Indian J Phys
https://doi.org/10.1007/s12648-024-03340-y

Check for
updates

ORIGINAL PAPER

Quantum flux effects on generalized Klein-Gordon oscillator field
in a topologically charged Ellis-Bronnikov-type wormhole

F Ahmed' ®, H Aounallah® ® and P Rudra®*
lDepartment of Physics, University of Science & Technology Meghalaya, Ri-Bhoi, Meghalaya 793101, India
Department of Science and Technology, Echahid Cheikh Larbi Tebessi University, Tebessa, Algeria

3Depanment of Mathematics, Asutosh College, Kolkata 700026, India

Received: 10 February 2024 / Accepted: 05 July 2024

Abstract: The work primarily deals with the relativistic quantum dynamics of the oscillator field. It uses the generalized
Klein-Gordon oscillator in an Ellis-Bronnikov-type wormhole space-time with a topological defect. The study involves
deriving the radial wave equation and incorporating both Coulomb and Cornell-type potential functions. The analytical
solution of the wave equation elucidates the influence of the topological defect of the geometry and the wormhole throat
radius. The eigenvalue solution of the oscillator field highlights significant modifications to the results, underscoring the
impact of the topological defect.
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1. Introduction

The exploration of curved space-time’s influence on
quantum mechanical phenomena has captivated research-
ers since the inception of quantum mechanics. Numerous
studies have investigated the quantum dynamics of both
relativistic particles (via the Klein-Gordon equation, DKP
equation) and non-relativistic particles (via the Schrodinger
equation) in various curved space-time backgrounds,
including Godel and Godel-type space-times, Kerr and
Schwarzschild black holes, as well as curved space-times
with topological defects such as cosmic strings, global
monopoles, cosmic dislocations, and spinning cosmic
strings. These investigations have revealed that the gravi-
tational effects arising from curved space-time with topo-
logical defects can significantly alter the energy spectrum
and shift the eigenvalue solutions of quantum particles
compared to results obtained in flat space. Additionally,
researchers have explored a plethora of scalar and vector
potentials, including linear confining potentials, Coulomb
potentials, Cornell-type potentials, Mie-type potentials,
pseudoharmonic potentials, among others, in both
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relativistic and non-relativistic quantum systems. Further-
more, the introduction of external magnetic and quantum
flux fields has been examined to analyze their effects on the
eigenvalue solutions of quantum particles. Cosmic strings
[1-3] and global monopoles [4—7] have been extensively
studied as topological defects in quantum systems, span-
ning both relativistic and non-relativistic regimes. These
defects are believed to have emerged in the early universe
through the breaking of symmetry, giving rise to peculiar
geometric structures. Although experimental observation
of these objects remains elusive, theoretical investigations
in various fields such as gravitation, cosmology, and solid-
state physics persist. Of particular interest in recent years is
the study of global monopoles in the context of quantum
mechanical problems [8-16], which is the focal point of
our current research endeavors.

In the realm of quantum mechanical systems, investi-
gations into the oscillator field, whether through the Dirac
oscillator, Klein-Gordon oscillator, or the DKP oscillator,
continue to garner significant attention within the physics
community. This oscillator field has been extensively
explored in curved space-time with topological defects,
amidst backgrounds of topological defects space-times
featuring external magnetic and quantum flux fields.
Moreover, many researchers have introduced scalar and
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vector potentials of various forms, analyzing their effects
on the eigenvalues of the oscillator field. Among these, the
Klein-Gordon oscillator (KGO) stands out as one of the
most prominent forms of quantum oscillators employed in
relativistic quantum mechanics. This is primarily because
the KG-oscillator can effectively describe the correspond-
ing non-relativistic quantum harmonic oscillator as
described by the Schrodinger equation [17]. Inspired by the
Dirac oscillator [18, 19], investigations into the KG oscil-
lator have been conducted under various theoretical
frameworks. Some of these setups include explorations
within the context of the Kaluza-Klein theory [20, 21],
anti-de Sitter space-time [22], space-time with torsion [23],
cosmic string space-time [24-26], under the influence of
central potentials [27-29], and amidst Lorentz symmetry
violation effects [30, 31]. Recent works on KGO in dif-
ferent geometry backgrounds can be found in Refs.
[32-35].

Wormholes are tunnels or short-cut paths between two
different regions of spacetime in the same universe or even
two parallel universes [36, 37]. The wormhole spacetime is
the exact solution of Einstein’s Field equations violating
one or more energy conditions, especially weak energy
conditions (WEC) and null energy conditions (NEC). The
first such attempt was undertaken by Einstein and Rosen
together, which is known as the Einstein-Rosen bridge.
Later on, several authors have constructed wormhole
solutions in (1+2)-, (14 3)- and higher dimensions
without or with the cosmological constant in the literature
(see Ref. [37] for a detailed discussion). Of all the known
wormbhole solutions, the simplest example of a wormhole
solution was given by H. G. Ellis [38] and K. Bronnikov
[39] independently, which is called Ellis-Bronnikov (EB)
wormhole space-time. The Raychaudhuri equation for the
congruence of a radial null geodesic in the EB wormhole
spacetime is given by,

de , 0
E = —leK’uK — 7 (1)

where © is the congruence expansion, A is the affine
parameter connected with the geodesics, Ry, is the Ricci
tensor and x* is a null tangent vector to the geodesic. Near
the throat of the wormhole, the congruence expansion is
reduced to zero, i.e., ® =0, but 42 >0, which implies
from eqn. (1) R,,,x*x" <0 which is a clear violation of the
null convergence condition (NCC) [40]. When we take
general relativity (GR) into consideration, a violation of the
NCC is equivalent to a violation of the null energy con-
dition (NEC). In GR it is known that the energy conditions
specify the attractive nature of the gravitational fields,
which are generated from the conventional sources of
matter. For a wormhole, there is a direct violation of these

conditions near its throat. This indicates that there is a
requirement for some form of anti-gravitational effects to
keep the throat of the wormhole open, thus sustaining it. It
is theorized that these anti-gravitational effects can be
generated by some form of exotic matter known as dark
energy (DE). EB wormhole is a solution obtained in the
background of Eddington-inspired Born-Infield (EiBI)
gravity [41], which describes a static and spherically
symmetric spacetime with the topological charge of GM
[42, 43]. This solution was obtained by coupling the
energy-momentum tensor of the exterior region of the GM
core with the geometry of spacetime. The EB wormhole
has been explored under various set-ups in the literature
[44-46].

A static and spherically symmetric space-time describ-
ing the Ellis-Bronnikov-type wormhole with a point-like
defect is represented by the following line-element (x° =
t,x! =x,x% = 0,x° = ¢) [44-47]

d 2
s = —di* + a_xz + (¢ +a) (d0* +sin? 0d¢?),  (2)

where a = const is the wormhole throat radius. For oo — 1,
this space-time becomes Ellis-Bronnikov wormhole while
for a — 0, the space-time becomes a point-like global
monopole [8-16].

Our investigation is motivated by the findings presented
in Ref. [45], which explored the quantum effects of the
Klein-Gordon oscillator in a topologically charged Ellis-
Bronnikov-type wormhole space-time. Expanding upon
this work, we delve into the quantum dynamics of the
oscillator field within this wormhole space-time back-
ground using the generalized Klein-Gordon oscillator. We
examine two distinct types of potential functions, namely
Coulomb- and Cornell-type, and derive the corresponding
eigenvalue solutions. Subsequently, we scrutinize the
influences of the topological defect and the wormhole
throat radius on these eigenvalue solutions. Our analysis
reveals that the energy levels and wave functions of the
oscillator field are indeed affected by these factors. Fur-
thermore, we observe that the eigenvalue solution differs
from the results obtained in [45] and undergoes
modifications.

2. Eigenvalue solution of generalized oscillator field
in wormbhole space-time

In this section, we study the relativistic quantum motions
of a generalized KG-oscillator in a wormhole space-time
background with a point-like defect. The relativistic
quantum dynamics of spin-O scalar particles in curved
space-time is described by (system of units are chosen as
c=1=h=0G)
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—\/%_g Oy (\/—_gg“" av) +M*| P =0, (3)
where M is the rest mass of the particles, g, is the metric
tensor with g being its determinant.

The oscillator field is studied by substituting 0, —
(0, + M wX,) [33, 48-55] in the above wave equation,
where o is the oscillator frequency, and X,, = (0,f(x), 0, 0)
with f(x) as an arbitrary function. If f(x) = x, then the
quantum system is called the Klein-Gordon oscillator.

Therefore, the relativistic wave equation of the gener-
alized oscillator field is described by [33, 48-50, 52-55]

\/%_g(au +waﬂ)(\/:§gi“')(av _ MU)Xy):|\P _ M2 W
(4)

Expressing this wave Eq. (4) in the space-time background
(2), we obtain the following equation

[;;Jr(xzfaz) (;C+wa(x)>
%f+a5QiMwﬂ@)}

_~_¥ LE sin@g +L672
(x2 +a?) | sin0 00 00/  sin® 0 d¢*

¥ =MV
(5)

The wave function W can be expressed in terms of different
variables by the method of separation of the variables. We
choose a possible function ¥ in terms of the function v (x)
given by

LI’(x, 0, 4)) =e ' Yf-m(ga }) lﬁ<x)7 (6)

where Y;,,(0, ¢) is the spherical harmonics.

Substituting the wave function (6) in the Eq. (5) and
after separating the equations for radial and angular parts,
we obtain the following differential equation in terms of
the wave function (x) as:

” 2x /
¥(x) + @t W' (x)
, 2Mox , 5 20 2
g /W M f () =M ) — o =0,
(7)
where different parameters are defined as
2 2
b2:E -M 1226(64—1). (8)
2 o2

To solve the differential equation given in Eq.(7) using
special functions, we will consider two different types of
functions f(x) as follows.

2.1. A coulomb-type function

In this part, we consider the function f{x) to be a Coulomb-
type potential form function. It is well-known that Cou-
lomb potential (o< %) is responsible for short-range inter-
actions and has been studied in different phenomena, such
as H-atom, and quark-antiquark interactions. The Cou-

lomb-type  potential function  is given by
[33, 48-50, 52-55]

n
f@ =" n>o. ©)

Substituting this function (9) into the Eq. (7), we obtain the
following equation

V6 + s V)

> (10)

bzi(jz_%)i v

+ x2 (x2 +a2)

Y(x) =0,

where we set the parameters
1
j—<Ma)11—2), v=+2Mwn+ 12 (11)

We aim to obtain solution of the quantum system under
investigation. Let us consider a possible solution ¥/(x) as
follows:

Y(x) = G(), (12)

where G(x) is an unknown function.
Thereby, substituting this solution (12) into the Eq.(11),
we finds

2 1+2}|
G/l(x) + |: 5 X 2+( + l]):| G/(.x)
X+ a X (13)
1+2|j| —v?
2
Finally, introducing a new variable via u = —’a‘—z in the

Eq.(13), we obtain the following differential equation for G as:
1+ 1
+ i }G@

_|_
. [—i(a2b2+1+2{j —vz)+%(l+2[j|—02)

G"(u) + [

u u—1
u u—1
G(u) = 0. (14)

which is the confluent Heun equation form [44-47, 57, 58],
and hence, G(u) is the confluent function given by
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2b2 2b2 1_2
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1
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To solve the above differential equation (14), we use the
Frobenius power series solution given by [59]

Gu) = i ciu'. (16)
=0

1

Substituting this power series in the Eq.(14), we obtain the
following recurrence relation

{4(k+1)(k+2+U|)+a2b2+1+2V|*UQ}CJM —a b

k2 = Ak+2)(k+2+ ) ’
(17)
with the coefficient
2b2 1 2 i — 2
¢ = (a +1+2]j| =) co. (18)

4(1+1D)

To obtain solution of the quantum system, we must
truncate the power series (16) to a finite degree polynomial
such that the wave function y is regular everywhere. Let us
consider k = (n — 1), where the coefficient ¢, 1 = 0 such
that the wave function s is finite everywhere. Thereby,
imposing the condition k = (n — 1) with the coefficient
cur1 = 0, we obtain from the relation (17)

a’ b?
[4n(n+1+j])+a2b?+1+2]j| —v?]

Cn = Cn—1-

(19)

Now, using relation (19), one can obtain the individual
energy levels and the corresponding wave functions for the
mode n = 1,2, 3... of the oscillator field. In this work, we
consider one such case defined by the mode n = 1 which
we call the ground state of the system. Thus, from (19) we
obtain

a? b?

AR+ +a2pr+1+2f—v] " (20)

Ccl =

Now, comparing Eqs.(18) and (20), we obtain the ground-
state energy level as follows:

The corresponding ground-state wave function will be

Vi = ”<UH%>
{ u{—li\/(l+U)(12+2M6071)—(3+2U|)U}]
1+ o

2(1+1iD)

Equation (21) denotes the lowest state energy level, and
(22) represents the corresponding wave function of the
oscillator field. These results are obtained by employing a
Coulomb-type potential function in the background of a
topologically charged Ellis-Bronnikov-type wormhole.
Similarly, one can find the energy levels Ej ¢, E3y, ... and
the wave functions v, ;, /53, ... for modes n > 2. It is evi-
dent that these energy levels and wave functions are
influenced by the topological defect of the geometry,
characterized by the parameter o, and the constant radius
a of the wormhole throat. These factors lead to modifica-
tions in the energy levels and wave functions.

2.2. A cornell-type function

Here, we consider the function f{x) as a sum of two terms
with the Coulomb-type potential as one of them. This is
called the Cornell-type potential function. The Cornell-
type potential is a special case of the quark-antiquark
interactions which has one more harmonic potential term
[56]. This Cornell-type potential function is given by

f(x)z(ZJréx), n>0,0>0. (22)

Note that for # — 0, this potential function becomes linear
in x and the quantum system is called the KG-oscillator.
For 6 — 0, the function becomes a Coulomb-type which
we discussed earlier. This Cornell-type potential form
function has widely been investigated in the context of
quantum systems by various authors in the literature
[33, 48-55].

Thereby, substituting this function (22) in the Eq.(7), we
obtain

Eiy= \/M2+2a°f {(§+Mwn— I _%) /(1 +]) (2 +2Mon) — (3 +2]j]) m}, (21)

where 2 = [ (1 +1)a?.
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W 0)+ sy V)
2_1'2_*%_1372_1‘/[2 2 52,2 —0
+ [6 x2 (22 + a?) wrox }zﬁ(x) ’

where different parameters are

@=Vv2-2Mwda?.
(24)

=P -Mwvd(3+2Man),

In the context of quantum mechanical systems, a
fundamental requirement for the wave function is that it
should be regular everywhere. This implies that the wave
function, ¥(x), must remain finite both as x approaches
zero and as x goes to infinity. At small values of x — 0, the

wave function behaves as ~ xUI*2 and at large values of

x — oo, it behaves as w(x)Ne*%Mwéxz

suitable wave function, y(x), as follows:

Y(x) = A2 MO0 Gy, (25)

. Let’s explore a

Substituting this solution (25) in the Eq.(23), we obtain the
following differential equation

(L+2)) 2x
G//(X)+ {f—ZMwéx—i—m G/(X)
Mt ———| Gx) =0
+[ +(x2+az)} =0
(26)
where
O=br-Mwd(T+2Mon+2lj), 27)
E=1+2]|-o*+2Mwdd’.
By changing to a new variable viau = — 2—2 in the Eq. (26),
we obtain
1+ 1
G'(w)+ [M s Pl -]
(a4 E)  (2/4)1 (28)
—; (Ma*+E )
Jr[ 4 ” +E411)}G(u):0’

which is the confluent Heun equation form [44-47, 57, 58]
and the Heun function is given by
et FEé+1 -
su .
4’ 4 ’

G(u) = H, (Mwéaz, lil, 0, —
(29)

To solve the differential Eq. (28), we use a power series
solution G = >, ¢; x' [59] into the Eq. (28), we obtain
the following recurrence relation

Ckt2 =
{4(k+ Dk +2+ i 7Mw5112)+1'[a2+5}ck+] +(@AModdk—Td) ¢
Ak +2)(k+2+|j]) ’

(30)
with the coefficient
HNa*+ 2
Cl = ———~ Co- (31)
4(1+j])

Similar to the previous analysis done in this paper, let us
consider k = (n — 1) where the coefficient ¢,;; = 0. We
finds

AMwda® (n—1)—Td?
Cp—1-
[4n(n+l+[i| —Mwéaz)—i-l_[az-i-E}
(32)

= —

The ground state of the quantum system is defined by
n = 1. Thus, we obtain using (32) the following coefficient

MMa*
[4(2+U| —Mw5a2)+Ha2+E}

c] = Co. (33)

Comparing Eqs. (31) with (33) and after simplification, we
obtain the energy level E;, given by

2
E = i\/M2 +5{e+Musa7+2mMon)},
’ a
(34)
where we have set the parameter

@ =2Mwddl|j—2|j|+a* -3

+ 2\/73 il =272+ @1+ [j]) —2M w5 a? (|j| +2) + M? @? 5% a,
w=\12+2Mw(n—da?),
(35)

where 1 is given in Eq.(8).
The ground state wave function will be

= u(lil_%) exp <7% Mw5u2>

1+E(Mo)5a271) u o
2 (14D 2(1+1iD)

1/2
{—3U-—@2+w%1+v)—2Mwéa%m+2)+M%#5%#} }
(36)

Equations (34)—(35) represent the ground state energy
level, while Equation (36) denotes the corresponding wave
function of the oscillator field. These results are obtained
by selecting a Cornell-type potential form within the
backdrop of a topologically charged Ellis-Bronnikov-type
wormhole. Similarly, one can derive additional energy
levels Ejy,E3y4,... and wave functions V5, ... for
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modes n>2. It is evident that the eigenvalue solutions
depend on the topological defect characterized by the
parameter o and the constant radius a of the wormhole
throat, leading to modifications in the energy levels and
wave functions.

Now, we compare our result with the one obtained in
Ref. [45]. Let  — 0, and hence, the function f(x) o x, that
is, a linear function. In this case, the quantum system is
called the KG oscillator. Therefore, for  — 0, the energy
eigenvalue will become

o ~
El_g:i\/M2+—2(®+7Mw5), (37)
a

where

O=">*-Mwsd®—4

3 R (38)
+2 —2—|—§ 12— 8Mwda? + M?*w? 6 at,

with 1 given in the Eq. (8).
The corresponding ground state wave function will be

(Mwda*—1)

1
+u 3

1
Vi :uexp(—EMwéuz)

(39)

:I:g\/—Z—&—% 2 —8Mwda® +M2w252a4].
Equations (37)—(38) represent the ground state energy
level, and (39) denotes the corresponding wave function of
the KG-oscillator field in the background of a topologically
charged Ellis-Bronnikov-type wormhole. It is noteworthy
that the results presented in this section diverge from those
obtained previously, as there was an error in the earlier
analysis (Ref. [45]).

3. Conclusions

Exploring quantum mechanical phenomena within the
context of topological defects in space-time is a fascinating
and highly consequential area of research within the sci-
entific community. Topological defects can fundamentally
change the geometric characteristics of the space-time they
inhabit, thereby influencing the behavior of quantum sys-
tems within that space-time. The presence of these defects
can lead to alterations in the energy eigenvalues and wave
functions of quantum particles, departing from the out-
comes observed in flat space and introducing a breakdown
of degeneracy among energy levels.

In this investigation, we derived the radial equation for
the generalized Klein-Gordon oscillator field within the
framework of Ellis-Bronnikov-type wormhole space-time
featuring a point-like defect. We then selected a Coulomb-

type potential function, leading to the derivation of the
radial wave equation. We then solved this radial equation
through the special function of the confluent Heun function
and presented the ground state energy level Ej ¢ in Eq. (21)
and the corresponding wave function in (22) as a particular
case, and others are in the same way. Additionally, we
explored a Cornell-type potential function (a linear plus
Coulomb function) and converted it into the formulation of
the confluent Heun equation after a few mathematical
steps. By employing a power series expansion of the con-
fluent Heun function and conducting subsequent mathe-
matical calculations, we also obtained the ground state
energy level Ej g, as described by the expressions (34)-
(35), and the corresponding wave function v/, ,, as given by
equation (36), for the oscillator field.

It is important to note that incorporating a Cornell-type
potential function in this quantum system led to modifi-
cations in the energy levels and wave functions of the
oscillator field compared to the findings in Ref. [45]. In
both scenarios examined, we demonstrated that the topo-
logical defect parameter o and the wormhole throat radius a
(held constant) exerted influences on the eigenvalue solu-
tions of the oscillator field, introducing adjustments com-
pared to the case without the topological defect (o — 1).
Furthermore, the presence of the topological defect not
only broke the degeneracy of energy levels but also
induced a more pronounced shift in the energy spectrum.
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