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Resumo

Nos encontramos atualmente em um momento histórico privilegiado para a
cosmologia. Na última década, o grande progresso das observações astronô-
micas permitiu que diversos modelos cosmológicos pudessem ser testados com
grande precisão. Com uma série de resultados observacionais sendo lança-
dos, obtivemos informações valiosas sobre a expansão acelerada do universo
primitivo e a expansão acelerada atual.

Em sua essência, tais esforços observacionais buscam esclarecer algumas
das questões mais fundamentais da cosmologia moderna, como a compreen-
são do mecanismo responsável pela aceleração do universo. Muitas perguntas
estão associadas à tal questão, entre elas podemos citar: (i) Qual a natureza
da substância, ou qual a origem do fenômeno, que está atualmente acelerando
a expansão do universo? (ii) Por qual razão esta expansão acelerada iniciou
recentemente (nos últimos 5-8 bilhões de anos), e não no passado distante ou
no futuro remoto? (iii) Qual a variante in�acionária que operou no universo
primitivo e qual sua conexão (se existe alguma) com o atual estágio acelerado
do universo?

Em nossa compreensão, as indagações acima fazem parte dos maiores pro-
blemas da cosmologia atual. A ampla abrangência de tais questões signi�ca
que avanços em qualquer uma delas terá implicações teóricas e observacionais
em outras áreas envolvendo a interface formada pela Astronomia, Cosmologia
e Física de Partículas. As três questões acima estão diretamente conectadas
com os objetivos do presente trabalho. Acreditamos também que seu estudo
pode lançar alguma luz e melhorar nossa compreensão sobre questões mais
fundamentais da física.

Neste contexto, analisamos diferentes modelos cosmológicos para a acele-
ração do universo à luz dos mais recentes dados observacionais de supernovas,
radiação cósmica de fundo e oscilações acústicas de bárions.

Propomos, aqui, alternativas ao Modelo Padrão da Cosmologia, ao mos-
trar que diversos fenômenos físicos podem estar associados à expansão do
universo, gerando a aceleração observada sem a necessidade de se introduzir
componentes desconhecidas no universo além da matéria escura.
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Além de desenvolver uma revisão crítica do Modelo Padrão, discutimos
nesta tese especialmente três modelos para a expansão acelerada do uni-
verso. O primeiro deles considera a aceleração cósmica como sendo efeito da
criação quântica de partículas de matéria escura, ou radiação, às custas do
campo gravitacional variando continuamente com a expansão do universo. O
segundo modelo considera o processo de viscosidade volumar no �uido cos-
mológico como sendo responsável pela aceleração. Esta viscosidade volumar
se deve à perda de equilíbrio termodinâmico durante a expansão do �uido. O
terceiro modelo, o modelo de decaimento do vácuo, considera como responsá-
vel pela aceleração uma energia do vácuo que decai nas outras componentes
cósmicas continuamente ao longo do tempo.

Analisamos as relações existentes entre estes três modelos, além do Mo-
delo Padrão, e as condições sob as quais os mesmos fornecem uma dinâmica
equivalente para o universo. Também obtemos interessantes vínculos para os
parâmetros destes modelos ao fazermos, além de uma análise observacional,
uma análise teórica baseada na dinâmica e na termodinâmica associada a
cada cenário. Sugerimos que estes cenários são capazes de aliviar diversos
problemas conceituais do Modelo Padrão da Cosmologia.

Numa segunda etapa, mostramos que os processos físicos descritos acima
podem ser responsáveis tanto pela aceleração cósmica atual, quanto pela
aceleração primordial que se supõe ter ocorrido no universo antigo. Tal
abordagem fornece uma descrição uni�cada para a evolução cosmológica.
Acreditamos ser de fundamental importância que o processo que dirigiu a
aceleração primordial possa ser relacionado com o mesmo responsável pela
atual fase de expansão acelerada do universo. Além disto, é possível que as
di�culdades que atingem a interface que une a Relatividade Geral, a Cosmo-
logia e a Teoria Quântica de Campos possam ser amenizadas através de uma
melhor compreensão do processo de criação gravitacional de partículas, do
decaimento do vácuo e suas conexões com o contexto da in�ação primordial.

Para comparar e vincular os modelos propostos, analisamos também o
processo de formação das estruturas cosmológicas nestes modelos. Introdu-
zimos a teoria de perturbações cosmológicas, primeiramente, através de uma
análise do Modelo Padrão. A partir daí, apresentamos uma abordagem mais
geral para o tratamento das perturbações chamada teoria de campo efetiva
para a in�ação. Neste contexto, analisamos quais previsões são obtidas ao se
quebrar algumas suposições usualmente assumidas nestes modelos.

Por �m, através de uma análise do espectro de potências primordial do
modelo de criação gravitacional de partículas, mostramos, pela primeira vez,
que o mesmo pode ser capaz de gerar um cenário in�acionário para o universo
primitivo em concordância com as observações atuais.



Abstract

We are currently in a privileged moment for cosmology. In the last decade,
the great progress of astronomical observations made possible that several
cosmological models could be tested with great accuracy. With several obser-
vational data being released we obtained valuable information concerning the
primordial acceleration of the universe and the recent accelerated expansion.

Essentially, these observational e�orts aim to clarify some of the most
fundamental questions of modern cosmology, which concerns the understan-
ding of the mechanism responsible for the acceleration of the universe. Many
questions are related to this issue, among them we can mention: (i) What
is the nature of the substance, or what is the origin of the phenomenom,
responsible for the acceleration of the expansion? (ii) For which reason the
accelerated expansion started recently (within the last 5-8 billion years), and
not in the distant past or distant future? (iii) What is the in�ationary vari-
ant that operated in the early universe, and what is its connection (if there
is any) with the current accelerated stage of the universe?

In our understanding the above questions are part of the biggest problems
in modern cosmology. The interconnection between these issues means that
advances in any of them will have theoretical and observational implications
in other areas involving the interface formed by Astronomy, Cosmology and
Particle Physics. The three questions above are directly connected to the
objectives of this work. We also belive that their study can shed some light
in our understanding of the remaining issues.

In this context, we analyze di�erent cosmological models for the accelera-
tion of the universe in the light of the latest data released from supernovae,
cosmic microwave background and baryon acoustic oscillations, comparing
the results with the ones concerning the Standard Model of Cosmology.

We propose alternatives to the Standard Model of Cosmology, by showing
that several physical phenomena can be associated to the expansion of the
universe, producing the observed acceleration without the need to introduce
unknown components in the universe besides the dark matter.

In addition to developing a critical revision of the Standard Model, we
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discuss in this thesis especially three models for the accelerated expansion of
the universe. The �rst one considers the cosmic acceleration as an e�ect of
the creation of dark matter particles, or radiation, at the expense of the gra-
vitational �eld varying continuously with the expansion of the universe. The
second model considers the process of bulk viscosity in the cosmological �uid
as being responsible for the acceleration of the universe. This bulk viscosity
is due to the loss of local thermodynamic equilibrium during the expansion
of the �uid. The third model, the vacuum decaying model, considers as res-
ponsible for the acceleration, a vacuum energy which decays continuously
into other cosmological components.

We analyze the relations between these three models, and also the Stan-
dard Model, and the conditions under which they provide an equivalent dyna-
mic to the universe. We also obtain interesting constraints for the parameters
of these models by making, besides an observacional analysis, a theoretical
analysis based on the dynamics and thermodynamics associated to each sce-
nario. We will show that these alternative scenarios are able to alleviate
several theoretical problems of the Standard Cosmological Model.

In a second part, we show that the physical phenomena described above
may be responsible for the recent cosmic acceleration, as well as for the pri-
mordial acceleration that is supposed to have occurred in the early universe.
Such approach provides an uni�ed description for the cosmological history.
We belive it is of great importance that the process responsible for in�ation
can be identi�ed with the one responsible for the current phase of accelerated
expansion of the universe. Moreover, it is quite possible that the di�cul-
ties concerning the interface connecting General Relativity, Cosmology and
Quantum Field Theory can be reduced through a better understanding of
the gravitational particle creation process, the decay of the vacuum and its
connections with the primordial in�ationary context.

In order to constrain and compare the models proposed here, we also
analyse the process of cosmological structure formation in these models. We
�rstly introduce the perturbation theory through an analysis of the Standard
Model. Then we introduce a more general approach to the treatment of
cosmological perturbations which is called e�ective �eld theory of in�ation.
In this context, we analyse which predictions are obtained when we break
some of the assumptions usually imposed in these models.

Finally, through an analysis of the primordial power spectrum of the
gravitational particles creation model, we show, for the �rst time, that this
model is able to describe an in�ationary scenario for the early universe totally
in agreement with current observations.
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Capítulo 1

Introdução

Com a Teoria da Relatividade Geral, formulada por Einstein em 1915, tornou-
se possível relacionar o conteúdo de matéria e energia do espaço-tempo com
sua curvatura, associando propriedades geométricas do espaço-tempo à gra-
vitação. Juntamente com a suposição de um espaço homogêneo preenchido
por matéria e radiação, as equações de Einstein descreviam um universo em
expansão desacelerada. Como já era intuitivo na época da gravitação clássica
de Newton, a propriedade atrativa da gravitação fazia a matéria tender ao
colapso desacelerando qualquer possível expansão inicial.

No entanto, na década de 90 começaram a surgir evidências de que o
universo expandia aceleradamente. Além de representar uma possível falha
na já bem estabelecida Teoria da Relatividade Geral (RG), esta aceleração
ia contra tudo o que se conhecia na época. Ou a RG deveria ser alterada
ou deveria haver um conteúdo energético desconhecido no universo. Seja
qual for a sua causa, a expansão acelerada do universo constitui até hoje
um grande mistério da cosmologia, cuja explicação deve levar a uma grande
revolução nos conceitos da física.

Inicialmente ao formular a RG, Einstein esperava obter uma solução que
descrevesse um universo estático, de acordo com o que se pensava na época.
Uma das razões para seu interesse em obter uma solução estática para o uni-
verso era que suas equações estivessem de acordo com o princípio de Mach,
segundo o qual a matéria determina a inércia. Além disto, naquela época,
não haviam dados experimentais que indicassem um universo em evolução e
a crença geral era a de um universo estático [1]. Einstein então modi�cou
sua equação, incluindo no lado esquerdo o termo da constante cosmológica.
Desta forma, suas equações poderiam ter soluções estáticas para um universo
preenchido por matéria e radiação, já que a nova componente representava
uma contribuição repulsiva para a gravidade balanceando a atração gravi-
tacional da matéria. No entanto, a solução estática não era estável, pois
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qualquer pequeno desvio no balanço dos termos da equação rapidamente
tornava a solução não estática. Além disto, Alexander Friedmann havia en-
contrado soluções expansionistas das equações de Einstein sem a necessidade
do termo da constante cosmológica. Então, pouco tempo após a introdução
da constante cosmológica, Einstein voltou atrás na sua proposta e retirou
a constante da equação. Em 1929, com a descoberta do redshift das ga-
láxias, que aumentava com a distância, surgiam evidências de um universo
em expansão. Não havendo mais a necessidade de uma solução estática, a
constante cosmológica tornava-se desnecessária para este �m.

Para um universo atualmente em expansão, Friedmann e Lemaître des-
creveram três possíveis cenários:

- Um universo cuja densidade de energia seja maior que uma certa densi-
dade crítica possui curvatura positiva (universo fechado) e a atual expansão
dará lugar, futuramente, a uma contração.

- Um universo cuja densidade de energia seja menor que a densidade crí-
tica possui curvatura negativa (universo aberto) e permanecerá expandindo
eternamente.

- Um universo cuja densidade de energia tenha exatamente o valor crítico
possui curvatura nula (universo plano) e a taxa de expansão chegará a zero,
porém não haverá contração.

Em 1932, Einstein e de Sitter estudavam o cenário plano em expansão,
assumindo um universo homogêneo e isotrópico, sem constante cosmológica e
sem pressão. Este modelo �cou conhecido como modelo de Einstein-de Sitter.
As soluções expansionistas foram de um modo geral aprimoradas, levando
em conta suas simetrias espaciais, por Robertson e Walker em 1936 [2, 3], no
que �cou conhecido como modelos de Friedmann-Lemaître-Robertson-Walker
(FLRW).

Após muito tempo abandonada, nos anos 80, uma série de evidências in-
diretas apontavam para um possível retorno da constante cosmológica. Aná-
lises das estruturas em larga escala implicavam em uma densidade de matéria
no universo muito abaixo da densidade crítica necessária para se ter um uni-
verso plano, como assumia-se em geral. Então, era necessária uma nova
componente para suprir o conteúdo energético que faltava e, assim, conciliar
os resultados com um universo plano [4].

Na metade dos anos 90, foi descoberta uma correlação entre o pico da
curva de luz das estrelas supernovas tipo IA e a evolução temporal da sua
queda subsequente, o que possibilitou o uso destas supernovas como velas
padrão. Com estas velas padrão foi possível um mapeamento da evolução
do universo recente. Em 1998, dois grupos que trabalhavam nos projetos
das supernovas concluíram que supernovas mais antigas e distantes pareciam
menos brilhantes do que o previsto em modelos cosmológicos de expansão
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desacelerada [5, 6]. Tal observação apontava portanto para um universo em
aceleração.

No �nal da década de 90, já havia uma série de dados observacionais da
radiação cósmica de fundo, estruturas em larga escala, idade do universo, etc,
cuja presença da constante cosmológica era capaz de explicar. Este resultado
foi rapidamente aceito pela comunidade cientí�ca. O modelo da constante
cosmológica, fundamentado na Teoria da Relatividade Geral, �cou conhe-
cido como o Modelo Padrão da Cosmologia. Atualmente, existe um grande
conjunto de evidências observacionais robustas para a aceleração cósmica [7]-
[11]. Tendo aceito a idéia da expansão acelerada, a questão principal passou
a ser as possíveis causas do fenômeno. As possibilidades vão desde a inclusão
de novas fontes de energia com pressão negativa a uma possível modi�cação
da Relatividade Geral de Einstein.

A constante cosmológica é a explicação mais simples para a aceleração
cósmica. Originalmente a mesma foi introduzida como uma modi�cação ao
termo de curvatura nas equações de Einstein. Atualmente porém, é comum
interpretá-la como um conteúdo energético de densidade constante no uni-
verso.

Embora a simplicidade desta solução junto com a boa concordância com
os dados observacionais façam com que o Modelo Padrão seja muito bem
aceito pela comunidade cientí�ca, diversos problemas conceituais ainda re-
sidem sob este cenário. Um deles, o chamado problema da constante cos-
mológica, refere-se à interpretação física desta constante. Em princípio a
mesma foi naturalmente associada à energia do vácuo, visto que esta ener-
gia é dotada de pressão negativa, causando o efeito de aceleração cósmica.
No entanto, ao se calcular a energia de vácuo do universo a partir da teoria
quântica de campos, era obtido um valor para energia do vácuo que era 10121

ordens de magnitude maior que o valor esperado para a constante cosmoló-
gica [12, 13]. Outro problema bem conhecido do Modelo Padrão refere-se ao
questionamento do porquê justamente hoje a densidade associada à constante
cosmológia tem a mesma ordem de grandeza da densidade de matéria escura,
sendo que ao longo de toda história do universo ambas diferiram por mui-
tas ordens de grandeza. Este é chamado problema da coincidência [14]-[17].
Embora possa de fato existir tal coincidência, ou até existirem explicações
antrópicas para a mesma, ainda é necessária a busca de maiores explicações
devido ao alto grau de ajuste �no envolvido.

O Modelo Padrão ΛCDM é atualmente o modelo mais simples que possui
um alto grau de concordância com os dados observacionais. Entretanto, as
questões descritas acima motivaram a busca de cenários alternativos, que
foram desenvolvidos com o objetivo de melhorar as questões conceituais re-
lacionadas à aceleração cósmica.
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Além da possibilidade da constante cosmológica, pelo que sabemos hoje
é possível explicar a atual expansão acelerada também através das seguintes
possibilidades:

- Mantendo a Teoria da RG e os princípios de homogeneidade e isotro-
pia e alterando o conteúdo energético do universo de modo a acrescentar
novas componentes com pressão negativa. Podemos citar como exemplo os
modelos de energia escura, em que a mesma é comumente representada por
um campo escalar [18]-[22]; os modelos de decaimento do vácuo, em que a
energia do vácuo decai continuamente nas outras componentes cósmicas [23]-
[49]; os modelos de Gás de Chaplygin, em que se supõe a existência de uma
componente exótica no universo com pressão variável [50]-[54]; entre outros.

- Mantendo a Teoria da RG e o princípio de isotropia, mas considerando
cenários inomogêneos para o universo [55]-[60].

- Alterando a Teoria da RG de Einstein e considerando os chamados
modelos de gravitação modi�cada, como por exemplo os modelos F(R) [61]-
[65]. Também podemos mencionar modelos de brana [66, 67], uma possível
gravitação quântica [68, 69, 70], entre outros.

- Mantendo a Teoria da RG e os princípios de homogeneidade e isotropia,
porém considerando o possível efeito cosmológico de certos processos físicos
de não-equilíbrio termodinâmico ocorrendo no universo, que contribuiriam
para uma pressão efetiva negativa. Como exemplo podemos citar os modelos
de criação gravitacional de partículas [71]-[90], os modelos de viscosidade
volumar [91]-[102], entre outros.

Nesta última categoria está concentrada grande parte do trabalho desta
tese.

Devido às suas grandes implicações para a física teórica, a aceleração cós-
mica moveu importantes esforços experimentais visando medir a expansão
do universo durante toda sua história. Diversos projetos observacionais têm
sido lançados nos últimos anos e muitos estão sendo projetados para os pró-
ximos [103, 104]. Com os dados obtidos, é possível testar uma grande classe
de modelos teóricos. Estas informações serão essenciais para a compreensão
dos fenômenos físicos atuantes na evolução cosmológica.

Neste trabalho buscamos, além de compreender o Modelo Padrão da Cos-
mologia, propor alternativas ao mesmo ao considerar o papel de diferentes
processos físicos de não-equilíbrio na evolução do universo, que podem estar
associados ao mecanismo da expansão acelerada. Utilizando os mais recentes
dados observacionais obtemos vínculos para os modelos em questão, estabe-
lecendo uma análise comparativa entre eles.

Na primeira parte do trabalho, analisamos a expansão acelerada do uni-
verso recente. No capítulo 2, revisaremos as principais características do
Modelo Padrão da Cosmologia, e no capítulo 3, apresentaremos algumas al-
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ternativas a este cenário. Estabeleceremos, então, uma análise comparativa
entre todos estes modelos baseada em um estudo teórico (cap.4) e observa-
cional (cap.5).

Na segunda parte do trabalho, analisaremos a expansão primordial do
universo. Inicialmente, revisaremos o cenário padrão da in�ação no capítulo
6 e introduziremos uma abordagem mais geral para caracterizar as perturba-
ções primordiais, chamada teoria de campo efetiva da in�ação. No capítulo
7, mostraremos como os mesmos fenômenos físicos, anteriormente associa-
dos à aceleração recente do universo, podem também ser responsáveis pela
aceleração primordial, fornecendo um cenário uni�cado para a evolução do
universo. No capítulo 8, apresentaremos uma análise dos modelos de criação
de partículas baseada na Segunda Lei Generalizada da Termodinâmica. E
nos capítulos 9 e 10, analisaremos o processo de formação das sementes das
estruturas do universo nestes modelos especí�cos, a �m de testá-los com os
dados observacionais atuais.

Os resultados originais desta tese se concentram nos capítulos 4, 5, 8 e
10, nas seções 3.2, 6.5 e 7.3, e também no Apêndice A. Os mesmos podem
ser encontrados nos artigos correspondentes às referências [105], [106], [107]
e nos artigos em preparação [108] [109].
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Capítulo 2

O Modelo Padrão da Cosmologia

A formulação da Teoria da Relatividade Geral, originada em 1915, estabe-
lece uma relação entre as propriedades geométricas do espaço-tempo e seu
conteúdo energético representada pela seguinte equação,

Rµν −
1

2
gµνR = 8πGTµν . (2.1)

O conteúdo de matéria e energia do universo é representado nesta equação
pelo tensor energia-momento Tµν . O lado esquerdo da equação caracteriza
a geometria do espaço-tempo gerada pelo conteúdo energético. A mesma é
descrita através da métrica gµν , que é a grandeza associada ao elemento de
linha ds2

ds2 = gµνdx
µdxν , (2.2)

sendo ds2 a distância entre dois eventos no espaço-tempo quadridimensional.
Analisando o lado esquerdo da equação de Einstein, temos que o primeiro

termo Rµν , denominado tensor de Ricci, pode ser de�nido em termos dos
símbolos de Christo�el da seguinte forma [110]

Rµν = Γβµβ,ν − Γβµν,β + ΓαµβΓβαν − ΓαµνΓ
β
αβ. (2.3)

Os símbolos de Christo�el, por sua vez, são escritos em termos da métrica
como

Γσµβ =
gσν

2
(gµν,β + gνβ,µ − gµβ,ν). (2.4)

Temos também, no lado esquerdo da equação, o escalar de curvatura R
que é a quantidade de�nida pela contração

R = Rµ
µ = gµαRαµ. (2.5)

É possível mostrar que as equações de campo de Einstein (2.1), que gover-
nam o campo gravitacional, satisfazem dois importantes requerimentos: são
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covariantes e se reduzem à equação de Poisson abaixo para o potencial New-
toniano φ no caso de campos gravitacionais fracos que variam lentamente,

∆2φ = 4πGρ = 4πGT 00, (2.6)

onde G é a constante de Newton.
Com as equações de campo de Einstein, dada uma forma da métrica, é

possível obter as equações que descrevem a dinâmica do espaço-tempo.
A suposição, hoje já bem testada, de que o universo é homogêneo e iso-

trópico em escalas de 108 parsecs ou maiores, levou à escolha de um sistema
de coordenadas do espaço-tempo no qual a métrica assume uma forma mais
simples. Considerando estas simetrias, foi possível construir uma métrica que
possui a mesma forma em qualquer tempo, em qualquer ponto e em qual-
quer direção do espaço-tempo. A mesma �cou conhecida como a métrica
de Friedmann-Robertson-Walker [2, 3], que descreve o seguinte elemento de
linha

ds2 = −dt2 + a2(t)R2
0[

dr2

1− kr2
+ r2dΩ2], (2.7)

onde dΩ2 = dθ2 + sen2θdφ2. O fator de escala a(t) acima caracteriza o
tamanho das seções espaciais, sendo dado, na sua forma normalizada, por
a(t) = R(t)

R0
, em que R0 correspondente ao tempo presente.

Vemos que, nestas coordenadas comóveis, o universo expande ou contrai
de acordo com R(t), porém as galáxias continuam com coordenadas �xas
r,θ,φ. Temos 3 tipos de universo descritos por esta solução, que correspon-
dem aos parâmetros de curvatura k iguais a +1,0 e −1. Eles descrevem
respectivamente, um universo com curvatura positiva (com densidade maior
que a densidade crítica), um universo plano (com densidade crítica) e um
universo com curvatura negativa (com densidade menor que a densidade crí-
tica).

No caso de um universo homogêneo e isotrópico, como o proposto por
Friedmann, Robertson e Walker, a fonte de energia na equação de Einstein
pode ser modelada como um �uido perfeito. O �uido perfeito é um �uido
homogêneo e isotrópico sem fricção e condução de calor, caracterizado por
uma densidade de energia ρ e uma pressão isotrópica p no referencial de
repouso. O tensor energia-momento de tal �uido pode ser escrito como [12]

Tµν = (ρ(t) + p(t))UµUν + p(t)gµν , (2.8)

onde Uµ é a quadrivelocidade do �uido. O sistema de repouso do �uido deve
ser o de um observador comóvel na métrica. Neste sistema as componentes
tri-dimensionais da quadrivelocidade são iguais a zero (uα = 0, α = 1, 2, 3).
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Podemos obter, a partir do tensor acima usando a métrica de Friedmann-
Robertson-Walker, a quantidade escalar T , ao contrair os índices com a mé-
trica,

gµνTµν = T µµ = T = ρ+ 3p. (2.9)

Para um �uido não interagente temos que ∇µT
µν = 0, pela conservação

do tensor energia-momento. Calculando o divergente obtemos

ρ̇+ 3H(ρ+ p) = 0, (2.10)

que é a equação de conservação do �uido. A grandeza H acima é o parâmetro
de Hubble, que descreve a expansão do universo (H = ȧ(t)/a(t)).

Se calcularmos, para a métrica de Friedmann-Robertson-Walker, as com-
ponentes do tensor de Ricci, a curvatura escalar e o traço do tensor energia-
momento e substituirmos na equação de Einstein original (2.1), obtemos a
seguinte equação para as componentes de índice ii

ä

a
= −4πG

3
(ρ+ 3p), (2.11)

e para as componentes de índice 00 obtemos(
ȧ

a

)2

= H2 =
8πG

3
ρ− k

a2
. (2.12)

As equações acima são conhecidas como equações de Friedmann [111, 112].
Vemos que não é necessária, obrigatoriamente, uma constante cosmológica
para se ter um universo em expansão neste modelo . Porém, vemos pela
equação (2.11) que, para que esta expansão seja acelerada, é necessária a
introdução da constante cosmológica, ou a introdução de uma componente
de matéria que tenha pressão negativa.

De acordo com a equação (2.11), vemos que uma expansão acelerada
ocorre sempre que ρ + 3p < 0. De acordo com a equação de estado dos
�uidos postulada como sendo

p = wρ, (2.13)

onde w é uma constante fenomenológica, temos uma expansão acelerada
sempre que w < −1

3
.

No caso de um universo plano (k = 0), dominado por um �uido não
interagente com w constante, podemos obter, ao integrar as equações (2.10)
e (2.12), soluções bastantes simples descrevendo a evolução do universo:

H =
2

3(1 + w)(t− t0)
,

a(t) ∝ (t− t0)
2

3(1+w) , (2.14)

ρ ∝ a−3(1+w),
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onde t0 é uma constante. Vemos que as soluções acima são válidas para
w 6= −1.

Como exemplo, podemos mencionar as seguintes soluções:

• Em um universo dominado por radiação tal que w = 1
3
, vemos que

a(t) ∝ (t− t0)
1
2 e ρ ∝ a−4.

• Em um universo dominado por matéria tal que w = 0, vemos que
a(t) ∝ (t− t0)

2
3 e ρ ∝ a−3.

• Em um universo dominado por uma energia escura tal que w < −1
3
,

temos uma expansão do tipo potência, a(t) ∝ (t− t0)p, sendo p > 1.

• No caso da constante cosmológica, w = −1 e ρ é uma constante.
Resolvendo as equações de Friedmann para um universo dominado
pela constante cosmológica obtemos uma expansão exponencial do tipo
a(t) ∝ eHt.

Podemos escrever a equação de Friedmann (2.12), alternativamente, na
seguinte forma

Ω(t)− 1 =
k

a2H2
, (2.15)

onde Ω(t) é o parâmetro de densidade total. O mesmo é dado por

Ω(t) =
ρ(t)

ρc
, (2.16)

sendo ρc a densidade crítica necessária para termos um universo plano (k =
0). Esta densidade crítica pode ser obtida a partir da equação (2.12), consi-
derando k = 0 e isolando ρ:

ρc(t) =
3H2(t)

8πG
. (2.17)

Atualmente, as observações da Radiação Cósmica de Fundo apontam para
um universo plano, ou seja, com k = 0. Sabe-se também que a densidade
crítica necessária para um universo plano é da ordem de ρc = m2

plH
2
0 ∼

10−47GeV 4. No entanto, apenas 30% deste valor é observado direta ou in-
diretamente em forma de matéria, ∼ 25% correspondendo à matéria escura
e ∼ 5% à matéria bariônica. Porém, vimos que para termos uma expansão
acelerada, de acordo com a teoria da relatividade geral, é necessário introdu-
zirmos uma constante cosmológica, ou um �uido com pressão negativa que
tem o mesmo efeito repulsivo da constante cosmológica. É possível que esta
componente responsável pela expansão do universo possa ser a responsável
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pelos ∼ 70% de energia faltantes no universo. Seja o que for esta componente,
acredita-se que ela deva ter um comportamento não muito diferente de uma
constante cosmológica, pois os dados atuais são compatíveis com uma energia
escura com equação de estado constante, w = −1, e densidade de energia da
ordem de 10−47GeV 4, dando margem, porém, a pequenas variações em torno
destes valores.

Com a inclusão do termo da constante cosmológica as equações de Fried-
mann se tornam

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
, (2.18)

H2 =
8πG

3
ρ− k

a2R2
0

+
Λ

3
. (2.19)

Estas equações, junto com a métrica de Friedman-Robertson-Walker, cons-
tituem a base do Modelo Padrão da Cosmologia. As equações acima podem
ser obtidas a partir da equação de Einstein, que assume sua forma mais geral
com a constante cosmológica

Rµν −
1

2
gµνR + Λgµν = 8πGTµν . (2.20)

Vemos que, de fato, o lado esquerdo desta equação é a forma mais geral
que se pode construir a partir da métrica e sua primeira e segunda deriva-
das, que seja tensorial de ordem 2, local, invariante sob transformações de
coordenadas, sem divergência e simétrica.

De uma forma mais geral, para uma mistura de constante cosmológica,
matéria não relativística (matéria escura e matéria bariônica) e relativística,
com parâmetros de densidades atuais ΩΛ0, Ωm0 e Ωr0, respectivamente, temos
a seguinte evolução para ρ

ρ =
3H2

0

8πG

[
ΩΛ0 + Ωm0

(a0

a

)3

+ Ωr0

(a0

a

)4
]
. (2.21)

De acordo com a equação (2.15) temos que

ΩΛ0 + Ωm0 + Ωr0 + Ωk0 = 1, Ωk0 ≡
−k
a2

0H
2
0

. (2.22)

Usando as duas equações anteriores e a equação de Friedmann (2.19),
obtemos, para o parâmetro de Hubble deste modelo, a seguinte equação

H2 = H2
0

[
ΩΛ0 + Ωm0

(a0

a

)3

+ Ωr0

(a0

a

)4

+ (1− ΩΛ0 − Ωm0 − Ωr0)
(a0

a

)2
]
.

(2.23)
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Esta equação descreve a dinâmica do universo no modelo padrão ΛCDM.

Atualmente, temos uma grande precisão na medida dos parâmetros de
densidade acima. A �gura2.1 mostra os resultados para estes parâmetros ob-
tidos na ref. [113] utilizando dados de supernovas (SNe), radiação cósmica de
fundo (CMB) e oscilações acústicas de bárions (BAO). Os vínculos se referem
ao parâmetro de densidade da matéria Ωm e ao parâmetro de densidade da
constante cosmológica ΩΛ. Os contornos representam regiões de con�ança
estatística de 68.3%, 95.4% e 99.7%.

Figura 2.1: Regiões de con�ança de 68.3%, 95.4% e 99.7%, no plano (Ωm,ΩΛ),
a partir dos dados de SNe combinados com vínculos de BAO e CMB. No
painel esquerdo são desconsiderados os erros sistemáticos. Os mesmos são
levados em conta no painel direito.

Vemos que os resultados dão fortes indicações de um universo plano.

Também os recentes resultados do satélite Planck impuseram fortes vín-
culos a estes parâmetros, fornecendo os valores ΩΛ = 0.686 ± 0.020 e Ωm =
0.314± 0.028, com 68% de con�ança. Apesar dos resultados do Planck, bem
como os outros experimentos anteriores, terem indicado um universo plano
e, de um modo geral, em bom acordo com as previsões do modelo ΛCDM,
este modelo ainda enfrenta uma série de desa�os, principalmente no campo
teórico, alguns dos quais serão descritos a seguir.
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2.1 Desa�os do Modelo Padrão da Cosmologia

Apesar da boa concordância com os dados observacionais, o Modelo Padrão
enfrenta sérios desa�os no campo teórico. Entre eles podemos mencionar o
problema da constante cosmológica e o problema da coincidência.

O chamado "Problema da Constante Cosmológica"se refere à interpreta-
ção física da origem de sua energia. Apesar de inicialmente ter sido introdu-
zida no lado esquerdo da equação de Einstein como um termo geométrico,
a constante cosmológica foi posteriormente interpretada como parte do con-
teúdo energético do universo, passando a ser considerada como uma contri-
buição ao lado direito da equação. Assim, tornou-se natural a associação
da constante cosmológica à energia do vácuo. Neste contexto, a constante
cosmológica poderia ter contribuições advindas das energias dos campos es-
calares nos mínimos de seus potenciais, ou seja, nos seus estados de vácuo,
e também das �utuações de vácuo de cada grau de liberdade das teorias de
campos [12].

De acordo com o princípio da incerteza, sabemos que o estado de mínima
energia de um campo escalar não tem energia nula. Um campo quântico
pode ser interpretado como um número in�nito de osciladores harmônicos no
espaço dos momentos. Portanto, a energia de vácuo de todos estes osciladores
deveria se somar a in�nito, pois a mesma pode ser calculada integrando-se
no espaço dos momentos todas as contribuições [13],

ρvac =
1

2

∞∫
0

d3k

(2π)3

√
k2 +m2

=
1

4π2

∞∫
0

dkk2
√
k2 +m2. (2.24)

No entanto, podemos renormalizar nossa teoria, descartando todos os
modos correspondentes a altas energias (ou altos momentos), pois não co-
nhecemos a nossa teoria a partir de uma certa escala de energia, então não
sabemos mais se ela é válida nesse domínio [114]. Ao fazermos um corte no
momento máximo no qual integramos nossa teoria, obtemos uma densidade
de energia do vácuo com a forma [13].

ρvac ∝ k4
max. (2.25)

No caso das �utuações de vácuo, para que a densidade de energia não vá
para in�nito, consideramos um corte na integral na escala de mp = 1019GeV ,
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pois supomos que nossa teoria quântica de campos seja válida até esta escala.
Neste caso, obtemos a seguinte contribuição para a energia de vácuo devido
às �utuações quânticas dos campos,

ρvac = (1019GeV )4 ∼ 1074GeV 4, (2.26)

que é 10121 ordens de magnitude maior que o valor observado da constante
cosmológica.

Outras contribuições que poderiam ser associadas a uma constante cos-
mológica são as energias do mínimo do potencial dos campos escalares. A
energia potencial V (φ) dos campos é uma grandeza que varia com o tempo
à medida em que o universo passa por transições de fase. Quando o universo
se esfria, os campos tendem a assumir seus estados de vácuo com energia
cinética nula, porém, com um potencial cujo mínimo não necessariamente é
igual a zero. E este valor do potencial diferente de zero contribuiria, por-
tanto, para a energia do vácuo. Na ausência de gravidade poderíamos alterar
esta energia somando e diminuindo termos como quiséssemos, mas com a
gravidade é preciso considerar corretamente cada contribuição.

Na teoria eletrofraca de Weinberg-Salam a fase da simetria eletrofraca
quebrada difere da fase simétrica por uma energia potencial da ordem de
Mew = 200GeV . Acredita-se que o universo esteve na fase simétrica em seus
momentos iniciais quando a temperatura era muito alta. Com a diminuição
da temperatura o universo sofreu uma mudança de fase. A contribuição para
a energia de vácuo é, então, diferente nas duas fases e podemos estimar a
diferença entre estas densidades de energia como sendo [12]

ρEWvac ∼ (200GeV )4. (2.27)

Já no caso da QCD por exemplo, acredita-se que a simetria quiral seja
quebrada por um valor esperado de vácuo não nulo do condensado de quarks
q̄q. Neste caso, a diferença de energia entre a fase quebrada e a fase simé-
trica é da ordem de MQCD ∼ 0, 3GeV . Teremos, assim, uma contribuição à
densidade de energia do vácuo da ordem de

ρQCDvac ∼ (0, 3GeV )4. (2.28)

Além destas contribuições poderíamos acrescentar diversas outras contribui-
ções advindas de transições de fase no universo primordial. No entanto, estas
contribuições, assim como as mencionadas acima, possuem todas, isolada-
mente, ordens de magnitude bem superiores ao valor observado da constante
cosmológica que é 10−47GeV 4.

Não há nenhum motivo que proíba que todas estas contribuições inde-
pendentes, com sinais positivos e negativos, se somem para gerar o valor
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atualmente observado da constante cosmológica. Entretanto, o ajuste �no
necessário para isto seria enorme. Isto faz com que talvez seja mais natural
pensar que haja algum mecanismo desconhecido que anule estas contribui-
ções do que pensar que elas se somam para resultar em um valor tão pequeno
como o observado. Neste caso, a constante cosmológica estaria associada a
uma outra fonte de energia, possivelmente a energia escura.

Outro problema bem conhecido do Modelo Padrão é o problema da coin-
cidência. Por muitas décadas tem havido uma busca por explicar a correlação
entre as propriedades do nosso universo, as massas das partículas elementa-
res, os valores de diversas constantes, e a nossa existência. Sabemos que não
podemos viver em um universo onde a constante de acoplamento do eletro-
magnetismo ou a massa dos elétrons e dos prótons fossem apenas um pouco
maiores ou menores que o valor que observamos hoje [115]. Da mesma forma,
a correlação entre a nossa existência e os valores da constante gravitacional,
da amplitude da quebra espontânea da simetria eletrofraca, da assimetria
relacionada à razão bárion/fóton, etc, é um fato que requer explicações. Os
valores de alguns parâmetros do nosso universo podem simplesmente ser alea-
tórios, ou podem ter apenas ter explicações antrópicas. No entanto, é possível
que exista uma explicação para eles a partir de uma teoria física mais fun-
damental. A história têm nos mostrado que, muitas vezes, uma boa teoria
física é capaz de fornecer explicações para os valores de suas constantes fun-
damentais. Na ausência de uma resposta, é necessário continuar buscando
soluções para estes problemas.

Neste mesmo contexto se insere a constante cosmológica e este problema
independe da natureza e origem desta constante. A princípio, poderia se
esperar para a constante cosmológica uma energia da ordem da densidade de
Planck. No entanto, os dados observacionais mostram que ρΛ ∼ 10−120ρPl,
o que é da mesma ordem de grandeza da densidade de matéria do universo
hoje. Podemos questionar o porquê de um valor tão pequeno, porém diferente
de zero. Por que ρΛ é aproximadamente três vezes maior que a densidade
de matéria no universo hoje, sabendo que na época de Planck a densidade
das outras componentes era 10120 vezes maior que ρΛ, e no futuro será bem
menor? O que há de tão especial no valor de ρΛ, e o que há de tão especial
no tempo presente?[115] Estas questões dão origem ao problema da coinci-
dência [14] - [17]. Na �gura 2.2 podemos ver como evoluem os parâmetros de
densidade de cada componente do universo ao longo do tempo, o que fornece
uma ilustração do problema.

Podemos quanti�car o problema escrevendo uma expressão fenomenoló-
gica para a razão entre a densidade de energia escura e matéria escura da
seguinte forma, ρDE ∝ ρDMa

ξ, i.e. ΩDE ∝ ΩDMa
ξ. Para o caso da

constante cosmológica ξ = 3. Quando ξ = 0 a razão ρDE/ρDM é constante
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e não há problema da coincidência. Vemos que o parâmetro ξ quanti�ca a
severidade do problema da coincidência. Portanto, modelos com um valor de
ξ menor que 3, ainda que não solucionem o problema da coincidência, são
capazes de amenizá-lo.

Além dos problemas acima mencionados, e da necessidade de se supor
uma fonte de origem desconhecida para gerar a aceleração recente do uni-
verso, no Modelo Padrão esta fonte não tem qualquer relação com o está-
gio acelerado primordial do universo. Isto traz, portanto, a necessidade de
se introduzir uma segunda componente energética desconhecida atuando no
universo antigo.

Na tentativa de evitar, ou amenizar, os problemas acima explicados, mo-
delos cosmológicos alternativos têm sido continuamente propostos. Veremos
no capítulo seguinte, abordagens que tratam o fenômeno da aceleração do
universo de uma forma uni�cada, descrevendo os dois estágios acelerados
do universo a partir de um único mecanismo. Estes modelos possuem tam-
bém a vantagem de dispensar a necessidade de componentes desconhecidas
para acelerar o universo, reduzindo o setor escuro e evitando os problemas
mencionados acima.
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Figura 2.2: Parâmetros de densidade para a radiação (R), matéria não
relativística (M) e constante cosmológica (Λ) em função do fator de escala a.
Atualmente ΩΛ0

∼= 0.7, Ωm0
∼= 0.3, ΩR0

∼= 10−5. Estão indicados os fatores de
escala correspondentes à era de Planck (Planck scale), à quebra de simetria
eletrofraca (EW), à nucleossíntese do Big Bang (BBN), bem como, o fator
de escala hoje (NOW). (Esta �gura foi retirada da referência [116])
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Capítulo 3

Alternativas ao Modelo Padrão

da Cosmologia

Sabemos que o �uido cosmológico é um �uido bastante complexo, composto
pelo menos por bárions, radiação e matéria escura, cuja natureza é ainda
desconhecida. No entanto, tais �uidos são usualmente tratados como �uidos
perfeitos, como ocorre no Modelo Padrão. Ao se fazer esta simpli�cação,
diversos processos internos dos �uidos, que ocorrem no contexto da termodi-
nâmica fora de equilíbrio, são desprezados. Alguns destes processos, porém,
podem ter implicações fundamentais para a cosmologia e acreditamos que
seus efeitos devem ser considerados pelo menos fenomenologicamente.

Consideraremos, aqui, alguns possíveis efeitos de backreaction que podem
ser gerados nas equações de Einstein a partir de certos mecanismos que ocor-
rem no contexto da termodinâmica fora de equilíbrio. Mostraremos que, em
alguns casos, estes efeitos podem ser macroscopicamente descritos em ter-
mos de uma pressão efetiva negativa. Agindo no sentido de contra-balancear
a atração gravitacional, uma pressão su�cientemente negativa geraria um
mecanismo auto sustentável de aceleração no espaço-tempo. Portanto, sob
certas condições, poderia ser possivel obter uma expansão acelerada sem a
necessidade de se introduzir componentes físicas desconhecidas no universo.
Deste modo, a aceleração viria a ocorrer naturalmente a partir de fenômenos
conhecidos, fornecendo um cenário cosmológico alternativo passível de ser
confrontado com as observações astronômicas atuais.

Ainda não está claro qual o verdadeiro impacto de tais processos na cos-
mologia, visto que os mesmos envolvem teoria quântica de campos fora de
equilíbrio em espaços curvos. Como sabemos, tal teoria não foi desenvolvida
até o presente. No entanto, sabemos que certos processos que de fato ocor-
rem no universo no contexto da termodinâmica fora de equilíbrio atuam no
sentido de promover uma aceleração positiva para o mesmo. Deste modo,
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torna-se importante analisar sob quais condições estes fenômenos poderiam
ser capazes de gerar a aceleração observada.

Como veremos na segunda parte desta tese, os modelos aqui propostos,
além de dispensarem a necessidade de componentes cosmológicas desconheci-
das, possuem em comum a vantagem de fornecer uma descrição uni�cada para
a evolução do universo ao considerar um mesmo fenômeno como sendo res-
ponsável tanto pela aceleração cosmológica atual quanto pela aceleração pri-
mordial do universo. Estes modelos trazem, portanto, uma série de avanços
conceituais com relação ao MP. Os problemas mencionados anteriormente,
como o problema da constante cosmológica e o problema da coincidência, são
evitados e além disto estes modelos incorporam uma descrição mais complexa
para o �uido cósmico ao considerar as suas propriedades internas.

Vamos introduzir primeiramente os três modelos que trabalharemos aqui,
que são os modelos de criação gravitacional de partículas, viscosidade e decai-
mento do vácuo, no contexto da aceleração atual. Na sequência, analisaremos
a relação entre os três modelos e também o modelo ΛCDM.

Devido à falta de conhecimento sobre o setor escuro dominante no uni-
verso, especialmente sobre seus mecanismos microscópicos, optamos por pro-
por uma abordagem predominantemente fenomenológica neste trabalho.

3.1 O Modelo de Criação Gravitacional de Par-

tículas

Os modelos cosmológicos de criação gravitacional de partículas fornecem uma
interessante perspectiva para o fenômeno da aceleração do universo. Estes
modelos sugerem que, ao se considerar as consequências cosmológicas do
mecanismo quântico de criação de partículas às custas do campo gravitacional
variando com o tempo, pode ser possível, em certos casos, obter a expansão
acelerada observada para o universo.

Tais modelos foram justi�cados a partir de um ponto de vista micros-
cópico após o trabalho pioneiro de Parker e seus colaboradores [71]. Como
discutido por muitos autores, as frequências positivas e negativas dos campos
na representação de Heisemberg se misturam durante a expansão do universo.
Como resultado, os operadores de criação e aniquilação em um dado tempo t
são combinações lineares dos mesmos em um tempo anterior t2, o que resulta
no fenômeno de criação de partículas. Qualitativamente podemos dizer que
o background gravitacional variando no tempo supre energia aos campos de
matéria. Como a energia do campo não é conservada, sua ação é explicita-
mente dependente do tempo e a quantização deste processo leva à produção
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de partículas.
A teoria geral de criação de partículas a partir de efeitos quânticos em

um espaço-tempo em expansão foi desenvolvida em detalhes nos livros [117,
118, 119, 120], e também nos artigos [121, 122, 123].

Podemos usar um caso simples como exemplo para ilustrar a idéia do
mecanismo fundamental por trás do processo de criação. Considere a ação
abaixo, que descreve um campo escalar massivo e real φ, minimamente aco-
plado, em um espaço-tempo plano de FRW,

S =
1

2

∫ √
−gd4x[gαβ∂αφ∂βφ−m2φ2], (3.1)

onde usamos unidades em que ~ = kB = c = 1.
Em termos do tempo conforme η, onde dt = a(η)dη, o tensor métrico gµν é

conformalmente equivalente à métrica de Minkowski ηµν (ds2 = a2(η)ηµνdx
µdxν).

Portanto, se escrevermos o campo φ como φ(ν, x) = a−1(η)χ, obtemos a par-
tir da ação acima a seguinte equação para o campo auxiliar χ,

χ′′ −∇2χ+

(
m2a2 − a′′

a

)
χ = 0, (3.2)

onde a aspa denota derivada com relação a η.
Podemos ver que o campo χ obedece a mesma equação de movimento que

um campo escalar massivo no espaço-tempo de Minkowski, porém com uma
massa efetiva dependente do tempo, que é dada por

m2
eff (η) ≡ m2a2 − a′′

a
. (3.3)

Esta massa efetiva variando no tempo leva em conta a interação entre o
campo escalar e o campo gravitacional. A energia do campo χ não é separa-
damente conservada, razão pela qual sua ação é explicitamente dependente
do tempo e sua quantização leva à criação de partículas às custas do back-
ground gravitacional clássico.

No entanto, para aplicações na cosmologia, esta abordagem semiclássica
encontra três di�culdades básicas:

(i) O campo escalar é tratado como um campo teste, portanto a evolução
do background não é alterada pelas partículas gravitacionalmente produzi-
das.

(ii) A produção de partículas é um processo irreversível. Sendo assim,
deve ser vinculada pela segunda lei da termodinâmica.

(iii) Não há uma prescrição clara de como um mecanismo irreversível de
origem quântica possa ser incorporado nas equações de campo de Einstein.
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Posteriormente, uma abordagem macroscópica para o fenômeno da cri-
ação gravitacional de partículas foi proposta por Prigogine e seus colabora-
dores para evitar os problemas acima. Baseando-se na termodinâmica fora
de equilíbrio de sistemas abertos [74], eles sugeriram que este tipo de pro-
cesso poderia ser efetivamente descrito por um termo de pressão negativa
nas equações de Einstein [75, 76]. A produção gravitacional de partículas
é um processo irreversível que segue os requerimentos usuais da termodinâ-
mica de não equilíbrio. Portanto, este termo adicional de pressão deve ser
vinculado pela segunda lei da termodinâmica. O tensor energia-momento
nestes modelos pode ser efetivamente descrito da mesma forma que no caso
de um �uido perfeito se simplesmente considerarmos um termo de pressão
negativa, decorrente do processo de criação, somando-se à pressão usual do
�uido. Deste modo, assumindo que partículas de matéria escura são produzi-
das pelo campo gravitacional variando no tempo, poderia ser possível obter
uma expansão acelerada recente em um universo dominado por um �uido
sem pressão.

Portanto, em comparação com as equações usuais de equilíbrio, o processo
de criação às custas do campo gravitacional é descrito através de dois novos
ingredientes: uma equação de balanceamento para a densidade de número de
partículas e um termo de pressão negativa no tensor energia-momento. Tais
quantidades são relacionadas entre si de forma bem de�nida pela segunda
lei da termodinâmica. Durante todo o trabalho desta tese enfocaremos nas
consequências cosmológicas associadas a esta descrição macroscópica, e fe-
nomenológica, do mecanismo de criação gravitacional de partículas, ao invés
de abordarmos os aspectos da teoria quântica de campos que inicialmente o
motivou.

As equações de Friedmann para estes modelos assumem então a seguinte
forma,

ρ̃ = 3
ȧ2

a2
+ 3

k

a2
, (3.4)

p̃+ pc = −2
ä

a
− ȧ2

a2
− k

a2
, (3.5)

onde pc (a pressão de criação) é o termo de correção à pressão de equilíbrio
que descreve a produção de partículas ocorrendo fora de equilíbrio. A partir
daqui, ρ e p denotarão a densidade e pressão da componente dominante no
universo (no caso a matéria escura), a menos que seja especi�cado de outra
forma. O til denotará as quantidades do �uido no modelo de criação, o que
posteriormente nos permitirá distinguir estas das respectivas quantidades nos
outros modelos.
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A densidade de número de partículas é, neste caso, descrita por

Ñα
;α = ˙̃n+ 3

ȧ

a
ñ = ñΓ̃ , (3.6)

onde Γ̃ é a taxa de criação de partículas induzida pelo campo gravitacional,
N é o número de partículas e n é a densidade de número de partículas.

Combinando (3.4) e (3.5) é possível obter a equação que expressa a lei de
conservação de energia (uµT µν;ν = 0),

˙̃ρ+ 3H(ρ̃+ p̃+ pc) = 0 . (3.7)

Em geral a pressão de criação pode ser escrita como

pc = −α ñΓ̃

3H
, (3.8)

onde α é um coe�ciente fenomenológico positivo relacionado ao processo de
criação.

Como discutido em [75], um caso importante corresponde ao chamado
processo de criação �adiabática� de partículas [79]. Neste caso partículas e
entropia são produzidas no espaço-tempo, no entanto, a entropia especí�ca
(por partícula) permanece constante ( ˙̃σ = 0). Neste regime �adiabático", a
constante α na equação (3.8) é igual a (ρ̃+ p̃)/ñ, e então a pressão de criação
é escrita como

pc = −(ρ̃+ p̃)Γ̃

3H
= −(1 + w)ρ̃Γ̃

3H
. (3.9)

A taxa de criação Γ̃ é comumente proposta, a partir de considerações fe-
nomenológicas, como sendo função do parâmetro de Hubble H. Focaremos,
no presente trabalho, no caso da criação adiabática de partículas. Como vere-
mos posteriormente, as equações de Friedmann (3.4) e (3.5) para este modelo,
juntamente com a expressão para pc em função de H, nos fornecerão cenários
cosmológicos dinâmicos passíveis de serem testados com as observações atu-
ais. Antes, porém, vamos introduzir um segundo modelo para a aceleração
cosmológica, que também parte de princípios baseados em termodinâmica
fora de equilíbrio para reduzir o setor escuro do universo.

3.2 O Modelo de Viscosidade

Outra propriedade naturalmente esperada em um �uido cosmológico com-
plexo em rápida expansão é a viscosidade. Em um universo homogêneo e
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isotrópico, o único tipo de viscosidade que pode estar presente é a viscosidade
volumar. Esta surge devido à perda de equilíbrio termodinâmico quando o
�uido se expande muito rápido e o sistema não tem tempo su�ciente para
reestabelecer o equilíbrio. Este mecanismo corresponde a um processo dis-
sipativo que, como veremos, também está associado a um termo de pressão
negativa nas equações de Einstein.

No caso em que ocorre dissipação no �uido cósmico, o tensor energia-
momento isotrópico não é mais dado por Tαα = 3p − ρ. Possuindo uma
contribuição de não-equilíbrio devido ao efeito dissipativo, ele passa a ser
dado por Tαα = 3p − ρ + ∆Tαα . Esta expressão é comumente escrita da
seguinte forma,

Tαα = 3p− ρ+ 3Π, (3.10)

onde Π = (1/3)∆Tαα é a chamada pressão de viscosidade. É fácil veri�car
que Π deve ser negativo para que a Segunda Lei da Termodinâmica seja
satisfeita [93]. Embora alguns autores tenham apontado que no contexto
da teoria cinética a pressão de não equilíbrio deve ser sempre menor que a
contribuição de equilíbrio mantendo a pressão total positiva, no contexto da
teoria quântica de campos, onde pressões negativas são comuns, a situação é
diferente. Iremos portanto extrapolar a suposição de que ∆Tαα corresponde
apenas a uma pequena correção de não equilíbrio. Este procedimento tem
gerado modelos acelerados consistentes em diversos trabalhos [93] [97] [98].
Neste caso, se o termo Π for su�cientemente grande, é possível ter um uni-
verso com uma pressão total negativa mesmo sendo dominado por um �uido
com p ≥ 0.

As equações de Friedmann nestes modelos podem ser escritas como

ρ = 3
ȧ2

a2
+ 3

k

a2
, (3.11)

p+ Π = −2
ä

a
− ȧ2

a2
− k

a2
. (3.12)

Já a equação de conservação do �uido é dada por

ρ̇+ 3H(ρ+ p+ Π) = 0 . (3.13)

Em geral, a pressão de viscosidade Π é escrita da seguinte forma

Π = −3ξH , (3.14)

onde ξ é o coe�ciente de viscosidade volumar. Esta expressão é, na verdade,
uma aproximação em primeira ordem de não equilíbrio. Esta aproximação
corresponde à teoria de Eckart. Existem teorias mais gerais que consideram
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desvios de equilíbrio de segunda ordem, como as teorias de Muler-Israel-
Stewardt. Aqui consideraremos o caso mais simples, que tem mostrado bons
resultados para problemas como os que serão aqui abordados [97, 101, 102].

Para encontrarmos uma expressão fenomenológica para o coe�ciente ξ,
podemos fazer uma simples análise dimensional. A pressão Π tem dimensão
de densidade de energia, portanto olhando para a equação (3.14) podemos
ver que o coe�ciente ξ deve ter dimensão (ρ/H). Espera-se que a pressão de
viscosidade dependa das quantidades do �uido como densidade, pressão, etc,
e não de suas derivadas ou das propriedades geométricas do espaço-tempo.
Portanto, a expressão mais geral que podemos escrever para o coe�ciente é

ξα =
δ

3

(
ρ0

H0

)(
ρ

ρ0

)α
, (3.15)

onde o fator 1/3 foi introduzido apenas por conveniência, como �cará claro
posteriormente. Multiplicamos as grandezas do �uido por uma constante
adimensional arbitrária δ, que seria natural esperar que fosse da ordem 1. α
é também uma constante adimensional.

Embora não estejamos assumindo nenhum mecanismo dissipativo especí-
�co no �uido, esperamos que a pressão de viscosidade deva ter contribuições
proporcionais a alguma potência de H (ou equivalentemente de ρ), visto que
a rápida expansão do universo causa a perda de equilíbrio. Também podemos
esperar contribuições inversamente proporcionais a H, já que à medida que ρ
decresce, o tempo para interações ocorrerem no �uido aumenta, aumentando
assim a contribuição de não-equilíbrio. Como não sabemos qual a contri-
buição de cada fator para a expressão �nal de Π, α poderá assumir valores
positivos e negativos. Posteriormente deixaremos as observações indicarem
os valores dos parâmetros.

3.3 O Modelo de Decaimento do Vácuo

Outra possível alternativa que tem sido proposta para evitar o problema da
constante cosmológica e também o problema da coincidência é supor que a
densidade de energia do vácuo não é constante, mas decai em outras compo-
nentes cosmológicas [29]-[49]. O tratamento usual assume que Λ(t) = 8πGρv
está acoplado a outras componentes cósmicas produzindo partículas (produ-
tos do decaimento) de forma lenta e contínua. Nestes modelos a explicação
para o valor extremamente pequeno da densidade de energia do vácuo hoje
é que a mesma vem decaindo durante toda evolução do universo.

A variação da densidade de energia do vácuo é genericamente esperada
a partir da Teoria Quântica de Campos (TQC) em espaços curvos [124, 71].
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Neste contexto, a ação efetiva da TQC implica que a variação de ρΛ pode ser
associada à variação da curvatura do espaço-tempo, cuja expressão depende
da teoria especí�ca de gravitação adotada. Mais recentemente, a variação
da densidade de energia do vácuo a baixas energias foi justi�cada por pri-
meiros princípios a partir da abordagem do grupo de renormalização [31].
No contexto do Grupo de Renormalização, a equação da Relatividade Geral
que descreve a variação da densidade de energia do vácuo pode ser escrita a
partir de uma expansão em série de H [31, 125, 36],

dρΛ

dlnH2
=

1

(4π)2

∑
i

[
aiM

2
i H

2 + biH
4 + ci

H6

M2
i

+ ...

]
, (3.16)

onde ai, bi e ci são os coe�cientes da expansão, e a soma se dá sobre as
massas Mi de todos os campos de matéria envolvidos no cálculo da função
β. A expansão acima foi calculada em uma aproximação até um loop.

Podemos mencionar também uma simples proposta que considera um
termo de vácuo descrito por Λ = γH [125]. Esta proposta foi motivada
por trabalhos em cosmologias com dimensões extras, que sugerem que mo-
di�cações nas equações de Friedmann decorrentes de dimensões extras de
volume in�nito podem imitar um termo Λ(t) variando com Ha, sendo a uma
constante. Tais propostas têm sugerido coletivamente que modelos com Λ(t)
dinâmicos fornecem uma possibilidade interessante não apenas para acelerar
o universo mas também para resolver os problemas associados à constante
cosmológica.

Genericamente, nos modelos de decaimento do vácuo as equações de Fri-
edmann assumem a forma

ρ+ Λ(t) = 3
ȧ2

a2
+ 3

k

a2
, (3.17)

p− Λ(t) = −2
ä

a
− ȧ2

a2
− k

a2
, (3.18)

onde Λ(t) é a densidade de energia do vácuo, ρ e p são as densidades de
energia e pressão da matéria escura. Assumiremos por simplicidade que o
vácuo se acopla apenas com a componente dominante do universo. Como
estamos analisando o universo recente, o decaimento do vácuo causa então
uma mudança no número de partículas de matéria escura. A equação que
descreve a concentração de partículas tem portanto um termo fonte, sendo
escrita como

Nα
;α = ṅ+ 3

ȧ

a
n = nΓ , (3.19)

onde Γ é a taxa de variação no número de partículas.
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A partir das equações de Friedmann (3.17) e (3.18), obtemos a seguinte
equação de conservação

ρ̇+ 3
ȧ

a
(ρ+ p) = −ρ̇Λ . (3.20)

Sendo o decaimento do vácuo a única fonte de criação de partículas, temos
que

ρ̇Λ = −ζnΓ, (3.21)

onde ζ é um parâmetro fenomenológico positivo.
Analisaremos posteriormente os vínculos observacionais para dois mode-

los especí�cos de decaimento do vácuo, descritos pela lei Λ(H) = γH e pela
lei Λ(H) = c + βH2. Este último foi motivado a partir da abordagem do
grupo de renormalização, correspondendo às contribuições dominantes na
expansão (3.16).

Os três modelos apresentados neste capítulo, apesar de trazerem uma série
de avanços conceituais com relação ao MP, ainda encontram alguns desa�os
no campo teórico. Descrevemos abaixo algumas das principais questões que
ainda precisam ser desenvolvidas nestes modelos:

• Uma teoria quântica de campos de não-equilíbrio em espaços curvos
que pudesse prescrever algumas importantes grandezas nestes modelos
não foi até o presente desenvolvida;

• Ainda não há uma prescrição clara de como o fenômeno quântico da
criação de partículas pode ser incorporado nas equações de Einstein;

• Na ausência de uma base teórica fundamental completamente desen-
volvida estes modelos são comumente propostos fenomenologicamente.
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Capítulo 4

Comparando Modelos

Cosmológicos

No capítulo anterior, apresentamos três modelos cosmológicos para o universo
recente, sendo cada um deles baseado em uma interpretação física diferente
para a aceleração do universo. Veremos, no entanto, que sob certas condições
os três são capazes de gerar a mesma dinâmica para o universo. Iremos ana-
lisar aqui as relações entre os parâmetros dos três modelos que nos fornecem
esta evolução comum. Veremos também sob quais condições estes modelos
são capazes de reproduzir a dinâmica do Modelo Padrão λCDM. Os resul-
tados apresentados neste capítulo são resultados originais obtidos nesta tese
que podem ser encontrados no artigo correspondente à referência [105].

4.1 Equivalência Dinâmica

Vamos então usar as equações de Friedmann para comparar a evolução
espaço-temporal nos três modelos. Começando pelo modelo de criação gra-
vitacional de partículas, ao combinar as equações de Friedmann (3.4) e (3.5)
deste modelo obtemos,

ä

a
+ ∆

ȧ2

a2
+ ∆

k

a2
+
pc
2

= 0 , (4.1)

onde ∆ = (3w + 1)/2.
Para os modelos de viscosidade, ao combinarmos suas equações de Fried-

mann (3.11) e (3.12), obtemos

ä

a
+ ∆

ȧ2

a2
+ ∆

k

a2
+

Π

2
= 0 . (4.2)

E similarmente para os modelos de decaimento do vácuo obtemos
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ä

a
+ ∆

ȧ2

a2
+ ∆

k

a2
− (1 + w)Λ(t)

2
= 0 . (4.3)

Comparando as três equações acima podemos ver que os três modelos são
equivalentes quando a seguinte igualdade é satisfeita

pc = Π = −(1 + w)Λ(t) , (4.4)

onde w é o parâmetro da equação de estado da matéria escura nos modelos
de decaimento do vácuo. O Modelo Padrão λCDM pode ser obtido como um
caso especial dos modelos de decaimento do vácuo ao se fazer Λ(t) = cte.

No caso da criação �adiabática"de partículas, em que pc = −(1+w)ρΓ/3H,
supondo um espaço-tempo plano (como será considerado até o �nal do tra-
balho), a equivalência (4.4) nos fornece simplesmente

ΓH = Λ(t). (4.5)

Vemos então que os três modelos podem ser dinamicamente equivalentes
entre si e, além disto, são capazes de reproduzir a evolução do Modelo Padrão.

Como mencionado anteriormente, o modelo λCDM possui uma grande
concordância com as observações. Os modelos alternativos, porém, se pro-
põem a melhorar questões conceituais com relação ao MP. Ao obtermos, para
os modelos aqui propostos, uma equivalência dinâmica com o λCDM, surge
a possibilidade de termos uma descrição alternativa para a aceleração cos-
mológica com o mesmo grau de concordância observacional do MP a nível de
background, porém sem os problemas conceituais associados a este.

Vamos, a seguir, comparar os três modelos sob o ponto de vista de suas
evoluções termodinâmicas.

4.2 Equivalência Termodinâmica

Para obtermos uma descrição termodinâmica dos modelos considerados, é
preciso obter as equações de evolução para a entropia especí�ca (σ = S/N),
e para a temperatura em cada modelo.

No caso geral dos modelos de criação de partículas, a derivada com relação
ao tempo comóvel do �uxo de entropia, Sα = nσuα, combinada com as
equações de Friedmann e as equações (3.8) e (3.6) nos fornece

˙̃σ + σ̃Γ̃ =
Γ̃

T̃
(α− µ̃) , (4.6)

onde µ̃ é o potencial químico das partículas criadas, neste caso, de matéria
escura.
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E a temperatura, no caso geral destes modelos, segue a seguinte evolução
[76, 77]

˙̃T

T̃
=

(
∂p̃

∂ρ̃

)
ñ

˙̃n

ñ
− Γ̃

T̃

(
∂ρ̃

∂T̃

)
ñ

[
T̃

(
∂p̃

∂T̃

)
ñ

+ ñ

(
∂ρ̃

∂ñ

)
T̃

− αñ
]
. (4.7)

Já no caso dos modelos de viscosidade não há produção de partículas,
Nα

;α = 0. No entanto, a variação da entropia por partícula é uma função do
coe�ciente de viscosidade como se segue

σ̇ =
9ξ

nT

(
ȧ

a

)2

, (4.8)

enquanto a temperatura nestes modelos segue a seguinte lei de evolução [76]

Ṫ
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)
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+
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(
∂ρ̃
∂T

)
n

(
ȧ
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)2

. (4.9)

Nos modelos de decaimento do vácuo, o vácuo age como uma segunda
componente transferindo energia continuamente para a componente mate-
rial, sendo este processo vinculado pela segunda lei da termodinâmica. As-
sumiremos aqui que o potencial químico do vácuo é nulo, de tal modo que o
vácuo se comporta como um condensado que não carrega entropia. De fato,
para um potencial químico nulo, a equação de estado do vácuo (pv = −ρv)
implica que σv = 0. Sob esta condição, temos a seguinte evolução para a
entropia especí�ca da matéria criada,

σ̇ + σΓ =
Γ

T
(ζ − µ) , (4.10)

onde µ denota o potencial químico das partículas criadas.
Para a temperatura temos a seguinte lei de evolução [183]
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Comparando as equações termodinâmicas apresentadas para os três mo-
delos é possível concluir que:

• Os modelos de criação de partículas e de decaimento do vácuo possuem
a mesma lei de evolução para a temperatura e para a entropia especí�ca
sempre que os coe�cientes α e ζ forem iguais;

• Se considerarmos que o processo de produção de partículas nos modelos
de criação e de decaimento do vácuo é �adiabático�, algumas relações
de equilíbrio são preservadas. Neste caso, os segundos termos do lado
direito das equações (4.11) e (4.7), que correspondem às contribuições
de não-equilíbrio, devem ser identicamente nulos. Para isto α = ζ =
(ρ + p)/n, o que implica que σ̇ = 0. Ou seja, as relações de equilíbrio
são preservadas apenas se a entropia especí�ca das partículas criadas
for constante. Assim, Ṡ/S = Ṅ/N = Γ, tanto nos modelos de criação
de partículas quanto nos de decaimento do vácuo.

• Por outro lado, comparando a equação de evolução da temperatura
(4.9) do modelo de viscosidade com as dos outros modelos, vemos que
não há uma equivalência. Mesmo se compararmos a equação de evo-
lução da temperatura no modelo de viscosidade com as equações cor-
respondentes no caso "adiabático"dos outros modelos também não ob-
temos uma equivalência. A equação de evolução da entropia especí�ca
no modelo de viscosidade nos mostra que, enquanto existe uma visco-
sidade, σ̇ 6= 0 e o processo não é adiabático. Neste caso, o segundo
termo do lado direito da equação (4.9) não se anula.

Em resumo, vimos que, embora os três modelos possam ser dinamica-
mente equivalentes, sob o ponto de vista termodinâmico o modelo de viscosi-
dade não é equivalente aos demais. No entanto, entre os modelos de criação
de partícula e de decaimento do vácuo observa-se uma correspondência di-
reta.



Capítulo 5

Análise Observacional

Neste capítulo, será feita uma análise observacional dos três modelos pro-
postos visando testar a viabilidade dos mesmos e obter vínculos para seus
parâmetros livres. Os resultados deste capítulo fazem parte dos resultados
originais desta tese e também podem ser encontrados no artigo [105]. Vamos
especi�car nossa análise a algumas classes de modelos bem conhecidas na
literatura as quais introduziremos a seguir.

- Modelo 1: λCDM

Como vimos que os três modelos considerados são capazes de reproduzir a
dinâmica do modelo λCDM, vamos então começar nossa análise pelo Modelo
Padrão. Vimos que o mesmo corresponde ao caso especí�co em que Λ(t) =
cte = λ.

De acordo com a equação (4.5), podemos ver que o modelo de criação
de partículas que reproduz a dinâmica do λCDM possui a seguinte taxa de
criação de partículas,

Γ̃ =
λ

H
, (5.1)

onde λ é a constante cosmológica do Modelo Padrão.
Já o modelo de viscosidade que reproduz esta mesma dinâmica possui

um coe�ciente de viscosidade tal que ξ ∝ ρ−1/2, o que pode ser visto através
das equações (3.14) e (4.4). Ou seja, o parâmetro α do modelo (ξ ∝ ρα),
introduzido na equação (3.15), é igual a −1/2.

Como nestas condições os três modelos geram a mesma dinâmica, que
neste caso corresponde a do Modelo Padrão, vamos usar como exemplo o
modelo de criação de partículas a �m de obtermos a evolução comum aos
três modelos. Para isto vamos então reescrever a equação de conservação
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(3.7) em termos da taxa de criação de partículas da seguinte forma,

˙̃ρ+ 3H(ρ̃− Γ̃H) = 0 . (5.2)

Substituindo a condição de equivalência, Γ̃ = λ/H, na expressão acima e
integrando encontramos

ρ̃ = λ+ ρ̃m1,0a
−3, (5.3)

onde ρ̃m1,0 é uma constante, com dimensão de densidade de energia, que
quanti�ca a densidade de matéria que se aglomera.

Podemos substituir a relação acima na equação de Friedmann (3.4) para
obtermos uma expressão para H em função do redshift z,

H = H0

[
1− Ω̃m1 + Ω̃m1(1 + z)3

]1/2

, (5.4)

onde Ω̃m1 = ρ̃m1,0/3H0
2. A equação acima descreve a dinâmica dos três

modelos no caso em que os mesmos são equivalentes ao λCDM. Tal resultado
foi previamente obtido em [82, 83] através de um método diferente.

Embora os três modelos e o λCDM apresentem a mesma dinâmica, eles
podem, em certos casos, ser distinguíveis a nível perturbativo [84]. Esta
distinção pode ser feita, por exemplo, a partir do cálculo do espectro de
potências da radiação e da matéria em cada cenário, ou das previsões para
as estruturas em largas escalas. O espectro de potências primordial para uma
dada classe dos modelos de criação de partículas será calculado no capítulo
10. A análise da evolução posterior das perturbações cosmológicas nestes
modelos foi analisada em [88] - [89] e foi mostrado que para um determinado
valor da velocidade do som efetiva (c2

s = 0), o modelo de criação gravitacional
de partículas e o λCDM são degenerados em qualquer ordem na teoria de
perturbações cosmológicas.

Na análise da evolução das estruturas do universo é importante lembrar
que nos modelos de criação de partículas e viscosidade há apenas uma com-
ponente dominante no universo recente (a matéria escura), enquanto que
nos modelos de decaimento do vácuo e no λCDM existem duas componentes
principais. No entanto, ao contrário do modelo de decaimento do vácuo, no
Modelo Padrão as duas componentes principais evoluem de modo completa-
mente independente, o que gera a necessidade de ajuste �no.

- Modelo 2: Λ = γH

Este simples modelo fenomenológico foi proposto em [126] e discutido em
[125] em um contexto mais geral. Note que γ é uma constante dimensional
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(Dimγ = DimH). Neste caso a taxa de criação de partículas no modelo
de criação equivalente é uma constante, Γ̃ = γ. Como a segunda lei da
termodinâmica implica que Γ̃ ≥ 0, então temos que γ > 0. Já no modelo de
viscosidade correspondente, o coe�ciente de viscosidade é dado por ξ = cte,
ou seja, o parâmetro α do modelo é igual á zero.

Ao integrarmos a equação (5.2) obtemos para este caso

ρ̃ =
γ2

3

[
1 +

(
C

a

)3/2
]2

, (5.5)

onde C é uma constante de integração. O parâmetro de Hubble pode então
ser escrito como

H = H0

[
1− Ω̃m2 + Ω̃m2(1 + z)3/2

]
, (5.6)

onde Ω̃m2 = 1−γH0/3H
2
0 . Este parâmetro quanti�ca a quantidade de matéria

que se aglomera.

- Modelo 3: Λ = c+ βH2

A lei de decaimento βH2 foi inicialmente proposta em [39] e foi posteri-
ormente analisada por vários autores incluindo [40, 42]. A evolução recente
neste modelo se aproxima da evolução do λCDM. No entanto, o termo em
H2 fornece uma dinâmica mesmo no universo atual.

Neste caso, a taxa de criação de partículas do modelo equivalente é dada
por Γ̃ = βH + (c/H). E o modelo de viscosidade correspondente tem o
coe�ciente de viscosidade dado pela soma de um termo proporcional a ρ−1/2

e outro proporcional a ρ1/2. É possível mostrar que o parâmetro β deve ser
positivo para que a segunda lei da termodinâmica seja satisfeita [105].

Inserindo a expressão de Γ̃ na equação (5.2) e integrando obtemos

ρ̃ =
c

1− β/3
+ ρ̃m3,0a

−3+β, (5.7)

o que nos permite obter

H = H0

[
1− Ω̃m3 + Ω̃m3(1 + z)3−β

]1/2

, (5.8)

onde Ω̃m3 = ρ̃m3,0/3H0
2.

Neste momento, é interessante estimarmos o valor atual da taxa de cri-
ação de partículas para os modelos discutidos aqui (veja equação (4.5)). Se
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assumirmos que as partículas de matéria escura são neutralinos, com massa
m ∼ 100GeV , e que ΩΛ0 ∼ 0.7 e H0 ∼ 74km.Mpc−1.s−1, podemos ver que a
taxa de criação é atualmente da ordem de [Γn]hoje ∼ 10−11.cm−3.yr−1. Esta
taxa não foi consideravelmente alterada nos últimos bilhões de anos (z < 1)
em que o universo começou a acelerar devido à criação.

Os modelos de criação de partículas podem também ser descritos atra-
vés da dinâmica de um campo escalar. No Apêndice A, foram obtidos os
campos escalares e seus respectivos potenciais que representam os três casos
especí�cos descritos aqui.

5.1 Vínculos Observacionais

Vamos agora obter os vínculos observacionais para os parâmetros livres dos
modelos discutidos. Para isto, faremos uma análise conjunta envolvendo
dados de SNeIa (supernovas tipo Ia) e RCF/BAO (Radiação Cósmica de
Fundo/Oscilações Acústicas de Bárions). Usaremos, na nossa análise, a com-
pilação de supernovas Union 2.1 [127] que inclui 580 pontos selecionados de
supernovas. Em conjunto, usaremos também medidas derivadas a partir do
produto da escala acústica da RCF com a razão entre o horizonte sonoro (na
época em que as oscilações acústicas são congeladas) e a escala de dilatação
de BAO.

Um modelo cosmológico que depende de um conjunto de parâmetros pode
ser comparado com os dados observacionais através do teste estatístico χ2.
A função probabilidade P associada a um dado parâmetro cosmológico θ é
dada por P ∝ exp(−χ2/2), onde a grandeza χ2 é de�nida como

χ2 =
N∑
i=1

(
f obsi − fTi (θ)

σi

)2

. (5.9)

Acima f obsi e fTi correspondem às grandezas observacionais e teóricas res-
pectivamente, e σi corresponde ao erro associado à grandeza observacional.
Procuramos identi�car o parâmetro θ que minimiza a função χ2. Este proce-
dimento nos permite encontrar o melhor ajuste dos parâmetros dos modelos
teóricos com base nas observações.

Obteremos, portanto, os vínculos para o conjunto de parâmetros de cada
modelo apresentado acima minimizando a função χ2

T = χ2
SNe + χ2

CMB/BAO.

5.1.1 Resultados

Os resultados das análises estatísticas estão apresentados nas �guras (5.1) e
(5.2). A �gura (5.1) mostra a variância, ∆χ2 = χ2 − χ2

min, em função dos
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parâmetros de densidade Ωm1 e Ωm2 nas regiões de con�ança 68% e 95, 4%
para o modelo 1 (no grá�co à esquerda) e para o modelo 2 (no grá�co à
direita).

Figura 5.1: A variância ∆χ2 em função dos parâmetros Ω̃m1 ≡ Ωm1 (painel
esquerdo) e Ω̃m2 ≡ Ωm2 (painel direito). A partir desta análise encontramos
Ω̃m1 = 0.282+0.014

−0.014 e Ω̃m2 = 0.449+0.013
−0.013 com 1σ de con�ança.

Para o modelo 1, encontramos que o pico da função probabilidade se
encontra em Ω̃m1 = 0.282+0.014

−0.014, portanto, em excelente concordância com as
observações. Já para o modelo 2 o pico se encontra em Ω̃m2 = 0.449+0.013

−0.013. Isto
mostra que uma taxa de criação de partículas constante durante a evolução
cósmica gera um valor para Ω̃m mais alto que o observado.

A �gura (5.2) apresenta o espaço de parâmetros Ω̃m3 − β para o modelo
3. Ao se marginalizar em h (H0 = 100hkms−1Mpc−1), encontramos Ω̃m3 =
0.274+0.014

−0.014 e β = −0.018+0.026
−0.027 com 68, 3% de con�ança, sendo que χ2

min =
563, 53 e ν = 581 graus de liberdade. Já o valor obtido para χ2

rel ≡ χ2
min/ν =

0.97 nos mostra que o modelo está em boa concordância com os dados.
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Figura 5.2: O resultado da análise estatística no plano β−Ω̃m3 para o modelo
3. Vínculos de SNeIa e RCF/BAO aparecem nos níveis de con�ança 1σ e 2σ.

5.1.2 A Viabilidade dos Modelos

Diversos critérios podem ser utilizados para a seleção e comparação de mo-
delos. Em geral, tais critérios consideram a complexidade do modelo e, es-
sencialmente, penalizam o número de parâmetros dos mesmos. Um exemplo
importante é o conhecido critério de informação de Akaike (AIC). Proposto
em 1974 [128] por Hirotugu Akaike sob o nome de "um critério de informa-
ção", o mesmo corresponde a uma medida relativa da qualidade de ajuste
de um modelo estocástico estimado. Como discutido em [129], o critério
AIC fornece uma forma interessante para se obter um ranking da viabilidade
observacional dos diferentes modelos. Fundamentado no conceito de informa-
ção, ele oferece uma medida relativa das informações perdidas, quando um
determinado modelo é utilizado para descrever um fenômeno. Akaike usou a
informação de Kullback-Leibler e propriedades assintóticas dos estimadores
de máxima verossimilhança para de�nir seu critério. Alguns elementos tor-
nam esta abordagem mais simples quando comparadas a outros critérios de
seleção. Um deles é o fato de não haver restrições a respeito do número de
modelos ou como eles são formulados. Além disto, para a comparação é irrele-
vante quais variáveis foram utilizadas como variáveis preditoras/explicativas
ou como elas são incorporadas ao modelo.



Portanto, para comparar os modelos estudados usaremos o critério Akaike.
Matematicamente podemos de�nir o mesmo como

AIC = −2lnL+ 2k, (5.10)

onde L é o máximo da função likelihood e k é o número de parâmetros livres
do modelo. A quantidade importante nesta análise é a diferença ∆AICi =
AICi − AICmin, calculada sobre o conjunto de cenários (i = 1, ..., n), sendo
que o modelo que melhor se ajusta aos dados corresponde àquele que mini-
miza o fator AIC.

A tabela 5.1.2 mostra um resumo do ranking para os modelos analisados
com base nos dados de SNeIa e RCF/BAO.

Tabela 5.1: AIC - Resultados

Modelo k Ranking ∆AIC χ2
min/ν

Modelo 1 1 1 0.00 0.97
Modelo 2 1 3 33.21 1.03
Modelo 3 2 2 1.86 0.97

Podemos ver que o modelo que melhor se ajusta é o modelo 1, sendo
seguido pelo modelo 3 que é compatível com o λCDM em 1σ. Além disto,
vemos que os dados distinguem fracamente os modelos 1 e 3.

Agora que já analisamos algumas possibilidades para a aceleração recente
do universo, veremos que os mesmos três modelos apresentados aqui são ca-
pazes também de explicar a fase acelerada que acredita-se ter ocorrido no
universo primitivo. Desta forma pode ser possível obter uma descrição uni�-
cada para a aceleração cósmica que possui também a vantagem de eliminar a
necessidade do campo in�aton bem como da energia escura. Primeiramente,
no entanto, iremos introduzir a teoria da aceleração primordial (in�ação) no
Modelo Padrão, para a partir daí sugerir algumas propostas alternativas a
este cenário.
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Parte II

A Expansão Acelerada no

Universo Primordial
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Capítulo 6

A Aceleração Cosmológica

Primordial no Modelo Padrão

6.1 O Cenário da In�ação Primordial

Sabemos que no cenário cosmológico padrão do Big Bang o universo inicia
na era de domínio da radiação que é seguida pela era de domínio da maté-
ria. Ambas as fases estão associadas a uma desaceleração na expansão do
universo. No entanto, a este cenário está relacionada uma série de proble-
mas que hoje sabemos que podem ser resolvidos na presença de uma fase
de expansão acelerada no universo primitivo. Esta fase denomina-se in�a-
ção. Para solucionar estes problemas, é necessária uma quantidade mínima
de in�ação que na maioria dos modelos corresponde a um breve instante de
tempo. É possível resolver estes mesmos problemas também em modelos sem
a singularidade inicial ao se supor uma expansão de-Sitter no universo tendo
início em t = −∞.

Alguns dos principais problemas que qualquer modelo in�acionário deve
se propor a resolver se resumem a seguir:

- O Problema do Horizonte

O horizonte de partículas comóvel, que é a máxima distância que a luz
pode viajar entre um tempo 0 e t, é dado por

τ ≡
∫ t

0

dt′

a(t′)
=

∫ a

0

da

Ha2
=

∫ a

0

dlna

(
1

aH

)
, (6.1)

onde expressamos o horizonte comóvel através de uma integral do raio de
Hubble comóvel (aH)−1.

Para um universo dominado por um �uido com equação de estado w
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temos que
(aH)−1 = H−1

0 a
1
2

(1+3w). (6.2)

De onde vemos que o comportamento do horizonte de partículas depende de
se (1 + 3w) é positivo ou negativo. Durante as eras da radiação e da matéria
w ≥ 0, e (aH)−1 cresce, fazendo com que o horizonte comóvel τ , ou a fração
do universo em contato causal, cresça com o tempo (τ ∝ a

1
2

(1+3w)). Isto
signi�ca que as escalas comóveis que entram hoje no horizonte estavam fora
dele na época em que se formou a Radiação Cósmica de Fundo (300.000 anos
após o Big Bang).

No entanto, sabemos atualmente que o universo possui um altíssimo grau
de homogeneidade e isotropia. A uniformidade detectada na Radiação Cós-
mica de Fundo em todo universo observável implica que regiões que na época
do desacoplamento não possuiam contato causal apresentavam a mesma tem-
peratura.

Com a cosmologia in�acionária a uniformidade observada no universo
pode ser facilmente explicada. Como w ≈ −1 na época da in�ação, temos
um horizonte comóvel que decresce com o tempo neste período. Portanto, as
grandes escalas que entram no presente universo observável estavam dentro
do horizonte antes da in�ação. A uniformidade existiria inicialmente em
escalas microscópicas devido a processos usuais de equilíbrio térmico. Com
a in�ação, as regiões uniformes teriam sido esticadas até um tamanho maior
que o universo observável gerando o alto grau de homogeneidade e isotropia
que vemos hoje.

- O Problema da Planitude

O problema da planitude diz respeito à razão Ωtotal = ρtotal/ρc, onde ρtotal
é a densidade total do universo e ρc = 3H2/8πG é a densidade crítica para
a qual o universo é espacialmente plano. De acordo com os dados recentes,
o valor do parâmetro de densidade total corresponde à Ωtotal

∼= 1, 01, que é
muito próximo de 1. Porém, ao extrapolar o parâmetro Ωtotal para o universo
primordial, vê-se que o valor Ωtotal = 1 é um ponto de equilíbrio instável na
evolução do universo pelo Modelo Padrão. Portanto, se Ωtotal for inicialmente
igual a 1, ele permanecerá com este valor para sempre, mas se houver uma
pequena variação no valor com relação a 1, esta diferença será ampli�cada
com o tempo. É possível mostrar que (Ωtotal − 1) cresce proporcionalmente
a t durante a era da radiação e a t2/3 durante a era da matéria. Como
mostrado por Dicke e Peebles em [130], quando o universo tinha 1 segundo,
no Modelo Padrão, Ωtotal deve ter sido igual a 1 com uma acurácia de uma
parte em 1015 para que hoje tenha o valor observado. A cosmologia padrão
não fornece nenhuma explicação para este valor e apenas o assume como
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condição inicial. Já se considerarmos o valor de Ωtotal no tempo de Planck,
10−43s, o problema se torna ainda mais grave e Ωtotal precisa ser igual a 1 em
até 59 casas decimais.

Com o mecanismo da in�ação o valor de Ωtotal pode ser naturalmente ex-
plicado. Durante a in�ação, ao invés de Ωtotal se afastar de 1, ele se aproxima
deste valor de acordo com Ωtotal − 1 ∝ e−2Hinflt, onde Hinfl é o parâmetro
de Hubble na in�ação. Portanto, havendo um su�ciente período de in�ação,
Ωtotal pode assumir diversos valores inicialmente e com a expansão exponen-
cial o mesmo acabará convergindo para 1.

- A Ausência de Monopolos Magnéticos

Todas as teorias de grande uni�cação preveem que devem existir no espec-
tro de possíveis partículas, partículas extremamente massivas com uma carga
magnética resultante. Sem considerar um período in�acionário, as teorias de
Grande Uni�cação combinadas com a cosmologia clássica preveem uma pro-
dução absurdamente grande destas partículas no universo, o que geraria uma
densidade de monopolos inaceitável [131]. Com a in�ação ocorrendo depois
ou durante a produção de monopolos, embora os monopolos ainda estejam no
espectro das possíveis partículas eles seriam eliminados do universo visível,
já que a densidade dos mesmos seria completamente diluída.

Além de fornecer um mecanismo para resolver os problemas aqui expli-
cados, entre outros, a in�ação tem um papel fundamental na formação das
estruturas do universo, como veremos posteriormente.

Existem diversos modelos capazes de explicar a fase de aceleração pri-
mordial do universo. A maioria deles atribui a in�ação a um campo escalar
denominado in�aton, com um potencial não nulo e uma energia cinética
muito pequena. Veremos posteriormente outras alternativas que explicam
esta fase sem necessitar do papel do campo escalar.

As idéias básicas da in�ação foram originalmente propostas por Guth
[132] e Sato [133] independentemente em 1981, no que hoje é chamado de
Velha In�ação. Neste cenário, a expansão de-Sitter do universo se devia a
uma transição de fase de primeira ordem de um falso vácuo para um vácuo
verdadeiro. No entanto, este cenário possuía um sério problema. A transição
de fase ocorria através da formação de bolhas de novo vácuo e, após sua
formação, as mesmas se expandiam rapidamente e colidiam umas com as
outras. Porém, esta con�guração gerava um universo altamente inomogêneo,
em desacordo com as observações. Uma nova versão do cenário in�acionário
foi então proposta por Linde [134] e Albrecht e Steinhardt [135] em 1982, a
qual é chamada de Nova In�ação. Neste cenário o campo in�aton sofre uma
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transição de fase de segunda ordem e dai passa por um regime de Slow-Roll,
em que a energia cinética do campo é muito pequena. Porém, este modelo
também sofria de um grande problema de ajuste �no devido ao tempo que o
campo devia permanecer no falso vácuo para gerar a quantidade necessária de
in�ação. Em 1983, Linde [136] propôs outro modelo in�acionário baseado no
regime de Slow-Roll, chamado in�ação caótica, no qual as condições iniciais
do campo escalar são caóticas. De acordo com este modelo, nosso universo
homogêneo e isotrópico teria sido gerado em regiões onde ocorre su�ciente
in�ação.

Diversos modelos de in�ação foram construídos nas últimas décadas [137],
[138], entre os quais podemos citar também os modelos in�acionários basea-
dos em supercordas e supergravidade [139]. Apesar de diversas possibilidades
terem sido desenvolvidas, a maioria dos modelos ainda considera o campo in-
�aton como responsável pela in�ação. Vamos então descrever brevemente a
dinâmica destes cenários.

6.1.1 A Dinâmica In�acionária

O campo in�aton, responsável pela in�ação, é considerado como sendo um
campo escalar, homogêneo, com densidade de energia e pressão dadas por

ρ =
1

2
φ̇2 + V (φ), p =

1

2
φ̇2 − V (φ), (6.3)

onde V (φ) é o potencial do campo.
Em um universo dominado pelo in�aton temos, a partir das equações de

Einstein, a seguinte evolução,

3H2 +
3k

a2
=

8π

m2
p

[
1

2
φ̇2 + V (φ)

]
, (6.4)

onde m2
p = 1/G. Sendo a equação de movimento do campo dada por

φ̈+ 3Hφ̇+ V ′(φ) = 0. (6.5)

Para que o campo tenha uma pressão su�cientemente negativa para ge-
rar a quantidade necessária de in�ação, é preciso que φ̇2/2 << V (φ) e
φ̈ << 3Hφ̇, o que requer um potencial bastante plano. Estas condições
são chamadas condições de Slow-Roll. Supondo estas condições, as equações
acima podem ser aproximadas por

3H2 +
3k

a2
∼=

8π

m2
p

V (φ), (6.6)
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3Hφ̇ ∼= −V ′(φ). (6.7)

Como o potencial do campo deve ser muito plano para garantir as con-
dições de Slow-Roll, no período da in�ação V ≈ cte e, consequentemente,
H ≈ cte.

Podemos de�nir os seguintes parâmetros de Slow-Roll,

ε ≡
m2
p

16π

(
V ′

V

)2

, η ≡
m2
p

8π

(
V ′′

V

)
, (6.8)

de modo que a aproximação de Slow-Roll é válida sempre que ε << 1 e
|η| << 1. A fase in�acionária termina quando os parâmetros acima atingem
a ordem de 1.

Podemos de�nir uma grandeza, chamada número de e-foldings, capaz de
descrever a quantidade de in�ação da seguinte forma

N ≡ ln
af
ai

=

∫ tf

ti

Hdt, (6.9)

onde i e f indicam as quantidades no início e no �m da in�ação respectiva-
mente.

Para solucionar o problema da planitude, é necessário que |Ωtotal − 1| ≤
10−60 logo após o término da in�ação. Ao dividir a equação de Friedmann
(6.6) pela densidade crítica ρc = 3H2/8πG, após reorganizar os termos ob-
temos que

(Ωtotal − 1)a2H2 = k, (6.10)

onde consideramos o parâmetro de densidade total Ωtotal = ρtotal/ρc = ρφ/ρc.
Portanto, a razão entre |Ωtotal − 1| no início e no �m da in�ação é dada por

|Ωf − 1|
|Ωi − 1|

∼=
(
ai
af

)2

= e−2N , (6.11)

onde consideramos H ≈ cte durante a in�ação. Assumindo |Ωi − 1| como
sendo da ordem de 1, vemos que, para um número de e-foldings N ≥ 60, o
problema da planitude é solucionado. Também o problema do horizonte é
solucionado para esta quantidade de e-foldings.

Vemos que é possível, a princípio, descrever uma expansão acelerada pri-
mordial capaz de solucionar os problemas mencionados anteriormente através
de um campo escalar simples. Apesar disto os detalhes deste processo, as con-
dições iniciais, a formação das perturbações cosmológicas e a transição para a
fase da radiação, são pontos que ainda apresentam uma série de di�culdades.
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As características destes processos variam de acordo com o modelo in�aci-
onário, gerando previsões que os tornam observacionalmente distinguíveis.
Apesar da in�ação ter ocorrido nos primórdios do universo, existem dados
observacionais capazes de testar modelos in�acionários com grande precisão.
Estes dados observacionais provém da Radiação Cósmica de Fundo, como
será discutido a seguir.

6.2 A Radiação Cósmica de Fundo

Em 1964, foi descoberto acidentalmente, pelos rádio-astrônomos amadores
Penzias e Wilson, um sinal eletromagnético desconhecido vindo igualmente
de todas as direções do céu. Ao noticiarem a descoberta, os físicos logo
associaram o sinal observado com a previsão feita já na década de 40 por
Gamow e Alpher de que haveria uma radiação remanescente do início do
universo. Esta formaria o que atualmente chamamos de Radiação Cósmica
de Fundo (RCF). Em 1940, já havia sido calculada a temperatura que esta
radiação deveria ter no universo atual. O valor obtido na época, 5 graus
Kelvin, era próximo do valor aceito atualmente, que corresponde a 2,7K. Na
época, no entanto, não estava claro se esta radiação poderia ser observada.

Hoje, a Radiação Cósmica de Fundo é uma das maiores ferramentas dis-
poníveis para se obter informações sobre o universo primitivo, já que os fótons
da RCF tiveram seu último espalhamento 370 mil anos após o Big Bang. An-
teriormente a esta época, com a temperatura acima dos 3000K, a matéria no
universo se encontrava em um estado ionizado, de modo que a luz não con-
seguia viajar uma distância considerável sem ser absorvida por um elétron
que, por sua vez, emitia novos fótons. À medida que o universo expandiu
e se esfriou, os elétrons e núcleos presentes puderam se recombinar e então
formar átomos neutros. Após este evento, chamado superfície de último es-
palhamento, os fótons puderam viajar livremente por grandes distâncias sem
serem absorvidos. Isto ocorreu após a era da radiação, já no início da era da
matéria. Estes fótons vindos da superfície de último espalhamento compõem
a Radiação Cósmica de Fundo, que é observada como uma radiação pratica-
mente uniforme vinda de todas as direções do céu, possuindo um espectro de
corpo negro, devido ao fato de que matéria e radiação estavam em equilíbrio
na época do último espalhamento.

Embora praticamente isotrópica, a RCF possui pequenas anisotropias in-
trínsecas e uma anisotropia dipolar. A anisotropia dipolar, da ordem de
∆T/T ≈ 10−3, é decorrente do movimento da Terra em relação à RCF. Já
as anisotropias intrínsecas, que são da ordem de ∆T/T ≈ 10−5, são con-
sequência de �utuações de temperatura no universo primitivo que seriam as
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sementes das estruturas que hoje observamos. As características destas ani-
sotropias nos fornecem valiosas informações sobre o processo de formação e
evolução de estruturas no universo.

As pequenas anisotropias na temperatura da RCF podem ser analisadas
ao se decompor o sinal observado no céu em esféricos harmônicos da seguinte
forma,

∆T

T
=
∑

al,mYl,m(θ, φ), (6.12)

onde al,m são os coe�cientes da expansão, θ e φ são os parâmetros angulares
esféricos. Os coe�cientes complexos al,m podem ser escritos como o produto
de um módulo por uma fase complexa

al,m = |al,m|eiφlm . (6.13)

No caso de uma distribuição gaussiana as fases são aleatórias, portanto a
média das mesmas é zero. Por esta razão, nos modelos gaussianos toda
informação está contida no espectro de potências, que é usualmente de�nido
como

Cl =< |al,m|2 > . (6.14)

É convencional plotar a quantidade l(l+1)Cl em função dos multipolos l,
no que é chamado Espectro de Potências da Radiação Cósmica de Fundo. Um
exemplo deste espectro, obtido pela colaboração Planck [140], está mostrado
na �gura a seguir:
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Figura 6.1: O Espectro de Potências da Radiação Cósmica de Fundo (Planck
2013).

A amplitude das �utuações de temperatura hoje observadas na RCF,
advêm da combinação de dois fatores: Das �utuações intrínsecas de densidade
na época da superfície de último espalhamento, e do potencial gravitacional
causado por estas �utuações. Fótons vindos de regiões mais densas possuem
naturalmente maior temperatura, no entanto, os mesmos têm que emergir
de um poço de potencial mais profundo, e portanto sofrem maior redshift,
perdendo energia. A superposição destes dois efeitos é o que chamamos de
efeito Sachs-Wolfe. Hoje sabe-se que o efeito na temperatura observada da
perda de energia dos fótons ao emergir do poço de potencial é maior que
o efeito positivo da sobredensidade. Portanto regiões que observamos hoje
como sendo mais frias, são na verdade originárias de sobredensidades na
época do último espalhamento.

Veremos a seguir, através da análise da evolução das perturbações cosmo-
lógicas, como são formados os picos observados hoje no espectro da Radiação
Cósmica de Fundo, e como as suas características podem nos dar informações
sobre os parâmetros dos modelos cosmológicos.
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6.3 A Evolução das Perturbações Cosmológicas

As perturbações primordiais originárias na época da in�ação se manifestam
tanto na Radiação Cósmica de Fundo quanto na distribuição de matéria
hoje observada no universo. Aqui nos interessa, neste momento, analisar
qualitativamente a evolução dos fótons, o que nos permitirá compreender o
espectro geral das anisotropias da RCF.

As perturbações na radiação tiveram origem a partir de �utuações quân-
ticas de vácuo e a partir de �utuações térmicas estatísticas, como veremos
mais para frente. Após serem geradas, o mecanismo da in�ação aumentou a
escala destas pequenas perturbações a nível clássico e as mesmas passaram
a evoluir gravitacionalmente.

Na análise da evolução das perturbações é importante se considerar dois
regimes distintos em que estas �utuações evoluem de modos diferentes. Estes
regimes correspondem às �utuações com comprimentos de onda menores que
o horizonte de Hubble, e àquelas com comprimento de onda maiores que o
horizonte de Hubble. Quando uma perturbação possui um comprimento de
onda menor que o horizonte de Hubble, a mesma se encontra em constante
evolução, determinada pela atração gravitacional combinada com a pressão
natural da radiação que age em sentido oposto. No entanto, a in�ação am-
pli�ca as perturbações, enquanto que o raio de Hubble, 1/H, permanece
aproximadamente constante neste período. Isto faz com que as perturba-
ções, que inicialmente evoluíam dentro do horizonte, cresçam �cando maior
que o raio de Hubble.

Primeiramente sairão do horizonte de Hubble as perturbações com maior
comprimento de onda, e seguidamente, as de menores comprimento de onda.
Ao cruzar o horizonte de Hubble, as perturbações "congelam"e praticamente
não sofrem mais qualquer evolução até que reentrem no horizonte. Este fenô-
meno é compreensível já que nenhuma física causal pode afetar perturbações
em escalas maiores que o horizonte de Hubble.

Porém, ao �m da in�ação o raio de Hubble 1/H volta a crescer e, em um
dado momento, os modos reentram no horizonte, passando a evoluir nova-
mente. Como é de se esperar, os modos de comprimento de onda menores
reentram no horizonte primeiro e, posteriormente, entram os modos com
comprimento de onda maiores. Os menores comprimentos de onda entram
no horizonte ainda na era da radiação, enquanto os maiores apenas vão reen-
trar no horizonte após a recombinação já na era da matéria. Este fato gera
a con�guração observada no espectro da RCF (�g.1). Enquanto os menores
multipolos, correspondentes às grandes escalas, têm seu espectro caracteri-
zado por um plateau com uma amplitude aproximadamente constante, os
maiores multipolos apresentam um espectro formado por picos e vales.
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Os menores multipolos referentes às largas escalas, por terem permaneci-
dos congelados desde a in�ação, correspondem às perturbações na sua forma
mais primordial e nos fornecem, portanto, informações diretas da in�ação.
Já as escalas menores, tendo entrado no horizonte antes da recombinação,
sofreram evolução a partir daí. Por elas terem entrado no horizonte ainda na
era de domínio da radiação, sofrem o que chamamos de oscilações acústicas,
como explicaremos a seguir.

Devido à força gravitacional, a matéria tende a se aglomerar. No entanto,
antes do último espalhamento, matéria e radiação estavam acopladas e por
isto a matéria sofria pressão devido à radiação. A junção da força gravita-
cional atrativa com a pressão de radiação agindo em sentido oposto gerava
oscilações no plasma primordial. Este fenômeno é o responsável por gerar os
picos observados no espectro de potências da RCF [141].

Vamos considerar, primeiramente, o primeiro pico. Quando o modo cor-
respondente entrou no horizonte, a perturbação começou a crescer até atingir
sua intensidade máxima, o que ocorreu justamente no momento da recom-
binação, quando a distribuição característica da radiação �cou impressa na
RCF. Portanto, estas perturbações possuem a maior intensidade observada
no espectro de potências (o primeiro pico). Já comprimentos de onda me-
nores entraram no horizonte antes e tiveram tempo de completar mais fases
de oscilação até o momento da recombinação. O primeiro vale, por exemplo,
corresponde aos modos que se contraíram e tiveram tempo de se expandir
até um valor de contraste mínimo no momento da recombinação. O segundo
pico entrou no horizonte ainda mais cedo e teve tempo de completar uma
oscilação completa antes da recombinação. Este mecanismo formou a série
de picos e vales que observamos no espectro da RCF.

Outra característica que podemos observar também na �gura é que esca-
las pequenas sofrem um amortecimento. Isto ocorre devido ao fato de que
a suposição de acoplamento forte, onde fótons, elétron e bárions se movem
juntos, é apenas uma aproximação. Ela é exata somente se a taxa de espalha-
mento dos fótons e elétrons for in�nita. Na realidade, no entanto, os fótons
viajam uma distância �nita entre cada espalhamento, e cada espalhamento
contribui para o movimento aleatório do fóton. Assim, qualquer perturbação
em uma escala menor que a distância total percorrida no movimento aleatório
do fóton deve ser diluída, o que causa o amortecimento observado.

Através do espectro das �utuações primordiais de temperatura, é possível
comparar previsões teóricas com as observações, permitindo-nos vincular e
eliminar modelos. Vamos então ver como o espectro destas �utuações pri-
mordiais pode ser calculado para o caso cosmológico padrão.
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6.4 O Espectro de Potências a partir de Flutu-

ações Quânticas

Antes do surgimento do modelo in�acionário, as �utuações iniciais eram pos-
tuladas como tendo um espectro tal que �tasse os dados observacionais. Deste
modo, qualquer observação podia ser descrita ajustando as condições iniciais
de forma apropriada. Com o advento da in�ação, a origem das perturbações
primordiais pôde ser explicada e, a partir dela, o espectro primordial pôde
ser calculado. Deste modo, tornou-se possível testar teorias in�acionárias
comparando suas predições teóricas com as observações.

As perturbações primordiais, de acordo com o que hoje conhecemos, po-
dem ser originárias de dois mecanismos distintos. Elas podem ser geradas a
partir de �utuações quânticas do vácuo, como supoem a maioria dos mode-
los, e podem também ser de origem térmica, como veremos posteriormente.
Como a in�ação padrão gera um superesfriamento no universo, devido à rá-
pida expansão do mesmo, a temperatura não possui um papel fundamental
neste caso. Neste capítulo, vamos então analisar as �utuações de origem
quântica no caso padrão. Apresentaremos aqui uma revisão do caso mais
simples em que a aproximação de slow-roll pode ser utilizada.

- Perturbações na In�ação - O Regime de Slow-Roll

As inomogeneidades, em um dado momento, podem ser caracterizadas
pela distribuição espacial do potencial gravitacional Φ ou pela densidade das
�utuações δε. Estes são tratados como campos aleatórios para os quais usare-
mos a notação f(x). Uma con�guração particular f(x) em uma dada região
advém de um processo aleatório, por isto o número relativo de regiões em que
uma dada con�guração ocorre pode ser descrito pela função de distribuição
de probabilidade.

É conveniente descrevermos a função f(x) em um dado volume V através
de uma expansão de Fourier,

f(x) =

∫
fke

ikx d3k

(2π)3/2
, (6.15)

onde os coe�cientes complexos de Fourier fk podem ser escritos como fk =
ak + ibk. Dado um número grande de regiões N temos que

dN = Np(a′kb
′
k)dakdbk. (6.16)
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onde p(a′kb
′
k) corresponde à função distribuição de probabilidade. Para pro-

cessos gaussianos esta função é dada por

p(ak, bk) =
1

πσ2
k

exp

(
−a

2
k

σ2
k

)
exp

(
− b

2
k

σ2
k

)
, (6.17)

onde a variância σ2
k/2 depende apenas de k. Esta variância caracteriza com-

pletamente um processo gaussiano e todas as funções de correlação podem
ser expressas em termos dela. O valor esperado do produto dos coe�cientes
de Fourier, por exemplo, pode ser escrito como < fkfk′ >= σ2

kδ(k + k′).
Um campo gaussiano aleatório pode ser caracterizado pela função de cor-

relação espacial de dois pontos

ξf (x− y) ≡< f(x)f(y) > . (6.18)

Esta função nos dá a amplitude das �utuações de campo nas diferentes
escalas. No caso homogênio e isotrópico, esta função depende apenas da
distância entre os pontos x e y.

Substituindo (6.15) em (6.18) obtemos

ξf (|x− y|) =

∫
σ2
kk

3

2π2

sen(kr)

kr

dk

k
, (6.19)

onde r = |x − y|. A variância adimensional, σ2
kk

3/2π2 ≡ δ2
f (k), corres-

ponde ao quadrado da amplitude da �utuação com comprimento de onda
λ ≈ 1/k. No caso de �utuações gaussianas aleatórias, δ2

f caracteriza comple-
tamente o processo. Para perturbações no regime linear cada modo evolui
de forma independente, por isto a distribuição espacial das perturbações ori-
ginalmente gaussianas permanecem gaussianas e apenas seus espectros va-
riam com o tempo. Consideraremos neste capítulo apenas perturbações no
regime linear. Assim, para caracterizarmos o espectro primordial das mes-
mas, precisamos calcular a variância adimensional do potencial gravitacional
δ2
φ = |Φk|2k3/2π2, comumente chamada de espectro de potências.
Vamos, aqui, demonstrar o cálculo do espectro de potências primordial

para um modelo simples de campo escalar no regime de slow-roll. Vamos
analisar como pequenas inomogeneidades do campo in�aton δϕ(x, η), adicio-
nadas ao background homogêneo ϕ0(η), se desenvolvem no universo primor-
dial.

Pequenas �utuações δϕ(x, η) induzem perturbações na métrica. Existem
quatro graus de liberdade que correspondem a �utuações escalares da métrica
(as únicas quatro formas de se construir uma métrica a partir de �utuações
escalares). Considerando estas �utuações temos o seguinte elemento de linha
[142],
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ds2 = a2(η)[(1 + 2φ)dη2 +B,idηdx
i − ((1− 2ψ)δij − 2E,ij)dx

idxj], (6.20)

onde os quatro graus de liberdade são denotados por φ, B,E e ψ.
A equação de Klein Gordon para o campo ϕ = ϕ0(η) + δϕ(x, η), conside-

rando a métrica acima, assume, em ordem zero, a seguinte forma,

ϕ′′0 + 2Hϕ′0 + a2V,ϕ = 0. (6.21)

Enquanto que em primeira ordem nas perturbações da métrica e do campo
ela nos fornece

δϕ′′+ 2Hδϕ′−∆(δϕ−ϕ′0(B −E ′)) + a2V,ϕϕδϕ−ϕ′0(3ψ+ φ)′+ 2a2V,ϕφ = 0.
(6.22)

Esta equação é válida em qualquer sistema de coordenadas. Podemos
expressá-la em termos das variáveis invariantes de gauge Φ e Ψ, que são
de�nidas como

Φ ≡ φ− 1

a
[a(B − E ′)]′, Ψ ≡ ψ +

a′

a
(B − E ′). (6.23)

Estas variáveis não mudam sob transformação de coordenadas. Isto nos
permite distinguir as inomogeneidades físicas das �ctíceas. Usando a pertur-
bação invariante de gauge dada por

δϕ ≡ δϕ− ϕ′0(B − E ′), (6.24)

juntamente com a equação de background (6.21), podemos reescrever (6.22)
em termos das variáveis invariantes de gauge como

δϕ
′′

+ 2Hδϕ′ −∆δϕ+ a2V,ϕϕδϕ− ϕ′0(3Ψ + Φ)′ + 2a2V,ϕΦ = 0. (6.25)

Esta equação contém 3 variáveis desconhecidas, δϕ, Φ e Ψ, por isto deve ser
complementada com as equações de Einstein. Vamos escolher a componente
0i. Podemos escrever esta equação de Einstein em uma forma invariante de
gauge como

δG0
i = 8πGδT 0

i , (6.26)

onde δG0
i = δG0

i −((0)G0
0−(0)Gkk/3)(B−E′),i e δT 0

i = δT 0
i −((0)T 0

0 −(0)T kk /3)(B−
E′),i.

A componente perturbada do tensor energia-momento δT 0
i do campo es-

calar é dada por

δT 0
i =

1

a2
ϕ′0δϕ,i −

1

a2
ϕ′20 (B − E ′),i =

1

a2
(ϕ′0δϕ),i. (6.27)
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Logo, a equação de Einstein (6.26) nos fornece

Ψ′ +HΦ = 4πϕ′0δϕ, (6.28)

onde �zemos G = 1 e usamos a expressão da métrica perturbada. As compo-
nentes espaciais não diagonais do tensor energia momento são nulas, já que
estamos considerando o caso isotrópico. Isto implica que Ψ = Φ, o que será
considerado a partir daqui.

Vamos resolver as equações (6.25) e (6.28) em dois limites: para perturba-
ções com comprimento de onda físico muito menor que a escala de curvatura
H−1 e para aquelas com comprimento de onda físico muito maior que H−1

[143].
A escala de curvatura é praticamente constante durante a in�ação, ao

passo que a escala da perturbação λph ≈ a/k cresce. Portanto, os modos de
interesse que inicialmente possuem λ << H−1, eventualmente ultrapassam o
horizonte.

Iniciaremos com as perturbações no limite λ << H−1, deixando a am-
plitude no mínimo valor permitido pelo princípio da incerteza. A partir daí,
estudaremos como as perturbações evoluem antes e após cruzarem o hori-
zonte.

- Regime λ << H−1

Para pequenos λph, ou grandes k|η|, o termo de derivada espacial do-
mina na equação (6.25), e a solução se comportará aproximadamente como
δϕ = exp(±ikη). O campo gravitacional também oscila, portanto, Φ′ ≈ kΦ.
De acordo com eq.(6.28), temos então que Φ ≈ k−1ϕ′0δϕ. Considerando,
além destas aproximações, que V,ϕϕ << V ≈ H2 durante a in�ação, ve-
mos que apenas os três primeiros termos na eq.(6.25) são relevantes. Assim
encontramos que

δϕk
′′

+ 2Hδϕk
′
+ k2δϕk ∼= 0. (6.29)

Fazendo a substituição de variáveis δϕk = uk/a, a equação acima se torna

u′′k +

(
k2 − a′′

a

)
uk = 0. (6.30)

No limite k|η| >> 1, o último termo na equação acima pode ser despre-
zado. A partir da solução da equação acima, obtemos para δϕk a expressão

δϕk ∼=
Ck
a
exp(±ikη), (6.31)
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onde Ck é uma constante de integração obtida através das condições iniciais.

- Regime λ >> H−1

Para determinar o comportamento das perturbações com grande compri-
mento de onda, vamos usar a aproximação de slow-roll. Nesta aproximação
podemos desprezar a segunda derivada na equação de movimento do campo
escalar, obtendo assim

3Hϕ̇0 + V,ϕ ∼= 0. (6.32)

Para usarmos a aproximação de slow-roll, vamos reescrever as equações
(6.25) e (6.28) em termos do tempo físico, obtendo assim

δϕ̈+ 3Hδϕ̇−∆δϕ+ V,ϕϕδϕ− 4ϕ̇0Φ̇ + 2V,ϕΦ = 0, (6.33)

Φ̇ +HΦ = 4πϕ̇0δϕ, (6.34)

onde de�nimos δϕ ≡ δϕ e consideramos Ψ = Φ. No caso em que λ >> H−1,
∆δϕ pode ser desprezado. Para encontrarmos os modos que não decaem,
no regime slow-roll, podemos também desprezar os termos δϕ̈ e Φ̇. Assim,
�camos com as seguintes equações para as perturbações,

3Hδϕ̇+ V,ϕϕδϕ+ 2V,ϕΦ ∼= 0, HΦ ∼= 4πϕ̇0δϕ. (6.35)

Introduzindo a variável y ≡ δϕ/V,ϕ e usando a equação de movimento
aproximada do campo, as equações acima podem ser escritas como

3Hẏ + 2Φ = 0, HΦ = 4πV̇ y. (6.36)

Considerando que 3H2 ≈ 8πV na in�ação, obtemos então,

d(yV )

dt
= 0. (6.37)

A equação acima pode ser integrada fornecendo y = A/V , onde A é uma
constante de integração. Assim, �camos com as seguintes equações para o
modo que não decai,

δϕk = Ak
V,ϕ
V
, Φk = 4πAk

ϕ̇0

H

V,φ
V

= −1

2
Ak

(
V,ϕ
V

)2

. (6.38)
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Podemos analisar agora o comportamento de δϕk. Para a < ak ≈ k/H,
a perturbação, ainda dentro do horizonte, decresce em amplitude em uma
proporção inversa ao fator de escala. Após cruzar o horizonte, a amplitude
cresce lentamente à medida que V,ϕ/V cresce até o �m da in�ação. No caso de
um potencial do tipo lei de potência em que V ∝ ϕn, temos que δϕk ∝ ϕ−1.

A constante de integração Ak na equação anterior pode ser �xada, levando
em conta o princípio da incerteza, ao se supor que δϕk tem a amplitude
mínima no momento do cruzamento do horizonte. Isto fornece a estimativa
Ak ≈ (k−1/2/ak)(V/V,ϕ)k≈Ha. Ao �nal da in�ação, a condição de slow-roll é
violada e o termo V,ϕ/V �ca da ordem de 1.

Lembrando que δΦ ≈ |Φ|k3/2, usando a expressão de Ak e a condição de
cruzamento do horizonte k ≈ aH, obtemos que no momento do cruzamento
a amplitude das �utuações da métrica é dada por

δΦ(k, tf ) ≈ Akk
3/2 ≈

(
H
V

V,ϕ

)
k≈Ha

≈
(
V 3/2

V,ϕ

)
k≈Ha

. (6.39)

No caso de um potencial do tipo lei de potência, o fator de escala varia
de acordo com a(ϕ(t)) ∼= aiexp(4π/n(ϕ2

i − ϕ2(t))) , onde o índice i indica o
valor inicial das grandezas. Com isto, podemos expressar ϕ2

k≈Ha em termos
do comprimento de onda físico λph ≈ a(tf )k

−1, o que nos permite obter δΦ,
para esta classe de modelos, como sendo

δΦ(k, tf ) ≈ λ1/2(ϕ2
k≈Ha)

n+2
4 ≈ λ1/2(lnλphHk)

n+2
4 . (6.40)

Vemos, portanto, que a forma do espectro possui desvios logarítmicos de um
espectro plano, com uma amplitude crescendo lentamente para as maiores
escalas. As perturbações presentes ao �m da in�ação atravessam a fase do
reaquecimento praticamente inalteradas. Já a amplitude das perturbações,
não é possível se prever na ausência de uma teoria fundamental de partículas,
sendo elas um parâmetro livre da teoria.

É possível compreender agora o papel fundamental da in�ação nas pertur-
bações primordiais. De acordo com o Modelo Padrão, as �utuações de origem
quântica, inicialmente nas escalas próximas ao comprimento de Planck, são
"esticadas"pela in�ação até escalas galácticas com amplitude aproximada-
mente inalterada. A in�ação tem, portanto, o papel essencial de conectar a
estrutura em larga escala do universo com a física em escalas quânticas.

As �utuações quânticas da métrica só possuem uma amplitude substancial
próximas à escala de Planck. A única forma de obter a amplitude observada
(Φ ≈ 10−5) destas perturbações em largas escalas, partindo de �utuações
quânticas, é esticando estas �utuações iniciais de tal modo que elas não
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percam sua amplitude neste processo. Como vimos, a amplitude da pertur-
bação decai de forma inversamente proporcional ao fator de escala até que a
perturbação comece a sentir a curvatura espacial do universo, quando ela ul-
trapassa a escala de curvatura H−1. Portanto, se tivermos uma perturbação
que permaneça sempre dentro da escala de Hubble sua amplitude decrescerá
continuamente até se tornar desprezível. A expansão in�acionária fornece
um mecanismo para que os modos de perturbação saiam do horizonte de
Hubble já que H−1 ≈ cte enquanto os modos sofrem expansão e, a partir
daí, a amplitude dos mesmos é preservada. Deste modo, as perturbações
conseguem alcançar escalas galácticas com a amplitude prevista. Como a
escala de Hubble é aproximadamente constante durante a in�ação, a ampli-
tude das perturbações é aproximadamente a mesma para diferentes escalas
no momento em que elas cruzam o horizonte, por isto o espectro previsto
para a in�ação é aproximadamente invariante de escala.

Como as �utuações quânticas iniciais são gaussianas, a evolução sub-
sequente deve preservar as propriedades estatísticas das �utuações. Como
consequência, de acordo com o Modelo Padrão, a in�ação prevê perturba-
ções adiabáticas, gaussianas e com um espectro aproximadamente invariante
de escala.

Recentemente, com os novos resultados observacionais, os parâmetros do
espectro de potências primordial puderam ser estimados com grande preci-
são. O espectro é usualmente escrito, exatamente ou aproximadamente, pela
lei de potência: P = As(k/k∗)

ns−1. Usando a escala Pivot k∗ = 0.05Mpc−1,
Planck estimou a amplitude como sendo As ≈ 10−9. Para o índice espec-
tral foi obtido ns = 0.968 ± 0.006, um valor praticamente constante, visto
que ∂ns/∂lnk foi vinculado como sendo muito pequeno ou nulo. Para as
perturbações tensoriais e os parâmetros de não gaussianidades, foram obti-
dos apenas limites superiores, sendo, portanto, compatíveis com zero. Estes
resultados evidenciam um espectro de perturbações aproximadamente invari-
ante de escala, porém com um pequeno desvio para o vermelho, o que implica
em uma leve predominância de estruturas em largas escalas comparadas com
as pequenas, como era previsto.

Estes vínculos foram obtidos a partir de uma análise estatística do espec-
tro de potências onde foi considerada uma ampla faixa de multipolos. Como
as características dos picos e vales do espectro dependem crucialmente do
modelo considerado, foi suposto nesta análise o Modelo Padrão ΛCDM. No
entanto, como vimos anteriormente, os pequenos multipolos (l < 30) corres-
pondem às largas escalas que saíram do horizonte na época da in�ação, e
só voltaram a reentrar no horizonte e evoluir após o momento do desacopla-
mento. Isto signi�ca que esta região do espectro nos traz informações diretas
do período in�acionário. A amplitude e a inclinação do plateau correspon-
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dentes a esta região podem ser usadas para determinar respectivamente a
amplitude do espectro primordial e o índice espectral. Sendo assim, esta
região de baixos multipolos nos permite vincular os parâmetros do espectro
primordial independente do modelo cosmológico assumido para o universo
recente. No entanto, sabemos que a acurácia é bastante limitada na região
correspondente às largas escalas. Para obtermos uma acurácia maior na de-
terminação dos parâmetros in�acionários, é preciso usar as informações dos
picos e outras características do espectro em pequenas escalas.

Uma análise cuidadosa do espectro de potências da RCF pode, portanto,
nos trazer uma série de informações valiosas sobre o universo desde sua ex-
pansão primordial até sua evolução recente.

Com o objetivo de caracterizar as �utuações cosmológicas primordiais
através de uma perspectiva mais geral, foi desenvolvida uma abordagem cha-
mada teoria de campos efetiva para a in�ação, a qual apresentaremos a seguir.
Como veremos, esta abordagem possui a vantagem de descrever a partir de
uma linguagem comum as �utuações cosmológicas de todos os modelos de
in�ação baseados em um único campo escalar.

6.5 A Teoria de Campo Efetiva para a In�ação

Sabemos que a abordagem da teoria de campos efetiva corresponde a uma
descrição de um sistema através dos operadores de menor dimensão compatí-
veis com as simetrias do mesmo. Esta abordagem é bastante importante em
diversas áreas desde a física de partículas à matéria condensada. Há alguns
anos, foi proposta na literatura uma aplicação deste método para a descrição
da teoria de �utuações em um background cosmológico in�acionário [144].

Através de uma teoria de campo efetiva para a in�ação, é possível cons-
truir uma abordagem para as perturbações cosmológicas capaz de descrever
diversos cenários in�acionários de forma independente de modelo, utilizando-
se apenas de princípios de simetria. Esta abordagem possui uma série de
vantagens, algumas das quais descrevemos a seguir:

• Partindo de um cenário de in�ação, é possível parametrizar nossa igno-
rância com relação a possíveis novos efeitos advindos de altas energias
em termos dos principais operadores adicionados na Lagrangeana. Ex-
perimentos cosmológicos poderão vincular estes operadores, por exem-
plo, ao medir os parâmetros de não gaussianidades e também desvios
da relação de consistência do modelo padrão. Este procedimento é si-
milar ao que ocorre na física de partículas, em que são colocados limites
aos operadores que descrevem desvios do Modelo Padrão incorporando
efeitos de uma nova física.
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• Nesta abordagem �ca explícito o que é requerido pelas simetrias do
sistema e pelo background in�acionário e o que é livre. Além disto,
todos os possíveis operadores são conhecidos.

• Todos os modelos de in�ação baseados em um único campo escalar são
descritos de forma uni�cada.

Durante a in�ação simples (com um único campo escalar), sabemos que
a invariância por difeomor�smo temporal é quebrada pela dependência tem-
poral do background cosmológico. A teoria mais geral para �utuações que
preserva o difeomor�smo espacial e quebra a invariância por reparametriza-
ção temporal constitui a teoria de campo efetiva para a in�ação.

Sabemos que a perturbação δϕ é um escalar sob difeomor�smos espaciais,
enquanto se transforma de forma não linear sob difeomor�smos temporais. É
possível escolher um gauge em que não há perturbações no campo in�aton, e
todos os graus de liberdade estão na métrica. Neste caso, considera-se que a
variável δϕ foi "engolida pelo gráviton", que passa a ter 3 graus de liberdade,
o modo escalar e duas helicidades. Este é o procedimento usualmente ado-
tado nos modelos cosmológicos baseados na teoria de campo efetiva. Esta
abordagem é análoga ao que ocorre na quebra espontânea da teoria de gauge.

Em um trabalho recente baseado na teoria de campo efetiva [145], foi su-
gerido que durante a in�ação pode ser possível que, além da invariância por
reparametrização temporal, a invariância por difeomor�smo espacial também
seja quebrada na Lagrangeana das �utuações. Neste trabalho foi analisado
como esta quebra poderia afetar o espectro primordial tensorial. Ao estu-
dar as contribuições para a Lagrangeana de perturbações que quebram a
invariância por difeomor�smo espacial através de termos de massa efetivos
(e também de operadores de derivadas superiores) foi encontrado que o es-
pectro tensorial pode exibir um índice espectral tensorial positivo nT > 0,
chamado de "espectro azul". Este resultado é bastante interessante visto
que diverge das previsões dos modelos usuais de in�ação, os quais preveem
nT < 0. Poucos modelos na literatura preveem um espectro tensorial azul,
entre eles podemos citar o String Gas Cosmology discutido no Apêndice B.

As próximas observações cosmológicas irão vincular o parâmetro nT com
uma precisão cada vez maior. A possível detecção de um nT > 0, ou de
um desvio da relação de consistência padrão, nT = −r/8 (onde r é a ra-
zão tensorial-escalar), eliminaria a grande maioria dos modelos in�acionários
conhecidos. Por isto é importante neste momento explorar as previsões de
cenários que geram um espectro tensorial azul. É isto o que propomos fazer
aqui através da análise do modelo efetivo de in�ação com quebra de invari-
ância espacial proposto em [145].
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Para que o modelo apresentado em [145] possa ser observacionalmente
viável, é necessário que o mesmo apresente para as perturbações escalares
um índice espectral ns < 1. O espectro de potências para o caso escalar
não foi completamente desenvolvido em [145], cujo foco era o caso tensorial.
Portanto, iremos calcular o espectro escalar neste cenário e analisar também
a relação de consistência e a razão tensorial-escalar para este modelo. Os
resultados originais aqui apresentados constam no artigo correspondente à
referência [107]

6.5.1 O Cálculo do Espectro de Potências Escalar

Seguindo a abordagem de [145] investigaremos a teoria de campo efetiva para
perturbações cosmológicas em torno de um background quasi-de Sitter, com
quebra de invariância de difeomor�smo espacial e temporal. Consideraremos
a dinâmica de �utuações da métrica no gauge unitário, em que as perturba-
ções do campo são nulas. Por simplicidade também nos concentraremos em
operadores no máximo quadráticos nas �utuações.

Consideramos a seguinte métrica de FRW em termos do tempo conforme

ds2 = ¯gµνdx
µdxν = a2(η)(−ηµνdxµdxν), (6.41)

onde a2(η) é o fator de escala conforme e a(η) = 1/ −Hη no espaço-tempo
de Sitter. Denotaremos as �utuações da métrica por hµν = gµν − ¯gµν .

A quebra de difeomor�smo espacial será descrita através de termos efe-
tivos de massa na ação, que não necessariamente advêm de uma teoria de
gravidade massiva, mas simplesmente correspondem à forma mais geral de
expressar operadores quadráticos nas �utuações que quebram esta simetria.

À ação de Einstein-Hilbert expandida até segunda ordem adicionamos
operadores genéricos (sem derivadas) que são quadráticos nas �utuações da
métrica hµν ,

S =

∫
d4x
√
−gM2

pl

[
R− 2Λ− 2cg00

]
+

1

4
M2

pl

∫
d4x
√
−g
[
m2

0h
2
00 + 2m2

1h
2
0i −m2

2h
2
ij +m2

3h
2
ii − 2m2

4h00hii
]
.

(6.42)

Os termos na primeira linha representam o background homogêneo e isotró-
pico que assumiremos para a in�ação. Usando as equações de Friedmann, os
parâmetros Λ e c podem ser expressos em função do parâmetro de Hubble
H e sua derivada Ḣ. Os termos quadráticos na segunda linha da equação
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acima quebram a invariância de difeomor�smo embora preservem a invari-
ância SO(3) e não quebrem a isotropia espacial. O termo proporcional a m2

0

quebra a invariância por reparametrização temporal e os outros termos de
massa quebram a invariância por difeomor�smo espacial. No limite mi → 0
com i 6= 0 a invariância é restaurada.

Podemos considerar os termos de massa na equação acima como advindos
de acoplamentos entre a métrica e os campos adquirindo um per�l depen-
dente do tempo durante a in�ação. Assumiremos aqui, como aproximação,
que estes coe�cientes são constantes durante a in�ação e vão a zero quando
a in�ação termina. No entanto, uma pequena dependência temporal propor-
cional ao parâmetro de slow-roll seria esperada para estes operadores.

Podemos escrever a equação (6.42) em termos de �utuações escalares,
vetoriais e tensoriais, ao decompor as �utuações da seguinte forma,

h00 = ψ, (6.43)

h0i = ui + ∂iv, sendo ∂iui = 0,

hij = χij + ∂(isj) + ∂i∂jσ + δijτ, sendo ∂isi = ∂iχij = δijχij = 0.

A partir da parte tensorial da ação, foi obtido em [145] o seguinte espectro
de potências

PT =
2H2

π2M2
plcT

(
k

k∗

)nT

, nT = −2ε+
2

3

m2
2

H2

(
1 +

4

3
ε

)
, (6.44)

em primeira ordem nos parâmetros de slow-roll. Na equação acima cT =
1 quando considerados apenas os termos de massa descritos previamente,
desconsiderando possíveis termos de derivadas mais altas na Lagrangeana.

Podemos ver pela equação acima que, se m2
2/H

2 for positivo e su�ciente
maior que o parâmetro de slow-roll, obtemos um índice espectral tensorial
positivo. Este resultado é bastante interessante, visto que mostra que um
espectro tensorial azul pode ser obtido sem violar a condição de energia
nula. É importante saber agora se este modelo pode estar em concordância
com os vículos observacionais atuais para o espectro de potências escalar e
se isto implica em algum limite para o parâmetro m2.

Expandindo a ação (6.42) até segunda ordem nas �utuações escalares
obtemos
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S(S)
m =

1

4
M2

pl

∫
d4xa2{−6(τ ′ + aHψ)2 + 2(2ψ − τ)∇2τ

+ 4(τ ′ + aHψ)∇2(2v − σ′) + a2[(m2
0 + 2εH2)ψ2 − 2m2

1v∇2v

−m2
2(σ∇4σ + 2τ∇2σ + 3τ 2) +m2

3(∇2σ + 3τ)2 − 2m2
4ψ(∇σ + 3τ)]}.

(6.45)

A teoria descrita pela ação acima pode ser livre de instabilidades e ghosts,
desde que as massas satisfaçam certas condições [146]. Em [145] foi encon-
trado que não há modos vetoriais que se propagam quando m2

1 = 0. Para
eliminar graus de liberdade vetoriais, consideraremos aqui este caso.

A partir da eq. (6.45) com m2
1 = 0 podemos obter a equação de movi-

mento para os campos auxiliares ψ, v e σ. Substituindo estas expressões na
ação, obtemos após um pouco de álgebra

S = M2
pl

∫
d4x

a2

H2
[
(m2

0 + 2εH2)(m2
2 −m2

3) +m4
4

2(m2
2 −m2

3)
τ ′2

+ εH2τ∇2τ − m2
2a

2H2(m2
2 − 3m2

3 + (3 + ε)m2
4)

m2
2 −m2

3

τ 2], (6.46)

que é função de um único campo τ .
A perturbação escalar τ está relacionada à perturbação de curvatura co-

móvel em um gauge arbitrário através da equação

R = τ − H(τ ′ −Hψ)

H′ −H2
. (6.47)

No gauge unitário, a equação de movimento do campo auxiliar ψ requer
τ ′ = Hψ, por isto temos que R = τ . É possível mostrar que a perturbação
de curvatura não é conservada fora do horizonte neste modelo. Além disto, a
perturbação de curvatura comóvel R e a perturbação de curvatura em seções
de densidade uniforme ζ não coincidem no limite de largas escalas, como
ocorre usualmente.

Podemos normalizar τ substituindo τ̂ 2 = N2τ 2 na eq. (6.46), onde N2 é
dado por

N2 =

(
M2

pl

H2

)
(m2

0 + 2εH2)(m2
2 −m2

3) +m4
4

2(m2
2 −m2

3)
. (6.48)

Assim, podemos escrever a ação na forma mais simples

S =

∫
d4xa2[τ̂ ′2 + c2

s(τ̂∇2τ) + a2M2τ̂ 2], (6.49)
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onde

c2
s = 2εH2 (m2

2 −m2
3)

(m2
0 + 2εH2)(m2

2 −m2
3) +m4

4

, (6.50)

e

M2 =
−2m2

2H
2(m2

2 − 3m2
3 + (3 + ε)m2

4)

(m2
0 + 2εH2)(m2

2 −m2
3) +m4

4

. (6.51)

Se considerarmos uma nova variável v = aτ̂ e a substituirmos na eq.
(6.49) obtemos

S =

∫
d3xdη[v′2 +

(
a′

a

)2

v2 − 2v′
(
a′

a

)
v − c2

s∇v∇v + a2M2v2]. (6.52)

A partir da eq. de Euler-Lagrange segue que

v” + (c2
sk

2 − a2M2 − a”

a
)v = 0. (6.53)

Em primeira ordem no parâmetro de slow-roll, o fator de escala na in�ação
é dado por a = −(1 + ε)/Hη. Portanto, a”/a = (aH)2(2 − ε). Podemos
então escrever a”/a ≈ (2 + 3ε)/η2. Assim, a equação de movimento assume
a seguinte forma,

v” + c2
sk

2v − [(1 + 2ε)b+ (2 + 3ε)]
v

η2
= 0, (6.54)

onde b ≡M2/H2. Assumindo o vácuo de Bunch-Davis como condição inicial,
temos no limite de pequenos λs a solução v = e−icskη/

√
2csk, enquanto que

no limite de grandes λs temos a solução

v = c1η
1
2
−
√

2εb+3ε+b+9/4 + c2η
1
2

+
√

2εb+3ε+b+9/4. (6.55)

O primeiro termo é o modo crescente (supondo b+9/4 ≥ 0). Consideraremos
apenas esta solução crescente. Ao igualarmos a solução para grandes compri-
mentos de onda com a solução para pequenos comprimentos de onda quando
c2
sk

2 = (b+ 2)/η2, encontramos para a constante c1 a seguinte expressão,

c1 =
e−i
√
b+2

√
2csk

(
csk√
b+ 2

) 1
2
−
√

2εb+3ε+b+9/4

. (6.56)

Com estas soluções, obtemos o seguinte espectro de potências escalar,

PR =
k3|v|2

a2N2
= k3−2

√
2εb+3ε+b+9/4

c−2
√
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s
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b+ 2
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√

2εb+3ε+b+9/4

.

(6.57)
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Como a perturbação de curvatura R não é constante fora do horizonte neste
modelo, a expressão acima deve ser calculada no �m da in�ação (η = cte,
a = cte).

Vemos que o índice espectral escalar é dado por,

ns − 1 = 3− 2
√

2εb+ 3ε+ b+ 9/4. (6.58)

Portanto o espectro será vermelho, ns < 1, se
√

2εb+ 3ε+ b+ 9/4 > 3/2.
É possível ver que, para recuperarmos o valor esperado observacionalmente
para o índice espectral, ns = 0.96, o parâmetro b deve ter um valor próximo
de zero. Isto pode ocorrer se a condição m2

2 ≈ 3m2
3 for satisfeita, juntamente

com a condição m4 ≈ 0, (veja eq. (6.51)). Também podemos ver a partir
da equação (6.57), que é calculada em um momento �xo no �m da in�ação,
que a amplitude esperada pode ser obtida se também cs → 1 e N2 → ε.
Uma das possibilidades para se obter estes limites é se, além de m4 ≈ 0,
o parâmetro m0 for bem menor que os parâmetros m2 e m3. Embora esta
não seja a única possibilidade para gerar o espectro esperado, este é um
caso especí�co interessante para se considerar. Vemos que nenhum destes
vínculos implica em um limite superior para o parâmetro m2. Isto mostra
que é possível, neste modelo, termos um espectro tensorial azul e ao mesmo
tempo o espectro escalar vermelho observacionalmente esperado.

Ao comparar as equações (6.57) e (6.58) com as respectivas nos modelos
usuais de in�ação, podemos observar que o parâmetro de slow-roll no termo
3ε das equações acima corresponde ao parâmetro de slow-roll calculado no
momento do cruzamento do horizonte no nosso modelo. Quando b → 0, a
perturbação de curvatura é conservada fora do horizonte e o parâmetro de
slow-roll é então calculado no momento do cruzamento. Portanto, denotare-
mos esta quantidade por εc.

Podemos obter uma expressão simpli�cada para ns−1 ao expandir a raíz
quadrada na equação (6.58) como se segue,

ns − 1 = 3− 3

√
8

9
εb+

4

3
εc +

4

9
b+ 1 ≈ −2εc −

2

3
b. (6.59)

De acordo com as observações atuais, esta quantidade deve ser aproxima-
damente igual a −0.04. Como os modelos simples de in�ação possuem boa
concordância com as observações para este parâmetro, a expressão acima
deve corresponder a ns − 1 ≈ −2εV , onde εV é o parâmetro de slow-roll dos
modelos de in�ação usuais. Temos então a seguinte relação,

εc +
b

3
≈ εV . (6.60)
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Podemos ver que, no modelo em questão, o valor do parâmetro de slow-roll
no momento do cruzamento do horizonte pode ser menor (ou maior) que no
caso usual por um fator de ≈ b/3.

Podemos escrever o parâmetro b através de uma expressão mais simples
considerando que m0,m4 << m2,m3 na eq. (6.51), de modo que obtemos,

b =
−m2

2γ

εH2(γ + 2m2
3)
, (6.61)

onde de�nimos γ ≡ m2
2−3m2

3. O parâmetro γ pode ser positivo ou negativo,
mas deve ser pequeno para estar de acordo com as observações.

Usando as equações (6.44) e (6.57) podemos calcular a razão tensorial-
escalar de�nida como r = Pt(k∗)/PS(k∗) = At/AS. Assim obtemos,

r =
2H2

π2M2
pl
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2a2N2
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s

)(√
b+ 2
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√

2εb+3ε+b+9/4

, (6.62)

onde N e cs são dados pelas eqs. (6.48) e (6.50) respectivamente. É possível
veri�car que no limite em que b = 0, cs = 1 e N2 = ε recuperamos a expressão
esperada para a razão tensorial-escalar. Neste caso, a relação de consistência
usual, r = −8nt, é recuperada.

Comparando as expressões obtidas para os índices espectrais tensorial e
escalar,

nT = −2ε+
2

3

m2
2

H2
(1 + 2ε), (6.63)

ns − 1 = −2ε− 2

3

M2

H2
(1 + 2ε), (6.64)

podemos ver que no caso em que o espectro tensorial é azul, ou seja, se o
segundo termo na expressão de nt for maior que o primeiro, é possível obter
a relação dos modelos de string gas cosmology, nt ≈ −(ns−1) (ver Apêndice
B). Esta relação é satisfeita no nosso modelo sempre que

− 2ε+
2

3

m2
2

H2
(1 + 2ε) = +2ε+

2

3

M2

H2
(1 + 2ε). (6.65)

Devemos lembrar queM2 pode ser positivo ou negativo mas o lado direito da
equação (6.64) deve ser negativo para se obter um espectro escalar vermelho.

A igualdade acima pode ser satisfeita para um espectro escalar compatí-
vel com as observações e um espectro tensorial azul. Concluímos, portanto,
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que o modelo aqui apresentado pode reproduzir certas previsões dos modelos
de String Gas. Torna-se importante neste caso analisar as previsões deste
modelo para os parâmetros de não gaussianidades com o objetivo de veri�car
se estas previsões seriam capazes de distinguir os dois modelos observacio-
nalmente.

Embora os resultados apresentados tenham sido obtidos a partir de ope-
radores de massa na Lagrangeana que quebram a invariância por difeomor-
�smo espacial, em [145] foi mostrado que certos operadores contendo mais de
duas derivadas espaciais podem imitar os efeitos destes operadores de massa
mesmo em cenários que preservam esta simetria.

No capítulo seguinte, falaremos com mais detalhes sobre os principais
experimentos observacionais capazes de fornecer dados para vincular os pa-
râmetros aqui discutidos.

6.6 O Universo Primordial e as Observações

Atuais

Atualmente nos encontramos em um momento privilegiado da história da
Cosmologia. Com diversos experimentos em execução visando mapear a
Radiação Cósmica de Fundo, passamos a ter acesso a uma valiosa ferramenta
para se testar modelos cosmológicos do universo primordial com uma grande
precisão.

Além de con�rmarem a previsão geral de um espectro de potências apro-
ximadamente invariante de escala com um índice espectral levemente verme-
lho, estes experimentos têm tido grande importância também na medição da
polarização da RCF associada às ondas gravitacionais primordiais.

O padrão de polarização da RCF pode ser representado por duas compo-
nentes. Uma delas é o chamado modo E, que é a componente sem rotacional
(que possui apenas gradiente). Este modo foi detectado pela primeira vez em
2002 pelo Degree Angular Scale Interferometer (DASI). A outra componente
é o modo B, que corresponde à componente sem divergente (que tem ape-
nas rotacional). Existem dois tipos previstos de modos B, o primeiro gerado
no universo primordial, e o segundo gerado através do mecanismo de lentes
gravitacionais. Como as estruturas cosmológicas, através do mecanismo de
lentes gravitacionais, desviam a trajetória dos fótons da RCF, as mesmas
distorcem a polarização primordial, convertendo modos E em modos B.

Em 2014, a colaboração do experimento BICEP2 anunciou uma signi�-
cativa detecção de modos B na frequência de 150GHz, que a princípio seria
superior ao previsto pelo mecanismo de lentes gravitacionais. Este excesso
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foi também encontrado pelo experimento sucessor Keck Array. No entanto,
posteriormente foi visto que o nível de poeira nesta região poderia dar conta
do excesso detectado. Uma con�rmação da origem da polarização detec-
tada foi feita apenas após uma análise conjunta feita com a colaboração do
Planck em 2015 [147]. O satélite Planck observou todo o céu em polarização
em sete frequências de 30 a 353 GHz, porém com menos profundidade em
cada região. O mesmo havia indicado previamente um vínculo para a ra-
zão tensorial-escalar dado por r0.002 < 0.11 e, portanto, compatível com zero.
Após a análise conjunta de BICEP2/Keck/PLANCK foi obtido, para a razão
tensorial-escalar, um vínculo compatível com o resultado previamente obtido
por Planck 2013. De acordo com a colaboração, o melhor ajuste obtido para
r, igual a 0.05, não possui signi�cância su�ciente para ser interpretado como
detecção dos modos B primordiais. Os próximos experimentos, no entanto,
deverão trazer importantes dados adicionais nos próximos anos.

Observando a partir do polo sul, cada geração da série de experimen-
tos BICEP1, BICEP2, Keck Array e BICEP3, representou um aumento na
sensibilidade para os modos B. BICEP1 (2006-2008) possuía 98 detectores.
BICEP2, tendo começado em 2010, contava com 512 detectores. Os primei-
ros três dos cinco telescópios Keck Array começaram a observar em 2011 cada
um com 512 detectores. BICEP3, com 2560 detectores, começará a operar
em 2015.

Além dos conhecidos experimentos Planck e BICEP, existe uma série de
outras colaborações que tiveram, ou estão tendo, um papel fundamental na
medição da RCF.

Um dos experimentos relacionados à RCF que podemos mencionar é o
chamado POLARBEAR. Localizado no deserto do Atacama no Chile, este
instrumento tem como principal objetivo medir a polarização da Radiação
Cósmica de Fundo e detectar os modos B das ondas gravitacionais. Ao
mapear os modos B gerados através do mecanismo de lentes gravitacionais,
o experimento POLARBEAR tem dado grandes contribuições para a análise
da polarização primordial da RCF.

Próximo a este instrumento, também no deserto do Atacama, se loca-
liza o Atacama Cosmology Telescope (ACT). Com 6 metros de diâmetro, o
mesmo mapea a RCF na faixa de microondas, o que também tem fornecido
importantes dados sobre o universo primordial.

Outro importante experimento que podemos mencionar para a análise
da RCF é o South Pole Telescope (SPT). Com um telescópio de 10 metros
de diâmetro situado em uma estação de pesquisa no polo sul, o SPT foi
projetado para mapear a temperatura e a polarização da RCF. Através de
observações de alta sensibilidade em amplas áreas, o mesmo opera nas regiões
de comprimento de onda milimétricas e submilimétricas.
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Além dos experimentos em solo, com a �nalidade de analisar as anisotro-
pias da RCF, foram lançados também diversos balões e alguns satélites, entre
eles o Planck. O satélite Planck foi o terceiro experimento cientí�co a coletar
dados da Radiação Cósmica de Fundo, sendo precedido pelo COBE (Cos-
mic Background Explorer) e pelo WMAP (Wilkinson Microwave Anisotropy
Probe). Na �gura 6.2 apresentamos o mapa das anisotropias de tempera-
tura da radiação cósmica de fundo, obtido pelos satélites COBE, WMAP e
Planck.

Figura 6.2: Anisotropias da Radiação Cósmica de Fundo. (Esta �gura foi
retirada da ref [148])

Os dados observados foram submetidos a uma série de análises que nos
fornecem precisas informações sobre os parâmetros cosmológicos [149] [150].
Além de con�rmar alguns resultados já obtidos pelas missões anteriores, au-
mentando a precisão dos parâmetros, com o Planck vieram novos importantes
resultados, entre os quais podemos citar:

• A idade do universo foi estimada como sendo 13,8 bilhões de anos.

• O valor aceito para a constante de Hubble H0 foi alterado de 74,2
km/s/Mpc para 67,8 km/s/Mpc, o que indica uma expansão do uni-
verso mais lenta do que se esperava.

• A porcentagem de matéria bariônica e matéria escura, que até então
eram consideradas como sendo 4.6% e 24% respectivamente, passaram
a ser estimadas em 4.9% e 26.8% respectivamente.
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• Evidenciou-se um universo com curvatura espacial muito próxima de
zero, ΩK ≈ 0.

Apesar de ter se con�rmado de um modo geral o padrão uniforme, ho-
mogêneo e isotrópico da RCF, foram con�rmadas a presença de anomalias
sutis no padrão da RCF, associadas aos baixos multipolos, algumas das quais
já haviam sido indicadas pelas missões anteriores. Estas anomalias não são
explicadas pelo modelo padrão e ainda constituem um desa�o à cosmologia.

Os resultados do Planck foram especialmente importantes no contexto da
aceleração primordial. Ao se impor severos vínculos aos parâmetros relaci-
onados ao universo primitivo [151], diversos modelos in�acionários puderam
ser testados com as observações de forma precisa. Planck forneceu a pri-
meira evidência concisa de que a distribuição de �utuações primordiais não
é idêntica em todas as escalas, abrangendo mais estruturas em largas do que
em pequenas escalas. Já evidências signi�cativas de não gaussianidades e
ondas gravitacionais não foram encontradas, havendo apenas limites superi-
ores para os valores destes parâmetros. Ao mostrar por exemplo, que a não
gaussianidade é pequena, ou nula, eliminou-se um largo espectro de modelos
in�acionários mais complexos.

Os novos dados da RCF restringiram severamente o panorama de modelos
in�acionários observacionalmente viáveis. Além dos problemas conceituais
dos cenários in�acionários tradicionais, já bem conhecidos, as observações
colocaram agora diversos modelos em cheque.

Com os novos vínculos obtidos, o paradigma in�acionário �cou em uma

situação controversa. Embora muitos tenham destacado que os resultados

obtidos favorecem modelos bem conhecidos de in�ação, muita discussão foi

gerada a este respeito desde então[152, 153, 115, 154]. Independente dos re-

sultados observacionais, como mostrado em [154], é de consenso geral que o

cenário clássico da in�ação já se encontrava em uma situação bastante proble-

mática do ponto de vista conceitual. Para compreender esta situação, vamos

primeiramente relembrar alguns aspectos do cenário clássico da in�ação.

A In�ação Clássica

Três suposições independentes devem ser especi�cadas para se determinar
as previsões de qualquer cenário in�acionário, que são as condições iniciais, o
potencial do in�aton e a medida. As condições iniciais se referem ao momento
em que a relatividade geral clássica começa a ser uma boa aproximação para
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descrever a evolução cosmológica, tipicamente o tempo de Planck. O poten-
cial do in�aton determina uma família de trajetórias clássicas, as condições
iniciais selecionam um conjunto destas trajetórias, e a medida de�ne um peso
relativo entre as trajetórias.

No cenário clássico, apesar da maior parte das regiões do espaço, ao emer-
gir do Big Bang, não ter as condições necessárias para iniciar uma in�ação,
isto é compensado pelo fato de que a in�ação aumenta exponencialmente
o volume das regiões que possuem as condições iniciais corretas. Usando o
volume como medida, regiões planas e regulares dominam então o universo
após a in�ação, mesmo que as condições iniciais associadas a elas sejam muito
raras. Desta forma, para potenciais simples com um mínimo de campos e
um mínimo de ajuste nos parâmetros, é possível se obter a in�ação com o
espectro esperado.

No entanto, o cenário clássico da in�ação possui uma série de problemas.
Primeiramente, todos os potenciais in�acionários requerem ordens de mag-
nitude de ajuste �no nos parâmetros para gerar a amplitude observada das
�utuações primordiais de densidade. Outro problema é que a probabilidade
de uma certa região do espaço ter as condições iniciais necessárias para o
início da in�ação nestes modelos é exponencialmente pequena.

Podemos mencionar também o problema do multiverso (também chamado
problema da medida) que resulta do cenário da in�ação eterna [155, 156].
Ao assumir uma evolução clássica para o in�aton, a in�ação chega ao �m
em um tempo �nito, quando o in�aton chega no mínimo de seu potencial.
No entanto, sabemos que existem �utuações quânticas na evolução do campo
que podem tirar o mesmo da sua trajetória clássica, levando-o para valores
maiores do potencial. Consequentemente estas regiões sofrem mais in�ação
e se tornam dominantes em termos de volume. Ou seja, a in�ação ampli-
�ca regiões advindas de �utuações quânticas raras que mantém o universo
em expansão gerando a in�ação eterna. Múltiplas �utuações quânticas po-
dem ocorrer de várias formas durante a evolução do campo gerando diversos
volumes (bolhas) associados a diferentes trajetórias do campo e, consequen-
temente, a diferentes propriedades cosmológicas. O resultado deste processo
é um multiverso no qual tudo o que pode acontecer acontece in�nitas vezes.
Isto gera uma di�culdade para se de�nir probabilidades nestes cenários. No
contexto da in�ação clássica, o volume seria a medida mais natural para se
de�nir pesos relativos. Porém, a maior parte do volume do universo estaria
atualmente em in�ação nestes modelos, e a maior parte que não está in�ando
seria mais jovem que nosso universo. Usar o volume como medida implica
que o nosso universo observado é exponencialmente improvável por um fator
de 10−1055 ou mais. Este consiste em um dos maiores problemas do cenário
in�acionário.
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Existe, porém, uma classe de modelos que é capaz de evitar alguns dos
problemas acima. Esta foi denominada recentemente de �in�ação pós mo-
derna� [154]. Estes cenários consideram suposições bastante diferentes, com
relação ao cenário clássico, no que se refere ao paradigma in�acionário. Pri-
meiramente os mesmos consideram potenciais extremamente complexos com
diversos campos, muitos parâmetros e ajustes. Neste novo cenário, ao con-
trário do caso clássico, assume-se o desconhecimento das condições iniciais
do universo e considera-se que o período in�acionário por si só não explica
como o universo evoluiu a partir de condições iniciais típicas. Além disto,
a escolha do volume como medida é rejeitada, e considera-se que a medida
deve ser determinada de modo a satisfazer as observações. Tal abordagem
tem sido recentemente alvo de muitas críticas [154]. Além da medida não ser
determinada, tais modelos se encaixam no cenário do multiverso e, como vi-
mos, uma teoria consistente de probabilidades ainda não foi encontrada neste
contexto. Também o fato da teoria introduzir um número muito grande de
parâmetros a torna facilmente ajustável às observações, o que demonstra um
problema de falta de previsibilidade do modelo.

Concluindo, temos como alternativa ao cenário clássico um cenário de
um multiverso onde probabilidades são mal de�nidas, baseado em potenciais
complexos associados a múltiplos campos, parâmetros e ajustes, sem uma
medida determinada e com baixo poder de previsão. Como questionado
em [154], se a in�ação clássica está em cheque, estamos dispostos a aceitar a
in�ação pós moderna? Ou é o momento de buscar um paradigma cosmológico
alternativo?

É esta questão que buscamos abordar nos próximos capítulos. Alguns
cenários alternativos à in�ação têm sido recentemente propostos, entre eles
podemos mencionar o String Gas Cosmology (discutido no Apêndice B),
os cenários ekipiróticos, os modelos de branas, entre outros. No próximo
capítulo, apresentaremos outros três cenários alternativos para a expansão
primordial baseados em fundamentos diferentes, que também dispensam o
papel do campo responsável pela in�ação. Estes três cenários, além de evitar
os problemas descritos acima, possuem a vantagem de uni�car as duas fases
aceleradas do universo a partir de um único mecanismo.
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Capítulo 7

Cenários Cosmológicos

Alternativos para a Aceleração

Primordial

Vimos, na primeira parte do trabalho, que certos processos físicos natural-
mente esperados no universo, como a criação gravitacional de partículas, a
viscosidade volumar e o decaimento do vácuo, poderiam, em certos casos,
gerar as condições necessárias para a aceleração cósmica. Tais processos fí-
sicos também são esperados no contexto do universo primordial, onde altas
energias e um campo gravitacional forte compunham um universo em rápida
expansão.

A existência destes mecanismos, tanto no universo primitivo quanto no
universo recente, nos sugere a possibilidade de uma descrição uni�cada para
a aceleração cósmica baseada nestes processos. Veremos, a seguir, propostas
fenomenológicas que descrevem de maneira uni�cada as duas fases aceleradas,
fornecendo uma descrição completa para a evolução do universo que evolui
de uma fase de Sitter inicial a uma fase de Sitter �nal, passando pela era da
radiação e da matéria.

7.1 Um Modelo Completo de Criação Gravita-

cional de Partículas

Na primeira parte do trabalho, vimos que os modelos de criação de partícu-
las se baseiam no fenômeno quântico da produção de partículas às custas do
background gravitacional variando no tempo. Um caso simples que exem-
pli�ca o mecanismo fundamental por trás deste processo pode ser ilustrado
através do campo escalar massivo φ minimamente acoplado em um espaço-
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tempo de FRW. Ao escrevermos o mesmo na forma φ(η, x) = a(η)−1χ, vimos
que o campo χ obedece a mesma equação de movimento que um campo
escalar massivo no espaço de Minkowski, porém com uma massa efetiva de-
pendente do tempo da forma m2

eff (η) ≡ m2a2 − a”/a. Esta massa efetiva
leva em conta a interação entre o campo escalar e o campo gravitacional.
No contexto da Relatividade Geral, o fator de escala em um universo FRW
dominado por radiação (a ∝ t1/2) satisfaz a seguinte relação [aä + ȧ2] = 0,
ou em termos do tempo conforme a” = 0. Portanto, para campos sem massa
não há produção de partículas nesta fase, já que a equação de movimento
de χ se reduz à mesma de um campo escalar sem massa no espaço-tempo de
Minkowski. Esta é a base do teorema de Parker sobre a ausência de produção
de partículas sem massa na era da radiação.

No entanto, o teorema de Parker não proíbe a produção de partículas sem
massa em uma fase de Sitter primordial na qual a” 6= 0. É de esperar que, em
uma fase de Sitter inicial associada a uma rápida expansão do universo, haja
uma signi�cativa produção gravitacional de partículas relativísticas. Deste
modo, o mesmo mecanismo responsável pela aceleração recente do universo
poderia ser responsável também pela aceleração primordial. Esta é a base
do modelo completo de criação gravitacional de partículas proposto em [86].
É importante ressaltar que, para criação adiabática de fótons, a forma do
espectro de corpo negro é preservada ao longo da expansão [157].

Vamos assumir um universo dominado por radiação e dotado de produção
gravitacional de radiação (w = 1/3,Γr 6= 0). Sendo consequência da expan-
são do espaço-tempo, podemos esperar uma taxa de criação proporcional a
alguma potência de H, de tal modo que

Γr
3H

=

(
H

HI

)n
, (7.1)

onde HI é o parâmetro de Hubble na fase de Sitter inicial. A expressão acima
corresponde a uma generalização da expressão considerada em [86].

As equações de Friedmann (3.4) e (3.5) para este modelo implicam na
seguinte evolução

Ḣ + 2H2

(
1−

(
H

HI

)n)
= 0. (7.2)

Desta forma, a solução de Sitter (Ḣ = 0) ocorre inicialmente quando H =
HI . Como o universo está em evolução tal solução é instável. A partir da
equação acima é possível concluir que o principal efeito de Γ é causar uma
instabilidade dinâmica no espaço-tempo de modo a gerar uma transição de
um regime de Sitter (Γ ≈ 3H) para a solução convencional e vice-versa.
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A solução da equação acima pode ser escrita como

H =
HI

(1 +Da2n)1/n
, (7.3)

onde D ≥ 0 é uma constante de integração. Podemos ver que para D > 0 o
universo inicia na fase de Sitter sem singularidade e depois transita natural-
mente para a fase da radiação em que a ∝ t1/2, quando Da2n > 1.

Devido à fase inicial de Sitter o modelo é livre de horizonte de partícu-
las. Desta forma as interações locais teriam homogeneizado todo o universo.
Nesta fase H = HI ≈ cte e, devido à produção de radiação, a expansão
procede de forma aproximadamente isotérmica, o que implica que o superes-
friamento e a necessidade do reaquecimento do universo são evitados. Ou
seja, não existe o chamado "Graceful Exit Problem".

A expansão de Sitter é capaz de resolver todos os problemas usuais que
os modelos de in�ação se propõem a resolver. Além disto, como fótons não
são produzidos na era da radiação, Γr → 0 nesta fase, e a nucleossíntese
primordial ocorre da forma convencional. Subsequentemente o universo entra
na era da matéria escura quando, a partir daí, inicia a produção gravitacional
de partículas de matéria escura.

Como vimos na primeira parte do trabalho, existem diversas propostas
fenomenológicas para a taxa de produção de partículas de matéria escura
no universo recente, que consideram a mesma como sendo proporcional a
uma dada potência de H. Assim, podemos descrever genericamente esta
taxa de criação como Γ/3H = (Hf/H)m, sendo m um número não negativo
e Hf o valor �nal do parâmetro de Hubble na fase de Sitter futura. Este
expressão geral contempla também os três casos estudados na primeira parte
do trabalho. Deste modo, podemos formular uma descrição uni�cada para as
duas fases aceleradas do universo através da seguinte expressão para a taxa
de criação de partículas

Γ

3H
=

(
H

HI

)n
+

(
Hf

H

)m
. (7.4)

Vemos que, no universo primordial, em que H ≈ HI e H >> Hf , o
primeiro termo domina gerando a evolução de Sitter no universo antigo. Já
no universo recente em que H << HI , o segundo termo domina, descrevendo
assim os casos vistos na primeira parte do trabalho.

Como apontado em [86], este modelo pode ser consistente com os tes-
tes observacionais para o universo recente também a nível perturbativo, in-
cluindo a taxa de crescimento das estruturas cósmicas.

Veremos, nas próximas seções, que uma descrição uni�cada análoga tam-
bém pode ser construída para os modelos de viscosidade e decaimento do
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vácuo.

7.2 Um Modelo Completo de Decaimento do

Vácuo

Vimos que, nos modelos de decaimento do vácuo, o valor hoje observado da
densidade de energia do vácuo λ0 corresponde a um remanescente da energia
existente no universo primordial responsável pela in�ação. É necessário, por-
tanto, relacionar a magnitude de Λ(t) atualmente com seu valor na época da
expansão primordial. Com este objetivo, foi proposto em [158] um modelo
de decaimento do vácuo capaz de descrever a evolução de Λ(t) do universo
primordial ao universo recente. Este modelo foi denominado cenário com-
pleto de decaimento do vácuo, pois o mesmo descreve a evolução do universo
de uma fase de Sitter inicial a uma fase de Sitter �nal, passando pela era da
radiação (iniciada através de uma transição suave) e pela subsequente era da
matéria.

A lei de decaimento proposta em [158] se baseia na covariância da ação
efetiva da Teoria Quântica de Campos em espaços curvos, que sugere que
no universo primordial apenas as potências pares do parâmetro de Hubble
contribuem para Λ(t) [159]. Esta lei é escrita como

Λ(H) = c0 + 3νH2 + 3β
H4

H2
I

, (7.5)

onde ν e β são parâmetros adimensionais e HI é o parâmetro de Hubble na
in�ação primordial. A constante c0 acima representa o termo dominante a
baixas energias, e as potências de H representam, no universo recente, pe-
quenas correções ao termo dominante. No entanto, estes termos possuem
grande relevância no universo primordial. Nesta fase H ≈ HI , e o segundo
e terceiro termo dominam na equação acima. Devemos lembrar que con-
sideramos, neste modelo, o decaimento do vácuo na componente material
dominante do universo em cada fase.

O parâmetro de Hubble em questão evolui da seguinte forma

Ḣ +
3

2
(1 + wm)H2

[
1− ν − c0

3H2
− αH2

HI

]
= 0. (7.6)

Neste cenário o universo inicia em uma fase de Sitter e, após uma produção
substancial de partículas relativísticas (a partir do decaimento do vácuo), ele
evolui para a fase da radiação e posteriormente para a fase da matéria. Nesta
fase a equação (7.5) se reduz a
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Λ(H) = Λ0 + 3ν(H2 −H2
0 ), (7.7)

onde Λ0 = c0 − 3νH2
0 é o valor atual da constante cosmológica. Atualmente

este modelo evolui da mesma forma que um modelo com uma energia es-
cura variando lentamente. Porém, posteriormente o universo entra em uma
segunda fase de Sitter.

Em [160, 161] foi feita uma análise conjunta com supernovas, RCF e
BAO para vincular o parâmetro ν, que quanti�ca o desvio deste modelo com
relação ao comportamento do ΛCDM. Foi encontrado que o melhor ajuste
é |ν| = O(10−3) . Enquanto que, para Ωm, foi encontrado o melhor ajuste
Ω0
m
∼= 0.27− 0.28.
O modelo cosmológico descrito pela lei de decaimento (7.5) é apenas uma

das possibilidades fenomenológicas para descrever o decaimento. Também
fornecem cenários cosmológicos consistentes modelos que seguem a lei mais
geral

Λ(H) = c0 + 3νH2 + 3α
H2n

H2n−2
I

(n > 1). (7.8)

Tais modelos também são capazes de gerar uma fase in�acionária de Sitter
no universo primordial com uma transição suave para a era da radiação.

7.3 Um Modelo Completo de Viscosidade

Sabemos que diferentes componentes do �uido cosmológico possuem diferen-
tes leis de evolução para a temperatura e diferentes tempos de resfriamento à
medida que o universo se expande. Consequentemente, há uma troca interna
de calor irreversível no �uido, a qual é descrita pela viscosidade volumar.
Como apontado em [162], durante e após a transição de fase ocorrida na
época da grande uni�cação, o universo consistia em uma mistura de partí-
culas extremamente relativísticas e partículas não-relativísticas (leptoquark
gauge bosons) com um tempo mínimo de interação da ordem da idade do
universo. Esta mistura possuía uma viscosidade volumar signi�cativa, o que
faz com que seja importante considerarmos as possíveis consequências cos-
mológicas deste processo no universo primordial. Também neste contexto,
embora a teoria cinética não preveja que a pressão negativa associada à vis-
cosidade possa superar a pressão de equilíbrio, acreditamos que a situação
possa ser diferente no contexto da teoria de campos em espaços curvos fora
de equilíbrio.

Como vimos anteriormente, os modelos de viscosidade são dinamicamente
equivalentes aos modelos de decaimento do vácuo. Vamos então obter a
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expressão geral do coe�ciente de viscosidade capaz de descrever uma evolução
cosmológica completa (de de Sitter a de Sitter) como a que obtivemos para
o modelo de decaimento do vácuo.

A condição de equivalência que obtivemos na primeira parte do trabalho
entre os dois modelos pode ser escrita em função do coe�ciente de viscosidade
como

ξ =
(1 + w)Λ(t)

3H
, (7.9)

onde �zemos 8πG = 1.
Olhando para a equação (7.5) podemos presumir que o coe�ciente de

viscosidade que gerará a dinâmica do modelo Λ(t) terá a forma de uma série
de potências. Assim, podemos representá-lo através da seguinte soma,

ξ =
∑
α

ξα, (7.10)

lembrando que o índice α vem da expressão (3.15) do coe�ciente de viscosi-
dade (ξα ∝ ρα).

Vamos analisar primeiramente a fase de aceleração primordial segundo
esta descrição. Vimos na seção anterior que a expressão de Λ(H) (7.5) pode
ser aproximada por Λ(H) = 3νH2+3αH4/H2

I no universo primitivo. Através
da equação de equivalência (7.9), é possível então concluir que o modelo
correspondente de viscosidade no universo primordial tem um coe�ciente
dado pela soma

∑2
α=1 ξα (rede�nindo α → α − 1/2). Usando a expressão

(3.15) do coe�ciente de viscosidade, podemos escrever esta soma como

ξ = 3δ1

(
ρ0

H0

)(
ρ

ρ0

)1/2

+ 3δ2

(
ρ0

H0

)(
ρ

ρ0

)3/2

. (7.11)

Podemos veri�car, ao substituir ρ = 3H2 na equação acima, que obtemos as
mesmas potências em H que temos na expressão de Λ(H).

Ao substituir as expressões de Λ(H) e ξ(H) na condição de equivalência
(7.9), obtemos que a correspondência entre os dois modelos é estabelecida
para os seguintes valores dos parâmetros de viscosidade,

δ1 =
4ν

27
, (7.12)

δ2 =
4α

27

(
H0

HI

)2

. (7.13)

Integrando as equações de campo para os dois modelos obtemos a seguinte
expressão para H(a),
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H(a) =

√
(1− ν)

α

HI√
Da3(1−ν)(1+w) + 1

, (7.14)

Esta equação nos descreve um universo que inicia sem singularidade em uma
expansão de Sitter e transita gradativamente para a fase da radiação usual
em que a ∝ t1/2.

Já no universo recente H << HI . Neste caso, a lei de decaimento do
vácuo pode ser aproximada por Λ(H) = Λ0 + 3ν(H2−H2

0 ). O coe�ciente do
modelo equivalente de viscosidade nesta fase é então descrito por

ξ = 3δ0

(
ρ0

H0

)(
ρ

ρ0

)−1/2

+ 3δ1

(
ρ0

H0

)(
ρ

ρ0

)1/2

. (7.15)

Sendo os parâmetros δ0 e δ1 dados por

δ0 =
Λ0

3H2
0

− ν , (7.16)

δ1 = ν/9 , (7.17)

onde Λ0/(3H
2
0 ) = ΩΛ0 é uma constante com papel análogo ao parâmetro de

densidade da constante cosmológica.
Integrando as equações de campo para este modelo no universo recente

obtemos

H(a) =
H0√
1− ν

√
(1− ΩΛ0)a−3(1−ν) + ΩΛ0 − ν, (7.18)

onde consideramos w = 0. Vemos que este cenário possui apenas um pequeno
desvio com relação ao cenário ΛCDM, parametrizado pelo termo dinâmico
da ordem de |ν|.

Juntando os resultados obtidos para as duas fases aceleradas podemos
analisar o comportamento geral do coe�ciente de viscosidade. ξ inicia com
um valor constante na era de Sitter inicial, ξ = 4HI(ξ + α)/3 e, ao �nal
desta fase, o coe�ciente começa a decrescer e continua decrescendo até que a
contribuição dominante de ξ passa a ser o primeiro termo da equação (7.15).
A partir deste momento, o valor do coe�ciente começa a crescer até que o
universo entra na fase de Sitter �nal quando o coe�ciente assume seu valor
�nal constante ξ = 9H0( Λ0

3H2
0
− 8ν

9
).

Vimos, portanto, que os três modelos aqui analisados, além de possuírem
a vantagem de uni�car as duas fases cosmológicas aceleradas, são capazes de
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evitar a singularidade inicial e gerar uma transição suave da era in�acionária
para a era da radiação.

Também no contexto da aceleração primordial, é possível obter víncu-
los para os parâmetros livres dos modelos apresentados aqui a partir dos
dados observacionais, como faremos posteriormente através do cálculo do es-
pectro de potências primordial do modelo de criação de partículas. Porém,
é possível também vincular estes modelos por meio de uma análise teórica
baseada na Segunda Lei Generalizada da Termodinâmica. Esta abordagem
será considerada, a seguir, para o caso dos modelos de criação gravitacional
de partículas.



Capítulo 8

Análise Termodinâmica

Apresentamos, no capítulo anterior, um modelo completo de criação de par-
tículas capaz de descrever a evolução cosmológica desde uma fase de Sitter
primordial até uma fase de Sitter �nal, sendo, as duas fases aceleradas, pro-
pulsionadas pelo mecanismo de criação gravitacional de partículas. Vimos
que, neste cenário, o universo inicia em uma fase não singular de Sitter que é
instável e em seguida entra suavemente na era da radiação. À medida que o
universo se expande a radiação se torna subdominante e a matéria escura fria
começa a dominar. A partir daí, a produção gravitacional de matéria escura
fria é desencadeada. Finalmente o universo entra na segunda fase de Sitter
caracterizada pelo equilíbrio termodinâmico. O modelo completo, proposto
no capítulo anterior, corresponde a uma generalização do modelo proposto
em [86] cujo comportamento termodinâmico foi investigado em [85].

Com o objetivo de testar o espaço de parâmetros deste modelo, desenvol-
veremos aqui uma análise baseada na Segunda Lei Generalizada da Termo-
dinâmica (SLG). Nosso objetivo é explorar quais restrições a SLG impõe aos
parâmetros livres do modelo completo de criação de partículas. Esta lei es-
tabelece que a entropia total do sistema não deve decrescer. Além disto, nos
últimos estágios de evolução, a entropia total deve ser uma função côncava.
Caso contrário, a entropia total cresceria ilimitadamente sem jamais atingir
o equilíbrio - estado de máxima entropia compatível com as restrições do
sistema [163]. De acordo com a SLG a entropia total a ser considerada deve
ser a soma da entropia do sistema com a entropia do horizonte causal que o
envolve. Esta lei foi formulada primeiramente no contexto de buracos negros
[164] e foi, posteriormente, extendida para horizontes cósmicos [165, 166].

Em 1977, Gibbons e Hawking mostraram em [165] que a conexão exis-
tente entre o horizonte de eventos e a termodinâmica para o caso de buracos
negros poderia ser extendida para o caso de horizontes cósmicos. De acordo
com estes autores, a área do horizonte de eventos cosmológico poderia ser
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interpretada como entropia, ou ausência de informação do observador com
relação às regiões às quais o mesmo não possui acesso. É possível, assim,
associar uma temperatura e uma entropia ao horizonte de eventos cosmo-
lógico analogamente ao caso dos horizontes de eventos dos buracos negros.
No mesmo trabalho foi mostrado também que um observador com um de-
tector de partículas de fato observaria um background de radiação térmica
vindo aparentemente do horizonte de eventos. Ao absorver esta radiação,
o observador ganharia energia e entropia e a área do horizonte diminuiria.
À medida que a área decresce, a temperatura da radiação cósmica também
decresce (ao contrário do caso dos buracos negros) e, assim, o horizonte de
eventos cosmológico seria estável.

Muita discussão tem sido gerada a respeito da termodinâmica de hori-
zontes cosmológicos desde então. Posteriormente, foi visto que o horizonte
aparente, ao invés do horizonte de eventos, seria mais apropriado para uma
formulação termodinâmica em alguns casos [167, 168, 169, 170, 171, 172]. O
horizonte aparente coincide com o horizonte de eventos na fase de Sitter. Até
mesmo para o caso de buracos negros, foi visto que a noção de horizonte de
eventos, que requer um conhecimento de todo desenvolvimento futuro e da
estrutura causal do espaço-tempo, é essencialmente desnecessária para certas
aplicações práticas, sendo usado, em lugar deste, o horizonte aparente. Em
[173] foi mostrado, para o caso geral de um espaço-tempo de FRW, que o
horizonte cosmológico aparente é também um horizonte atrapante (trapping
horizon) quando o escalar de Ricci é positivo, ou seja, quando temos um
�uido cósmico descrito por peff < ρ/3. Este critério coincide também com a
condição em que a temperatura de Kodama-Hayward do horizonte aparente
é positiva [173].

A termodinâmica de horizontes cosmológicos tem sido, desde seu desen-
volvimento, extensivamente aplicada na cosmologia [85, 174, 175]. Ao le-
var em conta as propriedades termodinâmicas dos horizontes cosmológicos,
segue-se que, de acordo com a SLG, a entropia total S deve incluir a entropia
de todas as fontes, isto é, do �uido envolto pelo horizonte aparente e também
a entropia do próprio horizonte aparente.

Para explorar quais restrições a SLG e o requerimento de concavidade
impõem aos parâmetros livres do modelo completo de criação de partículas,
vamos iniciar nossa análise no contexto do universo primordial e em seguida
analisaremos o caso do universo recente. Os resultados apresentados neste
capítulo correspondem aos resultados originais que obtivemos no artigo [106].

Vínculos para o Universo Primordial
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A fase da radiação é seguida pela era de domínio da matéria que eventual-
mente transitará para uma segunda fase de Sitter. Esperamos, portanto, que
na era da radiação a entropia cresça e seja uma função convexa do fator de
escala, isto é, S ′ > 0 e S�0 (o til indica d/da). Caso a função fosse côncava,
o universo teria atingido um estado de equilíbrio termodinâmico (máxima
entropia) e teria permanecido neste estado para sempre a não ser que fosse
forçado por um "agente externo". Porém, sabe-se que a produção de partí-
culas é suprimida durante a era da radiação, de modo que não haveria agente
externo para tirar o sistema do equilíbrio termodinâmico. Por isto esperamos
que a entropia seja uma função convexa nesta fase.

Denotando por Sγ a entropia do conteúdo energético quando o universo
é dominado pela radiação, e por Sh a entropia do horizonte aparente, temos
que S = Sγ+Sh. A entropia do horizonte aparente é dada por Sh = kBA/4l

2
pl

[170], onde A = 4πr2
h é a área do horizonte, kB é a constante de Boltzmann,

lpl é o comprimento de Planck e rh é o raio do horizonte. No nosso caso,
em um universo espacialmente plano, o último corresponde ao horizonte de
Hubble H−1.

Já a entropia do �uido de radiação pode ser obtida através da equação
de Gibbs

TγdSγ = d(ργV ) + pγ dV, (8.1)

onde V = 4π/(3H3) é o volume envolto pelo horizonte, Tγ é a temperatura
da radiação e pγ = ργ/3 é a pressão, sendo

ργ =
ρI

(1 + Da2n)2/n
, ρI ≡

3H2
I

8πG
. (8.2)

As expressões acima podem ser derivadas a partir da equação de Fried-
mann juntamente com a expressão do parâmetro de Hubble do modelo, dada
pela eq. (7.3).

Ao calcular a derivada da expressão de Sh, usando a equação (7.3), obte-
mos

S ′h = C D a2n−1(1 +Da2n)
2
n
−1 , (8.3)

onde C = 4kBπ/(l
2
plH

2
I ). Claramente S ′h > 0 independente do valor de n,

visto que D é uma quantidade positiva.
A temperatura da radiação, por sua vez, segue a expressão

Tγ =
TI

(1 + Da2n)
1
2n

(8.4)
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sendo TI a temperatura inicial na fase de Sitter. Vemos que para Da2n >> 1
(já bem na era da radiação) recuperamos o resultado padrão Tγ ∝ a−1.

Para a entropia da radiação, a partir da equação de Gibbs segue que

Tγ S
′
γ =

16π

3
ρI
D

H3
I

a2n−1 (1 + Da2n)
1
n
−1 . (8.5)

Ou seja, S ′γ > 0 independente do valor de n.
Para determinar se n pode ser vinculado através da convexidade da en-

tropia total, devemos determinar o sinal da segunda derivada de ambas en-
tropias. A partir de (8.3) obtemos

S ′′h = C D a2(n−1)(1 + Da2n)
2
n
−2[3Da2n + 2n− 1] . (8.6)

E a partir de (8.4) e (8.5) obtemos

S ′′γ =
16π

3

ρID

TIH3
I

a2(n−1) (1 +Da2n)
3
2n
−1

[
2(Da2n + n)− 1

1 +Da2n

]
. (8.7)

Portanto, vemos que a positividade de ambas as funções S ′′h e S ′′γ é garantida
sempre que n > 1/2.

Correções Quânticas

Ao se considerar efeitos quânticos, a lei de entropia de buracos negros de
Bekenstein-Hawking é generalizada para a expressão

Sh = kB

[
A

4lpl2
− 1

2
ln

(
A

l2pl

)]
, (8.8)

somada a termos de ordens mais altas [176]. Como apontado em [85], o
mesmo se aplica para horizontes cosmológicos causais. Analisaremos aqui se
os resultados que obtivemos continuam válidos ao se considerar tais correções.

No contexto do nosso cenário, um simples cálculo a partir da equação
anterior fornece

S ′h =
kBπ

lpl
2

4

aH2

(
1−

(
H

HI

)n)[
1−

l2plH
2
I

2π(1 +Da2n)2/n

]
. (8.9)

Vemos que a presença do fator l2pl no numerador do segundo termo no
parêntesis torna este termo desprezível. Portanto, nossa abordagem é robusta
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com relação a modi�cações quânticas à entropia do horizonte no universo
primordial. Além disto, no limite a→ 0 a condição S ′h > 0 implica no limite
superior para a taxa de expansão inicial HI <

√
2π/lpl, independente de n.

Ou seja, o fator de Hubble inicial não pode ser arbitrariamente grande.
É interessante também notarmos que a temperatura TI tem um limite

superior natural imposto pelas correções quânticas discutidas aqui. De fato,
lembrando que a temperatura inicial do universo no nosso cenário pode ser
associada à temperatura de Gibbons-Hawking [165], é fácil checar, a partir
da desigualdade acima, que TI < 1/

√
2πlpl. Em outras palavras, as correções

quânticas à formula usual implicam que a temperatura inicial do universo
no nosso modelo é um pouco menor que a temperatura de Planck, como o
esperado pela descrição clássica.

Vínculos para o Universo Recente

Vamos agora analisar a Segunda Lei Generalizada da Termodinâmica no
contexto do universo recente, com o objetivo de encontrar quais valores para
o parâmetrom, na expressão (7.4), são termodinamicamente permitidos. Ini-
ciaremos pelo cálculo das derivadas das entropias do horizonte e da matéria.

Devemos lembrar que, no modelo em questão, a evolução do parâmetro
de Hubble no universo recente é determinada pela equação

Ḣ = −3

2
H2

[
1−

(
Hf

H

)m]
. (8.10)

Através do mesmo procedimento realizado no caso anterior, obtemos en-
tão para a entropia do horizonte

S ′h =
2πkB
l2plaH

2

[
3

2

(
1−

(
Hf

H

)m)]
. (8.11)

Já para a entropia do �uido dentro do horizonte, é su�ciente notar que
cada partícula de poeira contribui com uma determinada quantia kB [85].
Então, Sm = kB4πr3

hnp/3, onde a densidade de números de partículas np
obedece a equação de conservação n′p = (np/a)[(Γm/H) − 3], sendo Γm =
3H(Hf/H)m. Assim, temos que

S ′m =
4πkBnp
3aH2

[
3

2

(
1−

(
Hf

H

)m)]
. (8.12)

Vemos que a SLG, S ′ = S ′m + S ′h ≥ 0, apenas restringe m como sendo
positivo, o que também era requerido para gerar uma dinâmica cosmológica
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aceitável. A condição de que a entropia total tenda a um máximo a longo
prazo também não impõe nenhum vínculo adicional a m. Como H → Hf

quando a→∞, ambos S ′h e S ′m tendem a zero neste limite. Por outro lado,
como ambas primeiras derivadas são positivas quando o fator de escala é
�nito, concluímos que S ′ tende a zero por baixo, então S ′′(a → ∞) ≤ 0, o
que pode ser satisfeito para valores positivos de m. Em resumo, o modelo
completo de criação de partículas é consistente com a termodinâmica também
no universo recente para qualquer valor positivo do parâmetro livre m.

Concluímos, portanto, que o modelo completo de criação de partículas
apresenta o comportamento esperado de um sistema macroscópico ordinário,
no sentido de que o mesmo tende ao equilíbrio termodinâmico nos estágios
�nais de evolução, sempre que o parâmetro n for maior que 1/2 e o parâmetro
m for maior que zero. Vimos também que a inclusão de correções quânticas
no limite a → 0 fornece um limite superior razoável para o parâmetro de
Hubble inicial e para a temperatura inicial.

A análise feita neste capítulo poderia ser aprimorada ao se considerar,
em uma segunda etapa, além da entropia do horizonte e do �uido, também
a contribuição advinda do campo gravitacional. Porém, para o objetivo
proposto, acreditamos que o cálculo acima fornece um resultado consistente.

Uma outra forma de se obter vínculos para os parâmetros deste modelo
é testar suas previsões com os dados observacionais da RCF. Com esta �na-
lidade, iremos analisar no capítulo seguinte como se procede a formação das
sementes das estruturas que hoje vemos no universo no caso deste modelo.
Veremos que, assim como no modelo de viscosidade, a formação de estrutu-
ras se dá, predominantemente, a partir de �utuações térmicas estatísticas,
ao invés de �utuações quânticas como nos cenários tradicionais. As previsões
obtidas poderão então ser testadas com os dados observacionais atuais.



Capítulo 9

As Flutuações Térmicas

Estatísticas

Vimos, nos capítulos anteriores, que existem diversas possibilidades para ex-
plicar a fase in�acionária do universo primordial sem a necessidade de se
introduzir um campo escalar (in�aton). Mecanismos como a criação gra-
vitacional de partículas, a viscosidade volumar do �uido, entre outros, são
exemplos de processos capazes de gerar pressão negativa no universo, o que
atua no sentido de acelerar o mesmo. Vimos que estes dois modelos têm
em comum o fato de que o universo é inicialmente dominado por radiação
e a produção de entropia ocorre continuamente durante toda a in�ação, o
que mantém a temperatura relativamente constante durante todo o período
in�acionário, evitando o superesfriamento do universo. No entanto, esta ca-
racterística cria a necessidade de se considerar a in�uência da temperatura
na geração das �utuações que darão origem às estruturas cosmológicas hoje
observadas. O mesmo ocorre também em outros cenários in�acionários en-
tre os quais podemos citar o modelo de in�ação morna [177], e também em
cenários alternativos à in�ação como os modelos de bouncing e também o
String Gas Cosmology discutido no Apêndice B.

Como mencionado anteriormente, em geral as �utuações em um �uido
podem ser originadas de duas formas distintas. Podem haver �utuações na
densidade de energia geradas a partir de �utuações quânticas (como é con-
siderado no modelo padrão), e podem haver também �utuações de energia
devido à natureza estatística da física térmica. Se de�nirmos uma única
temperatura em um dado volume de um sistema, existirão nele �utuações
aleatórias de energia. Estas �utuações, existentes em todo sistema de tem-
peratura �nita, surgem já a nível clássico e são comumente chamadas de
�utuações térmicas [178]. No universo primordial em que as temperaturas
eram muito altas, estas �utuações deviam ser bastante signi�cativas nos ca-
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sos em que o universo não passa por uma fase de superesfriamento durante
a in�ação. Nestes casos, as �utuações térmicas em geral dominam sobre as
�utuações de origem quântica.

Na seção a seguir, introduziremos a teoria de perturbações cosmológicas
primordiais para o caso de �utuações de origem térmica. Inicialmente, iremos
rever a abordagem de T. Biswas et al. [178] para o caso geral adiabático que
considera um universo dominado por um �uido qualquer com uma equação
de estado variável w(t). Mostraremos como o espectro de potência primordial
pode ser obtido para estes casos.

Posteriormente, analisaremos uma possível extensão desta abordagem
para os modelos de criação gravitacional de partículas.

9.1 O Espectro de Potência Primordial a Partir

de Flutuações Térmicas

Consideraremos aqui o formalismo geral das perturbações primordiais, de-
senvolvido em [178], para um cenário cosmológico qualquer em que o uni-
verso seja dominado por um �uido térmico (que possui equilíbrio térmico).
A abordagem que descreveremos a seguir é bastante geral e pode ser apli-
cável a diversos modelos cosmológicos distintos em que estruturas cósmicas
são geradas termicamente. Podemos citar como exemplo cenários de cordas,
cosmologias cíclicas, in�ação morna, entre outros. Nestes modelos, essenci-
almente as �utuações térmicas serão as sementes iniciais para as �utuações
em escalas super-Hubble.

A abordagem aqui considerada não pressupõe qualquer modelo desde que
sejam respeitadas as seguintes suposições:

• As interações no �uido mantém o equilíbrio térmico, o que requer equi-
líbrio cinético e químico.

• Para modos sub-Hubble as �utuações térmicas estatísticas dominam
sobre as quânticas.

• Não há perturbações de isocurvatura signi�cantes.

• Não há anisotropias no �uido.

• Existe um mecanismo para os modos saírem da fase sub-Hubble para a
fase super-Hubble e assume-se esta transição como sendo instantânea.

• Pelo menos próximo a esta transição, devem valer as leis usuais da
termodinâmica e da Relatividade Geral.
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A teoria de perturbações estatísticas será desenvolvida na escala sub-
Hubble onde correlações térmicas podem existir. A partir do momento em
que a perturbação cruza o horizonte de Hubble, as perturbações passam a
evoluir de acordo com as leis usuais da hidrodinâmica acoplada à gravidade.
As grandezas serão calculadas no momento em que as perturbações cruzam
o horizonte, pois a partir da escala de Hubble a perturbação de curvatura
permanece constante sempre que a velocidade do som for dada pela expressão
adiabática δp/δρ = ∂p/∂ρ (mesmo quando a equação de estado do �uido va-
ria no tempo). Isto nos fornecerá o espectro primordial da Radiação Cósmica
de Fundo.

Para calcularmos o espectro de potência, devemos encontrar a expressão
para a perturbação de curvatura ζ, gerada a partir de �utuações em escalas
sub-Hubble. Com esta expressão, podemos calcular ζ no momento em que
os modos cruzam o horizonte.

Primeiramente, no entanto, vamos introduzir as perturbações na métrica
da mesma forma que no caso padrão. Estas perturbações serão posterior-
mente relacionadas às perturbações no �uido. Vimos que podemos parame-
trizar as perturbações na métrica da seguinte forma geral,

ds2 = a2(η)[−(1 + 2φ)dη2 +B,idηdx
i + ((1− 2ψ)δij + E,ij)dx

idxj]. (9.1)

Já as perturbações no �uido material, considerado isotrópico, podem ser
descritas através do seguinte tensor energia-momento perturbado,

T 0
0 = −ρ(1 + δ) T 0

i = ρ(1 + w)v,i T ij = ρ(w + c2
sδ) , (9.2)

onde v é a velocidade perturbada do �uido, c2
s = δp/δρ é a velocidade do

som ao quadrado e δ = δρ/ρ. Como estamos assumindo um �uido térmico,
todas as quantidades de background são funções da temperatura.

A grandeza invariante de gauge que nos interessa para o cálculo do es-
pectro de potência é a perturbação de curvatura, de�nida como

ζ = −Ψ−H(v −B), (9.3)

onde Ψ é o potencial de Bardeen e H = ȧ/a é o parâmetro de Hubble con-
forme. A partir daqui, o ponto sempre denotará derivada com relação ao
tempo conforme η enquanto a aspa denotará derivada com relação à tempe-
ratura.

Como a expressão acima é um invariante de gauge, podemos escolher
qualquer gauge para calculá-la. Vamos aqui trabalhar no gauge longitudinal,
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no qual E = B = 0. Neste gauge, a métrica escalar perturbada pode ser
escrita em termos dos potenciais de Bardeen invariantes de gauge Φ,Ψ,

ds2 = a2(η)[−(1 + 2Φ)dη2 + ((1− 2Ψ)dx2]. (9.4)

A componente 0i das equações de Einstein determina v em termos dos
potenciais de Bardeen,

Ψ̇ +HΦ =
a2

2M2
p

(1 + w)ρv. (9.5)

Isolando v e substituindo na expressão (9.3) para a perturbação de curvatura
obtemos

ζ = −Ψ−
2M2

pH
(1 + w)a2ρ

(Ψ̇ +HΦ). (9.6)

É importante notar que a expressão acima está numa forma invariante
de gauge. Posteriormente, veremos que todos os cálculos termodinâmicos
relevantes para obtermos as �utuações de energia em um dado volume são
feitos supondo-se um espaço-tempo de Minkowski (volume �xo). Para gene-
ralizarmos nossa análise para a métrica de Friedmann Robertson Walker, ou
qualquer outra métrica, é preciso ir para um sistema onde o �uido de back-
ground está em "repouso", o que corresponde ao gauge comóvel. A expressão
acima, embora escrita em termos dos potenciais de Bardeen, por ser um in-
variante de gauge, nos permitirá desenvolver os cálculos no gauge comóvel.
E então δρ poderá ser escrito de forma invariante de gauge, como deve ser
tendo em vista que os cálculos no espaço de Minkowski não devem depender
da escolha de gauge.

A perturbação de densidade é relacionada ao potencial de Bardeen através
da equação relativística de Poisson

Ψ = −1

2

(
a

kMp

)2

δρC , (9.7)

onde o índice C se refere ao gauge comóvel. A partir daqui, deixaremos este
símbolo implícito já que todos os cálculos termodinâmicos assumirão este
gauge para a perturbação na densidade do �uido.

Como estamos assumindo um �uido sem pressão anisotrópica, podemos
considerar Φ = Ψ. Deste modo, substituindo a expressão acima e sua deri-
vada em (9.6), obtemos para a perturbação de curvatura

ζ =
1

2

(
a

kMp

)2 [
1 +

2M2
pH

2

(1 + w)ρ
(3 + r)

]
δρ, (9.8)
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onde a evolução temporal da �utuação de densidade foi considerada na gran-
deza r de�nida abaixo,

r =
d log δρ

d log a
=

(δρ)′

δρ

Ṫ

H
. (9.9)

Se de�nirmos uma grandeza A(T ) tal que

A(T ) ≡ 1

2

[
1 +

2(3 + r)

3(1 + w)Ω

]
, (9.10)

podemos escrever a perturbação de curvatura de forma mais sucinta como,

ζk =
A(Tk)

H2
kM

2
p

δρk. (9.11)

Todas as grandezas acima dependerão da temperatura em que um dado

modo sai do horizonte.

- O Cálculo Estatístico das Perturbações

Vamos agora calcular as �utuações no �uido em um dado volume usando
a termodinâmica, para então podermos relacioná-las às perturbações na mé-
trica e ao espectro primordial.

Podemos de�nir a �utuação média na energia, ∆E, usando a função de
partição canônica Z da seguinte forma,

< ∆E >2
L ≡< E2 > − < E >2=

1

Z

∂2Z

∂β2
−
(

1

Z

∂Z

∂β

)2

=
∂2lnZ

∂β2

= −∂< E >

∂β
= T 2CV ,

onde CV é a capacidade calorí�ca do sistema térmico para um dado volume
L3, e β ≡ 1/(kBT ) sendo kB a constante de Boltzmann.

Podemos obter a �utuação média na densidade ao dividir ∆E pelo vo-
lume,

< δρ2 >L=
T 2CV
L6

=
T 2

L3

∂ρ

∂T
, (9.12)

onde usamos CV = (∂E/∂T )V .
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Para analisarmos as perturbações, é conveniente trabalharmos no espaço
dos momentos. As perturbações neste espaço se relacionam com as pertur-
bações calculadas no espaço real da seguinte forma [178],

δρ2
k =

γ2

k3
< δρ2 >L=a/k, (9.13)

onde γ = 2
√

2π3/4 ≈ 6.7.
Substituindo (9.12) na equação acima obtemos

δρ2
k =

γ2

a3
T 2ρ′. (9.14)

Usando este resultado na expressão (9.11), podemos encontrar para ζ2
k

ζ2
k = A2(Tk)

γ2

a3

T 2ρ′

H4
kM

4
p

. (9.15)

Com este resultado, podemos facilmente obter a expressão para o espectro
de potência

Pζ = k3 < ζ2
k >= A2(Tk)γ

2 T
2
k ρ
′
k

HkM4
p

=
√

3Ωγ2A2(Tk)
T 2
k ρ
′
k

M3
p

√
ρk
, (9.16)

onde o índice k indica que todas as quantidades são avaliadas no momento

do cruzamento do horizonte, em que Hk = k/a. Precisamos agora calcular o

coe�ciente A(T ).

- O Coe�ciente A(T )

O fator A(T ) na expressão de Pζ representa a diferença entre o espectro
do potencial gravitacional PΦ e o espectro da perturbação de curvatura. Ele
nos permite calcular o espectro e comparar com as observações mesmo no
caso em que a equação de estado varia no tempo.

Para desenvolvermos a expressão completa para A(T ), dada pela equação
(9.10) que é uma função de r, precisamos primeiramente desenvolver a ex-
pressão (9.9) para r. Para isto, podemos substituir nesta equação a expressão
(9.14) obtida para δρ. Ao fazermos isto obtemos

r =
−3

2
+

(
(2ρ′ + Tρ′′)

2ρ′

)
d ln T

d ln a
. (9.17)
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Podemos observar que a equação de continuidade

ρ̇+ 3H(1 + w)ρ = 0 (9.18)

implica que

d ln T

d ln a
= −3(1 + w)

ρ

Tρ′
. (9.19)

Portanto, ao substituir este resultado na expressão (9.17) obtemos

r =
−3

2

[
1 +

(1 + w)ρ(2ρ′ + Tρ′′)

Tρ′2

]
. (9.20)

Este termo inserido na equação (9.10) nos fornece a expressão completa para

A(T ).

- Os Parâmetros de Não-Gaussianidade no Cenário

Térmico

Se as �utuações primordiais são distribuídas de forma gaussiana, as mes-
mas são caracterizadas pela função de dois pontos. No entanto, se estas
�utuações não são gaussianas, existem informações adicionais nas funções
de correlação de mais alta ordem. A função de correlação de 3 pontos, ou
o bispectro no espaço de Fourier, é especialmente importante por ser a es-
tatística de mais baixa ordem capaz de distinguir perturbações gaussianas
e não-gaussianas. O bispectro traz informações essenciais sobre o universo
primitivo, visto que o mesmo indica processos não lineares ocorrendo durante
a aceleração primordial. No espaço de Fourier, o bispectro mede a correlação
entre três modos de perturbação e pode ser escrito como

BΦ(k1, k2, k3) = fNLF (k1, k2, k3). (9.21)

Acima, fNL é o parâmetro de não-linearidade, um parâmetro adimensional
que mede a amplitude das não-gaussianidades. O análogo a este parâmetro
na função de quatro pontos é o parâmetro gNL.

O bispectro é medido a partir de amostras de triângulos no espaço de Fou-
rier. A dependência da função F (k1, k2, k3) com a con�guração do triângulo
formado pelos três vetores de onda descreve a forma do espectro.

Exatamente o mesmo método que usamos para calcular o espectro de
potência nos permite obter a função de correlação de mais pontos e assim
calcular as não gaussianidades de um modelo. Para isto, é preciso apenas
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aumentar a ordem das derivadas da função de partição, e obteremos a função
de mais pontos da seguinte forma,

− ∂3lnZ

∂β3
=< E3 > −3 < E2 >< E > +2 < E >3≡< ∆E3 >, (9.22)

−∂
4lnZ

∂β4
=< E4 > −4 < E3 >< E > +6 < E2 >< E >2 −4 < E >< E >3

≡< ∆E4 > .

A partir destas equações, seguindo o mesmo procedimento anterior, po-
demos obter termodinamicamente as funções

< δρ3 >L=
T 3(2ρ′ + Tρ′′)

L6
, (9.23)

< δρ4 >L=
2T 4(3ρ′ + 3Tρ′′ + ρ′′′)

L9
. (9.24)

Podemos converter estas expressões para o espaço dos momentos de modo
que

< δρ3 >=
γ3

k9/2
< δρ3 >L , < δρ4 >=

γ4

k6
< δρ4 >L . (9.25)

Utilizando a de�nição padrão dos parâmetros de não gaussianidades fNL
e gNL e usando a equação (9.11) que relaciona δρk às �utuações de curvatura,
podemos obter as expressões

fNL ≡
5

8
k−3/2 < ξ3

k >

< ξ2
k >

2
=

1

ΩγA(T )

[
5ρ(2ρ′ + Tρ′′)

24T (ρ′)2

]
≡ F (T )

ΩγA(T )
, (9.26)

gNL ≡
25

54
k−3 < ξ4

k >

< ξ2
k >

3
=

1

Ω2γ2A2(T )

[
25ρ2[3(ρ′ + Tρ′′) + T 2ρ′′′]

243T 2(ρ′)3

]
≡ G(T )

Ω2γ2A2(T )
.

(9.27)
Podemos ver que quanto maior a ordem da função de correlação, maior

a ordem da derivada da densidade com relação à temperatura.
É possível, seguindo o mesmo procedimento, obter os parâmetros de não

gaussianidade para uma ordem arbitrária em um modelo qualquer. A única
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propriedade termodinâmica do modelo necessária para os cálculos é a equa-
ção de estado do �uido dominante e a dependência da densidade com a
temperatura.

Até agora nos restringimos às perturbações escalares, que são as mais

importantes na formação de estruturas. No entanto, existem também as per-

turbações tensoriais que podem nos fornecer valiosos vínculos observacionais

para os modelos, como veremos a seguir.

- A Razão Tensorial Escalar

Outro parâmetro que nos permite comparar a teoria in�acionária com
as observações é a razão tensorial escalar, que corresponde à razão entre
o espectro de potência tensorial e o escalar. Esta quantidade é bastante
importante para distinguir modelos cosmológicos e os próximos experimentos
observacionais focarão nesta grandeza e também nos parâmetros de não-
gaussianidades.

As condições iniciais para as ondas gravitacionais podem ser estabelecidas
classicamente ou quanticamente. Assumindo que estas condições advém do
vácuo quântico, no caso o vácuo de Bunch-Davis, o espetro tensorial é dado
por [178]

Ph =
1

4π2

(
H

Mp

)2

=
ρ

12π2M4
pΩ

. (9.28)

Tendo obtido anteriormente o espectro escalar, podemos calcular portanto
a razão tensorial escalar como sendo

rt/s ≡
Ph
Pζ

=
1

γ2

1

12
√

3π3Ω3/2A2(T )

ρ3/2

MpT 2ρ′
. (9.29)

Tendo as expressões gerais para o espectro de potência e para os parâ-
metros de não gaussianidades a partir de �utuações térmicas, vamos agora
analisar uma possível aplicação deste método para os cenários cosmológicos
que vimos no capítulo 7.
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Capítulo 10

Flutuações Térmicas em Cenários

In�acionários Alternativos

No capítulo 7, apresentamos alguns modelos cosmológicos capazes de gerar
a in�ação a partir de processos que são naturalmente esperados no universo,
sem a necessidade de se introduzir um campo escalar desconhecido. Vamos
agora analisar como se procede a formação das estruturas cosmológicas nes-
tes cenários, mais especi�camente nos modelos de criação gravitacional de
partículas.

Como a temperatura é mantida aproximadamente constante durante toda
a in�ação nestes modelos, as �utuações são predominantemente térmicas.
Neste caso, esperaríamos que a abordagem geral descrita no capítulo ante-
rior pudesse nos fornecer o espectro de potências também para estes casos, já
que a mesma é elaborada para um cenário cosmológico geral. No entanto, de-
vemos lembrar que algumas suposições foram feitas para se obter o espectro,
entre elas a suposição de equilíbrio térmico.

Embora os cenários cosmológicos de criação adiabática de partículas assu-
mam uma termodinâmica essencialmente fora de equilíbrio, devemos lembrar
que diversas relações de equilíbrio ainda são mantidas nestes modelos. Por
exemplo, a relação de Gibbs para um estado em equilíbrio local é mantida
no �uido,

Tds = d
ρ

n
+ pd

1

n
, (10.1)

onde s é a entropia e n a densidade do número de partículas em um elemento
em equilíbrio local. Também a lei de Stefan-Boltzmann (ρ ∝ Tm) continua
válida, e portanto os mecanismos dissipativos atuantes nestes modelos não
alteram a relação entre a densidade de energia e a temperatura do �uido.

De certa maneira, como apontado na ref. [179], podemos argumentar que
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as inomogeneidades do nosso universo são totalmente originárias de �utua-
ções advindas de um elemento em equilíbrio local. Considere por exemplo
um quanta de �utuação com momento Pr. Como a incerteza no momento
∆Pr da partícula é da ordem de Pr [180][181][182], de acordo com o princípio
da incerteza temos que

Pr = ~krph ≈ ∆Pr ≈
~

∆xr
, (10.2)

onde krph = kr/a é o número de onda físico. Então, temos que ∆xr ≈ a/kr.
Usando a condição de cruzamento do horizonte kr = arHr, encontramos a
incerteza na posição ∆xr ≈ H−1

r . Como todas as �utuações ocorrem em um
elemento em equilíbrio local, a incerteza na posição não deve ser maior que
a escala do elemento ∆xr ≤ R. Portanto, temos a relação

H−1 ≈ ∆x ≤ R, (10.3)

no momento em que o modo cruza o horizonte. Ou seja , este elemento em
equilíbrio local pode ser visto como o berço das perturbações cosmológicas.

Além disto, tanto a equação de background ρ ∝ H2 quanto a relação de
Poisson não são alteradas nos modelos cosmológicos em questão, pois a pres-
são de criação não aparece na componente 0-0 do tensor energia-momento.

Além de supormos o equilíbrio térmico, supusemos também na seção
anterior que ao cruzar o horizonte as perturbações de curvatura dos mo-
dos se mantinham constante. Isto ocorre sempre que a relação adiabática
δp/δρ = ∂p/∂ρ for mantida em escalas super-Hubble. Em escalas sub-
Hubble, onde correlações térmicas podem existir, a velocidade do som é
calculada termodinamicamente e sua expressão de fato não corresponde à
expressão adiabática [178], e isto é um resultado geral independente de mo-
delo. No entanto, supusemos que a velocidade do som relaxa para o seu
valor adiabático em escalas super-Hubble, ou seja, quando correlações tér-
micas não mais existem e o �uido passa a ser descrito pela hidrodinâmica.
Nos nossos modelos não é bem conhecido, neste contexto, de que modo a
pressão de criação se comporta perturbativamente, e por isto δpc é muitas
vezes tratado como um parâmetro livre [84]. Dentre as possíveis expressões
que δpt/δρ, ((δpγ + δppc)/δρ), pode assumir, é uma escolha natural supor
que δpt/δρ varie com a derivada ∂pt/∂ρ no background, o que corresponde
à expressão adiabática. Deste modo podemos pensar estes modelos como
cenários cosmológicos em que perturbações evoluem adiabaticamente em um
background não adiabático.

Além disso, estes modelos, por descreverem um universo composto por um
único �uido de radiação, não possuem perturbações de isocurvatura signi�ca-
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tivas. Por todos estes motivos, acreditamos que as funções de correlação para
os modelos de criação de partículas possam ser calculada da forma descrita
na seção anterior. O espectro de potência calculado desta forma foi obtido
em [179] para um modelo de viscosidade com equação de estado efetiva cons-
tante, ou seja, com uma pressão de viscosidade proporcional à densidade.
Desenvolveremos aqui o cálculo para o caso mais geral dos modelos de cria-
ção em que a equação de estado efetiva varia com o tempo, como no cenário
apresentado no capítulo 7. Para isto usaremos o formalismo desenvolvido em
[178], aplicando-o para o caso do espectro de potências do modelo de criação
gravitacional de partículas. Os resultados originais obtidos aqui poderão ser
encontrados no artigo correspondente à referência [109].

10.1 O Espectro de Potências no Modelo de

Criação de Partículas

Como vimos no capítulo 3.1, existe um regime, comumente chamado de cri-
ação adiabática de partículas, em que partículas são introduzidas no �uido
cósmico (Ṅ 6= 0) mas a entropia especí�ca se mantém constante (σ̇ = 0).
Neste caso, as relações de equilíbrio mencionadas na seção anterior são man-
tidas.

É importante ressaltar aqui uma particularidade do modelo de criação.
Nestes modelos, o número de partículas não é conservado. No entanto, a
função de partição canônica que utilizamos nos cálculos termodinâmicos con-
sidera um sistema com um número �xo de partículas. Existe uma função de
partição que considera o número de partículas não �xo no sistema, que é a
função de partição gran-canônica. Entretanto, é possível veri�car que como
o potencial químico dos fótons é nulo, esta função de partição se reduz à
expressão canônica no caso de um �uido dominado por fótons. Além disto,
as �utuações de densidade são calculadas para um dado volume e posteri-
ormente o resultado é generalizado para um universo em expansão. Em um
volume �xo, em um dado instante, o número de partículas é de fato conser-
vado no modelo.

O cálculo termodinâmico das �utuações de energia é feito em uma apro-
ximação �adiabática� em que ignoramos a evolução cosmológica. A grandeza
< δρ >L nos diz como em uma dada fatia de tempo euclideana a energia �u-
tua em um dado volume L3. Após obtermos < δρ >L em um dado volume,
consideramos este volume como sendo o raio de Hubble de cada modo de
Fourier (1/H3 = (a3/k3)). A evolução cosmológica entra na expressão de ζ
e é apenas nas grandezas relacionadas à evolução do background que é visto
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o efeito da criação gravitacional de partículas, o que é esperado, tendo em
vista que este efeito decorre da expansão acelerada do background.

O efeito da criação será considerado aqui através de uma equação de
estado efetiva wef , onde wef = (pγ + pc)/ρ. Podemos assim utilizar os resul-
tados do capítulo anterior substituindo w → wef , para obter o espectro do
nosso modelo. Tendo obtido espectro, podemos vincular o parâmetro livre
do modelo com as observações.

Embora iremos usar como base de comparação as características gerais
do espectro de potências previstas pelas observações atuais, é importante
ressaltar aqui os limites desta comparação. Primeiramente, os resultados
observacionais aqui apresentados correspondem ao melhor ajuste para um
conjunto de parâmetros, obtidos ao se considerar a evolução posterior pa-
drão ΛCDM para o universo. Neste trabalho, iremos calcular o espectro de
potências apenas na in�ação. Embora haja a proposta de um modelo com-
pleto de criação gravitacional de partículas, a princípio podemos considerar
um modelo in�acionário de criação independentemente do modelo conside-
rado para o universo recente. A produção gravitacional de partículas poderia
ser um fenômeno predominante a altas energias. Neste caso, a suposição de
uma evolução posterior padrão (ΛCDM) para o universo tornaria os dados
observacionais aqui apresentados uma melhor base de comparação para nos-
sos resultados. Entretanto, em ambos os casos, para o nosso propósito de
vincular o parâmetro livre do modelo in�acionário de criação, acreditamos
que a aproximação considerada produz bons resultados. Porém, para termos
resultados exatos, seria necessária a evolução completa das perturbações, o
que está fora do escopo do presente trabalho. Os resultados que serão apre-
sentados devem ser vistos como uma primeira etapa para a evolução completa
das perturbações.

- O Espectro de Potências no Cenário de Criação de

Partículas

Obtivemos, no capítulo anterior, a seguinte expressão para o espectro de
potência a partir de �utuações térmicas,

Pζ =
√

3Ωγ2A2(Tk)
T 2
k ρ
′
k

M3
p

√
ρk
, (10.4)

onde

A(T ) ≡ 1

2

[
1 +

2(3 + r)

3(1 + w)Ω

]
(10.5)
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e

r = −3

2

[
1 +

(1 + w)ρ(2ρ′ + Tρ′′)

Tρ′2

]
. (10.6)

Como vimos, nos modelo in�acionários de criação temos um universo
plano dominado por radiação (Ω = 1, ρ = gT 4), no qual a aceleração cósmica
é causada pela pressão de criação pc. Podemos de�nir uma equação de estado
efetiva para o �uido tal que pt = pc + pπ = wefρ. Substituindo w = wef na
expressão acima para r, juntamente com a expressão de ρ(T ) e suas derivadas,
obtemos

r = −3

2

[
1 +

5(1 + wef )

4

]
. (10.7)

Substituindo este resultado na expressão (10.5) de A(T ) obtemos

A =
3− wef

8(1 + wef )
. (10.8)

Inserindo a equação acima na expressão (10.4) de Pζ obtemos a seguinte
expressão para o espectro de potência,

Pζ = cte1

[
3− wef

8(1 + wef )

]2

T 3, (10.9)

onde cte1 = 4
√

3γ2√g/M3
p (a constante g depende do número de graus de

liberdade internos do sistema).
Primeiramente, vamos analisar a dependência de Pζ com o fator de escala.

Devemos lembrar que todas as grandezas na expressão acima serão calculadas
no momento em que um modo k cruza o horizonte. Ao cruzar o horizonte
a = k/H, o que na in�ação corresponde à aproximadamente a ∝ k, visto que
H é aproximadamente constante. Portanto, o comportamento de Pζ(a) nos
indicará, em uma primeira aproximação, a dependência de Pζ(k) com k.

Em qualquer modelo viável, a pressão de criação deve diminuir com o
tempo de modo que na era da radiação ela chegue a zero. Como sabemos
que a in�ação primordial deve começar muito próxima a de Sitter, isto implica
que nosso wef deve variar de wef ≈ −1 a wef = 1/3 à medida que o fator de
escala cresce. À medida que wef aumenta, o numerador da expressão acima
diminui e o denominador aumenta. Quanto à temperatura, é natural de se
esperar que ela decresça, mesmo que lentamente, pois o universo está em
expansão acelerada e o efeito da criação de partículas na temperatura não
deve ser maior que o efeito da própria expansão. Ou seja, Pζ diminui com
o fator de escala e consequentemente com k, implicando em um red tilt, o
que está em acordo com as previsões observacionais. Se a taxa de criação de
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partículas for tal que o valor de Γ/3H seja bem próximo de 1 durante um
su�ciente período de in�ação, teremos um espectro aproximadamente plano
como previsto observacionalmente.

Como vimos anteriormente, existe também uma outra classe de parâme-

tros, associada à presença de não-gaussianidades, que é bastante utilizada

para vincular e validar modelos. Analisaremos estes parâmetros a seguir.

- Os Parâmetros de Não-Gaussianidade em umModelo

Geral de Criação

Vamos então estimar os parâmetros de não-gaussianidade para o caso de
um modelo geral de criação.

Na equação (9.26) de fNL, ao substituirmos as expressões ρ = gT 4, ρ′ =
4gT 3 e ρ′′ = 12gT 2, obtemos

fNL = 0.26
1

γA
≈ 0.038

1

A
. (10.10)

Havíamos obtido 1/A = 8(1+wef )/(3−wef ). Como no caso geral w varia
no máximo de -1 a 1/3, vemos que fNL varia de 0 a no máximo 0.152, o que
está de acordo com os vínculos observacionais [184] [185].

Para encontrarmos a função de quatro pontos, ou o parâmetro gNL, usa-
mos as mesmas expressões para ρ, ρ′, ρ′′ e agora também ρ′′′ = 24gT na
equação (9.27). Fazendo isto obtemos

gNL = 0.00257
1

A2
, (10.11)

o que está obviamente dentro dos vínculos observacionais. Ou seja, como
os parâmetros fNL e gNL são muito pequenos, concluímos que o modelo não
prevê não-gaussianidades que possam ser atualmente observadas.

A seguir, consideraremos o caso particular do modelo in�acionário de
criação descrito no capítulo 7.1.

10.2 O Espectro de Potência em um Modelo

Particular de Criação

No capítulo 7.1, apresentamos um modelo in�acionário de criação gravita-
cional de partículas em que a taxa de produção de partículas no universo
primordial é fenomenologicamente descrita pela expressão
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Γ

3H
=

(
H

HI

)n
. (10.12)

Usando a equação de conservação do modelo, vimos que isto implica em
um parâmetro de Hubble que evolui da seguinte forma,

H =
HI

(1 +Da2n)1/n
, (10.13)

onde D é uma constante de integração positiva. Olhando para a equação
acima, é possível ver que durante a in�ação, quando o fator de escala é
muito pequeno, H ≈ HI . A partir do momento em que o segundo termo
no denominador se torna da mesma ordem do primeiro, a razão H/HI já
não é mais aproximadamente 1. Podemos então considerar que este limite
representa a transição entre o regime da in�ação e a era da radiação. Deste
modo, quando a = a∗ no início da era da radiação, Da2n

∗ ≈ 1. Portanto,
D ≈ a−2n

∗ .
Neste modelo a equação de estado efetiva é dada por

wef =
1

3
− 4

3

Γ

3H

=
1

3
− 4

3

(
H

HI

)n
. (10.14)

Podemos então substituir o wef deste modelo na equação geral (10.9) de
Pζ . Fazendo isto obtemos

Pζ = cte2

[
2 + (H/HI)

n

1− (H/HI)n

]2

T 3, (10.15)

onde cte2 = 4
√

3γ2√g/64M3
p .

Como ρ = gT 4 = 3H2m2
p/8π, vemos que T 3 = (3m2

p/g8π)3/4H3/2. Então,
podemos escrever a expressão acima em função de H da seguinte forma

Pζ = cte3

[
2 + (H/HI)

n

1− (H/HI)n

]2

H3/2, (10.16)

onde cte3 = 4
√

3γ2√g(3m2
p/g8π)3/4/64M3

p .
Vemos que o espectro de potências deste modelo não corresponde a uma

simples lei de potência do tipo Pζ = AS(k/k∗)
ns−1, como nos modelos usuais

de in�ação. Embora a forma que obtivemos para o espectro não corresponda
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à forma usual, veremos a seguir que o mesmo possui a dependência correta em
k e pode ser aproximado por uma lei de potências para a região de interesse.

- A Dependência do Espectro com a Escala da Pertur-

bação

A partir da equação (10.16), podemos calcular a variação de Pζ com k
através da seguinte expressão,

∂ lnPζ
∂ ln k

=
∂ lnPζ
∂ lnH

∂ lnH

∂ ln k
=
∂Pζ
∂H

∂H

∂(aH)

H

Pζ

(aH)

H
, (10.17)

onde consideramos na última igualdade k = aH, que é a condição de cruza-
mento do horizonte.

Nos modelos usuais de in�ação, a derivada ∂lnPζ/∂lnk é denotada por
ns−1, sendo ns o índice espectral. Por simplicidade usaremos a mesma nota-
ção. Como H ≈ cte na in�ação, podemos usar a aproximação ∂H/∂(aH) =
(∂H/∂a)H−1 na equação acima e, assim, �camos com a seguinte expressão,

ns − 1 =
∂ lnPζ
∂ ln k

=
∂Pζ
∂H

∂H

∂a

a

Pζ
. (10.18)

Calculando primeiramente a derivada da expressão (10.16) de Pζ com relação
a H obtemos

∂Pζ
∂H

=
3

2
cte3H

1/2

[
2 + (H/HI)

n

1− (H/HI)n

]2

+ 2 cte3H
3/2

[
2 + (H/HI)

n

1− (H/HI)n

]
.

[
n(Hn−1/Hn

I )

1− (H/HI)n
+

(2 + (H/HI)
n)n (Hn−1/Hn

I )

(1− (H/HI)n)2

]
.

(10.19)

Partindo da equação de conservação para este modelo, temos a seguinte
equação para o parâmetro de Hubble Ḣ = −2H2(1−H/HI). Como ∂H/∂a =
Ḣ/(aH), podemos encontrar o parâmetro ns multiplicando a equação (10.19)
por Ḣ/(HPζ) e substituindo nela a expressão de Ḣ. Assim obtemos

ns−1 = −2+2

(
H

HI

)n
−4n

[
1− (H/HI)

n

2 + (H/HI)n

](
H

HI

)n
−4n

(
H

HI

)n
. (10.20)

Para encontrarmos o valor do parâmetro n do modelo que gera um espec-
tro com ns − 1 = −0.04 como indicado pelas observações, vamos aproximar
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a equação acima levando em conta que H ≈ HI quando os modos saem do
horizonte, o que ocorre na in�ação. Ao fazer isto obtemos

ns − 1 = −4n. (10.21)

Portanto, podemos estimar o parâmetro n como sendo n = 0.01.
Para veri�car a precisão da aproximação usada, H ≈ HI , vamos analisar

como a expressão (10.20) varia quando variamos a razão H/HI com relação
a 1. Ao substituirmos, como exemplo, na equação (10.20), H/HI = 1/2, ob-
temos para o parâmetro n o valor 0.0075 (considerando que ns−1 = −0.04).
Como o espectro é calculado no momento em que os modos saem do hori-
zonte, o que ocorre ainda durante a in�ação, espera-se que H/HI > 1/2 neste
momento. Isto mostra que o resultado n = 0.01 é uma boa aproximação.

Deste modo, a taxa de criação do nosso modelo será dada por Γ/3H =
(H/HI)

0.01. Neste caso, o parâmetro de Hubble varia de acordo com a ex-
pressão,

H =
HI

(1 +Da0.02)100
. (10.22)

Substituindo H(a) na expressão de Γ/3H obtemos

Γ

3H
=

1

(1 +Da0.02)
. (10.23)

De acordo com a expressão acima, Γ/3H inicia igual a 1 e a partir dai
descresce à medida que o fator de escala cresce, como esperado.

- A Amplitude do Espectro

Tendo estimado um valor para o parâmetro n, vamos então usá-lo para
calcular a amplitude do espectro de potência. Vimos que nosso espectro é
dado por

Pζ =
4
√

3γ2√g
64

(
T

Mp

)3 [
2 + (H/HI)

0.01

1− (H/HI)0.01

]2

. (10.24)

Vamos estimar primeiramente o termo entre chaves, que pode ser escrito
como [

2 + (1 +Da0.02)−1

1− (1 +Da0.02)−1

]2

=

[
3

Da0.02
+ 2

]2

. (10.25)
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Como na in�ação a → 0, vemos que o primeiro termo é bem maior que
o segundo, então podemos aproximar a expressão anterior por 9/(D2a0.04).
Usando a condição de cruzamento do horizonte e considerando H ≈ HI , a
mesma pode ser escrita como (9H0.04

I k−0.04)/D2.
Vamos agora estimar a constante D. Vimos que D ≈ a−2n

∗ = a−0.02
∗ .

Como o redshift z no início da era da radiação é aproximadamente 1031,
então o fator de escala a∗ é da ordem de 10−31 nesta época. Sendo assim,
podemos estimar D ≈ 4. Substituindo estes valores na expressão obtida para
o espectro encontramos

Pζ =
4
√

3γ2√g
64

(
T

Mp

)3
9H0.04

I

16
k−0.04

≈
43
√
g

16

(
TI
Mp

)3

k−0.04

≈ 2.6

(
TI
Mp

)3

k−0.04,

onde foi usada a aproximação T ≈ TI . Na última linha consideramos g como
sendo da ordem de 1.

Para termos uma estimativa dos parâmetros acima, vamos comparar o
espectro obtido após todas as aproximações com o caso simples da lei de
potência em que Pζ = As(k/k∗)

ns−1. A escala pivot considerada por Planck
corresponde a k∗ = 0.05Mpc−1 [151], que pode ser escrita em função da massa
de Planck como (0.05× 10−57Mp). As observações indicaram uma amplitude
As da ordem de As ≈ 10−9. É fácil veri�car que nossa amplitude será desta
ordem se TI/Mp ≈ 10−3, o que implica em uma temperatura na in�ação da
ordem da escala da Grande Uni�cação.

- A Razão Tensorial Escalar

Usando então a razão TI/Mp ≈ 10−3, podemos estimar o parâmetro rt/s,
que corresponde à razão tensorial escalar. Usando a equação (9.28), podemos
calcular a amplitude do espectro tensorial como sendo

Ph ≈
gT 4

I

118M4
p

≈ 10−2

(
TI
Mp

)4

. (10.26)

Considerando que As ≈ 10−9, obtemos então para a razão tensorial-
escalar
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rt/s = 107

(
TI
Mp

)4

. (10.27)

Portanto, para TI/Mp ≈ 10−3, obtemos que rt/s ≈ 10−5. Este pode ser
considerado um bom resultado visto que as observações recentes estabelecem
para o cenário cosmológico padrão o limite rt/s < 0.11.

Concluímos, portanto, que o modelo de criação adiabática de partículas
pode ser capaz de gerar um cenário in�acionário em concordância com as ob-
servações para determinados valores dos seus parâmetros livres. Sugerimos
que este modelo merece então uma investigação mais profunda abrangendo a
evolução completa das perturbações cosmológicas partindo do espectro pri-
mordial aqui calculado.

No caso dos modelos de viscosidade volumar, as �utuações de densidade
que deram origem às estruturas do universo também são de origem predomi-
nantemente térmica, como nos modelos de criação de partículas. No entanto,
nos modelos de viscosidade volumar a lei de Ste�an-Boltzmann é alterada e
a relação ρ ∝ T 4 não é uma boa aproximação.

Apesar do modelo de decaimento do vácuo ser capaz de reproduzir a
mesma equação de estado efetiva que o modelo de criação de partículas aqui
considerado, este modelo apresenta um comportamento diferente a nível per-
turbativo, visto que neste caso existem duas componentes importantes na
in�ação, o vácuo e a radiação. As perturbações primordiais e o espectro de
potências no modelo de decaimento do vácuo foram analisadas na ref. [186].
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Capítulo 11

Conclusão

Neste trabalho, foi feita uma revisão do Modelo Padrão atual da cosmologia e
do cenário in�acionário, visando compreender os progressos e as di�culdades
associadas aos mesmos. Neste contexto, analisamos a abordagem da teoria
efetiva de campo para a in�ação e mostramos que, ao se quebrar certas
suposições usualmente assumidas nestes modelos, é possível se obter previsões
interessantes para o espectro de potências que são distintas dos modelos
in�acionários usuais.

Após analisarmos o cenário cosmológico padrão, propusemos três cená-
rios alternativos para a aceleração cósmica. Os mesmos correspondem aos
modelos de criação gravitacional de partículas, decaimento do vácuo e vis-
cosidade volumar. Estes modelos dispensam a necessidade de componentes
desconhecidas para acelerar o universo como a energia escura e o campo
in�aton. Considera-se, alternativamente, o papel de processos que ocorrem
fora de equilíbrio termodinâmico no espaço-tempo. Tais processos, sob certas
condições, poderiam gerar a pressão efetiva negativa necessária para a acele-
ração cósmica. Mostramos que uma descrição uni�cada para a aceleração do
universo é possível através destes modelos. Esta descrição baseia-se em um
único mecanismo fundamental como sendo o propulsor tanto da aceleração
primordial quanto da aceleração recente do universo.

Vimos que estes modelos trazem uma série de avanços conceituais com
relação ao Modelo Padrão e aos modelos in�acionários mais conhecidos. Os
problemas da constante cosmológica e da coincidência são evitados e, além
disto, estes modelos fornecem uma descrição mais complexa para o �uido
cósmico ao levar em conta suas características internas.

Analisamos a correspondência entre os três modelos do ponto de vista
dinâmico e termodinâmico. Vimos que os três são dinamicamente equiva-
lentes a nível de background. Do ponto de vista termodinâmico, os modelos
de decaimento e criação gravitacional de partículas podem ser equivalentes
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entre si, porém distintos do modelo de viscosidade. Vimos também que os
três modelos são capazes de reproduzir a dinâmica de background do Modelo
Padrão que possui grande concordância com os dados observacionais.

Obtivemos vínculos para os parâmetros dos três modelos a partir de uma
comparação de suas previsões com os dados observacionais. Nos modelos de
criação de partículas, vínculos também foram obtidos a partir da Segunda
Lei Generalizada da Termodinâmica.

Investigamos o processo de formação das sementes das estruturas do uni-
verso nos modelos de criação gravitacional de partículas. Vimos que nestes
modelos as estruturas cosmológicas se originam predominantemente a partir
de �utuações térmicas estatísticas no universo primordial, ao contrário dos
modelos tradicionais em que a formação de estruturas se dá a partir de �u-
tuações quânticas. Já os modelos de decaimento do vácuo descrevem uma
dinâmica diferente para as perturbações primordiais visto que neste cenário
existem duas componentes predominantes no universo antigo.

Mostramos que os três modelos podem fornecer previsões em acordo com
as observações atuais para o universo recente. Para o universo primordial,
obtivemos indicativos de que o modelo de criação de partículas gera previsões
consistentes, o que sugere a importância de uma investigação mais profunda
referente à evolução posterior das perturbações. Acreditamos, portanto, que
os próximos passos no desenvolvimento destes modelos devem incluir: i)
Uma análise mais profunda do comportamento da perturbação da pressão
efetiva δpeff (ou da velocidade do som efetiva). ii) A evolução completa
das perturbações, partindo do espectro de potências primordial calculado
neste trabalho. iii) Uma investigação mais detalhada dos limites em que a
suposição de perturbações adiabáticas (ζ se conservando fora do horizonte)
é apropriada.

Sugerimos, por �m, que os três modelos analisados nesta tese podem
representar alternativas viáveis ao Modelo Padrão da Cosmologia possuindo
diversas vantagens conceituais em relação a este.



Apêndice A

Representação de Campo Escalar

Os três modelos aqui estudados podem ser representados, na linguagem de
teoria de campos, em termos da dinâmica de um campo escalar φ.

Para toda lei de decaimento do vácuo, existe um potencial de campo
escalar que produz uma dinâmica equivalente para o universo. O mesmo se
aplica aos modelos de criação gravitacional de partículas e viscosidade.

Podemos destacar algumas das motivações para estabelecer esta corres-
pondência:

• Os campos escalares são previstos por modelos de partículas elementa-
res, bem como pelas teorias de Grande Uni�cação.

• Resolver as equações dinâmicas de um campo escalar pode ser bastante
complicado em certos casos.

• A versão de campo escalar permite obter uma lagrangeana associada
ao modelo em consideração, o que pode levar a uma formulação mais
fundamental para o mesmo.

Para representar os modelos aqui estudados em termos de um campo
escalar, vamos substituir os termos de pressão total e densidade total nas
equações de Friedmann, (2.11) e (2.12), pelas expressões correspondentes do
campo escalar

ρtot → ρφ =
φ̇2

2
+ V (φ), ptot → pφ =

φ̇2

2
− V (φ) . (A.1)

As equações de Friedmann para estas expressões podem ser combinadas
e escritas em função de H e Ḣ da seguinte forma,

φ̇2 = −2Ḣ , (A.2)
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V = 3H2

(
1 +

Ḣ

3H2

)
= 3H2

(
1 +

aH
′

3H

)
, (A.3)

onde Ḣ = aHH
′
, sendo que a aspa denota derivada com relação ao fator de

escala. Considerando que dt = da/aH, a eq. (A.2) pode ser integrada de
modo que obtemos

φ =

∫ (
−2Ḣ

)1/2

dt =

∫ (
−2H

′

aH

)1/2

da . (A.4)

A.0.1 O potencial escalar para o Modelo 1

No caso do Modelo 1, apresentado no capítulo 5, a evolução do parâmetro de
Hubble é dada pela eq.(5.4). Inserindo a eq. (5.4), bem como sua derivada
H

′
, na Eq. (A.4) e integrando obtemos

φ(a) =
1√
3

ln

[√
A1a3 + 1− 1√
A1a3 + 1 + 1

]
, (A.5)

onde A1 = (1− Ω̃m1)/Ω̃m1. Usando as eqs. (5.4) e (A.3), é possível mostrar
que

V (a) = 3H2
0

[
1− Ω̃m1 +

Ω̃m1

2
a−3

]
. (A.6)

Finalmente, combinando as eqs. (A.5) e (A.6), encontramos que o Modelo 1
pode ser descrito por um campo escalar cujo potencial é descrito por

V (φ) = B[3 + cosh(
√

3φ)] , (A.7)

onde B = 3H2
0 (1− Ω̃m1)/4.

A.0.2 O potencial escalar para o Modelo 2

Inserindo a equação (5.6) do parâmetro de Hubble para o Modelo 2, bem
como sua derivada H

′
, na eq. (A.4) e integrando obtemos

φ(a) =
2√
3

ln

[√
A2a3/2 + 1− 1√
A2a3/2 + 1 + 1

]
, (A.8)

onde A2 = (1− Ω̃m2)/Ω̃m2. A partir das eqs. (5.6) e (A.3) é possível mostrar
que

V (a) = C +
3C

2A2

a−3/2 +
C

2A2
2a
−3 , (A.9)
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onde C = 3H2
0 (1 − Ω̃m2)2. Finalmente, combinando as eqs. (A.8) e (A.9)

encontramos

V (φ) =
C

8
{2 + 6 cosh(

√
3φ/2) + [cosh(

√
3φ/2)− 1]2} , (A.10)

que é o potencial do campo escalar associado ao Modelo 2.

A.0.3 O potencial escalar para o Modelo 3

Similarmente aos casos anteriores, podemos combinar as eqs. (5.8) e (A.4)
para o Modelo 3 resultando em

φ(a) =
1√

3− β
ln

[√
A3a3−β + 1− 1√
A3a3−β + 1 + 1

]
, (A.11)

onde A3 = (1− Ω̃m3)/Ω̃m3. Inserindo a eq. (5.8) e sua derivada na eq. (A.3),
obtemos o potencial em termos do fator de escala

V (a) = 3H2
0

[
1− Ω̃m3 +

Ω̃m3

2
(1 + β/3)aβ−3

]
. (A.12)

Finalmente, comparando as equações acima encontramos

V (φ) = D + E cosh(
√

3− βφ) , (A.13)

onde D = 3H2
0 (1− Ω̃m3)(3 − β/3)/4 e E = 3H2

0 (1− Ω̃m3)(3 + β/3)/4. É
possível veri�car que se β = 0 a eq. acima se reduz á eq. (A.7).

Concluímos, portanto, que a dinâmica de background gerada pelos mo-
delos abordados no capítulo 5 pode ser reproduzida por modelos de campo
escalar cujos potenciais são descritos por funções hiperbólicas.
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Apêndice B

String Gas Cosmology

O String Gas Cosmology (SGC) é um paradigma para o universo primordial
inicialmente proposto em [187] para explicar porque apenas 3 das 9 dimen-
sões espaciais da teoria de cordas podem ser macroscópicas. Este modelo,
baseado na termodinâmica de cordas fechadas heteróticas, busca descrever
uma evolução para o universo primordial baseada nos princípios fundamen-
tais da teoria de cordas, entre eles a dualidade T, de acordo com a qual a
física em um torus de raio R é equivalente à física em um torus de raio l2s/R
(onde ls é o comprimento da corda).

No modelo String Gas Cosmology, como o número de estados oscilatórios
das cordas cresce exponencialmente com a energia, existe uma temperatura
limite para o gás de cordas em equilíbrio térmico que é a temperatura de
Hagedorn. A temperaturas próximas à temperatura de Hagedorn todos os
modos das cordas são excitados. Como a temperatura de uma caixa de cordas
fechadas é independente do raio da caixa para um largo intervalo de valores
do raio (assumindo que a entropia do sistema é alta), é razoável assumir que
a fase de Hagedorn é quase-estática.

A temperatura de um gás de cordas fechadas em um background toroidal
em função do raio R do toróide está plotada na �gura abaixo.
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Figura B.1: A temperatura T de um gás de cordas fechadas em um back-
ground toroidal em função do raio R do toróide. [188]

O fato de que a temperatura sempre se mantém �nita indica que a sin-
gularidade cosmológica também pode ser resolvida nestes cenários.

Eventualmente, o decaimento dos modos winding das cordas permite que
três dimensões espaciais se tornem macroscópicas enquanto as outras con-
tinuam para sempre con�nadas nestes modos. O decaimento dos modos
winding em modos de loops levam a uma transição suave da fase Hagedorn
quase-estática para a era da radiação. Supondo que a temperatura de Hage-
dorn seja similar à temperatura da fase pós in�acionária (comparável à es-
cala da Grande Uni�cação) então a evolução dinâmica na fase pós-Hagedorn
é idêntica à da fase pós-reaquecimento nos modelos de in�ação.

Na �gura a seguir, vemos um esquema da dinâmica do espaço-tempo nos
modelos de String Gas.
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Figura B.2: Um esquema da dinâmica espaço-temporal no String Gas Cos-
mology. O eixo vertical representa o tempo e o horizontal a distância física.
O tempo tR corresponde à transição entre a fase de Hagedorn e a fase da radi-
ação. A curva azul (H−1) indica o raio de Hubble e as duas curvas vermelhas,
que são verticais durante a fase de Hagedorn, correspondem ao comprimento
de onda físico dos modos de �utuação denominadas k1 e k2 [188].

Podemos ver pela �gura que para t < tR o universo encontra-se na fase
estática de Hagedorn e o raio de Hubble é in�nito. Em t = tR, o fator de
escala começa a crescer e a partir daí o raio de Hubble no referencial de
Einstein se expande como no Modelo Padrão. Podemos concluir, a partir do
esquema acima, que este modelo também é capaz de resolver os problemas
que os outros modelos in�acionários se propoem a resolver, como o problema
do horizonte, a explicação para a origem causal das estruturas cosmológicas,
entre outros. Além disto, como neste cenário as escalas cosmológicas hoje
observadas nunca tiveram um comprimento de onda próximo à escala de
Planck, o problema trans-Planckiano para as perturbações cosmológicas é
evitado [189] [190].

Em [191] [192], foi encontrado que �utuações térmicas das cordas na fase
de Hagedorn induzem um espectro escalar para perturbações de curvatura
quase invariante de escala, com um índice espectral levemente vermelho, e
um espectro de ondas gravitacionais com um pequeno blue tilt [188]. Esta
última previsão é uma das previsões mais importantes do modelo de String
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Gas visto que permite distinguir o mesmo dos modelos de in�ação. Além
da previsão de um espectro tensorial azul, estes modelos prevêem também
uma relação entre os índices espectrais dada por nT ≈ −(ns − 1) [188],
que não é satisfeita nos modelos usuais de in�ação. Esta relação também
constitui uma importante característica deste modelo que permite que ele
seja distinguido observacionalmente da maioria dos modelos conhecidos para
o universo primordial.
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