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Abstract: Optimizing charged-particle track reconstruction algorithms is crucial for efficient event
reconstruction in Large Hadron Collider (LHC) experiments due to their significant computational
demands. Existing track reconstruction algorithms have been adapted to run on massively parallel
coprocessors, such as graphics processing units (GPUs), to reduce processing time. Nevertheless,
challenges remain in fully harnessing the computational capacity of coprocessors in a scalable and
non-disruptive manner. This paper proposes an inference-as-a-service approach for particle tracking
in high energy physics experiments. To evaluate the efficacy of this approach, two distinct tracking
algorithms are tested: Patatrack, a rule-based algorithm, and Exa.TrkX, a machine learning-based
algorithm. The as-a-service implementations show enhanced GPU utilization and can process
requests from multiple CPU cores concurrently without increasing per-request latency. The impact
of data transfer is minimal and insignificant compared to running on local coprocessors. This
approach greatly improves the computational efficiency of charged particle tracking, providing a
solution to the computing challenges anticipated in the High-Luminosity LHC era.

Keywords: Online farms and online filtering; Computing (architecture, farms, GRID for recording,
storage, archiving, and distribution of data); Data processing methods; Software architecturesar
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1 Introduction

The computing demands of particle physics experiments at the CERN Large Hadron Collider
(LHC) [1], such as ATLAS [2] and CMS [3], are expected to increase dramatically in the era of the
High-Luminosity LHC (HL-LHC). This anticipated increase is primarily due to the higher lumi-
nosity at the HL-LHC, which will lead to more simultaneous proton-proton interactions—known
as pileup—in each collision, resulting in a larger number of particles that need to be processed.
Consequently, significant efforts are being made to accelerate existing workflows, including event
reconstruction, which aims to deduce the properties of particles produced in collisions based on
detector measurements.

In collider and fixed target experiments, tracking detectors placed close to the beam collision
area and immersed in a strong magnetic field provide high-precision position measurements from
which the trajectories of charged particles can be determined. This task is known as charged
particle tracking [4]. Among all event reconstruction algorithms, tracking is typically the most
time-consuming component, accounting for 45% or more of the total computing time during data
processing [5, 6]. By optimizing this critical component, the entire data processing pipeline can
achieve faster throughput, enabling more timely analysis and interpretation of the vast amounts of
data recorded by the detectors.

Track reconstruction algorithms primarily involve pattern recognition operations to identify
the paths of charged particles as they interact with the detector in three-dimensional space. These
operations can be significantly accelerated with coprocessors, such as graphics processing units
(GPUs), which are well-suited for parallel computing tasks. Integrating these coprocessors with
modern CPUs—a method known as heterogeneous computing—enables the system to handle heavy
computational loads more efficiently by distributing tasks between CPUs and coprocessors.

To address the challenges encountered when implementing heterogeneous computing for data-
intensive physics experiments, an as-a-service approach has been developed. The current computing
infrastructure aggregates tasks from central experimental operations and individual user requests
into a global computing grid, distributing tasks to available computing centers worldwide. However,
the traditional technique of directly connecting coprocessors to CPUs in each computing center faces
several challenges, such as coprocessor underutilization or overutilization, inconsistent availability
of coprocessors across sites, and the need to maintain software compatibility between the varying
types of coprocessors and CPUs at each computing site.

The as-a-service approach overcomes these challenges by adding an abstraction layer that en-
ables the dynamic allocation of CPU and GPU resources tailored to specific tasks, as illustrated in
Fig. 1. This method provides several key benefits: it helps to achieve optimal GPU utilization, facili-
tates remote access to GPU resources, eliminates the need for local GPUs, decouples the server from
clients, modularizes software support for CPU and GPU. Consequently, server-side coprocessor
configuration changes require minimal modification on the client side, simplifying technical sup-
port and software compilation processes. This approach has been explored in various technologies
including field-programmable gate arrays (FPGAs) [7, 8], GPUs [9, 10], Intelligence Processing
Units (IPUs), and CPUs [11], and has undergone extensive testing in numerous experiments such
as CMS [11], ProtoDUNE [12, 13], and LIGO [14].

To demonstrate the effectiveness of the as-a-service approach in LHC experiments, we focus on
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Figure 1. Inference as-a-service approach: Users send various inference requests from client CPUs, which
include details about the type of inference desired, input dimensions and content, and output dimensions
and labels. This information is delivered from the clients to the servers through gRPC protocol, a high-
performance Remote Procedure Call. The server CPUs receive these tasks, batch them, execute inference on
the appropriate coprocessor based on the specific request, and deliver the output back to the client CPUs via
gRPC protocol. In this approach, each server can contain a different number of coprocessors and provide
different models. Each client can deliver tasks to multiple servers so that the tasks can be processed in
parallel. The client-to-server ratio can be scaled based on the demand of client requests.

two track reconstruction algorithms: Patatrack [15, 16], a rule-based algorithm implemented using
Compute Unified Device Architecture (CUDA), and Exa.TrkX [17], a machine learning algorithm
based on graph neural network (GNN). This paper presents the improvements in throughput
achieved for both algorithms by implementing customized server backends that adapt them to the
as-a-service model, showcasing a scalable solution to the computational challenges anticipated in
the HL-LHC era.

In Section 2, we review the typical pipeline of track reconstruction algorithms in particle
physics, providing a detailed description of both Patatrack and Exa.TrkX with particular emphasis
on their input and output structures. Sections 3 and 4 discuss the implementation of the as-a-
service approach for each algorithm, related performance metrics, including throughput and GPU
utilization. Finally, we discuss the differences in implementation and the challenges encountered
during deployment.

2 Background

2.1 HEP Computing: online and offline reconstruction

In typical high-energy physics experiments like ATLAS and CMS at the LHC, the reconstruction
processes are divided into online and offline reconstruction. Online reconstruction refers to the
trigger system that rapidly reconstructs and filters the data. It aims to identify potentially interesting
events to record for further analysis [18–22]. The trigger chain is divided into multiple levels. The
level-1 trigger (L1T), implemented in hardware like application-specific integrated circuits (ASICs)
and FPGAs, provides the first rapid decision-making layer. It uses a simplified reconstruction of
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signals from a subset of detector systems to reduce the data rate from 40 MHz to around 750–1000
kHz by selecting events with high-energy particles or specific decay products [18, 22].

Following the L1T, the high-level trigger (HLT) system, which operates in software using
commercial CPU or GPUs, applies a more refined selection to reduce the event rate to 5–10 kHz.
It uses more detailed information and complex algorithms, similar to offline reconstruction, to
filter the surviving events by applying additional criteria. Latency and throughput are typically the
limiting factors at this stage.

After the online selection, events are written to permanent storage, where offline reconstruc-
tion occurs. This stage involves using more sophisticated algorithms to fully reconstruct and
calibrate the recorded events. Unlike online reconstruction, offline reconstruction is not constrained
by real-time requirements, allowing for the application of precise calibration, alignment corrections,
and detailed analysis procedures. This includes fitting charged tracks, identifying jets, and accu-
rately reconstructing decay vertices, etc. Nevertheless, the challenge remains in how to process the
vast amount of data efficiently and how to seamlessly integrate new coprocessors into the production
framework as the hardware landscape rapidly evolves.

2.2 Track reconstruction

When a charged particle passes through a tracking detector, it leaves behind charge deposits in
each detector layer as it traverses the materials. The resulting signals are read out by the detector
electronics and then, if initially analog, converted to digital. The primary goal of track reconstruction
algorithms is to determine the trajectories of charged particles, including their curvature and point
of origin (vertex). The magnetic field applied within the detector causes the trajectory of a charged
particle to follow a curved path, with the curvature inversely related to the particle’s momentum;
tighter curves indicate lower momentum. Accurate vertex determination is crucial for identifying
the specific collision event that produced the track, especially in environments with high pileup,
such as the HL-LHC.

Typical tracking algorithms involve several stages: spacepoint formation, track seeding, track
following, and track fitting. Initially, 2D or 3D measurement positions, known as spacepoints or hits,
are estimated by combining nearby raw detector measurements into clusters and determining their
coordinates. Track seeding then uses these spacepoints to form initial track candidates, providing
preliminary estimates of trajectory parameters such as direction, origin, and curvature. Track
following refines these seeds by adding more spacepoints along the projected path, ultimately leading
to the track fitting stage. Here, an initial trajectory is calculated through the spacepoints, enabling
the estimation of the particle’s physical and kinematic properties, including charge, momentum,
and origin. However, most traditional fitting algorithms, such as the Kalman filter, are generally not
optimized to run on GPU, limiting how they can scale to handle increasing computational demands.

With the rapid development of machine learning (ML), another class of algorithms using
geometric deep learning methods (GDL) has emerged [23]. Several architectures exist to utilize 3D
point clouds for pattern recognition [17, 24–27]. These ML-based algorithms learn to cluster or
connect spacepoints from the same tracks based on high-dimensional latent space features, leading
to improvements in reconstruction speed and accuracy in complex environments with high particle
multiplicity. These algorithms are also more parallelizable by nature.
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We demonstrate the feasibility of tracking as a service with Patatrack, a GPU-optimized
rule-based approach described in Section 2.2.1 and the Exa.TrkX pipeline, a ML-based pattern
recognition algorithm detailed in Section 2.2.2.

2.2.1 Patatrack

Patatrack [15, 16] is a GPU-optimized track reconstruction algorithm designed for the CMS HLT
that employs a cellular automaton for pattern recognition. Unlike traditional tracking algorithms,
Patatrack is explicitly tailored for execution on GPU, enabling efficient parallel data processing. The
inputs to the algorithm are raw data from the pixel detectors and information about the beam spot—
the region where the proton beams overlap during collisions. The algorithm comprises five major
sub-algorithms: digitization, hit reconstruction, ntuplet creation, pixel tracks, and vertex recon-
struction. The outputs of Patatrack are reconstructed pixel tracks, vertices, and other intermediate
objects necessary for downstream tasks such as muon reconstruction.

The workflow of the Patatrack algorithm running on a GPU with the as-a-service approach is
illustrated in Fig. 2. To minimize data movement and conversion, intermediate objects are retained
on the device, while objects needed for downstream tasks are transferred back to the host. The input
size is approximately 80 kB per event, and the outputs are around 2 MB per event.

 

Input: 80KB/event                                                                               Output: 2MB/event 

GPU 

Detector geometry 

Preload 

Raw data 

Beam spot Digis/Clusters 

RecHit 

Triplets/Tracking 

Vertexing 

Digi(Errors) 
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Tracks 

Vertices 

Patatrack 
Sub-algorithms 

Figure 2. This illustration shows Patatrack running on a GPU using the as-a-service approach. Common
detector-related information, such as the location of each detector layer and detector indices, is preloaded
onto the GPU to be used later in the processing. For each event, raw data and beam spot information are
delivered to the GPU. The raw data is compressed before delivery, and during the digitization step, it is
unpacked and converted back into “digis.” In the same detector layer, neighboring digis are clustered to
determine the location of a “hit,” representing a single interaction of a charged particle with that detector
layer. From the hits, those in adjacent layers are paired to form doublets, then pair to triplets as track seeds.
From a seed, a group of hits that potentially form a track are picked, and then a fit is applied to determine the
track parameters and vertex location. Finally, the reconstructed tracks and vertices are delivered back to the
host.
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2.2.2 Exa.TrkX pipeline

The Exa.TrkX algorithm is based on deep learning models. It uses spacepoints as inputs and
produces track candidates as outputs. Each track candidate is a list of spacepoints. The pipeline
contains three major modules: graph construction, edge classification, and graph segmentation. The
graph construction module uses multilayer perceptrons (MLPs) to encode spacepoint raw features
to a new latent space. The hits from the same charged particles are close to each other and away
from other hits from different charged particles. This step is called embedding. Then, a fixed-radius
algorithm builds connections between spacepoints in this latent space (edges). The number of edges
after the embedding step necessitates another MLP to filter out clearly fake edges—called filtering.
A fixed threshold is applied to these filtered edge scores to retain true edges while eliminating false
ones. The edge classification step uses the interaction network [28]. In the end, the GNN edge
scores are passed to the weekly-connected-component (WCC) algorithm to form track candidates.

The Exa.TrkX pipeline is implemented in C++ for CPU- and GPU-only a. Trained PyTorch
models are executed via the libTorch library. The nearest neighbor search is performed with the
FRNN package [29] for GPU and FAISS [30] for CPUs. The connected component algorithm
is from the Boost package, with potential future improvements from the CUDA-based version in
cuGraph [31].

The Exa.TrkX pipeline has been integrated into the A Common Tracking Software (ACTS)
framework [32]—an experiment-independent toolkit for track reconstruction. ACTS serves as a test
bed for a range of tracking and vertex reconstruction algorithms. Simulation events are generated
using Fatras fast simulation [33], which invokes PYTHIA 8 [34] to simulate 𝑡𝑡 Monte Carlo (MC)
events with an average number of additional proton-proton interactions within the same or nearby
bunch crossings (pileup) of 200, replicating the conditions expected at the HL-LHC. The raw
measurement from detectors is processed and clustered into spacepoints by the framework and
provided as inputs to the Exa.TrkX pipeline. In the model utilized for this study, each spacepoint
is characterized by three features, resulting in approximately 350 thousand points per event, corre-
sponding to a data size of average size of 3.4 MB per event. The output from the Exa.TrkX pipeline
includes track candidates with the average size of 1.4 MB per event.

2.3 Inference as a service using NVIDIA Triton Inference Server

The inference as a service approach in this paper is implemented using the NVIDIA Triton Infer-
ence Server [35]. It is an open-source package built on the open-source gRPC server package that
standardizes the deployment and execution of ML models across various workloads[36]. It natively
supports several machine learning frameworks as backends: PyTorch [37], TensorFlow [38], Ten-
sorRT [39], and ONNX Runtime [40]. A backend is a wrapper around an existing ML framework
that executes client requests and returns the results to the client via gRPC. The Triton server also
supports custom implementations using C/C++ or Python, denoted “custom backend” in the fol-
lowing discussion. In this paper, we utilized the flexibility of the custom backend to demonstrate
the potential to apply it to any custom workflow.

aThe software can be found at https://github.com/The-ExaTrkX-Project/exatrkx-service.
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2.3.1 Custom backend

A custom backend may be necessary depending on the complexity of the algorithm pipeline. For
example, a complex ML pipeline may consist of multiple modules that do not efficiently align
with the ensemble model architecture provided by Triton. [41]. Data transfer between models on
different GPUs introduces significant overheads. In this scenario, the backend can be meticulously
designed to integrate seamlessly with Triton, utilizing its official API to manage heterogeneous
computing tasks efficiently. The custom backend also provides a convenient way to scale traditional
rule-based algorithms. It serves as a wrapper function around existing algorithms and provides
an easy pathway to scaling them with Triton. The use of a custom backend has a few additional
benefits:

• Fine-grained control: Custom backends allow developers to optimize performance at a low
level to avoid unnecessary type conversion and copying in memory, which is preferable for
complex pipelines with many models chained together.

• Low latency: Lower latency can be achieved by bypassing the high-level ML framework and
implementing custom operations to avoid redundant memory copying, which is crucial for
real-time applications.

• Custom logic and operations: Developers can implement specialized operations or algorithms
not supported by standard deep learning frameworks.

• Integration with legacy code: Custom backends can be built from existing C/C++ codebases
to avoid unnecessary rewriting and validation.

• Support for non-standard data types: Custom backends can be designed to handle unique
data types or formats not natively supported by the server.

2.3.2 Model performance measurement

The performance analyzer, perf_analyzer, is a performance measurement tool provided by the
NVIDIA Triton. It is designed to evaluate the throughput and latency of model instances deployed
on the server. This analyzer generates and sends a configurable number of inference requests to the
Triton server, allowing developers to simulate different load conditions and assess how their models
perform under various scenarios. perf_analyzer provides detailed metrics, including response
times, latency, and throughput rates, helping developers identify potential bottlenecks and optimize
their deployment for better efficiency. The perf_analyzer has been utilized in the following
standalone studies, along with full LHC workflows, when specified.

3 Patatrack as a service

The Patatrack algorithm is implemented as a custom backend that runs on the NVIDIA Triton
Inference Server. As shown in Fig. 2, the modules in the red block are contained in the backend
and are called during the inference stage. When launching the servers, environment data and
configurations are preloaded into the server to be used later during inference. Since these values
remain consistent during data-taking, they are configured beforehand rather than being sent to the
server at inference time.
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Figure 3. Illustration of the HLT running with tracking as a service. In the HLT workflow, the tracking
algorithm inference runs on a server, while other modules in the workflow run on the client CPU in parallel to
the tracking algorithms, ensuring no time is wasted waiting for track reconstruction results. This asynchronous
pipeline has been implemented in production.

3.1 Standalone algorithm throughput tests

The throughput of running the algorithm as a service is tested and compared to running the algorithm
directly on GPUs. In the as-a-service setup, the inference is triggered using dummy client inference
calls. The results show that the throughput is found to be 400 events/s with a single-threaded client
and 820 events/s when 10 threads are used to communicate with the server. For both tests, the server
used is a NVIDIA T4 GPU. The resulting output data rate is found to be approximately 1 GB/s. For
a single-threaded client and a direct connect setup, no significant difference in throughput is found
when comparing direct GPU with inference as a service. For comparison, the CPU-only rate of
Patatrack is found to be 25 events/s on a single 4-threaded HLT job.

3.2 HLT workflow throughput scanning

A GPU is considered saturated when increasing the number of CPU clients interacting with the
GPU server no longer results in increased throughput. To measure the number of CPU clients that
can interact with a GPU before it becomes saturated, a server with an NVIDIA Tesla T4 GPU is
used, equipped with the Patatrack backend for inference tasks. On the client side, the CMS HLT
workflow processes a prepared dataset to simulate actual collisions, with each job using one CPU
thread per physical CPU core. The number of CPU clients is increased from 20 to 120, and the
resulting throughput improvement is shown in Fig. 4.

Before the GPU saturates, the throughput improvement remains flat as the number of CPU
clients increases, stabilizing around 10%. This flat gain is approximately equal to the processing
time of the Patatrack tasks offloaded to GPUs directly connected to CPUs. Compared to the current
HLT workflow, which uses 64 CPU cores to serve one GPU, the as-a-service approach demonstrates
significant potential to serve a larger amount of CPUs simultaneously and increase GPU utilization.
This improved utilization can reduce the number of GPUs needed to serve the same number of
clients.
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Figure 4. A scan of throughput improvement for the HLT workflow, varying the number of CPU clients
communicating with a single GPU server. Direct inference on a GPU is limited to 64 CPUs requesting
Patatrack inference. This results in about a 10% throughput gain compared to running it on the CPU alone
(black dotted line). Using Patatrack as a service, the system can handle in excess of 120 CPU cores while
maintaining the same level of throughput improvement, showing no GPU saturation.
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Figure 5. A throughput saturation scan is performed by launching a server with ten model instances loaded
on one NVIDIA Tesla T4 GPU. The remote Triton server loads the Patatrack model, receiving inference
requests from multiple synchronized 4-thread CPU client jobs. The throughput is expected to stay at the
same level before the GPU computing resources are fully saturated. The server becomes fully saturated when
around 240 synchronized 4-thread CPU client jobs send requests simultaneously. The throughput starts to
drop beyond the saturation point.
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A further test of the throughput saturation scan was conducted with a fully realistic setup of
the HLT workflow using an emulated HLT system constructed using Google Cloud. By deploying
a server with ten model instances running on a single NVIDIA Tesla T4 GPU, the Triton server
hosted the Patatrack models and received inference requests from multiple synchronized 4-thread
CPU client jobs. Each scan was performed twice per data point to ensure the stability of the
results. The throughput remained stable until the GPU computing resources reached full saturation.
Saturation occurred when 240 synchronized 4-thread CPU client jobs were sent to the server, beyond
which the throughput began to decrease.

Throughput measurements were repeated multiple times at each data point, with the uncer-
tainties calculated as the standard deviation of the measured throughput values for a given test.
The results show that the Patatrack-as-a-service framework can process up to 240 simultaneous
inference requests without experiencing a drop in throughput. A 2% increase in throughput was
observed compared to the average throughput under direct connection, highlighting the server’s
capability to optimize and handle a higher number of simultaneous inference requests. Moreover,
when comparing with the existing CMS HLT GPU model, we find that we can more than double
the number of threads that a GPU can service.

4 Exa.TrkX as a Service in ACTS

The Exa.TrkX pipeline benefits from the flexibility of a custom backend. Custom backend provides
fine-grained control when executing on the NVIDIA Triton Inference Server. This is especially
important for sequential pipelines like Exa.TrkX that connect multiple ML models. The client
communications with the remote Triton Inference Server are implemented in ACTS.

The standalone implementation includes a configurable class with interfaces for loading the
full pipeline, performing inference, and setting the GPU device ID. Assigning models and data to
a specific GPU minimizes data transfers and optimizes performance in multi-GPU environments.
After this step, the Triton server manages inputs (inference requests) and outputs (responses),
streamlining the process for server-side deployment.

4.1 Exa.TrkX backend lifecycle

The Exa.TrkX backend demonstrates how to use a custom backend as a wrapper around a compli-
cated ML workflow, which is common in high energy physics. The backend architecture follows a
modular life cycle divided into three phases:

• Initialization: Configurations are loaded, and the model is prepared. During this phase, the
server setup begins with the creation of a model object, which is configured according to a
predefined input shape, backend library, and model path, as detailed in the configuration. The
model instance fetches the device ID from the model object to ensure that all computations
are executed on the same GPU where the data resides, enhancing processing efficiency.

• Execution: Data is transferred to the GPU memory for processing. Model instances are
created based on the instance_group settings in the model configuration. The server opens
specific ports to accept inputs, such as a vector of 3D spacepoints position, via HTTP or
gRPC protocols. These inputs are processed to generate track candidates.
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• Termination: Resources are cleaned up after processing, and responses are sent back to
the client. This phase ensures that all resources are efficiently released and clients receive
accurate output from the Exa.TrkX pipeline.

4.2 Standalone algorithm throughput tests

A standalone pipeline is used to inspect the performance of the Triton server, including throughput
and latency. The tests use the simulated 𝑡𝑡 events as described in Section 2.2.2 as input data, and the
output track candidates are validated to be identical whether inference occurs on a local GPU or on a
remote GPU accessed via the Triton server. The tests are performed on Perlmutter, a heterogeneous
computing system at the National Energy Research Scientific Computing Center (NERSC). For
direct inference, the tests are performed on computing nodes directly connected with GPUs. For
inference using the Triton server, the client is set up on a CPU node while the server is launched
on another node with access to a GPU. The data is transferred between the client and the server
through the gRPC protocol. NVIDIA A100-SXM4 GPUs with 40 GB and 80 GB of memory are
tested.

4.2.1 Multiple model instance scaling

The throughput and GPU utilization are measured with the performance analyzer as described in
Section 2.3.2. The client makes asynchronous calls to the server so that the client does not block
the thread while waiting for the inference results from the server. The maximum throughput for
a single GPU is measured to be about 1.75 events per second for both types of GPUs, shown in
Fig. 6 for the 40 GB GPU. Saturation is reached when there are more than 2 model instances on
the A100-SXM4 GPUs and when the number of concurrent requests is larger than the number of
model instances hosted on the Triton server. The throughput increases with the number of model
instances because the GPU utilization is improved. This point that multiple model instances better
utilize the GPU is shown in Fig. 7. The latency in the measurements is dominated by computing
inference time and queue time. Other components are negligible, including the time that the client
sends/receives data, the network sends/receives data, and the server computes input/output. This is
expected due to the simple network topology between the client and server in the current setup.

4.2.2 Multiple GPU scaling

The throughput for Triton servers with one GPU and four GPUs are compared. The throughput is
measured with one model instance, and all GPUs are occupied with requests. We see an increase
from 1.6 to 4.6 events per second in Fig. 8. The default load balancer in the Triton server is used
to distribute requests among all the connected GPUs. Further optimization of load balancing is
beyond the scope of this study; it may be examined in the future when testing the server deployment
at high-performance computing (HPC) centers.

4.3 Integrated throughput tests with ACTS

In the ACTS reconstruction workflow, the Exa.TrkX pipeline is the dominant component, consuming
a significant fraction of the total processing time. The track reconstruction process can be divided
into several steps. The raw measurements from the pixel and strip detectors are converted into
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Figure 7. Maximum throughput and GPU utilization measured on an A100-SXM4-40GB (left) GPU and an
A100-SXM4-80GB (right) GPU with 1 to 7 model instances. No significant throughput difference is observed
between the two GPUs with different amounts of memory. Each data point represents the average throughput
of 10 measurements when the GPU reaches the maximum throughput, with the number of concurrent requests
ranging from the number of model instances to 10 more concurrent requests beyond the saturation point.
The throughput (black line) and GPU utilization (red line) reach their maxima simultaneously when there
are four or more model instances.

three-dimensional space points for pattern recognition, executed in less than 8 ms on an AMD
EPYC 7763 CPU. Subsequently, these space points serve as inputs to the Exa.TrkX pipeline, which
identifies a collection of proto-track candidates. A proto-track collection is simply a list of space
points that the Exa.TrkX pipeline predicts will form a track. The final step of this sequence is the
track-fitting process using the Kalman filter.

Three implementations of the Exa.TrkX pipeline are considered and compared: direct CPU,
direct GPU, and GPU inference as a service. In the first two cases, the Exa.TrkX pipeline is
executed using the local device without interfacing with Triton. It is straightforward to implement
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Figure 8. Throughput of Triton servers with 1 GPU and 4 GPUs. The maximum throughput increases from
1.6 events to 4.6 events per second.

an execution sequence that can switch between direct and as-a-service implementations. The mean
processing duration was computed from ten simulated 𝑡𝑡 events, with inference times summarized
in Table 1. Under baseline conditions, the Exa.TrkX model operates on a dedicated CPU node
at Perlmutter, accounting for approximately 95% of the timeline from raw measurement to track
fitting. A significant speedup is achieved using the GPU to run inference for Exa.TrkX pipeline,
completed in 2.4 seconds on a directly connected GPU. This investigation used an NVIDIA A100
GPU for both the direct and as-a-service approaches.

Furthermore, deploying the Exa.TrkX pipeline on a Triton server introduced no detectable
overhead. The throughput is almost identical for inference via direct GPU and remote Triton server.
This highlights the robustness of the Triton server implementation for the Exa.TrkX model and the
significant gain in the event processing rate achievable for the HL-LHC.

The inference as a service measurement is performed with the client and server located at
Perlmutter, so the network latency is expected to be negligible. This is relevant to demonstrate the
potential application of this technology in the HLT farm, where the GPU cluster is close to the
CPU processors, which minimizes the network latency. An alternative scenario could be to utilize a
remote GPU farm from a powerful HPC, such as the National Research Platform at UCSD. In such a
scenario, additional latency is expected, which strongly depends on the distance between the client
and server that provides the inference calculation. However, using asynchronous communication
between the client and server minimizes the impact of this latency on the event processing time and
throughput, often to a level where it is negligible [11].

Implementation Exa.TrkX model inference time (s)
Direct CPU 9.65
Direct GPU 2.42

Exa.TrkX-aaS GPU 2.24

Table 1. Average inference time for the Exa.TrkX model using simulated 𝑡𝑡 events with an average pileup of
200.
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5 Summary

Track reconstruction is a critical and computationally intensive step in data processing at the
HL-LHC. This paper explores the potential of leveraging modern GPUs to address the growing
computational challenges through an innovative inference as a service approach. Two representative
track reconstruction algorithms were evaluated: the ruled-based Patatrack algorithm, utilized for
online pixel track and vertex reconstruction, and the ML-based Exa.TrkX pipeline, which aims to
be used in online and offline pattern recognition. Both algorithms were successfully adapted to run
on the NVIDIA Triton Inference Server, enabling efficient use of GPU computing resources and
increased throughput. Using custom backend opens up new possibilities, as it not only facilitates
the efficient scaling of complex ML pipelines with Triton but also extends these capabilities to
non-ML algorithms. It enables the seamless scaling of rule-based, non-ML workflows on GPUs,
harnessing their substantial parallel processing potential.

When considering the benefits of using GPU as a service compared to direct GPU or CPU,
we note that the GPU-as-a-service paradigm achieves near full GPU utilization; this allows for the
maximum observed throughputs to be attained. When comparing directly with a full 64-core CPU,
we find an approximate factor of 2 (Patatrack on an NVIDIA T4) to a factor of 4 (Exa.TrkX on an
NVIDIA A100) increase in overall throughput. This leads to an approximate 4-8x reduction in power
consumption and, ultimately, operational cost. The equivalent reductions without as-a-service are
limited due to the underutilization of the GPU.

The tracking-as-a-service approach can achieve better throughput with minimal additional
overhead compared to the traditional direct-connection approach while significantly improving
GPU utilization. This method provides flexibility to dynamically scale resources based on demand,
potentially reducing the total number of GPUs required. The tracking as a service approach enhances
the adaptability and sustainability of computing resources, laying the groundwork for more efficient
data processing pipelines in the era of the HL-LHC. Several future developments are still actively
under investigation to bring this portability to other GPU vendors and other coprocessor types, ARM
processors, tensor processing unit (TPU)s, and FPGA. There is also ongoing work to optimize the
load balancing across multiple GPUs and to reduce the overhead further.
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