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Abstract: The work primarily deals with the relativistic quantum dynamics of the oscillator field. It uses the generalized

Klein-Gordon oscillator in an Ellis-Bronnikov-type wormhole space-time with a topological defect. The study involves

deriving the radial wave equation and incorporating both Coulomb and Cornell-type potential functions. The analytical

solution of the wave equation elucidates the influence of the topological defect of the geometry and the wormhole throat

radius. The eigenvalue solution of the oscillator field highlights significant modifications to the results, underscoring the

impact of the topological defect.

Keywords: Quantum; Wormhole; Modified theories of gravity; Relativistic wave equations; Solutions of wave equation:

bound-states; Special functions

1. Introduction

The exploration of curved space-time’s influence on

quantum mechanical phenomena has captivated research-

ers since the inception of quantum mechanics. Numerous

studies have investigated the quantum dynamics of both

relativistic particles (via the Klein-Gordon equation, DKP

equation) and non-relativistic particles (via the Schrödinger

equation) in various curved space-time backgrounds,

including Gödel and Gödel-type space-times, Kerr and

Schwarzschild black holes, as well as curved space-times

with topological defects such as cosmic strings, global

monopoles, cosmic dislocations, and spinning cosmic

strings. These investigations have revealed that the gravi-

tational effects arising from curved space-time with topo-

logical defects can significantly alter the energy spectrum

and shift the eigenvalue solutions of quantum particles

compared to results obtained in flat space. Additionally,

researchers have explored a plethora of scalar and vector

potentials, including linear confining potentials, Coulomb

potentials, Cornell-type potentials, Mie-type potentials,

pseudoharmonic potentials, among others, in both

relativistic and non-relativistic quantum systems. Further-

more, the introduction of external magnetic and quantum

flux fields has been examined to analyze their effects on the

eigenvalue solutions of quantum particles. Cosmic strings

[1–3] and global monopoles [4–7] have been extensively

studied as topological defects in quantum systems, span-

ning both relativistic and non-relativistic regimes. These

defects are believed to have emerged in the early universe

through the breaking of symmetry, giving rise to peculiar

geometric structures. Although experimental observation

of these objects remains elusive, theoretical investigations

in various fields such as gravitation, cosmology, and solid-

state physics persist. Of particular interest in recent years is

the study of global monopoles in the context of quantum

mechanical problems [8–16], which is the focal point of

our current research endeavors.

In the realm of quantum mechanical systems, investi-

gations into the oscillator field, whether through the Dirac

oscillator, Klein-Gordon oscillator, or the DKP oscillator,

continue to garner significant attention within the physics

community. This oscillator field has been extensively

explored in curved space-time with topological defects,

amidst backgrounds of topological defects space-times

featuring external magnetic and quantum flux fields.

Moreover, many researchers have introduced scalar and
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vector potentials of various forms, analyzing their effects

on the eigenvalues of the oscillator field. Among these, the

Klein-Gordon oscillator (KGO) stands out as one of the

most prominent forms of quantum oscillators employed in

relativistic quantum mechanics. This is primarily because

the KG-oscillator can effectively describe the correspond-

ing non-relativistic quantum harmonic oscillator as

described by the Schrödinger equation [17]. Inspired by the

Dirac oscillator [18, 19], investigations into the KG oscil-

lator have been conducted under various theoretical

frameworks. Some of these setups include explorations

within the context of the Kaluza-Klein theory [20, 21],

anti-de Sitter space-time [22], space-time with torsion [23],

cosmic string space-time [24–26], under the influence of

central potentials [27–29], and amidst Lorentz symmetry

violation effects [30, 31]. Recent works on KGO in dif-

ferent geometry backgrounds can be found in Refs.

[32–35].

Wormholes are tunnels or short-cut paths between two

different regions of spacetime in the same universe or even

two parallel universes [36, 37]. The wormhole spacetime is

the exact solution of Einstein’s Field equations violating

one or more energy conditions, especially weak energy

conditions (WEC) and null energy conditions (NEC). The

first such attempt was undertaken by Einstein and Rosen

together, which is known as the Einstein-Rosen bridge.

Later on, several authors have constructed wormhole

solutions in ð1þ 2Þ-, ð1þ 3Þ- and higher dimensions

without or with the cosmological constant in the literature

(see Ref. [37] for a detailed discussion). Of all the known

wormhole solutions, the simplest example of a wormhole

solution was given by H. G. Ellis [38] and K. Bronnikov

[39] independently, which is called Ellis-Bronnikov (EB)

wormhole space-time. The Raychaudhuri equation for the

congruence of a radial null geodesic in the EB wormhole

spacetime is given by,

dH
dk

¼ �Rlmj
ljm � h2

2
ð1Þ

where H is the congruence expansion, k is the affine

parameter connected with the geodesics, Rlm is the Ricci

tensor and jl is a null tangent vector to the geodesic. Near

the throat of the wormhole, the congruence expansion is

reduced to zero, i.e., H ¼ 0, but dH
dk � 0, which implies

from eqn. (1) Rlmjljm � 0 which is a clear violation of the

null convergence condition (NCC) [40]. When we take

general relativity (GR) into consideration, a violation of the

NCC is equivalent to a violation of the null energy con-

dition (NEC). In GR it is known that the energy conditions

specify the attractive nature of the gravitational fields,

which are generated from the conventional sources of

matter. For a wormhole, there is a direct violation of these

conditions near its throat. This indicates that there is a

requirement for some form of anti-gravitational effects to

keep the throat of the wormhole open, thus sustaining it. It

is theorized that these anti-gravitational effects can be

generated by some form of exotic matter known as dark

energy (DE). EB wormhole is a solution obtained in the

background of Eddington-inspired Born-Infield (EiBI)

gravity [41], which describes a static and spherically

symmetric spacetime with the topological charge of GM

[42, 43]. This solution was obtained by coupling the

energy-momentum tensor of the exterior region of the GM

core with the geometry of spacetime. The EB wormhole

has been explored under various set-ups in the literature

[44–46].

A static and spherically symmetric space-time describ-

ing the Ellis-Bronnikov-type wormhole with a point-like

defect is represented by the following line-element ðx0 ¼
t; x1 ¼ x; x2 ¼ h; x3 ¼ /Þ [44–47]

ds2 ¼ �dt2 þ dx2

a2
þ ðx2 þ a2Þ ðdh2 þ sin2 h d/2Þ; ð2Þ

where a ¼ const is the wormhole throat radius. For a ! 1,

this space-time becomes Ellis-Bronnikov wormhole while

for a ! 0, the space-time becomes a point-like global

monopole [8–16].

Our investigation is motivated by the findings presented

in Ref. [45], which explored the quantum effects of the

Klein-Gordon oscillator in a topologically charged Ellis-

Bronnikov-type wormhole space-time. Expanding upon

this work, we delve into the quantum dynamics of the

oscillator field within this wormhole space-time back-

ground using the generalized Klein-Gordon oscillator. We

examine two distinct types of potential functions, namely

Coulomb- and Cornell-type, and derive the corresponding

eigenvalue solutions. Subsequently, we scrutinize the

influences of the topological defect and the wormhole

throat radius on these eigenvalue solutions. Our analysis

reveals that the energy levels and wave functions of the

oscillator field are indeed affected by these factors. Fur-

thermore, we observe that the eigenvalue solution differs

from the results obtained in [45] and undergoes

modifications.

2. Eigenvalue solution of generalized oscillator field

in wormhole space-time

In this section, we study the relativistic quantum motions

of a generalized KG-oscillator in a wormhole space-time

background with a point-like defect. The relativistic

quantum dynamics of spin-0 scalar particles in curved

space-time is described by (system of units are chosen as

c ¼ 1 ¼ �h ¼ G)
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� 1
ffiffiffiffiffiffiffi�g

p ol
ffiffiffiffiffiffiffi�g

p
glm om

� �

þM2

� �

W ¼ 0; ð3Þ

where M is the rest mass of the particles, glm is the metric

tensor with g being its determinant.

The oscillator field is studied by substituting ol !
ðol þMxXlÞ [33, 48–55] in the above wave equation,

where x is the oscillator frequency, and Xl ¼ ð0; f ðxÞ; 0; 0Þ
with f(x) as an arbitrary function. If f ðxÞ ¼ x, then the

quantum system is called the Klein-Gordon oscillator.

Therefore, the relativistic wave equation of the gener-

alized oscillator field is described by [33, 48–50, 52–55]
h 1

ffiffiffiffiffiffiffi�g
p ðol þMxXlÞð

ffiffiffiffiffiffiffi�g
p

glmÞ om �MxXmð Þ
i

W ¼ M2 W:

ð4Þ

Expressing this wave Eq. (4) in the space-time background

(2), we obtain the following equation
"

� o2

o t2
þ a2

ðx2 þ a2Þ
o

ox
þMx f ðxÞ

� �

(

ðx2 þ a2Þ o

ox
�Mx f ðxÞ

� �

)

þ 1

ðx2 þ a2Þ

(

1

sin h
o

oh
sin h

o

oh

� �

þ 1

sin2 h

o2

o/2

)#

W ¼ M2 W:

ð5Þ

The wave function W can be expressed in terms of different

variables by the method of separation of the variables. We

choose a possible function W in terms of the function wðxÞ
given by

Wðx; h;/Þ ¼ e�i E t Y‘;mðh;/ÞwðxÞ; ð6Þ

where Y‘;mðh;/Þ is the spherical harmonics.

Substituting the wave function (6) in the Eq. (5) and

after separating the equations for radial and angular parts,

we obtain the following differential equation in terms of

the wave function wðxÞ as:

w00ðxÞ þ 2 x

ðx2 þ a2Þ w
0ðxÞ

þ
"

b2 � 2Mx x

ðx2 þ a2Þ f ðxÞ �Mx f 0ðxÞ �M2x2 f 2ðxÞ � i2

ðx2 þ a2Þ

#

w ¼ 0;

ð7Þ

where different parameters are defined as

b2 ¼ E2 �M2

a2
; i2 ¼ ‘ ‘þ 1ð Þ

a2
: ð8Þ

To solve the differential equation given in Eq.(7) using

special functions, we will consider two different types of

functions f(x) as follows.

2.1. A coulomb-type function

In this part, we consider the function f(x) to be a Coulomb-

type potential form function. It is well-known that Cou-

lomb potential (/ 1
x) is responsible for short-range inter-

actions and has been studied in different phenomena, such

as H-atom, and quark-antiquark interactions. The Cou-

lomb-type potential function is given by

[33, 48–50, 52–55]

f ðxÞ ¼ g
x
; g[ 0: ð9Þ

Substituting this function (9) into the Eq. (7), we obtain the

following equation

w00ðxÞ þ 2 x

ðx2 þ a2Þ w
0ðxÞ

þ
"

b2 �
j2 � 1

4

� �

x2
� t2

ðx2 þ a2Þ

#

wðxÞ ¼ 0;

ð10Þ

where we set the parameters

j ¼ Mxg� 1

2

� �

; t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Mxgþ i2
p

: ð11Þ

We aim to obtain solution of the quantum system under

investigation. Let us consider a possible solution wðxÞ as

follows:

wðxÞ ¼ xjjjþ
1
2 GðxÞ; ð12Þ

where G(x) is an unknown function.

Thereby, substituting this solution (12) into the Eq.(11),

we finds

G00ðxÞ þ 2 x

x2 þ a2
þ ð1þ 2 jjjÞ

x

� �

G0ðxÞ

þ b2 þ 1þ 2 jjj � t2

x2 þ a2

� �

GðxÞ ¼ 0:

ð13Þ

Finally, introducing a new variable via u ¼ � x2

a2
in the

Eq.(13),weobtain the followingdifferential equation forG as:

G00ðuÞ þ 1þ jjj
u

þ 1

u� 1

� �

G0ðuÞ

þ
"

� 1
4
ða2 b2 þ 1þ 2jjj � t2Þ

u
þ

1
4
ð1þ 2 jjj � t2Þ

u� 1

#

GðuÞ ¼ 0: ð14Þ

which is the confluent Heun equation form [44–47, 57, 58],

and hence, G(u) is the confluent function given by

Quantum flux effects on generalized Klein-Gordon



GðuÞ ¼ Hc 0; jjj; 0;� a2 b2

4
;
a2 b2 þ 1� t2

4
; u

� �

: ð15Þ

To solve the above differential equation (14), we use the

Frobenius power series solution given by [59]

GðuÞ ¼
X

1

i¼0

ci u
i: ð16Þ

Substituting this power series in the Eq.(14), we obtain the

following recurrence relation

ckþ2 ¼

n

4 ðk þ 1Þðk þ 2þ jjjÞ þ a2 b2 þ 1þ 2 jjj � t2
o

ckþ1 � a2 b2 ck

4 ðk þ 2Þðk þ 2þ jjjÞ ;

ð17Þ

with the coefficient

c1 ¼
ða2 b2 þ 1þ 2 jjj � t2Þ

4 ð1þ jjjÞ c0: ð18Þ

To obtain solution of the quantum system, we must

truncate the power series (16) to a finite degree polynomial

such that the wave function w is regular everywhere. Let us

consider k ¼ ðn� 1Þ, where the coefficient cnþ1 ¼ 0 such

that the wave function w is finite everywhere. Thereby,

imposing the condition k ¼ ðn� 1Þ with the coefficient

cnþ1 ¼ 0, we obtain from the relation (17)

cn ¼
a2 b2

½4 n ðnþ 1þ jjjÞ þ a2 b2 þ 1þ 2 jjj � t2� cn�1:

ð19Þ

Now, using relation (19), one can obtain the individual

energy levels and the corresponding wave functions for the

mode n ¼ 1; 2; 3::: of the oscillator field. In this work, we

consider one such case defined by the mode n ¼ 1 which

we call the ground state of the system. Thus, from (19) we

obtain

c1 ¼
a2 b2

4 ð2þ jjjÞ þ a2 b2 þ 1þ 2 jjj � t2½ � c0:
ð20Þ

Now, comparing Eqs.(18) and (20), we obtain the ground-

state energy level as follows:

where �2 ¼ l ðlþ 1Þ�2.

The corresponding ground-state wave function will be

w1;‘ ¼ u

	

jjjþ1
2




"

1þ
u
n

� 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ jjjÞði2 þ 2MxgÞ � ð3þ 2 jjjÞ jjj
p

o

2 ð1þ jjjÞ

#

c0:

Equation (21) denotes the lowest state energy level, and

(22) represents the corresponding wave function of the

oscillator field. These results are obtained by employing a

Coulomb-type potential function in the background of a

topologically charged Ellis-Bronnikov-type wormhole.

Similarly, one can find the energy levels E2;‘;E3;‘; ::: and

the wave functions w2;‘;w3;‘; ::: for modes n� 2. It is evi-

dent that these energy levels and wave functions are

influenced by the topological defect of the geometry,

characterized by the parameter a, and the constant radius

a of the wormhole throat. These factors lead to modifica-

tions in the energy levels and wave functions.

2.2. A cornell-type function

Here, we consider the function f(x) as a sum of two terms

with the Coulomb-type potential as one of them. This is

called the Cornell-type potential function. The Cornell-

type potential is a special case of the quark-antiquark

interactions which has one more harmonic potential term

[56]. This Cornell-type potential function is given by

f ðxÞ ¼ g
x
þ d x

	 


; g[ 0; d[ 0: ð22Þ

Note that for g ! 0, this potential function becomes linear

in x and the quantum system is called the KG-oscillator.

For d ! 0, the function becomes a Coulomb-type which

we discussed earlier. This Cornell-type potential form

function has widely been investigated in the context of

quantum systems by various authors in the literature

[33, 48–55].

Thereby, substituting this function (22) in the Eq.(7), we

obtain

E1;‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ 2 a2

a2

n	 i2

2
þMxg� jjj � 3

2




�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ jjjÞ ði2 þ 2MxgÞ � ð3þ 2 jjjÞ jjj
p

o

r

; ð21Þ
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w00ðxÞ þ 2 x

ðx2 þ a2Þ w
0ðxÞ

þ
h

�2 �
j2 � 1

4

x2
� -2

ðx2 þ a2Þ �M2 x2 d2 x2
i

wðxÞ ¼ 0;

ð23Þ

where different parameters are

�2 ¼ b2 �Mxd 3þ 2Mxgð Þ; - ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � 2Mxd a2
p

:

ð24Þ

In the context of quantum mechanical systems, a

fundamental requirement for the wave function is that it

should be regular everywhere. This implies that the wave

function, wðxÞ, must remain finite both as x approaches

zero and as x goes to infinity. At small values of x ! 0, the

wave function behaves as w� xjjjþ
1
2 and at large values of

x ! 1, it behaves as wðxÞ� e�
1
2
Mxd x2 . Let’s explore a

suitable wave function, wðxÞ, as follows:

wðxÞ ¼ xjjjþ
1
2 e�

1
2
Mxd x2 GðxÞ: ð25Þ

Substituting this solution (25) in the Eq.(23), we obtain the

following differential equation

G00ðxÞ þ ð1þ 2 jjjÞ
x

� 2Mxd xþ 2 x

x2 þ a2ð Þ

� �

G0ðxÞ

þ Pþ N
ðx2 þ a2Þ

� �

GðxÞ ¼ 0;

ð26Þ

where

P ¼ b2 �Mxd ð7þ 2Mxgþ 2jjjÞ;
N ¼ 1þ 2 jjj � -2 þ 2Mxd a2:

ð27Þ

By changing to a new variable via u ¼ � x2

a2 in the Eq. (26),

we obtain

G00ðuÞ þ
h

Mxd a2 þ 1þ jjj
u

þ 1

u� 1

i

G0ðuÞ

þ
h� 1

4
ðP a2 þ NÞ

u
þ ðN=4Þ

u� 1

i

GðuÞ ¼ 0;

ð28Þ

which is the confluent Heun equation form [44–47, 57, 58]

and the Heun function is given by

GðuÞ ¼ Hc Mxd a2; jjj; 0;� a2 �2

4
;
a2 �2 þ 1� -2

4
; u

� �

:

ð29Þ

To solve the differential Eq. (28), we use a power series

solution G ¼
P1

i¼0 ci x
i [59] into the Eq. (28), we obtain

the following recurrence relation

ckþ2 ¼
n

4 ðk þ 1Þðk þ 2þ jjj �Mxd a2Þ þP a2 þ N
o

ckþ1 þ ð4Mxd a2 k �P a2Þ ck
4ðk þ 2Þðk þ 2þ jjjÞ ;

ð30Þ

with the coefficient

c1 ¼
P a2 þ N
4 ð1þ jjjÞ c0:

ð31Þ

Similar to the previous analysis done in this paper, let us

consider k ¼ ðn� 1Þ where the coefficient cnþ1 ¼ 0. We

finds

cn ¼ � 4Mxd a2 ðn� 1Þ �P a2
h

4 n ðnþ 1þ jjj �Mxd a2Þ þP a2 þ N
i cn�1:

ð32Þ

The ground state of the quantum system is defined by

n ¼ 1. Thus, we obtain using (32) the following coefficient

c1 ¼
P a2

h

4 ð2þ jjj �Mxd a2Þ þP a2 þ N
i c0: ð33Þ

Comparing Eqs. (31) with (33) and after simplification, we

obtain the energy level E1;‘ given by

E1;‘ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ a2

a2

n

HþMxd a2 ð7þ 2MxgÞ
o

r

;

ð34Þ

where we have set the parameter

H ¼2Mxd a2 jjj � 2 jjj þ -2 � 3

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�3 jjj � 2 j2 þ -2ð1þ jjjÞ � 2Mxd a2 ðjjj þ 2Þ þ M2 x2 d2 a4
q

;

- ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

i2 þ 2Mx ðg� d a2Þ
p

;

ð35Þ

where i is given in Eq.(8).

The ground state wave function will be

w1;‘ ¼ u

	

jjjþ1
2




exp � 1

2
Mxd u2

� �

"

1þ u

2

ðMxd a2 � 1Þ
ð1þ jjjÞ � u

2 ð1þ jjjÞ �

(

� 3 jjj � 2 j2 þ -2ð1þ jjjÞ � 2Mxd a2ðjjj þ 2Þ þ M2x2 d2 a4
)1=2#

:

ð36Þ

Equations (34)–(35) represent the ground state energy

level, while Equation (36) denotes the corresponding wave

function of the oscillator field. These results are obtained

by selecting a Cornell-type potential form within the

backdrop of a topologically charged Ellis-Bronnikov-type

wormhole. Similarly, one can derive additional energy

levels E2;‘;E3;‘; ::: and wave functions w2;‘;w3;‘; ::: for

Quantum flux effects on generalized Klein-Gordon



modes n� 2. It is evident that the eigenvalue solutions

depend on the topological defect characterized by the

parameter a and the constant radius a of the wormhole

throat, leading to modifications in the energy levels and

wave functions.

Now, we compare our result with the one obtained in

Ref. [45]. Let g ! 0, and hence, the function f ðxÞ / x, that

is, a linear function. In this case, the quantum system is

called the KG oscillator. Therefore, for g ! 0, the energy

eigenvalue will become

E1;‘ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ a2

a2
ð ~Hþ 7MxdÞ

r

; ð37Þ

where

~H ¼ i2 �Mxd a2 � 4

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2þ 3

2
i2 � 8Mxd a2 þM2 x2 d2 a4

r

;
ð38Þ

with i given in the Eq. (8).

The corresponding ground state wave function will be

w1;‘ ¼ u exp � 1

2
Mxd u2

� �

"

1þ u
ðMxd a2 � 1Þ

3

� u

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2þ 3

2
i2 � 8Mxd a2 þM2 x2 d2 a4

r

#

:

ð39Þ

Equations (37)–(38) represent the ground state energy

level, and (39) denotes the corresponding wave function of

the KG-oscillator field in the background of a topologically

charged Ellis-Bronnikov-type wormhole. It is noteworthy

that the results presented in this section diverge from those

obtained previously, as there was an error in the earlier

analysis (Ref. [45]).

3. Conclusions

Exploring quantum mechanical phenomena within the

context of topological defects in space-time is a fascinating

and highly consequential area of research within the sci-

entific community. Topological defects can fundamentally

change the geometric characteristics of the space-time they

inhabit, thereby influencing the behavior of quantum sys-

tems within that space-time. The presence of these defects

can lead to alterations in the energy eigenvalues and wave

functions of quantum particles, departing from the out-

comes observed in flat space and introducing a breakdown

of degeneracy among energy levels.

In this investigation, we derived the radial equation for

the generalized Klein-Gordon oscillator field within the

framework of Ellis-Bronnikov-type wormhole space-time

featuring a point-like defect. We then selected a Coulomb-

type potential function, leading to the derivation of the

radial wave equation. We then solved this radial equation

through the special function of the confluent Heun function

and presented the ground state energy level E1;‘ in Eq. (21)

and the corresponding wave function in (22) as a particular

case, and others are in the same way. Additionally, we

explored a Cornell-type potential function (a linear plus

Coulomb function) and converted it into the formulation of

the confluent Heun equation after a few mathematical

steps. By employing a power series expansion of the con-

fluent Heun function and conducting subsequent mathe-

matical calculations, we also obtained the ground state

energy level E1;‘, as described by the expressions (34)–

(35), and the corresponding wave function w1;‘, as given by

equation (36), for the oscillator field.

It is important to note that incorporating a Cornell-type

potential function in this quantum system led to modifi-

cations in the energy levels and wave functions of the

oscillator field compared to the findings in Ref. [45]. In

both scenarios examined, we demonstrated that the topo-

logical defect parameter a and the wormhole throat radius a

(held constant) exerted influences on the eigenvalue solu-

tions of the oscillator field, introducing adjustments com-

pared to the case without the topological defect (a ! 1).

Furthermore, the presence of the topological defect not

only broke the degeneracy of energy levels but also

induced a more pronounced shift in the energy spectrum.
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