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Image filtering involves the application of window operations that perform valuable functions, such 
as noise removal, image enhancement, high dynamic range (HDR) compression, and so on. Guided 
image filtering is a new type of explicit image filter with multiple advantages. It can effectively remove 
noise while preserving edge details, and can be used in a variety of scenarios. Here, we report a 
quantum implementation of guided image filtering algorithm, based on the novel enhanced quantum 
representation (NEQR) model, and the corresponding quantum circuit has been designed. We find 
that the speed and quality of filtering are improved significantly due to the quantization, and the time 
complexity is reduced exponentially from O(22q) to O(q2).
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Image filtering is widely used in computer vision and image processing to suppress or obtain the corresponding 
content in an image. Weighted least squares (WLS) filtering, bilateral filtering, and guided image filtering are 
three edge-preserving filtering algorithms, which can smooth the image while preserving the edge details, 
and thus have received wide attention1. The core idea of WLS filtering2 is to use the filtered input as guide 
information and optimize the quadratic function to achieve non-uniform diffusion, similar to anisotropic 
diffusion3. Bilateral filtering4 is an explicit filtering method by weighted averaging adjacent pixels in the filter 
output, where the weight depends on the intensity in the guidance image. Although bilateral filtering is effective 
in many cases, it can cause unwanted gradient inversion near the edge2,5. Guided image filtering is a new type 
of explicit image filter, which has multiple advantages1. First, similar to bilateral filtering, it has the smoothing 
property of preserving edge, but can avoid the phenomenon of gradient inversion and pseudo-edge. Secondly, 
guided image filtering is not limited to smooth operation, it can also make the filter output more structured 
and less smooth by guiding the image. Finally, guided image filtering performs well in a variety of applications, 
including image smoothing/enhancement, high dynamic range (HDR) compression, flash/no-flash imaging, 
matting/feathering, dehazing and joint upsampling. More importantly, guided image filtering is an efficient 
algorithm with a complexity of O(N) regardless of filter core size and intensity range, making it wide used in 
practical applications.

Currently, guided image filtering is still a classical algorithm running on classical computers. Although, it 
owns an excellent complexity of O(N), but when used for high-quality images, it will lead to sharp increases 
in computational time and memory usage. If used for real-time processing in digital images, the increases are 
undoubtedly formidable, like other classical algorithms. Thus, quantum image processing is emerging as an 
interdisciplinary field, and garnering widespread attention and in-depth exploration6,7. Because of the parallelism 
and entanglement inherent in quantum computing, computational speed in quantum image processing can 
experience an exponential increase compared to classical image processing. Hence, it is very necessary to explore 
the quantum implementation of the classical guided image filtering algorithm.

Quantum image processing can be divided into three stages: preparation of quantum images, quantum image 
processing algorithms, and quantum image retrievals.

Quantum image preparation involves representing digital images as quantum image models. There 
exist various quantum image representation models, such as the qubit lattice representation8, the real ket 
representation9, the entangled images representation10, the flexible representation of quantum image (FRQI)11, 
the quantum probability image encoding representation (QPIE)12, the novel enhanced quantum representation 
(NEQR)13, and the novel quantum representation for color quantum image (NCQI)14, etc. Specially, the NEQR 
model stores image information in the basic state and encodes grayscale values using individual sequences of 
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qubits. When the image is retrieved, the grayscale values of each pixel can be accurately recovered through 
measurement. Thus, it is the widely adopted mainstream quantum image representation model in current. In 
this paper, the NEQR model is used as the quantum image representation model.

A large quantity of quantum image processing algorithms have also emerged, including the geometrical 
transformation of quantum image15–18, the feature extraction of quantum image19, the quantum image 
watermarking20–24, the quantum image bilinear interpolation25, the quantum image segmentation26,27, the 
quantum image steganography28,29, the quantum image edge detection30–32, etc33–35. Guided image filtering as 
one of the three edge-preserving filtering algorithms, has been widely used in classical image processing. In this 
paper, we combine guided image filtering with quantum image processing based on the NEQR model, and the 
corresponding quantum circuit has also been designed. We find that the speed and quality of filtering are largely 
improved, and the time complexity is significantly reduced from O(22q) to O(q2).

The rest of this work is organized as follows. Section  “Classical guided image filtering” introduces the 
definition and principle derivation of classical guided filtering algorithm. Section  “Quantum circuit module 
design” introduces the quantum circuit design of some operational modules used in this work, and their time 
complexity analysis. In sections “Quantum guided image filtering algorithm”, “Results”, the circuit design of the 
quantum guided image filter is described in detail from the design of the submodule, the overall time complexity 
is analyzed, and the circuit is simulated on a classical computer. In section “Conclusion”, we make a summary 
of the full work.

Classical guided image filtering
We first define the general linear variables of a filtering process that involves the guidance image G, the input 
image I, and the output image Q. Both G and I are given in advance according to the application, and they are 
generally the same, i.e. G = I . The main idea of the guided image filtering5 is to filter the input image I under 
the guidance of the guidance image G. In each filter window ωk  (centered on pixel k), the output image Q is 
considered as a linear representation of the guidance image based on local linear model:

	 Qi = ak · Gi + bk, ∀ i ∈ ωk.� (1)

where ak, bk  are linear coefficients assumed to be constant in ωk . This local linear model ensures that Q has an 
edge only if G has an edge, and the gradient of the filter output Q is as consistent as possible with the guidance 
image G, because ∇Q = a∇G. It is understandable that the guided image filter performs low-pass filtering on 
the filter window ωk , retains the DC (Direct Current) component bk  of the original window, and introduces the 
guidance image information through the coefficient ak  to compensate the detail loss.

To determine the linear coefficient ak , bk , we need a constraint from the filter input I. We model the output Q as 
input I by removing some unwanted noise/texture equal component n in Eq. (2).

	 Qi = Ii − ni.� (2)

To make the filter output Q roughly consistent with (in the filter window ωk) the filter input I, there is an 
optimization objective in Eq. (3).

	
min

∑
i∈ωk

(Qi − Ii)2 = min
∑
i∈ωk

(ak · Gi + bk − Ii)2 .� (3)

By importing the regularization parameter ε to control the size of ak , we get:

	
min

∑
i∈ωk

(Qi − Ii)2 = min
∑
i∈ωk

(
(ak · Gi + bk − Ii)2 + ε · ak

2)
.� (4)

Equation (4) is the linear ridge regression model36.

The solution can be obtained easily, it can be described by Eqs. (5, 6).

	
ak =

1
|ω|

∑
i∈ωk

GiIi − µk Īk

σ2
k + ε

, � (5)

	 bk = Īk − akµk. � (6)

where, µk  and σ2
k  are the mean and variance of G in ωk , respectively, |ω| is the number of pixels in ωk , and 

Īk = 1
|ω|

∑
i∈ωk

Ii is the mean of I in ωk . Thus, one can represent them as in Eqs. (7, 8).

	
ak = Cov(G, I)ωk

V ar(G)ωk + ε
, � (7)

	 bk = Mean(I)ωk − ak · Mean(G)ωk . � (8)
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When the ak  and bk  are obtained, one can get the Q according to the local linear model as described in Eq. (1).

The whole process of guided image filtering is shown in Fig. 1. It should be noted that the pixel i does not only 
appear in one filter window, but also be covered by several different filter windows. Because the ak  and bk  
of different filter windows are diverse, any filter window covering pixel i can get a corresponding Qi, so one 
needs to determine the unique Qi. A simple method is to average the Qi of all filter windows. Therefore, after 
calculating the ak , bk  of all filter windows and obtaining the Qi, one determines the filtering output according 
to Eq. (9).

	
Qi = 1

|ω|
∑

k|i∈ωk

(akGi + bk).� (9)

Another method is that according to the symmetry of the filter window, the center pixels k of all windows ωk  
covering pixel i are covered by the window ωi centered on pixel i, that is, 

∑
k|i∈ωk

ak =
∑

k∈ωi
ak . One can 

convert the average all Qi to the average all ak  and bk , and the filter output Qi can be reexpressed as in Eq. (10).

	 Qi = āiGi + b̄i.� (10)

where āi and ̄bi are the average coefficients of all filter windows covering pixel i, which are given in Eqs. (11, 12).

	
āi = 1

|ω|
∑
k∈ωi

ak, � (11)

	
b̄i = 1

|ω|
∑
k∈ωi

bk. � (12)

In the above content, we give the definition, principle and formula derivation of guided image filtering. Next, 
we determine the edge-preserving filtering characteristics when G ≡ I . In this case, according to Eqs. (7, 8), ak  
and bk  can be expressed as:

	
ak = V ar(I)ωk

V ar(I)ωk + ε
, � (13)

	 bk = (1 − ak)Mean(I)ωk . � (14)

one can see that when ε = 0, there ak = 1, bk = 0, and Q = I . When ε ̸= 0, we consider two extreme conditions 
based on the relationship of V ar(I)ωk  and ε. In the first case, when the variance within the window ωk  is high 
(usually the edge area of the image), V ar(I)ωk ≫ ε, we have ak ≈ 1, and thus we get bk ≈ 0, Qi ≈ Ii. The 
edge information of the image is preserved. In the second case, when the variance in the window ωk  is low (flat 
area of the image), V ar(I)ωk ≪ ε, we have ak ≈ 0 and bk ≈ Mean(I)ωk , the output image is slightly similar 
to the mean filtering of the guidance image.

Fig. 1.  The guided image filtering process.
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Therefore, when the ak  and bk  are averaged to get āi and b̄i, the final filtering output Qi is obtained according 
to Eq. (10). The output of the edge area is unchanged (Qi ≈ Ii), but the output of the flat area is equivalent to 
the mean filtering, Qi ≈ 1

|ω|

∑
k∈ωi

Ik . The regularization parameter ε determines the size of ak  and is the 
standard to judge the variance. We can adjust the filtering effect by changing the size of the filter window and ε.

Quantum circuit module design
In this section, we introduce a series of specific quantum circuit modules to realize the function of the 
characteristic and briefly analyze its time complexity, including copy module, left shift/right shift module, +1
/−1 module, inverse number module, adder module, multiplier module, and divider module.

Definition of binary complement
Considering that the image needs to be normalized in the pre-processing stage, the gray value of pixels in the 
algorithm involves decimals. In order to facilitate calculation, we use binary complement to represent the gray 
value, which is defined as follows.

Assume that x is an (n + 1)-bit binary number, it contains 1 sign bit, xm, which 0 means positive and 
1 means negative, m integer bits, xm−1, xm−2, . . . , x0, and n − m fractional bits, x−1, x−2, . . . , xm−n. The 
complement [x]c of x = xm, xm−1 · · · x0.x−1 · · · xm−n can be expressed as37:

	
[x]c =

{ 0, xm−1xm−2 · · · x0.x−1 · · · xm−n, xm = 0,
1, 2m − xm−1xm−2 · · · x0.x−1 · · · xm−n, xm = 1. � (15)

According to the definition of complement in Eq. (15), if we know [x]c, we can get the value of x from Eq. (16).

	
x =

{ ∑m−1
k=m−n

xk2k, xm = 0,

−2m +
∑m−1

k=m−n
xk2k, xm = 1.

� (16)

The advantage of complement is that subtraction, multiplication and division can be achieved by addition, and 
sign bit can be directly used as numerical value to participate in the operation, making the operation unified.

Copy module
The copy module consists of q controlled-NOT gates, it can copy q-length qubit sequence information to another 
q-length auxiliary qubit sequence |0⟩⊗ q , the quantum circuit is shown in Fig. 2.

In quantum image processing, the time complexity of a quantum circuit depends mainly on the number 
of basic quantum gates used in the circuit, and the basic quantum gates include NOT gate, Hadamard gate, 
controlled-NOT gate, and any 2 × 2 unitary operator, whose complexity is considered uniform. The time 
complexity of copy module is only related to the number of controlled-NOT gates, for a replication module 
consisting of q controlled-NOT gates, the time complexity is O(q).

Left shift and right shift modules
Shift left is a qubit operation that is usually used to move all the bits of a binary number to the left by a specified 
number of bits. In a binary shift left, each bit is moved to the left, and the least significant bit is filled with zero.

The left shift module achieves shift by using a series of SWAP gates and sets the lowest position to zero by 
using controlled-NOT gates. Eq. (17) shows the result of the left shift, and the quantum circuit is shown in Fig. 3. 
Because in the algorithm we increase the numeric bit width to prevent overflow, the left shift module actually 
implements the binary multiplication operation ‘×2’ as well.

	

x = xm, xm−1 · · · x0.x−1x−2 · · · xm−n

→ xm−1, xm−2 · · · x0x−1.x−2 · · · xm−n0 = xl = 2x.
� (17)

Fig. 2.  The quantum circuit of Copy module.
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Similarly, the right shift of binary numbers is to move each bit to the right in turn, and supplement the 
corresponding value of the signal bit in the most significant bit, so that the n + 1 qubits of binary complement 
becomes n + 2 qubits. Equation (18) shows the result of the right shift of binary complement, and the quantum 
circuit is shown in Fig. 4, it can also implement binary division operation ‘÷2’.

	

x = xm, xm−1 · · · x1x0.x−1 · · · xm−n0

→ xm, xmxm−1 · · · x1.x0x−1 · · · xm−n = xr = x

2 .
� (18)

Since a SWAP gate can be decomposed into 3 controlled-NOT gates, the time complexity of the left shift module 
is O(3n + 2) ≈ O(n), and the time complexity of the right shift module is O(3n + 1) ≈ O(n).

+1 and −1 modules
These modules are operated on the least significant bit +1 and −1. For a binary complement x of n + 1 qubits, 
the +1 module performs x + 2m−n and the −1 module performs x − 2m−n, the corresponding quantum 
circuits are shown in Figs. 5 and 6.

According to the discussion of the time complexity in15, the time complexity of both +1 module and −1 
module do not exceed O(n2) for an (n + 1)-length qubit sequence.

Inverse number module
The process of taking the opposite of a binary complement is to first flip the complement value and then ‘+1
’ at the least significant bit. The inverse number module implements this operation, and its quantum circuit is 
shown in the Fig. 7.

Fig. 5.  The quantum circuit of +1 module.

 

Fig. 4.  The quantum circuit of Right Shift module.

 

Fig. 3.  The quantum circuit of Left Shift module.
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For a binary complement represented by n + 1 qubits, the time complexity of inverse number module is 
O(n + 1 + (n + 1)2) ≈ O(n2).

Adder module
Islam et al. proposed a reversible full adder based on Peres Gate38. In this subsection, the reversible half adder 
module, reversible full adder module and adder module are given.

Reversible half adder module
The reversible half adder is used to add two separate qubits xi and yi, and get a sum bit si and a carry bit ci. Its 
quantum circuit is shown in Fig. 8.

The matrix v and v+ are given in Eq. (19).

	

V =
[

1+i
2

1−i
21−i

2
1+i

2

]
,

V + =
[

1−i
2

1+i
21+i

2
1−i

2

]
.

� (19)

Reversible full adder module
The reversible full adder is used to add two qubits xi and yi and a carry bit input ci−1 together, get a sum bit si 
and a carry bit output ci. Its quantum circuit is shown in Fig. 9.

Adder module
The adder module is used to add two qubit sequences together. For two qubit sequences representing n + 1 
bits of binary complement x = xm, xm−1 · · · x0.x−1 · · · xm−n and y = ym, ym−1 · · · y0.y−1 · · · ym−n, the 
adder consists of a reversible half adder (RHA) and n reversible full adders (RFA). The quantum circuit of adder 

Fig. 8.  The quantum circuit of Reversible half adder module.

 

Fig. 7.  The quantum circuit of Inverse number module.

 

Fig. 6.  The quantum circuit of −1 module.
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module is shown in Fig. 10, where the output of the qubit sequence representing x is x + y and the auxiliary 
qubit |0⟩ is to store the carry bit. To prevent overflow, |x| < 2m−1, |y| < 2m−1.

The reversible half adder module consists of 4 controlled gates, and the reversible full adder module consists 
of 8 controlled gates. The time complexity of the adder module is O(8n + 4) ≈ O(n).

Multiplier module
According to the Booth method on complement multiplication in the principle of computer composition39, we 
give the quantum circuit of multiplier module, as shown in Fig. 11. For the multiplier |x⟩, |y⟩ of n + 1 qubits, we 
use a sequence of 2n + 1 qubits to store the product |xy⟩.

According to Fig. 11, the multiplier module is composed of 2(n + 1) adder modules, 2n + 1 inverse number 
modules and n right shift modules, so its time complexity is O(2(n + 1)n + (2n + 1)n2 + n2) ≈ O(n3).

Divider module
We present the divider module according to the complementary division method in the principle of computer 
composition39. The divider module mainly consists of three modules: preprocess module, decimal divider 
module and post-process module.

Preprocess module
Because pixel values involve binary integer and decimal, we need to preprocess the dividend 
x = xm, xm−1 · · · x0.x−1 · · · xm−n and divisor y = ym, ym−1 · · · y0.y−1 · · · ym−n to convert them to 
decimals x̂ = 2px × x, ŷ = 2py × y, while ensuring that 0.25 ≤ |x| < 0.5, 0.5 ≤ |y| < 1 and |x| < |y| to 
avoid quotient overflows (x̂ shift one more bit to the right and px minus 1). The quantum circuit of preprocess 
module is shown in Fig. 12, where n̂ = [log2 n].

The preprocess module is composed of inverse number module, left shift module, right shift module and 
+1/−1 modules, whose time complexity is about O(n2).

Fig. 10.  The quantum circuit of Adder module.

 

Fig. 9.  The quantum circuit of Reversible full adder module.
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Decimal divider module
The decimal divider module uses addition and subtraction to calculate the division of two binary decimals, its 
quantum circuit is shown in Fig. 13.

According to Fig.  13, the time complexity of decimal divider module is 
O(4(n + 1) + 2n2(n + 1) + n(n + 1) + n2) ≈ O(n3).

Post-process module
After running the division of decimals, the quotient is not the final result. We need to multiply the factors 
extracted during the preprocessing to the quotient, as given in Eq. (20). The quantum circuit of the designed 
post-process module is shown in Fig. 14.

	
x

y
= x̂r

ŷ
× 2py−px+1.� (20)

According to Fig. 14, the time complexity of post-process module does not exceed O(n3).

Fig. 12.  The quantum circuit of Preprocess module.

 

Fig. 11.  The quantum circuit of Multiplier module.
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Divider module
Finally, we combine the above modules to get a divider module that can realize the combination of integer and 
decimal complement division, the complete divider module is shown in Fig. 15.

In short, the time complexity of divider module is about O(n3).

Quantum guided image filtering algorithm
In this section, we explain the design flow of quantum guided image filtering algorithm in detail, analyze its time 
complexity, and finally give the simulation results.

Design of quantum guided image filter
From the introduction of the principle in Section 2, the classical guided image filtering algorithm involves the 
calculation of mean, variance, ak, bk  and āi, b̄i. In this subsection, we design these calculations and present the 
circuit of quantum guided image filtering algorithm.

Cyclic shift operation
In the implementation of quantum guided image filtering, some operations need to use all the pixels in the 
filter window. In the quantum guided image filtering algorithm, we can get all the pixels by translation and 
superposition30,31. Figure 16 takes a 3 × 3 filter window image as an example to explain the process of cyclic 
shift, and Fig. 17 shows the quantum circuit of cyclic shift operation.

Mean calculation
Equation (21) gives the formula for calculating the mean of matrix, we design the mean calculation module by 
using the adder and multiplier modules, as shown in Fig. 18.

Fig. 14.  The quantum circuit of Post-process module.

 

Fig. 13.  The quantum circuit of Decimal divider module.
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Mean = 1

|ω|
∑
i∈ωk

Ci.� (21)

Variance calculation
Equation (22) shows the calculation formula of matrix variance. According to Eq. (22), we need to design the 
square module first, and the quantum circuit is shown in Fig. 19. Then, we use the mean calculation operation, 

Fig. 16.  Cyclic shift process of 3 × 3 filter window image.

 

Fig. 15.  The quantum circuit of Divider module.
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adder module, square module, inverse number module and so on to achieve the operation of variance calculation, 
the quantum circuit of variance calculation operation is shown in Fig. 20.

	
V ar = 1

|ω|
∑
i∈ωk

(Ci − Mean)2.� (22)

ak  calculation
Assuming that the guidance image is the input image itself, i.e., G = I . According to Eq. (13), we use the above 
modules to design the ak  calculation operation, and the quantum circuit is shown in Fig. 21.

Fig. 19.  The quantum circuit of Square module.

 

Fig. 18.  The quantum circuit of Mean calculation operation.

 

Fig. 17.  The quantum circuit of Cyclic Shift operation.

 

Scientific Reports |          (2025) 15:493 11| https://doi.org/10.1038/s41598-024-84211-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


bk  calculation
After calculating ak , we can follow Eq. (14) to design the quantum circuit for calculating bk , as shown in Fig. 22.

āi , b̄i  calculation
Due to the fact that different filter windows can cover the same pixel, there exist multiple sets of coefficients ak  
and bk . In order to determine the unique parameters ai and bi, we calculate the means of these ak , bk  based on 
the symmetry of the filter windows, and obtain the values of āi and b̄i, which are given in Eqs. (11, 12). We use 
the method of cyclic shift again to design the quantum circuit, which is shown in Fig. 23.

Quantum circuit of guided image filtering algorithm
In summary, the overall framework of the quantum circuit of guided image filtering algorithm proposed in this 
paper is shown in Fig. 24, including cyclic shift operation, calculation of ak , calculation of bk , calculation of āi 
and b̄i, and finally the output image.

Analysis of time complexity
Next, we take a 2q × 2q  gray-scale quantum image represented by 2q + n + 1 qubits as an example, start 
with the complexity analysis of each sub-module, and gradually get the complexity of the entire guided image 

Fig. 21.  The quantum circuit of ak  calculation operation.

 

Fig. 20.  The quantum circuit of Variance calculation operation.
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Fig. 24.  The quantum circuit of guided image filtering algorithm.

 

Fig. 23.  The quantum circuit of āi and b̄i calculation operation.

 

Fig. 22.  The quantum circuit of bk  calculation operation.
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filtering circuit. Among them, 2q qubits represent the position of pixel, and n + 1 qubits represent the binary 
complement of pixel’s gray value.

•	 According to Fig. 17, for a 3 × 3 filter window, the cyclic shift operation contains 10 +1/−1 modules and 8 
copy modules, its time complexity is O(10q2 + 8(n + 1)) ≈ O(q2 + n).

•	 From Fig. 18, the mean calculation operator consists of 8 adder modules and a multiplier module, whose time 
complexity is O(8n + n3) ≈ O(n3).

•	 As can be seen from Fig. 20, the variance calculation operator uses a series of adder modules, copy modules, 
square modules, etc., and its time complexity is about O(n3).

•	 The ak  operator is composed of a variance calculation operator, an adder module and a divider module, its 
time complexity is O(n3 + n + n3) ≈ O(n3).

•	 After calculating ak , the bk  operator is designed according to Eqs. (13, 14) using a copy module, an inverse 
number module, an adder module and a multiplier module, whose time complexity is O(n3).

•	 Figure 23 shows that the quantum circuit for calculating āi, b̄i contains +1/−1 module, adder module and 
multiplier module, so its time complexity does not exceed O(q2 + n3).In summary, the complexity of quan-
tum guided image filter designed in this paper is

	 O((q2 + n) + n3 + n3 + (q2 + n3) + n3 + n) ≈ O(q2 + n3).� (23)

As can be seen, the most time-consuming sub-modules are the cyclic shift module and the āi, b̄i calculation 
module. Among these modules, the +1/−1 modules play a decisive role. Because there are a large number 
of controlled-NOT gates in the +1/−1 modules, they have a high time complexity, which in turn leads to 
time-consuming submodules. Here, we can consider replacing this modules with other modules with the same 
function to further reduce the time complexity. For example, we can use an adder instead of +1/−1 modules to 
achieve the same function, reducing the operation time by increasing qubits, exchanging space for time.

For a large image, n ≪ q, the complexity of quantum guided image filter is actually about O(q2). Compared 
with the classical guided image filter whose time complexity is O(22q), the quantum guided image filter achieves 
exponential acceleration.

Results
Due to the limited prevalence of quantum computer, we conduct simulation of the quantum guided image 
filtering algorithm on classical computer (simulation experiments are based on array computation packages 
NumPy and python33). We selected a set of grayscale images with size of 512 × 512 and color depth of 8 (as 
shown in Fig. 25) for testing, when the guidance image is the input image itself, the experimental results of 
different parameters of test image (a) are shown in Fig. 26.

It can be seen that the edge-preserving filtering effect of quantum guided image filter is obvious, and it is 
determined by the filter window size and regularization parameter ε.

The analysis of this result is:
Since the regularization parameter ε controls the size of ak , ε determines the smoothness of guided image filter 

to the original image. As ε increases, ak = V ar(G)ωk

V ar(G)ωk +ε  will gradually decrease and bk = (1 − ak)Mean(G)ωk  
will increase, that is to say, the closer it is to the mean filtering of I in the filter window ωk , the smoother it will 
be, while the easier to lose details. The filter size determines the neighborhood range that the guided image filter 
takes into account when filtering. Larger filter size can capture a larger range of structural information, but can 
lead to excessive smoothing. Smaller filter size allows for better detail retention, but may be sensitive to noise. 
Therefore, we need to constantly adjust the regularization parameter ε and filter size to get the best results.

We performed the same experiment using classical guided image filtering and compared the filter details of 
the edge region of the two filters, the results are shown in Figs. 27, 28. It can be seen from the comparison that 
although both classical guided image filtering and quantum guided image filtering can retain edge information 
while smoothing the image, the filtering efficiency of quantum algorithm has been improved exponentially 
compared with that of classical algorithm. Meanwhile, the peak signal-to-noise ratio (PSNR) and structural 
similarity (SSIM) of quantum algorithm are slightly better than those of classical algorithm. In fact, we pay more 

Fig. 25.  Test images. (a) Dog. (b) Castle. (c) Stone. (d) Lighthouse.
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attention to the exponential acceleration of filtering speed based on quantum superposition and entanglement 
characteristics.

Then we simulate quantum Gaussian filtering, quantum mean filtering and quantum guided image filtering 
respectively, and select the edge parts for comparison, the results are shown in Fig.  29. Although the time 
complexity of these algorithms is roughly the same, in terms of filtering effect and scalability, the quantum 
guided image filtering algorithm can achieve better edge preserving filtering effect for different types of images, 
and its excellent robustness and generalization capabilities make it a broad application prospect.

It is worth discussing that, as can be seen from the circuit in Fig. 24, the proposed algorithm requires the 
use of a large number of qubits. Although our current quantum computers are good enough to implement 

Fig. 27.  Simulation results of different parameters in classical guided image filter. (a) Test results of classical 
guided image filter. (b) The PSNR of output images. (c) The SSIM of output images.

 

Fig. 26.  Simulation results of different parameters in quantum guided image filter. (a) Test results of quantum 
guided image filter. (b) The PSNR of output images. (c) The SSIM of output images.
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this algorithm, there are still problems with processing images of larger sizes or higher dimensions due to the 
limitations of finite qubit counting and gate fidelity. In the future, we also need to optimize the qubit of the 
quantum guided image filtering algorithm and find simpler quantum circuit modules to replace them, so that 
the circuit can be simplified and show better performance on existing quantum computers.

Conclusion
In this paper, we propose a quantum guided image filtering algorithm. Firstly, we give a series of quantum 
circuit modules for operation, then we design the circuit of quantum guided image filter based on the novel 
enhanced quantum representation (NEQR) model, and analyze the overall time complexity of the algorithm. 
For an image whose size is 2q × 2q  and the binary complement of gray value is represented by n + 1 qubits, the 
time complexity of quantum guided image filtering algorithm is O(q2), which basically achieves exponential 
acceleration compared with the time complexity O(22q) of classical guided image filtering algorithm. Finally, 
we simulate on the classical computer, and find that the edge-preserving filtering effect of quantum guided image 
filtering algorithm is more significant than that of other quantum filtering algorithms.

Fig. 28.  Comparison of the filtering effects for two filters. (a) Edge details. (b) Classical guided image filtering. 
(c) Quantum guided image filtering.
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Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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