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Resumo

Nos encontramos atualmente em um momento histérico privilegiado para a
cosmologia. Na tltima década, o grande progresso das observagoes astrono-
micas permitiu que diversos modelos cosmologicos pudessem ser testados com
grande precisao. Com uma série de resultados observacionais sendo lanca-
dos, obtivemos informagoes valiosas sobre a expansao acelerada do universo
primitivo e a expansao acelerada atual.

Em sua esséncia, tais esforcos observacionais buscam esclarecer algumas
das questoes mais fundamentais da cosmologia moderna, como a compreen-
sao do mecanismo responséavel pela aceleracao do universo. Muitas perguntas
estdo associadas a tal questdo, entre elas podemos citar: (i) Qual a natureza
da substancia, ou qual a origem do fenémeno, que esta atualmente acelerando
a expansao do universo? (ii) Por qual razao esta expansao acelerada iniciou
recentemente (nos tltimos 5-8 bilhdes de anos), e nao no passado distante ou
no futuro remoto? (iii) Qual a variante inflacionaria que operou no universo
primitivo e qual sua conexao (se existe alguma) com o atual estagio acelerado
do universo?

Em nossa compreensao, as indagacoes acima fazem parte dos maiores pro-
blemas da cosmologia atual. A ampla abrangéncia de tais questoes significa
que avancos em qualquer uma delas terd implicagoes teéricas e observacionais
em outras areas envolvendo a interface formada pela Astronomia, Cosmologia
e Fisica de Particulas. As trés questoes acima estao diretamente conectadas
com os objetivos do presente trabalho. Acreditamos também que seu estudo
pode langar alguma luz e melhorar nossa compreensao sobre questoes mais
fundamentais da fisica.

Neste contexto, analisamos diferentes modelos cosmologicos para a acele-
racao do universo a luz dos mais recentes dados observacionais de supernovas,
radiacao cosmica de fundo e oscilagoes actuisticas de barions.

Propomos, aqui, alternativas ao Modelo Padrao da Cosmologia, ao mos-
trar que diversos fenomenos fisicos podem estar associados a expansao do
universo, gerando a aceleracao observada sem a necessidade de se introduzir
componentes desconhecidas no universo além da matéria escura.
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Além de desenvolver uma revisao critica do Modelo Padrao, discutimos
nesta tese especialmente trés modelos para a expansao acelerada do uni-
verso. O primeiro deles considera a aceleracao cosmica como sendo efeito da
criagao quantica de particulas de matéria escura, ou radiacao, as custas do
campo gravitacional variando continuamente com a expansao do universo. O
segundo modelo considera o processo de viscosidade volumar no fluido cos-
mologico como sendo responsavel pela aceleracao. Esta viscosidade volumar
se deve & perda de equilibrio termodinamico durante a expansao do fluido. O
terceiro modelo, o modelo de decaimento do vacuo, considera como responsa-
vel pela aceleracao uma energia do vacuo que decai nas outras componentes
cOsmicas continuamente ao longo do tempo.

Analisamos as relacOes existentes entre estes trés modelos, além do Mo-
delo Padrao, e as condicoes sob as quais os mesmos fornecem uma dinamica
equivalente para o universo. Também obtemos interessantes vinculos para os
parametros destes modelos ao fazermos, além de uma analise observacional,
uma andlise tedrica baseada na dinamica e na termodinamica associada a
cada cendario. Sugerimos que estes cenarios sao capazes de aliviar diversos
problemas conceituais do Modelo Padrao da Cosmologia.

Numa segunda etapa, mostramos que os processos fisicos descritos acima
podem ser responsaveis tanto pela aceleracao césmica atual, quanto pela
aceleracao primordial que se supoe ter ocorrido no universo antigo. Tal
abordagem fornece uma descricao unificada para a evolucao cosmologica.
Acreditamos ser de fundamental importancia que o processo que dirigiu a
aceleracao primordial possa ser relacionado com o mesmo responsavel pela
atual fase de expansao acelerada do universo. Além disto, é possivel que as
dificuldades que atingem a interface que une a Relatividade Geral, a Cosmo-
logia e a Teoria Quantica de Campos possam ser amenizadas através de uma
melhor compreensao do processo de criacao gravitacional de particulas, do
decaimento do vacuo e suas conexoes com o contexto da inflacao primordial.

Para comparar e vincular os modelos propostos, analisamos também o
processo de formacao das estruturas cosmoldgicas nestes modelos. Introdu-
zimos a teoria de perturbacoes cosmologicas, primeiramente, através de uma
anélise do Modelo Padrao. A partir dai, apresentamos uma abordagem mais
geral para o tratamento das perturbagoes chamada teoria de campo efetiva
para a inflacao. Neste contexto, analisamos quais previsoes sao obtidas ao se
quebrar algumas suposi¢oes usualmente assumidas nestes modelos.

Por fim, através de uma anélise do espectro de poténcias primordial do
modelo de criagao gravitacional de particulas, mostramos, pela primeira vez,
que o mesmo pode ser capaz de gerar um cenério inflacionario para o universo
primitivo em concordancia com as observacoes atuais.



Abstract

We are currently in a privileged moment for cosmology. In the last decade,
the great progress of astronomical observations made possible that several
cosmological models could be tested with great accuracy. With several obser-
vational data being released we obtained valuable information concerning the
primordial acceleration of the universe and the recent accelerated expansion.

Essentially, these observational efforts aim to clarify some of the most
fundamental questions of modern cosmology, which concerns the understan-
ding of the mechanism responsible for the acceleration of the universe. Many
questions are related to this issue, among them we can mention: (i) What
is the nature of the substance, or what is the origin of the phenomenom,
responsible for the acceleration of the expansion? (ii) For which reason the
accelerated expansion started recently (within the last 5-8 billion years), and
not in the distant past or distant future? (iii) What is the inflationary vari-
ant that operated in the early universe, and what is its connection (if there
is any) with the current accelerated stage of the universe?

In our understanding the above questions are part of the biggest problems
in modern cosmology. The interconnection between these issues means that
advances in any of them will have theoretical and observational implications
in other areas involving the interface formed by Astronomy, Cosmology and
Particle Physics. The three questions above are directly connected to the
objectives of this work. We also belive that their study can shed some light
in our understanding of the remaining issues.

In this context, we analyze different cosmological models for the accelera-
tion of the universe in the light of the latest data released from supernovae,
cosmic microwave background and baryon acoustic oscillations, comparing
the results with the ones concerning the Standard Model of Cosmology.

We propose alternatives to the Standard Model of Cosmology, by showing
that several physical phenomena can be associated to the expansion of the
universe, producing the observed acceleration without the need to introduce
unknown components in the universe besides the dark matter.

In addition to developing a critical revision of the Standard Model, we
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discuss in this thesis especially three models for the accelerated expansion of
the universe. The first one considers the cosmic acceleration as an effect of
the creation of dark matter particles, or radiation, at the expense of the gra-
vitational field varying continuously with the expansion of the universe. The
second model considers the process of bulk viscosity in the cosmological fluid
as being responsible for the acceleration of the universe. This bulk viscosity
is due to the loss of local thermodynamic equilibrium during the expansion
of the fluid. The third model, the vacuum decaying model, considers as res-
ponsible for the acceleration, a vacuum energy which decays continuously
into other cosmological components.

We analyze the relations between these three models, and also the Stan-
dard Model, and the conditions under which they provide an equivalent dyna-
mic to the universe. We also obtain interesting constraints for the parameters
of these models by making, besides an observacional analysis, a theoretical
analysis based on the dynamics and thermodynamics associated to each sce-
nario. We will show that these alternative scenarios are able to alleviate
several theoretical problems of the Standard Cosmological Model.

In a second part, we show that the physical phenomena described above
may be responsible for the recent cosmic acceleration, as well as for the pri-
mordial acceleration that is supposed to have occurred in the early universe.
Such approach provides an unified description for the cosmological history.
We belive it is of great importance that the process responsible for inflation
can be identified with the one responsible for the current phase of accelerated
expansion of the universe. Moreover, it is quite possible that the difficul-
ties concerning the interface connecting General Relativity, Cosmology and
Quantum Field Theory can be reduced through a better understanding of
the gravitational particle creation process, the decay of the vacuum and its
connections with the primordial inflationary context.

In order to constrain and compare the models proposed here, we also
analyse the process of cosmological structure formation in these models. We
firstly introduce the perturbation theory through an analysis of the Standard
Model. Then we introduce a more general approach to the treatment of
cosmological perturbations which is called effective field theory of inflation.
In this context, we analyse which predictions are obtained when we break
some of the assumptions usually imposed in these models.

Finally, through an analysis of the primordial power spectrum of the
gravitational particles creation model, we show, for the first time, that this
model is able to describe an inflationary scenario for the early universe totally
in agreement with current observations.
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Parte 1

A Expansao Acelerada no
Universo Recente






Capitulo 1

Introducao

Com a Teoria da Relatividade Geral, formulada por Einstein em 1915, tornou-
se possivel relacionar o contetiido de matéria e energia do espaco-tempo com
sua curvatura, associando propriedades geométricas do espaco-tempo a gra-
vitacao. Juntamente com a suposicao de um espaco homogéneo preenchido
por matéria e radiagao, as equacoes de Einstein descreviam um universo em
expansao desacelerada. Como j4 era intuitivo na época da gravitagao classica
de Newton, a propriedade atrativa da gravitacao fazia a matéria tender ao
colapso desacelerando qualquer possivel expansao inicial.

No entanto, na década de 90 comecaram a surgir evidéncias de que o
universo expandia aceleradamente. Além de representar uma possivel falha
na ja bem estabelecida Teoria da Relatividade Geral (RG), esta aceleracao
ia contra tudo o que se conhecia na época. Ou a RG deveria ser alterada
ou deveria haver um contetido energético desconhecido no universo. Seja
qual for a sua causa, a expansao acelerada do universo constitui até hoje
um grande mistério da cosmologia, cuja explicacao deve levar a uma grande
revolucao nos conceitos da fisica.

Inicialmente ao formular a RG, Einstein esperava obter uma solucao que
descrevesse um universo estatico, de acordo com o que se pensava na época.
Uma das razoes para seu interesse em obter uma solucao estatica para o uni-
verso era que suas equacoes estivessem de acordo com o principio de Mach,
segundo o qual a matéria determina a inércia. Além disto, naquela época,
nao haviam dados experimentais que indicassem um universo em evolucao e
a crenga geral era a de um universo estatico [I]. Einstein entdo modificou
sua equagao, incluindo no lado esquerdo o termo da constante cosmologica.
Desta forma, suas equacoes poderiam ter solucoes estaticas para um universo
preenchido por matéria e radiagao, ja que a nova componente representava
uma contribuicao repulsiva para a gravidade balanceando a atragao gravi-
tacional da matéria. No entanto, a solucao estatica nao era estavel, pois



qualquer pequeno desvio no balanco dos termos da equacao rapidamente
tornava a solucao nao estatica. Além disto, Alexander Friedmann havia en-
contrado solugoes expansionistas das equagoes de Einstein sem a necessidade
do termo da constante cosmologica. Entao, pouco tempo apos a introducao
da constante cosmolégica, Einstein voltou atras na sua proposta e retirou
a constante da equacao. Em 1929, com a descoberta do redshift das ga-
laxias, que aumentava com a distancia, surgiam evidéncias de um universo
em expansao. Nao havendo mais a necessidade de uma solucao estética, a
constante cosmoldgica tornava-se desnecesséaria para este fim.

Para um universo atualmente em expansao, Friedmann e Lemaitre des-
creveram trés possiveis cenarios:

- Um universo cuja densidade de energia seja maior que uma certa densi-
dade critica possui curvatura positiva (universo fechado) e a atual expansao
dara lugar, futuramente, a uma contracao.

- Um universo cuja densidade de energia seja menor que a densidade cri-
tica possui curvatura negativa (universo aberto) e permanecera expandindo
eternamente.

- Um universo cuja densidade de energia tenha exatamente o valor critico
possui curvatura nula (universo plano) e a taxa de expansio chegara a zero,
porém nao havera contragao.

Em 1932, Einstein e de Sitter estudavam o cenario plano em expansao,
assumindo um universo homogéneo e isotropico, sem constante cosmologica e
sem pressao. Este modelo ficou conhecido como modelo de Einstein-de Sitter.
As solucoes expansionistas foram de um modo geral aprimoradas, levando
em conta suas simetrias espaciais, por Robertson e Walker em 1936 [2] 3], no
que ficou conhecido como modelos de Friedmann-Lemaitre-Robertson-Walker
(FLRW).

Apo6s muito tempo abandonada, nos anos 80, uma série de evidéncias in-
diretas apontavam para um possivel retorno da constante cosmoldgica. Ana-
lises das estruturas em larga escala implicavam em uma densidade de matéria
no universo muito abaixo da densidade critica necessaria para se ter um uni-
verso plano, como assumia-se em geral. Entao, era necessaria uma nova
componente para suprir o contetido energético que faltava e, assim, conciliar
os resultados com um universo plano [4].

Na metade dos anos 90, foi descoberta uma correlacao entre o pico da
curva de luz das estrelas supernovas tipo TA e a evolucao temporal da sua
queda subsequente, o que possibilitou o uso destas supernovas como velas
padrao. Com estas velas padrao foi possivel um mapeamento da evolucao
do universo recente. Em 1998, dois grupos que trabalhavam nos projetos
das supernovas concluiram que supernovas mais antigas e distantes pareciam
menos brilhantes do que o previsto em modelos cosmoldgicos de expansao



desacelerada [5] [6]. Tal observacdo apontava portanto para um universo em
aceleracao.

No final da década de 90, j4 havia uma série de dados observacionais da
radiagao cosmica de fundo, estruturas em larga escala, idade do universo, etc,
cuja presenca da constante cosmologica era capaz de explicar. Este resultado
foi rapidamente aceito pela comunidade cientifica. O modelo da constante
cosmologica, fundamentado na Teoria da Relatividade Geral, ficou conhe-
cido como o Modelo Padrao da Cosmologia. Atualmente, existe um grande
conjunto de evidéncias observacionais robustas para a aceleragao cosmica [7]-
[11]. Tendo aceito a idéia da expansao acelerada, a questdo principal passou
a ser as possiveis causas do fenomeno. As possibilidades vao desde a inclusao
de novas fontes de energia com pressao negativa a uma possivel modificacao
da Relatividade Geral de Einstein.

A constante cosmologica é a explicagao mais simples para a aceleragao
cosmica. Originalmente a mesma foi introduzida como uma modificacao ao
termo de curvatura nas equacoes de Einstein. Atualmente porém, é comum
interpreta-la como um contetido energético de densidade constante no uni-
verso.

Embora a simplicidade desta solugao junto com a boa concordancia com
os dados observacionais facam com que o Modelo Padrao seja muito bem
aceito pela comunidade cientifica, diversos problemas conceituais ainda re-
sidem sob este cenario. Um deles, o chamado problema da constante cos-
mologica, refere-se a interpretacao fisica desta constante. Em principio a
mesma, foi naturalmente associada a energia do vicuo, visto que esta ener-
gia é dotada de pressao negativa, causando o efeito de aceleracdo cosmica.
No entanto, ao se calcular a energia de vicuo do universo a partir da teoria
quantica de campos, era obtido um valor para energia do vacuo que era 102!
ordens de magnitude maior que o valor esperado para a constante cosmolo-
gica [12} 13]. Outro problema bem conhecido do Modelo Padrao refere-se ao
questionamento do porqué justamente hoje a densidade associada a constante
cosmoldgia tem a mesma ordem de grandeza da densidade de matéria escura,
sendo que ao longo de toda histéria do universo ambas diferiram por mui-
tas ordens de grandeza. Este é chamado problema da coincidéncia [14]-[17].
Embora possa de fato existir tal coincidéncia, ou até existirem explicacoes
antropicas para a mesma, ainda é necessaria a busca de maiores explicagoes
devido ao alto grau de ajuste fino envolvido.

O Modelo Padrao ACDM é atualmente o modelo mais simples que possui
um alto grau de concordancia com os dados observacionais. Entretanto, as
questoes descritas acima motivaram a busca de cenarios alternativos, que
foram desenvolvidos com o objetivo de melhorar as questoes conceituais re-
lacionadas a aceleracao cosmica.



Além da possibilidade da constante cosmoldgica, pelo que sabemos hoje
¢é possivel explicar a atual expansao acelerada também através das seguintes
possibilidades:

- Mantendo a Teoria da RG e os principios de homogeneidade e isotro-
pia e alterando o conteddo energético do universo de modo a acrescentar
novas componentes com pressao negativa. Podemos citar como exemplo os
modelos de energia escura, em que a mesma ¢ comumente representada por
um campo escalar [18]-[22]; os modelos de decaimento do vacuo, em que a
energia do vacuo decai continuamente nas outras componentes cosmicas [23]-
[49]; os modelos de Gas de Chaplygin, em que se supde a existéncia de uma
componente exédtica no universo com pressao variavel [50]-[54]; entre outros.

- Mantendo a Teoria da RG e o principio de isotropia, mas considerando
cenérios inomogéneos para o universo [55]-[60].

- Alterando a Teoria da RG de Einstein e considerando os chamados
modelos de gravitagdo modificada, como por exemplo os modelos F(R) [61]-
[65]. Também podemos mencionar modelos de brana [66], 67], uma possivel
gravitacao quantica [68], 69, [70], entre outros.

- Mantendo a Teoria da RG e os principios de homogeneidade e isotropia,
porém considerando o possivel efeito cosmologico de certos processos fisicos
de nao-equilibrio termodinamico ocorrendo no universo, que contribuiriam
para uma pressao efetiva negativa. Como exemplo podemos citar os modelos
de criagao gravitacional de particulas [71]-[90], os modelos de viscosidade
volumar [91]-[102], entre outros.

Nesta tltima categoria estd concentrada grande parte do trabalho desta
tese.

Devido as suas grandes implicagoes para a fisica tedrica, a aceleracao cos-
mica moveu importantes esforcos experimentais visando medir a expansao
do universo durante toda sua histéria. Diversos projetos observacionais tém
sido lancados nos tltimos anos e muitos estao sendo projetados para os pro-
ximos [103] [104]. Com os dados obtidos, é possivel testar uma grande classe
de modelos tedricos. Estas informagoes serao essenciais para a compreensao
dos fenomenos fisicos atuantes na evolucao cosmologica.

Neste trabalho buscamos, além de compreender o Modelo Padrao da Cos-
mologia, propor alternativas ao mesmo ao considerar o papel de diferentes
processos fisicos de nao-equilibrio na evolug¢ao do universo, que podem estar
associados ao mecanismo da expansao acelerada. Utilizando os mais recentes
dados observacionais obtemos vinculos para os modelos em questao, estabe-
lecendo uma anélise comparativa entre eles.

Na primeira parte do trabalho, analisamos a expansao acelerada do uni-
verso recente. No capitulo 2, revisaremos as principais caracteristicas do
Modelo Padrao da Cosmologia, e no capitulo 3, apresentaremos algumas al-



ternativas a este cenario. Estabeleceremos, entao, uma analise comparativa
entre todos estes modelos baseada em um estudo tedrico (cap.4) e observa-
cional (cap.5).

Na segunda parte do trabalho, analisaremos a expansao primordial do
universo. Inicialmente, revisaremos o cenéario padrao da inflacao no capitulo
6 e introduziremos uma abordagem mais geral para caracterizar as perturba-
¢oes primordiais, chamada teoria de campo efetiva da inflacao. No capitulo
7, mostraremos como os mesmos fendémenos fisicos, anteriormente associa-
dos a aceleracao recente do universo, podem também ser responsaveis pela
aceleracao primordial, fornecendo um cenario unificado para a evolugao do
universo. No capitulo 8, apresentaremos uma anélise dos modelos de criacao
de particulas baseada na Segunda Lei Generalizada da Termodindmica. E
nos capitulos 9 e 10, analisaremos o processo de formacgao das sementes das
estruturas do universo nestes modelos especificos, a fim de testa-los com os
dados observacionais atuais.

Os resultados originais desta tese se concentram nos capitulos 4, 5, 8 e
10, nas secoes 3.2, 6.5 e 7.3, e também no Apéndice A. Os mesmos podem
ser encontrados nos artigos correspondentes as referéncias [105], [106], [107]
e nos artigos em preparacao [L08] [109].






Capitulo 2

O Modelo Padrao da Cosmologia

A formulacao da Teoria da Relatividade Geral, originada em 1915, estabe-
lece uma relacao entre as propriedades geométricas do espaco-tempo e seu
contetido energético representada pela seguinte equacao,

1
R, — §gWR = 81GT,,. (2.1)

O contelido de matéria e energia do universo é representado nesta equacao
pelo tensor energia-momento 7,,. O lado esquerdo da equagao caracteriza
a geometria do espaco-tempo gerada pelo conteido energético. A mesma é
descrita através da métrica g,,, que é a grandeza associada ao elemento de
linha ds?

ds® = g, dxtdx”, (2.2)

sendo ds? a distancia entre dois eventos no espaco-tempo quadridimensional.

Analisando o lado esquerdo da equacao de Einstein, temos que o primeiro

termo R, denominado tensor de Ricci, pode ser definido em termos dos
simbolos de Christoffel da seguinte forma [110]

Ry =T0,, —T5, s+ 10,00, —To 0. (2.3)

Os simbolos de Christoffel, por sua vez, sao escritos em termos da métrica

como
ov

o g
up = T(QuVﬁ + Gupp — Gupw)- (2.4)

Temos também, no lado esquerdo da equacao, o escalar de curvatura R
que é a quantidade definida pela contracao

R = R = ¢"R,,,. (2.5)

E possivel mostrar que as equacoes de campo de Einstein 1) que gover-
nam o campo gravitacional, satisfazem dois importantes requerimentos: sao
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covariantes e se reduzem a equacao de Poisson abaixo para o potencial New-
toniano ¢ no caso de campos gravitacionais fracos que variam lentamente,

A*¢ = 4nGp = 4nGT™, (2.6)

onde G é a constante de Newton.

Com as equagoes de campo de Einstein, dada uma forma da métrica, é
possivel obter as equacoes que descrevem a dinamica do espago-tempo.

A suposi¢ao, hoje ja bem testada, de que o universo é homogéneo e iso-
tropico em escalas de 10% parsecs ou maiores, levou 4 escolha de um sistema
de coordenadas do espaco-tempo no qual a métrica assume uma forma mais
simples. Considerando estas simetrias, foi possivel construir uma métrica que
possui a mesma forma em qualquer tempo, em qualquer ponto e em qual-
quer direcao do espaco-tempo. A mesma ficou conhecida como a métrica
de Friedmann-Robertson-Walker [2, 3], que descreve o seguinte elemento de
linha

dr?
1— kr2

onde d0? = db? + sen?0dg*. O fator de escala a(t) acima caracteriza o

tamanho das secoOes espaciais, sendo dado, na sua forma normalizada, por
_ R

a(t) = R, » em que Ry correspondente ao tempo presente.

Vemos que, nestas coordenadas comoveis, o universo expande ou contrai
de acordo com R(t), porém as galdxias continuam com coordenadas fixas
r,0,¢. Temos 3 tipos de universo descritos por esta solugao, que correspon-
dem aos parametros de curvatura k iguais a +1,0 e —1. Eles descrevem
respectivamente, um universo com curvatura positiva (com densidade maior
que a densidade critica), um universo plano (com densidade critica) e um
universo com curvatura negativa (com densidade menor que a densidade cri-
tica).

No caso de um universo homogéneo e isotropico, como o proposto por
Friedmann, Robertson e Walker, a fonte de energia na equacao de Einstein
pode ser modelada como um fluido perfeito. O fluido perfeito é um fluido
homogéneo e isotropico sem friccao e conducao de calor, caracterizado por
uma densidade de energia p e uma pressao isotropica p no referencial de

repouso. O tensor energia-momento de tal fluido pode ser escrito como [12]

ds® = —dt* + a*(t)R3| + r2dQ?, (2.7)

wa = (p(t) —|—p(t))UuU,, + p(t)guw (28)
onde U* ¢ a quadrivelocidade do fluido. O sistema de repouso do fluido deve
ser o de um observador comdével na métrica. Neste sistema as componentes
tri-dimensionais da quadrivelocidade sao iguais a zero (u®* =0, o = 1,2, 3).
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Podemos obter, a partir do tensor acima usando a métrica de Friedmann-
Robertson-Walker, a quantidade escalar T', ao contrair os indices com a mé-
trica,

9T, =T =T = p+3p. (2.9)

Para um fluido nao interagente temos que V, T = 0, pela conservacao
do tensor energia-momento. Calculando o divergente obtemos

p+3H(p+p) =0, (2.10)

que ¢ a equagao de conservagao do fluido. A grandeza H acima ¢é o parametro
de Hubble, que descreve a expansao do universo (H = a(t)/a(t)).

Se calcularmos, para a métrica de Friedmann-Robertson-Walker, as com-
ponentes do tensor de Ricci, a curvatura escalar e o trago do tensor energia-
momento e substituirmos na equa¢do de Einstein original (2.1)), obtemos a
seguinte equacao para as componentes de indice i1

a A7 G
-—= - 3 2.11
e para as componentes de indice 00 obtemos
N 2
a 81G k
- =H*=—p— —. 2.12
(%) -t (2.12)

As equagbes acima sdo conhecidas como equagoes de Friedmann [111) 112].
Vemos que nao é necessaria, obrigatoriamente, uma constante cosmologica
para se ter um universo em expansao neste modelo . Porém, vemos pela
equacao que, para que esta expansao seja acelerada, é necessaria a
introducao da constante cosmologica, ou a introducao de uma componente
de matéria que tenha pressao negativa.

De acordo com a equagao , vemos que uma expansao acelerada
ocorre sempre que p + 3p < 0. De acordo com a equacao de estado dos
fluidos postulada como sendo

p = wp, (2.13)
onde w é uma constante fenomenolégica, temos uma expansao acelerada
sempre que w < —%.

No caso de um universo plano (k = 0), dominado por um fluido néo
interagente com w constante, podemos obter, ao integrar as equacoes
e (2.12), solugoes bastantes simples descrevendo a evolugao do universo:

2
314 w)(t —t)’
alt) oc (t — to) 3o, (2.14)

p a73(1+w)’
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onde ty é uma constante. Vemos que as solugoes acima sao validas para

w# —1.

Como exemplo, podemos mencionar as seguintes solucgoes:

e Em um universo dominado por radiacao tal que w = %, vemos que
1
a(t) o (t —tg)2 e paca™™.
e Em um universo dominado por matéria tal que w = 0, vemos que

a(t) o (t —to)3 e p oc a3,

1

e Em um universo dominado por uma energia escura tal que w < —z,

temos uma expansao do tipo poténcia, a(t) o (t — to)P, sendo p > 1.

e No caso da constante cosmologica, w = —1 e p é uma constante.
Resolvendo as equacoes de Friedmann para um universo dominado
pela constante cosmoldgica obtemos uma expansao exponencial do tipo
a(t) oc efl,

Podemos escrever a equagao de Friedmann (2.12)), alternativamente, na
seguinte forma

k
onde §(t) é o parametro de densidade total. O mesmo ¢ dado por
t
mwzﬁ% (2.16)

sendo p. a densidade critica necessaria para termos um universo plano (k =
0). Esta densidade critica pode ser obtida a partir da equagao (2.12)), consi-
derando k = 0 e isolando p:

m®=3ggX

Atualmente, as observacgoes da Radiagao Cosmica de Fundo apontam para
um universo plano, ou seja, com £ = 0. Sabe-se também que a densidade
critica necessaria para um universo plano ¢ da ordem de p, = m2 H§ ~
107*"GeV?. No entanto, apenas 30% deste valor é observado direta ou in-
diretamente em forma de matéria, ~ 25% correspondendo a matéria escura
e ~ 5% a matéria barionica. Porém, vimos que para termos uma expansao
acelerada, de acordo com a teoria da relatividade geral, é necessario introdu-
zirmos uma constante cosmologica, ou um fluido com pressao negativa que
tem o mesmo efeito repulsivo da constante cosmolégica. E possivel que esta
componente responsavel pela expansao do universo possa ser a responsavel

(2.17)
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pelos ~ 70% de energia faltantes no universo. Seja o que for esta componente,
acredita-se que ela deva ter um comportamento nao muito diferente de uma
constante cosmologica, pois os dados atuais sao compativeis com uma energia
escura com equagao de estado constante, w = —1, e densidade de energia da
ordem de 1077GeV*, dando margem, porém, a pequenas variagoes em torno
destes valores.

Com a inclusao do termo da constante cosmologica as equagoes de Fried-
mann se tornam

a 4G A

S e T, 93 2.18

, 5 (p+3p)+ 3, (2.18)
kA

H2:%p——+—. (2.19)

3 a’R? 3
Estas equacgoes, junto com a métrica de Friedman-Robertson-Walker, cons-
tituem a base do Modelo Padrao da Cosmologia. As equagoes acima podem

ser obtidas a partir da equacao de Einstein, que assume sua forma mais geral
com a constante cosmologica

R, — %gwR + Ag = 87GT,,. (2.20)
Vemos que, de fato, o lado esquerdo desta equacao é a forma mais geral
que se pode construir a partir da métrica e sua primeira e segunda deriva-
das, que seja tensorial de ordem 2, local, invariante sob transformacoes de
coordenadas, sem divergéncia e simétrica.

De uma forma mais geral, para uma mistura de constante cosmologica,
matéria ndo relativistica (matéria escura e matéria barionica) e relativistica,
com parametros de densidades atuais g, (2,0 € (2,0, respectivamente, temos
a seguinte evolucao para p

?)Hg agp 3 on) 4
=20 0+, (—) Q, (—) . 2.21
P~ %G [ 40 °F 3md a 30 a ( )
De acordo com a equagao (2.15)) temos que
—k
QAO + QmO + QT‘O + QkO = 1, QkO = 5779 (222)
agHg

Usando as duas equagoes anteriores e a equacao de Friedmann ([2.19),
obtemos, para o parametro de Hubble deste modelo, a seguinte equacao

H? = 12 [QAO + Qo (%)3 + Q0 (%)4 4 (1= Qao — Qoo — Do) (%)2} .
(2.93)
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Esta equacao descreve a dindmica do universo no modelo padrao ACDM.

Atualmente, temos uma grande precisao na medida dos parametros de
densidade acima. A figura2.1]mostra os resultados para estes pardmetros ob-
tidos na ref. [I13] utilizando dados de supernovas (SNe), radiagao cosmica de
fundo (CMB) e oscilagdes actisticas de barions (BAO). Os vinculos se referem
ao parametro de densidade da matéria €2, e ao parametro de densidade da
constante cosmologica 25. Os contornos representam regioes de confianca
estatistica de 68.3%, 95.4% e 99.7%.

No Big

Figura 2.1: Regides de confianga de 68.3%, 95.4% e 99.7%, no plano (€2, Qa),
a partir dos dados de SNe combinados com vinculos de BAO e CMB. No
painel esquerdo sao desconsiderados os erros sistematicos. Os mesmos sao
levados em conta no painel direito.

Vemos que os resultados dao fortes indicacoes de um universo plano.

Também os recentes resultados do satélite Planck impuseram fortes vin-
culos a estes parametros, fornecendo os valores 2, = 0.686 + 0.020 e €, =
0.314 40.028, com 68% de confianca. Apesar dos resultados do Planck, bem
como os outros experimentos anteriores, terem indicado um universo plano
e, de um modo geral, em bom acordo com as previsoes do modelo ACDM,
este modelo ainda enfrenta uma série de desafios, principalmente no campo
teodrico, alguns dos quais serao descritos a seguir.
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2.1 Desafios do Modelo Padrao da Cosmologia

Apesar da boa concordancia com os dados observacionais, o Modelo Padrao
enfrenta sérios desafios no campo teodrico. Entre eles podemos mencionar o
problema da constante cosmolbgica e o problema da coincidéncia.

O chamado "Problema da Constante Cosmologica'se refere & interpreta-
cao fisica da origem de sua energia. Apesar de inicialmente ter sido introdu-
zida no lado esquerdo da equacao de Einstein como um termo geométrico,
a constante cosmologica foi posteriormente interpretada como parte do con-
tetido energético do universo, passando a ser considerada como uma contri-
buicao ao lado direito da equagao. Assim, tornou-se natural a associacao
da constante cosmologica a energia do vacuo. Neste contexto, a constante
cosmologica poderia ter contribuicoes advindas das energias dos campos es-
calares nos minimos de seus potenciais, ou seja, nos seus estados de vacuo,
e também das flutuagoes de vacuo de cada grau de liberdade das teorias de
campos [12].

De acordo com o principio da incerteza, sabemos que o estado de minima
energia de um campo escalar nao tem energia nula. Um campo quantico
pode ser interpretado como um ntmero infinito de osciladores harmonicos no
espaco dos momentos. Portanto, a energia de vacuo de todos estes osciladores
deveria se somar a infinito, pois a mesma pode ser calculada integrando-se
no espago dos momentos todas as contribuigoes [13],

_17 dBk 1/k:2+m2
pvac - 2 (27{')3

0
o0
! 2. /12 2
= — [ dkk"VE* +m?2. (2.24)
A
0

No entanto, podemos renormalizar nossa teoria, descartando todos os
modos correspondentes a altas energias (ou altos momentos), pois nao co-
nhecemos a nossa teoria a partir de uma certa escala de energia, entao nao
sabemos mais se ela é valida nesse dominio [I14]. Ao fazermos um corte no
momento maximo no qual integramos nossa teoria, obtemos uma densidade
de energia do vacuo com a forma [13].

Prac O k2 (2.25)

max-*

No caso das flutuacgoes de vacuo, para que a densidade de energia nao va
para infinito, consideramos um corte na integral na escala de m, = 10"GeV,
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pois supomos que nossa teoria quantica de campos seja valida até esta escala.
Neste caso, obtemos a seguinte contribuicao para a energia de vacuo devido
as flutuacoes quanticas dos campos,

Poac = (10GeV)* ~ 10™GeV?, (2.26)

que & 102! ordens de magnitude maior que o valor observado da constante
cosmologica.

Outras contribuicoes que poderiam ser associadas a uma constante cos-
mologica sao as energias do minimo do potencial dos campos escalares. A
energia potencial V(¢) dos campos é uma grandeza que varia com o tempo
a medida em que o universo passa por transicoes de fase. Quando o universo
se esfria, os campos tendem a assumir seus estados de vacuo com energia
cinética nula, porém, com um potencial cujo minimo nao necessariamente é
igual a zero. E este valor do potencial diferente de zero contribuiria, por-
tanto, para a energia do vacuo. Na auséncia de gravidade poderiamos alterar
esta energia somando e diminuindo termos como quiséssemos, mas com a
gravidade ¢ preciso considerar corretamente cada contribuigao.

Na teoria eletrofraca de Weinberg-Salam a fase da simetria eletrofraca
quebrada difere da fase simétrica por uma energia potencial da ordem de
M., = 200GeV. Acredita-se que o universo esteve na fase simétrica em seus
momentos iniciais quando a temperatura era muito alta. Com a diminuicao
da temperatura o universo sofreu uma mudanca de fase. A contribuicao para
a energia de vacuo é, entao, diferente nas duas fases e podemos estimar a
diferenca entre estas densidades de energia como sendo [12]

pEW . (200GeV )1, (2.27)

J& no caso da QCD por exemplo, acredita-se que a simetria quiral seja

quebrada por um valor esperado de vacuo nao nulo do condensado de quarks

dq. Neste caso, a diferenca de energia entre a fase quebrada e a fase simé-

trica é da ordem de Mgep ~ 0,3GeV. Teremos, assim, uma contribuigao a
densidade de energia do vacuo da ordem de

©OD L (0,3GeV). (2.28)

vac

Além destas contribuicoes poderiamos acrescentar diversas outras contribui-
¢oes advindas de transicoes de fase no universo primordial. No entanto, estas
contribuigoes, assim como as mencionadas acima, possuem todas, isolada-
mente, ordens de magnitude bem superiores ao valor observado da constante
cosmoldgica que & 1074 GeV4.

Nao ha nenhum motivo que proiba que todas estas contribuicoes inde-
pendentes, com sinais positivos e negativos, se somem para gerar o valor
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atualmente observado da constante cosmologica. Entretanto, o ajuste fino
necessario para isto seria enorme. Isto faz com que talvez seja mais natural
pensar que haja algum mecanismo desconhecido que anule estas contribui-
¢oes do que pensar que elas se somam para resultar em um valor tao pequeno
como o observado. Neste caso, a constante cosmologica estaria associada a
uma outra fonte de energia, possivelmente a energia escura.

Outro problema bem conhecido do Modelo Padrao ¢ o problema da coin-
cidéncia. Por muitas décadas tem havido uma busca por explicar a correlacao
entre as propriedades do nosso universo, as massas das particulas elementa-
res, os valores de diversas constantes, e a nossa existéncia. Sabemos que nao
podemos viver em um universo onde a constante de acoplamento do eletro-
magnetismo ou a massa dos elétrons e dos protons fossem apenas um pouco
maiores ou menores que o valor que observamos hoje [I15]. Da mesma forma,
a correlacao entre a nossa existéncia e os valores da constante gravitacional,
da amplitude da quebra espontanea da simetria eletrofraca, da assimetria
relacionada & razao barion/foton, etc, € um fato que requer explicagoes. Os
valores de alguns parametros do nosso universo podem simplesmente ser alea-
torios, ou podem ter apenas ter explicacoes antropicas. No entanto, é possivel
que exista uma explicacao para eles a partir de uma teoria fisica mais fun-
damental. A histoéria tém nos mostrado que, muitas vezes, uma boa teoria
fisica é capaz de fornecer explicacoes para os valores de suas constantes fun-
damentais. Na auséncia de uma resposta, é necessario continuar buscando
solucoes para estes problemas.

Neste mesmo contexto se insere a constante cosmoldgica e este problema
independe da natureza e origem desta constante. A principio, poderia se
esperar para a constante cosmolégica uma energia da ordem da densidade de
Planck. No entanto, os dados observacionais mostram que py ~ 1072°pp;,
o que ¢ da mesma ordem de grandeza da densidade de matéria do universo
hoje. Podemos questionar o porqué de um valor tao pequeno, porém diferente
de zero. Por que pj é aproximadamente trés vezes maior que a densidade
de matéria no universo hoje, sabendo que na época de Planck a densidade
das outras componentes era 10'?° vezes maior que py, e no futuro sera bem
menor? O que ha de tao especial no valor de py, e o que ha de tao especial
no tempo presente?[115] Estas questoes dao origem ao problema da coinci-
déncia [14] - [I7]. Na figura [2.2) podemos ver como evoluem os parametros de
densidade de cada componente do universo ao longo do tempo, o que fornece
uma ilustracao do problema.

Podemos quantificar o problema escrevendo uma expressao fenomenolo-
gica para a razao entre a densidade de energia escura e matéria escura da
seguinte forma, ppr o ppuat, ie. Qpp < Qpyat. Para o caso da
constante cosmologica £ = 3. Quando £ = 0 a razdo ppg/ppym € constante
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e nao ha problema da coincidéncia. Vemos que o parametro & quantifica a
severidade do problema da coincidéncia. Portanto, modelos com um valor de
¢ menor que 3, ainda que nao solucionem o problema da coincidéncia, sao
capazes de amenizé-lo.

Além dos problemas acima mencionados, e da necessidade de se supor
uma fonte de origem desconhecida para gerar a aceleragao recente do uni-
verso, no Modelo Padrao esta fonte nao tem qualquer relacdo com o esté-
gio acelerado primordial do universo. Isto traz, portanto, a necessidade de
se introduzir uma segunda componente energética desconhecida atuando no
universo antigo.

Na tentativa de evitar, ou amenizar, os problemas acima explicados, mo-
delos cosmologicos alternativos tém sido continuamente propostos. Veremos
no capitulo seguinte, abordagens que tratam o fendmeno da aceleracao do
universo de uma forma unificada, descrevendo os dois estagios acelerados
do universo a partir de um tnico mecanismo. Estes modelos possuem tam-
bém a vantagem de dispensar a necessidade de componentes desconhecidas
para acelerar o universo, reduzindo o setor escuro e evitando os problemas
mencionados acima.
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Figura 2.2: Parametros de densidade para a radiagdo (R), matéria nao
relativistica (M) e constante cosmologica (A) em funcao do fator de escala a.
Atualmente Qp9 =2 0.7, Qo = 0.3, Qro = 107°. Estao indicados os fatores de
escala correspondentes a era de Planck (Planck scale), a quebra de simetria
eletrofraca (EW), a nucleossintese do Big Bang (BBN), bem como, o fator
de escala hoje (NOW). (Esta figura foi retirada da referéncia [116])
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Capitulo 3

Alternativas ao Modelo Padrao
da Cosmologia

Sabemos que o fluido cosmolégico é um fluido bastante complexo, composto
pelo menos por barions, radiacao e matéria escura, cuja natureza é ainda
desconhecida. No entanto, tais fluidos sao usualmente tratados como fluidos
perfeitos, como ocorre no Modelo Padrao. Ao se fazer esta simplificacao,
diversos processos internos dos fluidos, que ocorrem no contexto da termodi-
namica fora de equilibrio, sao desprezados. Alguns destes processos, porém,
podem ter implicagoes fundamentais para a cosmologia e acreditamos que
seus efeitos devem ser considerados pelo menos fenomenologicamente.

Consideraremos, aqui, alguns possiveis efeitos de backreaction que podem
ser gerados nas equacoes de Einstein a partir de certos mecanismos que ocor-
rem no contexto da termodinamica fora de equilibrio. Mostraremos que, em
alguns casos, estes efeitos podem ser macroscopicamente descritos em ter-
mos de uma pressao efetiva negativa. Agindo no sentido de contra-balancear
a atracao gravitacional, uma pressao suficientemente negativa geraria um
mecanismo auto sustentavel de aceleracao no espaco-tempo. Portanto, sob
certas condicoes, poderia ser possivel obter uma expansao acelerada sem a
necessidade de se introduzir componentes fisicas desconhecidas no universo.
Deste modo, a aceleracao viria a ocorrer naturalmente a partir de fendbmenos
conhecidos, fornecendo um cenario cosmolégico alternativo passivel de ser
confrontado com as observagoes astronomicas atuais.

Ainda nao esta claro qual o verdadeiro impacto de tais processos na cos-
mologia, visto que os mesmos envolvem teoria quantica de campos fora de
equilibrio em espacos curvos. Como sabemos, tal teoria nao foi desenvolvida
até o presente. No entanto, sabemos que certos processos que de fato ocor-
rem no universo no contexto da termodinamica fora de equilibrio atuam no
sentido de promover uma aceleracao positiva para o mesmo. Deste modo,
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torna-se importante analisar sob quais condigoes estes fenémenos poderiam
ser capazes de gerar a aceleracao observada.

Como veremos na segunda parte desta tese, os modelos aqui propostos,
além de dispensarem a necessidade de componentes cosmologicas desconheci-
das, possuem em comum a vantagem de fornecer uma descri¢cao unificada para
a evolucao do universo ao considerar um mesmo fenémeno como sendo res-
ponsavel tanto pela aceleracao cosmoldgica atual quanto pela aceleragao pri-
mordial do universo. Estes modelos trazem, portanto, uma série de avancos
conceituais com relacao ao MP. Os problemas mencionados anteriormente,
como o problema da constante cosmologica e o problema da coincidéncia, sao
evitados e além disto estes modelos incorporam uma descricao mais complexa
para o fluido césmico ao considerar as suas propriedades internas.

Vamos introduzir primeiramente os trés modelos que trabalharemos aqui,
que sao os modelos de criacao gravitacional de particulas, viscosidade e decai-
mento do vicuo, no contexto da aceleracao atual. Na sequéncia, analisaremos
a relacao entre os trés modelos e também o modelo ACDM.

Devido a falta de conhecimento sobre o setor escuro dominante no uni-
verso, especialmente sobre seus mecanismos microscopicos, optamos por pro-
por uma abordagem predominantemente fenomenologica neste trabalho.

3.1 O Modelo de Criacao Gravitacional de Par-
ticulas

Os modelos cosmologicos de criacao gravitacional de particulas fornecem uma
interessante perspectiva para o fenomeno da aceleracao do universo. Estes
modelos sugerem que, ao se considerar as consequéncias cosmoldgicas do
mecanismo quantico de criagao de particulas as custas do campo gravitacional
variando com o tempo, pode ser possivel, em certos casos, obter a expansao
acelerada observada para o universo.

Tais modelos foram justificados a partir de um ponto de vista micros-
copico apos o trabalho pioneiro de Parker e seus colaboradores [71]. Como
discutido por muitos autores, as frequéncias positivas e negativas dos campos
na representacao de Heisemberg se misturam durante a expansao do universo.
Como resultado, os operadores de criacao e aniquilacao em um dado tempo t
sao combinacoes lineares dos mesmos em um tempo anterior t5, o que resulta
no fenémeno de criacao de particulas. Qualitativamente podemos dizer que
o background gravitacional variando no tempo supre energia aos campos de
matéria. Como a energia do campo nao ¢ conservada, sua acao ¢ explicita-
mente dependente do tempo e a quantizacao deste processo leva a producao
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de particulas.

A teoria geral de criacao de particulas a partir de efeitos quanticos em
um espago-tempo em expansao foi desenvolvida em detalhes nos livros [117,
118, 119, 120], e também nos artigos [121 122} 123].

Podemos usar um caso simples como exemplo para ilustrar a idéia do
mecanismo fundamental por tras do processo de criagao. Considere a acao
abaixo, que descreve um campo escalar massivo e real ¢, minimamente aco-
plado, em um espaco-tempo plano de FRW,

5 =5 [ VEadalg0.00:0 - me?), (3.1)

onde usamos unidades em que h = kg =c=1.

Em termos do tempo conforme 7, onde dt = a(n)dn, o tensor métrico g, é
conformalmente equivalente & métrica de Minkowski 1, (ds* = a*(n)n,,dz*dz”).
Portanto, se escrevermos o campo ¢ como ¢(v, ) = a~'(n)x, obtemos a par-
tir da agao acima a seguinte equacao para o campo auxiliar y;,

"
X' — Vx + (m2a2 — %) x =0, (3.2)

onde a aspa denota derivada com relacao a 7.

Podemos ver que o campo x obedece a mesma equacao de movimento que
um campo escalar massivo no espaco-tempo de Minkowski, porém com uma
massa efetiva dependente do tempo, que é dada por

"
2 2 @

mZ;(n) = m’a® — — (3.3)

Esta massa efetiva variando no tempo leva em conta a interacao entre o
campo escalar e o campo gravitacional. A energia do campo y nao é separa-
damente conservada, razao pela qual sua acao é explicitamente dependente
do tempo e sua quantizacao leva a criacao de particulas as custas do back-
ground gravitacional cléassico.

No entanto, para aplicagoes na cosmologia, esta abordagem semicléssica
encontra trés dificuldades bésicas:

(i) O campo escalar é tratado como um campo teste, portanto a evolugao
do background nao é alterada pelas particulas gravitacionalmente produzi-
das.

(ii) A producdo de particulas é um processo irreversivel. Sendo assim,
deve ser vinculada pela segunda lei da termodinamica.

(iii) Nao ha uma prescricao clara de como um mecanismo irreversivel de
origem quantica possa ser incorporado nas equagoes de campo de Einstein.
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Posteriormente, uma abordagem macroscopica para o fenémeno da cri-
acao gravitacional de particulas foi proposta por Prigogine e seus colabora-
dores para evitar os problemas acima. Baseando-se na termodindmica fora
de equilibrio de sistemas abertos [74], eles sugeriram que este tipo de pro-
cesso poderia ser efetivamente descrito por um termo de pressao negativa
nas equagoes de Einstein [75 [76]. A producao gravitacional de particulas
¢ um processo irreversivel que segue os requerimentos usuais da termodina-
mica de nao equilibrio. Portanto, este termo adicional de pressao deve ser
vinculado pela segunda lei da termodinamica. O tensor energia-momento
nestes modelos pode ser efetivamente descrito da mesma forma que no caso
de um fluido perfeito se simplesmente considerarmos um termo de pressao
negativa, decorrente do processo de criacao, somando-se a pressao usual do
fluido. Deste modo, assumindo que particulas de matéria escura sao produzi-
das pelo campo gravitacional variando no tempo, poderia ser possivel obter
uma expansao acelerada recente em um universo dominado por um fluido
sem pressao.

Portanto, em comparagao com as equacgoes usuais de equilibrio, o processo
de criacao as custas do campo gravitacional é descrito através de dois novos
ingredientes: uma equacao de balanceamento para a densidade de nimero de
particulas e um termo de pressao negativa no tensor energia-momento. Tais
quantidades sao relacionadas entre si de forma bem definida pela segunda
lei da termodinamica. Durante todo o trabalho desta tese enfocaremos nas
consequéncias cosmologicas associadas a esta descricdo macroscopica, e fe-
nomenologica, do mecanismo de criagao gravitacional de particulas, ao invés
de abordarmos os aspectos da teoria quantica de campos que inicialmente o
motivou.

As equacoes de Friedmann para estes modelos assumem entao a seguinte
forma,

. a? k
- a a? k
p+pc=—25—§—;> (3.5)

onde p. (a pressao de criagao) é o termo de corre¢do a pressao de equilibrio
que descreve a producao de particulas ocorrendo fora de equilibrio. A partir
daqui, p e p denotarao a densidade e pressao da componente dominante no
universo (no caso a matéria escura), a menos que seja especificado de outra
forma. O til denotara as quantidades do fluido no modelo de criacao, o que
posteriormente nos permitira distinguir estas das respectivas quantidades nos
outros modelos.
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A densidade de namero de particulas é, neste caso, descrita por

- . a_ -
Ng =n+ 3571 =nl, (3.6)
onde ' é a taxa de criacao de particulas induzida pelo campo gravitacional,
N é o numero de particulas e n é a densidade de ntimero de particulas.
Combinando (3.4) e (3.5 é possivel obter a equacao que expressa a lei de

conservacao de energia (u, 7" = 0),

p+3H(p+p+p.)=0. (3.7)

Em geral a pressao de criacao pode ser escrita como

Al
3H
onde o é um coeficiente fenomenolégico positivo relacionado ao processo de
criagao.

Como discutido em [75], um caso importante corresponde ao chamado
processo de criacao “adiabatica” de particulas [79]. Neste caso particulas e
entropia sao produzidas no espaco-tempo, no entanto, a entropia especifica
(por particula) permanece constante (¢ = 0). Neste regime “adiabético”, a
constante o na equacao é igual a (p+p)/n, e entdo a pressao de criagao
é escrita como

(3.8)

Pe = —C&

C (GPD (Lt w)l 59)
Pe=""3m =" 3m '

A taxa de criacao [ é comumente proposta, a partir de consideracoes fe-

nomenologicas, como sendo funcao do parametro de Hubble H. Focaremos,

no presente trabalho, no caso da criacao adiabatica de particulas. Como vere-

mos posteriormente, as equacoes de Friedmann e para este modelo,

juntamente com a expressao para p. em funcao de H, nos fornecerao cenarios

cosmologicos dinamicos passiveis de serem testados com as observacgoes atu-

ais. Antes, porém, vamos introduzir um segundo modelo para a aceleracao

cosmoldgica, que também parte de principios baseados em termodinamica
fora de equilibrio para reduzir o setor escuro do universo.

3.2 0O Modelo de Viscosidade

Outra propriedade naturalmente esperada em um fluido cosmolégico com-
plexo em rapida expansao é a viscosidade. Em um universo homogéneo e
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isotropico, o tnico tipo de viscosidade que pode estar presente é a viscosidade
volumar. Esta surge devido & perda de equilibrio termodinamico quando o
fluido se expande muito rapido e o sistema nao tem tempo suficiente para
reestabelecer o equilibrio. Este mecanismo corresponde a um processo dis-
sipativo que, como veremos, também estd associado a um termo de pressao
negativa nas equacoes de Einstein.

No caso em que ocorre dissipacao no fluido c6smico, o tensor energia-
momento isotrépico nao ¢ mais dado por 7 = 3p — p. Possuindo uma
contribuicao de nao-equilibrio devido ao efeito dissipativo, ele passa a ser
dado por T2 = 3p — p + ATS. Esta expressao é comumente escrita da
seguinte forma,

TS =3p—p+ 31, (3.10)

onde II = (1/3)AT é a chamada pressio de viscosidade. E facil verificar
que II deve ser negativo para que a Segunda Lei da Termodinamica seja
satisfeita [93]. Embora alguns autores tenham apontado que no contexto
da teoria cinética a pressao de nao equilibrio deve ser sempre menor que a
contribuigao de equilibrio mantendo a pressao total positiva, no contexto da
teoria quantica de campos, onde pressoes negativas sao comuns, a situagao é
diferente. Iremos portanto extrapolar a suposicao de que AT corresponde
apenas a uma pequena correcao de nao equilibrio. Este procedimento tem
gerado modelos acelerados consistentes em diversos trabalhos [93] [97] [98].
Neste caso, se o termo II for suficientemente grande, é possivel ter um uni-
verso com uma pressao total negativa mesmo sendo dominado por um fluido
com p > 0.
As equacdes de Friedmann nestes modelos podem ser escritas como

p=3z—z+3£, (3.11)
. ag
p+H:—2%—%—£. (3.12)
J& a equacgao de conservacao do fluido é dada por
p+3H(p+p+1)=0. (3.13)
Em geral, a pressao de viscosidade II é escrita da seguinte forma
IT=-3H , (3.14)

onde & é o coeficiente de viscosidade volumar. Esta expressao é, na verdade,
uma aproximag¢ao em primeira ordem de nao equilibrio. Esta aproximacao
corresponde a teoria de Eckart. Existem teorias mais gerais que consideram
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desvios de equilibrio de segunda ordem, como as teorias de Muler-Israel-
Stewardt. Aqui consideraremos o caso mais simples, que tem mostrado bons
resultados para problemas como os que serao aqui abordados [97, 101, 102].
Para encontrarmos uma expressao fenomenologica para o coeficiente &,
podemos fazer uma simples andalise dimensional. A pressao II tem dimensao
de densidade de energia, portanto olhando para a equacao (3.14]) podemos
ver que o coeficiente £ deve ter dimensao (p/H). Espera-se que a pressao de
viscosidade dependa das quantidades do fluido como densidade, pressao, etc,
e nao de suas derivadas ou das propriedades geométricas do espago-tempo.
Portanto, a expressao mais geral que podemos escrever para o coeficiente é

i)

onde o fator 1/3 foi introduzido apenas por conveniéncia, como ficara claro
posteriormente. Multiplicamos as grandezas do fluido por uma constante
adimensional arbitraria 0, que seria natural esperar que fosse da ordem 1. «
¢ também uma constante adimensional.

Embora nao estejamos assumindo nenhum mecanismo dissipativo especi-
fico no fluido, esperamos que a pressao de viscosidade deva ter contribuicoes
proporcionais a alguma poténcia de H (ou equivalentemente de p), visto que
a rapida expansao do universo causa a perda de equilibrio. Também podemos
esperar contribuigoes inversamente proporcionais a H, ja que a medida que p
decresce, o tempo para interagoes ocorrerem no fluido aumenta, aumentando
assim a contribuicao de nao-equilibrio. Como nao sabemos qual a contri-
buicao de cada fator para a expressao final de II, o podera assumir valores
positivos e negativos. Posteriormente deixaremos as observagoes indicarem
os valores dos parametros.

3.3 0O Modelo de Decaimento do Vacuo

Outra possivel alternativa que tem sido proposta para evitar o problema da
constante cosmologica e também o problema da coincidéncia é supor que a
densidade de energia do vacuo nao é constante, mas decai em outras compo-
nentes cosmologicas [29]-[49]. O tratamento usual assume que A(t) = 87Gp,
esta acoplado a outras componentes cosmicas produzindo particulas (produ-
tos do decaimento) de forma lenta e continua. Nestes modelos a explicagao
para o valor extremamente pequeno da densidade de energia do vacuo hoje
é que a mesma vem decaindo durante toda evolucao do universo.

A variacao da densidade de energia do vacuo é genericamente esperada
a partir da Teoria Quéantica de Campos (TQC) em espacos curvos [124] [71].
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Neste contexto, a acao efetiva da TQC implica que a variacao de py pode ser
associada a variacao da curvatura do espaco-tempo, cuja expressao depende
da teoria especifica de gravitacao adotada. Mais recentemente, a variacao
da densidade de energia do vacuo a baixas energias foi justificada por pri-
meiros principios a partir da abordagem do grupo de renormalizagao [31].
No contexto do Grupo de Renormalizacao, a equacao da Relatividade Geral
que descreve a variacao da densidade de energia do vicuo pode ser escrita a
partir de uma expansao em série de H [31 [125] 36],

d 1 HS
Pa = Z |:CLZ‘M,L»2H2 + b2H4 + ¢ (316)

dinH?  (4m)? & W—i_ ’
onde a;, b; e ¢; sao os coeficientes da expansao, e a soma se da sobre as
massas M; de todos os campos de matéria envolvidos no calculo da funcao
B. A expansao acima foi calculada em uma aproximacao até um loop.

Podemos mencionar também uma simples proposta que considera um
termo de vacuo descrito por A = yH [125]. Esta proposta foi motivada
por trabalhos em cosmologias com dimensoes extras, que sugerem que mo-
dificacoes nas equacgoes de Friedmann decorrentes de dimensoes extras de
volume infinito podem imitar um termo A(t) variando com H®, sendo a uma
constante. Tais propostas tém sugerido coletivamente que modelos com A(t)
dinamicos fornecem uma possibilidade interessante nao apenas para acelerar
o universo mas também para resolver os problemas associados & constante
cosmologica.

Genericamente, nos modelos de decaimento do vacuo as equacoes de Fri-
edmann assumem a forma

a® k
a a® k

onde A(t) é a densidade de energia do vacuo, p e p sdo as densidades de
energia e pressao da matéria escura. Assumiremos por simplicidade que o
vacuo se acopla apenas com a componente dominante do universo. Como
estamos analisando o universo recente, o decaimento do vicuo causa entao
uma mudanc¢a no nimero de particulas de matéria escura. A equagao que
descreve a concentracao de particulas tem portanto um termo fonte, sendo
escrita como

Ne =q+3%n =nl, (3.19)
’ a

onde I' é a taxa de variacao no ntimero de particulas.
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A partir das equagoes de Friedmann (3.17) e (3.18), obtemos a seguinte
equacao de conservacao

) a )
p+35(p+p) = —pa - (3.20)

Sendo o decaimento do vacuo a tinica fonte de criacao de particulas, temos
que
par = —(nl, (3.21)

onde ¢ é um parametro fenomenologico positivo.

Analisaremos posteriormente os vinculos observacionais para dois mode-
los especificos de decaimento do vacuo, descritos pela lei A(H) = vH e pela
lei A(H) = ¢+ BH? Este tltimo foi motivado a partir da abordagem do
grupo de renormalizacao, correspondendo as contribuicoes dominantes na
expansao (3.16)).

Os trés modelos apresentados neste capitulo, apesar de trazerem uma série
de avancos conceituais com relacao ao MP, ainda encontram alguns desafios
no campo teoérico. Descrevemos abaixo algumas das principais questoes que
ainda precisam ser desenvolvidas nestes modelos:

e Uma teoria quantica de campos de nao-equilibrio em espagos curvos
que pudesse prescrever algumas importantes grandezas nestes modelos
nao foi até o presente desenvolvida;

e Ainda nao h& uma prescri¢ao clara de como o fenomeno quéantico da
criagao de particulas pode ser incorporado nas equacoes de Einstein;

e Na auséncia de uma base tedrica fundamental completamente desen-
volvida estes modelos sdao comumente propostos fenomenologicamente.
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Capitulo 4

Comparando Modelos
Cosmologicos

No capitulo anterior, apresentamos trés modelos cosmolégicos para o universo
recente, sendo cada um deles baseado em uma interpretacao fisica diferente
para a aceleracao do universo. Veremos, no entanto, que sob certas condigoes
o0s trés sao capazes de gerar a mesma dinamica para o universo. Iremos ana-
lisar aqui as relacoes entre os parametros dos trés modelos que nos fornecem
esta evolucao comum. Veremos também sob quais condigoes estes modelos
sao capazes de reproduzir a dinamica do Modelo Padrao ACDM. Os resul-
tados apresentados neste capitulo sao resultados originais obtidos nesta tese
que podem ser encontrados no artigo correspondente a referéncia [105].

4.1 Equivaléncia Dinamica

Vamos entao usar as equagoes de Friedmann para comparar a evolugao
espago-temporal nos trés modelos. Comecgando pelo modelo de criacao gra-
vitacional de particulas, ao combinar as equagoes de Friedmann (3.4)) e (3.5))
deste modelo obtemos,

. . 2

a a kE pe

-+ A=+ A—=+==0, 4.1

a a? a? 2 (4.1)
onde A = (3w + 1)/2.

Para os modelos de viscosidade, ao combinarmos suas equacoes de Fried-

mann (3.11)) e (3.12), obtemos

a a2 k 11
-+ A—+A—+—=0. 4.2
a+ a2+ a2+2 (42)

E similarmente para os modelos de decaimento do vacuo obtemos
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.. . 2
i AL A (A+wAl)
a a? a? 2

Comparando as trés equacoes acima podemos ver que os trés modelos sao
equivalentes quando a seguinte igualdade é satisfeita

~0. (4.3)

pe =11=—(1+w)A(t), (4.4)

onde w é o parametro da equacgao de estado da matéria escura nos modelos
de decaimento do vacuo. O Modelo Padrao ACDM pode ser obtido como um
caso especial dos modelos de decaimento do vacuo ao se fazer A(t) = cte.

No caso da criagao “adiabatica"de particulas, em que p. = —(14+w)pl'/3H,
supondo um espago-tempo plano (como sera considerado até o final do tra-
balho), a equivaléncia (4.4) nos fornece simplesmente

TH = A(t). (4.5)

Vemos entao que os trés modelos podem ser dinamicamente equivalentes
entre si e, além disto, sao capazes de reproduzir a evolugao do Modelo Padrao.

Como mencionado anteriormente, o modelo A\CDM possui uma grande
concordancia com as observacoes. Os modelos alternativos, porém, se pro-
poem a melhorar questoes conceituais com relagao ao MP. Ao obtermos, para
os modelos aqui propostos, uma equivaléncia dindmica com o A\CDM, surge
a possibilidade de termos uma descricao alternativa para a aceleracao cos-
mologica com o mesmo grau de concordancia observacional do MP a nivel de
background, porém sem os problemas conceituais associados a este.

Vamos, a seguir, comparar os trés modelos sob o ponto de vista de suas
evolucoes termodinamicas.

4.2 Equivaléncia Termodinamica

Para obtermos uma descricao termodinamica dos modelos considerados, é
preciso obter as equagoes de evolugdo para a entropia especifica (o = S/N),
e para a temperatura em cada modelo.

No caso geral dos modelos de criacao de particulas, a derivada com relacao

ao tempo comodvel do fluxo de entropia, S* = nou®, combinada com as
equagoes de Friedmann e as equagoes (3.8) e (3.6]) nos fornece

(a—p), (4.6)

onde [i é o potencial quimico das particulas criadas, neste caso, de matéria
escura.
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E a temperatura, no caso geral destes modelos, segue a seguinte evolucao

176, 177]
_ (g_:;)ﬁ ﬁ{T(S—?) +ﬁ(%) ~ —aﬁ} . (4.7)
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Ja no caso dos modelos de viscosidade nao ha producao de particulas,
N2 = 0. No entanto, a variacao da entropia por particula é uma funcao do
coeficiente de viscosidade como se segue

;= % @2 (4.8)

enquanto a temperatura nestes modelos segue a seguinte lei de evolugao [76]

ROEE O

or

Nos modelos de decaimento do vacuo, o vacuo age como uma segunda
componente transferindo energia continuamente para a componente mate-
rial, sendo este processo vinculado pela segunda lei da termodinamica. As-
sumiremos aqui que o potencial quimico do vacuo é nulo, de tal modo que o
vacuo se comporta como um condensado que nao carrega entropia. De fato,
para um potencial quimico nulo, a equagao de estado do vacuo (p, = —p,)
implica que o, = 0. Sob esta condicao, temos a seguinte evolucao para a
entropia especifica da matéria criada,

&+ar:;(<_ﬂ), (4.10)

onde p denota o potencial quimico das particulas criadas.
Para a temperatura temos a seguinte lei de evolucao [183]

;: (%)ng@{T(S—;>n+n(g—Z)T(n}. (4.11)

n
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Comparando as equacgoes termodinamicas apresentadas para os trés mo-
delos é possivel concluir que:

e Os modelos de criacao de particulas e de decaimento do vacuo possuem
a mesma lei de evolucao para a temperatura e para a entropia especifica
sempre que os coeficientes o e ( forem iguais;

e Se considerarmos que o processo de producao de particulas nos modelos
de criacao e de decaimento do vacuo é “adiabatico”, algumas relacoes
de equilibrio sao preservadas. Neste caso, os segundos termos do lado
direito das equacoes e , que correspondem as contribuicoes
de nao-equilibrio, devem ser identicamente nulos. Para isto a = ( =
(p + p)/n, o que implica que & = 0. Ou seja, as relagoes de equilibrio
sao preservadas apenas se a entropia especifica das particulas criadas
for constante. Assim, S/S = N/N =T, tanto nos modelos de criacio
de particulas quanto nos de decaimento do vacuo.

e Por outro lado, comparando a equacao de evolucao da temperatura
do modelo de viscosidade com as dos outros modelos, vemos que
nao ha uma equivaléncia. Mesmo se compararmos a equacao de evo-
lucao da temperatura no modelo de viscosidade com as equagoes cor-
respondentes no caso "adiabatico"dos outros modelos também nao ob-
temos uma equivaléncia. A equacao de evolucao da entropia especifica
no modelo de viscosidade nos mostra que, enquanto existe uma visco-
sidade, 0 # 0 e o processo nao é adiabético. Neste caso, o segundo
termo do lado direito da equacao nao se anula.

Em resumo, vimos que, embora os trés modelos possam ser dinamica-
mente equivalentes, sob o ponto de vista termodinamico o modelo de viscosi-
dade nao é equivalente aos demais. No entanto, entre os modelos de criacao
de particula e de decaimento do vacuo observa-se uma correspondéncia di-
reta.



Capitulo 5

Analise Observacional

Neste capitulo, sera feita uma anélise observacional dos trés modelos pro-
postos visando testar a viabilidade dos mesmos e obter vinculos para seus
parametros livres. Os resultados deste capitulo fazem parte dos resultados
originais desta tese e também podem ser encontrados no artigo [105]. Vamos
especificar nossa andalise a algumas classes de modelos bem conhecidas na
literatura as quais introduziremos a seguir.

- Modelo 1: N\CDM

Como vimos que os trés modelos considerados sao capazes de reproduzir a
dindmica do modelo ACDM, vamos entao comecar nossa analise pelo Modelo
Padrao. Vimos que o mesmo corresponde ao caso especifico em que A(t) =
cte = .

De acordo com a equacao , podemos ver que o modelo de criacao
de particulas que reproduz a dinamica do ACDM possui a seguinte taxa de

criacao de particulas,
= % , (5.1)
onde A\ é a constante cosmologica do Modelo Padrao.

Ja o modelo de viscosidade que reproduz esta mesma dinamica possui
um coeficiente de viscosidade tal que & oc p~/2, o que pode ser visto através
das equagoes e (4.4). Ou seja, o pardmetro a do modelo (§ x p®),
introduzido na equagao (3.15), é igual a —1/2.

Como nestas condigoes os trés modelos geram a mesma dinamica, que
neste caso corresponde a do Modelo Padrao, vamos usar como exemplo o
modelo de criacao de particulas a fim de obtermos a evolugao comum aos
trés modelos. Para isto vamos entao reescrever a equacao de conservagao



36

(3.7) em termos da taxa de criagao de particulas da seguinte forma,
p+3H(p—TH)=0. (5.2)

Substituindo a condicao de equivaléncia, I = A/H, na expressao acima e
integrando encontramos
p=A+ Pmioa”, (5.3)

onde p,,10 ¢ uma constante, com dimensao de densidade de energia, que
quantifica a densidade de matéria que se aglomera.

Podemos substituir a rela¢do acima na equacao de Friedmann (3.4) para
obtermos uma expressao para H em funcao do redshift z,

~ ~ 1/2

onde le = ﬁm170/3H02. A equacado acima descreve a dinamica dos trés
modelos no caso em que 0s mesmos sao equivalentes ao ACDM. Tal resultado
foi previamente obtido em [82 83] através de um método diferente.

Embora os trés modelos e o A\CDM apresentem a mesma dinamica, eles
podem, em certos casos, ser distinguiveis a nivel perturbativo [84]. Esta
distincao pode ser feita, por exemplo, a partir do calculo do espectro de
poténcias da radiacao e da matéria em cada cenario, ou das previsoes para
as estruturas em largas escalas. O espectro de poténcias primordial para uma
dada classe dos modelos de criagao de particulas sera calculado no capitulo
10. A anélise da evolugdo posterior das perturbacoes cosmologicas nestes
modelos foi analisada em [8§] - [89] e foi mostrado que para um determinado
valor da velocidade do som efetiva (c2 = 0), o modelo de criagao gravitacional
de particulas e o ACDM sao degenerados em qualquer ordem na teoria de
perturbagoes cosmologicas.

Na anélise da evolucao das estruturas do universo é importante lembrar
que nos modelos de criacao de particulas e viscosidade ha apenas uma com-
ponente dominante no universo recente (a matéria escura), enquanto que
nos modelos de decaimento do vacuo e no A\CDM existem duas componentes
principais. No entanto, ao contrario do modelo de decaimento do vacuo, no
Modelo Padrao as duas componentes principais evoluem de modo completa-
mente independente, o que gera a necessidade de ajuste fino.

- Modelo 2: A =~H

Este simples modelo fenomenologico foi proposto em [126] e discutido em
[125] em um contexto mais geral. Note que 7 ¢ uma constante dimensional
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(Dim~y = DimH). Neste caso a taxa de criacdo de particulas no modelo
de criacdo equivalente é uma constante, I = ~. Como a segunda lei da
termodinamica implica que T > 0, entdao temos que ~v > 0. Ja no modelo de
viscosidade correspondente, o coeficiente de viscosidade é dado por £ = cte,
ou seja, o parametro o do modelo ¢ igual & zero.

Ao integrarmos a equagao (5.2)) obtemos para este caso

- (9)/] | 5:5)

onde C' é uma constante de integracao. O parametro de Hubble pode entao
ser escrito como

=T
3

H = H, [1 — Oz + (1 + z)f’)/ﬂ : (5.6)

onde Q0 = 1—~vHy/3HZ. Este parametro quantifica a quantidade de matéria
que se aglomera.

- Modelo 3: A = c+ SH?

A lei de decaimento SH? foi inicialmente proposta em [39] e foi posteri-
ormente analisada por varios autores incluindo [40], [42]. A evolugao recente
neste modelo se aproxima da evolucao do ACDM. No entanto, o termo em
H? fornece uma dindmica mesmo no universo atual.

Neste caso, a taxa de criacao de particulas do modelo equivalente é dada
por I' = BH + (¢/H). E o modelo de viscosidade correspondente tem o
coeficiente de viscosidade dado pela soma de um termo proporcional a p~'/2
e outro proporcional a p'/2. E possivel mostrar que o parametro 3 deve ser
positivo para que a segunda lei da termodinamica seja satisfeita [105].

Inserindo a expressio de I’ na equacio e integrando obtemos

- & ~ —
p = m + pm3’06L 3+5, (57)

0 que nos permite obter

~ - 1/2
H = Hy 1= Qs + Q31+ Z)H] , (5.8)

onde ng = ﬁm3,0/3H02-
Neste momento, ¢ interessante estimarmos o valor atual da taxa de cri-
acao de particulas para os modelos discutidos aqui (veja equagao (4.5))). Se
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assumirmos que as particulas de matéria escura sao neutralinos, com massa
m ~ 100GeV, e que Qpg ~ 0.7 ¢ Hy ~ T4km.Mpc—t.s71, podemos ver que a
taxa de criacao é atualmente da ordem de [I'njpoje ~ 107 em™2.yr~1. Esta
taxa nao foi consideravelmente alterada nos tltimos bilhoes de anos (z < 1)
em que o universo comecgou a acelerar devido a criacao.

Os modelos de criacao de particulas podem também ser descritos atra-
vés da dindmica de um campo escalar. No Apéndice A, foram obtidos os
campos escalares e seus respectivos potenciais que representam os trés casos
especificos descritos aqui.

5.1 Vinculos Observacionais

Vamos agora obter os vinculos observacionais para os parametros livres dos
modelos discutidos. Para isto, faremos uma analise conjunta envolvendo
dados de SNela (supernovas tipo Ta) e RCF/BAO (Radiacdo Cosmica de
Fundo/Oscilagoes Actsticas de Barions). Usaremos, na nossa analise, a com-
pilagdo de supernovas Union 2.1 [127] que inclui 580 pontos selecionados de
supernovas. Em conjunto, usaremos também medidas derivadas a partir do
produto da escala actstica da RCF com a razao entre o horizonte sonoro (na
época em que as oscilagoes acusticas sao congeladas) e a escala de dilatagao
de BAO.

Um modelo cosmologico que depende de um conjunto de parametros pode
ser comparado com os dados observacionais através do teste estatistico y2.
A funcao probabilidade P associada a um dado parametro cosmologico 6 é
dada por P x exp(—x?/2), onde a grandeza x* é definida como

X2:§:(WY (5.9)

i=1
Acima f% e fI' correspondem as grandezas observacionais e tedricas res-
pectivamente, e o; corresponde ao erro associado a grandeza observacional.
Procuramos identificar o parametro 6 que minimiza a funcio x2. Este proce-
dimento nos permite encontrar o melhor ajuste dos parametros dos modelos
tedricos com base nas observacoes.

Obteremos, portanto, os vinculos para o conjunto de parametros de cada
modelo apresentado acima minimizando a fungao X% = X%y, + X2CMB/BA0~

5.1.1 Resultados

Os resultados das analises estatisticas estdo apresentados nas figuras (5.1) e
(5.2). A figura (5.1) mostra a variancia, Ax? = x? — x2,,,,, em fungao dos
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parametros de densidade Q,,; e Q,,2 nas regioes de confianca 68% e 95,4%
para o modelo 1 (no grafico & esquerda) e para o modelo 2 (no grafico a
direita).

&%
Ax:

e
T
et

N4 L N/

1 1 "] 1 ] . 1
0.24 0.26 (1,28 0.3 0.32 0.34 042 0.44 (.46 048

ml ml

Figura 5.1: A variancia Ax? em funciio dos parametros Q,, = Qi (painel
e~squerdo) e Lz = Qg (painel direito). A partir desta andlise encontramos
Q1 = 0.28270011 € Qo = 0.44970013 com 1o de confianca.

Para o modelo 1, encontramos que o pico da funcao probabilidade se
encontra em €,,; = 0.28270014, portanto, em excelente concordancia com as
observacdes. Ja para o modelo 2 o pico se encontra em .5 = 0.44979012 Tsto
mostra que uma taxa de criagao de particulas constante durante a evolugao

cosmica gera um valor para 2, mais alto que o observado.

A figura 1} apresenta o espaco de parametros ,,3 — 8 para o modelo
3. Ao se marginalizar em h (Hy = 100hkms™ ' Mpc™!), encontramos €,,3 =
0.27470015 e B = —0.01875055 com 68,3% de confianca, sendo que X2, =
563,53 e v = 581 graus de liberdade. J4 o valor obtido para X2, = x2,,,/V =
0.97 nos mostra que o modelo estd em boa concordancia com os dados.

0.5
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Figura 5.2: O resultado da anélise estatistica no plano =3 para o modelo
3. Vinculos de SNela e RCF/BAO aparecem nos niveis de confianca 1o e 20.

5.1.2 A Viabilidade dos Modelos

Diversos critérios podem ser utilizados para a selecao e comparacao de mo-
delos. Em geral, tais critérios consideram a complexidade do modelo e, es-
sencialmente, penalizam o ntimero de parametros dos mesmos. Um exemplo
importante ¢ o conhecido critério de informagao de Akaike (AIC). Proposto
em 1974 [128] por Hirotugu Akaike sob o nome de "um critério de informa-
cao", o mesmo corresponde a uma medida relativa da qualidade de ajuste
de um modelo estocastico estimado. Como discutido em [129], o critério
ATIC fornece uma forma interessante para se obter um ranking da viabilidade
observacional dos diferentes modelos. Fundamentado no conceito de informa-
¢ao, ele oferece uma medida relativa das informacoes perdidas, quando um
determinado modelo é utilizado para descrever um fenémeno. Akaike usou a
informagao de Kullback-Leibler e propriedades assintoticas dos estimadores
de maxima verossimilhanca para definir seu critério. Alguns elementos tor-
nam esta abordagem mais simples quando comparadas a outros critérios de
selecao. Um deles é o fato de nao haver restricoes a respeito do nimero de
modelos ou como eles sao formulados. Além disto, para a comparacao é irrele-
vante quais variaveis foram utilizadas como varidveis preditoras/explicativas
ou como elas sao incorporadas ao modelo.



Portanto, para comparar os modelos estudados usaremos o critério Akaike.
Matematicamente podemos definir o mesmo como

AIC = —2InL + 2k, (5.10)

onde L é o maximo da funcao likelihood e k é o nimero de parametros livres
do modelo. A quantidade importante nesta analise é a diferenca AAIC; =
AIC; — AIC,,;,, calculada sobre o conjunto de cenérios (i = 1,...,n), sendo
que o modelo que melhor se ajusta aos dados corresponde aquele que mini-
miza o fator AIC.

A tabela mostra um resumo do ranking para os modelos analisados
com base nos dados de SNela e RCF/BAO.

Tabela 5.1: AIC - Resultados

Modelo k Ranking AAIC 2,./v

Modelo 1 1 1 0.00 0.97
Modelo 2 1 3 33.21 1.03
Modelo 3 2 2 1.86 0.97

Podemos ver que o modelo que melhor se ajusta é o modelo 1, sendo
seguido pelo modelo 3 que é compativel com o ACDM em 1lo. Além disto,
vemos que os dados distinguem fracamente os modelos 1 e 3.

Agora que ja analisamos algumas possibilidades para a aceleracao recente
do universo, veremos que os mesmos trés modelos apresentados aqui sao ca-
pazes também de explicar a fase acelerada que acredita-se ter ocorrido no
universo primitivo. Desta forma pode ser possivel obter uma descricao unifi-
cada para a aceleracao céosmica que possui também a vantagem de eliminar a
necessidade do campo inflaton bem como da energia escura. Primeiramente,
no entanto, iremos introduzir a teoria da acelerag¢ao primordial (inflagao) no
Modelo Padrao, para a partir dai sugerir algumas propostas alternativas a
este cendrio.
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Capitulo 6

A Aceleracao Cosmologica
Primordial no Modelo Padrao

6.1 O Cenario da Inflacao Primordial

Sabemos que no cenério cosmolégico padrao do Big Bang o universo inicia
na era de dominio da radiacao que é seguida pela era de dominio da maté-
ria. Ambas as fases estdo associadas a uma desaceleracdo na expansao do
universo. No entanto, a este cenirio estd relacionada uma série de proble-
mas que hoje sabemos que podem ser resolvidos na presenca de uma fase
de expansao acelerada no universo primitivo. Esta fase denomina-se infla-
cao. Para solucionar estes problemas, é necessaria uma quantidade minima
de inflacao que na maioria dos modelos corresponde a um breve instante de
tempo. E possivel resolver estes mesmos problemas também em modelos sem
a singularidade inicial ao se supor uma expansao de-Sitter no universo tendo
inicio em t = —o0.

Alguns dos principais problemas que qualquer modelo inflacionario deve
se propor a resolver se resumem a seguir:

- O Problema do Horizonte
O horizonte de particulas comovel, que é a maxima distancia que a luz
pode viajar entre um tempo 0 e ¢, é dado por

tat * da a 1
S L R Ty 1
T / o)~ )y He / ”(H) (6.1)

onde expressamos o horizonte comével através de uma integral do raio de
Hubble comoével (aH )™,
Para um universo dominado por um fluido com equacao de estado w
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temos que X
(aH)™' = Hytaz(H3w), (6.2)

De onde vemos que o comportamento do horizonte de particulas depende de
se (14 3w) é positivo ou negativo. Durante as eras da radiagao e da matéria
w >0, e (aH)™! cresce, fazendo com que o horizonte comével T, ou a fragao
do universo em contato causal, cresca com o tempo (7 a%“”“’)). Isto
significa que as escalas comoveis que entram hoje no horizonte estavam fora
dele na época em que se formou a Radiacdo Cosmica de Fundo (300.000 anos
apos o Big Bang).

No entanto, sabemos atualmente que o universo possui um altissimo grau
de homogeneidade e isotropia. A uniformidade detectada na Radiagao Cos-
mica de Fundo em todo universo observavel implica que regioes que na época
do desacoplamento nao possuiam contato causal apresentavam a mesma tem-
peratura.

Com a cosmologia inflacionaria a uniformidade observada no universo
pode ser facilmente explicada. Como w ~ —1 na época da inflacao, temos
um horizonte comével que decresce com o tempo neste periodo. Portanto, as
grandes escalas que entram no presente universo observavel estavam dentro
do horizonte antes da inflacado. A uniformidade existiria inicialmente em
escalas microscopicas devido a processos usuais de equilibrio térmico. Com
a inflacao, as regioes uniformes teriam sido esticadas até um tamanho maior
que o universo observavel gerando o alto grau de homogeneidade e isotropia
que vemos hoje.

- O Problema da Planitude

O problema da planitude diz respeito a razao Qiorar = Protar/ Pe; ONAe Protar
¢ a densidade total do universo e p. = 3H?/87G ¢ a densidade critica para
a qual o universo é espacialmente plano. De acordo com os dados recentes,
o valor do parametro de densidade total corresponde a Q;;; = 1,01, que é
muito proximo de 1. Porém, ao extrapolar o parametro (2., para o universo
primordial, vé-se que o valor 2ty = 1 € um ponto de equilibrio instavel na
evolu¢ao do universo pelo Modelo Padrao. Portanto, se {24 for inicialmente
igual a 1, ele permanecera com este valor para sempre, mas se houver uma
pequena variacao no valor com relacao a 1, esta diferenca serd amplificada
com o tempo. E possivel mostrar que (o — 1) cresce proporcionalmente
a t durante a era da radiacio e a t?/® durante a era da matéria. Como
mostrado por Dicke e Peebles em [I30], quando o universo tinha 1 segundo,
no Modelo Padrao, ;. deve ter sido igual a 1 com uma acuracia de uma
parte em 10'° para que hoje tenha o valor observado. A cosmologia padrao
nao fornece nenhuma explicacdo para este valor e apenas o assume como



47

condicao inicial. J& se considerarmos o valor de (2, n0 tempo de Planck,
107%3s, o problema se torna ainda mais grave e () precisa ser igual a 1 em
até 59 casas decimais.

Com o mecanismo da inflacao o valor de €., pode ser naturalmente ex-
plicado. Durante a inflagao, ao invés de ;4 se afastar de 1, ele se aproxima
deste valor de acordo com Qe — 1 o e 2Hinstt onde Hy,p € 0 pardmetro
de Hubble na inflacdo. Portanto, havendo um suficiente periodo de inflacao,
Qiotar Pode assumir diversos valores inicialmente e com a expansao exponen-
cial o mesmo acabard convergindo para 1.

- A Auséncia de Monopolos Magnéticos

Todas as teorias de grande unificacao preveem que devem existir no espec-
tro de possiveis particulas, particulas extremamente massivas com uma carga
magnética resultante. Sem considerar um periodo inflacionario, as teorias de
Grande Unificacao combinadas com a cosmologia classica preveem uma pro-
ducao absurdamente grande destas particulas no universo, o que geraria uma
densidade de monopolos inaceitavel [I31]. Com a inflacdo ocorrendo depois
ou durante a produc¢ao de monopolos, embora os monopolos ainda estejam no
espectro das possiveis particulas eles seriam eliminados do universo visivel,
ja que a densidade dos mesmos seria completamente diluida.

Além de fornecer um mecanismo para resolver os problemas aqui expli-
cados, entre outros, a inflacao tem um papel fundamental na formacao das
estruturas do universo, como veremos posteriormente.

Existem diversos modelos capazes de explicar a fase de aceleracao pri-
mordial do universo. A maioria deles atribui a inflacdo a um campo escalar
denominado inflaton, com um potencial nao nulo e uma energia cinética
muito pequena. Veremos posteriormente outras alternativas que explicam
esta fase sem necessitar do papel do campo escalar.

As idéias bésicas da inflacao foram originalmente propostas por Guth
[132] e Sato [133] independentemente em 1981, no que hoje é chamado de
Velha Inflagao. Neste cenério, a expansao de-Sitter do universo se devia a
uma transicao de fase de primeira ordem de um falso vacuo para um vacuo
verdadeiro. No entanto, este cenario possuia um sério problema. A transicao
de fase ocorria através da formacao de bolhas de novo vicuo e, apds sua
formacao, as mesmas se expandiam rapidamente e colidiam umas com as
outras. Porém, esta configuracao gerava um universo altamente inomogéneo,
em desacordo com as observacoes. Uma nova versao do cenario inflacionario
foi entdo proposta por Linde [134] e Albrecht e Steinhardt [135] em 1982, a
qual é chamada de Nova Inflacdo. Neste cenério o campo inflaton sofre uma
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transicao de fase de segunda ordem e dai passa por um regime de Slow-Roll,
em que a energia cinética do campo ¢ muito pequena. Porém, este modelo
também sofria de um grande problema de ajuste fino devido ao tempo que o
campo devia permanecer no falso vacuo para gerar a quantidade necessaria de
inflacdo. Em 1983, Linde [I36] propos outro modelo inflacionario baseado no
regime de Slow-Roll, chamado inflagao caética, no qual as condicoes iniciais
do campo escalar sao caéticas. De acordo com este modelo, nosso universo
homogéneo e isotrépico teria sido gerado em regioes onde ocorre suficiente
inflacao.

Diversos modelos de inflagao foram construidos nas altimas décadas [137],
[138], entre os quais podemos citar também os modelos inflacionarios basea-
dos em supercordas e supergravidade [139]. Apesar de diversas possibilidades
terem sido desenvolvidas, a maioria dos modelos ainda considera o campo in-
flaton como responsavel pela inflacao. Vamos entao descrever brevemente a
dindmica destes cenérios.

6.1.1 A DinAmica Inflacionaria

O campo inflaton, responsavel pela inflacao, é considerado como sendo um
campo escalar, homogéneo, com densidade de energia e pressao dadas por

p= 5B HV@), = H V), (63

onde V(¢) é o potencial do campo.
Em um universo dominado pelo inflaton temos, a partir das equagoes de
Einstein, a seguinte evolugao,

L .
3H? + 2—2 = % Bsb? + V(cb)] : (6.4)
p

onde mf, = 1/G. Sendo a equagdo de movimento do campo dada por
b+ 3Ho+V'(¢) = 0. (6.5)

Para que o campo tenha uma pressao suficientemente negativa para ge-
rar a quantidade necessaria de inflacdo, & preciso que $2/2 << V(¢) e
g% << 3ng5, 0 que requer um potencial bastante plano. Estas condicoes
sao chamadas condigoes de Slow-Roll. Supondo estas condigoes, as equagoes
acima podem ser aproximadas por

3H? + — EV(qb), (6.6)
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3H¢ = —V'(¢). (6.7)

Como o potencial do campo deve ser muito plano para garantir as con-
di¢oes de Slow-Roll, no periodo da inflacdo V' = cte e, consequentemente,
H = cte.

Podemos definir os seguintes parametros de Slow-Roll,

2 1\ 2 2 7
m; [V my (V
e=—(— ), =+ (6.8)
160 \\V 8t \ \V
de modo que a aproximacao de Slow-Roll é valida sempre que ¢ << 1 e
In| << 1. A fase inflacionaria termina quando os parametros acima atingem
a ordem de 1.

Podemos definir uma grandeza, chamada nimero de e-foldings, capaz de
descrever a quantidade de inflacdo da seguinte forma

ty
N=mnY :/ Hdt, (6.9)
a; t

i

onde i e f indicam as quantidades no inicio e no fim da inflacao respectiva-
mente.

Para solucionar o problema da planitude, é necesséario que |Qppqr — 1| <
107% logo apos o término da inflacdo. Ao dividir a equacdo de Friedmann
pela densidade critica p. = 3H?/87G, ap6s reorganizar os termos ob-
temos que

(Qtotal — 1)G2H2 = ]{], (610)

onde consideramos o parametro de densidade total Qiorar = protar/Pe = Po/ Pe-
Portanto, a razao entre |1 — 1| no inicio e no fim da inflagdo é dada por

|Qf_ 1| a; ? _9N
L X)) = 6.11

onde consideramos H = cte durante a inflagdo. Assumindo |©; — 1| como
sendo da ordem de 1, vemos que, para um nimero de e-foldings N > 60, o
problema da planitude é solucionado. Também o problema do horizonte é
solucionado para esta quantidade de e-foldings.

Vemos que é possivel, a principio, descrever uma expansao acelerada pri-
mordial capaz de solucionar os problemas mencionados anteriormente através
de um campo escalar simples. Apesar disto os detalhes deste processo, as con-
dic¢oes iniciais, a formacao das perturbacoes cosmologicas e a transi¢cao para a
fase da radiacao, sao pontos que ainda apresentam uma série de dificuldades.
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As caracteristicas destes processos variam de acordo com o modelo inflaci-
onario, gerando previsoes que os tornam observacionalmente distinguiveis.
Apesar da inflacdo ter ocorrido nos primordios do universo, existem dados
observacionais capazes de testar modelos inflacionarios com grande precisao.
Estes dados observacionais provém da Radiacao Coésmica de Fundo, como
serd discutido a seguir.

6.2 A Radiacao Cbésmica de Fundo

Em 1964, foi descoberto acidentalmente, pelos radio-astronomos amadores
Penzias e Wilson, um sinal eletromagnético desconhecido vindo igualmente
de todas as direcoes do céu. Ao noticiarem a descoberta, os fisicos logo
associaram o sinal observado com a previsao feita ja na década de 40 por
Gamow e Alpher de que haveria uma radiagdo remanescente do inicio do
universo. Esta formaria o que atualmente chamamos de Radiagao Césmica
de Fundo (RCF). Em 1940, j4 havia sido calculada a temperatura que esta
radiacao deveria ter no universo atual. O valor obtido na época, 5 graus
Kelvin, era proximo do valor aceito atualmente, que corresponde a 2,7K. Na
época, no entanto, nao estava claro se esta radiacao poderia ser observada.

Hoje, a Radiacao Césmica de Fundo é uma das maiores ferramentas dis-
poniveis para se obter informacoes sobre o universo primitivo, ja que os fétons
da RCF tiveram seu tltimo espalhamento 370 mil anos ap6s o Big Bang. An-
teriormente a esta época, com a temperatura acima dos 3000K, a matéria no
universo se encontrava em um estado ionizado, de modo que a luz nao con-
seguia viajar uma distancia consideravel sem ser absorvida por um elétron
que, por sua vez, emitia novos fotons. A medida que o universo expandiu
e se esfriou, os elétrons e nicleos presentes puderam se recombinar e entao
formar d&tomos neutros. Apods este evento, chamado superficie de dltimo es-
palhamento, os fotons puderam viajar livremente por grandes distancias sem
serem absorvidos. Isto ocorreu apds a era da radiacao, ja no inicio da era da
matéria. Estes fotons vindos da superficie de tltimo espalhamento compdem
a Radiagao Cosmica de Fundo, que é observada como uma radiacao pratica-
mente uniforme vinda de todas as direcoes do céu, possuindo um espectro de
corpo negro, devido ao fato de que matéria e radiacao estavam em equilibrio
na época do ultimo espalhamento.

Embora praticamente isotropica, a RCF possui pequenas anisotropias in-
trinsecas e uma anisotropia dipolar. A anisotropia dipolar, da ordem de
AT/T =~ 1073, é decorrente do movimento da Terra em relagdo a RCF. J&
as anisotropias intrinsecas, que sao da ordem de AT/T =~ 1075, sao con-
sequéncia de flutuagoes de temperatura no universo primitivo que seriam as
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sementes das estruturas que hoje observamos. As caracteristicas destas ani-
sotropias nos fornecem valiosas informacoes sobre o processo de formacao e
evolucao de estruturas no universo.

As pequenas anisotropias na temperatura da RCF podem ser analisadas
ao se decompor o sinal observado no céu em esféricos harménicos da seguinte
forma,

AT
T - Z al,mn,m(ea 925)7 (612)

onde a;,, sa0 os coeficientes da expansao, 0 e ¢ sao os parametros angulares
esféricos. Os coeficientes complexos a;,, podem ser escritos como o produto
de um moédulo por uma fase complexa

Apm = ’al,m|€id)lm- (613)

No caso de uma distribuicao gaussiana as fases sao aleatoérias, portanto a
média das mesmas é zero. Por esta razao, nos modelos gaussianos toda
informagcao esta contida no espectro de poténcias, que é usualmente definido
como

Cr =< |ayn|* > . (6.14)

E convencional plotar a quantidade (I +1)C; em funcdo dos multipolos [,
no que é chamado Espectro de Poténcias da Radiacao Cosmica de Fundo. Um
exemplo deste espectro, obtido pela colaboragdo Planck [140], estd4 mostrado
na figura a seguir:
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Figura 6.1: O Espectro de Poténcias da Radia¢ao Cosmica de Fundo (Planck
2013).

A amplitude das flutuacoes de temperatura hoje observadas na RCF,
advém da combinacao de dois fatores: Das flutuacoes intrinsecas de densidade
na época da superficie de tltimo espalhamento, e do potencial gravitacional
causado por estas flutuagoes. Fotons vindos de regioes mais densas possuem
naturalmente maior temperatura, no entanto, os mesmos tém que emergir
de um poco de potencial mais profundo, e portanto sofrem maior redshift,
perdendo energia. A superposicao destes dois efeitos é o que chamamos de
efeito Sachs-Wolfe. Hoje sabe-se que o efeito na temperatura observada da
perda de energia dos fétons ao emergir do poco de potencial é maior que
o efeito positivo da sobredensidade. Portanto regioes que observamos hoje
como sendo mais frias, sao na verdade origindrias de sobredensidades na
época do ultimo espalhamento.

Veremos a seguir, através da anélise da evolucao das perturbagoes cosmo-
logicas, como sao formados os picos observados hoje no espectro da Radiagao
Coésmica de Fundo, e como as suas caracteristicas podem nos dar informagoes
sobre os parametros dos modelos cosmologicos.
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6.3 A Evolucao das Perturbacoes Cosmolobgicas

As perturbacoes primordiais origindrias na época da inflacdo se manifestam
tanto na Radiacao Coésmica de Fundo quanto na distribuicao de matéria
hoje observada no universo. Aqui nos interessa, neste momento, analisar
qualitativamente a evolucao dos fotons, o que nos permitird compreender o
espectro geral das anisotropias da RCF.

As perturbacoes na radiacao tiveram origem a partir de flutuacoes quan-
ticas de vacuo e a partir de flutuacoes térmicas estatisticas, como veremos
mais para frente. Apos serem geradas, o mecanismo da inflacdo aumentou a
escala destas pequenas perturbacoes a nivel classico e as mesmas passaram
a evoluir gravitacionalmente.

Na analise da evolucao das perturbacoes é importante se considerar dois
regimes distintos em que estas flutuagoes evoluem de modos diferentes. Estes
regimes correspondem as flutuagoes com comprimentos de onda menores que
o horizonte de Hubble, e aquelas com comprimento de onda maiores que o
horizonte de Hubble. Quando uma perturbacao possui um comprimento de
onda menor que o horizonte de Hubble, a mesma se encontra em constante
evolugao, determinada pela atragao gravitacional combinada com a pressao
natural da radiagao que age em sentido oposto. No entanto, a inflacao am-
plifica as perturbacoes, enquanto que o raio de Hubble, 1/H, permanece
aproximadamente constante neste periodo. Isto faz com que as perturba-
¢oes, que inicialmente evoluiam dentro do horizonte, crescam ficando maior
que o raio de Hubble.

Primeiramente sairao do horizonte de Hubble as perturbagoes com maior
comprimento de onda, e seguidamente, as de menores comprimento de onda.
Ao cruzar o horizonte de Hubble, as perturbacoes "congelam"e praticamente
nao sofrem mais qualquer evolucao até que reentrem no horizonte. Este feno-
meno é compreensivel ja que nenhuma, fisica causal pode afetar perturbacoes
em escalas maiores que o horizonte de Hubble.

Porém, ao fim da inflagdo o raio de Hubble 1/H volta a crescer e, em um
dado momento, os modos reentram no horizonte, passando a evoluir nova-
mente. Como é de se esperar, os modos de comprimento de onda menores
reentram no horizonte primeiro e, posteriormente, entram os modos com
comprimento de onda maiores. Os menores comprimentos de onda entram
no horizonte ainda na era da radiacao, enquanto os maiores apenas vao reen-
trar no horizonte ap6s a recombinacao ja na era da matéria. Este fato gera
a configuracao observada no espectro da RCF (fig.1). Enquanto os menores
multipolos, correspondentes as grandes escalas, tém seu espectro caracteri-
zado por um plateau com uma amplitude aproximadamente constante, os
maiores multipolos apresentam um espectro formado por picos e vales.
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Os menores multipolos referentes as largas escalas, por terem permaneci-
dos congelados desde a inflacao, correspondem as perturbacgoes na sua forma
mais primordial e nos fornecem, portanto, informacoes diretas da inflacao.
Ja as escalas menores, tendo entrado no horizonte antes da recombinagao,
sofreram evolucao a partir dai. Por elas terem entrado no horizonte ainda na
era de dominio da radiacao, sofrem o que chamamos de oscilagoes actusticas,
como explicaremos a seguir.

Devido a forga gravitacional, a matéria tende a se aglomerar. No entanto,
antes do ultimo espalhamento, matéria e radiacao estavam acopladas e por
isto a matéria sofria pressao devido a radiacao. A juncao da forca gravita-
cional atrativa com a pressao de radiagao agindo em sentido oposto gerava
oscilacoes no plasma primordial. Este fenémeno é o responsavel por gerar os
picos observados no espectro de poténcias da RCF [141].

Vamos considerar, primeiramente, o primeiro pico. Quando o modo cor-
respondente entrou no horizonte, a perturbagao comecou a crescer até atingir
sua intensidade méxima, o que ocorreu justamente no momento da recom-
binacao, quando a distribuicao caracteristica da radiagao ficou impressa na
RCEF. Portanto, estas perturbacoes possuem a maior intensidade observada
no espectro de poténcias (o primeiro pico). Ja comprimentos de onda me-
nores entraram no horizonte antes e tiveram tempo de completar mais fases
de oscilacao até o momento da recombinacao. O primeiro vale, por exemplo,
corresponde aos modos que se contrairam e tiveram tempo de se expandir
até um valor de contraste minimo no momento da recombinagao. O segundo
pico entrou no horizonte ainda mais cedo e teve tempo de completar uma
oscilacao completa antes da recombinacao. Este mecanismo formou a série
de picos e vales que observamos no espectro da RCF'.

Outra caracteristica que podemos observar também na figura é que esca-
las pequenas sofrem um amortecimento. Isto ocorre devido ao fato de que
a suposicao de acoplamento forte, onde fétons, elétron e barions se movem
juntos, é apenas uma aproximacao. Ela é exata somente se a taxa de espalha-
mento dos fétons e elétrons for infinita. Na realidade, no entanto, os fétons
viajam uma distancia finita entre cada espalhamento, e cada espalhamento
contribui para o movimento aleatorio do foton. Assim, qualquer perturbacgao
em uma escala menor que a distancia total percorrida no movimento aleatorio
do foton deve ser diluida, o que causa o amortecimento observado.

Através do espectro das flutuacoes primordiais de temperatura, é possivel
comparar previsoes tedricas com as observacoes, permitindo-nos vincular e
eliminar modelos. Vamos entao ver como o espectro destas flutuagoes pri-
mordiais pode ser calculado para o caso cosmoldgico padrao.
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6.4 O Espectro de Poténcias a partir de Flutu-
acoes Quanticas

Antes do surgimento do modelo inflacionario, as flutuacoes iniciais eram pos-
tuladas como tendo um espectro tal que fitasse os dados observacionais. Deste
modo, qualquer observacao podia ser descrita ajustando as condigoes iniciais
de forma apropriada. Com o advento da inflacao, a origem das perturbacoes
primordiais pode ser explicada e, a partir dela, o espectro primordial pode
ser calculado. Deste modo, tornou-se possivel testar teorias inflacionarias
comparando suas predicoes tedricas com as observagoes.

As perturbacgoes primordiais, de acordo com o que hoje conhecemos, po-
dem ser originarias de dois mecanismos distintos. Elas podem ser geradas a
partir de flutuacoes quanticas do vacuo, como supoem a maioria dos mode-
los, e podem também ser de origem térmica, como veremos posteriormente.
Como a inflacao padrao gera um superesfriamento no universo, devido a ra-
pida expansao do mesmo, a temperatura nao possui um papel fundamental
neste caso. Neste capitulo, vamos entao analisar as flutuacoes de origem
quantica no caso padrao. Apresentaremos aqui uma revisao do caso mais
simples em que a aproximagao de slow-roll pode ser utilizada.

- Perturbacgoes na Inflagao - O Regime de Slow-Roll

As inomogeneidades, em um dado momento, podem ser caracterizadas
pela distribuicao espacial do potencial gravitacional ® ou pela densidade das
flutuagoes de. Estes sao tratados como campos aleatorios para os quais usare-
mos a notacdo f(z). Uma configuragao particular f(z) em uma dada regido
advém de um processo aleatério, por isto o ntimero relativo de regioes em que
uma dada configuragao ocorre pode ser descrito pela funcao de distribuicao
de probabilidade.

E conveniente descrevermos a fun¢do f(z) em um dado volume V através
de uma expansao de Fourier,

ikx ddkj
f(x):/fke G (6.15)

onde os coeficientes complexos de Fourier f, podem ser escritos como f; =
ay + tb,. Dado um ntimero grande de regioes N temos que

dN = Np(a,by,)daydby. (6.16)
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onde p(a}b}) corresponde a funcao distribuicao de probabilidade. Para pro-
cessos gaussianos esta funcao é dada por

1 i
plag, by) = W—Uzexp <—0—’%> exrp (_0_1%) , (6.17)
onde a variancia o:/2 depende apenas de k. Esta variancia caracteriza com-
pletamente um processo gaussiano e todas as fungoes de correlagdo podem
ser expressas em termos dela. O valor esperado do produto dos coeficientes
de Fourier, por exemplo, pode ser escrito como < f,fir >= o20(k + k).

Um campo gaussiano aleatorio pode ser caracterizado pela funcao de cor-
relagao espacial de dois pontos

Er(r —y) =< f(@)f(y) > . (6.18)

Esta funcao nos da a amplitude das flutuacoes de campo nas diferentes
escalas. No caso homogénio e isotropico, esta funcao depende apenas da
distancia entre os pontos x e y.

Substituindo (6.15) em (6.18) obtemos

2.3
oik? sen(kr) dk
— = [ - /7 1
£rlle — ) = [ T sl (6.19)
onde 7 = |z — y|. A variancia adimensional, o7k®/27* = 03(k), corres-

ponde ao quadrado da amplitude da flutuacao com comprimento de onda
A= 1/k. No caso de flutuagoes gaussianas aleatorias, 6]2@ caracteriza comple-
tamente o processo. Para perturbacoes no regime linear cada modo evolui
de forma independente, por isto a distribuicao espacial das perturbacoes ori-
ginalmente gaussianas permanecem gaussianas e apenas seus espectros va-
riam com o tempo. Consideraremos neste capitulo apenas perturbacoes no
regime linear. Assim, para caracterizarmos o espectro primordial das mes-
mas, precisamos calcular a variancia adimensional do potencial gravitacional
05 = |Px|*k? /27, comumente chamada de espectro de poténcias.

Vamos, aqui, demonstrar o calculo do espectro de poténcias primordial
para um modelo simples de campo escalar no regime de slow-roll. Vamos
analisar como pequenas inomogeneidades do campo inflaton dp(x, 1), adicio-
nadas ao background homogéneo ¢(n), se desenvolvem no universo primor-
dial.

Pequenas flutuagoes dp(z,n) induzem perturbagoes na métrica. Existem
quatro graus de liberdade que correspondem a flutuacoes escalares da métrica
(as tnicas quatro formas de se construir uma métrica a partir de flutuagoes
escalares). Considerando estas flutuagdes temos o seguinte elemento de linha
j12],
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ds® = a*()[(1 + 2¢)dn* + Bdnds' — ((1 — 2)8;; — 2E,;)dz'dz’], (6.20)

onde os quatro graus de liberdade sao denotados por ¢, B,F e 1.
A equagao de Klein Gordon para o campo ¢ = ¢g(n) + dp(z,n), conside-
rando a métrica acima, assume, em ordem zero, a seguinte forma,

oy + 2Hp, + a’V, = 0. (6.21)

Enquanto que em primeira ordem nas perturbacgoes da métrica e do campo
ela nos fornece

00" +2Mp" — A(dp — o (B — E)) + a*Vpp0p — ¢3¢ + ¢)' + 20V .6 = 0.

(6.22)

Esta equacao é valida em qualquer sistema de coordenadas. Podemos

expressa-la em termos das varidveis invariantes de gauge ® e V¥, que sao
definidas como

1 a
¢®=¢—~[a(B-E)], UV=¢y+—(B-—F). (6.23)
a a
Estas varidaveis nao mudam sob transformacgao de coordenadas. Isto nos
permite distinguir as inomogeneidades fisicas das ficticeas. Usando a pertur-
bacao invariante de gauge dada por

3 = dp — ph(B— B, (6.24)

juntamente com a equacao de background (6.21]), podemos reescrever (6.22)
em termos das variaveis invariantes de gauge como

0f" +2H3G — Adp + a’Vp,0p — @) (30 + @) +2a*V,® = 0. (6.25)

Esta equacdo contém 3 variaveis desconhecidas, dp, ® e W, por isto deve ser
complementada com as equacgoes de Einstein. Vamos escolher a componente
0i. Podemos escrever esta equacao de Einstein em uma forma invariante de
gauge como L L
8G9 = 8rGHTY, (6.26)

onde 6G? = 6G9 — (OGY - Gk /3)(B—E") ; ¢ 6T = 6T — (OT9 - O Tk /3)(B -
El)ﬁ'.

A componente perturbada do tensor energia-momento 5_Tio do campo es-
calar é dada por

— 1 1 1, ,—
0T} = @%&P,i - g%Q(B —E),; = @(%590),1% (6.27)
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Logo, a equagao de Einstein (6.26) nos fornece
U+ HO = 4o, (6.28)

onde fizemos G = 1 e usamos a expressao da métrica perturbada. As compo-
nentes espaciais nao diagonais do tensor energia momento sao nulas, ja que
estamos considerando o caso isotrépico. Isto implica que ¥ = ®, o que serd
considerado a partir daqui.

Vamos resolver as equacoes e em dois limites: para perturba-
¢oes com comprimento de onda fisico muito menor que a escala de curvatura
H~! e para aquelas com comprimento de onda fisico muito maior que H~!
[143].

A escala de curvatura é praticamente constante durante a inflacao, ao
passo que a escala da perturbacdo Ay, =~ a/k cresce. Portanto, os modos de
interesse que inicialmente possuem A << H !, eventualmente ultrapassam o
horizonte.

Iniciaremos com as perturbacoes no limite A << H~!, deixando a am-
plitude no minimo valor permitido pelo principio da incerteza. A partir dai,
estudaremos como as perturbacoes evoluem antes e apds cruzarem o hori-
zonte.

- Regime )\ << H!

Para pequenos Ay, ou grandes k|n|, o termo de derivada espacial do-
mina na equacao , e a solucao se comportara aproximadamente como
0 = exp(Fikn). O campo gravitacional também oscila, portanto, ® ~ k.
De acordo com eq., temos entao que ¢ = k‘l%@. Considerando,
além destas aproximagoes, que V,, << V ~ H? durante a inflado, ve-
mos que apenas os trés primeiros termos na eq. sao relevantes. Assim
encontramos que

Son + 2Hdpr + k2505 22 0. (6.29)

Fazendo a substituicdo de varidveis dp = ux/a, a equacio acima se torna
a//

uj + (k2 — —) uy, = 0. (6.30)
a

No limite k|n| >> 1, o dltimo termo na equagao acima pode ser despre-
zado. A partir da solucao da equagao acima, obtemos para 0y, a expressao

—_C
dop = f@xp(:l:ik:n), (6.31)
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onde (', é uma constante de integracao obtida através das condigoes iniciais.

- Regime \ >> H!

Para determinar o comportamento das perturbacoes com grande compri-
mento de onda, vamos usar a aproximacao de slow-roll. Nesta aproximacao
podemos desprezar a segunda derivada na equacao de movimento do campo
escalar, obtendo assim

3Hpy+ V., =0. (6.32)
Para usarmos a aproximacao de slow-roll, vamos reescrever as equagcoes

(6.25) e (6.28) em termos do tempo fisico, obtendo assim

0p + 3HIP — Adp + Vb0 — 4ge® + 2V, @ = 0, (6.33)

d + HD = 4mpode, (6.34)

onde definimos d¢ = §p e consideramos ¥ = ®. No caso em que A >> H !,
Adp pode ser desprezado. Para encontrarmos os modos que nao decaem,
no regime slow-roll, podemos também desprezar os termos 63 e ®. Assim,
ficamos com as seguintes equacdes para as perturbacoes,

BHOY 4+ Vb +2V,0 20,  H® X drpdp. (6.35)

Introduzindo a variavel y = d¢/V,, e usando a equacdao de movimento
aproximada do campo, as equagoes acima podem ser escritas como

3Hy +2® =0, H® = 47Vy. (6.36)
Considerando que 3H? ~ 87V na inflacdo, obtemos entao,

dyV)
S (6.37)

A equagdo acima pode ser integrada fornecendo y = A/V, onde A é uma

constante de integracdo. Assim, ficamos com as seguintes equacodes para o
modo que nao decai,

. 1 2

HY 2
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Podemos analisar agora o comportamento de dyy. Para a < ap ~ k/H,
a perturbacao, ainda dentro do horizonte, decresce em amplitude em uma
proporcao inversa ao fator de escala. Apods cruzar o horizonte, a amplitude
cresce lentamente & medida que V,,/V cresce até o fim da inflagao. No caso de
um potencial do tipo lei de poténcia em que V o< ¢", temos que dgj, o< L.

A constante de integracao Ay na equacao anterior pode ser fixada, levando
em conta o principio da incerteza, ao se supor que Jdy; tem a amplitude
minima no momento do cruzamento do horizonte. Isto fornece a estimativa
Ap = (k72 )ax)(V)V ,)kama- Ao final da inflagdo, a condigao de slow-roll é
violada e o termo V,,/V fica da ordem de 1.

Lembrando que dg ~ |®|k3/2, usando a expressio de A e a condicio de
cruzamento do horizonte k ~ aH, obtemos que no momento do cruzamento
a amplitude das flutuagoes da métrica é dada por

: v V2
So(k,ts) = Ak ~ (H—) ~ ( ) : (6.39)
V:S@ kx~Ha |4 k~Ha

P

No caso de um potencial do tipo lei de poténcia, o fator de escala varia
de acordo com a(p(t)) = a;exp(dn/n(p? — ©*(t))) , onde o indice i indica o
valor inicial das grandezas. Com isto, podemos expressar (7., em termos
do comprimento de onda fisico A\, =~ a(t;)k™', o que nos permite obter dg,
para esta classe de modelos, como sendo

n+2

Sa(k,ty) = N2 (Phpy) 5~ AV (Inpr Hy) 5 (6.40)

Vemos, portanto, que a forma do espectro possui desvios logaritmicos de um
espectro plano, com uma amplitude crescendo lentamente para as maiores
escalas. As perturbacOes presentes ao fim da inflacdo atravessam a fase do
reaquecimento praticamente inalteradas. J& a amplitude das perturbacoes,
nao é possivel se prever na auséncia de uma teoria fundamental de particulas,
sendo elas um parametro livre da teoria.

E possivel compreender agora o papel fundamental da inflagdo nas pertur-
bacoes primordiais. De acordo com o Modelo Padrao, as flutuacoes de origem
quantica, inicialmente nas escalas préximas ao comprimento de Planck, sao
"esticadas' pela inflagado até escalas galacticas com amplitude aproximada-
mente inalterada. A inflagao tem, portanto, o papel essencial de conectar a
estrutura em larga escala do universo com a fisica em escalas quanticas.

As flutuagoes quanticas da métrica s6 possuem uma amplitude substancial
proximas a escala de Planck. A tnica forma de obter a amplitude observada
(® ~ 107°) destas perturbagdes em largas escalas, partindo de flutuagoes
quanticas, é esticando estas flutuagoes iniciais de tal modo que elas nao
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percam sua amplitude neste processo. Como vimos, a amplitude da pertur-
bacao decai de forma inversamente proporcional ao fator de escala até que a
perturbacao comece a sentir a curvatura espacial do universo, quando ela ul-
trapassa a escala de curvatura H~!. Portanto, se tivermos uma perturbacio
que permaneca sempre dentro da escala de Hubble sua amplitude decrescera
continuamente até se tornar desprezivel. A expansao inflacionéria fornece
um mecanismo para que os modos de perturbacao saiam do horizonte de
Hubble ja que H~! =~ cte enquanto os modos sofrem expansao e, a partir
dai, a amplitude dos mesmos é preservada. Deste modo, as perturbacoes
conseguem alcancar escalas galacticas com a amplitude prevista. Como a
escala de Hubble é aproximadamente constante durante a inflacdo, a ampli-
tude das perturbacoes é aproximadamente a mesma para diferentes escalas
no momento em que elas cruzam o horizonte, por isto o espectro previsto
para a inflagdo é aproximadamente invariante de escala.

Como as flutuacoes quanticas iniciais sao gaussianas, a evolucao sub-
sequente deve preservar as propriedades estatisticas das flutuacoes. Como
consequéncia, de acordo com o Modelo Padrao, a inflacao prevé perturba-
coes adiabaticas, gaussianas e com um espectro aproximadamente invariante
de escala.

Recentemente, com os novos resultados observacionais, os parametros do
espectro de poténcias primordial puderam ser estimados com grande preci-
sao. O espectro é usualmente escrito, exatamente ou aproximadamente, pela
lei de poténcia: P = A (k/k.)"~!. Usando a escala Pivot k, = 0.05Mpc!,
Planck estimou a amplitude como sendo A, ~ 107°. Para o indice espec-
tral foi obtido ny, = 0.968 4+ 0.006, um valor praticamente constante, visto
que Ong/0lnk foi vinculado como sendo muito pequeno ou nulo. Para as
perturbacoes tensoriais e os parametros de nao gaussianidades, foram obti-
dos apenas limites superiores, sendo, portanto, compativeis com zero. Estes
resultados evidenciam um espectro de perturbacoes aproximadamente invari-
ante de escala, porém com um pequeno desvio para o vermelho, o que implica
em uma leve predominancia de estruturas em largas escalas comparadas com
as pequenas, como era previsto.

Estes vinculos foram obtidos a partir de uma anélise estatistica do espec-
tro de poténcias onde foi considerada uma ampla faixa de multipolos. Como
as caracteristicas dos picos e vales do espectro dependem crucialmente do
modelo considerado, foi suposto nesta analise o Modelo Padrao ACDM. No
entanto, como vimos anteriormente, os pequenos multipolos (I < 30) corres-
pondem as largas escalas que sairam do horizonte na época da inflacao, e
sO voltaram a reentrar no horizonte e evoluir apés o momento do desacopla-
mento. Isto significa que esta regiao do espectro nos traz informagoes diretas
do periodo inflacionario. A amplitude e a inclinagdo do plateau correspon-
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dentes a esta regiao podem ser usadas para determinar respectivamente a
amplitude do espectro primordial e o indice espectral. Sendo assim, esta
regiao de baixos multipolos nos permite vincular os parametros do espectro
primordial independente do modelo cosmologico assumido para o universo
recente. No entanto, sabemos que a acuracia é bastante limitada na regiao
correspondente as largas escalas. Para obtermos uma acuricia maior na de-
terminacao dos parametros inflacionarios, é preciso usar as informacoes dos
picos e outras caracteristicas do espectro em pequenas escalas.

Uma anélise cuidadosa do espectro de poténcias da RCF pode, portanto,
nos trazer uma série de informacoes valiosas sobre o universo desde sua ex-
pansao primordial até sua evolugao recente.

Com o objetivo de caracterizar as flutuacoes cosmologicas primordiais
através de uma perspectiva mais geral, foi desenvolvida uma abordagem cha-
mada teoria de campos efetiva para a inflagao, a qual apresentaremos a seguir.
Como veremos, esta abordagem possui a vantagem de descrever a partir de
uma linguagem comum as flutuagdes cosmologicas de todos os modelos de
inflacao baseados em um tnico campo escalar.

6.5 A Teoria de Campo Efetiva para a Inflacao

Sabemos que a abordagem da teoria de campos efetiva corresponde a uma
descricao de um sistema através dos operadores de menor dimensao compati-
veis com as simetrias do mesmo. Esta abordagem ¢é bastante importante em
diversas areas desde a fisica de particulas a matéria condensada. Ha alguns
anos, foi proposta na literatura uma aplicacao deste método para a descricao
da teoria de flutuagdes em um background cosmologico inflacionario [144].

Através de uma teoria de campo efetiva para a inflacao, é possivel cons-
truir uma abordagem para as perturbacgoes cosmologicas capaz de descrever
diversos cenérios inflacionarios de forma independente de modelo, utilizando-
se apenas de principios de simetria. Esta abordagem possui uma série de
vantagens, algumas das quais descrevemos a seguir:

e Partindo de um cenario de inflagao, é possivel parametrizar nossa igno-
rancia com relagao a possiveis novos efeitos advindos de altas energias
em termos dos principais operadores adicionados na Lagrangeana. FEx-
perimentos cosmologicos poderao vincular estes operadores, por exem-
plo, ao medir os parametros de nao gaussianidades e também desvios
da relacao de consisténcia do modelo padrao. Este procedimento ¢ si-
milar ao que ocorre na fisica de particulas, em que sao colocados limites
aos operadores que descrevem desvios do Modelo Padrao incorporando
efeitos de uma nova fisica.
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e Nesta abordagem fica explicito o que é requerido pelas simetrias do
sistema e pelo background inflacionario e o que é livre. Além disto,
todos os possiveis operadores sao conhecidos.

e Todos os modelos de inflacao baseados em um tinico campo escalar sao
descritos de forma unificada.

Durante a inflagdo simples (com um tinico campo escalar), sabemos que
a invariancia por difeomorfismo temporal é quebrada pela dependéncia tem-
poral do background cosmologico. A teoria mais geral para flutuagoes que
preserva o difeomorfismo espacial e quebra a invariancia por reparametriza-
cao temporal constitui a teoria de campo efetiva para a inflacao.

Sabemos que a perturbacao dp é um escalar sob difeomorfismos espaciais,
enquanto se transforma de forma nao linear sob difeomorfismos temporais. E
possivel escolher um gauge em que nao ha perturbacoes no campo inflaton, e
todos os graus de liberdade estao na métrica. Neste caso, considera-se que a
variavel dp foi "engolida pelo graviton", que passa a ter 3 graus de liberdade,
o modo escalar e duas helicidades. Este é o procedimento usualmente ado-
tado nos modelos cosmolbdgicos baseados na teoria de campo efetiva. Esta
abordagem ¢é anédloga ao que ocorre na quebra espontanea da teoria de gauge.

Em um trabalho recente baseado na teoria de campo efetiva [145], foi su-
gerido que durante a inflacao pode ser possivel que, além da invariancia por
reparametrizacao temporal, a invariancia por difeomorfismo espacial também
seja quebrada na Lagrangeana das flutuagoes. Neste trabalho foi analisado
como esta quebra poderia afetar o espectro primordial tensorial. Ao estu-
dar as contribuicoes para a Lagrangeana de perturbacoes que quebram a
invariancia por difeomorfismo espacial através de termos de massa efetivos
(e também de operadores de derivadas superiores) foi encontrado que o es-
pectro tensorial pode exibir um indice espectral tensorial positivo ny > 0,
chamado de "espectro azul". Este resultado é bastante interessante visto
que diverge das previsoes dos modelos usuais de inflacao, os quais preveem
ny < 0. Poucos modelos na literatura preveem um espectro tensorial azul,
entre eles podemos citar o String Gas Cosmology discutido no Apéndice B.

As proximas observacoes cosmologicas irao vincular o parametro np com
uma precisao cada vez maior. A possivel deteccao de um ny > 0, ou de
um desvio da relagdo de consisténcia padrao, np = —r/8 (onde r é a ra-
780 tensorial-escalar), eliminaria a grande maioria dos modelos inflacionarios
conhecidos. Por isto é importante neste momento explorar as previsoes de
cenarios que geram um espectro tensorial azul. E isto o que propomos fazer
aqui através da andlise do modelo efetivo de inflacao com quebra de invari-
ancia espacial proposto em [145].
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Para que o modelo apresentado em [145] possa ser observacionalmente
vidvel, é necessario que o mesmo apresente para as perturbacoes escalares
um indice espectral ny, < 1. O espectro de poténcias para o caso escalar
nao foi completamente desenvolvido em [145], cujo foco era o caso tensorial.
Portanto, iremos calcular o espectro escalar neste cenario e analisar também
a relagao de consisténcia e a razao tensorial-escalar para este modelo. Os
resultados originais aqui apresentados constam no artigo correspondente &
referéncia [107]

6.5.1 O Calculo do Espectro de Poténcias Escalar

Seguindo a abordagem de [145] investigaremos a teoria de campo efetiva para
perturbagoes cosmologicas em torno de um background quasi-de Sitter, com
quebra de invariancia de difeomorfismo espacial e temporal. Consideraremos
a dinamica de flutuagoes da métrica no gauge unitario, em que as perturba-
¢coes do campo sao nulas. Por simplicidade também nos concentraremos em
operadores no maximo quadraticos nas flutuagoes.

Consideramos a seguinte métrica de FRW em termos do tempo conforme

ds® = g datda” = a*(n)(—nudadz”), (6.41)

onde a*(n) é o fator de escala conforme e a(n) = 1/ — Hn no espago-tempo
de Sitter. Denotaremos as flutuacoes da métrica por h,, = g — G-

A quebra de difeomorfismo espacial serd descrita através de termos efe-
tivos de massa na agao, que nao necessariamente advém de uma teoria de
gravidade massiva, mas simplesmente correspondem a forma mais geral de
expressar operadores quadraticos nas flutuagoes que quebram esta simetria.

A acido de Einstein-Hilbert expandida até segunda ordem adicionamos
operadores genéricos (sem derivadas) que sao quadraticos nas flutuagoes da

métrica hy,,

S = / d*zy/—gM2 [R — 2\ — 2cg™]
1
+ Zle?l /d%\/ -9 [mghgo +2mihg; — mgh?j + mzh; — 2m421h00hz'i} .
(6.42)

Os termos na primeira linha representam o background homogéneo e isotro-
pico que assumiremos para a inflagdo. Usando as equacoes de Friedmann, os
parametros A e ¢ podem ser expressos em funcao do parametro de Hubble
H e sua derivada H. Os termos quadraticos na segunda linha da equagao
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acima quebram a invariancia de difeomorfismo embora preservem a invari-
ancia SO(3) e nao quebrem a isotropia espacial. O termo proporcional a m32
quebra a invariancia por reparametrizacao temporal e os outros termos de
massa quebram a invariancia por difeomorfismo espacial. No limite m; — 0
com ¢ # 0 a invariancia é restaurada.

Podemos considerar os termos de massa na equagao acima como advindos
de acoplamentos entre a métrica e os campos adquirindo um perfil depen-
dente do tempo durante a inflacdo. Assumiremos aqui, como aproximacao,
que estes coeficientes sao constantes durante a inflacao e vao a zero quando
a inflacao termina. No entanto, uma pequena dependéncia temporal propor-
cional ao parametro de slow-roll seria esperada para estes operadores.

Podemos escrever a equagao (6.42) em termos de flutuagoes escalares,
vetoriais e tensoriais, ao decompor as flutuagoes da seguinte forma,

hOO = 1/}7 (643)
hoi = u; + O;v, sendo O;u; = 0,
hij = Xij + 8(Z-sj) + E)i@jcr + (SijT, sendo E)isi = &X” = 6inij = O

A partir da parte tensorial da agao, foi obtido em [I45] o seguinte espectro
de poténcias

2H? ([ k\"" 2ms 4
pp—_2t (X =2+ -—2(1+- 6.44
T WQMglCT (k*) 9 nr € "‘ < + 3€> ) ( )

em primeira ordem nos parametros de slow-roll. Na equacao acima cp =
1 quando considerados apenas os termos de massa descritos previamente,
desconsiderando possiveis termos de derivadas mais altas na Lagrangeana.

Podemos ver pela equagao acima que, se m3/H? for positivo e suficiente
maior que o parametro de slow-roll, obtemos um indice espectral tensorial
positivo. Este resultado é bastante interessante, visto que mostra que um
espectro tensorial azul pode ser obtido sem violar a condigao de energia
nula. E importante saber agora se este modelo pode estar em concordancia
com os viculos observacionais atuais para o espectro de poténcias escalar e
se isto implica em algum limite para o parametro msy.

Expandindo a agao (6.42) até segunda ordem nas flutuacoes escalares
obtemos
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1 /
S — ZM; / d*ra*{—6(7' + aHy)* +2(2¢ — 7)V?7
+4(7" + aHY)V? (20 — ') + a®[(mg + 2e H?)p* — 2mivV3v
—m3(oVio 4+ 27V%0 + 37%) + m3 (Vo + 37)2 — 2miy(Vo + 37)]}.
(6.45)

A teoria descrita pela acao acima pode ser livre de instabilidades e ghosts,
desde que as massas satisfacam certas condigoes [146]. Em [145] foi encon-
trado que nao ha modos vetoriais que se propagam quando m? = 0. Para
eliminar graus de liberdade vetoriais, consideraremos aqui este caso.

A partir da eq. com m? = 0 podemos obter a equagao de movi-
mento para os campos auxiliares ¢, v e o. Substituindo estas expressoes na
acao, obtemos apdés um pouco de algebra

S = M3 d4xa—2[(m% + 26H2)(m% _ m%) + miT/Q
o)
mia*H?*(m3 — 3m3 + (3 4 €)m3)

m3 —m3

+ eH*TVT — 7], (6.46)

que ¢é funcao de um tnico campo 7.
A perturbacao escalar 7 esta relacionada a perturbacao de curvatura co-
movel em um gauge arbitrario através da equagao

H(1" — Ha)
H — H2
No gauge unitario, a equacao de movimento do campo auxiliar 1 requer
7/ = Hap, por isto temos que R = 7. E possivel mostrar que a perturbacio
de curvatura nao é conservada fora do horizonte neste modelo. Além disto, a
perturbagao de curvatura comdével R e a perturbagao de curvatura em segoes
de densidade uniforme ¢ nao coincidem no limite de largas escalas, como
ocorre usualmente.
Podemos normalizar 7 substituindo 72 = N*72 na eq. (6.46), onde N? ¢
dado por

R=r1— (6.47)

H?2 2

2
2(m3 —m3)
Assim, podemos escrever a acao na forma mais simples

S = / d'za®[7” + (7VP7) + a*M?77), (6.49)
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onde ( ) 2)
2 = 2eH? My , 6.50
; (2§ 2eHE) (i — md) + ] (6.:50)
e

(m§ + 2eH?)(m3 — m3) 4+ mj

Se considerarmos uma nova variavel v = a7 e a substituirmos na eq.

(6.49) obtemos

N\ 2 /
S = /d3xdn[v’2 + (%) v? — 20 (a_) v — VoV + a®M*v?.  (6.52)

a

A partir da eq. de Euler-Lagrange segue que

7

V(B — a?M? — Ly = 0. (6.53)
a
Em primeira ordem no parametro de slow-roll, o fator de escala na inflagao
¢ dado por a = —(1 + €)/Hn. Portanto, a’/a = (aH)*(2 — €). Podemos
entao escrever a” /a =~ (2 + 3¢)/n?. Assim, a equagdao de movimento assume
a seguinte forma,

v+ Ak — [(1426)b+ (2 + 36)]% =0, (6.54)

onde b = M?/H?. Assumindo o vacuo de Bunch-Davis como condigao inicial,
temos no limite de pequenos s a solugao v = e~"k7//2¢c k. enquanto que
no limite de grandes As temos a solucao

v — Cln%—,/25b+3e+b+9/4 + 62n%+\/26b+3e+b+9/4‘ (6.55)

O primeiro termo ¢ o modo crescente (supondo b+9/4 > 0). Consideraremos
apenas esta solucao crescente. Ao igualarmos a solucao para grandes compri-
mentos de onda com a solugao para pequenos comprimentos de onda quando
2k?* = (b + 2)/n?, encontramos para a constante ¢; a seguinte expressao,

&

(6.56)

o—iVbF2 ek 5=/ 2eb+3e+b49/4
T 2k (\/b+2> '

Com estas solucoes, obtemos o seguinte espectro de poténcias escalar,

k3|2 ~24/2b+3e+b+9/4 1-24/2eb+3e+b+9/4
o= BIE _ s i [ o
a*N* 2a2N?2 Vb+2 .

(6.57)
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Como a perturbacao de curvatura R nao é constante fora do horizonte neste
modelo, a expressao acima deve ser calculada no fim da inflacdo (n = cte,
a = cte).

Vemos que o indice espectral escalar ¢ dado por,

ng —1=3—2y/2eb+ 3¢ +b+9/4. (6.58)

Portanto o espectro serd vermelho, ny < 1, se \/2¢b + 3¢ +b+9/4 > 3/2.
E possivel ver que, para recuperarmos o valor esperado observacionalmente
para o indice espectral, n, = 0.96, o parametro b deve ter um valor préximo
de zero. Isto pode ocorrer se a condi¢io m3 & 3m3 for satisfeita, juntamente
com a condi¢do my ~ 0, (veja eq. ) Também podemos ver a partir
da equagao (6.57)), que é calculada em um momento fixo no fim da inflagao,
que a amplitude esperada pode ser obtida se também ¢, — 1 e N? — €.
Uma das possibilidades para se obter estes limites é se, além de my = 0,
o parametro mg for bem menor que os parametros ms e ms. Embora esta
nao seja a Unica possibilidade para gerar o espectro esperado, este ¢ um
caso especifico interessante para se considerar. Vemos que nenhum destes
vinculos implica em um limite superior para o parametro msy. Isto mostra
que é possivel, neste modelo, termos um espectro tensorial azul e ao mesmo
tempo o espectro escalar vermelho observacionalmente esperado.

Ao comparar as equagoes e com as respectivas nos modelos
usuais de inflacao, podemos observar que o parametro de slow-roll no termo
3e das equacoes acima corresponde ao parametro de slow-roll calculado no
momento do cruzamento do horizonte no nosso modelo. Quando b — 0, a
perturbagao de curvatura é conservada fora do horizonte e o parametro de
slow-roll é entao calculado no momento do cruzamento. Portanto, denotare-
mos esta quantidade por e..

Podemos obter uma expressao simplificada para ny — 1 ao expandir a raiz

quadrada na equacao (6.58) como se segue,

9 3 9

De acordo com as observagoes atuais, esta quantidade deve ser aproxima-
damente igual a —0.04. Como os modelos simples de inflacao possuem boa
concordancia com as observacoes para este parametro, a expressao acima
deve corresponder a ng — 1 &~ —2¢y, onde €y é o parametro de slow-roll dos
modelos de inflacao usuais. Temos entao a seguinte relacao,

8 4 4 2
ns—l:3—3\/—eb+—ec+—b—|—1%—266—319. (6.59)

b
€+ 3 Rev. (6.60)
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Podemos ver que, no modelo em questao, o valor do parametro de slow-roll
no momento do cruzamento do horizonte pode ser menor (ou maior) que no
caso usual por um fator de ~ b/3.

Podemos escrever o parametro b através de uma expressao mais simples
considerando que mg, my << my, m3 na eq. (6.51), de modo que obtemos,

2
—my7y

b= ——=—— 6.61
eH2(y +2m3)’ ( )

onde definimos v = m3 — 3m3. O parametro  pode ser positivo ou negativo,
mas deve ser pequeno para estar de acordo com as observacoes.

Usando as equagoes (6.44) e (6.57) podemos calcular a razao tensorial-
escalar definida como r = P,(k.)/Ps(k.) = A;/As. Assim obtemos,

2H2 2@2N2 \/m 172\ / 26b+36+b+9/4
M2 2 /2eb+3e+b+9/4 n

: (6.62)

r =

onde N e ¢, sdo dados pelas eqs. (6.48) e (6.50) respectivamente. E possivel

verificar que no limite em que b = 0, ¢, = 1 e N? = € recuperamos a expressao
esperada para a razao tensorial-escalar. Neste caso, a relacao de consisténcia
usual, » = —8ny, é recuperada.

Comparando as expressoes obtidas para os indices espectrais tensorial e
escalar,

2m32
= 2e+-—2(1+2 .
nr E+3H2( + 2¢), (6.63)
2 M?

podemos ver que no caso em que o espectro tensorial ¢ azul, ou seja, se o
segundo termo na expressao de n; for maior que o primeiro, é possivel obter
a relagao dos modelos de string gas cosmology, n; = —(ns— 1) (ver Apéndice
B). Esta relagdo é satisfeita no nosso modelo sempre que

2m3 2 M?>

Devemos lembrar que M? pode ser positivo ou negativo mas o lado direito da
equagao deve ser negativo para se obter um espectro escalar vermelho.

A igualdade acima pode ser satisfeita para um espectro escalar compati-
vel com as observagoes e um espectro tensorial azul. Concluimos, portanto,
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que o modelo aqui apresentado pode reproduzir certas previsoes dos modelos
de String Gas. Torna-se importante neste caso analisar as previsoes deste
modelo para os parametros de nao gaussianidades com o objetivo de verificar
se estas previsoes seriam capazes de distinguir os dois modelos observacio-
nalmente.

Embora os resultados apresentados tenham sido obtidos a partir de ope-
radores de massa na Lagrangeana que quebram a invariancia por difeomor-
fismo espacial, em [145] foi mostrado que certos operadores contendo mais de
duas derivadas espaciais podem imitar os efeitos destes operadores de massa
mesmo em cenarios que preservam esta simetria.

No capitulo seguinte, falaremos com mais detalhes sobre os principais
experimentos observacionais capazes de fornecer dados para vincular os pa-
rametros aqui discutidos.

6.6 O Universo Primordial e as Observacoes
Atuais

Atualmente nos encontramos em um momento privilegiado da historia da
Cosmologia. Com diversos experimentos em execugao visando mapear a
Radiagao Cosmica de Fundo, passamos a ter acesso a uma valiosa ferramenta
para se testar modelos cosmologicos do universo primordial com uma grande
precisao.

Além de confirmarem a previsao geral de um espectro de poténcias apro-
ximadamente invariante de escala com um indice espectral levemente verme-
lho, estes experimentos tém tido grande importancia também na medicao da
polarizacao da RCF associada as ondas gravitacionais primordiais.

O padrao de polarizacao da RCF pode ser representado por duas compo-
nentes. Uma delas é o chamado modo E, que ¢ a componente sem rotacional
(que possui apenas gradiente). Este modo foi detectado pela primeira vez em
2002 pelo Degree Angular Scale Interferometer (DAST). A outra componente
¢ o modo B, que corresponde a componente sem divergente (que tem ape-
nas rotacional). Existem dois tipos previstos de modos B, o primeiro gerado
no universo primordial, e o segundo gerado através do mecanismo de lentes
gravitacionais. Como as estruturas cosmoldgicas, através do mecanismo de
lentes gravitacionais, desviam a trajetoria dos fotons da RCF, as mesmas
distorcem a polarizacao primordial, convertendo modos E em modos B.

Em 2014, a colaboragao do experimento BICEP2 anunciou uma signifi-
cativa deteccao de modos B na frequéncia de 150GHz, que a principio seria
superior ao previsto pelo mecanismo de lentes gravitacionais. Este excesso
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foi também encontrado pelo experimento sucessor Keck Array. No entanto,
posteriormente foi visto que o nivel de poeira nesta regiao poderia dar conta
do excesso detectado. Uma confirmagao da origem da polarizacao detec-
tada foi feita apenas ap6s uma analise conjunta feita com a colaboracao do
Planck em 2015 [I47]. O satélite Planck observou todo o céu em polarizagao
em sete frequéncias de 30 a 353 GHz, porém com menos profundidade em
cada regiao. O mesmo havia indicado previamente um vinculo para a ra-
zao tensorial-escalar dado por rg g2 < 0.11 e, portanto, compativel com zero.
Apos a anélise conjunta de BICEP2/Keck/PLANCK foi obtido, para a razao
tensorial-escalar, um vinculo compativel com o resultado previamente obtido
por Planck 2013. De acordo com a colaboragao, o melhor ajuste obtido para
r, igual a 0.05, nao possui significancia suficiente para ser interpretado como
deteccao dos modos B primordiais. Os proximos experimentos, no entanto,
deverao trazer importantes dados adicionais nos proximos anos.

Observando a partir do polo sul, cada geraciao da série de experimen-
tos BICEP1, BICEP2, Keck Array e BICEP3, representou um aumento na
sensibilidade para os modos B. BICEP1 (2006-2008) possuia 98 detectores.
BICEP2, tendo comecado em 2010, contava com 512 detectores. Os primei-
ros trés dos cinco telescopios Keck Array comecaram a observar em 2011 cada
um com 512 detectores. BICEP3, com 2560 detectores, comecgara a operar
em 2015.

Além dos conhecidos experimentos Planck e BICEP, existe uma série de
outras colaboracoes que tiveram, ou estao tendo, um papel fundamental na
medicao da RCF.

Um dos experimentos relacionados & RCF que podemos mencionar é o
chamado POLARBEAR. Localizado no deserto do Atacama no Chile, este
instrumento tem como principal objetivo medir a polarizacao da Radiagao
Cosmica de Fundo e detectar os modos B das ondas gravitacionais. Ao
mapear os modos B gerados através do mecanismo de lentes gravitacionais,
o experimento POLARBEAR tem dado grandes contribui¢oes para a anélise
da polarizacao primordial da RCF.

Proximo a este instrumento, também no deserto do Atacama, se loca-
liza o Atacama Cosmology Telescope (ACT). Com 6 metros de didmetro, o
mesmo mapea a RCF na faixa de microondas, o que também tem fornecido
importantes dados sobre o universo primordial.

Outro importante experimento que podemos mencionar para a andlise
da RCF é o South Pole Telescope (SPT). Com um telescopio de 10 metros
de diametro situado em uma estacao de pesquisa no polo sul, o SPT foi
projetado para mapear a temperatura e a polarizacao da RCF. Através de
observagoes de alta sensibilidade em amplas areas, 0 mesmo opera nas regioes
de comprimento de onda milimétricas e submilimétricas.
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Além dos experimentos em solo, com a finalidade de analisar as anisotro-
pias da RCF, foram lancados também diversos baloes e alguns satélites, entre
eles o Planck. O satélite Planck foi o terceiro experimento cientifico a coletar
dados da Radiagdo Cosmica de Fundo, sendo precedido pelo COBE (Cos-
mic Background Explorer) e pelo WMAP (Wilkinson Microwave Anisotropy
Probe). Na figura apresentamos o mapa das anisotropias de tempera-
tura da radiacao césmica de fundo, obtido pelos satélites COBE, WMAP e
Planck.

Figura 6.2: Anisotropias da Radiacdo Césmica de Fundo. (Esta figura foi
retirada da ref [148])

Os dados observados foram submetidos a uma série de analises que nos
fornecem precisas informagoes sobre os parametros cosmologicos [149] [150].
Além de confirmar alguns resultados ja obtidos pelas missoes anteriores, au-
mentando a precisao dos parametros, com o Planck vieram novos importantes
resultados, entre os quais podemos citar:

e A idade do universo foi estimada como sendo 13,8 bilhoes de anos.

e O valor aceito para a constante de Hubble H, foi alterado de 74,2
km/s/Mpc para 67,8 km/s/Mpe, o que indica uma expansao do uni-
verso mais lenta do que se esperava.

e A porcentagem de matéria barionica e matéria escura, que até entao
eram consideradas como sendo 4.6% e 24% respectivamente, passaram
a ser estimadas em 4.9% e 26.8% respectivamente.
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e Evidenciou-se um universo com curvatura espacial muito proxima de
zero, Qg ~ 0.

Apesar de ter se confirmado de um modo geral o padrao uniforme, ho-
mogéneo e isotropico da RCF, foram confirmadas a presenga de anomalias
sutis no padrao da RCF, associadas aos baixos multipolos, algumas das quais
j& haviam sido indicadas pelas missoes anteriores. Estas anomalias nao sao
explicadas pelo modelo padrao e ainda constituem um desafio a cosmologia.

Os resultados do Planck foram especialmente importantes no contexto da
aceleracao primordial. Ao se impor severos vinculos aos parametros relaci-
onados ao universo primitivo [I5I], diversos modelos inflacionarios puderam
ser testados com as observacoes de forma precisa. Planck forneceu a pri-
meira evidéncia concisa de que a distribuicao de flutuacoes primordiais nao
é idéntica em todas as escalas, abrangendo mais estruturas em largas do que
em pequenas escalas. Ja evidéncias significativas de nao gaussianidades e
ondas gravitacionais nao foram encontradas, havendo apenas limites superi-
ores para os valores destes parametros. Ao mostrar por exemplo, que a nao
gaussianidade é pequena, ou nula, eliminou-se um largo espectro de modelos
inflacionarios mais complexos.

Os novos dados da RCF restringiram severamente o panorama de modelos
inflacionarios observacionalmente viaveis. Além dos problemas conceituais
dos cendrios inflacionarios tradicionais, ja& bem conhecidos, as observacoes
colocaram agora diversos modelos em cheque.

Com os novos vinculos obtidos, o paradigma inflacionario ficou em uma
situagao controversa. Embora muitos tenham destacado que os resultados
obtidos favorecem modelos bem conhecidos de inflacao, muita discussao foi
gerada a este respeito desde entao[152, 153], 115, [154]. Independente dos re-
sultados observacionais, como mostrado em [I54], é de consenso geral que o
cenario classico da inflacao ja se encontrava em uma situacao bastante proble-
mética do ponto de vista conceitual. Para compreender esta situagao, vamos

primeiramente relembrar alguns aspectos do cenario classico da inflacao.

A Inflagao Classica

Trés suposicoes independentes devem ser especificadas para se determinar
as previsoes de qualquer cenério inflacionério, que sao as condi¢oes iniciais, o
potencial do inflaton e a medida. As condi¢oes iniciais se referem ao momento
em que a relatividade geral classica comeca a ser uma boa aproximacao para
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descrever a evolugao cosmologica, tipicamente o tempo de Planck. O poten-
cial do inflaton determina uma familia de trajetorias classicas, as condicoes
iniciais selecionam um conjunto destas trajetorias, e a medida define um peso
relativo entre as trajetorias.

No cenario classico, apesar da maior parte das regioes do espaco, ao emer-
gir do Big Bang, nao ter as condicoes necessarias para iniciar uma inflacao,
isto ¢ compensado pelo fato de que a inflacio aumenta exponencialmente
o volume das regides que possuem as condicoes iniciais corretas. Usando o
volume como medida, regioes planas e regulares dominam entao o universo
apos a inflacao, mesmo que as condicoes iniciais associadas a elas sejam muito
raras. Desta forma, para potenciais simples com um minimo de campos e
um minimo de ajuste nos parametros, é possivel se obter a inflacao com o
espectro esperado.

No entanto, o cendario classico da inflacao possui uma série de problemas.
Primeiramente, todos os potenciais inflacionarios requerem ordens de mag-
nitude de ajuste fino nos parametros para gerar a amplitude observada das
flutuagoes primordiais de densidade. Outro problema ¢ que a probabilidade
de uma certa regiao do espaco ter as condicoes iniciais necessirias para o
inicio da inflacao nestes modelos é exponencialmente pequena.

Podemos mencionar também o problema do multiverso (também chamado
problema da medida) que resulta do cenério da inflacdo eterna [155] [156].
Ao assumir uma evolucao classica para o inflaton, a inflacao chega ao fim
em um tempo finito, quando o inflaton chega no minimo de seu potencial.
No entanto, sabemos que existem flutuacoes quanticas na evolugao do campo
que podem tirar o mesmo da sua trajetoria classica, levando-o para valores
maiores do potencial. Consequentemente estas regioes sofrem mais inflagao
e se tornam dominantes em termos de volume. Ou seja, a inflacao ampli-
fica regioes advindas de flutuagoes quanticas raras que mantém o universo
em expansao gerando a inflagdo eterna. Miltiplas flutuagoes quanticas po-
dem ocorrer de varias formas durante a evolugao do campo gerando diversos
volumes (bolhas) associados a diferentes trajetorias do campo e, consequen-
temente, a diferentes propriedades cosmologicas. O resultado deste processo
é um multiverso no qual tudo o que pode acontecer acontece infinitas vezes.
Isto gera uma dificuldade para se definir probabilidades nestes cenarios. No
contexto da inflacao classica, o volume seria a medida mais natural para se
definir pesos relativos. Porém, a maior parte do volume do universo estaria
atualmente em inflacao nestes modelos, e a maior parte que nao esta inflando
seria mais jovem que nosso universo. Usar o volume como medida implica
que o nosso universo observado é exponencialmente improvavel por um fator
de 10719 ou mais. Este consiste em um dos maiores problemas do cenério
inflacionario.
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Existe, porém, uma classe de modelos que é capaz de evitar alguns dos
problemas acima. Esta foi denominada recentemente de “inflacao pdés mo-
derna” [I54]. Estes cenarios consideram suposi¢oes bastante diferentes, com
relacdo ao cendario cléssico, no que se refere ao paradigma inflacionario. Pri-
meiramente os mesmos consideram potenciais extremamente complexos com
diversos campos, muitos parametros e ajustes. Neste novo cenério, ao con-
trario do caso classico, assume-se o desconhecimento das condicoes iniciais
do universo e considera-se que o periodo inflacionario por si s6 nao explica
como o universo evoluiu a partir de condi¢oes iniciais tipicas. Além disto,
a escolha do volume como medida ¢ rejeitada, e considera-se que a medida
deve ser determinada de modo a satisfazer as observacoes. Tal abordagem
tem sido recentemente alvo de muitas criticas [I54]. Além da medida néao ser
determinada, tais modelos se encaixam no cenério do multiverso e, como vi-
mos, uma teoria consistente de probabilidades ainda nao foi encontrada neste
contexto. Também o fato da teoria introduzir um nimero muito grande de
parametros a torna facilmente ajustavel as observacoes, o que demonstra um
problema de falta de previsibilidade do modelo.

Concluindo, temos como alternativa ao cenario classico um cenério de
um multiverso onde probabilidades sao mal definidas, baseado em potenciais
complexos associados a miltiplos campos, parametros e ajustes, sem uma
medida determinada e com baixo poder de previsao. Como questionado
em [I54], se a inflacao classica estd em cheque, estamos dispostos a aceitar a
inflacao p6s moderna? Ou é o momento de buscar um paradigma cosmolédgico
alternativo?

E esta questdo que buscamos abordar nos proximos capitulos. Alguns
cenarios alternativos a inflacdo tém sido recentemente propostos, entre eles
podemos mencionar o String Gas Cosmology (discutido no Apéndice B),
os cenarios ekipirdticos, os modelos de branas, entre outros. No proximo
capitulo, apresentaremos outros trés cenarios alternativos para a expansao
primordial baseados em fundamentos diferentes, que também dispensam o
papel do campo responsavel pela inflacao. Estes trés cenarios, além de evitar
os problemas descritos acima, possuem a vantagem de unificar as duas fases
aceleradas do universo a partir de um tnico mecanismo.
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Capitulo 7

Cenarios Cosmologicos
Alternativos para a Aceleracao
Primordial

Vimos, na primeira parte do trabalho, que certos processos fisicos natural-
mente esperados no universo, como a criacao gravitacional de particulas, a
viscosidade volumar e o decaimento do vicuo, poderiam, em certos casos,
gerar as condigcoes necessarias para a aceleracao cosmica. Tais processos fi-
sicos também sao esperados no contexto do universo primordial, onde altas
energias e um campo gravitacional forte compunham um universo em rapida
expansao.

A existéncia destes mecanismos, tanto no universo primitivo quanto no
universo recente, nos sugere a possibilidade de uma descricao unificada para
a aceleracao cosmica baseada nestes processos. Veremos, a seguir, propostas
fenomenologicas que descrevem de maneira unificada as duas fases aceleradas,
fornecendo uma descricao completa para a evolugao do universo que evolui
de uma fase de Sitter inicial a uma fase de Sitter final, passando pela era da
radiacao e da matéria.

7.1 Um Modelo Completo de Criacao Gravita-
cional de Particulas

Na primeira parte do trabalho, vimos que os modelos de criacao de particu-
las se baseiam no fenémeno quantico da producao de particulas as custas do
background gravitacional variando no tempo. Um caso simples que exem-
plifica 0 mecanismo fundamental por tras deste processo pode ser ilustrado
através do campo escalar massivo ¢ minimamente acoplado em um espaco-
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tempo de FRW. Ao escrevermos o mesmo na forma ¢(n, z) = a(n) 'y, vimos
que o campo X obedece a mesma equacao de movimento que um campo
escalar massivo no espago de Minkowski, porém com uma massa efetiva de-
pendente do tempo da forma mZ;;(n) = m*a® — a” /a. Esta massa efetiva
leva em conta a interagao entre o campo escalar e o campo gravitacional.
No contexto da Relatividade Geral, o fator de escala em um universo FRW
dominado por radiacdo (a o< t'/?) satisfaz a seguinte relacdo [ad + 4% = 0,
ou em termos do tempo conforme a” = 0. Portanto, para campos sem massa
nao ha producao de particulas nesta fase, ji que a equacao de movimento
de x se reduz & mesma de um campo escalar sem massa no espaco-tempo de
Minkowski. Esta ¢ a base do teorema de Parker sobre a auséncia de producgao
de particulas sem massa na era da radiacgao.

No entanto, o teorema de Parker nao proibe a produg¢ao de particulas sem
massa em uma fase de Sitter primordial na qual a” # 0. E de esperar que, em
uma fase de Sitter inicial associada a uma rapida expansao do universo, haja
uma significativa producao gravitacional de particulas relativisticas. Deste
modo, o mesmo mecanismo responsavel pela aceleracao recente do universo
poderia ser responsavel também pela aceleracao primordial. Esta é a base
do modelo completo de criagao gravitacional de particulas proposto em [86].
E importante ressaltar que, para criacio adiabatica de fotons, a forma do
espectro de corpo negro é preservada ao longo da expansao [157].

Vamos assumir um universo dominado por radiacao e dotado de producao
gravitacional de radiagdo (w = 1/3,T', # 0). Sendo consequéncia da expan-
sao do espago-tempo, podemos esperar uma taxa de criacao proporcional a
alguma poténcia de H, de tal modo que

r H\"

L 7.1
=) (7.1)
onde H; é o parametro de Hubble na fase de Sitter inicial. A expressao acima

corresponde a uma generalizagdo da expressao considerada em [86].
As equagoes de Friedmann (3.4) e (3.5) para este modelo implicam na

seguinte evolucao
. H\"
H + 2H? (1 — (—) ) = 0. (7.2)
Hy

Desta forma, a solucao de Sitter (H = 0) ocorre inicialmente quando H =
H;. Como o universo estd em evolucao tal solugao é instavel. A partir da
equacao acima ¢ possivel concluir que o principal efeito de I' é causar uma
instabilidade dinamica no espacgo-tempo de modo a gerar uma transicao de
um regime de Sitter (I' ~ 3H) para a solugao convencional e vice-versa.
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A solucao da equacao acima pode ser escrita como

Hy
onde D > 0 é uma constante de integracao. Podemos ver que para D > 0 o
universo inicia na fase de Sitter sem singularidade e depois transita natural-
mente para a fase da radiacio em que a  t'/2, quando Da?" > 1.

Devido a fase inicial de Sitter o modelo é livre de horizonte de particu-
las. Desta forma as interacoes locais teriam homogeneizado todo o universo.
Nesta fase H = H; ~ cte e, devido a producao de radiacao, a expansao
procede de forma aproximadamente isotérmica, o que implica que o superes-
friamento e a necessidade do reaquecimento do universo sao evitados. Ou
seja, nao existe o chamado "Graceful Exit Problem".

A expansao de Sitter é capaz de resolver todos os problemas usuais que
os modelos de inflacao se propoem a resolver. Além disto, como fé6tons nao
sao produzidos na era da radiacao, I', — 0 nesta fase, e a nucleossintese
primordial ocorre da forma convencional. Subsequentemente o universo entra
na era da matéria escura quando, a partir dai, inicia a producao gravitacional
de particulas de matéria escura.

Como vimos na primeira parte do trabalho, existem diversas propostas
fenomenolégicas para a taxa de produgao de particulas de matéria escura
no universo recente, que consideram a mesma como sendo proporcional a
uma dada poténcia de H. Assim, podemos descrever genericamente esta
taxa de criacdo como I'/3H = (Hy/H)™, sendo m um nimero nao negativo
e Hy o valor final do parametro de Hubble na fase de Sitter futura. Este
expressao geral contempla também os trés casos estudados na primeira parte
do trabalho. Deste modo, podemos formular uma descri¢ao unificada para as
duas fases aceleradas do universo através da seguinte expressao para a taxa
de criacao de particulas

SGC) e

Vemos que, no universo primordial, em que H ~ H; e H >> Hy, o
primeiro termo domina gerando a evolucao de Sitter no universo antigo. J&
no universo recente em que H << Hj, o segundo termo domina, descrevendo
assim os casos vistos na primeira parte do trabalho.

Como apontado em [86], este modelo pode ser consistente com os tes-
tes observacionais para o universo recente também a nivel perturbativo, in-
cluindo a taxa de crescimento das estruturas cosmicas.

Veremos, nas proximas segoes, que uma descri¢cao unificada anéloga tam-
bém pode ser construida para os modelos de viscosidade e decaimento do
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vacuo.

7.2 Um Modelo Completo de Decaimento do
Vacuo

Vimos que, nos modelos de decaimento do vacuo, o valor hoje observado da
densidade de energia do vacuo A\ corresponde a um remanescente da energia
existente no universo primordial responsével pela inflacdo. E necessario, por-
tanto, relacionar a magnitude de A(¢) atualmente com seu valor na época da
expansao primordial. Com este objetivo, foi proposto em [I58] um modelo
de decaimento do vacuo capaz de descrever a evolugao de A(t) do universo
primordial ao universo recente. Este modelo foi denominado cenério com-
pleto de decaimento do vacuo, pois o mesmo descreve a evolugao do universo
de uma fase de Sitter inicial a uma fase de Sitter final, passando pela era da
radiagao (iniciada através de uma transicao suave) e pela subsequente era da
matéria.

A lei de decaimento proposta em [I58] se baseia na covariancia da agao
efetiva da Teoria Quantica de Campos em espagos curvos, que sugere que
no universo primordial apenas as poténcias pares do parametro de Hubble
contribuem para A(t) [159]. Esta lei é escrita como

H4

A(H) = Cy =+ 31/H2 + 3B—27
HI

(7.5)
onde v e [ sao parametros adimensionais e H; é o parametro de Hubble na
inflagao primordial. A constante ¢y acima representa o termo dominante a
baixas energias, e as poténcias de H representam, no universo recente, pe-
quenas correcoes ao termo dominante. No entanto, estes termos possuem
grande relevancia no universo primordial. Nesta fase H ~ Hj, e o segundo
e terceiro termo dominam na equacao acima. Devemos lembrar que con-
sideramos, neste modelo, o decaimento do vacuo na componente material
dominante do universo em cada fase.
O parametro de Hubble em questao evolui da seguinte forma

.3
H+§(1—|—wm)H2 l—v— s — = 0. (7.6)

Neste cenério o universo inicia em uma fase de Sitter e, apés uma producao
substancial de particulas relativisticas (a partir do decaimento do vacuo), ele
evolui para a fase da radiacao e posteriormente para a fase da matéria. Nesta

fase a equacao (7.5) se reduz a
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A(H) = Ao + 3v(H? — HY), (7.7)

onde Ay = ¢y — 3vHZ ¢ o valor atual da constante cosmologica. Atualmente
este modelo evolui da mesma forma que um modelo com uma energia es-
cura variando lentamente. Porém, posteriormente o universo entra em uma
segunda fase de Sitter.

Em [160, I6I] foi feita uma analise conjunta com supernovas, RCF e
BAO para vincular o parametro v, que quantifica o desvio deste modelo com
relacao ao comportamento do ACDM. Foi encontrado que o melhor ajuste
é |v| = O(1073) . Enquanto que, para €2,,, foi encontrado o melhor ajuste
00 ~(.27 — 0.28.

O modelo cosmologico descrito pela lei de decaimento é apenas uma
das possibilidades fenomenologicas para descrever o decaimento. Também
fornecem cenarios cosmologicos consistentes modelos que seguem a lei mais
geral

2n

H
I
Tais modelos também sao capazes de gerar uma fase inflacionaria de Sitter

no universo primordial com uma transicao suave para a era da radiacao.

7.3 Um Modelo Completo de Viscosidade

Sabemos que diferentes componentes do fluido cosmolégico possuem diferen-
tes leis de evolugao para a temperatura e diferentes tempos de resfriamento a
medida que o universo se expande. Consequentemente, ha uma troca interna
de calor irreversivel no fluido, a qual é descrita pela viscosidade volumar.
Como apontado em [162], durante e apds a transigao de fase ocorrida na
época da grande unificagdo, o universo consistia em uma mistura de parti-
culas extremamente relativisticas e particulas ndo-relativisticas (leptoquark
gauge bosons) com um tempo minimo de interagdo da ordem da idade do
universo. Esta mistura possuia uma viscosidade volumar significativa, o que
faz com que seja importante considerarmos as possiveis consequéncias cos-
mologicas deste processo no universo primordial. Também neste contexto,
embora a teoria cinética nao preveja que a pressao negativa associada a vis-
cosidade possa superar a pressao de equilibrio, acreditamos que a situagao
possa ser diferente no contexto da teoria de campos em espacos curvos fora
de equilibrio.

Como vimos anteriormente, os modelos de viscosidade sao dinamicamente
equivalentes aos modelos de decaimento do vacuo. Vamos entao obter a
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expressao geral do coeficiente de viscosidade capaz de descrever uma evolucao
cosmologica completa (de de Sitter a de Sitter) como a que obtivemos para
o modelo de decaimento do vacuo.

A condicao de equivaléncia que obtivemos na primeira parte do trabalho
entre os dois modelos pode ser escrita em fungao do coeficiente de viscosidade
€omo

(1 + w)A(t)

€= S (7.9)

onde fizemos 871G = 1.

Olhando para a equacdo (7.5) podemos presumir que o coeficiente de
viscosidade que gerara a dindmica do modelo A(?) tera a forma de uma série
de poténcias. Assim, podemos representi-lo através da seguinte soma,

= b (7.10)

lembrando que o indice o vem da expressao do coeficiente de viscosi-
dade (&, x p%).

Vamos analisar primeiramente a fase de aceleragao primordial segundo
esta descricdo. Vimos na se¢do anterior que a expressao de A(H) (7.5) pode
ser aproximada por A(H) = 3vH?+3aH*/H? no universo primitivo. Através
da equacao de equivaléncia , é possivel entao concluir que o modelo
correspondente de viscosidade no universo primordial tem um coeficiente
dado pela soma S°2_, &, (redefinindo a — o — 1/2). Usando a expressio
do coeficiente de viscosidade, podemos escrever esta soma como

Po P V2 Po P o2
§ =30, (FO) (g) + 309 (FO) (g) . (7.11)

Podemos verificar, ao substituir p = 3H? na equacao acima, que obtemos as
mesmas poténcias em H que temos na expressao de A(H).

Ao substituir as expressoes de A(H) e {(H) na condicao de equivaléncia
(7.9), obtemos que a correspondéncia entre os dois modelos é estabelecida
para os seguintes valores dos parametros de viscosidade,

vy,
- 12
61 27 ) (7 )
4o ( Ho\?
= — = . Nl
o= o (H) (7.13)

Integrando as equacoes de campo para os dois modelos obtemos a seguinte
expressao para H(a),
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(1 — V) H[
VDa3=)0+w) 1’
Esta equacao nos descreve um universo que inicia sem singularidade em uma

expansao de Sitter e transita gradativamente para a fase da radiacao usual
em que a o /2.

H(a) = (7.14)

Ja no universo recente H << Hj;. Neste caso, a lei de decaimento do
vacuo pode ser aproximada por A(H) = Ay + 3v(H? — H?). O coeficiente do
modelo equivalente de viscosidade nesta fase é entao descrito por

(B @) (E) @)
‘ Hy Po ' Hy Po ' '

Sendo os parametros g e 0; dados por

Ag
- =0 1
(50 ?)Hg v, (7 6)
51 = 7//9 > (717)

onde Ay/(3HZ) = Qxo é uma constante com papel analogo ao parametro de
densidade da constante cosmologica.

Integrando as equagoes de campo para este modelo no universo recente
obtemos

H(a) =

1—Q =3(1=) 4 Qpg — 7.18
m\/ Ao) A0 — U, ( )

onde consideramos w = 0. Vemos que este cenario possui apenas um pequeno
desvio com relacao ao cenario ACDM, parametrizado pelo termo dinamico
da ordem de |v|.

Juntando os resultados obtidos para as duas fases aceleradas podemos
analisar o comportamento geral do coeficiente de viscosidade. ¢ inicia com
um valor constante na era de Sitter inicial, £ = 4H;( + «)/3 e, ao final
desta fase, o coeficiente comeca a decrescer e continua decrescendo até que a
contribuicao dominante de £ passa a ser o primeiro termo da equacgao ([7.15)).
A partir deste momento, o valor do coeficiente comeca a crescer até que o
universo entra na fase de Sitter final quando o coeficiente assume seu valor

final constante £ = 9H0(3? — &),

Vimos, portanto, que os trés modelos aqui analisados, além de possuirem
a vantagem de unificar as duas fases cosmologicas aceleradas, sao capazes de
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evitar a singularidade inicial e gerar uma transicao suave da era inflacionéria
para a era da radiacao.

Também no contexto da aceleracao primordial, é possivel obter vincu-
los para os parametros livres dos modelos apresentados aqui a partir dos
dados observacionais, como faremos posteriormente através do céalculo do es-
pectro de poténcias primordial do modelo de criacao de particulas. Porém,
é possivel também vincular estes modelos por meio de uma andlise tedrica
baseada na Segunda Lei Generalizada da Termodinamica. Esta abordagem
serd considerada, a seguir, para o caso dos modelos de criacao gravitacional
de particulas.



Capitulo 8

Analise Termodinamica

Apresentamos, no capitulo anterior, um modelo completo de criacao de par-
ticulas capaz de descrever a evolucao cosmologica desde uma fase de Sitter
primordial até uma fase de Sitter final, sendo, as duas fases aceleradas, pro-
pulsionadas pelo mecanismo de criacao gravitacional de particulas. Vimos
que, neste cenario, o universo inicia em uma fase nao singular de Sitter que é
instavel e em seguida entra suavemente na era da radiacdo. A medida que o
universo se expande a radiacao se torna subdominante e a matéria escura fria
comeca a dominar. A partir dai, a producao gravitacional de matéria escura
fria é desencadeada. Finalmente o universo entra na segunda fase de Sitter
caracterizada pelo equilibrio termodinamico. O modelo completo, proposto
no capitulo anterior, corresponde a uma generalizacao do modelo proposto
em [86] cujo comportamento termodinamico foi investigado em [85].

Com o objetivo de testar o espaco de parametros deste modelo, desenvol-
veremos aqui uma andlise baseada na Segunda Lei Generalizada da Termo-
dinamica (SLG). Nosso objetivo é explorar quais restri¢goes a SLG impdoe aos
parametros livres do modelo completo de criacao de particulas. Esta lei es-
tabelece que a entropia total do sistema nao deve decrescer. Além disto, nos
ultimos estagios de evolucao, a entropia total deve ser uma funcao concava.
Caso contrario, a entropia total cresceria ilimitadamente sem jamais atingir
o equilibrio - estado de méaxima entropia compativel com as restricoes do
sistema [163]. De acordo com a SLG a entropia total a ser considerada deve
ser a soma da entropia do sistema com a entropia do horizonte causal que o
envolve. Esta lei foi formulada primeiramente no contexto de buracos negros
[164] e foi, posteriormente, extendida para horizontes cosmicos [165], [166].

Em 1977, Gibbons e Hawking mostraram em [165] que a conexdo exis-
tente entre o horizonte de eventos e a termodinamica para o caso de buracos
negros poderia ser extendida para o caso de horizontes cdésmicos. De acordo
com estes autores, a area do horizonte de eventos cosmologico poderia ser
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interpretada como entropia, ou auséncia de informagao do observador com
relacdo as regides as quais o mesmo ndo possui acesso. E possivel, assim,
associar uma temperatura e uma entropia ao horizonte de eventos cosmo-
logico analogamente ao caso dos horizontes de eventos dos buracos negros.
No mesmo trabalho foi mostrado também que um observador com um de-
tector de particulas de fato observaria um background de radiacao térmica
vindo aparentemente do horizonte de eventos. Ao absorver esta radiacao,
o observador ganharia energia e entropia e a area do horizonte diminuiria.
A medida que a area decresce, a temperatura da radiacio cosmica também
decresce (ao contrario do caso dos buracos negros) e, assim, o horizonte de
eventos cosmologico seria estavel.

Muita discussao tem sido gerada a respeito da termodinamica de hori-
zontes cosmologicos desde entao. Posteriormente, foi visto que o horizonte
aparente, ao invés do horizonte de eventos, seria mais apropriado para uma
formulagao termodinamica em alguns casos [167, [168] 169, 170] 171, 1T72]. O
horizonte aparente coincide com o horizonte de eventos na fase de Sitter. Até
mesmo para o caso de buracos negros, foi visto que a nocao de horizonte de
eventos, que requer um conhecimento de todo desenvolvimento futuro e da
estrutura causal do espaco-tempo, é essencialmente desnecessaria para certas
aplicacoes praticas, sendo usado, em lugar deste, o horizonte aparente. Em
[173] foi mostrado, para o caso geral de um espago-tempo de FRW, que o
horizonte cosmologico aparente é também um horizonte atrapante (trapping
horizon) quando o escalar de Ricci é positivo, ou seja, quando temos um
fluido césmico descrito por p.rr < p/3. Este critério coincide também com a
condicao em que a temperatura de Kodama-Hayward do horizonte aparente
¢ positiva [173].

A termodinamica de horizontes cosmologicos tem sido, desde seu desen-
volvimento, extensivamente aplicada na cosmologia [85, 174, [175]. Ao le-
var em conta as propriedades termodinamicas dos horizontes cosmolégicos,
segue-se que, de acordo com a SLG, a entropia total S deve incluir a entropia
de todas as fontes, isto é, do fluido envolto pelo horizonte aparente e também
a entropia do préprio horizonte aparente.

Para explorar quais restricoes a SLG e o requerimento de concavidade
impoem aos parametros livres do modelo completo de criacao de particulas,
vamos iniciar nossa analise no contexto do universo primordial e em seguida
analisaremos o caso do universo recente. Os resultados apresentados neste
capitulo correspondem aos resultados originais que obtivemos no artigo [106].

Vinculos para o Universo Primordial
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A fase da radiacao é seguida pela era de dominio da matéria que eventual-
mente transitard para uma segunda fase de Sitter. Esperamos, portanto, que
na era da radiacao a entropia cresca e seja uma funcao convexa do fator de
escala, isto é, S” > 0 e S»0 (o til indica d/da). Caso a funcao fosse concava,
o universo teria atingido um estado de equilibrio termodinamico (maxima
entropia) e teria permanecido neste estado para sempre a nao ser que fosse
forcado por um "agente externo". Porém, sabe-se que a producdo de parti-
culas é suprimida durante a era da radiacao, de modo que nao haveria agente
externo para tirar o sistema do equilibrio termodinamico. Por isto esperamos
que a entropia seja uma funcao convexa nesta fase.

Denotando por S, a entropia do contetido energético quando o universo
é dominado pela radiacao, e por S;, a entropia do horizonte aparente, temos
que S = 5, +S,. A entropia do horizonte aparente é dada por Sy = kBA/4l§l
[170], onde A = 4mr? & a area do horizonte, kp é a constante de Boltzmann,
i € o comprimento de Planck e r, é o raio do horizonte. No nosso caso,
em um universo espacialmente plano, o tltimo corresponde ao horizonte de
Hubble H~!.

Ja a entropia do fluido de radiacao pode ser obtida através da equacao
de Gibbs

T,dSy = d(p,V) + pydV, (8.1)

onde V = 47 /(3H?) é o volume envolto pelo horizonte, T, ¢ a temperatura
da radiacdo e p, = p,/3 é a pressao, sendo

_ _ 3H;
PO Dayp PTG

(8.2)

As expressoes acima podem ser derivadas a partir da equacao de Fried-
mann juntamente com a expressao do parametro de Hubble do modelo, dada
pela eq. (7.3).

Ao calcular a derivada da expressao de Sy, usando a equacao , obte-
mos

Sy =CDa® (1 + Da?)n ", (8.3)

onde C' = 4kpm /(12 H7). Claramente S}, > 0 independente do valor de n,
visto que D é uma quantidade positiva.
A temperatura da radiagdo, por sua vez, segue a expressao

T
T, = - . (8.4)
(1 + Da?")zn
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sendo T a temperatura inicial na fase de Sitter. Vemos que para Da’"* >> 1
(j& bem na era da radiagao) recuperamos o resultado padrao T, o« a™'.

Para a entropia da radiacao, a partir da equagao de Gibbs segue que

16w D

?p[m CLQn_l (1 + DCLQTL)%_I . (85)
1

T, 8, =

Ou seja, S/ > 0 independente do valor de n.
Para determinar se n pode ser vinculado através da convexidade da en-
tropia total, devemos determinar o sinal da segunda derivada de ambas en-

tropias. A partir de (8.3)) obtemos
Sy =CDa®™ V(1 + Da*)a *[3Da®" + 2n — 1]. (8.6)

E a partir de (8.4) e (8.5) obtemos

//:16_7T prD
T3 TH?

(8.7)

2n _
a2V (1 + Dazn)%q {Z(Da +n) 1}

1+ Da?n

Portanto, vemos que a positividade de ambas as fungoes Sy e S7 ¢ garantida
sempre que n > 1/2.

Correcoes Quanticas

Ao se considerar efeitos quanticos, a lei de entropia de buracos negros de
Bekenstein-Hawking ¢ generalizada para a expressao

A 1, (4
e 2\ B

somada a termos de ordens mais altas [I76]. Como apontado em [85], o
mesmo se aplica para horizontes cosmolégicos causais. Analisaremos aqui se
os resultados que obtivemos continuam validos ao se considerar tais correcoes.

No contexto do nosso cenério, um simples calculo a partir da equacao
anterior fornece

kpm 4 H\" 12 H7
BT (2 1— P . .
Sh 1,2 aH? ( (HI) ) { 27(1 + Da?n)?/n (8.9)

pl

Sy = ki , (8.8)

Vemos que a presenca do fator lf,l no numerador do segundo termo no
paréntesis torna este termo desprezivel. Portanto, nossa abordagem ¢é robusta
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com relagao a modificagoes quanticas a entropia do horizonte no universo
primordial. Além disto, no limite a — 0 a condigdo S} > 0 implica no limite
superior para a taxa de expansao inicial H; < \/%/ L, independente de n.
Ou seja, o fator de Hubble inicial nao pode ser arbitrariamente grande.

E interessante também notarmos que a temperatura 7; tem um limite
superior natural imposto pelas correcoes quanticas discutidas aqui. De fato,
lembrando que a temperatura inicial do universo no nosso cenario pode ser
associada a temperatura de Gibbons-Hawking [165], é facil checar, a partir
da desigualdade acima, que T; < 1/ \/%Zpl. Em outras palavras, as correcoes
quanticas a formula usual implicam que a temperatura inicial do universo
no nosso modelo é um pouco menor que a temperatura de Planck, como o
esperado pela descricao classica.

Vinculos para o Universo Recente

Vamos agora analisar a Segunda Lei Generalizada da Termodinamica no
contexto do universo recente, com o objetivo de encontrar quais valores para
0 parametro m, na expressao , sao termodinamicamente permitidos. Ini-
ciaremos pelo calculo das derivadas das entropias do horizonte e da matéria.

Devemos lembrar que, no modelo em questao, a evolugao do parametro
de Hubble no universo recente é determinada pela equagao

H= —;HQ [1 — <%) m} : (8.10)

Através do mesmo procedimento realizado no caso anterior, obtemos en-
tao para a entropia do horizonte

,_ 2rkp [3 (. (Hy "
- ERRO-() ew

Ja para a entropia do fluido dentro do horizonte, é suficiente notar que
cada particula de poeira contribui com uma determinada quantia kg [85].
Entdo, S,, = kpdmrin,/3, onde a densidade de nimeros de particulas n,
obedece a equacdo de conservacao n, = (n,/a)[(I',,/H) — 3], sendo I',, =
3H(H;/H)™. Assim, temos que

S = % E (1 . (%)mﬂ . (8.12)

Vemos que a SLG, " = S/ + S} > 0, apenas restringe m como sendo
positivo, o que também era requerido para gerar uma dinamica cosmologica
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aceitavel. A condicdo de que a entropia total tenda a um maximo a longo
prazo também nao impoe nenhum vinculo adicional a m. Como H — Hy
quando a — oo, ambos S; e S! tendem a zero neste limite. Por outro lado,
como ambas primeiras derivadas sao positivas quando o fator de escala é
finito, concluimos que S’ tende a zero por baixo, entdo S”(a — o) < 0, o
que pode ser satisfeito para valores positivos de m. Em resumo, o modelo
completo de criacao de particulas é consistente com a termodinamica também
no universo recente para qualquer valor positivo do parametro livre m.

Concluimos, portanto, que o modelo completo de criacao de particulas
apresenta o comportamento esperado de um sistema macroscopico ordinario,
no sentido de que o mesmo tende ao equilibrio termodinamico nos estagios
finais de evolugao, sempre que o parametro n for maior que 1/2 e o parametro
m for maior que zero. Vimos também que a inclusao de correcoes quanticas
no limite a — 0 fornece um limite superior razodvel para o parametro de
Hubble inicial e para a temperatura inicial.

A andlise feita neste capitulo poderia ser aprimorada ao se considerar,
em uma segunda etapa, além da entropia do horizonte e do fluido, também
a contribuicdo advinda do campo gravitacional. Porém, para o objetivo
proposto, acreditamos que o calculo acima fornece um resultado consistente.

Uma outra forma de se obter vinculos para os parametros deste modelo
é testar suas previsoes com os dados observacionais da RCF. Com esta fina-
lidade, iremos analisar no capitulo seguinte como se procede a formagcao das
sementes das estruturas que hoje vemos no universo no caso deste modelo.
Veremos que, assim como no modelo de viscosidade, a formacao de estrutu-
ras se da, predominantemente, a partir de flutuagoes térmicas estatisticas,
ao invés de flutuacoes quanticas como nos cenarios tradicionais. As previsoes
obtidas poderao entao ser testadas com os dados observacionais atuais.



Capitulo 9

As Flutuacoes Térmicas
Estatisticas

Vimos, nos capitulos anteriores, que existem diversas possibilidades para ex-
plicar a fase inflacionaria do universo primordial sem a necessidade de se
introduzir um campo escalar (inflaton). Mecanismos como a criagdo gra-
vitacional de particulas, a viscosidade volumar do fluido, entre outros, sao
exemplos de processos capazes de gerar pressao negativa no universo, o que
atua no sentido de acelerar o mesmo. Vimos que estes dois modelos tém
em comum o fato de que o universo é inicialmente dominado por radiacao
e a producao de entropia ocorre continuamente durante toda a inflagdo, o
que mantém a temperatura relativamente constante durante todo o periodo
inflacionario, evitando o superesfriamento do universo. No entanto, esta ca-
racteristica cria a necessidade de se considerar a influéncia da temperatura
na geracao das flutuacoes que darao origem as estruturas cosmologicas hoje
observadas. O mesmo ocorre também em outros cenérios inflacionarios en-
tre os quais podemos citar o modelo de inflagio morna [I77], e também em
cenérios alternativos a inflagao como os modelos de bouncing e também o
String Gas Cosmology discutido no Apéndice B.

Como mencionado anteriormente, em geral as flutuagoes em um fluido
podem ser originadas de duas formas distintas. Podem haver flutuacoes na
densidade de energia geradas a partir de flutuagoes quanticas (como é con-
siderado no modelo padrdo), e podem haver também flutuagoes de energia
devido & natureza estatistica da fisica térmica. Se definirmos uma tdnica
temperatura em um dado volume de um sistema, existirao nele flutuagoes
aleatorias de energia. Estas flutuacoes, existentes em todo sistema de tem-
peratura finita, surgem ja a nivel classico e sao comumente chamadas de
flutuacoes térmicas [178]. No universo primordial em que as temperaturas
eram muito altas, estas flutuacoes deviam ser bastante significativas nos ca-
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SOS em que 0 universo nao passa por uma fase de superesfriamento durante
a inflacao. Nestes casos, as flutuagoes térmicas em geral dominam sobre as
flutuagoes de origem quéantica.

Na secao a seguir, introduziremos a teoria de perturbacoes cosmologicas
primordiais para o caso de flutuagoes de origem térmica. Inicialmente, iremos
rever a abordagem de T. Biswas et al. [L78]| para o caso geral adiabatico que
considera um universo dominado por um fluido qualquer com uma equacao
de estado variavel w(t). Mostraremos como o espectro de poténcia primordial
pode ser obtido para estes casos.

Posteriormente, analisaremos uma possivel extensao desta abordagem
para os modelos de criacao gravitacional de particulas.

9.1 O Espectro de Poténcia Primordial a Partir
de Flutuacoes Térmicas

Consideraremos aqui o formalismo geral das perturbacoes primordiais, de-
senvolvido em [I78], para um cenério cosmologico qualquer em que o uni-
verso seja dominado por um fluido térmico (que possui equilibrio térmico).
A abordagem que descreveremos a seguir é bastante geral e pode ser apli-
cavel a diversos modelos cosmologicos distintos em que estruturas césmicas
sao geradas termicamente. Podemos citar como exemplo cenarios de cordas,
cosmologias ciclicas, inflacao morna, entre outros. Nestes modelos, essenci-
almente as flutuacoes térmicas serao as sementes iniciais para as flutuagoes
em escalas super-Hubble.

A abordagem aqui considerada nao pressupoe qualquer modelo desde que
sejam respeitadas as seguintes suposicoes:

e As interacoes no fluido mantém o equilibrio térmico, o que requer equi-
librio cinético e quimico.

e Para modos sub-Hubble as flutuacoes térmicas estatisticas dominam
sobre as quanticas.

e Nao ha perturbacgoes de isocurvatura significantes.
e Nao ha anisotropias no fluido.

e Existe um mecanismo para os modos sairem da fase sub-Hubble para a
fase super-Hubble e assume-se esta transicao como sendo instantanea.

e Pelo menos proximo a esta transicao, devem valer as leis usuais da
termodinamica e da Relatividade Geral.
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A teoria de perturbacoes estatisticas serd desenvolvida na escala sub-
Hubble onde correlacoes térmicas podem existir. A partir do momento em
que a perturbacao cruza o horizonte de Hubble, as perturbacoes passam a
evoluir de acordo com as leis usuais da hidrodinamica acoplada a gravidade.
As grandezas serao calculadas no momento em que as perturbagoes cruzam
o horizonte, pois a partir da escala de Hubble a perturbacao de curvatura
permanece constante sempre que a velocidade do som for dada pela expressao
adiabética dp/dp = Op/dp (mesmo quando a equagao de estado do fluido va-
ria no tempo). Isto nos fornecera o espectro primordial da Radia¢ao Cosmica
de Fundo.

Para calcularmos o espectro de poténcia, devemos encontrar a expressao
para a perturbacao de curvatura (, gerada a partir de flutuagdes em escalas
sub-Hubble. Com esta expressao, podemos calcular ( no momento em que
os modos cruzam o horizonte.

Primeiramente, no entanto, vamos introduzir as perturbagoes na métrica
da mesma forma que no caso padrao. Estas perturbacgoes serao posterior-
mente relacionadas as perturbacoes no fluido. Vimos que podemos parame-
trizar as perturbacoes na métrica da seguinte forma geral,

ds® = a*(n)[—(1 + 2¢)dn* + Bdndx’ + ((1 — 2¢)8;; + E;)da'dx?].  (9.1)

Ja as perturbacgoes no fluido material, considerado isotropico, podem ser
descritas através do seguinte tensor energia-momento perturbado,

% =—p(1+9) T%=p+w, T;=pw+cd) , (9.2)

onde v é a velocidade perturbada do fluido, ¢ = dp/dp € a velocidade do

_—
som ao quadrado e 6 = dp/p. Como estamos assumindo um fluido térmico,
todas as quantidades de background sao funcoes da temperatura.

A grandeza invariante de gauge que nos interessa para o calculo do es-

pectro de poténcia é a perturbacao de curvatura, definida como

(=-¥Y—H(v—B), (9.3)

onde ¥ é o potencial de Bardeen e H = a/a é o parametro de Hubble con-
forme. A partir daqui, o ponto sempre denotara derivada com relacao ao
tempo conforme 7 enquanto a aspa denotara derivada com relacao a tempe-
ratura.

Como a expressao acima é um invariante de gauge, podemos escolher
qualquer gauge para calcula-la. Vamos aqui trabalhar no gauge longitudinal,
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no qual £ = B = 0. Neste gauge, a métrica escalar perturbada pode ser
escrita em termos dos potenciais de Bardeen invariantes de gauge ®, U,

ds® = a®(n)[—(1 + 2®)dn® + ((1 — 2¥)dz?]. (9.4)
A componente 0i das equacoes de Einstein determina v em termos dos
potenciais de Bardeen,

2

U b =
+H IR

(14 w)pv. (9.5)

Isolando v e substituindo na expressao (9.3)) para a perturbagao de curvatura
obtemos
OM2*H .
(=-0V— —L2 — (U +HD). (9.6)
(1 +w)a?p

E importante notar que a expressio acima estd numa forma invariante
de gauge. Posteriormente, veremos que todos os calculos termodinamicos
relevantes para obtermos as flutuacoes de energia em um dado volume sao
feitos supondo-se um espaco-tempo de Minkowski (volume fixo). Para gene-
ralizarmos nossa anélise para a métrica de Friedmann Robertson Walker, ou
qualquer outra métrica, é preciso ir para um sistema onde o fluido de back-
ground estd em "repouso”, o que corresponde ao gauge comével. A expressao
acima, embora escrita em termos dos potenciais de Bardeen, por ser um in-
variante de gauge, nos permitird desenvolver os calculos no gauge comével.
E entao dp poderé ser escrito de forma invariante de gauge, como deve ser
tendo em vista que os célculos no espaco de Minkowski nao devem depender
da escolha de gauge.

A perturbacao de densidade é relacionada ao potencial de Bardeen através
da equacao relativistica de Poisson

1 a \? c

onde o indice C se refere ao gauge comovel. A partir daqui, deixaremos este
simbolo implicito ja que todos os célculos termodinamicos assumirao este
gauge para a perturbacao na densidade do fluido.

Como estamos assumindo um fluido sem pressao anisotrépica, podemos
considerar ® = W. Deste modo, substituindo a expressao acima e sua deri-
vada em , obtemos para a perturbacao de curvatura

_fe 21 2M??H23 5 9.8
C_ﬁ(kMp) {+(1Jr—w)p( +7)| ép, (9.8)
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onde a evolucao temporal da flutuacao de densidade foi considerada na gran-
deza r definida abaixo,

_dlogép  (op) T
" dloga — 6p H’ (9:9)

Se definirmos uma grandeza A(7T) tal que

1 23+r)
AT) =+ 142840 9.10
(T) 2[+3(1+w)9]’ (9.10)
podemos escrever a perturbacao de curvatura de forma mais sucinta como,
A(Ty)
= 0Pk 9.11

Todas as grandezas acima dependerao da temperatura em que um dado

modo sai do horizonte.

- O Calculo Estatistico das Perturbacoes

Vamos agora calcular as flutuacoes no fluido em um dado volume usando
a termodinamica, para entao podermos relaciona-las as perturbagoes na mé-
trica e ao espectro primordial.

Podemos definir a flutuacao média na energia, AFE, usando a funcao de
particao canoénica Z da seguinte forma,

1822 102\ 0%nZ
AE>2 =< F?’> < EF>*—_—_~—— _[Z2Z2) =
< >1, =< >—< > 7 0p2 (Z@ﬁ) 032
o< E > 9
__T_TCVV

onde Cy é a capacidade calorifica do sistema térmico para um dado volume
L3 e B=1/(kgT) sendo kp a constante de Boltzmann.

Podemos obter a flutuagao média na densidade ao dividir AE pelo vo-
lume,

T2CV . T2 8,0
L6 1391’

< 6p® >p= (9.12)

onde usamos Cy = (0E/0T)y.
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Para analisarmos as perturbacgoes, ¢ conveniente trabalharmos no espaco
dos momentos. As perturbacoes neste espaco se relacionam com as pertur-
bagoes calculadas no espago real da seguinte forma [178],

2
o
Spp = YR 6p° >1—a/ks (9.13)
onde v = 21/21%/* ~ 6.7.
Substituindo (9.12)) na equacao acima obtemos

A2
Spr = —=T°p. (9.14)
Usando este resultado na expressao (9.11), podemos encontrar para ¢}

,.Y2 T2p/

2 _ AT L
i ( k)a3 H} M

(9.15)
Com este resultado, podemos facilmente obter a expressao para o espectro
de poténcia

P=k <@ >= A%T@f% = \/3QV2A2(T,€)%, (9.16)
Hy M, M}\/px

onde o indice k indica que todas as quantidades sao avaliadas no momento
do cruzamento do horizonte, em que Hy = k/a. Precisamos agora calcular o
coeficiente A(T).

- O Coeficiente A(T)

O fator A(T") na expressdo de P representa a diferenca entre o espectro
do potencial gravitacional Pg e o espectro da perturbacao de curvatura. Ele
nos permite calcular o espectro e comparar com as observagoes mesmo no
caso em que a equacao de estado varia no tempo.

Para desenvolvermos a expressao completa para A(T'), dada pela equagao
que é uma funcao de r, precisamos primeiramente desenvolver a ex-
pressao para r. Para isto, podemos substituir nesta equacao a expressao
obtida para dp. Ao fazermos isto obtemos

_ / 1"
r:—3+ (20" +Tp") dlnT‘
2p dina

> (9.17)
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Podemos observar que a equacao de continuidade

p+3H(1+w)p=0 (9.18)
implica que
dinT p
= —3(1 . 9.19
dina ( +w)Tp’ ( )

Portanto, ao substituir este resultado na expressao (9.17)) obtemos
=3[, L L+ we2 +Tp)
2 Tp/2

Este termo inserido na equacao (9.10)) nos fornece a expressao completa para
A(T).

r =

: (9.20)

- Os Parametros de Nao-Gaussianidade no Cenario
Térmico

Se as flutuacoes primordiais sao distribuidas de forma gaussiana, as mes-
mas sao caracterizadas pela funcao de dois pontos. No entanto, se estas
flutuacoes nao sao gaussianas, existem informacoes adicionais nas fungoes
de correlacao de mais alta ordem. A funcao de correlacao de 3 pontos, ou
o bispectro no espaco de Fourier, é especialmente importante por ser a es-
tatistica de mais baixa ordem capaz de distinguir perturbacoes gaussianas
e nao-gaussianas. O bispectro traz informacoes essenciais sobre o universo
primitivo, visto que o mesmo indica processos nao lineares ocorrendo durante
a aceleracao primordial. No espaco de Fourier, o bispectro mede a correlagao
entre trés modos de perturbacao e pode ser escrito como

Acima, fy; é o parametro de nao-linearidade, um parametro adimensional
que mede a amplitude das nao-gaussianidades. O analogo a este parametro
na funcao de quatro pontos é o parametro gyr.

O bispectro é medido a partir de amostras de triangulos no espaco de Fou-
rier. A dependéncia da fun¢ao F'(ky, ks, k3) com a configuragao do triangulo
formado pelos trés vetores de onda descreve a forma do espectro.

Exatamente o mesmo método que usamos para calcular o espectro de
poténcia nos permite obter a funcao de correlacao de mais pontos e assim
calcular as nao gaussianidades de um modelo. Para isto, ¢ preciso apenas
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aumentar a ordem das derivadas da funcao de particao, e obteremos a funcao
de mais pontos da seguinte forma,

DInZ 3 2 3 3
— R =< FE’°>-3<E° ><FE>+2<FE>=<AFE° >, (9.22)

MnZ

T =< FE'> A< F)><E>46< E?’><E>?—-4< E><E>3

=< AFE* > .

A partir destas equacoes, seguindo o mesmo procedimento anterior, po-
demos obter termodinamicamente as funcoes

732 + Tp")
< 6p® >p= — (9.23)
2T4 3 / 3T " 7
<ot =y LB +L9 A0 (9.24)

Podemos converter estas expressoes para o espaco dos momentos de modo
que

3 4
i g
< 0p® >= 75 < 6pt>p , < dpt>= 5 < 5pt >p . (9.25)
Utilizando a definicdo padrao dos parametros de nao gaussianidades fyr,
e gz, e usando a equacao (9.11)) que relaciona dpy, as flutuagoes de curvatura,

podemos obter as expressoes

_ 5 <G> 1 5p(2p" +Tp")] _ F(T)
I = e T gam | e | T ayamy O
_ 2, 5 <G> 1 25p°[3(p' +Tp") +T%p"]] _  G(T)
INL =540 e 58 T 022 A2(T) 24372 (p')3 T (22A%(T)
(9.27)

Podemos ver que quanto maior a ordem da funcao de correlagao, maior
a ordem da derivada da densidade com relacao a temperatura.

E possivel, seguindo o mesmo procedimento, obter os parametros de nao
gaussianidade para uma ordem arbitraria em um modelo qualquer. A dnica
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propriedade termodinamica do modelo necessaria para os calculos é a equa-
cao de estado do fluido dominante e a dependéncia da densidade com a
temperatura.

Até agora nos restringimos as perturbacoes escalares, que sao as mais
importantes na formacao de estruturas. No entanto, existem também as per-
turbacoes tensoriais que podem nos fornecer valiosos vinculos observacionais

para os modelos, como veremos a seguir.

- A Razao Tensorial Escalar

Outro parametro que nos permite comparar a teoria inflacionaria com
as observacoes é a razao tensorial escalar, que corresponde & razao entre
o espectro de poténcia tensorial e o escalar. Esta quantidade é bastante
importante para distinguir modelos cosmologicos e os proximos experimentos
observacionais focarao nesta grandeza e também nos parametros de nao-
gaussianidades.

As condigoes iniciais para as ondas gravitacionais podem ser estabelecidas
classicamente ou quanticamente. Assumindo que estas condi¢oes advém do
vacuo quantico, no caso o vacuo de Bunch-Davis, o espetro tensorial é dado
por [I78]

1 H\? p
Pi=— () = ———. 2
L (M) 1272 M) (9.28)

p

Tendo obtido anteriormente o espectro escalar, podemos calcular portanto
a razao tensorial escalar como sendo

Ph . 1 1 p3/2

Pe 7212/373Q3/2A2(T) M,T?p"
Tendo as expressoes gerais para o espectro de poténcia e para os para-

metros de nao gaussianidades a partir de flutuacoes térmicas, vamos agora

analisar uma possivel aplicagao deste método para os cenérios cosmologicos
que vimos no capitulo

(9.29)

Tt/s =
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Capitulo 10

Flutuacoes Térmicas em Cenarios
Inflacionarios Alternativos

No capitulo 7, apresentamos alguns modelos cosmologicos capazes de gerar
a inflacao a partir de processos que sao naturalmente esperados no universo,
sem a necessidade de se introduzir um campo escalar desconhecido. Vamos
agora analisar como se procede a formacao das estruturas cosmologicas nes-
tes cendrios, mais especificamente nos modelos de criagao gravitacional de
particulas.

Como a temperatura é mantida aproximadamente constante durante toda
a inflacao nestes modelos, as flutuacoes sao predominantemente térmicas.
Neste caso, esperariamos que a abordagem geral descrita no capitulo ante-
rior pudesse nos fornecer o espectro de poténcias também para estes casos, ja
que a mesma ¢ elaborada para um cenario cosmologico geral. No entanto, de-
vemos lembrar que algumas suposicoes foram feitas para se obter o espectro,
entre elas a suposicao de equilibrio térmico.

Embora os cenérios cosmologicos de criacao adiabatica de particulas assu-
mam uma termodinamica essencialmente fora de equilibrio, devemos lembrar
que diversas relagoes de equilibrio ainda sao mantidas nestes modelos. Por
exemplo, a relacao de Gibbs para um estado em equilibrio local é mantida
no fluido,

1
Tds = d2 + pd=, (10.1)
n n

onde s é a entropia e n a densidade do nimero de particulas em um elemento
em equilibrio local. Também a lei de Stefan-Boltzmann (p oc T™) continua
valida, e portanto os mecanismos dissipativos atuantes nestes modelos nao
alteram a relacao entre a densidade de energia e a temperatura do fluido.
De certa maneira, como apontado na ref. [I79], podemos argumentar que
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as inomogeneidades do nosso universo sao totalmente originarias de flutua-
coes advindas de um elemento em equilibrio local. Considere por exemplo
um quanta de flutuagdo com momento P,. Como a incerteza no momento
AP, da particula é da ordem de P, [180][181][182], de acordo com o principio
da incerteza temos que

h
Az,’

onde k,,p, = k,/a é o nimero de onda fisico. Entdo, temos que Az, ~ a/k,.
Usando a condicao de cruzamento do horizonte k. = a,H,, encontramos a
incerteza na posigao Az, ~ H'. Como todas as flutuagoes ocorrem em um
elemento em equilibrio local, a incerteza na posicao nao deve ser maior que
a escala do elemento Az, < R. Portanto, temos a relacao

P, = hk,p, = AP, = (10.2)

H' ~ Az <R, (10.3)

no momento em que o modo cruza o horizonte. Ou seja , este elemento em
equilibrio local pode ser visto como o berco das perturbagoes cosmologicas.

Além disto, tanto a equacao de background p oc H? quanto a relacao de
Poisson nao sao alteradas nos modelos cosmologicos em questao, pois a pres-
sao de criacao nao aparece na componente 0-0 do tensor energia-momento.

Além de supormos o equilibrio térmico, supusemos também na secao
anterior que ao cruzar o horizonte as perturbacoes de curvatura dos mo-
dos se mantinham constante. Isto ocorre sempre que a relacao adiabatica
dp/dp = Op/Jp for mantida em escalas super-Hubble. Em escalas sub-
Hubble, onde correlagoes térmicas podem existir, a velocidade do som ¢
calculada termodinamicamente e sua expressao de fato nao corresponde a
expressao adiabatica [I78], e isto é um resultado geral independente de mo-
delo. No entanto, supusemos que a velocidade do som relaxa para o seu
valor adiabatico em escalas super-Hubble, ou seja, quando correlagoes tér-
micas nao mais existem e o fluido passa a ser descrito pela hidrodinamica.
Nos nossos modelos nao é bem conhecido, neste contexto, de que modo a
pressao de criacao se comporta perturbativamente, e por isto dp. é muitas
vezes tratado como um parametro livre [84]. Dentre as possiveis expressoes
que 0p;/6p, ((0py + O6ppe)/dp), pode assumir, é uma escolha natural supor
que 0p;/dp varie com a derivada dp;/dp no background, o que corresponde
a expressao adiabatica. Deste modo podemos pensar estes modelos como
cenarios cosmologicos em que perturbagoes evoluem adiabaticamente em um
background nao adiabatico.

Além disso, estes modelos, por descreverem um universo composto por um
tnico fluido de radiagao, nao possuem perturbacoes de isocurvatura significa-
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tivas. Por todos estes motivos, acreditamos que as funcoes de correlagao para
os modelos de criacao de particulas possam ser calculada da forma descrita
na secao anterior. O espectro de poténcia calculado desta forma foi obtido
em [I79] para um modelo de viscosidade com equagao de estado efetiva cons-
tante, ou seja, com uma pressao de viscosidade proporcional & densidade.
Desenvolveremos aqui o calculo para o caso mais geral dos modelos de cria-
¢ao em que a equacao de estado efetiva varia com o tempo, como no cenério
apresentado no capitulo 7. Para isto usaremos o formalismo desenvolvido em
[178], aplicando-o para o caso do espectro de poténcias do modelo de criagao
gravitacional de particulas. Os resultados originais obtidos aqui poderao ser
encontrados no artigo correspondente a referéncia [109].

10.1 O Espectro de Poténcias no Modelo de
Criacao de Particulas

Como vimos no capitulo [3.1] existe um regime, comumente chamado de cri-
acao adiabatica de particulas, em que particulas sao introduzidas no fluido
cosmico (N # 0) mas a entropia especifica se mantém constante (6 = 0).
Neste caso, as relacoes de equilibrio mencionadas na secao anterior sao man-
tidas.

E importante ressaltar aqui uma particularidade do modelo de criacio.
Nestes modelos, o nimero de particulas nao é conservado. No entanto, a
funcao de particao canoénica que utilizamos nos célculos termodinamicos con-
sidera um sistema com um ntmero fixo de particulas. Existe uma funcao de
particao que considera o nimero de particulas nao fixo no sistema, que é a
funcao de particao gran-candnica. Entretanto, é possivel verificar que como
o potencial quimico dos fotons é nulo, esta funcao de particao se reduz a
expressao canodnica no caso de um fluido dominado por foétons. Além disto,
as flutuacoes de densidade sao calculadas para um dado volume e posteri-
ormente o resultado ¢ generalizado para um universo em expansao. Em um
volume fixo, em um dado instante, o nimero de particulas é de fato conser-
vado no modelo.

O calculo termodinamico das flutuagoes de energia ¢ feito em uma apro-
ximagao "adiabatica” em que ignoramos a evolucao cosmolégica. A grandeza
< dp > nos diz como em uma dada fatia de tempo euclideana a energia flu-
tua em um dado volume L®. Apds obtermos < dp > em um dado volume,
consideramos este volume como sendo o raio de Hubble de cada modo de
Fourier (1/H? = (a®/k?)). A evolugdao cosmologica entra na expressao de ¢
e ¢ apenas nas grandezas relacionadas & evolucao do background que é visto
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o efeito da criagao gravitacional de particulas, o que ¢ esperado, tendo em
vista que este efeito decorre da expansao acelerada do background.

O efeito da criagao serd considerado aqui através de uma equacao de
estado efetiva wes, onde wey = (py + pc)/p. Podemos assim utilizar os resul-
tados do capitulo anterior substituindo w — w.s, para obter o espectro do
nosso modelo. Tendo obtido espectro, podemos vincular o parametro livre
do modelo com as observagoes.

Embora iremos usar como base de comparacao as caracteristicas gerais
do espectro de poténcias previstas pelas observacoes atuais, ¢ importante
ressaltar aqui os limites desta comparagao. Primeiramente, os resultados
observacionais aqui apresentados correspondem ao melhor ajuste para um
conjunto de parametros, obtidos ao se considerar a evolucao posterior pa-
drao ACDM para o universo. Neste trabalho, iremos calcular o espectro de
poténcias apenas na inflacdo. Embora haja a proposta de um modelo com-
pleto de criacao gravitacional de particulas, a principio podemos considerar
um modelo inflacionério de criagao independentemente do modelo conside-
rado para o universo recente. A producao gravitacional de particulas poderia
ser um fenémeno predominante a altas energias. Neste caso, a suposicao de
uma evoluc¢do posterior padrao (ACDM) para o universo tornaria os dados
observacionais aqui apresentados uma melhor base de comparacao para nos-
sos resultados. Entretanto, em ambos os casos, para o nosso proposito de
vincular o parametro livre do modelo inflacionario de criagao, acreditamos
que a aproximagao considerada produz bons resultados. Porém, para termos
resultados exatos, seria necesséria a evolucao completa das perturbagoes, o
que esta fora do escopo do presente trabalho. Os resultados que serao apre-
sentados devem ser vistos como uma primeira etapa para a evolugao completa
das perturbacoes.

- O Espectro de Poténcias no Cenario de Criacao de
Particulas

Obtivemos, no capitulo anterior, a seguinte expressao para o espectro de
poténcia a partir de flutuagoes térmicas,
/2002 A2 T30l
M3 \/pk

23+ )

onde

A(T) = %
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po 3y Awpp +Tp")

2 Tp/Q

Como vimos, nos modelo inflacionarios de criacao temos um universo

plano dominado por radiagao (2 = 1, p = gT*), no qual a aceleragao cosmica

é causada pela pressao de criacao p.. Podemos definir uma equacao de estado

efetiva para o fluido tal que p; = p. + pr = wepp. Substituindo w = w,s na

expressao acima para 7, juntamente com a expressao de p(7') e suas derivadas,
obtemos

. (10.6)

3 5(1 + wef)
=— |14+ ——]. 10.7
r 5 [ + 1 1 (10.7)
Substituindo este resultado na expressao (10.5) de A(7") obtemos
3 — Wef
A= ——. 10.8
8(1 + wef) ( )

Inserindo a equacgdo acima na expressdo (10.4) de P obtemos a seguinte
expressao para o espectro de poténcia,

2

Q:quEQEL}W, (10.9)
8(1 + wef)

onde cte; = 4\/§72\/§/M5 (a constante g depende do nimero de graus de

liberdade internos do sistema).

Primeiramente, vamos analisar a dependéncia de Pr com o fator de escala.
Devemos lembrar que todas as grandezas na expressao acima serao calculadas
no momento em que um modo k cruza o horizonte. Ao cruzar o horizonte
a =k/H, o que na inflagdo corresponde a aproximadamente a  k, visto que
H é aproximadamente constante. Portanto, o comportamento de Pr(a) nos
indicara, em uma primeira aproximacao, a dependéncia de P (k) com k.

Em qualquer modelo viavel, a pressao de criacao deve diminuir com o
tempo de modo que na era da radiagao ela chegue a zero. Como sabemos
que a inflagao primordial deve comecar muito proxima a de Sitter, isto implica
que n0sso w.y deve variar de w.y ~ —1 a w.y = 1/3 a medida que o fator de
escala cresce. A medida que Wes aumenta, o numerador da expressao acima
diminui e o denominador aumenta. Quanto & temperatura, é natural de se
esperar que ela decresga, mesmo que lentamente, pois o universo esta em
expansao acelerada e o efeito da criacao de particulas na temperatura nao
deve ser maior que o efeito da propria expansao. Ou seja, P diminui com
o fator de escala e consequentemente com k, implicando em um red tilt, o
que estd em acordo com as previsoes observacionais. Se a taxa de criacao de
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particulas for tal que o valor de I'/3H seja bem proximo de 1 durante um
suficiente periodo de inflagao, teremos um espectro aproximadamente plano
como previsto observacionalmente.

Como vimos anteriormente, existe também uma outra classe de parame-
tros, associada a presenca de nao-gaussianidades, que é bastante utilizada

para vincular e validar modelos. Analisaremos estes parametros a seguir.

- Os Parametros de Nao-Gaussianidade em um Modelo
Geral de Criacao

Vamos entao estimar os parametros de nao-gaussianidade para o caso de
um modelo geral de criacao.
Na equagao (9.26) de fyz, ao substituirmos as expressoes p = gT*, p/ =
49T3 e p" = 12¢T?, obtemos
1

1
frr = 0.267—A ~ 0.038—. (10.10)

Haviamos obtido 1/A = 8(1+w.r)/(3—w.s). Como no caso geral w varia
no maximo de -1 a 1/3, vemos que fy varia de 0 a no maximo 0.152, o que
estda de acordo com os vinculos observacionais [184] [185].

Para encontrarmos a fungao de quatro pontos, ou o parametro gy, usa-
mos as mesmas expressoes para p, p', p” e agora também p” = 24¢T na
equacao . Fazendo isto obtemos

1
gn = 0.00257—, (10.11)

0 que esta obviamente dentro dos vinculos observacionais. Ou seja, como
os parametros fyr e gy sa0 muito pequenos, concluimos que o modelo nao
prevé nao-gaussianidades que possam ser atualmente observadas.

A seguir, consideraremos o caso particular do modelo inflacionério de
criagao descrito no capitulo [7.1]

10.2 O Espectro de Poténcia em um Modelo
Particular de Criacao

No capitulo [7.1] apresentamos um modelo inflacionéario de criacao gravita-
cional de particulas em que a taxa de producao de particulas no universo
primordial é fenomenologicamente descrita pela expressao
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3% = <%)n (10.12)

Usando a equagao de conservacao do modelo, vimos que isto implica em
um parametro de Hubble que evolui da seguinte forma,
Hy

onde D é uma constante de integracao positiva. Olhando para a equagao
acima, é possivel ver que durante a inflacao, quando o fator de escala é
muito pequeno, H ~ H;. A partir do momento em que o segundo termo
no denominador se torna da mesma ordem do primeiro, a razdo H/H; ja
nao ¢ mais aproximadamente 1. Podemos entao considerar que este limite
representa a transicao entre o regime da inflagdo e a era da radiacao. Deste
modo, quando @ = a, no inicio da era da radiacdo, Da?" ~ 1. Portanto,
D =~ a;*".

Neste modelo a equagao de estado efetiva é dada por

r
3H

(HEI)” (10.14)

Podemos entdo substituir o w.s deste modelo na equagao geral (10.9) de
P¢. Fazendo isto obtemos

wef =

Wl — Wl
QW > Qo

(10.15)

2+ (H/H)"]?
P; = ctey [M] T3,

1 — (H/H)"

onde ctey = 4\/372\/5/64]\45.
Como p = gT* = 3H?m2 /8, vemos que T% = (3m2/g87)**H*?2. Entéo,
podemos escrever a expressao acima em funcao de H da seguinte forma

2+ (H/Hp)"

’ 3/2
—1_(H/H1)n} H3?, (10.16)

P = ctes [
onde ctez = 4v/37%,/g(3m?2/g8m)%/* /64 M3.
Vemos que o espectro de poténcias deste modelo nao corresponde a uma

simples lei de poténcia do tipo Pr = Ag(k/k.)" !, como nos modelos usuais
de inflagdo. Embora a forma que obtivemos para o espectro nao corresponda
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a forma usual, veremos a seguir que o mesmo possui a dependéncia correta em
k e pode ser aproximado por uma lei de poténcias para a regiao de interesse.

- A Dependéncia do Espectro com a Escala da Pertur-
bacao

A partir da equacao ((10.16]), podemos calcular a variagao de P com k
através da seguinte expressao,

dinP,  dlnP. dlnH 9P, OH H (aH)
dlnk — OdlnH Olnk  OH O(aH) P, H '’

onde consideramos na tultima igualdade £ = aH, que é a condicao de cruza-
mento do horizonte.

Nos modelos usuais de inflagao, a derivada 0lnP;/0lnk é denotada por
ns— 1, sendo n, o indice espectral. Por simplicidade usaremos a mesma nota-
¢ao. Como H = cte na inflacao, podemos usar a aproximacao 0H/J(aH) =
(0H/da)H ! na equagdo acima e, assim, ficamos com a seguinte expressao,

(10.17)

_8lnPC_8P< 8]—] a
= Bink ~ 0H da P (10.18)

Calculando primeiramente a derivada da expressao ((10.16) de P, com relacao
a H obtemos

ng —

S 1]
e g2 |2 H/H)™) [n(H"/HY) | (2+ (H/Hp)")n (H"'/Hy)
Fadedl [1 - (H/H[)n} ‘ {1 — (H/H)" (1- (H/Hz)”)z )}
10.19

Partindo da equacgao de conservacao para este modelo, temos a seguinte
equacio para o parametro de Hubble H = —2H?(1—H/H;). Como dH/da =
H/(aH), podemos encontrar o parametro n, multiplicando a equacao (10.19)
por H/(HP;) e substituindo nela a expressio de H. Assim obtemos

H\" 1—(H/HI)”} (H)" (H)"
ng—1=-242(— ) —4dn|———|(— ) —4n|{— ) . (10.20
(i)~ sty ()~ (3) - 0o
Para encontrarmos o valor do parametro n do modelo que gera um espec-
tro com ngy — 1 = —0.04 como indicado pelas observacoes, vamos aproximar
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a equacao acima levando em conta que H ~ H; quando os modos saem do
horizonte, o que ocorre na inflacdo. Ao fazer isto obtemos

ns — 1 = —4n. (10.21)

Portanto, podemos estimar o parametro n como sendo n = 0.01.

Para verificar a precisao da aproximacao usada, H ~ H;, vamos analisar
COMO a expressao varia quando variamos a razao H/H; com relacio
a 1. Ao substituirmos, como exemplo, na equagao , H/H; =1/2, ob-
temos para o parametro n o valor 0.0075 (considerando que ny—1 = —0.04).
Como o espectro ¢ calculado no momento em que os modos saem do hori-
zonte, o que ocorre ainda durante a inflacdo, espera-se que H/H; > 1/2 neste
momento. Isto mostra que o resultado n = 0.01 é uma boa aproximacao.

Deste modo, a taxa de criagdo do nosso modelo sera dada por I'/3H =
(H/H;)"®. Neste caso, o parametro de Hubble varia de acordo com a ex-

pressao,
Hy
H = (1 Da0o2)100° (10.22)

Substituindo H(a) na expressao de I'/3H obtemos

r 1

—= 10.23
3H  (1+ Da%02) (10.23)

De acordo com a expressao acima, I'/3H inicia igual a 1 e a partir dai
descresce a medida que o fator de escala cresce, como esperado.

- A Amplitude do Espectro

Tendo estimado um valor para o parametro n, vamos entao usi-lo para
calcular a amplitude do espectro de poténcia. Vimos que nosso espectro é
dado por

RS0 () [Pl - o

p

Vamos estimar primeiramente o termo entre chaves, que pode ser escrito
como

2 4 (14 Da%02)=17? 3 2
L —(1+ Da%2)1| ~ | Dg002 +2) . (10.25)
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Como na inflacao a — 0, vemos que o primeiro termo ¢ bem maior que
o segundo, entdo podemos aproximar a expressao anterior por 9/(D?a’%%),
Usando a condicao de cruzamento do horizonte e considerando H ~ Hj, a
mesma pode ser escrita como (9H04E001) /D2,

Vamos agora estimar a constante D. Vimos que D ~ a;?" = a
Como o redshift z no inicio da era da radiacdo ¢ aproximadamente 103!,
entdo o fator de escala a, ¢ da ordem de 1073! nesta época. Sendo assim,
podemos estimar D = 4. Substituindo estes valores na expressao obtida para
0 espectro encontramos

—0.02
« .

_ 4\/572\/5 7\’ 9H?'04 —0.04
Pr=—7r-——"—— k

64 M,) 16

LBVI (TN o
16\ M,

7\’
~26(— | k%
()

p

onde foi usada a aproximacao 7' ~ T7. Na ultima linha consideramos g como
sendo da ordem de 1.

Para termos uma estimativa dos parametros acima, vamos comparar o
espectro obtido apo6s todas as aproximacoes com o caso simples da lei de
poténcia em que P = A (k/k.)™~'. A escala pivot considerada por Planck
corresponde a k, = 0.05Mpc~! [I51], que pode ser escrita em fungiao da massa
de Planck como (0.05 x 107°"M,,). As observa¢oes indicaram uma amplitude
A, da ordem de A, ~ 1079. E facil verificar que nossa amplitude sera desta
ordem se T7/M, ~ 1073, o que implica em uma temperatura na inflagao da
ordem da escala da Grande Unificacao.

- A Razao Tensorial Escalar

Usando entéao a razao Ty/M, =~ 1073, podemos estimar o parametro Tt/
que corresponde & razao tensorial escalar. Usando a equagao (9.28)), podemos
calcular a amplitude do espectro tensorial como sendo

4
9T14 o (Ti
Pt o102 (1) 10.26

" 118 M, (10.26)

Considerando que A, ~ 107Y obtemos entdo para a razao tensorial-
escalar
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7 17 !

/s = 10 <—) . (10.27)
MP

Portanto, para T7/M, ~ 1073, obtemos que 1/, ~ 107°. Este pode ser

considerado um bom resultado visto que as observacoes recentes estabelecem

para o cendario cosmologico padrao o limite r;/, < 0.11.

Concluimos, portanto, que o modelo de criacao adiabatica de particulas
pode ser capaz de gerar um cenério inflacionario em concordancia com as ob-
servacoes para determinados valores dos seus parametros livres. Sugerimos
que este modelo merece entao uma investigagao mais profunda abrangendo a
evolugao completa das perturbacgoes cosmoldgicas partindo do espectro pri-
mordial aqui calculado.

No caso dos modelos de viscosidade volumar, as flutuacoes de densidade
que deram origem as estruturas do universo também sao de origem predomi-
nantemente térmica, como nos modelos de criacao de particulas. No entanto,
nos modelos de viscosidade volumar a lei de Steffan-Boltzmann é alterada e
a relacao p o< T ndo é uma boa aproximacio.

Apesar do modelo de decaimento do vicuo ser capaz de reproduzir a
mesma equacao de estado efetiva que o modelo de criacao de particulas aqui
considerado, este modelo apresenta um comportamento diferente a nivel per-
turbativo, visto que neste caso existem duas componentes importantes na
inflacdo, o vacuo e a radiacao. As perturbacoes primordiais e o espectro de
poténcias no modelo de decaimento do vacuo foram analisadas na ref. [186].
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Capitulo 11

Conclusao

Neste trabalho, foi feita uma revisao do Modelo Padrao atual da cosmologia e
do cenario inflacionério, visando compreender os progressos e as dificuldades
associadas aos mesmos. Neste contexto, analisamos a abordagem da teoria
efetiva de campo para a inflagio e mostramos que, ao se quebrar certas
suposicoes usualmente assumidas nestes modelos, ¢ possivel se obter previsoes
interessantes para o espectro de poténcias que sao distintas dos modelos
inflacionarios usuais.

Apos analisarmos o cenario cosmologico padrao, propusemos trés cena-
rios alternativos para a aceleracao cosmica. Os mesmos correspondem aos
modelos de criacao gravitacional de particulas, decaimento do vacuo e vis-
cosidade volumar. Estes modelos dispensam a necessidade de componentes
desconhecidas para acelerar o universo como a energia escura e o0 campo
inflaton. Considera-se, alternativamente, o papel de processos que ocorrem
fora de equilibrio termodinamico no espaco-tempo. Tais processos, sob certas
condigoes, poderiam gerar a pressao efetiva negativa necessaria para a acele-
racao cosmica. Mostramos que uma descri¢cao unificada para a aceleracao do
universo ¢ possivel através destes modelos. Esta descricao baseia-se em um
inico mecanismo fundamental como sendo o propulsor tanto da aceleracao
primordial quanto da aceleragao recente do universo.

Vimos que estes modelos trazem uma série de avancos conceituais com
relacao ao Modelo Padrao e aos modelos inflacionarios mais conhecidos. Os
problemas da constante cosmolégica e da coincidéncia sao evitados e, além
disto, estes modelos fornecem uma descricao mais complexa para o fluido
cosmico ao levar em conta suas caracteristicas internas.

Analisamos a correspondéncia entre os trés modelos do ponto de vista
dindmico e termodindmico. Vimos que os trés sao dinamicamente equiva-
lentes a nivel de background. Do ponto de vista termodinamico, os modelos
de decaimento e criacao gravitacional de particulas podem ser equivalentes
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entre si, porém distintos do modelo de viscosidade. Vimos também que os
trés modelos sao capazes de reproduzir a dinamica de background do Modelo
Padrao que possui grande concordancia com os dados observacionais.

Obtivemos vinculos para os parametros dos trés modelos a partir de uma
comparacao de suas previsoes com os dados observacionais. Nos modelos de
criacao de particulas, vinculos também foram obtidos a partir da Segunda
Lei Generalizada da Termodinamica.

Investigamos o processo de formacao das sementes das estruturas do uni-
verso nos modelos de criacao gravitacional de particulas. Vimos que nestes
modelos as estruturas cosmoldgicas se originam predominantemente a partir
de flutuacdes térmicas estatisticas no universo primordial, ao contrario dos
modelos tradicionais em que a formacao de estruturas se d& a partir de flu-
tuacoes quanticas. J& os modelos de decaimento do vacuo descrevem uma
dinamica diferente para as perturbacoes primordiais visto que neste cenério
existem duas componentes predominantes no universo antigo.

Mostramos que os trés modelos podem fornecer previsoes em acordo com
as observacoes atuais para o universo recente. Para o universo primordial,
obtivemos indicativos de que o modelo de criacao de particulas gera previsoes
consistentes, o que sugere a importancia de uma investigacao mais profunda
referente & evolucao posterior das perturbacoes. Acreditamos, portanto, que
os proximos passos no desenvolvimento destes modelos devem incluir: i)
Uma anéalise mais profunda do comportamento da perturbacao da pressao
efetiva 0p.ss (ou da velocidade do som efetiva). ii) A evolucdo completa
das perturbacoes, partindo do espectro de poténcias primordial calculado
neste trabalho. iii) Uma investigagdo mais detalhada dos limites em que a
suposi¢ao de perturbagoes adiabaticas (¢ se conservando fora do horizonte)
é apropriada.

Sugerimos, por fim, que os trés modelos analisados nesta tese podem
representar alternativas vidveis ao Modelo Padrao da Cosmologia possuindo
diversas vantagens conceituais em relacao a este.



Apéndice A
Representacao de Campo Escalar

Os trés modelos aqui estudados podem ser representados, na linguagem de
teoria de campos, em termos da dinamica de um campo escalar ¢.

Para toda lei de decaimento do vécuo, existe um potencial de campo
escalar que produz uma dinamica equivalente para o universo. O mesmo se
aplica aos modelos de criacao gravitacional de particulas e viscosidade.

Podemos destacar algumas das motivacoes para estabelecer esta corres-
pondéncia:

e Os campos escalares sao previstos por modelos de particulas elementa-
res, bem como pelas teorias de Grande Unificagao.

e Resolver as equacoes dinamicas de um campo escalar pode ser bastante
complicado em certos casos.

e A versao de campo escalar permite obter uma lagrangeana associada
ao modelo em consideracao, o que pode levar a uma formulacao mais
fundamental para o mesmo.

Para representar os modelos aqui estudados em termos de um campo
escalar, vamos substituir os termos de pressao total e densidade total nas

equagoes de Friedmann, (2.11)) e (2.12)), pelas expressoes correspondentes do
campo escalar

12 12

por 0= T V), pwpe=0 V@) (AL

As equacoes de Friedmann para estas expressdes podem ser combinadas
e escritas em funcao de H e H da seguinte forma,

¢ = —2H , (A.2)
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H H
V =3H? (1 + W) = 3H? (1 + C;—H) , (A.3)

onde H = aHH', sendo que a aspa denota derivada com relacio ao fator de
escala. Considerando que dt = da/aH, a eq. (A.2)) pode ser integrada de
modo que obtemos

oo [ (o) an [ (Y

A.0.1 O potencial escalar para o Modelo 1

No caso do Modelo 1, apresentado no capitulo |5, a evolucao do parametro de
Hubble ¢ dada pela eq.(5.4)). Inserindo a eq. (5.4)), bem como sua derivada
H', na Eq. 1) e integrando obtemos

¢<a>——1n[“‘1“3“‘1}
V3 VAB I+

onde Ay = (1 — Qm1)/Qm1. Usando as eqs. (5.4) e (A.3), é possivel mostrar
que

1

(A.5)

N Q,,
1-— le + —16L73

V(a) = 3H; 5

(A.6)

Finalmente, combinando as egs. (A.5) e (A.6), encontramos que o Modelo 1
pode ser descrito por um campo escalar cujo potencial é descrito por

V(¢) = B[3 4 cosh(v/3¢)] (A7)
onde B = 3H3(1 — Q1) /4.

A.0.2 O potencial escalar para o Modelo 2

Inserindo a equacdo (5.6) do parametro de Hubble para o Modelo 2, bem
como sua derivada H', na eq. 1) e integrando obtemos

2 VAP 11
=—1In
V3 | VAR + 141

onde Ay = (1— ng)/flmg. A partir das egs. 1} e 1) ¢ possivel mostrar
que

¢(a) (A.8)

3C C
e T -3

V(a):C’+2A2 ma s

(A.9)
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onde C' = 3H3(1 — Q,5)?. Finalmente, combinando as eqs. (A.8) e (A.9)

encontramos
V() = %{2 + 6 cosh(v/36/2) + [cosh(v3/2) — 112} | (A.10)

que é o potencial do campo escalar associado ao Modelo 2.

A.0.3 O potencial escalar para o Modelo 3
Similarmente aos casos anteriores, podemos combinar as egs. (5.8) e (A.4)
para o Modelo 3 resultando em
1 1 |:\/A3a3_/8+].—1:|
et n s
V3—0 VA3 F+1+1

onde Ay = (1 —Qp3)/Qms. Inserindo a eq. (5.8) e sua derivada na eq. (A.3),
obtemos o potencial em termos do fator de escala

¢(a) (A11)

V(a) = 3H}

1— Qs + %(1 - 5/3)aﬁ3] : (A.12)

Finalmente, comparando as equagoes acima encontramos

V(¢) = D + Ecosh(y/3 — 8¢) , (A.13)

onde D = 3HZ(1 — Qus)(3 — 5/3)/4 ¢ E = 3H2(1 — Q3)(3 + 8/3)/4. E
possivel verificar que se f = 0 a eq. acima se reduz 4 eq. .

Concluimos, portanto, que a dinamica de background gerada pelos mo-
delos abordados no capitulo |o| pode ser reproduzida por modelos de campo
escalar cujos potenciais sao descritos por fungoes hiperbolicas.
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Apéndice B

String Gas Cosmology

O String Gas Cosmology (SGC) é um paradigma para o universo primordial
inicialmente proposto em [I87] para explicar porque apenas 3 das 9 dimen-
soes espaciais da teoria de cordas podem ser macroscopicas. Este modelo,
baseado na termodinamica de cordas fechadas heterdticas, busca descrever
uma evolucao para o universo primordial baseada nos principios fundamen-
tais da teoria de cordas, entre eles a dualidade T, de acordo com a qual a
fisica em um torus de raio R é equivalente a fisica em um torus de raio [?/R
(onde I, é o comprimento da corda).

No modelo String Gas Cosmology, como o nimero de estados oscilatorios
das cordas cresce exponencialmente com a energia, existe uma temperatura
limite para o gés de cordas em equilibrio térmico que é a temperatura de
Hagedorn. A temperaturas proximas & temperatura de Hagedorn todos os
modos das cordas sao excitados. Como a temperatura de uma caixa de cordas
fechadas ¢ independente do raio da caixa para um largo intervalo de valores
do raio (assumindo que a entropia do sistema é alta), é razoavel assumir que
a fase de Hagedorn é quase-estatica.

A temperatura de um gas de cordas fechadas em um background toroidal
em funcao do raio R do tor6ide esté plotada na figura abaixo.
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Figura B.1: A temperatura T de um gas de cordas fechadas em um back-
ground toroidal em fungao do raio R do tordide. [I88]

O fato de que a temperatura sempre se mantém finita indica que a sin-
gularidade cosmoldgica também pode ser resolvida nestes cenéarios.

Eventualmente, o decaimento dos modos winding das cordas permite que
trés dimensoes espaciais se tornem macroscopicas enquanto as outras con-
tinuam para sempre confinadas nestes modos. O decaimento dos modos
winding em modos de loops levam a uma transicao suave da fase Hagedorn
quase-estatica para a era da radiacdo. Supondo que a temperatura de Hage-
dorn seja similar a temperatura da fase pos inflacionaria (comparavel a es-
cala da Grande Unifica¢ao) entao a evolugao dinamica na fase pos-Hagedorn
¢ idéntica a da fase pés-reaquecimento nos modelos de inflagao.

Na figura a seguir, vemos um esquema da dinamica do espaco-tempo nos
modelos de String Gas.
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Figura B.2: Um esquema da dinamica espaco-temporal no String Gas Cos-
mology. O eixo vertical representa o tempo e o horizontal a distancia fisica.
O tempo tg corresponde a transicao entre a fase de Hagedorn e a fase da radi-
acao. A curva azul (H ') indica o raio de Hubble e as duas curvas vermelhas,
que sao verticais durante a fase de Hagedorn, correspondem ao comprimento
de onda fisico dos modos de flutuacdo denominadas k; e ko [188].

Podemos ver pela figura que para t < tg 0 universo encontra-se na fase
estatica de Hagedorn e o raio de Hubble ¢é infinito. Em ¢t = tg, o fator de
escala comeca a crescer e a partir dai o raio de Hubble no referencial de
Einstein se expande como no Modelo Padrao. Podemos concluir, a partir do
esquema acima, que este modelo também é capaz de resolver os problemas
que os outros modelos inflacionarios se propoem a resolver, como o problema
do horizonte, a explicacao para a origem causal das estruturas cosmologicas,
entre outros. Além disto, como neste cenario as escalas cosmolbgicas hoje
observadas nunca tiveram um comprimento de onda préximo a escala de
Planck, o problema trans-Planckiano para as perturbagoes cosmologicas é
evitado [I89] [190].

Em [191] [192], foi encontrado que flutuagoes térmicas das cordas na fase
de Hagedorn induzem um espectro escalar para perturbacoes de curvatura
quase invariante de escala, com um indice espectral levemente vermelho, e
um espectro de ondas gravitacionais com um pequeno blue tilt [I88]. Esta
altima previsao é uma das previsoes mais importantes do modelo de String
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Gas visto que permite distinguir o mesmo dos modelos de inflagao. Além
da previsao de um espectro tensorial azul, estes modelos prevéem também
uma relagdo entre os indices espectrais dada por ny ~ —(ns — 1) [188],
que nao é satisfeita nos modelos usuais de inflacao. Esta relacdo também
constitui uma importante caracteristica deste modelo que permite que ele
seja distinguido observacionalmente da maioria dos modelos conhecidos para
o universo primordial.
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