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1. Introduction

Let us deal briefly here with two important themes that can be correlated: The

spherically symmetric and anisotropic model of Kantowski-Sachs, and the cosmic

censorship conjecture. The Kantowski-Sachs model is interesting because of its

topology somewhat different from those usually associated with models that pop-

ulate the Bianchi classification, i.e., the model is resulting from the product of a

sphere with a line (R3 ×R). It can be describe by as a spatially homogeneous and

anisotropic model that does not permit a simple transitive group of motions. Cos-

mological expanding solutions to these models are known and can be found in the

original paper of Kantowski-Sachs1 and in Kramer’s book,2 with the matter content

represented by a perfect fluid, where all solutions have singularities.

On the other hand, it has been shown that considering a positive cosmological

constant in Kantowski-Sachs universes, the model admit inflationary solutions, in

This is an Open Access article published by World Scientific Publishing Company. It is distributed
under the terms of the Creative Commons Attribution 4.0 (CC-BY) License. Further distribution

of this work is permitted, provided the original work is properly cited.

1760014-1

In
t. 

J.
 M

od
. P

hy
s.

 C
on

f.
 S

er
. 2

01
7.

45
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
R

M
A

N
 E

L
E

C
T

R
O

N
 S

Y
N

C
H

R
O

T
R

O
N

 @
 H

A
M

B
U

R
G

 o
n 

05
/0

8/
19

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.

http://dx.doi.org/10.1142/S201019451760014X


July 18, 2017 11:54 WSPC/CRC 9.75 x 6.5 1760014

P. Carvalho, M. Campos & B. Terezón

which we have an isotropization process, i.e., shear decays exponentially towards

zero. It is also possible to find in the literature, inhomogeneous solutions with infla-

tion directed by a cosmological constant. Hence, in general, the universe can start

with a very inhomogeneous and anisotropic phase, then go us through the inflation-

ary era, subjecting homogenization and isotropization.

We can classify spacetime singularities according to whether or not can be

observed. If the singularity can be observed it is called a naked singularity, while a

black hole is a typical example of a spacetime singularity that cannot be observed.

Related with this question, Roger Penrose proposed the cosmic censorship con-

jecture that have two versions. The weak conjecture state that all singularities in

gravitational collapse are hidden within a black hole. On the other hand, the strong

conjecture asserts that no singularity visible to any observer can exist.

2. Kantowski-Sachs Collapse

Usually the Kantowski-Sacks metric is put in the form

ds2 = dt2 −A2(t)dr2 −B2(t)[dθ2 + sin2θdφ2] . (1)

We consider the light velocity equal to unity and the energy momentum tensor

as a perfect fluid:

Tµν = (ρ+ p)uµuν − pgµν , (2)

where ε is the energy density, p is the pressure and u is the four-velocity of the star

fluid.

Let us consider the case of dust, which allows us to write the field equations as:

2
B̈

B
+
Ḃ2

B2
+

1

B2
= 0 , (3)

Ä

A
+
B̈

B
+
Ȧ

A

Ḃ

B
= 0 , (4)

2
Ȧ

A

Ḃ

B
+
Ḃ2

B2
+

1

B2
= 8πGρ . (5)

The first integral of Eq.(3) results

Ḃ2 = b

(
Bi
B

)
− 1, (6)

where b = 1 + (BiHBi)
2 , HBi = Ḃ

B (t = 0) and Bi = B(t = 0).

To obtain the full integration of the Eq.(3) we introduce the auxiliary variable

u =
1

b

(
B

Bi

)
, (7)

in Eq.(6), resulting

u̇ =
1

bBi
(1− u/u)1/2 . (8)
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Making the reversal of above equation, we have

dt

du
= bBi

(
u

1− u

)1/2

, (9)

that associate to the second derivative, results in

u(1− u)
d2t

du2
− 1

2

dt

du
= 0 . (10)

This equation is a particular case of the hypergeometric differential equation

with parameters (0,−1,− 1
2 ), whose solution is given by

t(u) = c1 + c2u
3/2F (1/2, 3/2, 5/2;u) , (11)

where c1 and c2 are integration constants.

Considering the initial conditions

B(t = 0) = Bi ,

B = 0 at t = tc,

we rewrite Eq.(11) as

1− t

tc
=

(
B

Bi

)3/2
F (1/2, 3/2, 5/2;B/bB)

F (1/2, 3/2, 5/2; 1/b)
, (12)

where the collapsing time can be calculated from Eq.(12):

tc =
H−1
Bi
{2bF (1/2, 3/2, 5/2; 1/b)}

3bF (1/2, 3/2, 5/2; 1/b) + 3
5F (3/2, 5/2, 7/2; 1/b)

, (13)

and where, in addition, we also use the initial condition

t = 0 ⇒ HB = −HBi .

Alternatively, we can use the contiguous relation

d

dZ
{ZaF (a, b, c, z)} =

Γ(a+ 1)

Γ(a)
Za−1F (1 + a, b, c; z) ,

in Eq.(12), to find a more simple expression for the collapsing time, namely

tc =
2F (1/2, 3/2, 5/2; 1/b)

3HBiF (1/2, 5/2, 5/2; 1/b)
. (14)

We can reduce this expression for the collapsing time in terms of usual functions

tc =
1

HBi

{
1− b+ b(b− 1)1/2sin−1(b−1/2)

}
.

This collapses process, in some sense, mimics the collapse of a fluid with positive

curvature, because the initial value for the Hubble function can be set to zero:

HBi → 0⇒ tc = π/2.

In Fig. 1 we display the evolution of the scalefactor B.
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Fig. 1. Evolution of the scalefactor B versus adimensional time, where we compare the collapse
process for the scalefactor B(t) (Kantowski-Sachs scalefactor) with the evolution for the scalefactor

taking into account the usual FRW model, where R
R0

= (1 − t/tc)2/3.

3. Conclusions and Some Notes

Our intent in this work is study the collapse process taking into account a

Kantowski-Sachs spacetime. Under determined initial conditions the scalefactor B

collapses, as we can view in the Fig.(1). In addition to the scalefactor B, we also

have A, and in this case we intend to make the approximation via the Kretschmann

scalar, that for the metric given by Eq.(1) results

K = (
Ä

A
)2 + 2(

B̈

B
)2 + (2

ȦḂ

AB
)2 +

1

B4
+ 2(

Ḃ

B2
)2 +

Ḃ

B

4

. (15)

Another point that will merit our attention as an extension of this work is to consider

a charged fluid, and in a second step include a vacuum term. Both will be useful as a

counterexample of the cosmic censorship conjecture; and in relation to the collapsed

mass, we can have increase or decrease of this quantity, depending on both what

is included in the stellar fluid as well as the definition of mass used. These are,

approximately, the next steps that we will take for the study of anisotropic collapse.
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