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Reprogrammable and high-precision holographic optical
addressing of trapped ions for scalable quantum control
Chung-You Shih 1, Sainath Motlakunta 1, Nikhil Kotibhaskar1, Manas Sajjan1, Roland Hablützel1 and Rajibul Islam 1✉

High-precision, individually programmable manipulation of quantum particles is crucial for scaling up quantum information
processing (QIP) systems such as laser-cooled trapped-ions. However, restricting undesirable “crosstalk” in optical manipulation of
ion qubits is fundamentally challenging due to micron-level inter-ion separation. Further, inhomogeneous ion spacing and high
susceptibility to aberrations at UV wavelengths suitable for most ion-species pose severe challenges. Here, we demonstrate high-
precision individual addressing (λ= 369.5 nm) of Yb+ using a reprogrammable Fourier hologram. The precision is achieved through
in-situ aberration characterization via the trapped ion, and compensating (to λ/20) with the hologram. Using an iterative Fourier
transformation algorithm (IFTA), we demonstrate an ultra-low (<10−4) intensity crosstalk error in creating arbitrary pair-wise
addressing profiles, suitable for over fifty ions. This scheme relies on standard commercial hardware, can be readily extended to
over a hundred ions, and adapted to other ion-species and quantum platforms.
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INTRODUCTION
Programmable and precise control over individual quantum
particles, such as laser-cooled trapped ions and neutral atoms,
fundamentally enhances our capability to manipulate, probe, and
create non-trivial quantum states. In particular, programming
internal spin or qubit states of individual trapped ions1,2, spaced a
few microns from each other in a linear Coulomb crystal,
constitute a powerful platform for quantum information proces-
sing (QIP). Individual optical addressing of ions has recently
enabled a plethora of challenging experiments, such as creating
quantum gates between arbitrary pairs of ion qubits3–7 and
engineering non-trivial quantum Hamiltonians for the simulation
of strongly correlated many-body phenomena8,9. However, exist-
ing technical approaches suffer from scaling and other funda-
mental challenges, such as lacking independent control4,7–12

between the frequency and spatial position of the light, lacking
simultaneous illumination capability on arbitrary sets of ions at the
diffraction limit13,14, or requiring uniformly spaced ions3,5,6 not
readily available in most ion traps15. Crucially, the stringent
requirement of low crosstalk between the target ion and its
neighbors in QIP experiments, especially for quantum error
correction16, necessitates careful engineering and alignment of
optical components to minimize aberrations. This problem is
compounded by the need to use ultraviolet (UV) radiation for
most ion species suitable for QIP1,17. Because, shorter wavelengths
accumulate more aberrations for the same optical path mismatch
from manufacturing imperfection, optics misalignment, and the
use of spherical surfaces. Further, some of the commercial
solutions6,18 are expensive and available only for a narrow range
of wavelengths.
In this work, we demonstrate a scalable, arbitrary, reprogram-

mable, and precise individual-ion addressing scheme with in situ
aberration-compensation. We adopt a Fourier-holographic19,20

optical addressing approach by employing a programmable
amplitude hologram implemented with a commercially available
Digital Micromirror Device (DMD). The hologram creates optical
field profiles capable of simultaneously addressing arbitrary sets of

ions, without changing the frequency of light. We validate high-
quality, aberration-compensated optical engineering at λ ≈ 369.5
nm, by observing the fluorescence from the 2S1/2–

2P1/2 transition
of an Ytterbium ion (174Yb+) in a Paul trap21. This technique can
readily be applied to most ion species, as commercial DMDs
capable of handling several Watts of optical power are available
for a wide wavelength range of 355 nm–2.5 μm. We use the ion
for in situ characterization of aberrations, which are then
compensated for with high precision (to λ/20 RMS) by feeding
back onto the DMD hologram. An adaptation of the iterative
Fourier transformation (IFTA) algorithm22 in generating the DMD
holograms allows us to reach intensity crosstalk errors in
10−4–10−5 level for realistic inter-ion separation. This crosstalk
error is comparable13 or about an order of magnitude lower6,23

than state-of-the-art trapped-ion QIP experiments, when com-
pared at the same ratio of ion spacing to Gaussian spot size, and
approaches error correction thresholds16,24. Significantly, our
beam profile data indicate that the low error can be maintained
while addressing arbitrary pairs in a chain of over a hundred ions
with typical unequal spacings15. These results point to the
inherent scalability of our approach compared to other existing
technologies. The holographic addressing also allows for precise
programming of the optical phase as well as the intensity of light,
for applications such as phase-sensitive quantum gates25,26. Faster
switching speed of MEMS-mirror technology used in DMD,
compared to other hologram technology27, enables exploration
of digital28 and digital-analog hybrid simulation29 protocols.

RESULTS
Experimental setup
The 369.5 nm light illuminates a circular aperture on the DMD
(Texas Instruments DLP9500UV) placed in the Fourier plane (FP) of
a focusing lens L2 (f= 200mm), as shown in Fig. 1. The
micromirror pitch is d= 10.8 μm and each micromirror can be
toggled between two angles, behaving like a local binary
light-switch. A binary amplitude grating (with periodicity
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a= 4d= 43.2 μm) is employed to modulate both the phase and
amplitude of the electric field of light, EFP in the DMD plane (FP),
such that the target electric field profile in the image plane EIP
(with IP referring to either IP1 or IP2, shown in Fig. 1) can be
generated with high accuracy. Thus, we operate the DMD as a
programmable Fourier hologram. A pinhole placed in the image
plane (IP1) of L2 allows us to choose a specific diffraction order
(m=−1 here) of the DMD binary grating to propagate to the
174Yb+ ion, after a five times demagnification from IP1 to IP2. The
ion is trapped in a Paul trap, with an axial (along y) and radial
trapping frequencies of approximately 2π × 180 kHz and 2π × 400
kHz, respectively. We can model the total aberrations from the
light source to IP by introducing an aberration phase map Φ

ðIPÞ
ab ðxÞ

in FP, such that the optical Fourier transformation between the
field EFP at FP and EIP at IP of a paraxial lens system of effective
focal length f is modified (see Supplementary Information) to

EFPðxÞeiΦ
ðIPÞ
ab ðxÞ ¼ λf

2π
F EIPðx0Þ½ �ðk0Þ

����
k0¼2π

λf x
: (1)

Here, x0 and k0 denote the spatial coordinate and the wave vector
at IP respectively, and F denotes Fourier transformation. The wave
vector k0 is related to the spatial coordinate x at FP by x ¼ λf

2π k
0.

The DMD hologram can then be programmed to imprint a spatial
phase ð�Φ

ðIPÞ
ab ðxÞÞ on the light to nullify the aberrations.

Aberration characterization
To realize diffraction-limited performance at an image plane, we
first characterize the aberration phase map Φ

ðIPÞ
ab ðxÞ, following a

similar approach as in Zupancic et al.19, schematically shown in
Figs 2 and 3. We let the light from two FP patches (Figs 2a and 3a),
centered at x= 0 (center of the FP aperture) and x= Δ, consisting
of a small number of DMD micromirrors, interfere in the image
plane IP. The interference fringes are measured on the camera C1
for IP1 (Fig. 2b) or with the ion fluorescence for IP2 (Fig. 3b) for
extracting the aberration phase ðΦðIPÞ

ab ðΔÞ � Φ
ðIPÞ
ab ð0ÞÞ (see “Phase

profile extraction in the intermediate image plane IP1” section).
With the central patch as a reference, we vary Δ to scan the FP
aperture on a grid in steps of dg to reconstruct the aberration
phase map, after unwrapping the phases30 and interpolating
between the grid lines. The FP patch sizes are chosen so as to get
a good signal-to-noise ratio, while making sure that the optical
phase does not vary appreciably (≪2π) within a patch. We choose
the patch size empirically, such that the standard error in the ion
fluorescence signal is approximately ten times smaller than the
fringe contrast (Fig. 3b). This leads to about λ/50 uncertainty in
phase estimation.
We characterize the total aberrations in terms of three phase

maps: Φð0Þ
ab ðxÞ, Φð1Þ

ab ðxÞ, and Φ
ð2Þ
ab ðxÞ, such that ΦðIP1Þ

ab ðxÞ ¼ Φ
ð0Þ
ab ðxÞ þ

Φ
ð1Þ
ab ðxÞ and Φ

ðIP2Þ
ab ðxÞ ¼ Φ

ð0Þ
ab ðxÞ þ Φ

ð2Þ
ab ðxÞ.

The measured phase maps are shown in Figs 2c and 3c,
respectively, and the measured residual aberration phase maps
after aberration correction are shown in Figs 2d and 3d.
The phase map Φ

ð0Þ
ab ðxÞ characterizes a majority of the total

aberrations from the source up to IP1 with high precision. For this,
we turn on all the micromirrors within the two patches (4 × 4
micromirrors each), as shown in Fig. 2a (top), and choose a grid
size dg= 20d. We measure about 6.5λ (13π) peak–peak and 1.13(2)
λ RMS phase aberrations (Fig. 2c, top), dominated by astigmatism
(Zernike coefficient Z�2

2 ), as seen in Fig. 2e. In this manuscript, all
phase aberration-specifications are reported after removing the
“piston” (Z0

0) and “tilt” terms (Z�1
1 and Z1

1), as piston is an
inconsequential global phase, and tilts can be easily fixed by
tilting a mirror placed in an FP.
The phase map Φ

ð1Þ
ab ðxÞ characterizes additional aberrations, up

to IP1, caused by the non-zero diffraction angle of the m=−1
order of the DMD hologram. For this, we employ the binary
grating (a= 4d), pre-compensated for Φð0Þ

ab ðxÞ, within two circular
FP patches of diameter dp= 30d each, as shown in Fig. 2a
(bottom), and choose the grid size dg= 25d. We measure about
0.45λ peak–peak and 0.09(1)λ RMS phase in Φ

ð1Þ
ab ðxÞ (Fig. 2c,

bottom), validating our assumption that Φð0Þ
ab ðxÞ characterizes the

majority of aberrations. This Φ
ð1Þ
ab ðxÞ is again dominated by

astigmatism (Z�2
2 ), which is the primary aberration (except the

tilt) from an angled beam. We find that the residual aberrations up
to IP1 (Fig. 2d), after compensating for Φ

ð0Þ
ab ðxÞ and Φ

ð1Þ
ab ðxÞ, is

0.014λ RMS (0.15λ peak–peak), which falls below the standard
error of 0.025λ.
The phase map Φ

ð2Þ
ab ðxÞ is measured with fluorescence from the

ion, which behaves as a point detector because it is well-localized
(estimated to be ~130 nm RMS at Doppler-cooling temperature)
compared to the diffraction limit of 2.8 μm. Instead of moving the
ion, we scan the phase difference (ϕ2 in Fig. 3b) between the two
circular FP grating patches (dp= 100d, a= 4d, dg= 50d) to move
the interference fringes across the ion. The 0.9λ peak–peak and
0.20(1)λ RMS aberrations in Φ

ð2Þ
ab ðxÞ are compensated to a residual

aberration of 0.05(2)λ RMS (Fig. 3d), resulting in a diffraction-
limited spot at the ion, as demonstrated by measuring the beam
profile using ion fluorescence in Fig. 3f. The residual aberrations in
both IP1 (Fig. 2d) and IP2 (Fig. 3d) are lower than the standard
manufacturing tolerance of precision lenses (λ/10 at 633 nm).

Fig. 1 Experimental setup. The s-polarized 369.5 nm output beam
from the fiber is expanded by the collimating lens L1 to a 5 mm (1/e2

intensity radius) Gaussian beam illuminating a circular aperture on
the DMD at an incident angle of ~24∘. A flip mirror can direct the
light onto a camera C1 to monitor the optical intensity profile and
characterize aberrations at IP1. A CMOS camera (C2) is used to
detect fluorescence from the ion. The DMD beam is introduced into
the fluorescence-imaging path through a polarizing beam splitter
(PBS). Ion addressing and fluorescence collection are achieved using
a shared off-the-shelf objective (Thorlabs LMU-5X-NUV) and an
imaging lens L3. The effective focal length between the DMD FP and
IP2 is 39.9 mm. Here, we choose a coordinate system convention
where the beam is propagating along the z direction. A magnetic
field Bx̂ ð�2GÞ is applied to the ion to prevent it from going into a
coherent dark state. An example DMD hologram and a simplified
energy level diagram of 174Yb+ are shown at the bottom.
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Amplitude characterization on DMD
The amplitude of the light illuminating the DMD FP, ∣EFP∣ (Fig. 2f) is
characterized by measuring the intensity of reflected beams from
a single patch (10 by 10 micromirrors), scanning across the FP with
a grid size dg= 20d. The intensity is measured by C1 within the
same ROI used in phase measurements described above (see
“Methods” section).

Programming the DMD hologram
The binarization of the DMD hologram introduces errors in
engineering the target electric field at the image plane. To mitigate
errors due to binarization and optical aberrations, we adopt a
deterministic iterative Fourier transformation algorithm (IFTA). Our
algorithm is based on Wyrowski (1989)22 with two significant
modifications. First, we introduce phase constraints at the image
plane, making the algorithm suitable for QIP experiments requiring
optical phase control25,26. Second, we incorporate the ability to

account for aberrations and non-uniform illumination in the Fourier
plane. The IFTA strives to minimize errors only inside a user-defined
“signal window” in the image plane. A suitable spatial filter placed
in IP1, such as a rectangular aperture, shields the ion chain from
erroneous signals outside of this signal window.
In Fig. 4a, b, we schematically describe our algorithm and show

a numerical simulation for creating a pair of Gaussian spots. Figure 4c
shows experimental data taken with camera C1 in IP1 of pairs of
Gaussian spots suitable for simultaneously addressing arbitrary
pairs of ions with non-uniform spacing. A relative intensity
crosstalk error below 10−4 is achieved at a distance of
approximately 4wIP1 within a 400wIP1 × 10wIP1 signal window,
where wIP1 is the spot size of the addressing Gaussian beam,
limited by the numerical aperture. Crucially, this low-error rate is
maintained over a large signal window of length ~400wIP1.
This suggests that the low-error window can fit up to 400wIP1/
4wIP1= 100 ions. In Fig. 4d, we demonstrate high-quality optical

Fig. 2 Aberration characterization and compensation up to IP1. a–c The characterization of aberration phase maps Φð0Þ
ab ðxÞ (top row) and

Φ
ð1Þ
ab ðxÞ (bottom row). a DMD FP patches, as defined in the text. b Corresponding interference fringes at IP1, measured by the camera C1. The

diffraction pattern from the OFF micromirrors (Supplementary Information) limits the region of interest (ROI) for phase extraction. Note that
the two interference fringes are located at different positions on the camera C1. This is because a non-zero diffraction angle of the m=−1
order translates to a spatial offset of the beam at IP1. c Interpolated and unwrapped measured phase profiles (piston and tilts removed)
reconstructed from respective interference fringes. d The measured residual aberration map without piston and tilt components and its
histogram after correcting for Φð0Þ

ab ðxÞ and Φ
ð1Þ
ab ðxÞ. The histogram is based on re-sampled data from the interpolated phase map at each

micromirror position. e First few Zernike coefficients of Φð0Þ
ab ðxÞ, Φð1Þ

ab ðxÞ, and the residual aberration. The error bars indicate the standard
deviation from error propagation (Eq. (16)). f The amplitude profile of the beam (scaled to the maximum amplitude, see “Methods” section)
illuminated on the DMD.
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addressing by directly observing ion-fluorescence at the center of
the image plane IP2, while scanning the addressing beam along y
between the center and the edge of a 120wIP2 × 10wIP2=
480 μm× 40 μm signal window. While our measurements are
limited by the signal-to-noise ratio of ion fluorescence (see
“Methods” section) on camera C2, we expect the low-error rates to
be transmitted to IP2. This is because, astigmatism (leading
aberration) at a field point 240 μm away from the center of IP2 is
independently estimated (using Zemax Optics Studio) to be about
0.02 in terms of the standard Zernike coefficient, smaller than the
demonstrated aberration correction limit in Fig. 3e (Supplemen-
tary Table 2).

DISCUSSIONS
In summary, we have demonstrated a high-quality, reprogram-
mable, ultraviolet, holographic, and individual optical addressing
scheme with in situ aberration compensation for trapped ions.
The flexibility of our approach facilitates the manipulation of ions

with an irregular spacing, such as in Coulomb crystals, vastly
extending the capabilities of most trapped-ion systems for QIP.
The in situ aberration-compensation also eliminates the need for
highly sensitive beam alignment that is often challenging,
especially for high numerical apertures. Further, the ions can be
addressed by non-Gaussian or “flat-top” beams that can
potentially suppress intensity fluctuations critical for low-error
quantum operations, especially with ions trapped in weak
potentials31. For wavelengths that are not resonant with an
atomic transition, we can extend our in situ aberration character-
ization by using coherent Raman transitions or phase shifts32 on
ion-qubit states using Ramsey interferometry.
The intensity modulation profile (Fig. 4a) for addressing a pair of

ions with two Gaussian beams is a Gaussian envelope with a
sinusoidal modulation in the FP. The extent of the FP Gaussian
envelope determines the beam waist wIP at IP, and the spatial
frequency of the modulation (limited by the FP pixel size)
determines the separation of the Gaussian spots at IP. Therefore,
given a fixed ratio between wIP and the spacing of the neighboring

Fig. 3 Aberration characterization and compensation with a single ion. a Schematic of aberration measurement with a single 174Yb+ ion in
a “four-rod” trap. b Interference fringes measured by observing the 2S1/2−

2P1/2 fluorescence of the ion. For each value of phase ϕ2 of the
scanning grating patch, in steps of π/8 from 0 to 4π (with the redundancy for a robust phase extraction), we acquire the fluorescence for 100
ms. The 369.5 nm light is red-detuned by ~20 MHz from resonance, for maximizing the signal-to-noise ratio while Doppler-cooling the ion. We
estimate the peak optical intensity of the fringes on the ion to be about 0.5Isat, where Isat is the saturation intensity. Each data point is an
average over five identical experiments, and error bars represent the standard error. Each solid line is a cosine wave at a fixed angular
frequency of 1, reconstructed from the amplitude and phase ϕ obtained from fast Fourier Transform (FFT) of the data set. c The aberration
phase map Φ

ð2Þ
ab ðxÞ (corresponding scanning patches for plots in b are superimposed). d The residual aberration phase map and normalized

histogram (with the same method in Fig. 2b) after aberration compensation. e First few Zernike coefficients of Φð2Þ
ab ðxÞ and the residual

aberration, extracted in the same manner as in Fig. 2. f 369.5 nm single-ion addressing beam profile before (blue) and after (orange) the
aberration correction, as measured (see Methods) by ion fluorescence. Error bars indicate the standard error over five repeated measurements.
The beam profile is created by employing a grating over the entire FP aperture (diameter 600d), without any amplitude modulation. We scan
the beam on the ion by adding a programmable tilt in the phase map. The spatial location of the beam (horizontal axis) at the ion is calculated
from the known value of the tilt and the effective focal length. The effective NA here is 0.08 (the ideal Airy pattern is shown), corresponding to
an Airy radius of 2.8 μm.
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addressing beams, the maximum number of addressable ions is
fundamentally determined by the number of DMD micromirrors
illuminated in the FP. By increasing the grating periodicity a, we can
further increase the signal window to accommodate more than 100
ions (Supplementary Information).
To achieve a target intensity crosstalk of 10−4 or lower, wIP ≤ dm/4

(Fig. 4c), which determines the minimum required NA for the
objective. Here, dm is the minimum separation between ions,
determined by the trapping parameters33. For our Nion= 53
example, dm ≈ 2.4 μm, wIP ≈ dm/7 (Fig. 4c) requiring NA≈ 0.6,
although the minimum required NA ≈ 0.35 (for wIP= dm/4). We
note that the aberration correction scheme adopted here has been
demonstrated for up to NA = 0.8 imaging system19. For longer ion
chains, a large field-of-view may necessitate the characterization of
separate aberration phase maps for addressing various spatial
regions. For Nion≳ 100, the length of the ion chain increases to
~500 μm while dm ~ 3.5 μm (see trapping parameters in ref. 34)
and the minimum required NA ≈ 0.3 which allows for a 500 μm
field-of-view35.

By numerical simulation, we find that a deterministic hologram
using our IFTA algorithm is capable of producing lower RMS errors
within the user-defined signal window compared with a typical
hologram using a probabilistic algorithm19, where a probability is
assigned to each micromirror for binarization. We directly
compare IFTA simulation results from Fig. 4b with the probabilistic
algorithm for the same target in Fig. 5. Figure 5 show one instance
(Fig. 5a) and an average of over 20 instances (Fig. 5b, c) of the
simulated beam profile, respectively, in the image plane with
the probabilistic algorithm. The accuracy of the electric field
obtained with IFTA surpasses that with the probabilistic algorithm
after about N ≈ 100 iterations and produces about an order of
magnitude less intensity crosstalk after N ≈ 2000 iterations (Fig. 5b,
c). The computational time for IFTA is proportional to N and is
about 5 s for N= 2000 on a GPU (Nvidia RTX2070 Super).
The DMD efficiency, defined as the ratio of usable power in the

image plane signal window to input power on the DMD, is
determined by several factors, including the efficiency of the user-
defined amplitude grating, the number of addressing beams, and

Fig. 4 DMD hologram generation for high-precision optical addressing. a Illustration of the iterative Fourier transformation algorithm (IFTA)
for programming holograms to create two Gaussian spots. We first binarize the ideal, aberration-corrected, and gray-scale hologram (from Eq.
(1), which has a Gaussian envelope of width wFP= 200d) by setting a dynamic threshold (Supplementary Information) on each mirror. The
Fourier transformed profile in the image plane differs from the target profile due to this binarization. We numerically fix this error within a
user-defined signal window at the image plane, by substituting the field profile with the target profile. The inverse Fourier transform of this
modified profile results in another gray-scale hologram which will be binarized again in the next iteration. We iterate this procedure to achieve
the numerical accuracy of the electric field within a small error of the target profile (N= 2000 iterations here). b Numerical simulation of two
Gaussian addressing beams at the image plane with a binary hologram created by IFTA. c Intensity profile of Gaussian spots (wIP1= 10 μm)
measured by the camera C1 at IP1 suitable for addressing various pairs (A through E) in a chain of 53 174Yb+ ions. Expected equilibrium
positions of ions are represented by black dots and superimposed on the image (with ×30 magnification, see Supplementary Information).
The top panel shows a cross-section of the signal window (a close-up shown in the inset) from the high dynamic range (HDR) images shown
in the bottom panel. Each HDR image is composed of five images with exposure times varying in steps of 10× from 120 μs to 1.2 s.
d Fluorescence signal (see “Methods” section) of an 174Yb+ ion when illuminated by an addressing beam profile consisting of two Gaussian
spots of waist wIP2= 4 μm each. The beam is scanned on the ion identically as in Fig. 3f, and the shaded region indicates the standard error.
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the efficiency of the fixed micromirror grating on the DMD chip
(Supplementary Information). By turning on a uniform amplitude
grating (a= 4d) across the FP aperture, we measure an efficiency
of ~4.5% in the m=−1 diffraction order. For creating n
addressing Gaussian beams with equal intensity in the image
plane, the efficiency scales approximately as 1/n (i.e., 1/n2 per
addressing beam), and is independent of the total number of ions,
Nion in the system. Despite low efficiency due to the amplitude
grating, the exquisite control over aberrations allows for high
optical intensity at ions. For example, 1 mW, λ ≈ 369.5 nm resonant
(for an Ytterbium ion) light incident on the DMD will result in an
intensity I ≈ 1.1 × 108 Wm−2 ≈ 2.2 × 105Isat where Isat is the satura-
tion intensity of the 2S1/2−

2P1/2 transition, assuming a NA = 0.6
objective. As for a mode-locked laser, used in many QIP
experiments, the finite frequency bandwidth will broaden the
addressing beam profile compared to a continuous wave laser
(Supplementary Information).
Apart from the higher power handling capability of DMDs (up to

10 W in the UV and higher for longer wavelengths), they can also
be switched at a faster rate (>10 kHz) compared to other spatial
light modulators, such as liquid crystal on silicon spatial light
modulator (LCOS-SLM) (<1 kHz)27. Individual micromirrors of a DMD
can be switched as fast as in 10 μs and can potentially be made
even faster13. However, the data transfer rate between the DMD
controller and the chip is currently a bottleneck. Megahertz rate
light switching, required for some QIP experiments, can be
achieved by using an acousto-optic modulator (AOM) in conjunc-
tion with the DMD. The relatively slow switching speed of the DMD
compared to trapped-ion quantum gates36 increases the total
algorithm time in a quantum experiment. The long coherence time
of trapped-ion qubits37 in absence of any control light implies
negligible decoherence compared to typical gate infidelities24, for
example, an infidelity of �1� exp �ð30μs=10sÞð Þ � 3 ´ 10�6 for an
idling time of 30 μs and a coherence time of 10 s. However, other
sources of error such as motional heating rate of the specific trap
have to be taken into account to accurately quantify the impact of a
longer algorithm time.
The experiments with ion fluorescence collection reported here

suffer from an unwanted scattering of the resonant light (about
10% relative to the peak fluorescence of the addressing beam)
from vacuum chamber windows leaking onto the imaging system,
thus, reducing the signal-to-noise ratio of the ion fluorescence
signal on the camera C2. The unwanted scattering also limited the
maximum area or which we could characterize aberrations using
the ion and thus reduced the NA to 0.08. The scattering problem
can be mitigated by using separate directions for measurement

and addressing. Also, experiments that don’t require addressing
and measurement at the same time (for example state preparation
by optical pumping) do not suffer from the scattering problem.
The high-precision addressing capabilities demonstrated here
open up exciting possibilities for new experiments, such as partial
measurement of a quantum system at the level of a single qubit
without decohering others.

METHODS
Phase-profile extraction in the intermediate image plane IP1
The interference fringes in IP1 (in Fig. 2b for example) are sampled by the
camera C1 as a 2D array. We crop the array within a region of interest (ROI)
for phase extraction. The cropped array is denoted as Ixy(mp, np) where
Δ≡ (x, y) denotes the coordinate of the scanning patch relative to the
reference patch in the DMD FP, and (mp, np) denotes the coordinates of
camera pixels. Here, m and n denote the two spatial directions of the
fringes on the camera. We first calculate the spectrum Sxy of Ixy with a 2D
fast Fourier transformation (FFT),

Sxy ¼ absðFFT½Ixy �Þ: (2)

Next, we apply a high-pass filter (HPF) to filter out the low spatial
frequency background envelope of Ixy and retrieve the spatial frequency of
the interference fringes ðκxym ; κxyn Þ,
ðjκxym j; jκxyn jÞ ¼ absðargmax½HPF½Sxy ��Þ: (3)

A robust estimate for ðκxym ; κxyn Þ, that is insensitive to shot-to-shot
fluctuations in the interference fringes, can be obtained by finding their
linear functional dependence on the FP coordinates (x, y), as

κxym ¼ ax þ by; a> 0 (4)

κxyn ¼ a0x þ b0y; a0 < 0: (5)

Here, a; a0; b; b0 are fitting parameters. The relative negative sign between
a and a0 is due to the fact that the camera is facing opposite to the beam
pointing direction. From the two spatial frequencies, we can construct a
complex plane wave fringe profile,

Txyðmp; npÞ ¼ expðiðκxym ðmp �mcÞ þ κxyn ðnp � ncÞÞÞ; (6)

where (mc, nc) is the coordinate of the user-defined center of the
interference fringes. The phase of the FP at (x, y) is computed from,

ϕðx; yÞ ¼ angleð
X
mp ;np

ðTxy � IxyÞÞ: (7)

Zernike coefficients
Zernike polynomials, commonly used to describe optical aberrations, are a
sequence of orthogonal polynomials defined within a unit circle. They are

Fig. 5 Benchmarking IFTA against randomized algorithms. a The simulated intensity profile at the image plane from the hologram
generated by a randomized algorithm38 with the same target profile as in Fig. 4b. b Simulated electric field RMS error compared to the target
profile Eideal within the signal window at the image plane versus the number of iterations N. c Cross-section of the simulated intensity and
phase profiles along the ion chain direction (y), at x= 0. The phase is plotted for the regime that the intensity relative to the peak is larger than
10−3. Here, we compare IFTA (N= 2000 iterations) with a randomized algorithm and with the ideal target profile. The lower and upper bound
of the shaded areas in b and c indicate the first and third quantities from 20 simulations with the randomized algorithm.
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expressed in polar coordinates ρ and θ as

Zm
n ðρ; θÞ ¼

Nm
n R

jmj
n ðρÞ cosðmθÞ form � 0

�Nm
n R

jmj
n ðρÞ sinðmθÞ form< 0

(
(8)

Rjmj
n ðρÞ ¼

Xn�jmj
2

k¼0

ð�1Þkðn� kÞ!
k!ðnþjmj

2 � kÞ!ðn�jmj
2 � kÞ!

ρn�2k (9)

Nm
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ 1Þ
1þ δm;0

s
; (10)

such that

Z2π
0

Z1
0

Zm
n ðρ; θÞZm0

n0 ðρ; θÞdρdθ ¼ πδn;n0δm;m0 : (11)

The aberration phase map Φ(ρ, θ) can be expressed as a unique linear
combination of Zernike polynomials,

Φðρ; θÞ ¼
X
n;m

cmn Z
m
n ðρ; θÞ: (12)

We estimate the Zernike coefficients in our measured phase maps by
uniformly sampling across the FP aperture (of radius raperture), as

cmn ¼ 1
N

X
x;y

Φðx; yÞZm
n ðx; yÞ: (13)

Here,

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
raperture

(14)

θ ¼ arctan2ðy; xÞ: (15)

The sample size N equals to the number of grid points in scanning the FP
patches. In our experiments, we extract the Zernike coefficients (Eq. (13))
after averaging the phase maps over five repeated measurements. The
uncertainty of the Zernike coefficients and the standard deviation δΦ(x, y)
of the phase map are related through,

δcmn ¼ 1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x;y

ðδΦðx; yÞZm
n ðx; yÞÞ2

s
: (16)

Amplitude characterization
The amplitude profile of the beam illuminating on the DMD ∣Ein(x)∣ is
characterized by measuring its intensity, jEinðxÞj ¼

ffiffiffiffiffiffiffiffi
IðxÞp

. We turn on all
the micromirrors in a 10d × 10d patch and scanned on a dg= 20d grid on
the DMD. We choose an ROI on the camera C1 (in IP1) to avoid diffraction
from the OFF mirrors (as shown in 2b), and measure the total intensity
on all pixels within the ROI. We subtract the contribution of OFF mirrors in
the ROI, by taking another image with all micromirrors in the OFF position.

Ion fluorescence measurement
While measuring ion fluorescence (in Figs 2–4), we keep a weak Doppler-
cooling beam on, shining perpendicularly to the DMD beam, in order to
keep the ion cold and hence localized. We extract the fluorescence count
due to the DMD beam only (n(DMD)), by taking into account the
contributions from the side-Doppler-cooling fluorescence as well as
unwanted reflections of these beams, as,

nðDMDÞ ¼ ðn� nð935offÞÞ � ðnðDMDoffÞ � nðDMDoff&935offÞÞ: (17)

Here, n is the total count detected on a camera pixel. n(935off) denotes the
count with the 935 nm repumper beam turned off, pumping the ion into
the D3/2 dark state. Hence, n

(935off) measures the unwanted reflection of the
DMD and side-fluorescence beams. n(DMDoff) denotes the measured count
with DMD beam turned off, and hence includes fluorescence and
unwanted reflections from the side-Doppler-cooling beam. nðDMDoff&935offÞ
denotes the measured count with the DMD and the 935 nm beams turned
off, and hence includes the unwanted reflections from the side-Doppler-
cooling beam. The error bars presented in the results here are calculated
by propagating errors in each term in Eq. (17).

DATA AVAILABILITY
The data sets generated during and/or analyzed during the current study are
available from the corresponding author on reasonable request.
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