(@ Ayp= plIAPP +- szAzl2 (8.9)
(b) Ay, = Q1IAp|2 + Cl‘alAzl2

In this approximation the oscillation frequency in a
given (say in the p-th) direction depends, however, not
only on the oscillation amplitude in that direction but also
on the oscillation amplitude in another (z-th) direction
and vice versa. This complicates investigations. Practi-
cally, however, the deviations (8.9a), (8.9b) can be assumed
not to be related to each other. In fact, since the condi-
tions for p and for z-motion must be approximately the
same, the functions f, and f, obey the relations
(8.10)

fom ~ 1% foF ~ 1,

where the indexes — and - refer respectively to sectors

N 9y

in, A, E i (i~ ; , A SR
gpelrp = -2—‘ € i h [k {k2 (ZJ + 2zh + %th39) | PO ? Z-'fplz} fods

i=1 0

with negative and positive field gradients. Furthermore,
it may be assumed that the parameter n,, in accordance
with its definition (4.5), will have approximately the same
absolute value but different signs in thzs negative and posi-
tive sectors. It follows from the above that for the coef-
ficients (3.7) the approximative values

©
'1)0

)\rzver b4
Pa~q; ~0,py ~—- Qs ~— 4 k4n2|f|4dg
0 8.11)

are acceptable, so that the expressions (8.93), (8.9b) are
separated.

Thus the non-linear effect (3.7) in the first approximation
under consideration is determined mainly by the para-
meter n, (see (4.5)). The parametsr n, appzars in the
expressions (8.7) only in the second approximation which
we shall not write because it is cumbersoms.

B. Disturbed field (non-linear resonances)

We write out the resonance conditions for a disturbed
field.

Third order

3Nies = Koz ™ + S0z, (8.12)
Nlwo + 2p,) = 2kn + 3, (8.13)
N(w, & 2ug) = 2k + 8 (8.14)
Fourth order
4N, = 2kn -+ 3, 8.15)
NQup £ 2p,) = 2kn + 8 8.16)

The equation describing the behaviour of the amplitudes
in the vicinity of a certain resonance for an ideal field in
the k-th approximation has the same form for the cor-
responding resonance in the disturbed field in the k 4+ 1 - m
approximation if we substitute m by S and take the corres-

. . . in in
ponding coefficients g.e *, g 2 etc.

For example, we give the equation corresponding to

(8.12)
dA (1,-8.8) (8.17)
oA

where

(8.18)
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Analogous expressions for (6.13) - (6.16) can be obtained
from (4.8), (4.9) and (6.5) and, if necessary, for higher
orders.

9. Influence of non-linearity on the behaviour of ampli-
tudes near linear resonances

Let us consider the motion of particles in the vicinity
of linear resonances, with ailowance for the influence of
the non-linear terms (8.7), (8.11). It will be shown that
various possible cases can be investigated by a uniform
procedure by a certain substitution of variables. For
non-linearity up to the fourth order the solution for a,, a,,
depending on s (or m), can be expressed by elliptic
functions.

A. Parametric resonance

We shall examine the method employed in greater
detail on the example of parametric resonance. According
to (7.5), (7.6) and (8.7), the equation for the amplitude A,
(and similarly for A;) may be written as

dA i(n_— .
T = iNAu + g e PeIA; + INDi|AGA, (9.1)

where the expressions for Ap,, gpem", p, are given by the
equations (6.11), (7.4) and (8.11).

Of considerable interest, as a rule, is the behaviour of

Using (9.2) instead of (9.1), we obtain a system of equations
with respect to a,, o

da, dag . ‘
s BeRCOS W, —E = NAy, - g8, sin wg + Np,a.?,

(9.3)

in which we change the independent variable S to w (the
index ¢ is omitted).

c_l;a_ _ ga Cos W
dw  2(3,-gsinw + Np,;a?)’

de }_ g8
dw 2 2(3,-gsinw -+ Np, a?) (9.3a)
where
w = 20— + 288 9.4)
~and 3, is the complete “detuning”, equal to
3, = NAp + 38 9.5
We integrate the first equation (9.3a). We then sub-

stitute the expression for w = w(a) in the first equation
(9.3) and obtain its integral in the form of

a

the absolute values a,, a, of the complex amplitudes S 2 /‘ ada
A, A, = Np. 4 ’

P ' . pra [_E[l (az-ad)J2 9.6)

A = ae'®, A, == a,ci*? .2 *T
where the roots a; are equal to
o - (£) g-3q + {[g(F) 8> ~2Np, a3 (g sin w, - 3, — (Np/2) ad)}' /2
1,2,3,4 Np, 9.7

where the upper sign in brackets refers to a?, and the
lower one to aj,, , and w,, a, are the initial values of the ar ada
respective magnitudes. Sper = £ f —_

Thus S is expressed through a by means of an elliptic Npla [ {-,E (a® - a))}? (9.8)

integral of the first kind F { ¢ (a%/a}), k (a?/a}) }, and a%/a2, on
the other hand, is expressed by S with the help of one of
the Jacobi functions Sn {u(s), k(a?/ad) }, the tables of
which are given, for example, in ', The amplitude a
oscillates between two extreme values (boundaries of the
“potential well”) : a; < a << a, and never tends to infinity
if p,# 0. The values a,, a, coincide with the two values
of the roots a; (see (9.7)), which come closest to a, from
above and below. The period of the non-linear oscil-
lations sper €quals

a

and is expressed by a complete elliptic integral of the
first kind.

For the purpose of comparison we shall consider the
case in which the non-linear terms are not taken into
account

(p1 ~0).

Then instead of (9.6) we obtain the integral

ada

S=a}
°f {(g®~3}) a* - 28, (g sinw, - 8y) af a®- (g sin w, — 8y)% aj /2 9.9)

L)
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which, depending on the relative value of the complete“detuning™ 8,, leads to three different results :

(a) &% > g? (the “detuning” is large and the point representing it is outside the stop band) :

3 — g Sin Wy ‘7{
a=a, —)

o g

i.e. oscillation of the amplitude (modulation) takes place
with the period

Sper = W/\/Sf:— g?

As we approach the boundary of the stop band the depth
of modulation and its period increase infinitely.

(5.11)

(b) & = g? (the “detuning” is small and the point
representing it is on the boundary of the stop band :

as -1g= 8 {1 + 2gs[(1 & sin w,) gs + cos w] '/
©9.12)

i.e., a increases infinitely with S.
() d% < g? (the “detuning” is small and the point
representing it is within the stop band :
a~eve-tn'g (9.13)
i.e., a increases infinitely irrespective of the initial condi-
tions.

Thus, under condition (a), taking the non-linearity
into consideration can lead to only small corrections to
the amplitude, but under () and (c¢) the non-linearity
influences the solution considerably. Let us consider the
characteristic particular example when the representative
point is in the middle of the instability strip 3, = 0 and
the initial conditions are such that sin w, = 0. In this
case the values a; etc. occur in the following sequence :

al<al<0<al<al<al, <al, 9.14)
where a2, corresponds to the minimum of the potential
well and a oscillates within

2 | N2 294 _ y 2 1 N2 za4+

Ve PBE g o YE TN e

Np, Np,

(9.15)
with the period

2K(v) o g
Sper=——"—"————,8INY = ————
,\/gz + N2p12a04 \/gz + sz%ao:t

(9.16)

where k(y) is a complete elliptic integral of the first kind.
If the maximum permissible value of the amplitude amax
is pre-set, then with the requirement that a, < apux
we obtain the restriction for the initial amplitude

8y ~sin[24/8% - g2 S} + arcsin

g— 3, sin wo}%

3, —gsinw, 9.10)
1
2y = [(Np‘azmax_g)z = gz:li ©.17)
(Np,)?

With other values of 3, sin w, we obtain similar results.

B. Simple resonance coupled with parametric resonance

According to (7.1) - (7.4) the equation for the amplitude
may be written as

d o o
% = iNAgA, + coe o0 . ge' (e %M A%

+ iNpy|ALJPA,

(9.18)

and similarly for A,.

This case corresponds to a simultaneous considerable
distortion of the closed orbit (connected with the disturb-
ance ¢,) and an increase in the oscillation amplitude
near this orbit (owing to parametric resonance). From
(9.18) we obtain the system (the index p is omitted)

(E—a + ccos v
dSMg COS W c s

do ) c .
= NAp - gsinw— S sinv + Npja?, 9.19)

where w is expressed by equation (9.4) and
v =oa+ 88y (9.20)

A closed orbit with a period equal to its revolution has
the solution

a = ay = const (9.21)
where a, can be determined from the equation
S;+tg [
: a — =0 9.22
B+ Np, w ok Np: ¢ )
In the absence of non-linearity (p, ~ 0)
c
ay = (9.23)
R '

The appearance of the term g in equation (9.22) and in
the expression (9.23) characterizes the influence of the
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proximity of parametric resonance on the amplitude of
the closed orbit.

The effect of parametric resonance may be considered
as in section A above.

C. Connection between ¢ and z oscillations

For a connection of the type (7.10), taking into account
(7.14), we get the first integral

a; + a; = const, 9.24)
which shows that in this case energy passes from the p
to the z oscillations and vice versa, the oscillation ampli-
tudes remaining limited.

In an other case of the relation between the ¢ and z
oscillations (7.11) the first integral is

a% -aZ = ¢ = const 9.25)
from which it follows that the amplitudes of the p and
z oscillations can increase indefinitely, and hence it may
prove important to take the non-linear members into
consideration. The equations (7.12), (7.14) together
with (8.7), (8.11) may be re-written as :

dA, i(n-3

2~ ge S A; + iNp, | A, PA,,

ds

dA, im-%s) ,

— = ge A; -iNp, | A; PA,

ds 9.26)

from which follows the system of equations (see (9.2))

day/dS = ga,cosw, deo/dS = —(ga,/a,) sinw -+ Np,a.?,

.27
da,/dS = gacosw, d«,/dS = —(g ay/a,) sinw—Np,a,?
(9.28)
where
W=+ o, + 8S—9 (9.29)

The influence of non-linearity in this case manifests itself
in the “detuning” value changing from & to 8 non-linear

3 non-linear = 3§ + ¢Np, (9.30)

where, according to (9.25), ¢ is determined by the initial
conditions. The linear and non-linear problems, there-

fore, are actually solved in the same manner except that §
should be changed to 3 non-lin. in the final expressions.

The solution of the system (9.27) - (9.28), depending on
the relative “detuning” value 8 non-linear, results in three
cases similar to (9.10), (9.12), (9.13) :

(@) &% non-linear > 4g® (“detuning” is high) - the
amplitudes a, and a, oscillate between their extreme
values, determined by the value & non-lin., the oscillation
period being equal to

2r

VG F Np — 4g°

(b) &2 non-linear = 4g2, (¢) 8 non-linear < 4g? (“de-
tuning” is low) — the amplitudes increase infinitely despite
non-linearity.

Sper =

.31

10. Behaviour of amplitudes in the vicinity of non-linear
resonances

A. Ideal field

Using the same scheme as above, the behaviour of
the amplitudes in the vicinity of non-linear resonances
(8.1)-(8.6) and (8.12) - (8.16) is investigated, taking into
account the terms of the third order in (8.7) containing
p; (cf. (8.7), (8.11)).

Second order

(a) Let us consider in greater detail the case (8.1);
omitting the index p

dA/dm = gel("3) A*2  ip |APA (10.1)
The system for a, « is
da/dm = ga® cos w, d«/dm = ga sin w + p,a?, (10.2)
where
w=7-38S-3a (10.3)

Solving the equations after the scheme (9.3) - (9.6), we
obtain the result in the form of the quadrature

a
ada

"= ) o@D
-1 10.4)

where

9p? 32 3 3 8 2
G(a?) = - il a® 4 g2a®-1 [5 -3p,a2 (— p.al + 2 + ga, sin wo)] at +ald [,_2 + ga, sin w, + 3—;2%] a2

16 4

. . 3 . 3p,al [ 3 3p,al
- aﬁ{ [gzaﬁ sin® wy + 8§ (Z + 83, 8iD Wo)] + % [5 + %") + ga, sin Wo:l }

(10.5)
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Thus a is expressed by s through elliptic functions which
we shall not write out. If we do not take the p, terms into
account and if we assume that there is no “detuning”
(3 ~0), the expressions (10.4), (10.5) become much
simpler and can be presented as

o s [o/3+ 1)-(v§-l>cn<x,ko)]%
a = 3 (sin W) 1 +cen(X k) ’
(10.6)

where cn (X, k) is an elliptic cosine, k, = sin 15°,

4 -—
x = 24/3 a, (sin wo) V2 gm + F(p,, k),
wo=7-3a, €08 ¢ =1[(/3+ 1) (sin wo** -11[(/3- 1)

(sin w3 + 1], (10.7)
and F(p,, k) is an elliptic integral of the first kind. In
the case (10.6) the amplitude may increase considerably
in the course of a few revolutions. Thus, if the terms
with p; are not taken into account, the representative
point should not be drawn nearer to the line 3u, = 2«
i.e., a sufficiently large “detuning” should be taken

3 > Zamax (10.8)

32

5al 5
G(a?) = g2’ (Zgzc2 + :1->a4 -+ [g%“—gSau (al-c?)sinw, -+ a°:| a?-a; (aﬁ—c2)2[ 2

w = —% + 20, — oy — 3m 10.11)
In the simplest case of precise resonance in the absence
of “detuning” (8 ~0), the roots of G(a?) occur in the
following sequence

O<al<al<al<c®<al (10.12)
For example, with sin w, =0, a, =0, al= c? with
sin wy = 1,a? < a2, al=a?, etc. In the transfer of
energy from the p to the z oscillations (and vice versa)
a? oscillates between the roots a? and al which are
the boundaries of the corresponding potential well.

The oscillation period of the value a2 is equal

2 2 2
= . -2
m = —— k , siny =
per gy/ala’ () Y l/

al-a?’
(10.13)

where k(vy) is a complete elliptic integral of the first kind.

It should be noted that condition (8.2), applied to a
weak-focusing continuous magnet, gives the relation

Vitn-2y/n=3 ie.

n~0,2 (10.14)

If, however, the “detuning” is small, 8§ ~0, the non-
linearity of the type (8.7), (8.11) must be rather large
p? > g? to limit the amplitude. The condition (8.8) can
provide fulfilment of this inequality.

From (10.4) and (10.5) we can obtain with some pre-
cision the data on the necessary value of “detuning” and
non-linearity (8.7) for various conditions. For this
purpose, it is necessary to require that the root of the
function G(a?) which is closest to a2 should be smaller
than a?,x, since this root gives the limit value of a?
attainable under conditions of oscillation.

B. Connection between non-linear ¢ and z oscillations

For a connection of the type (8.2), according to (8.2")
we obtain the first integral

al + aZ/2 = ¢® = const, (10.9)
which indicates that the amplitudes are limited. The
same integral is obtained if we take into account the non-
linear members of the third order (containing p; (8.11)).
The value m is connected with a, = a by the same equa-
tion (10.4) where G(a?) (with p; ~ 0) has the form of

) 2
e 1
2 2ty B W"] * (10.10)

This is the well-known coupling non-linear resonance
which plays an important part in synchrocyclotrons 29),
In this case the general and not simplified expressions
should be used for the coefficients (8.2"), and instead of
(10.8) we get

a}
aj + —————— == c? = const

4 (1 " @) (10.15)

m

There is some difficulty in obtaining in this case expres-
sions similar to (10.4) and (10.10) - (10.13) if we put

m~ 9, g ~n,/2,/0,2 etc.

In case of a coupling of the type (8.3) and (8.3") we
obtain the relation

al-a}/2 = C? = const (10.16)

so that the amplitudes (without considering the terms
with p;) may increase indefinitely. Again the equation
(10.3) is true, in which
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G(a?) = g?a® (a®-?) - aj (a)-c)? {g sin wq ~

If p, ~0 we obtain the same expression (10.9) but inas-
much as (10.8) is substituted by (10.15) we obtain (with
3 ~0), instead of an exchange of energy between the
¢ and z oscillations, their unrestricted excitation. For-
mally, this corresponds to the case where instead of
(10.12) the inequality

a < a? (10.18)
is realized, as® being the largest root of (10.10). As in
the case of (10.1), therefore it is not permissible, generally
speaking, to approach the line yy + 2u, = 2.

The value of the required “ detuning” or non-linearity
of the third order (8.7), (8.11) is determined from (10.4),
(10.17).

Third order

Non-linear resonances of the third and higher orders
can be examined in exactly the same way as those of the
second order. The results for the cases (8.14) - (8.6) are
analogous to those given above for (8.1) - (8.3) respectively.

B. Disturbed field

Where necessary, there should obviously be no great
difficulty in avoiding the deleterious action of the non-
linear resonances investigated above in an ideal field by
selecting the working cell on the stability diagram at a
sufficient distance from the respective resonance lines.
In this sense, the non-linear resonances corresponding
to the disturbed magnetic field may be more dangerous.
The expression for the conditions of attainment of these
resonances contains the value N, which stands for the

277

[(8 + 4pc?) (a*-ad) --—(a* 0):I} (10.17)

o(ao'cz)

number of periodicity elements of the magnet, in analogy
to the case of, say, parametric resonances. In conse-
quence, lines of non-linear resonance are found to exist
on disturbances in the immediate vicinity of any repre-
sentative working point. This may lead to the necessity
of increasing tolerance requirements.

The behaviour of the amplitudes in the vicinity of
non-linear resonances in a disturbed field is calculated
in the same way as in the case of an ideal field, above.
Since the corresponding equations contain functions
describing disturbances, Z(9), R.(9) etc., these functions
must cither be pre-set on the basis of certain additional
considerations or considered as statistical values, as in
estimations of the linear theory. For the resonance
3Np, = 2kn 4 3, for example, the expectation obtained
is naturally similar to (10.8) in which g will then stand
for the average square value

By
o )\Nrmer 2
TR fkfsd@ (10.19)
0

To limit the amplitude by non-linearity of the type
(8.7), (8.11), the condition p,® >>§2 must be fulfilled where
g? is given by the formula (10.19).

Using the above equations for the amplitudes and
employing, for example, the stationary phase method, it
is possible to find the result of passing through various
resonances with the slow change of parameters connected
with synchrotron oscillations.
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