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Abstract: The review presents the development of an approach of constructing approximate solutions
to complicated physics problems, starting from asymptotic series, through optimized perturbation
theory, to self-similar approximation theory. The close interrelation of underlying ideas of these
theories is emphasized. Applications of the developed approach are illustrated by typical examples
demonstrating that it combines simplicity with good accuracy.
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1. Introduction

The standard way of treating realistic physical problems, described by complicated
equations, relies on approximate solutions of the latter, since the occurrence of exact
solutions is rather an exception. The most often used method is a kind of perturbation
theory based on expansions in powers of some small parameters. This way encounters two
typical obstacles: the absence of small parameters and divergence of resulting perturbative
series. To overcome these difficulties, different methods of constructing approximate
solutions have been suggested.

In this review, it is demonstrated how, starting from asymptotic series, there appear gen-
eral ideas of improving the series convergence and how these ideas lead to the development
of powerful methods of optimized perturbation theory and self-similar approximation theory.

2. Asymptotic Expansions

Let us be interested in finding a real function f (x) of a real variable x. A generalization
to complex-valued functions and variables can be straightforwardly done by considering
several real functions and variables. The case of a real function and variable is less cumber-
some and allows for the easier explanation of the main ideas. Suppose that the function
f (x) is a solution of very complicated equations that cannot be solved exactly and allow
only for finding an approximate solution for the asymptotically small variable x → 0 in
the form

f (x) ' fk(x) (x → 0) . (1)

The following cases can happen:

(i) Expansion over a small variable:

fk(x) = f0(x)

(
1 +

k

∑
n=1

anxn

)
, (2)
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where the prefactor f0(x) is a given function. The expansion is asymptotic in the
sense of Poincaré [1,2], since∣∣∣∣ an+1xn+1

anxn

∣∣∣∣ → 0 (x → 0) ,

with an assumed to be nonzero.
(ii) Expansion over a small function:

fk(x) = f0(x)

[
1 +

k

∑
n=1

an ϕn(x)

]
, (3)

when the function ϕ(x) tends to zero as x → 0 so that∣∣∣∣ an+1 ϕn+1(x)
an ϕn(x)

∣∣∣∣ → 0 (x → 0) .

(iii) Expansion over an asymptotic sequence:

fk(x) = f0(x)

[
1 +

k

∑
n=1

an ϕn(x)

]
, (4)

such that ∣∣∣∣ an+1 ϕn+1(x)
an ϕn(x)

∣∣∣∣ → 0 (x → 0) .

(iv) Generalized asymptotic expansion:

fk(x) = f0(x)

[
1 +

k

∑
n=1

an(x)ϕn(x)

]
, (5)

where the coefficients an(x) depend on the variable x and {ϕn(x)} is an asymptotic
sequence, such that ∣∣∣∣ an+1(x)ϕn+1(x)

an(x)ϕn(x)

∣∣∣∣ → 0 (x → 0) .

This type of expansion occurs in the Lindstedt–Poincaré technique [1,3,4] and in the
Krylov–Bogolubov averaging method [5–8].

(v) Expansion over a dummy parameter:

fk(x) = f0(x)

[
1 +

k

∑
n=1

an(x)εn

]
. (6)

Here, the value of interest corresponds to the limit ε = 1, while the series is treated as
asymptotic with respect to ε→ 0, hence∣∣∣∣ an+1(x)εn+1

an(x)εn

∣∣∣∣ → 0 (ε→ 0) .

The introduction of dummy parameters is often used in perturbation theory, for in-
stance in the Euler summation method, Nörlund method, and in the Abel method [9].
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Dummy parameters appear when one considers a physical system characterized by
a Hamiltonian (or Lagrangian) H, while starting the consideration with an approximate
Hamiltonian H0, so that one has

Hε = H0 + (H − H0)ε (ε→ 1) .

Then, perturbation theory with respect to H− H0 yields a series in powers of ε. Differ-
ent iteration procedures also can be treated as expansions in powers of dummy parameters.

Sometimes, perturbation theory with respect to a dummy parameter is termed nonper-
turbative, keeping in mind that it is not a perturbation theory with respect to some other
physical parameter, say a coupling parameter. Of course, this misuse of terminology is
confusing, mathematically incorrect, and linguistically awkward. Therefore, it is mathemat-
ically correct to call perturbation theory with respect to any parameter perturbation theory.

3. Sequence Transformations

Asymptotic series are usually divergent. To assign to a divergent series an effec-
tive limit, one involves different resummation methods employing sequence transforma-
tions [10]. The most often used are the Padé approximation and Borel summation.

3.1. Padé Approximants

The method of Padé approximants sums the series

fk(x) =
k

∑
n=0

anxn (7)

by means of rational fractions

PM/N(x) =
a0 + ∑M

n=1 bnxn

1 + ∑N
n=1 cnxn

(M + N = k) , (8)

with the coefficients bn and cn expressed through an from the requirement of coincidence
of the asymptotic expansions

PM/N(x) ' fk(x) (x → 0) . (9)

As is evident from their structure, the Padé approximants provide the best approxi-
mation for rational functions. However, in general, they have several deficiencies. First of
all, they are not uniquely defined, in the sense that, for a series of order k, there are C2

k + 2
different Padé approximants PM/N , with M + N = k, where

Cn
k =

k!
(k− n)!n!

=
k(k− 1)(k− 2) . . . (k− n + 1)

n!
,

and there is no uniquely defined general prescription of which of them to choose. Often, one
takes the diagonal approximants PN/N , with 2N = k. However, these are not necessarily
the most accurate [11]. Second, there is the annoying problem of the appearance of
spurious poles.

Third, when the sought function, at small x behaves as in expansion (7), but at large x,
it may have the power-law behavior xβ that should be predicted from the extrapolation
of the small-variable expansion, then this extrapolation to a large variable x � 1 cannot
in principle be done if β is not known or irrational. Let us stress that here one keeps in
mind the extrapolation problem from the knowledge of only the small-variable expansion
and the absence of knowledge on the behavior of the sought function at large x. This
case should not be confused with the interpolation problem employing the method of
two-point Padé approximants, when both expansions at small as well as at large variables
are available [12].
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Finally, the convergence of the Padé approximants is not a simple problem [11,13],
especially when one looks for a summation of a series representing a function that is
not known. In the latter case, one tries to observe what is called apparent numerical
convergence which may be absent.

As an example of a problem that is not Padé summable [14,15], it is possible to mention
the series arising in perturbation theory for the eigenvalues of the Hamiltonian

H = − 1
2

d2

dx2 +
1
2

x2 + gxm ,

where x ∈ (−∞, ∞), g > 0, and m ≥ 8.

3.2. Borel Summation

The series (7) can be Borel summed by representing it as the Laplace integral

f B
k (x) =

∫ ∞

0
e−tBk(tx) dt (10)

of the Borel transform

Bk(t) ≡
k

∑
n=0

an

n!
tn . (11)

This procedure is regular, since if series (7) converges, then

fk(x) =
k

∑
n=0

anxn =
k

∑
n=0

an

n!
xn
∫ ∞

0
e−ttn dt =

=
∫ ∞

0
e−t

k

∑
n=0

an

n!
(tx)n dt =

∫ ∞

0
e−tBk(tx) dt = f B

k (x) .

Conditions of Borel summability are given by the Watson theorem [9], according to
which a series (7) is Borel summable if it represents a function analytic in a region and in
that region the coefficients satisfy the inequality |an| ≤ Cnn! for all orders n.

The problem in this method arises because the sought function is usually unknown,
hence its analytic properties are also not known, and the behavior of the coefficients
an for large orders n is rarely available. When the initial series is convergent, its Borel
transform is also convergent and the integration and the summation in the above formula
can be interchanged. However, when the initial series is divergent, the interchange of the
integration and summation is not allowed. One has, first, to realize a resummation of the
Borel transform and after this to perform the integration.

There are series that cannot be Borel summed. As an example, let us mention a model
of a disordered quenched system [16] with the Hamiltonian

H(g, ϕ, ξ) = (1 + ξ)ϕ2 + gϕ4 ,

in which ϕ ∈ (−∞, ∞), ξ ∈ (−∞, ∞), and g > 0, so that the free energy, as a function of
the coupling parameter, is

f (g) = −
∫ ∞

−∞
ln Z(g, ξ) exp

(
− ξ2

σ

)
dξ√
πσ

,

where the statistical sum reads as

Z(g, ξ) =
∫ ∞

−∞
exp{ −H(g, ϕ, ξ) } dϕ√

π
.
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By analytic means and by direct computation of 200 terms in the perturbation expan-
sion for the free energy, it is shown [16] that the series is not Borel summable, since the
resulting terms do not converge to any limit.

Sometimes, the apparent numerical convergence can be achieved by using the Padé
approximation for the Borel transform under the Laplace integral, which is called the
Padé–Borel summation.

4. Optimized Perturbation Theory

The mentioned methods of constructing approximate solutions tell us that there are
three main ways that could improve the convergence of the resulting series. These are:
(i) the choice of an appropriate initial approximation; (ii) change of variables, and (iii) series
transformation. However, the pivotal question arises: How can these choices be optimized?

The idea of optimizing system performance comes from optimal control theory for
dynamical systems [17]. Similarly to dynamical systems, the optimization in perturbation
theory implies the introduction of control functions in order to achieve series convergence,
as was advanced in Refs. [18–20] and employed for describing anharmonic crystals [19–24]
and the theory of melting [25]. Perturbation theory, complimented by control functions
governing the series convergence, is called optimized perturbation theory.

The introduction of control functions means the reorganization of a divergent series
into a convergent one. Formally, this can be represented as the operation

R̂[ uk ]{ fk(x) } = { Fk(x, uk) } (12)

converting an initial series into a new one containing control functions uk(x). Then, the
optimized approximants are

f k(x) = Fk(x, uk(x)) . (13)

The optimization conditions define the control functions in such a way as to make the
new series {Fk(x, uk(x))} convergent; because of this, the method is called optimized pertur-
bation theory. The general approach to formulating optimization conditions is expounded
in the review articles [26,27], and some particular methods are discussed in Refs. [28–30].
Control functions can be implanted into perturbation theory in different ways. The main
methods are described below.

4.1. Initial Approximation

Each perturbation theory or iterative procedure starts with an initial approximation.
It is possible to accept as an initial approximation not a fixed form but an expression
allowing for variations. For concreteness, let us assume a problem, characterized by
a Hamiltonian H containing a coupling parameter g, is considered. Looking for the
eigenvalues of the Hamiltonian, using perturbation theory with respect to the coupling,
one comes to a divergent series

Ek(g) =
k

∑
n=1

cngn (g→ 0) . (14)

As an initial approximating Hamiltonian, one can consider a form H0(u) contain-
ing trial parameters. For brevity, one parameter u is written here. Then, the following
Hamiltonian is defined:

Hε = H0(u) + ε[ H − H0(u) ] (ε→ 1) . (15)

To find the eigenvalues of the Hamiltonian, one can resort to perturbation theory in
powers of the dummy parameter ε, yielding

Ek(g, u) =
k

∑
n=1

cn(g, u)εn . (16)
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Setting ε = 1 and defining control functions uk(x) from optimization conditions results
in the optimized approximants

Ek(g) = Ek(g, uk(g)) . (17)

The explicit way of defining control functions and particular examples are described
in the following sections.

4.2. Change of Variables

Control functions can be implanted through the change of variables. Suppose a series

fk(x) =
k

∑
n=0

anxn (18)

is considered.
Accomplishing the change of the variable

x = x(z, u) , z = z(x, u), (19)

One comes to the functions fk(x(z, u)). Expanding the latter in powers of the new
variable z, up to the order k, gives

fk(x(z, u)) =
k

∑
n=0

bn(u)zn (z→ 0) . (20)

In terms of the initial variable, this implies

Fk(x, u) =
k

∑
n=0

bn(u)zn(x, u) . (21)

Defining control functions uk(x) yields the optimized approximants (13).
When the variable x varies between zero and infinity, sometimes it is convenient to

resort to the change of variables mapping the interval [0, ∞) to the interval (−∞, 1], passing
to a variable y,

x =
u

(1− y)ω
= x(y, u, ω) , (22)

where u > 0 and ω > 0 are control parameters [31,32]. The inverse change of variables is

y = 1−
(u

x

)1/ω
= y(x, u, ω) . (23)

The series (18) becomes:

fk(x(y, u, ω)) =
k

∑
n=0

an

[
u

(1− y)ω

]n
. (24)

Expanding this in powers of y, one obtains:

Fk(x, u, ω) =
k

∑
n=0

bn(u, ω) [ y(x, u, ω) ]n . (25)

Defining control functions uk = uk(x) and ωk = ωk(x) gives the optimized approximants

f k(x) = Fk(x, uk(x), ωk(x)) . (26)

Other changes of variables can be found in review [27].
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4.3. Sequence Transformations

Control functions can also be implanted by transforming the terms of the given series
by means of some transformation,

T̂[ u ] fk(x) = Fk(x, uk) . (27)

Defining control functions uk(x) gives Fk(x, uk(x)). Accomplishing the inverse trans-
formation results in the optimized approximant

f k(x) = T̂−1[ u ]Fk(x, uk(x)) . (28)

As an example, let us consider the fractal transform [26] that is needed in what follows:

T̂[ s ] fk(x) = xs fk(x) = Fk(x, s) . (29)

For this transform, the scaling relation is valid:

Fk(λx, s)
Fk(x, s)

=
fk(λx)
fk(x)

λs . (30)

The scaling power s plays the role of a control parameter through which control
functions sk(x) can be introduced [33–35].

5. Statistical Physics

In the problems of statistical physics, before calculating observable quantities, one has
to find probabilistic characteristics of the system. This can be either probability distributions,
or correlation functions, or Green functions. Thus, first, one needs to develop a procedure
for finding approximations for these characteristics, and then to calculate the related
approximations for observable quantities. Here, this procedure is exemplified for the case
of a system described by means of Green functions [18–23].

Let us consider Green functions for a quantum statistical system with particle interac-
tions measured by a coupling parameter g. The single-particle Green function (propagator)
satisfies the Dyson equation that can be schematically represented as

G(g) = G0 + G0 Σ(G(g)) G(g) , (31)

where G0 is an approximate propagator and Σ(G) is self-energy [36,37].
Usually, one takes for the initial approximation G0 the propagator of noninteracting

(free) particles, whose self-energy is zero. Then, iterating the Dyson equation, one gets
the relation

Gk+1(g) = G0 + G0 Σk(Gk(g)) Gk(g) , (32)

which is a series in powers of the coupling parameter g. Respectively, the sequence of the
approximate propagators {Gk(g)} can be used for calculating observable quantities

Ak(g) =
k

∑
n=0

cngn , (33)

that are given by a series in powers of g. This is an asymptotic series with respect to the
coupling parameter g→ 0, which as a rule is divergent for any finite g.

Instead, it is possible to take for the initial approximation an approximate propagator
G0(u) containing a control parameter u. This parameter can, for instance, enter through
an external potential [38] corresponding to the self-energy Σ0. Then, the Dyson equation
reads as

G(g) = G0(u) + G0(u) [ Σ(G(g))− Σ0(G0(u)) ] G(g) . (34)
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Iterating this equation [39] yields the approximations for the propagator

Gk+1(g, u) = G0(u) + G0(u) [ Σk(Gk(g, u))− Σ0(G0(u)) ] Gk(g, u) . (35)

This iterative procedure is equivalent to the expansion in powers of a dummy parameter.
Being dependent on the control parameter u, the propagators Gk(g, u) generate the

observable quantities Ak(g, u) also depending on this parameter. Defining control functions
uk(g) results in the optimized approximants

Ak(g) = Ak(g, uk(g)) , (36)

for observable quantities.

6. Optimization Conditions

The above sections explain how to incorporate control parameters into the sequence
of approximants that, after defining control functions, become optimized approximants.
Now, it is necessary to provide a recipe for defining control functions.

By their meaning, control functions have to govern the convergence of the sequence
of approximants. The Cauchy criterion tells us that a sequence {Fk(x, uk)} converges if and
only if, for any ε > 0, there exists a number kε such that

| Fk+p(x, uk+p)− Fk(x, uk) | < ε , (37)

for all k > kε and p > 0.
In optimal control theory [17], control functions are defined as the minimizers of a

cost functional. Considering the convergence of a sequence, it is natural to introduce the
convergence cost functional [26]

C[ u ] =
1
2 ∑

k
C2(Fk+p, Fk) , (38)

in which the Cauchy difference is defined,

C(Fk+p, Fk) ≡ Fk+p(x, uk+p)− Fk(x, uk) . (39)

To minimize the convergence cost functional implies the minimization of the Cauchy
difference with respect to control functions,

min
u
| C(Fk+p, Fk) | = min

u
| Fk+p(x, uk+p)− Fk(x, uk) | , (40)

for all k ≥ 0 and p ≥ 0.
In order to derive from this condition explicit equations for control functions, one

needs to accomplish some rearrangements. If the Cauchy difference is small, this means
that it is possible to assume that uk+p is close to uk and Fk+p is close to Fk. Then, one can
expand the first term of the Cauchy difference in the Taylor series with respect to uk+p in
the vicinity of uk, which gives

Fk+p(x, uk+p) =
∞

∑
n=0

1
n!

∂nFk+p(x, uk)

∂un
k

(uk+p − uk)
n . (41)

Let us treat Fk+p as a function of the discrete variable p, which allows us to expand
this function in the discrete Taylor series

Fk+p(x, uk) =
∞

∑
m=0

1
m!

∆m
p Fk(x, uk) , (42)
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where a finite difference of m-th order is

∆m
p Fk =

m

∑
j=0

(−1)m−j m!
j! (m− j)!

Fk+jp . (43)

As examples of finite differences, let us mention

∆0
pFk = Fk , ∆1

pFk ≡ ∆pFk = Fk+p − Fk , ∆2
pFk = Fk+2p − 2Fk+p + Fk .

Thus, the first term in the Cauchy difference can be represented as

Fk+p(x, uk+p) =
∞

∑
m,n=0

(uk+p − uk)
n

m! n!
∂n

∂un
k

∆m
p Fk(x, uk) . (44)

Keeping on the right-hand side of representation (44) a finite number of terms results
in the explicit optimization conditions. The zero order is not sufficient for obtaining
optimization conditions, since in this order,

Fk+p(x, uk+p) ∼= Fk(x, uk) ,

hence, the Cauchy difference is automatically zero:

C(Fk+p, Fk) ∼= 0 .

In the first order:

Fk+p(x, uk+p) ∼= Fk+p(x, uk) + (uk+p − uk)
∂

∂uk
Fk(x, uk) , (45)

which gives the Cauchy difference

C(Fk+p, Fk) = Fk+p(x, uk)− Fk(x, uk) + (uk+p − uk)
∂

∂uk
Fk(x, uk) . (46)

The minimization of the latter with respect to control functions implies

min
u
| C(Fk+p, Fk) | ≤ min

u
| Fk+p(x, uk)− Fk(x, uk) |+

+ min
u

∣∣∣∣ (uk+p − uk)
∂

∂uk
Fk(x, uk)

∣∣∣∣ . (47)

Minimizing the first part on the right-hand side of expression (47), one gets the
minimal-difference condition

min
u
| Fk+p(x, uk)− Fk(x, uk) | (48)

for the control functions uk = uk(x). The ultimate form of this condition is the equality

Fk+p(x, uk)− Fk(x, uk) = 0 . (49)

The minimization of the second part of the right-hand side of expression (47) leads to
the minimal-derivative condition

min
u

∣∣∣∣ (uk+p − uk)
∂

∂uk
Fk(x, uk)

∣∣∣∣ . (50)
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The minimum of condition (50) is made zero by setting

∂

∂uk
Fk(x, uk) = 0 . (51)

When this equation has no solution for the control function uk, it is straightforward to
either set

uk+p = uk

(
∂

∂uk
Fk(x, uk) 6= 0

)
, (52)

or to look for the minimum of the derivative

min
u

∣∣∣∣ ∂

∂uk
Fk(x, uk)

∣∣∣∣ (uk+p 6= uk) . (53)

In this way, control functions are defined by one of the above optimization conditions.
It is admissible to consider higher orders of expression (44) obtaining higher orders of
optimization conditions [27].

Control functions can also be defined if some additional information on the sought
function f (x) is available. For instance, when the asymptotic behavior of f (x), as x → x0,
is known, where

f (x) ' fas(x) (x → x0) , (54)

then the control functions uk(x) can be defined from the asymptotic condition

Fk(x, uk) = T̂[ u ] fk(x) ' T̂[ u ] fas(x) (x → x0) . (55)

7. Thermodynamic Potential

As an illustration of using the optimized perturbation theory, let us consider the
thermodynamic potential

f (g) = − ln Z(g) , (56)

of the so-called zero-dimensional anharmonic oscillator model with the statistical sum

Z(g) =
1√
π

∫ ∞

−∞
exp(−H[ ϕ ]) dϕ , (57)

and the Hamiltonian
H[ ϕ ] = ϕ2 + gϕ4 (g > 0) . (58)

Taking for the initial approximation the quadratic Hamiltonian

H0[ ϕ ] = ω2 ϕ2 , (59)

in which ω is a control parameter, one defines

Hε[ ϕ ] = H0[ ϕ ] + ε∆H (ε→ 1) , (60)

where the perturbation term is

∆H = H − H0 = (1−ω2)ϕ2 + gϕ4 . (61)

Employing perturbation theory with respect to the dummy parameter ε, and setting
ε = 1, leads to the sequence of the approximants

Fk(g, ω) = − ln Zk(g, ω) . (62)

Control functions for the approximations of odd orders are found from the minimal
derivative condition

∂Fk(g, ωk)

∂ωk
= 0 (k = 1, 3, . . .) . (63)
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For even orders, the above equation does not possess real-valued solutions, because
of which

ωk = ωk−1(g) (k = 2, 4, . . .) (64)

is set.
Thus, one obtains the optimized approximants,

f k(g) = Fk(g, ωk(g)) . (65)

Their accuracy can be characterized by the maximal percentage error

εk = sup
g

∣∣∣∣∣ f k(g)− f (g)
f (g)

∣∣∣∣∣× 100% , (66)

comparing the optimized approximants with the exact expression (56). These maximal
errors are

ε1 = 7%, ε2 = 4%, ε3 = 0.2%, ε4 = 0.2% .

As one can see, with just a few terms, quite good accuracy is reached, while the bare
perturbation theory in powers of the coupling parameter g is divergent. Details can be
found in review [27].

This simple model allows for explicitly studying the convergence of the sequence of
the optimized approximants. It has been proved [40,41] that this sequence converges for
both ways of defining control functions, either from the minimal derivative or minimal-
difference conditions.

8. Eigenvalue Problem

Another typical example is the calculation of the eigenvalues of Schrödinger operators,
defined by the eigenproblem

Hψn = Enψn . (67)

Let us consider a one-dimensional anharmonic oscillator with the Hamiltonian

H = − 1
2

d2

dx2 +
1
2

x2 + gx4 , (68)

in which x ∈ (−∞, ∞) and g > 0.
For the initial approximation, let us take the harmonic oscillator model:

H0 = − 1
2

d2

dx2 +
ω2

2
x2 , (69)

with a control parameter ω. Following the approach,

Hε = H0 + ε∆H (ε→ 1) , (70)

is defined, where

∆H = H − H0 =
1−ω2

2
x2 + gx4 . (71)

Employing the Rayleigh–Schrödinger perturbation theory with respect to the dummy
parameter ε, one obtains the spectrum Ekn(g, ω), where k enumerates the approximation
order and n = 0, 1, 2, . . . is the quantum number labeling the states. The zero-order
eigenvalue is

E0n(g, ω) =

(
n +

1
2

)
ω . (72)
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For odd orders, control functions can be found from the optimization condition

∂

∂ωk
Ekn(g, ωk) = 0 (k = 1, 3, . . .) . (73)

For even orders, the above equation does not possess real-valued solutions, because of
which let us set

ωk = ωk−1(g) (k = 2, 4, . . .) . (74)

Using optimized perturbation theory results in the eigenvalues

Ekn(g) = Ekn(g, ωk(g)) . (75)

Comparing these with the numerically found eigenvalues En(g) [42], the percentage errors

εkn(g) =
∣∣∣∣ Ekn(g)− En(g)

En(g)

∣∣∣∣× 100% , (76)

are deined.
Then, one can find the maximal error of the k-th order approximation

εk = sup
n,g

εkn(g), (77)

which gives
ε1 = 2%, ε2 = 0.8%, ε3 = 0.8%, ε4 = 0.5% .

The maximal errors
ε0

k ≡ sup
g

εk0(g) , (78)

for the ground state are

ε0
1 = 2%, ε0

2 = 0.8%, ε0
3 = 0.04%, ε0

4 = 0.03% .

Again, good accuracy and numerical convergence are observed. Recall that the
bare perturbation theory in powers of the anharmonicity parameter g diverges for any
finite g. The convergence of the sequence of the optimized approximants can be proved
analytically [43,44]. More details can be found in Ref. [27].

9. Nonlinear Schrödinger Equation

The method can be applied to strongly nonlinear systems. Let us illustrate this by
considering the eigenvalue problem

H[ ψ ]ψ(r) = Eψ(r) , (79)

with the nonlinear Hamiltonian

H[ ψ ] = − ∇
2

2m
+ U(r) + NΦ0| ψ |2 . (80)

Here, N is the number of trapped atoms, and the potential

U(r) =
m
2

ω2
⊥

(
x2 + y2 + α2z2

)
, (81)

is an external potential trapping atoms whose interactions are measured by the parameter

Φ0 = 4π
as

m
, (82)



Physics 2021, 3 841

where as is a scattering length. This problem is typical for trapped atoms in Bose–Einstein
condensed state [45–52].

The trap anisotropy is characterized by the trap aspect ratio

α ≡ ωz

ω⊥
=

(
l⊥
lz

)2 (
l⊥ ≡

1√
mω⊥

, lz ≡
1√

mωz

)
. (83)

It is convenient to introduce the dimensionless coupling parameter

g ≡ 4π
as

l⊥
N . (84)

Measuring energy in units of ω⊥ and lengths in units of l⊥, one can pass to dimen-
sionless units and write the nonlinear Hamiltonian as

H[ ψ ] = − ∇
2

2
+

1
2

(
r2 + α2z2

)
+ g| ψ |2 , (85)

with a dimensionless wave function ψ.
Applying optimized perturbation theory for the nonlinear Hamiltonian [53,54], for the

initial approximation the oscillator Hamiltonian,

H0[ ψ ] = − ∇
2

2
+

1
2

(
u2r2 + v2z2

)
, (86)

is taken, in which u and v are control parameters. The zero-order spectrum is given by the
expression:

E(0)
nmj = (2n + | m |+ 1)u +

(
1
2
+ j
)

v , (87)

with the radial quantum number n = 0, 1, 2, . . ., azimuthal quantum number m = 0,±1,
±2, . . ., and the axial quantum number j = 0, 1, 2, . . .. The related wave functions are the
Laguerre–Hermite modes. The system Hamiltonian takes the form

Hε = H0[ ψ ] + ε∆H (ε→ 1) , (88)

where the perturbation term is

∆H ≡ H[ ψ ]− H0[ ψ ] =
1
2

(
1− u2

)
r2 +

1
2

(
α2 − v2

)
z2 + g| ψ |2 . (89)

Perturbation theory with respect to the dummy parameter ε gives the energy levels
E(k)

nmj. The control functions are defined by the optimization conditions

∂

∂uk
E(k)

nmj(g, uk, vk) = 0 ,
∂

∂vk
E(k)

nmj(g, uk, vk) = 0 , (90)

yielding uk = uk(g) and vk = vk(g). Applications to trapped atoms are discussed in
Refs. [53,54].

10. Hamiltonian Envelopes

When choosing for the initial approximation a Hamiltonian, one confronts the problem
of combining two conditions often contradicting each other. From one side, the initial
approximation has to possess the properties imitating the studied problem. From the
other side, it has to be exactly solvable, providing tools for the explicit calculation of
the terms of perturbation theory. If the studied Hamiltonian and the Hamiltonian of the
initial approximation are too different, perturbation theory, even being optimized, may
be poorly convergent. In such a case, it is possible to invoke the method of Hamiltonian
envelopes [27,55].
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10.1. General Idea

Suppose one takes as an initial approximation a Hamiltonian H0 that, however, is very
different from the considered Hamiltonian H. The difficulty is that the set of exactly
solvable problems is very limited, so that sometimes it is impossible to find another Hamil-
tonian that would be close to the studied form H and at the same time solvable. In that
case, one can proceed as follows. Notice that, if a Hamiltonian H0 defines the eigenproblem

H0ψn = Enψn , (91)

then a function h(H0) satisfies the eigenproblem

h(H0)ψn = h(En)ψn , (92)

enjoying the same eigenfunctions. The function h(H) can be called the Hamiltonian enve-
lope [27,55]. Note that, because of the property (92), h(H0) can be any real function.

Accepting h(H0) as an initial Hamiltonian, one obtains the system Hamiltonian,

Hε = h(H0) + ε∆H (ε→ 1) , (93)

with the perturbation term
∆H = H − h(H0) . (94)

If one finds a function h(H0) that better imitates the studied system than the bare H0,
then the convergence of the sequence of approximations can be improved.

The general idea in looking for the function h(H0) is as follows. Let the system
Hamiltonian be

H = − ∇
2

2m
+ V(r) . (95)

In addition, let the eigenproblem for a Hamiltonian

H0 = − ∇
2

2m
+ V0(r) , (96)

enjoy exact solutions, although poorly approximating the given system.
Looking for the function h(H0), one keeps in mind that the most influence on the

behavior of wave functions is produced by the region, where the system potential V(r)
displays singular behavior tending to ±∞. Suppose this happens at the point rs. Then, the
function h(H0) has to be chosen such that

0 < lim
r→rs

h(V0(r))
V(r)

< ∞ , (97)

that is the function h(H0) needs to possess the same type of singularity as the potential of
the studied system. Below, it is illustrated how this choice is made for concrete examples.

10.2. Power-Law Potentials

Let us consider the Hamiltonian with a power-law potential

H = − 1
2m

d2

dx2 +
mω2

0
2

x2 + Axν (ν > 0) , (98)

in which x ∈ (−∞, ∞), ω0 > 0, A > 0, and ν > 0. To pass to dimensionless units,
the energy and length quantities are scaled as

H =
H
ω0

, x =
√

mω0 x . (99)
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The dimensionless coupling parameter is

g ≡ A
ω0

(mω0)
ν/2 . (100)

In what follows, in order not to complicate notation, the bars are omitted above
dimensionless quantities. In dimensionless units, one gets the Hamiltonian

H = − 1
2

d2

dx2 +
x2

2
+ gxν . (101)

In order to return to the dimensional form, it is sufficient to make the substitution

H 7−→ H
ω0

, x 7−→
√

mω0 x .

Taking for H0 the Hamiltonian

H0 = − 1
2

d2

dx2 +
u2

2
x2 , (102)

Let us compare the potentials

V(x) =
x2

2
+ gxν , V0(x) =

u2

2
x2 . (103)

As it is evident, the singular point here is xs = ∞. To satisfy condition (97) for ν < 2,
one needs to take

h(V0) = V0 (0 < ν < 2) , (104)

since

lim
x→∞

h(V0(x))
V(x)

= u2 (ν < 2) ,

while, for ν > 2,
h(V0) = Vν/2

0 (ν > 2) , (105)

needs to be accepted, since now

lim
x→∞

h(V0(x))
V(x)

=
1
g

(
u2

2

)ν/2

(ν > 2) .

In that way, the Hamiltonian envelope is given by the function

h(H0) =

{
H0 , 0 < ν ≤ 2
Hν/2

0 , ν ≥ 2
. (106)

10.3. Inverse Power-Law Potentials

The radial Hamiltonian with an inverse power-law potential has the form

H = − 1
2m

d2

dr2 +
l(l + 1)

2mr2 − A
rν

, (107)

in which r ≥ 0, l = 0, 1, 2, . . ., A > 0, and ν > 0. Again, one can introduce the dimension-
less quantities,

H ≡ H
ω

, r ≡
√

mω r , (108)
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and the dimensionless coupling parameter

g ≡ A
ω

(mω)ν/2 , (109)

where ω is arbitrary. Since ω is arbitrary, it can be chosen such that the coupling parameter
be unity,

g = 1 , ω2−ν = mν A2 . (110)

In dimensionless units, the Hamiltonian becomes:

H = − 1
2

d2

dr2 +
l(l + 1)

2r2 − 1
rν

. (111)

This reminds us of the Coulomb problem with the Hamiltonian

H0 = − 1
2

d2

dr2 +
l(l + 1)

2r2 − u
r

. (112)

Here, u is a control parameter. Comparing the potentials

V(r) = − 1
rν

, V0(r) = −
u
r

. (113)

One can see that, to satisfy condition (97), one has to take the envelope function as

h(V0) = −| V0 |ν , (114)

as far as
h(V0(r))

V(r)
= uν .

Then, the Hamiltonian envelope reads as

h(H0) = −| H0 |ν (ν > 0) . (115)

10.4. Logarithmic Potential

As one more example, let us take the radial Hamiltonian of arbitrary dimensionality
with the logarithmic potential

H = − 1
2m

d2

dr2 +
ld(ld + 1)

2mr2 + B ln
r
b

, (116)

where r > 0, B > 0, b > 0, and the effective radial quantum number is

ld ≡ l +
d− 3

2
. (117)

Again, one needs to work with dimensionless quantities, defining

H = mb2H , r =
r
b

, (118)

and the dimensionless coupling parameter

g ≡ mb2B . (119)

Then, for the simplicity of notation, let us omit the bars over the letters and get the
dimensionless Hamiltonian,

H = − 1
2

d2

dr2 +
ld(ld + 1)

2r2 + g ln r . (120)
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Accepting at the starting step the oscillator Hamiltonian

H0 = − 1
2

d2

dr2 +
ld(ld + 1)

2r2 +
u2

2
r2 . (121)

One has to compare the potentials

V(r) = g ln r , V0(r) =
u2

2
r2 . (122)

Now, the singular points are rs = 0 and rs = ∞. This dictates the choice of the
envelope function

h(V0) = ln V0 , (123)

since

lim
r→0

h(V0(r))
V(r)

= lim
r→∞

h(V0(r))
V(r)

=
2
g

.

Some explicit calculations can be found in Refs. [27,55].
Optimized perturbation theory, whose main points are expounded above, has been

applied to a great variety of problems in statistical physics, condensed matter physics,
chemical physics, quantum field theory, etc., as is reviewed in Ref. [27].

11. Optimized Expansions: Summary

As is explained above, the main idea of optimized perturbation theory is the intro-
duction of control parameters that generate order-dependent control functions controlling
the convergence of the sequence of optimized approximants. Control functions can be
incorporated in the perturbation theory in three main ways: by choosing an initial approx-
imation containing control parameters, by making a change of variables and resorting
to a reexpansion trick, or by accomplishing a transformation of the given perturbation
sequence. Control functions are defined by optimization conditions. Of course, there are
different variants of implanting control functions and choosing the appropriate variables.
In some cases, control functions uk(x) can become control parameters uk, since constants
are just a particular example of functions.

Below, the main ideas are summarized shedding light on the common points for
choosing control functions, the variables for expansions, on the convergence of the sequence
of optimized approximants, and on the examples when control functions can be reduced to
control parameters. In addition, several methods of optimization are compared. To make
the discussion transparent, the ideas on the example of a partition function for a zero-
dimensional ϕ4 field theory and on the model of one-dimensional anharmonic oscillator
are illustrated.

11.1. Expansion over Dummy Parameters

The standard and often used scheme of optimized perturbation theory is based on
the incorporation of control functions through initial approximations, as is mentioned in
Section 4.1. Suppose one deals with a Hamiltonian H(g) containing a physical parameter
g, say coupling parameter. When the problem cannot be solved exactly, one takes a trial
Hamiltonian H0(u) containing control parameters denoted through u. One introduces
the Hamiltonian

Hε(g, u) = H0(u) + ε[ H(g)− H0(u) ] , (124)

in which ε is a dummy parameter. One calculates the quantity of interest Fk(g, u, ε) by
means of perturbation theory in powers of the dummy parameter ε,

Fk(g, u, ε) =
k

∑
n=0

cn(g, u) εn , (125)
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after which sends this parameter to one, ε→ 1.
Employing one of the optimization conditions discussed in Section 6, one finds the

control functions uk(g). The most often used optimization conditions are the minimal-
difference condition

Fk(g, u, 1)− Fk−1(g, u, 1) = 0 , u = uk(g) , (126)

and the minimal-derivative condition

∂

∂u
Fk(g, u, 1) = 0 , u = uk(g) . (127)

Substituting the found control functions uk(g) into Fk(g, uk(g), 1) results in the opti-
mized approximants

Fk(g) = Fk(g, uk(g), 1) . (128)

This scheme of optimized perturbation theory was suggested and employed in
Refs. [18–23] and in numerous following publications, as can be inferred from the re-
view works [26–30]. As is evident, the same scheme can be used dealing with Lagrangians
or action functionals.

Instead of the notation ε for the dummy parameter, it is admissible to use any other
letter, which, as is clear, is of no importance. Sometimes, one denotes the dummy parameter
as δ and, using the same standard scheme, one calls it delta expansion. However, using a
different notation does not compose a different method.

11.2. Scaling Relations: Partition Function

The choice of variables for each particular problem is the matter of convenience.
Often, it is convenient to use the combinations of parameters naturally occurring in the
considered case. These combinations can be found from the scaling relations available for
the considered problem.

Let us start with the simple, but instructive, case of the integral representing the parti-
tion function (or generating functional) of the so-called zero-dimensional ϕ4 field theory

Z(g, ω0) =
1√
π

∫ ∞

−∞
exp(−H[ ϕ ]) dϕ , (129)

with the Hamiltonian
H[ ϕ ] = ω2

0 ϕ2 + gϕ4 , (130)

where g > 0.
Invoking the scaling ϕ 7−→ λϕ leads to the relation

Z(g, ω0) = λZ
(

λ4g, λ2ω0

)
. (131)

Setting λ = g−1/4 yields the equality

Z(g, ω0) =
1

g1/4 Z
(

1,
ω0√

g

)
. (132)

In addition, setting λ = ω−1/2
0 gives

Z(g, ω0) =
1√
ω0

Z

(
g

ω2
0

, 1

)
. (133)

These relations show that, at a large coupling constant, the expansion is realized over
the combination ω0/

√
g, while, at a small coupling constant, the natural expansion is over

g/ω2
0 .
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11.3. Scaling Relations: Anharmonic Oscillator

The other typical example frequently treated for demonstrational purposes is the
one-dimensional anharmonic oscillator with the Hamiltonian

H = − 1
2

∂2

∂x2 +
ω2

0
2

x2 + gxp (p > 0) , (134)

where g > 0. Let the energy levels E(g, ω0) of the Hamiltonian be of interest.
By scaling the spatial variable, x 7−→ λx results in the relation

E(g, ω0) = λ−2 E
(

λp+2g, λ2ω0

)
. (135)

Setting λ = g−1/(1+p/2) gives

E(g, ω0) = g1/(1+p/2) E
(

1,
ω0

g1/(1+p/2)

)
, (136)

while, for λ = ω−1/2
0 , one gets the relation,

E(g, ω0) = ω0E

(
g

ω
1+p/2
0

, 1

)
. (137)

In particular, for the quartic anharmonic oscillator, with p = 4, one has

E(g, ω0) = g1/3 E
(

1,
ω0

g1/3

)
, (138)

and

E(g, ω0) = ω0 E

(
g

ω3
0

, 1

)
(p = 4) . (139)

Again, these relations suggest what are the natural variables for expansions over large
or small coupling constants.

11.4. Optimized Expansion: Partition Function

The standard scheme of the optimized perturbation theory has been applied to the
model (129) many times, accepting as an initial Hamiltonian the form

H0 = ω2 ϕ2 , (140)

in which ω is a control parameter. Then, Hamiltonian (124) becomes:

Hε = ω2 ϕ2 + ε
[
(ω2

0 −ω2)ϕ2 + gϕ4
]

. (141)

Note that Hamiltonian (130) transforms into Equation (141) by means of the replacement

ω2
0 7−→ ω2 + ε(ω2

0 −ω2) , g 7−→ εg . (142)

Following the standard scheme of optimized perturbation theory for the partition
function, and using the optimization conditions for defining control functions, it was
found [40,41,44] that, at large orders, the control functions behave as

ωk(g) ' αω0(gk)1/4 (k→ ∞) . (143)

The minimal-difference and minimal-derivative conditions give α = 1.0729855. It was
proved [40,41] that this scheme results in the sequence of optimized approximants for the
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partition function that converges to the exact numerical value. The convergence occurs for
any α > αc = 0.9727803.

11.5. Optimized Expansion: Anharmonic Oscillator

The one-dimensional quartic anharmonic oscillator with the Hamiltonian (134), where
p = 4 and g > 0, also serves as a typical touchstone for testing approximation methods.
The initial approximation is characterized by the harmonic oscillator

H0 = − 1
2

∂2

∂x2 +
ω2

2
x2 , (144)

in which ω is a control parameter. The Hamiltonian (124) takes the form

Hε = −
1
2

∂2

∂x2 +
ω2

2
x2 + ε

[
1
2
(ω2

0 −ω2)x2 + gx4
]

. (145)

As is seen, the transformation from Equation (134) into Equation (145) is realized by the
same substitution (142), with the substitution for ω0 that can be represented as

ω2
0 7−→ ω2

[
1 − ε

(
1−

ω2
0

ω2

) ]
. (146)

This shows the appearance of the characteristic combination 1 − (ω0/ω)2 that is
used below.

Calculating the energy eigenvalues following the standard scheme, one finds [43,44]
the control function

ωk(g) ' αω0(gk)1/3 (k→ ∞) , (147)

with α ≈ 1 for both the minimal-difference and minimal-derivative conditions. The conver-
gence of the sequence of optimized approximants to the exact numerical values [42], found
from the solution of the Schrödinger equation, takes place for α > αc = 0.9062077.

12. Order-Dependent Mapping

Sometimes, the procedure can be simplified by transforming the initial expansion,
say in powers of a coupling constant, into expansions in powers of other parameters.
By choosing the appropriate change of variables, it can be possible to reduce the prob-
lem to the form where control functions uk(g) are downgraded to control parameters uk.
The change of variables depends on the approximation order, because of which it is called
the order-dependent mapping [56].

12.1. Change of Variables

Let us be given an expansion in powers of a variable g,

fk(g) =
k

∑
n=0

angn . (148)

By analyzing the properties of the considered problem, such as its scaling relations
and the typical combinations of parameters arising in the process of deriving perturbative
series, it is possible to notice that it is convenient to denote some parameter combinations
as new variables. Then, one introduces the change of variables

g = g(z, u) = uy(z) , (149)

where
u =

g
y(z)

= u(g, z) , (150)
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is treated as a control parameter. By substituting Equation (149) into Equation (148) gives
the function fk(g(z, u)), which has to be expanded in powers of z up to order k, leading to
the series

Fk(z, u) =
k

∑
n=0

bn(u)zn . (151)

The minimal-difference condition

Fk(z, u)− Fk−1(z, u) = 0 , (152)

yields the equation
bk(u) = 0 , u = uk , (153)

defining the control parameters uk. Since, according to Equation (150), the value uk de-
notes the combination of parameters uk = uk(g, z), hence it determines the control func-
tions zk(g). The pair uk and zk(g), being substituted into Equation (151), results in the
optimized approximants

Fk(g) = Fk(zk(g), uk) . (154)

Thus, the convenience of the chosen change of variables is in the possibility of dealing
at the intermediate step with control parameters instead of control functions that appear at
a later stage.

12.2. Partition Function

To illustrate the method, let us consider the partition function (129) following the
described scheme [56]. From the substitution (142), it is clear that natural combinations
of parameters appearing in perturbation theory with respect to the term with ε in the
Hamiltonian (141) are

z =
ω2 −ω2

0
ω2 = 1 −

ω2
0

ω2 , (155)

and

y(z) =
ω2(ω2 −ω2

0)

ω4
0

=
z

(1− z)2 . (156)

Then, the combination of parameters (150) reads as

u =
g
z
(1− z)2 =

gω4
0

ω2(ω2 −ω2
0)

. (157)

In order to simplify the notation, it is possible to notice that the parameter ω always
enters the equations being divided by ω0. Therefore, measuring ω in units of ω0 is
equivalent to setting ω0 → 1. In these units,

z = 1 − 1
ω2 , u =

g
ω2(ω2 − 1)

.

Finding from the minimal-difference condition (152) the control parameter uk and
using definition (157) gives the control function

zk(g) = 1 −

√
u2

k + 4guk − uk

2g
. (158)

Then, relation (155) results in the control function

ωk(g) =
1√

1− zk(g)
=

1√
2

(
1 +

√
1 +

4g
uk

)1/2

. (159)
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Finally, one gets the partition function Zk(zk(g), uk).
This procedure, with the change of variables used above, has been shown [57] to be

equivalent to the standard scheme of optimized perturbation theory resulting in optimized
approximants Zk(g).

12.3. Anharmonic Oscillator

Again using the dimensionless units, as in the previous section, one sets the notations

y(z) =
z

(1− z)3/2 , z = 1 − 1
ω2 . (160)

Then, the combination (150) becomes:

u =
g

ω(ω2 − 1)
=

g
z
(1− z)3/2 . (161)

Similarly to the previous section, one finds the control parameter uk and, from
Equation (161), one obtains the control functions zk(g) and ωk(g). The resulting energy
levels Ek(zk(g), uk) coincide with the optimized approximants Ek(g), as has been proved
in [57].

13. Variational Expansions

The given expansion over the coupling constant (148) can be reexpanded with respect
to other variables in several ways. One of the possible reexpansions has been termed varia-
tional perturbation theory [31]. Below, it is illustrated by the example of the anharmonic
oscillator in order to compare this type of a reexpansion with other methods.

Let us consider the energy levels of the anharmonic oscillator with the Hamilto-
nian (134) with p = 4. As is clear from the scaling relations of Section 11, the energy can be
represented as an expansion

Ek(g, ω0) = ω0

k

∑
n=0

cn

(
g

ω3
0

)n

. (162)

One has the identity,
ω2

0 = ω2 + ω2
0 −ω2 , (163)

that is a particular case of the substitution (142) with the control parameter ω and ε = 1.
Employing the notation

z = 1 −
ω2

0
ω2 =

gω3
0

ω3u
, (164)

where

u =
gω3

0
ω3z

=
gω3

0
ω(ω2 −ω2

0)
=

g
z
(1− z)3/2 , (165)

It is straightforward to rewrite the identity (163) in the form

ω0 = ω
√

1− z = ω

√
1 − g

ω3u
. (166)

This form is substituted into expansion (162), which then is reexpanded in powers of
the new variable g/ω3, while keeping u untouched and setting ω0 to one. The reexpanded
series is truncated at order k. Comparing this step with the expansion in Section 11, it is
evident that this is equivalent to the expansion over the dummy parameter ε. In addition,



Physics 2021, 3 851

comparing the expansion over g/ω3 with the expansion over z in Section 12, one can see
that they are also equivalent. Thus, one comes to the expansion

Ek(g, ω) = ω
k

∑
n=0

dn(u)
( g

ω3

)n
, (167)

where

dn(u) =
n

∑
j=0

Cnj

(
− 1

u

)n−j
.

Then, one substitutes back the expression (165) for u = u(g, ω).
The control function ωk(g) is defined by the minimal derivative condition, or, when

the latter does not have real solutions, by the zero second derivative over ω of the energy
Ek(g, ω). The found control function ωk(g) is substituted into Ek(g, ω), thus giving the
optimized approximant

Ek(g) = Ek(g, ωk(g)) . (168)

The equivalence of the above expansion in powers of g/ω3 to the expansions with
respect to the dummy parameter ε, or with respect to the parameter z, becomes evident if
one uses the notation of the present section and let us notice that the substitution (146) can
be written as

ω0 7−→ ω
√

1− εz = ω

√
1− εg

ω3u
. (169)

This makes it immediately clear that the expansion over g/ω3, with keeping u un-
touched, is identical to the expansion over the dummy parameter ε.

14. Control Functions and Control Parameters

It is important to remark that it is necessary to be cautious introducing control func-
tions through the change of variables and reexpansion. Strictly speaking, such a change
cannot be postulated arbitrarily. When the change of variables is analogous to the proce-
dure of using the substitutions, such as Equations (142), (146) or (169), naturally arising
in perturbation theory, as in Section 4, then the results of these variants will be close to
each other. However, if the change of variables is arbitrary, the results can be not merely
inaccurate, but even qualitatively incorrect [27,58].

It is also useful to mention that, employing the term control functions, one keeps in
mind that, in particular cases, they can happen to become parameters, although order-
dependent. Then, instead of functions uk(x), one can have parameters uk. There is nothing
wrong with this, as far as parameters are a particular example of functions. The reduction
of control functions to control parameters can occur in the following cases.

It may happen that in the considered problem there exists such a combination of char-
acteristics that compose the quantities uk depending only on the approximation order but
not depending on the variable x. For instance, this happens in the mapping of Section 12,
where the combinations uk = uk(g, ωk(g)) play the role of control parameters. In the case
of the partition function, this is the combination (157) and for the anharmonic oscillator, it
is the combination (161).

The other example is the existence in the applied optimization of several conditions
restricting the choice of control parameters. The typical situation is when the optimization
condition consists of the comparison of asymptotic expansions of the sought function and
of the approximant. Suppose that, in addition to the small-variable expansion,

fk(x) =
k

∑
n=0

anxn (x → 0), (170)
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the large-variable expansion of the sought function,

f (x) '
p

∑
n=0

bn
1
xn (x → ∞) , (171)

is known.
Let us assume that the optimized approximant Fk(x, uk(x)) is found where the control

functions uk(x) are defined by one of the optimization conditions of Section 6. These
conditions provide a uniform approximation of the sought function on the whole interval
of its definition. However, the resulting approximants Fk(x, uk(x)) are not required to give
exact coefficients of asymptotic expansions either at small or at large variable x. If there
is a need that these asymptotic coefficients exactly coincide with the coefficients of the
known asymptotic expansions (170) and (171), then one has to implant additional control
parameters and impose additional asymptotic conditions. This can be done by using the
method of corrected Padé approximants [27,59–62]. To this end, the optimized approximant
is defined as

f k(x) = Fk(x, uk(x))PN/N(x) , (172)

where

PN/N(x) =
a0 + ∑N

n=1 cnxn

1 + ∑N
n=1 dnxn

, (173)

is a diagonal Padé approximant, whose coefficients cn and dn, playing the role of control
parameters, are prescribed by the accuracy-through-order procedure, so that the asymptotic
expansions of Equation (172) would coincide with the given asymptotic expansions of the
sought function at small x,

f k(x) '
k

∑
n=0

anxn (x → 0) , (174)

and at large x,

f k(x) '
p

∑
n=0

bn
1
xn (x → ∞) . (175)

The number of the parameters in the Padé approximant is such that to satisfy the
imposed asymptotic conditions (174) and (175).

15. Self-Similar Approximation Theory

As has been emphasized above, the idea of introducing control functions for the
purpose of governing the convergence of a sequence stems from the optimal control
theory, where one introduces control functions in order to regulate the trajectory of a
dynamical system, for instance, in order to force the trajectory to converge to a desired
point. The analogy between perturbation theory and the theory of dynamical systems has
been strengthened even more in the self-similar approximation theory [26,27,63–67]. The
idea of this theory is to consider the transfer from one approximation to another as the
motion on the manifold of approximants, where the approximation order plays the role of
discrete time.

Suppose, after implanting control functions, as explained in Section 4, one has the
sequence of approximants Fk(x, uk). Recall that the control functions can be defined in
different ways, as has been discussed above. Therefore, we, actually, have the manifold of
approximants associated with different control functions,

A = {Fk(x, uk) : R×R 7−→ R; k = 0, 1, 2, . . .} . (176)

This to be called the approximation manifold. Generally, it could be possible to define a
space of approximants. However, the term approximation space is used in mathematics in a
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different sense [68]. Thus, one deals with the approximation manifold. The transfer from an
approximant Fk to another approximant Fk+p can be understood as the motion with respect
to the discrete time, whose role is played by the approximation order k. The sequence
of approximants Fk(x, uk) with a fixed choice of control functions uk = uk(x) defines a
trajectory on the approximation manifold (176).

Let us fix the rheonomic constraint

F0(x, uk(x)) = f , x = xk( f ) , (177)

defining the expansion function xk( f ). Recall that, in the theory of dynamical systems, a
rheonomic constraint is that whose constraint equations explicitly contain or are dependent
upon time. In the case considered here, time is the approximation order k. The inverse
constraint equation is

xk(F0(x, uk(x))) = x . (178)

Let us introduce the endomorphism

yk( f ) : Z+ ×R 7−→ R , (179)

by the definition acting as

yk( f ) ≡ Fk(xk( f ), uk(xk( f ))) . (180)

This endomorphism and the approximants are connected by the equality

yk(F0(x, uk(x))) = Fk(x, uk(x)) . (181)

The set of endomorphisms forms a dynamical system in discrete time

{yk( f ) : Z+ ×R 7−→ R} , (182)

with the initial condition
y0( f ) = f . (183)

By this construction, the sequence of endomorphisms {yk( f )}, forming the dynamical
system trajectory, is bijective to the sequence of approximants {Fk(x, uk(x))}. Since control
functions, by default, make the sequence of approximants Fk(x, uk(x)) convergent, this
means that there exists a limit

F∗(x) = lim
k→∞

Fk(x, uk(x)) . (184)

In addition, as far as the sequence of approximants is bijective to the trajectory of the
dynamical system, there should exist the limit

y∗( f ) = lim
k→∞

yk( f ) . (185)

This limit, being the final point of the trajectory, implies that it is a fixed point,
for which

yp(y∗( f )) = y∗( f ) (p ≥ 0) . (186)

Thus, finding the limit of an approximation sequence is equivalent to determining the
fixed point of the dynamical system trajectory.

One may notice that, for large p, the self-similar relation holds:

yk+p( f ) ' yk(yp( f )) (p→ ∞) , (187)
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which follows from conditions (185) and (186). As far as in the real situations, it is usually
impossible to reach the limit of infinite approximation order, the validity of the self-similar
relation for finite approximation orders is assumed:

yk+p( f ) = yk(yp( f )) . (188)

This relation implies the semi-group property

yk · yp = yk+p , y0 = 1 . (189)

The dynamical system in discrete time (182) with the above semi-group property
is called cascade (semicascade). The theory of such dynamical systems is well devel-
oped [69,70]. In the present study, this is an approximation cascade [27].

Since, as it is said above, in realistic situations it is possible to deal only with finite
approximation orders, one can find not an exact fixed point y∗( f ), but an approximate
fixed point y∗k ( f ). The corresponding approximate limit of the considered sequence is

F∗k (x, uk(x)) = y∗k (Fk(x, uk(x))) . (190)

If the form Fk(x, uk) is obtained by means of a transformation

Fk(x, uk) = T̂[ u ] fk(x) , (191)

like in Equation (27), then the resulting self-similar approximant reads as

f ∗k (x) = T̂−1[ u ] F∗k (x, uk(x)) . (192)

16. Embedding Cascade into Flow

Usually, it is more convenient to deal with dynamical systems in continuous time than
with systems in discrete time. For this purpose, it is possible to embed the approximation
cascade into an approximation flow, which is denoted as

{yk( f ) : Z+ ×R 7−→ R} ∈ {y(t, f ) : R+ ×R 7−→ R} , (193)

and implies that the endomorphism in continuous time enjoys the same group property as
the endomorphism in discrete time,

y(t + t′, f ) = y(t, y(t′, f )) , (194)

that the flow trajectory passes through all points of the cascade trajectory,

y(t, f ) = yk( f ) (t = k) , (195)

and starts from the same initial point,

y(0, f ) = f . (196)

The self-similar relation (194) can be represented as the Lie equation

∂

∂t
y(t, f ) = v(y(t, f )) , (197)

in which v(y(t, f )) is a velocity field. Integrating the latter equation yields the evolu-
tion integral ∫ y∗k

yk

dy
v(y)

= tk , (198)
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where tk is the time required for reaching the fixed point y∗k = y∗k ( f ) from the approximant
yk = yk( f ). Using relations (181) and (190), this can be rewritten as

∫ F∗k

Fk

d f
vk( f )

= tk , (199)

where Fk = Fk(x, uk(x)) and F∗k = F∗k (x, uk(x)).
The velocity field can be represented resorting to the Euler discretization

vk( f ) = yk+1( f )− yk( f ) . (200)

This is equivalent to the form

vk( f ) = Fk+1(xk+1, uk+1)− Fk(xk, uk) , (201)

in which
xk = xk( f ) , uk = uk(xk) = uk(xk( f )) .

One may notice that the velocity field is directly connected with the Cauchy differ-
ence (39), since

vk( f ) = C(Fk+1, Fk) . (202)

As is explained in Section 6, the Cauchy difference of zero order equals zero, hence
in that order the velocity is zero, and F∗k = Fk. The Cauchy difference of first order is
nontrivial, being given by expression (46). In this order, the velocity field becomes:

vk( f ) = Fk+1(xk, uk)− Fk(xk, uk) + (uk+1 − uk)
∂

∂uk
Fk(xk, uk) . (203)

The smaller the velocity, the faster the fixed point is reached. Therefore, control
functions should be defined in order to make the velocity field minimal:

min
u
| vk( f ) | = min

u
| C(Fk+1, Fk) | . (204)

Thus, one returns to the optimization conditions of optimized perturbation theory,
discussed in Section 6. Opting for the optimization condition

(uk+1 − uk)
∂

∂uk
Fk(xk, uk) = 0 , (205)

simplifies the velocity field to the form

vk( f ) = Fk+1(xk, uk)− Fk(xk, uk) . (206)

17. Stability Conditions

The sequence {yk( f )} defines the trajectory of the approximation cascade that is a
type of a dynamical system. The motion of dynamical systems can be stable or unstable.
The stability of motion for the approximation cascade can be characterized [27,67,71] simi-
larly to the stability of other dynamical systems [69,72,73]. Dealing with real problems, one
usually considers finite steps k. Therefore, the motion stability can be defined only locally.

The local stability at the k-th step is described by the local map multiplier

µk( f ) ≡ δyk( f )
δy0( f )

=
∂yk( f )

∂ f
. (207)

The motion at the step k, starting from an initial point f , is stable when

| µk( f ) | < 1 . (208)
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The maximal map multiplier

µk ≡ sup
f
| µk( f ) | , (209)

defines the global stability with respect to f , provided that

µk < 1 . (210)

The maximum is taken over all admissible values of f .
The image of the map multiplier (207) on the manifold of the variable x is

mk(x) = µk(F0(x, uk(x)) . (211)

The motion at the k-th step at the point x is stable if

| mk(x) | < 1 . (212)

Respectively, the motion is globally stable with respect to the domain of x when the
maximal map multiplier

mk ≡ sup
x
| mk(x) | , (213)

is such that
mk < 1 . (214)

The map multiplier at the fixed point y∗k ( f ) is

µ∗k ( f ) ≡
∂y∗k ( f )

∂ f
. (215)

The fixed point is locally stable when

| µ∗k ( f ) | < 1 , (216)

and it is globally stable with respect to f if the maximal multiplier

µ∗k ≡ sup
f
| µ∗k ( f ) | , (217)

satisfies the inequality
µ∗k < 1 . (218)

The above conditions of stability can be rewritten in terms of the local Lyapunov exponents

λk( f ) ≡ 1
k

ln | µk( f ) | , λ∗k ( f ) ≡ 1
k

ln | µ∗k ( f ) | . (219)

The motion at the k-th step is stable provided the Laypunov exponents are negative.
The occurrence of local stability implies that the calculational procedure should be numer-
ically convergent at the considered steps. Thus, even not knowing the exact solution of
the problem and being unable to reach the limit of k → ∞, one can be sure that the local
numerical convergence for finite k is present.

18. Free Energy

In order to demonstrate that the self-similar approximation theory improves the
results of optimized perturbation theory, it is instructive to consider the same problem of
calculating the free energy (thermodynamic potential) of the model discussed in Section 7,

f (g) = − ln Z(g) (g > 0), (220)
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with the statistical sum (57).
Following Section 7, let us accept the initial Hamiltonian (59) and define Hamilto-

nian (60). Expanding the free energy (220) in powers of the dummy parameter ε, one
has the sequence of approximants (62). The control functions ωk(g) are defined by the
optimization conditions (63) and (64), which give

ωk(g) =
[

1
2

(
1 +

√
1 + 12skg

) ]1/2
, (221)

where
s1 = s2 = 1 , s3 = s4 = 2.239674 .

The rheonomic constraint (177) takes the form

F0(g, ωk(g)) = ln ωk(g) = f . (222)

From here, the expansion function,

gk( f ) =
e2 f

3sk

(
e2 f − 1

)
, (223)

is obtained.
The endomorphism (180) reads as

yk( f ) = f +
k

∑
n=1

Aknαn( f ) , (224)

with the coefficients Akn given in Refs. [27,71,74,75], and where

α( f ) = 1− e−2 f . (225)

The cascade velocity (200) becomes:

vk( f ) = Ak+1,k+1αk+1( f ) . (226)

Taking the evolution integral (199), with tk = 1, one comes to the self-similar approximants

f ∗k (g) = F∗k (g, ωk(g)) . (227)

The accuracy of the approximations is described by the percentage errors

ε∗k ≡ sup
g

∣∣∣∣ f ∗k (g)− f (g)
f (g)

∣∣∣∣× 100% , (228)

where f (g) is the exact numerical value of expression (220). Here, one has

ε∗1 = 3%, ε∗2 = 2%, ε∗3 = 0.1% .

The map multipliers (207) are

µk( f ) = 1 + 2[ 1− α( f ) ]
k

∑
n=1

nAknαn−1( f ) . (229)

The coupling parameter g pertains to the domain [0, ∞), Then, f ∈ [0, ∞), and
α( f ) ∈ [0.1). The maximal map multiplier (209) is found to satisfy the stability condi-
tion (210).
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19. Fractal Transform

As is explained in Section 4, control functions can be incorporated into a perturbative
sequence either through initial conditions, or by means of the change of variables, or by a
sequence transformation. In the above example of Section 14, the implantation of control
functions into initial conditions are considered. Now, let us study another way, when
control functions are incorporated through a sequence transformation.

Let us consider an asymptotic series

fk(x) = f0(x)

(
1 +

k

∑
n=1

anxn

)
, (230)

in which f0(x) is a given function. Actually, it is sufficient to deal with the series

fk(x) = 1 +
k

∑
n=1

anxn . (231)

To return to the case of series (230), one just needs to make the substitution

fk(x) 7−→ f0(x) fk(x) . (232)

Following the spirit of self-similarity, let us recall that the latter is usually connected
with the power-law scaling and fractal structures [76–78]. Therefore, it looks natural to
introduce control functions through a fractal transform [79], say of the type [26,27,33–35]

Fk(x, s) = xs fk(x) . (233)

The inverse transformation is

fk(x) = x−sFk(x, s) . (234)

With the series (231):

Fk(x, s) = xs +
k

∑
n=1

anxn+s . (235)

As is mentioned in Section 4, the scaling relation (30) is valid. The scaling exponent s
plays the role of a control parameter.

In line with the self-similar approximation theory, let us define the rheonomic constraint

F0(x, s) = xs = f , (236)

yielding the expansion function
x( f ) = f 1/s . (237)

The dynamic endomorphism becomes:

yk( f ) = f +
k

∑
n=1

an f 1+n/s . (238)

In addition, the cascade velocity is

vk( f ) = yk( f )− yk−1( f ) = ak f 1+n/s . (239)

What now remains is to consider the evolution integral.
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20. Self-Similar Root Approximants

The differential Equation (197) can be rewritten in the integral form

∫ y∗k

y∗k−1

d f
vk( f )

= tk . (240)

Substituting here the cascade velocity (239) gives the relation

y∗k ( f ) =
{[

y∗k−1( f )
]1/mk + Ak

}mk
, (241)

where
mk ≡ −

sk
k

, Ak ≡
aktk
mk

.

Accomplishing the inverse transformation (234) leads to the equation

f ∗k (x) = x−sy∗k ( f ) ( f = xs) . (242)

The explicit form of the latter is the recurrent relation

f ∗k (x) =
{[

f ∗k−1(x)
]1/mk + Akxk

}mk
. (243)

Using the notation

nj ≡
mj

mj+1
=

(j + 1)sj

jsj+1
(j = 1, 2, . . . , k− 1) , (244)

and iterating this relation k− 1 times results in the self-similar root approximant

f ∗k (x) =
((

(1 + A1x)n1 + A2x2
)n2

+ . . . + Akxk
)mk

. (245)

This approximant is convenient for the problem of interpolation, where one can meet
different situations.

(i) The k coefficients an of the asymptotic expansion (231) up to the k-th order are
known and the exponent β of the large-variable behavior of the sought function
is available, where

f (x) ' Bxβ (x → ∞) , (246)

although the amplitude B is not known. Then, setting the control functions sj = s,
from Equation (244), one has:

nj =
j + 1

j
(j = 1, 2, . . . , k− 1) , (247)

and the root approximant (245) becomes:

f ∗k (x) =

(((
(1 + A1x)2 + A2x2

)3/2
+ A3x3

)4/3
+ . . . + Akxk

)mk

. (248)

For large variables x, the latter behaves as

f ∗k (x) ' Bkxβk (x → ∞) , (249)

with the amplitude

Bk =

(((
A2

1 + A2

)3/2
+ A3

)4/3
+ . . . + Ak

)mk

, (250)
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and exponent
βk = kmk . (251)

Equating βk to the known exponent β, one finds the root exponent,

mk =
β

k
(βk = β) . (252)

All parameters An can be found from the comparison of the initial series (231) with
the small-variable expansion of the root approximant (248),

f ∗k (x) ' fk(x) (x → 0) , (253)

which is called the accuracy-trough-order procedure. Knowing all An, the large-
variable amplitude Bk is obtained.

(ii) The k coefficients an of the asymptotic expansion (231) up to the k-th order are
available and the amplitude B of the large-variable behavior of the sought function
is known, but the large-variable exponent β is not known. Then, the parameters An
again are defined through the accuracy-through-order procedure (253). Equating the
amplitudes Bk and B results in the exponent

mk =
ln B

ln(((A2
1 + A2)3/2 + A3)4/3 + . . . + Ak)

(Bk = B) . (254)

(iii) The k coefficients an of the asymptotic expansion (231) are known and the large-
variable behavior (246) is available, with both the amplitude B and exponent β known.
Then, as earlier, the parameters An are defined from the accuracy-through-order
procedure and the exponent mk is given by Equation (252). The amplitude Bk can be
found in two ways, from expression (250) and equating Bk and B. The difference
between the resulting values defines the accuracy of the approximant.

(iv) The k terms of the large-variable behavior are given,

f (x) '
k

∑
n=1

bnxβn (x → ∞) , (255)

where b1 6= 0, β1 6= 0, and the powers βn are arranged in descending order,

βn > βn+1 (n = 1, 2, . . . , k− 1) . (256)

Then, considering the root approximant (245) for large x → ∞, and comparing this
expansion with the asymptotic form (255), one finds all parameters An expressed
through the coefficients bn, and the large-variable internal exponents are

nj =
j + 1

j
+

1
j
(βk−j+1 − βk−j) (j = 1, 2, . . . , k− 1) , (257)

while the external exponent is

mk =
β1

k
. (258)

It is important to mention that the external exponent mk can be defined even without
knowing the large-variable behavior of the sought function. This can be done by treating
mk as a control function defined by an optimization condition from Section 6. This method
has been suggested in Ref. [33].

Notice that, when it is more convenient to deal with the series for large variables,
it is always possible to use the same methods as described above by transferring the
large-variable expansions into small-variable ones by means of the change of the variable
z = 1/x.



Physics 2021, 3 861

Numerous applications of the self-similar root approximants to different problems are
discussed in Refs. [26,27,80–84].

21. Self-Similar Nested Approximants

It is possible to notice that the series

fk(x) = 1 +
k

∑
n=1

anxn , (259)

can be represented as the sequence

fk(x) = 1 + ϕ1(x) , ϕ1(x) = a1x (1 + ϕ2(x)) ,

ϕ2(x) =
a2

a1
x (1 + ϕ3(x)) , ϕ3(x) =

a3

a2
x (1 + ϕ4(x)) , (260)

etc., through

ϕj(x) =
aj

aj−1
x (1 + ϕj+1(x)) (j = 1, 2 . . . , k− 1) , (261)

up to the last term

ϕk(x) =
ak

ak−1
x . (262)

Applying the self-similar renormalization at each order of the sequence, considering
ϕj as variables, one obtains the renormalized sequence:

f ∗k (x) = (1 + b1 ϕ∗1(x))n1 , ϕ∗j (x) =
aj

aj−1
x
(

1 + bj+1 ϕ∗j+1(x)
)nj+1

, (263)

in which

bj =
tj

nj
, nj = −sj (j = 1, 2 . . . , k− 1) .

Using the notation

Aj =
aj

aj−1
bj =

ajtj

aj−1nj
, (264)

One comes to the self-similar nested approximant

f ∗k (x) =
(
1 + A1x(1 + A2x . . . (1 + Akx)nk )nk−1 . . .

)n1 . (265)

For large x, this gives

f ∗k (x) ' Bkxβ
k (x → ∞) , (266)

with the amplitude
Bk = An1

1 An1n2
2 An1n2n3

3 . . . An1n2n3 ...nk
k , (267)

and the exponent

βk = n1 + n1n2 + n1n2n3 + . . . + n1n2n3 . . . nk . (268)

If the notation for the external exponent is changed to

mk ≡ n1 , (269)

and keep the internal exponents constant,

nj = m (j = 2, 3, . . . , k) , (270)
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then the large-variable exponent becomes:

βk =
1−mk

1−m
mk . (271)

When the exponent β of the large-variable behavior is known, where

f (x) ∝ xβ (x → ∞) , (272)

then, setting βk = β gives

mk =
1−m
1−mk β (βk = β) . (273)

The parameter m should be defined in order to provide numerical convergence for the
sequence { f ∗k (x)}. For instance, if m = 1, then using the asymptotic form

mk ' 1− (1−m)k (m→ 1) ,

one gets

mk =
β

k
(m = 1) . (274)

In the latter case, the nested approximant (265), with the notation

Dn ≡
n

∏
j=1

Aj ,

becomes
f ∗k (x) =

(
1 + D1x + D2x2 + D3x3 + . . . + Dkxk

)mk
.

The same form can be obtained by setting in the root approximant (245) all internal
exponents nj = 1.

The external exponent mk can also be defined by resorting to the optimization condi-
tions of Section 6. Several applications of the nested approximants are given in [85].

22. Self-Similar Exponential Approximants

When it is expected that the behavior of the sought function is rather exponential,
but not of power law, then in the nested approximants of the previous section, one can
send nj → ∞, hence bj → 0 and Aj → 0. This results in the self-similar exponential
approximants [86]

f ∗k (x) = exp(C1x exp(C2x exp(C3x . . . exp(Ckx)))) , (275)

in which
Cn =

an

an−1
tn (n = 1, 2, . . . , k) . (276)

The parameters tn are to be defined from additional conditions [26,27], so that the
sequence of the approximants is convergent. It is often sufficient to set tn = 1/n. This
expression appears as follows. By its meaning, tn is the effective time required for reaching
a fixed point from the previous step. Accomplishing n steps takes the time of order ntn.
The minimal time corresponds to one step. Equating ntn and one gives tn = 1/n. Some
other ways of defining the control parameters tn are considered in Refs. [26,27,86].

23. Self-Similar Factor Approximants

By the fundamental theorem of algebra [87], a polynomial of any degree of one real
variable over the field of real numbers can be split in a unique way into a product of
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irreducible first-degree polynomials over the field of complex numbers. This means that
series (259) can be represented in the form

fk(x) =
k

∏
j=1

(1 + bjx) , (277)

with the coefficients bj expressed through an. Applying the self-similar renormalization
procedure to each of the factors in turn results in the self-similar factor approximants [88–90]

f ∗k (x) =
Nk

∏
j=1

(1 + Ajx)
nj , (278)

where

Nk =

{
k/2 , k = 2, 4, 6, . . .
(k + 1)/2 , k = 1, 3, 5, . . .

.

The control parameters Aj and nj are defined by the accuracy-through-order procedure
by equating the like order terms in the expansions f ∗k (x) and fk(x),

f ∗k (x) ' fk(x) (x → 0) . (279)

In the present case, it is more convenient to compare the corresponding logarithms

ln f ∗k (x) ' ln fk(x) (x → 0) . (280)

This leads to the system of equations

Nk

∑
j=1

nj An
j = Dn (n = 1, 2, . . . , k) , (281)

in which

Dn ≡
(−1)n−1

(n− 1)!
lim
x→0

dn

dxn ln

(
1 +

n

∑
m=1

amxm

)
. (282)

This system of equations enjoys a unique (up to enumeration permutation) solution
for all Aj and nj when k is even, and when k is odd, one of Aj can be set to one [27,91].

At large values of the variable, one has:

f ∗k (x) ' Bkxβk (x → ∞) , (283)

where the amplitude and the large-variable exponent are

Bk =
Nk

∏
j=1

A
nj
j , βk =

Nk

∑
j=1

nj . (284)

If the large-variable exponent is known, for instance from scaling arguments, so that

f (x) ∝ xβ (x → ∞) , (285)

then equating βk and β imposes on the exponents of the factor approximant the constraint

βk =
Nk

∑
j=1

nj = β . (286)
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The self-similar factor approximants have been used for a variety of problems, as can
be inferred from Refs. [27,88–92].

24. Self-Similar Combined Approximants

It is possible to combine different types of self-similar approximants as well as these
approximants and other kinds of approximations.

24.1. Different Types of Approximants

Suppose a small-variable asymptotic expansion,

fk(x) =
k

∑
j=0

ajxj (x → 0) , (287)

is given which to be converted into a self-similar approximation. At the same time, one
can suspect that the behavior of the sought function is quite different at small and at large
variables. In such a case, one can combine different types of self-similar approximants in
the following way. Let us take in series (287) several initial terms,

fn(x) =
n

∑
j=0

ajxj (n < k) , (288)

and construct of them a self-similar approximant f ∗n (x). Then, one defines the ratio

Ck/n(x) ≡ fk(x)
f ∗n (x)

, (289)

and expands the latter in powers of x as

Ck/n(x) = 1 +
k

∑
j=n+1

bjxj (x → 0) . (290)

Constructing a self-similar approximant C∗k/n(x), one obtains the combined approximant,

f ∗k (x) = f ∗n (x)C∗k/n(x) . (291)

The approximants f ∗n (x) and C∗k/n(x) can be represented by different forms of self-
similar approximants. For example, it is possible to define f ∗n (x) as a root approximant,
while C∗k/n(x) as a factor or exponential approximant, depending on the expected behavior
of the sought function [93].

24.2. Self-Similar Padé Approximants

Instead of two different self-similar approximants, it is possible, after construct-
ing a self-similar approximant f ∗n (x), to transform the remaining part (290) into a Padé
approximant PM/N(x), with M + N = k− n, so that

PM/N(x) ' Ck/n(x) (x → 0) . (292)

The result is the self-similarly corrected Padé approximant, or briefly, the self-similar
Padé approximant [59–61]

f ∗k (x) = f ∗n (x) PM/N(x) . (293)

The advantage of this type of approximant is that they can correctly take into account
irrational behavior of the sought function, described by the self-similar approximant f ∗n (x),
as well as the rational behavior represented by the Padé approximant PM/N(x).
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Note that Padé approximants (8) actually are a particular case of the factor approx-
imants (278), where M factors correspond to nj = 1 and N factors, to nj = −1. This is
because the Padé approximants can be represented as

PM/N(x) = a0

M

∏
m=1

(1 + Amx)
N

∏
n=1

(1 + Cnx)−1 .

24.3. Self-Similar Borel Summation

It is possible to combine self-similar approximants with the method of Borel summation.
According to this method, for a series (287), one can define [9,94] the Borel–Leroy transform

Bk(t, u) ≡
k

∑
n=0

an

Γ(n + 1 + u)
tn , (294)

where u is chosen in order to improve convergence. The series (294) can be summed using
one of the self-similar approximations, and converting u into a control parameter uk, thus
getting B∗k (t, uk). Then, the self-similar Borel–Leroy summation yields the approximant

f ∗k (x) =
∫ ∞

0
e−ttuk B∗k (tx, uk) dt . (295)

The case of the standard Borel summation corresponds to uk = 0. Then, the self-similar
Borel summation gives

f ∗k (x) =
∫ ∞

0
e−tB∗k (tx) dt . (296)

In addition to the considered above combinations of different summation methods,
one can use other combinations. For example, the combination of exponential approximants
and continued fractions has been employed [95].

25. Self-Similar Data Extrapolation

One often meets the following problem. There exists an ordered dataset

{ fn : n = 1, 2, . . . , k} , (297)

labeled by the index n, and one is interested in the possibility of predicting the values fk+p
outside this dataset. The theory of self-similar approximants suggests a solution to this
problem [27,96].

Let us consider several last datapoints, for instance the last three points

{g0 ≡ fk−2 , g1 ≡ fk−1 , g2 ≡ fk} . (298)

How many datapoints one needs to take depends on the particular problem consid-
ered. For the explicit illustration of the idea, let us take three datapoints. The chosen points
can be connected by a polynomial spline, in the present case, by a quadratic spline

g(t) = a + bt + ct2 , (299)

defined so that

g(0) = g0 = fk−2 , g(1) = g1 = fk−1 , g(2) = g2 = fk . (300)

From this definition, it follows that

a = fk−2 , b = − 1
2
( fk − 4 fk−1 + 3 fk−2) , c =

1
2
( fk − 2 fk−1 + fk−2) .
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Treating polynomial (299) as an expansion in powers of t makes it straightforward
to employ self-similar renormalization, thus obtaining a self-similar approximant g∗(t).
For example, resorting to factor approximants, one gets:

g∗(t) = a(1 + At)m , (301)

with the parameters

A =
b2 − ac

ab
, m =

b2

b2 − ac
.

The approximants g∗(t), with t ≥ 2 provide the extrapolation of the initial dataset.
The nearest to the dataset extrapolation point can be estimated as

g∗ =
1
2
[ g∗(2) + g∗(3) ] . (302)

This method can also be used for improving the convergence of the sequence of
self-similar approximants. Then, the role of datapoints fk is played by the self-similar
approximants f ∗k (x). In that case, all parameters a = a(x), b = b(x), c = c(x), as well as
A = A(x) and m = m(x) become control functions. This method of data extrapolation
has been used for several problems, such as predictions for time series and convergence
acceleration [27,96,97].

26. Self-Similar Diff-Log Approximants

There is a well known method employed in statistical physics called diff-log transfor-
mation [98,99]. This transformation for a function f (x) is

D(x) ≡ d
dx

ln f (x) . (303)

The inverse transformation, assuming that the function f (x) is normalized so that

f (0) = 1 , (304)

reads as

f (x) = exp
{∫ x

0
D(t) dt

}
. (305)

When one starts with an asymptotic expansion,

fk(x) = 1 +
k

∑
n=1

anxn , (306)

the diff-log transformation gives

Dk(x) =
d

dx
ln fk(x) . (307)

Expanding the latter in powers of x yields

Dk(x) '
k

∑
n=0

bnxn (x → 0) , (308)

with the coefficients bn expressed through an. This expansion can be summed by one of the
self-similar methods giving D∗k (x). Involving the inverse transformation (305) results in
the self-similar diff-log approximants

f ∗k (x) = exp
{∫ x

0
D∗k (t) dt

}
. (309)
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A number of applications of the diff-log transformation can be found in Refs. [61,83,99],
where it is shown that the combination of the diff-log transform with self-similar approxi-
mants gives essentially more accurate results than the diff-log Padé method.

27. Critical Behavior

One says that a function f (x) experiences critical behavior at a critical point xc, when
this function at that point either tends to zero or to infinity. It is possible to distinguish two
cases, when the critical behavior occurs at infinity, and when at a finite critical point. These
two cases are considered below separately.

27.1. Critical Point at Infinity

If the critical behavior happens at infinity, the considered function behaves as

f (x) ' Bxβ (x → ∞) . (310)

Then, the diff-log transform tends to the form

D(x) ' β

x
(x → ∞) . (311)

Here, B is a critical amplitude, while β is a critical exponent.
The critical exponents have a special interest for critical phenomena. If one is able to

define a self-similar approximation f ∗k (x) directly to the studied function f (x), then the
critical exponent can be found from the limit

βk = lim
x→∞

ln f ∗k (x)
ln x

. (312)

Otherwise, it can be obtained from the equivalent form,

βk = lim
x→∞

xD∗k (x) , (313)

where a self-similar approximation for the diff-log transform D∗k (x) is needed.
The convenience of using the representation (313) is in the possibility of employing a

larger arsenal of different self-similar approximants. Of course, the factor approximants
can be involved in both the cases. However, the root and nested approximants require
the knowledge of the large-variable exponent of the sought function, which is not always
available. On the contrary, the large-variable behavior of the diff-log transform (311) is
known. Therefore, for constructing a self-similar approximation for the diff-log transform,
one can resort to any type of self-similar approximant.

It is necessary to mention that the root and nested approximants can be defined,
without knowing the large-variable behavior, by invoking optimization conditions of
Section 6 prescribing the value of the external exponent mk, as is explained in Ref. [33].
However, this method becomes rather cumbersome for high-order approximants.

27.2. Finite Critical Point

If the critical point is located at a finite xc that is in the interval (0, ∞), then

f (x) ' B(xc − x)β (x → xc − 0) . (314)

Here, the diff-log transform behaves as

D(x) ' − β

xc − x
(x → xc − 0) . (315)
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Again, the critical exponent can be derived from the limit

βk = lim
x→xc−0

ln f ∗k (x)
ln(xc − x)

, (316)

provided a self-similar approximant f ∗k (x) is constructed. However, it may happen that
the other form

βk = lim
x→xc−0

(x− xc)D∗k (x) (317)

is more convenient, where a self-similar approximant for the diff-log transform D∗k (x) is
easier to find. This is because the nearest to zero pole of D∗k (x) defines a critical point xc,
while the residue (317) yields a critical exponent.

Note that, by the change of the variable, the problem of a finite critical point can be
reduced to the case of critical behavior at infinity. For instance, one can use the change of
the variable z = x/(xc − x) or any other change of the variable mapping the interval [0, xc)
to [0, ∞). Numerous examples of applying the diff-log transform, accompanied by the use
of self-similar approximants, are presented in Refs. [61,83,99], where it is also shown that
this method essentially outperforms the diff-log Padé variant.

28. Non-Power-Law Behavior

In the previous sections, a kind of power-law behavior of considered functions at
large variables were kept in mind. Now, it is useful to make some comments on the use
of the described approximation methods for other types of behavior. The most often met
types of behavior that can occur at large variables are the exponential and logarithmic
behavior. Below, it is shown that the developed methods of self-similar approximants can
be straightforwardly applied to any type of behavior.

28.1. Exponential Behavior

The exponential behavior with respect to time happens in many mathematical mod-
els employed for describing the growth of population, mass of biosystems, economic
expansion, financial markets, various relaxation phenomena, etc. [100–105].

When a sought function at a large variable displays exponential behavior, there are
several ways of treating this case. First of all, this kind of behavior can be treated by
self-similar exponential approximants of Section 18. The other way is to resort to diff-log
approximants of Section 22 or, simply, to consider the logarithmic transform

L(x) ≡ ln f (x) . (318)

If the sought function at large variable behaves as

f (x) ' B exp(γx) (x → ∞) , (319)

then
L(x) ' γx , D(x) ' γ (x → ∞) . (320)

Therefore, the function behaves as

f (x) ' B exp{L(x)} (x → ∞) . (321)

Keeping in mind the asymptotic series (306), one has:

Lk(x) = ln fk(x) , (322)

which can be expanded in powers of x giving

Lk(x) '
k

∑
n=0

cnxn (x → 0) . (323)
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This is to be converted into a self-similar approximant L∗k (x), after which one obtains
the answer:

f ∗k (x) = exp{L∗k (x)} . (324)

Moreover, the small-variable expansion of an exponential function can be directly and
exactly represented through self-similar factor approximants [91]. Really, let us consider
the exponential function

f (x) = ex . (325)

Assume that one knows solely the small-variable asymptotic expansion

fk(x) =
k

∑
n=0

xn

n!
(x → 0) , (326)

which is used for constructing factor approximants. In the lowest, second, order, one has:

f ∗2 (x) = lim
A→0

(1 + Ax)1/A = ex .

In the third order, one finds:

f ∗3 (x) = lim
A→0

(1 + x)A/(1−A)(1 + Ax)1/A(1−A) = ex ,

and, similarly, in all other orders. Thus, the self-similar factor approximants of all orders
reproduce the exponential function exactly:

f ∗k (x) = ex (k ≥ 2) . (327)

Some other more complicated functions, containing exponentials, can also be well
approximated by factor approximants [106].

28.2. Logarithmic Behavior

When there is suspicion that the sought function exhibits logarithmic behavior at large
variables, it is reasonable to act by analogy with the previous subsection, but now defining
the exponential transform

E(x) ≡ exp{ f (x)} . (328)

For the asymptotic series (306), one has:

Ek(x) ≡ exp{ fk(x)} , (329)

whose expansion in powers of x produces

Ek(x) =
k

∑
n=0

bnxn (x → 0) . (330)

This can be converted into a self-similar approximation E∗k (x), so that the final an-
swer becomes:

f ∗k (x) = ln E∗k (x) . (331)

As an example, let us consider the function

f (x) = 1 + ln

(
1 +
√

1 + x
2

)
, (332)

with the logarithmic behavior at large variables,

f (x) ' 0.5 ln x (x → ∞) . (333)
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This function has the expansion

fk(x) =
k

∑
n=0

anxn (x → 0) , (334)

with the coefficients

a0 = 1 , a1 =
1
4

, a2 = − 3
32

, a3 =
5

96
,

a4 = − 35
1024

, a5 =
63

2560
, a6 = − 77

4096
, . . . .

Its exponential transform leads to the series (330), with the coefficients

b0 = e , b1 =
1
4

e , b2 = − 1
16

e , b3 =
1

32
e ,

b4 = − 5
256

e , b5 =
7

512
e , b6 = − 21

2048
e , . . . .

Defining factor approximants E∗k (x), one obtains the approximants (331), whose large-
variable behavior is of correct logarithmic form:

f ∗k (x) ' Bk ln x (x → ∞) , (335)

with the amplitudes Bk,

B2 = 0.333 , B4 = 0.4 , B6 = 0.429 ,

B8 = 0.444 , B10 = 0.456 , B12 = 0.462 , . . . ,

converging to the exact value 0.5.

29. Critical Temperature Shift

Here, it is shown how the described methods can be used for calculating the critical
temperature relative shift caused by interactions in an N-component scalar field theory in
three dimensions. The interactions can be characterized by the gas parameter

γ ≡ ρ1/3as , (336)

in which ρ is particle density and as, s-wave scattering length. This shift is defined as

∆Tc

T0
≡ Tc − T0

T0
, (337)

where T0 is the critical temperature in the free field with γ = 0, while Tc is the critical
temperature for nonzero γ. For example, the critical temperature of the 2-component
free field

T0 =
2π

m

[
ρ

ζ(3/2)

]2/3
, (338)

is the point of the Bose–Einstein condensation of ideal gas. Here, m is the mass of a
boson, and the Boltzmann and Planck constants are set to one. For weak interactions,
the temperature shift has been shown [107,108] to have the form

∆Tc

T0
' c1γ (γ→ 0), (339)

where the coefficient c1 needs to be calculated.
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This coefficient can be found in the loop expansion [109–111] producing asymptotic
series in powers of the variable

x = (N + 2)
λe f f
√

µe f f
, (340)

where N is the number of components, λe f f , effective coupling, and µe f f , effective chemical
potential. The series in seven loops reads as

c1(x) '
5

∑
n=1

anxn (x → 0) , (341)

whose coefficients for several N are listed in Table 1.

Table 1. Coefficients an of the loop expansion c1(x) for the number of components N.

N 0 1 2 3 4

a1 0.111643 0.111643 0.111643 0.111643 0.111643
a2 −0.0264412 −0.0198309 −0.0165258 −0.0145427 −0.0132206
a3 0.0086215 0.00480687 0.00330574 0.00253504 0.0020754
a4 −0.0034786 −0.00143209 −0.000807353 −0.000536123 −0.000392939
a5 0.00164029 0.00049561 0.000227835 0.000130398 0.0000852025

However, at the critical point, the effective chemical potential tends to zero, hence
the variable x tends to infinity. Thus, one comes to the necessity of finding the series
(341) for x → ∞. The direct application of the limit x → ∞ to this series of course has
no sense. The self-similar factor approximants of Section 19 are used here defining the
approximants f ∗k (x) for c1(x), with keeping in mind that c1 is finite, so that βk = 0. Then,
the approximants for the sought limit are

f ∗k (∞) = a1

Nk

∏
i=1

Ani
i 7−→ c1 . (342)

The convergence is accelerated by quadratic splines, as is explained in Section 21 and
in Refs. [97,112]. The results are displayed in Table 2, where they are compared with Monte
Carlo simulations [113–116]. The agreement of the latter with the values calculated by
means of the self-similar approximants is very good.

Table 2. Critical temperature shift obtained using self-similar factor approximants, as compared with
Monte Carlo simulations.

N c1 Monte Carlo

0 0.77± 0.03
1 1.06± 0.05 1.09 ± 0.09 [116]
2 1.29 ± 0.07 1.29 ± 0.05 [113]

1.32 ± 0.02 [114,115]
3 1.46 ± 0.08
4 1.60 ± 0.09 1.60 ± 0.10 [116]

30. Critical Exponents

Calculation of critical exponents is one of the most important problems in the theory
of phase transitions. Here, it is shown how the critical exponents can be calculated by
using self-similar factor approximants applied to the asymptotic series in powers of the
ε = 4− d, where d is space dimensionality. The O(N) ϕ4 field theory in d = 3 is considered.
The definition of the critical exponents can be found in reviews [27,117].
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One usually derives the so-called epsilon expansions for the exponents η, ν−1, and ω.
The other exponents can be obtained from the scaling relations:

α = 2− νd , β =
ν

2
(d− 2 + η) , γ = ν(2− η) , δ =

d + 2− η

d− 2 + η
. (343)

In three dimensions, one has

α = 2− 3ν , β =
ν

2
(1 + η) , γ = ν(2− η) , δ =

5− η

1 + η
(d = 3) . (344)

The number of components N corresponds to different physical systems. Thus, N = 0
corresponds to dilute polymer solutions, N = 1, to the Ising universality class, N = 2,
to superfluids and the so-called XY magnetic models, N = 3, to the Heisenberg universality
class, and N = 4, to some models of quantum field theory. Formally, it is admissible to
study arbitrary N.

In the case of N = −2, the critical exponents for any d are known exactly:

α =
1
2

, β =
1
4

, γ = 1 ,

δ = 5 , η = 0 , ν =
1
2

(N = −2) . (345)

For the limit N → ∞, the exact exponents are also available:

α =
d− 4
d− 2

, β =
1
2

, γ =
2

d− 2
, δ =

d + 4
d− 2

,

η = 0 , ν =
1

d− 2
, ω = 4− d (N → ∞) . (346)

The latter for d = 3 reduce to

α = −1 , β =
1
2

, γ = 2 , δ = 5 ,

η = 0 , ν = 1 , ω = 1 (d = 3 , N → ∞) . (347)

The epsilon expansion results in the series

fk(ε) =
k

∑
n=0

cnεn (ε→ 0) , (348)

obtained for ε→ 0, while, in the end, one has to set ε = 1. Direct substitution of ε = 1 in
the series (348) leads to the values having little to do with real exponents. These series
require to define their effective sums, which are accomplished by means of the self-similar
factor, approximants

f ∗k (ε) = f0(ε)
Nk

∏
i=1

(1 + Aiε)
ni . (349)

Then, let us set ε = 1 and define the final answer as the half sum of the last two factor
approximants fk(1) and fk−1(1).

Let us first illustrate the procedure for the O(1) field theory of the Ising universality
class, where there exist the most accurate numerical calculations of the exponents, obtained
by Monte Carlo simulations [117–121]. The epsilon expansions for η, ν−1, and ω can be
written [122] as

η ' 0.0185185ε2 + 0.01869ε3 − 0.00832877ε4 + 0.0256565ε5 ,
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ν−1 ' 2− 0.333333ε− 0.117284ε2 + 0.124527ε3 − 0.30685ε4 − 0.95124ε5 ,

ω ' ε− 0.62963ε2 + 1.61822ε3 − 5.23514ε4 + 20.7498ε5 . (350)

If here ε = 1 is set, one gets senseless values η = 0.0545, ν = 2.4049 and ω = 17.5033.
However, by means of the self-similar factor approximants, one obtains the results shown
in Table 3, which are in good agreement with Monte Carlo simulations [117–121].

Table 3. Critical exponents for the O(1)-symmetric ϕ4 field theory of the Ising universality class
calculated using self-similar factor approximants, as compared with Monte Carlo simulations.

Factor Approximants Monte Carlo

α 0.10645 0.11026
β 0.32619 0.32630
γ 1.24117 1.23708
δ 4.80502 4.79091
η 0.03359 0.03611
ν 0.63118 0.62991
ω 0.78755 0.83000

The use of the self-similar factor approximants can be extended to the calculation of
the critical exponents for the arbitrary number of components N of the O(N) symmetric
ϕ4 field theory in d = 3. In the general case, the epsilon expansions [122] read as

η ' (N + 2)ε2

2(N + 8)2

{
1 +

ε

4(N + 8)2 [−N2 + 56N + 272]−

− ε2

16(N + 8)4

[
5N4 + 230N3 − 1124N2 − 17920N − 46144 + 384ζ(3)(N + 8)(5N + 22)

]
−

− ε3

64(N + 8)6

[
13N6 + 946N5 + 27620N4 + 121472N3 − 262528N2 − 2912768N − 5655552−

−16ζ(3)(N + 8)
(

N5 + 10N4 + 1220N3 − 1136N2 − 68672N − 171264
)
+

+1152ζ(4)(N + 8)3(5N + 22)− 5120ζ(5)(N + 8)2(2N2 + 55N + 186)
]}

,

ν−1 ' 2 +
(N + 2)ε

N + 8

{
−1− ε

2(N + 8)2 [13N + 44]+

+
ε2

8(N + 8)4

[
3N3 − 452N2 − 2672N − 5312 + 96ζ(3)(N + 8)(5N + 22)

]
+

+
ε3

32(N + 8)6

[
3N5 + 398N4 − 12900N3 − 81552N2 − 219968N − 357120+

+16ζ(3)(N + 8)
(

3N4 − 194N3 + 148N2 + 9472N + 19488
)
+ 288ζ(4)(N + 8)3(5N + 22)−

−1280ζ(5)(N + 8)2
(

2N2 + 55N + 186
)]

+

+
ε4

128(N + 8)8

[
3N7 − 1198N6 − 27484N5 − 1055344N4 − 5242112N3 − 5256704N2+

+6999040N − 626688− 16ζ(3)(N + 8)
(

13N6 − 310N5 + 19004N4 + 102400N3 − 381536N2−

−2792576N − 4240640)− 1024ζ2(3)(N + 8)2
(

2N4 + 18N3 + 981N2 + 6994N + 11688
)
+
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+48ζ(4)(N + 8)3
(

3N4 − 194N3 + 148N2 + 9472N + 19488
)
+

+256ζ(5)(N + 8)2
(

155N4 + 3026N3 + 989N2 − 66018N − 130608
)
−

−6400ζ(6)(N + 8)4
(

2N2 + 55N + 186
)
+ 56448ζ(7)(N + 8)3

(
14N2 + 189N + 256

)]}
,

ω ' ε− 3ε2

(N + 8)2 [3N + 14]+

+
ε3

4(N + 8)4

[
33N3 + 538N2 + 4288N + 9568 + 96ζ(3)(N + 8)(5N + 22)

]
+

+
ε4

16(N + 8)6

[
5N5 − 1488N4 − 46616N3 − 419528N2−

−1750080N − 2599552− 96ζ(3)(N + 8)
(

63N3 + 548N2 + 1916N + 3872
)
+

+288ζ(4)(N + 8)3(5N + 22)− 1920ζ(5)(N + 8)2
(

2N2 + 55N + 186
)]

+

+
ε5

64(N + 8)8

[
13N7 + 7196N6 + 240328N5 + 3760776N4+

+38877056N3 + 223778048N2 + 660389888N + 752420864−

−16ζ(3)(N + 8)
(

9N6 − 1104N5 − 11648N4 − 243864N3 − 2413248N2 − 9603328N − 14734080
)
−

−768ζ2(3)(N + 8)2
(

6N4 + 107N3 + 1826N2 + 9008N + 8736
)
−

−288ζ(4)(N + 8)3
(

63N3 + 548N2 + 1916N + 3872
)
+

+256ζ(5)(N + 8)2
(

305N4 + 7386N3 + 45654N2 + 143212N + 226992
)
−

−9600ζ(6)(N + 8)4
(

2N5 + 55N + 186
)
+

+112896ζ(7)(N + 8)3
(

14N2 + 189N + 256
)]

. (351)

Summing these series by means of the self-similar factor approximants [123,124], one
obtains the exponents, presented in Table 4. The found values of the exponents are in good
agreement with experimental data as well as with the results of numerical methods, such
as Padé–Borel summation and Monte Carlo simulations. It is important to stress that, when
the exact values of the exponents are known (for N = −2 and N → ∞), the self-similar
approximants automatically reproduce these exact data.

Table 4. Critical exponents for the O(N)-symmetric ϕ4 field theory obtained by the summation of ε

expansions using self-similar factor approximants.

N α β γ δ η ν ω

−2 0.5 0.25 1 5 0 0.5 0.79838
−1 0.36612 0.27742 1.0791 4.8897 0.01874 0.54463 0.79380
0 0.23466 0.30268 1.1600 4.8323 0.02875 0.58845 0.79048
1 0.10645 0.32619 1.2412 4.8050 0.03359 0.63118 0.78755
2 −0.01650 0.34799 1.3205 4.7947 0.03542 0.67217 0.78763
3 −0.13202 0.36797 1.3961 4.7940 0.03556 0.71068 0.78904
4 −0.23835 0.38603 1.4663 4.7985 0.03476 0.74612 0.79133
5 −0.33436 0.40208 1.5302 4.8057 0.03347 0.77812 0.79419
6 −0.41963 0.41616 1.5873 4.8142 0.03197 0.80654 0.79747
7 −0.49436 0.42836 1.6376 4.8231 0.03038 0.83145 0.80108
8 −0.55920 0.43882 1.6816 4.8320 0.02881 0.85307 0.80503
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Table 4. Cont.

N α β γ δ η ν ω

9 −0.61506 0.44774 1.7196 4.8406 0.02729 0.87169 0.80935
10 −0.66297 0.45530 1.7524 4.8489 0.02584 0.88766 0.81408
50 −0.98353 0.50113 1.9813 4.9537 0.00779 0.99451 0.93176
100 −0.93643 0.49001 1.9564 4.9926 0.00123 0.97881 0.97201

1000 −0.99528 0.49933 1.9966 4.9986 0.00023 0.99842 0.99807
10,000 −0.99952 0.49993 1.9997 4.9999 0.00002 0.99984 0.99979

∞ −1 0.5 2 5 0 1 1

31. Conclusions

In this review, the basic ideas of the approach allowing for obtaining sensible results
from divergent asymptotic series typical of asymptotic perturbation theory are presented.
The pivotal points of the approach can be emphasized as follows:

(i) The implantation of control functions in the calculational procedure, treating pertur-
bation theory as optimal control theory. Control functions are defined by optimization
conditions in order to control the convergence of the sequence of optimized approxi-
mants. The optimization conditions are derived from the Cauchy criterion of sequence
convergence. The resulting optimized perturbation theory provides good accuracy
even for very short series of just a few terms and makes it possible to extrapolate the
validity of perturbation theory to arbitrary values of variables, including the limit
to infinity.

(ii) Reformulation of perturbation theory to the language of dynamical theory, handling
the motion from one approximation term to another as the motion in discrete time
played by the approximation order. Then, the approximation sequence is bijective to
the trajectory of the effective dynamical system, and the sequence limit is equivalent
to the trajectory fixed point. The motion near the fixed point enjoys the property of
functional self-similarity. The approximation dynamical system in discrete time is
called cascade. The approximation cascade can be embedded into a dynamical system
in continuous time termed approximation flow. The representation in the language
of dynamical theory allows us to improve the accuracy of optimized perturbation
theory, to study the procedure stability, and to select the best initial approximation.

(iii) Introduction of control functions by means of a fractal transformation of asymptotic
series, which results in the derivation of several types of self-similar approximants.
These approximants combine the simplicity of their use with good accuracy. They can
be employed for the problem of interpolation as well as extrapolation.

The application of the described methods is illustrated by several examples demon-
strating the efficiency of the approach.
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