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Abstract
We obtain semiclassical gravity solutions in the Poincaré fundamental domain
of (3+ 1)-dimensional Anti-de Sitter spacetime, PAdS4, with a (massive or
massless) Klein–Gordon field (with possibly non-trivial curvature coupling)
with Dirichlet or Neumann boundary. Some results are explicitly and graph-
ically presented for special values of the mass and curvature coupling (e.g.
minimal or conformal coupling). In order to achieve this, we study in some
generality how to perform the Hadamard renormalisation procedure for non-
linear observables in maximally symmetric spacetimes in arbitrary dimensions,
with emphasis on the stress-energy tensor. We show that, in this maximally
symmetric setting, the Hadamard bi-distribution is invariant under the iso-
metries of the spacetime, and can be seen as a ‘single-argument’ distribution
depending only on the geodesic distance, which significantly simplifies the
Hadamard recursion relations and renormalisation computations.
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1. Introduction

Quantum field theory (QFT) in Anti-de Sitter spacetime (AdS) has gained substantial atten-
tion in the past years. This is undoubtedly in part because of its relevance in the AdS/CFT
correspondence [1] and holography, but also because AdS is interesting its own right. To men-
tion two of its important features, first, AdS is a maximally symmetric spacetime, which allows
one to put abstract techniques of QFT in curved spacetimes in a computationally accessible set-
ting. Second, AdS is interesting because it is not a globally hyperbolic spacetime, but instead
a good test-bed to see how techniques developed for QFT in globally hyperbolic spacetimes
should be relaxed.

Tomention some of the recent work, Dappiaggi and his collaborators have written a number
of papers dealing with the construction of Klein–Gordon states with Robin boundary condi-
tions in the Poincaré fundamental domain (PAdS) [2] and in the universal cover (CAdS) [3]
of AdS. The case with dynamical Wentzell boundary conditions at the boundary of PAdS was
studied in collaboration with one of us in [4, 5]. Dynamical boundary conditions not only
appear naturally in holographic renormalisation [6], but are also central for the experimental
verification of the dynamical Casimir effect [7], as explained in [8–10].

Some rigorous results in the algebraic QFT framework appear in [11]. Results on the
propagation of singularities of Hadamard states that extend Radzikowski’s microlocal spec-
trum condition in globally hyperbolic spacetimes [12] to asymptotically AdS spacetimes
appear in [13, 14]. Results from those papers allow for the construction of Hadamard states in
asymptotically AdS spacetimes in [15]. (See also the thesis of Marta [16].)

The behaviour of renormalised observables in AdS has been studied extensively in the lit-
erature by Winstanley and collaborators [17–23]. The expectation value of the Klein–Gordon
stress-energy tensor in CAdSn (n= 2, . . .11) is calculated in [17] with Neumann boundary
conditions. The expectation value of the massless conformally coupled Klein–Gordon field
squared with Robin boundary conditions at zero and finite temperature is studied in [18].
Under the same conditions, [19] deals with the stress-energy tensor, and very recently [20]
studies the back-reaction corrections to AdS spacetime. The renormalised Klein–Gordon field
squared with general mass and curvature coupling is studied in [21]. Expectation values for
the stress-energy tensor, current and field-squared for fermions are studied in [22] and in [23]
in the vacuum and in the case of finite temperature.

The work of Pitelli and collaborators has emphasised the interplay between boundary con-
ditions and spacetime symmetries. They have studied the field squared in [24] with hybrid
Dirichlet-Robin boundary conditions. [25] deals with the stress-energy tensor in PAdS2 with
Robin boundary conditions (see also [26, 27] for a study on the particle production in PAdS2).
The point is that states with generic Robin (or more general) boundary conditions are not
invariant under the isometries of spacetime, unlike their Dirichlet or Neumann counterparts.

The construction of QFT in AdS is also important to understand QFT in relevant quotient
spacetimes, such as the BTZ black hole in n= 3 spacetime dimensions. Studies on semiclas-
sical backreaction in BTZ appear in [28, 29].

In this paper, we are concerned with obtaining exact semiclassical gravity solutions in anti
de-Sitter spacetime. More precisely, we shall work in the Poincaré fundamental domain of
AdS in four spacetime dimensions, PAdS4. Our interest stems from many angles. First of all,
this is a natural extension to previous work by one of use finding semiclassical solutions in
de Sitter spacetime [30], which are relevant to the cosmological constant problem, and to the
related paper [31]. Second, our paper serves as a proof of concept that semiclassical gravity
can be defined in so-called globally hyperbolic spacetimes with timelike boundaries, in the
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sense of Aké Hau et al [32]. These are spacetimes where boundary conditions on the timelike
boundary render wave equations well posed.

We are also motivated by two further questions, which we plan to address in the future. The
first one has to do with the construction of semiclassical gravity solutions in asymptotically
AdS spacetimes. A natural approach is to use Fefferman–Graham expansions, starting from
semiclassical gravity in AdS at the lowest order, and then perturbatively construct the solutions
near the timelike boundary. The second question has to do with whether semiclassical AdS has
better or worse stability properties than its classical counterpart [33, 34].

As a way to achieve our goal of obtaining semiclassical gravity solutions in AdS, we study
in some generality how to perform renormalisation, via Hadamard subtraction, in maxim-
ally symmetric spacetimes for the Klein–Gordon field with arbitrary non-negative mass and
curvature coupling. We pay special attention to the stress-energy tensor, as this is the key
observable appearing on the ‘right-hand side’ of the semiclassical Einstein field equations.
This is an addition to the literature in its own right, as it encompasses a number of situations
of interest in a unified framework (see, for example, the literature cited above).

This paper is organised as follows. Section 2 first provides a review of the Klein–Gordon
theory in maximally symmetric spacetimes, and then gives a particularly useful representa-
tion for the Hadamard bi-distribution in this class of spacetimes, by showing that it is invariant
under the spacetime isometries, and that it is a function of (half the square of) the geodesic dis-
tance only. Section 3 is concerned with renormalisation in maximally symmetric spacetimes.
Asymptotic expansions of the Hadamard coefficients are presented to sufficient accuracy to
perform the renormalisation of the stress-energy tensor in n= 4 spacetime dimensions. A sim-
plified expression for the expectation value of the stress-energy tensor is given. The effects of
changes in the renormalisation scale and the flat spacetime limit (as the radius of curvature
tends to infinity) for the stress-energy tensor are studied. Section 4 then applies the previ-
ous techniques to obtain, in closed form, the vacuum expectation value of the Klein–Gordon
stress-energy tensor in PAdS4 with Dirichlet and Neumann boundary conditions. Section 5
then presents some semiclassical solutions in PAdS4. Our final remarks appear in section 6.

2. QFT in maximally symmetric spacetimes

This section provides an overview of maximally symmetric spacetimes with non-trivial
curvature and of quantum states defined on these spacetimes. The main focus of the section is
to show that the Hadamard condition for a free Klein–Gordon field adopts a particularly simple
form, which makes renormalisation computationally economic. We achieve this by verifying
that the Hadamard bi-distribution is invariant under the isometries of maximally symmetric
spacetimes. It is clear that the simplifications that we find in this section for the Klein–Gordon
field should apply to other theories defined by normally hyperbolic operators, but we do not
discuss this any further and leave it as an interesting open question to address in the future.

2.1. Maximally symmetric spacetimes

Maximally symmetric spacetimes have positive, vanishing or negative constant curvature and,
in n-dimensional spacetimes, n(n+ 1)/2 Killing vector fields generating isometries. The van-
ishing curvature case is Minkowski spacetime, with the Poincaré group as an isometry group.
The positive curvature case is de Sitter spacetime, dSn, with isometry group O(1,n). The neg-
ative case is anti-de Sitter spacetime, AdSn, with isometry group O(2,n− 1).
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For maximally symmetric spacetimes, it is useful to express the curvature tensors in terms
of their radius of curvature (see the discussion of section 4.1 for details in the anti-de Sitter
case). Setting ρ2 = ℓ2 > 0 for positive curvature and ρ2 =−ℓ2 < 0 for negative curvature, we
have

Rabcd =
1
ρ2

(gacgbd− gadgbc) , (2.1)

Rab =
n− 1
ρ2

gab, (2.2)

R=
n(n− 1)
ρ2

. (2.3)

Maximally symmetric spacetimes solve the Einstein field equations, Rab− (1/2)Rgab+
Λgab = 0, with cosmological constant Λ = (n− 1)(n− 2)/(2ρ2). More details about these
spacetimes can be found in standard texts, such as [35].

2.2. Quantum fields and symmetric states

We consider for concreteness a Klein–Gordon field, whose free algebra of observables in a
globally hyperbolic spacetime (with or without timelike boundary),M= (M,gab), is denoted
by A (M), and well known to be the unital, ⋆-algebra generated by fields, Φ( f), smeared
against test functions f (f ∈ C∞

0 (M) if the boundary is empty), subject to relations

1. Φ(αf + g) = αΦ( f)+Φ(g) for α ∈ C (linearity),
2. Φ( f)⋆ =Φ(f) (hermiticity),
3. Φ((□−m2 − ξR)f) = 0 (Klein–Gordon equation) and
4. [Φ( f),Φ(g)] =−iE( f,g)11, where E is the causal propagator of□−m2 − ξR and 11 is the

algebra unit (commutation relations).

In the case of maximally symmetric spacetimes with non-trivial curvature, we focus on the
case in whichM is dSn or AdSn. In the Anti-de Sitter case, one must impose boundary condi-
tions on the spacetime boundary, and in the above construction different boundary conditions
correspond to different test-function spaces and different causal propagators, E. See [11] for
some details in the Poincaré patch. While we will not dwell on details that are not central to
this paper, in static spacetimes the definition of the observable algebra amounts to finding a
suitable (non-unique) self-adjoint extension of a differential operator, which defines the spec-
tral problem that is equivalent to solving the field equation, and considering test functions in
an appropriate functional space.

Quantum (algebraic) states are linear maps ω : A (M)→ C that are (i) normalised, i.e.
ω(11) = 1, and (ii) positive, i.e. ω(A⋆A)⩾ 0 for any A ∈ A (M). The usual Hilbert space rep-
resentation of the algebra can be obtained by means of the GNS construction, see e.g. [36,
section 1.3].

Here, we consider locally Hadamard4 quasi-free states of the Klein–Gordon field, which
share the symmetries of the spacetime. It was noted in [37, 38] that the Wightman functions

4 Note that the local notion of the Hadamard condition is fully under control in globally hyperbolic domains of Anti-de
Sitter spacetime, even if globally the wavefront set structure differs from the one characterised by Radzikowski, due
to the presence of an asymptotic timelike boundary, see [13, 14].
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of symmetric states in a maximally symmetric spacetime are of the form

G+
ϵ (x,x ′) = G (σϵ (x,x

′)) , (2.4)

i.e. they can be seen as (single-argument) functions of Synge’s world-function, σ, which meas-
ures half the squared geodesic distance between two points. More precisely, here σϵ(x,x ′) =
σ(x,x ′)+ 2i[T(x)−T(x ′)]ϵ+ 2ϵ2 is a regularised version of σ, where T is an arbitrary time
function, which prescribes the distributional singular structure of Gϵ (as ϵ→ 0+).

On the other hand, the Wightman function of a locally Hadamard state in a convex normal
neighbourhood of spacetime takes the form

G+
ϵ (x,x ′) = Hλϵ (x,x

′)+W(x,x ′) , (2.5)

where Hλϵ is a regularised version of the Hadamard bi-distribution, Hλ,

Hλ (x,x
′) =

αn
2

(
Θ(n− 5/2)

u(x,x ′)

σn/2−1 (x,x ′)
+ p(n)v(x,x ′) log

(
σ (x,x ′)/λ2

))
, (2.6)

with

αn =

{
1/(2π) , if n= 2;

Γ(n/2− 1)/(2π)n/2 , if n⩾ 2;
(2.7)

p(n) =
1+(−1)n+1

2
. (2.8)

In equation (2.6), u and v are symmetric, smooth coefficients that can be (at least formally)
defined through the Hadamard recursion relations, subject to appropriate boundary conditions
on the diagonal, see e.g. [40] for details. λ is a fixed, arbitrary renormalisation scale. The factor
of 5/2 in the argument of the HeavisideΘ distribution in equation (2.6) can be taken to be any
real number in the open interval (2, 3).

We shall now see that in maximally symmetric spacetimes, in analogy to equation (2.4), we
have

Hλ (x,x
′) =Hλ (σ (x,x

′)) . (2.9)

2.3. The Hadamard condition in maximally symmetric spacetimes

In a convex normal neighbourhood of a globally hyperbolic spacetime region, the Hadamard
bi-distribution, Hλ, admits the following expansion

Hλ (x,x
′) =

αn
2

[
Θ(n− 5/2)
σn/2−1 (x,x ′)

∞∑
m=0

um (x,x
′)σm (x,x ′)+ p(n)

×

(
N∑

m=0

vm (x,x
′)σm (x,x ′)+O

(
σN+1

))
log

(
σ (x,x ′)

λ2

)]
, (2.10)
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where the order N can be made arbitrarily large. The Hadamard recursion relations guarantee
that, at any finite truncation of Hλ of order N, say HN

λ, the truncation will satisfy the Klein–
Gordon equation modulo a CN+1 term. Each coefficient in (2.10) can be written as [40]

um (x,x
′) =

Jm∑
j=0

(−1)j

j!
u(mj)a1...aj (x)σ

;a1 (x,x ′) . . .σ;aj (x,x ′)+O
(
σ(Jm+1)/2 (x,x ′)

)
,

(2.11a)

vl (x,x
′) =

Kl∑
k=0

(−1)k

k!
v(lk)a1...ak (x)σ

;a1 (x,x ′) . . .σ;ak (x,x ′)+O
(
σ(Kl+1)/2 (x,x ′)

)
.

(2.11b)

In practice, the order of expansions Im and Jl in equation (2.11) can be chosen according
to convenience in the renormalisation procedure. For example, for the renormalisation of the
stress-energy tensor in n= 4 dimensions, it suffices to set J0 = 4, K0 = 2 and K1 = 0 to obtain
an expansion ofHλ with an error term of orderO(σ3/2) that does not contribute, in the limiting
procedure of renormalisation, to the stress-energy tensor. (see equation (3.5) below.)

In general, the coefficients u(mj)a1...aj and v(lk)a1...ak in equation (2.11) are symmetric tensors,
and depend only on the local geometry of spacetime and the field equation coefficients; they are
functions of the metric tensor, the curvature and their derivatives, and of m and ξ. However, in
maximally symmetric spacetimes, curvature is constant and does not depend on derivatives of
the metric, cf equation (2.3). Thus, the only available tensor indices for u(mj)a1...aj and v(lk)a1...ak
are metric tensor indices. The general structure of the coefficients is hence that of symmetrised
products of the metric tensor. It follows immediately that all coefficients with odd tensor rank
vanish. For the coefficients with even tensor rank, we have the general structure

u(mj)a1...ajσ
;a1 . . .σ;aj = Cmjg(a1a2 . . .gaj−1aj)σ

;a1 . . .σ;aj = 2j/2Cmjσ
j/2, (2.12)

where the Cmj are constants, and similarly for the v(lk)a1...ak coefficients with constants Dlk.
Hence, we can write equation (2.10) as

Hλ (x,x
′) =

αn
2

(
Θ(n− 5/2)
σn/2−1 (x,x ′)

∞∑
m=0

Umσ
m (x,x ′)+ p(n)

(
N∑

m=0

Vmσ
m (x,x ′)+O

(
σN+1

))

× log
(
σ (x,x ′)/λ2

))
, (2.13)

where the coefficients Um and Vm are constants (i.e. spacetime independent), given by linear
combinations of the Crs and of the Drs constants, respectively. Equation (2.13) shows that
the Hadamard bi-distribution is invariant under the isometries of spacetime and of the form
of equation (2.9). The notation using capiatlised U and V emphasises that the Um and Vm
constants should not be confused with the diagonals, um(x,x) and vm(x,x), of the coefficients
appearing in equation (2.10).

2.4. The Hadamard recursion relations

The recursion relations for the coefficients uk and vk are remarkably simple. By equation (2.13),
uk and vk can be seen as functions of the geodesic distance only. Furthermore, the van
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Vleck-Morette determinant in maximally symmetric spacetimes takes the form

∆=

(√
−2σ
ρ2

csch

(√
−2σ
ρ2

))n−1

, (2.14)

and defines also a (single-argument) function of σ5. In the remaining of this section, we shall
sometimes use the abuse of notation uk(σ), uk(σ) and∆(σ) and denote a derivativewith respect
to the argument by a prime.

Imposing, as usual, that(
□x−m2 − ξR(x)

)
Hλ (x,x

′)+w(x,x ′) = 0, (2.15)

where w is a smooth bi-function, yields the Hadamard recursion relations, which we now
analyse.

2.4.1. Spacetime dimension n=2. The recursion relations yield the tower of linear, non-
homogeneous differetial equations

4(k+ 1)σv ′k+1 (σ)+ 2(k+ 1)2 vk+1 (σ)− 2(k+ 1)σ
∆ ′ (σ)

∆(σ)
vk+1 (σ)

=−
(
□−m2 − ξR

)
vk (σ) , (2.16)

with the initial condition v0(σ) =−∆1/2(σ). Since the cofficients of the differential
equation (2.16) are analytic, one can solve equation (2.16) by a power series method
writing

vk =
∞∑
j=0

vkjσ
j, (2.17)

with constant vkj coefficients, and using the series expressions

∆(σ) =
∞∑
j=0

2j+1
(
1− 22j−1

)
B2j

(2n)! (−ρ)2j
σj, (2.18a)

∆ ′ (σ)

∆(σ)
=

(n− 1)
2σ

(
1−

√
−2σ
ρ2

coth

(√
−2σ
ρ2

))
= (1− n)

∞∑
j=1

23j−1B2j

(2j)! (−ρ)2j
σj−1 (2.18b)

□σk = k(2k+ n− 2)σk−1 − 2k
∆ ′

∆
σk = k(2k+ n− 2)σk−1 + k(n− 1)

×
∞∑
j=1

23jB2j

(2j)! (−ρ)2j
σk+j−1, (2.18c)

where Bj is the jth Bernoulli number. The recursion relations (2.16) then yield algebraic solu-
tions for the vkj constants recursively in k.

5 See e.g. [17] for a derivation of equation (2.14) in the AdS case, for which a nice derivation of can be found in Kent’s
thesis [39].

7



Class. Quantum Grav. 42 (2025) 085009 B A Juárez-Aubry and M C Mamani-Leqque

2.4.2. Odd spacetime dimension n⩾ 3. In this case, the recursion relations yield the tower
of differential equations

2(2k+ 4− n)σu ′
k+1 (σ)+ (k+ 1)(2k+ 4− n)uk+1 (σ)− (2k+ 4− n)σ

∆ ′ (σ)

∆(σ)
uk+1 (σ)

=−
(
□−m2 − ξR

)
uk (σ) (2.19)

with the initial condition u0 =∆1/2.
Once again, the solutions can be obtained by the power series method, writing

uk (σ) =
∞∑
j=0

ukjσ
j, (2.20)

with constant ukj coefficients and using the series expressions (2.18).

2.4.3. Even dimension n⩾ 4. In this case, the recursion relations yield the tower of ordinary
differential equations

2(2k+ 4− n)σu ′
k+1 (σ)+ (k+ 1)(2k+ 4− n)uk+1 (σ)− (2k+ 4− n)σ

∆ ′ (σ)

∆(σ)
uk+1 (σ)

=−
(
□−m2 − ξR

)
uk (σ) (2.21)

for k= 0,n/2− 3 (if n> 4) with the initial condition u0 =∆1/2 (if n⩾ 4) and

4(k+ 1)σv ′k+1 (σ)+ (k+ 1)(2k+ n)vk+1 (σ)− 2(k+ 1)σ
∆ ′ (σ)

∆(σ)
vk+1 (σ)

=−
(
□−m2 − ξR

)
vk (σ) , (2.22)

with initial condition

4σv ′0 (σ)+ (n− 2)v0 (σ)− 2σ
∆ ′ (σ)

∆(σ)
v0 (σ) =−

(
□−m2 − ξR

)
un/2−2 (σ) . (2.23)

Once again, the solutions can be obtained by the power series method, writing

uk (σ) =
∞∑
j=0

ukjσ
j, (2.24)

vk (σ) =
∞∑
j=0

vkjσ
j, (2.25)

with constant ukj and vkj coefficients, with the aid of the series expressions (2.18).
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3. Renormalisation in maximally symmetric spacetimes

We set the spacetime dimension as n= 4, but it is clear how to extend the discussion to other
dimensions. In this case, in a convex normal neighbourhood, the Hadamard bi-distribution
(2.6) takes the form

Hλ (x,x
′) =

1

2(2π)2

(
∆1/2 (x,x ′)

σ (x,x ′)
+ v(x,x ′) log

(
σ (x,x ′)/λ2

))
, (3.1)

where ∆ is given by equation (2.14). One can easily obtain from (2.14) the following
expansion,

∆1/2 = 1+
σ

2ρ2
+

19σ2

120ρ4
+O

(
σ3
)
. (3.2)

Furthermore, if a state, ω, is Hadamard and invariant under the isometries of the spacetime,
its Wightman function takes the local form

G+
ϵ (x,x ′) = G (σϵ (x,x

′)) =
1

2(2π)2
lim

ϵ→0+

[
1

σϵ (x,x ′)

(
1+

σ (x,x ′)

2ρ2
+

19σ2 (x,x ′)

120ρ4

+O
(
σ3 (x,x ′)

))
+
(
V0 +V1σ (x,x

′)+O
(
σ2
))

log
(
σϵ (x,x

′)/λ2
)

+w0 +w1σ (x,x
′)+O

(
σ2 (x,x ′)

)]
, (3.3)

where V0 and V1 are the state-independent constants, see section 2.3 above (and equation (4.9)
below for some explicit expressions in the negative curvature case), and w0 and w1 are free,
state-dependent constants.

Equation (2.13) justifies the the expansion of the singular structure of the two-point function
in equation (3.3). In order to justify the expansion for the smooth term in equation (3.3), it
suffices to remind oneself that the two-point function of symmetric states takes the formG+ =
G(σ). Thus, performing a power series in σ and subtractingHλ (cf equation (2.13)) shows that
the smooth part yields the Taylor series

G+ (x,x ′)−Hλ (x,x
′) =

I∑
i=0

wiσ (x,x
′)+O

(
σI+1 (x,x ′)

)
, (3.4)

with constant (i.e. spacetime independent) coefficients.
We emphasise that, if the state is not symmetric, the coefficients wi will be in gen-

eral replaced by smooth, symmetric bi-functions that are not invariant under the space-
time isometries. However, the structure of the covariant Taylor expansion of the Hadamard
bi-distribution (and hence of the singular structure of Hadamard states) is still given by
equation (2.13).

9
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The expectation value of the renormalised stress-energy tensor is defined as usual by a
point-splitting and Hadamard subtraction prescription,

ω (Tab) : = lim
x ′→x

Tab
[
G+

0 (x,x ′)−Hλ (x,x
′)
]
+

1

(2π)2
gab [v1] +α1m

4gab

+α2m
2Gab+α3Iab+α4Jab, (3.5a)

Tab : = (1− 2ξ )gb
b′∇a∇b′ +

(
2ξ − 1

2

)
gabg

cd′∇c∇d′ −
1
2
gabm

2 (3.5b)

+ 2ξ

[
−ga a

′
gb

b′∇a′∇b′ + gabg
cd∇c∇d+

1
2
Gab

]
,

[v1] =
1
8
m4 +

1
4

(
ξ − 1

6

)
m2R− 1

24

(
ξ − 1

5

)
□R+ 1

8

(
ξ − 1

6

)2

R2 − 1
720

RabR
ab

(3.5c)

+
1

720
RabcdR

abcd,

Iab := 2R;ab− 2gab□R+
1
2
gabR

2 − 2RRab, , (3.5d)

Jab := R;ab−
1
2
gab□R−□Rab+

1
2
gabR

cdRcd− 2RcdRcadb. (3.5e)

In maximally symmetric spacetimes with n= 4, Iab = Jab = 0 [30], and one obtains the
simple expression

ω (Tab) =
1

2(2π)2

[
−w1 +

3ξ
ρ2
w0 − [v1]

]
gab+α1m

4gab−
3α2m2

ρ2
gab, (3.6)

[v1] =
m4

8
+

(
ξ − 1

6

)
3m2

ρ2
+

[
18

(
ξ − 1

6

)2

− 1
60

]
1
ρ4
, (3.7)

(cf equation (71) in [40]). Note here that the coefficient V1 in equation (3.3) is not the same as
[v1] = limx ′→x v1(x,x ′).

We note here that often aWick-ordering notation, which emphasises the considered renorm-
alisation procedure of the stress-energy tensor, is used in place of ω(Tab), whereby one would
write explicitly ω(:Tab :Hℓ

). This notation is especially accurate when the stress-energy tensor
is considered as an element of the extended Wick algebra of observables of the field theory.
We will write simply ω(Tab) throughout to ease the notation and because we think that no
confusions can arise in the context of this paper.

3.1. Changes of renormalisation scale

Changes of the renormalisation scale introduce additional terms on the right-hand side of
equation (3.6). Set a new renormalisation scale as µ−1. Renormalising the stress-energy tensor
with respect to this new scale adds to the right-hand side of equation (3.6) the constant term

10
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lim
x ′→x

Tab
(
Hλ (x,x

′)−Hµ−1 (x,x ′)
)
=−

log
(
λ2µ2

)
2(2π)2

lim
x ′→x

Tabv(x,x ′)

=−
log
(
λ2µ2

)
2(2π)2

[
−V1 +

3ξ
ρ2
V0

]
. (3.8)

3.2. The flat spacetime limit

It was argued in [30] that in the limit |ρ2| →∞ the expression for the stress-energy tensor
ought to vanish, as required by Wald’s stress-energy renormalisation axioms. Imposing this
condition, we obtain

lim
|ρ2|→∞

ω (Tab) =
1

2(2π)2

[
lim

|ρ2|→∞

(
−w1 +

3ξ
ρ2
w0

)
−
(
log
(
λ2µ2

)
+ 1
) m4

8

]
gab

+α1m
4gab = 0. (3.9)

The limit of the state-dependent part in equation (3.9) can be read off from the Minkowski
two-point function, G+

M, for in the limit, the two-point function G+ must satisfy the Klein–
Gordon equation in flat spacetime. We have

G+
M =

mK1
(
m
√
2σM

)
(2π )2

√
2σM

=
1

2(2π)2

[
1
σM

+

(
m2

2
+
m4

8
σM +O

(
σ2
M

))
log

(
m2e2γσ

2e

)
−3m4

16
σM

]
+O

(
σ2
M

)
, (3.10)

whereby we can identify lim|ρ2|→∞w0 = 0 and lim|ρ2|→∞w1 =−3m4/16.
In the massless case, the correct flat spacetime limit is satisfied. In the massive case, we

obtain the relation

α1 =
1

16(2π)2

(
log

(
e2γλ2m2

2e

)
− 2

)
. (3.11)

Finally, an expression for the expectation value of stress-energy tensor satisfying the correct
flat spacetime limit is

ω (Tab) =
1

2(2π)2

[
−w1 +

3ξ
ρ2
w0

]
gab−

1

2(2π)2

[
3

(
ξ − 1

6

)
m2

ρ2

+

(
18

(
ξ − 1

6

)2

− 1
60

)
1
ρ4

]
gab+αµ (ξ)

m2

ρ2
gab, (3.12)

where we have defined αµ(ξ) as

αµ (ξ) =−3α2 −
log
(
λ2µ2

)
2(2π)2

3
2

(
ξ − 1

6

)
. (3.13)
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4. Quantum fields and semiclassical gravity in Anti-de Sitter spacetime

We are interested in finding solutions to the semiclassical gravity equations, cast in the form

Gab (x)+Λgab (x) = 8πGNω (Tab (x)) , (4.1)

(□−m2 − ξR(x))G+(x,x ′) = (□ ′ −m2 − ξR(x ′)G+(x,x ′) = 0, (4.2)

where G+ is the Wightman function of the Klein–Gordon state ω in Anti-de Sitter spacetime.
Here, the mass and curvature coupling of the field are allowed to take the valuesm2 ⩾ 0, ξ ∈ R
andΛ is a cosmological constant. We shall be focusing our attention on finding solutions in the
Poincaré fundamental domain of Anti-de Sitter spacetime, PAdS4, but some of the discussions
in this section apply to PAdSn with arbitrary n⩾ 2.

4.1. The Poincaré fundamental domain of AdS spacetime

We begin by briefly introducing the Poincaré fundamental domain of Anti-de Sitter spacetime,
PAdSn. This spacetime can be seen as the ‘half’ of AdSn covered by coordinates t,xi ∈ R
(i = 1, . . . ,n− 2) and z ∈ (0,∞), whereby the spacetime line element takes a form conformal
to the n-dimensional Minkowski half-space line element,

ds2 ==
ℓ2

z2

(
−dt2 + dz2 +

n−2∑
i=1

dx2i

)
. (4.3)

Here ℓ is the radius of curvature of AdSn spacetime viewed as an embedded hyperboloid
in an (n+ 1)-dimensional ambient, flat, pseudo-Riemannian manifold with metric signature
−−+ . . .+6. AdSn is a solution to the Einstein field equations with negative cosmological
constant if the relation ℓ=

√
−(n− 1)(n− 2)/(2Λ) holds between the radius of curvature, ℓ,

and the cosmological constant, Λ.
The asymptotic timelike boundary of PAdSn is approached as z→ 0+, where bound-

ary conditions must be prescribed for the matter fields defined in spacetime. We recall that
the Riemann and Ricci tensors and the Ricci scalar in PAdSd+1 take the simple form (cf
equation (2.3))

Rabcd =− 1
ℓ2

(gacgbd− gadgbc) , (4.4a)

Rab =−n− 1
ℓ2

gab, (4.4b)

R=−n(n− 1)
ℓ2

. (4.4c)

4.2. Quantum states in PAdSn

We consider a free Klein–Gordon field propagating in PAdSn. As mentioned above, the details
of the axiomatic quantisation of the theory appear in [11], and we shall not repeat them here.
The crucial point is that PAdSn is a globally hyperbolic spacetime with timelike boundary

6 It is sometimes convenient to define the geodesic distance in PAdSn, s, in terms of the chordal distance in the ambient

manifold, sE, and the radius of curvature. We have the useful relation cosh
(
s
ℓ

)
= 1+

s2E
ℓ2 .

12
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in the sense of [32] and hence boundary conditions must be imposed together with the field
equation.

For the purposes of this paper, we shall concentrate on Dirichlet and Neumann boundary
conditions, as these preserve the isometries of the spacetime, see e.g. [25], and are therefore
suitable for finding semiclassical Anti-de Sitter solutions.

The two-point functions of interest obey equation (4.2) in a parameter space constrained by
the Breitenlohner–Freedman bound, which we write in terms of a parameter, ν,

ν :=
1
2

√
1+ 4ℓ2

[
m2 +

(
ξ − n− 2

4(n− 1)

)
R

]
⩾ 0. (4.5)

The observation in [37], that for isometry-preserving states in maximally symmetric space-
times theWightman two-point function is a function of geodesic distance, allows one to obtain
closed form expressions. To this end, it is convenient to define the function u : R+

0 → R+ by

u(σ) = cosh2
(√

σ/(2ℓ2)

)
, (4.6)

where σ = 1
2 s

2 is Synge’s worldfunction (half the squared geodesic distance). We now quote
results from [2].

4.2.1. Dirichlet boundary conditions. Let ν ∈ (0,∞). We call the Wightman two-point
function with Dirichlet boundary conditions G+

(D). It satisfies equation (4.2) and G+
(D)|z=0 =

G+
(D)|z′=0 = 0 and takes the form

G+
(D) (x,x

′) = lim
ϵ→0+

Γ
(
n−2
2

)
Γ
(
1
2 + ν

)
Γ
(
3
2 + ν

)
2nπ

n
2Γ(1+ 2ν)ℓn−2

u
− n−1

2 −ν
ϵ

× 2F1

(
n− 1
2

+ ν,
1
2
+ ν;1+ 2ν;

1
uϵ (x,x ′)

)
, (4.7)

where uϵ is defined in terms of the regularised version of Synge’s world function as uϵ =

cosh2
(√

σϵ/(2ℓ2)
)
.

4.2.2. Neumann boundary conditions. Let ν ∈ (0,1). We call the Wightman two-point
function with Neumann boundary conditions G+

(N). It satisfies equation (4.2) and ∂zG
+
(N)|z=0 =

∂z′G
+
(N)|z′=0 = 0 and takes the form

G+
(N) (x,x

′) = lim
ϵ→0+

Γ
(
n−2
2

)
Γ
(
1
2 − ν

)
Γ
(
3
2 − ν

)
2nπ

n
2Γ(1− 2ν)ℓn−2

u
− n−1

2 +ν
ϵ

× 2F1

(
n− 1
2

− ν,
1
2
− ν;1− 2ν;

1
uϵ (x,x ′)

)
. (4.8)

4.3. The stress-energy tensor with Dirichlet and Neumann boundary conditions

We henceforth focus on the case n= 4, with Breitenlohner–Freedman bound ν =√
9/4+ ℓ2m2 − 12ξ ⩾ 0. We give some details for the Dirichlet case. The Neumann case can

13
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be obtained by sending ν to its negative value. For the Dirichlet case, we have the covariant
Taylor series

G+
(D) =

1

2(2π)2

 1
σ

(
1− σ

2ℓ2
+

19σ2

120ℓ4
+O

(
σ3
))

+

[
m2

2
+

1
ℓ2

(1− 6ξ )+
1
4ℓ2
(
ℓ2m2 − 12ξ + 2

)(m2

2
− 6ξ
ℓ2

)
σ+O

(
σ2
)]

× log
( σ

2ℓ2

)
+

2
(
4ν2 − 1

)
Hν− 1

2
− 4ν2 − 1

3

8ℓ2

+

(
4
(
4ν2 − 9

)(
4ν2 − 1

)
Hν− 1

2
− 80ν4 + 280

3 ν
2 + 47

5

)
σ

256ℓ4
+O

(
σ2
) , (4.9)

whereHν−1/2 = ψ(ν+ 1/2)+ γ is the analytic continuation of the harmonic number function,
in terms of the digamma function, ψ. We can read off immediately

w0 =
2
(
4ν2 − 1

)
Hν− 1

2
− 4ν2 − 1

3

8ℓ2
, (4.10)

w1 =

(
4
(
4ν2 − 9

)(
4ν2 − 1

)
Hν− 1

2
− 80ν4 + 280

3 ν
2 + 47

5

)
256ℓ4

. (4.11)

Using the results of section 3, we obtain, cf equation (3.6)

ω(D) (Tab) =− 1

2(2π)2


(
4
(
4ν2 − 9

)(
4ν2 − 1

)
Hν− 1

2
− 80ν4 + 280

3 ν
2 + 47

5

)
256ℓ4

+
3ξ
[
2
(
4ν2 − 1

)
Hν− 1

2
− 4ν2 − 1

3

]
8ℓ4

+
m4

8
−
(
ξ − 1

6

)
3m2

ℓ2

+

(
18

(
ξ − 1

6

)2

− 1
60

)
1
ℓ4

]
gab+α1m

4gab+
3α2m2

ℓ2
gab, (4.12)

for the expectation value of the renormalised stress-energy tensor with Dirichlet boundary
contions. A choice of the renormalisation constants with the correct flat-spacetime limit gives,
cf equation (3.12),

ω(D) (Tab) =− 1

2(2π)2


(
4
(
4ν2 − 9

)(
4ν2 − 1

)
Hν− 1

2
− 80ν4 + 280

3 ν
2 + 47

5

)
256ℓ4

+
3ξ
[
2
(
4ν2 − 1

)
Hν− 1

2
− 4ν2 − 1

3

]
8ℓ4

gab− 1

2(2π)2

[
−3

(
ξ − 1

6

)
m2

ℓ2

+

(
18

(
ξ − 1

6

)2

− 1
60

)
1
ℓ4

]
gab−αµ (ξ)

m2

ℓ2
gab. (4.13)
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By a verbatim repeat, we obtain for Neumann boundary conditions

ω(N) (Tab) =− 1

2(2π)2


(
4
(
4ν2 − 9

)(
4ν2 − 1

)
H−ν− 1

2
− 80ν4 + 280

3 ν
2 + 47

5

)
256ℓ4

+
3ξ
[
2
(
4ν2 − 1

)
H−ν− 1

2
− 4ν2 − 1

3

]
8ℓ4

+
m4

8
−
(
ξ − 1

6

)
3m2

ℓ2

+

(
18

(
ξ − 1

6

)2

− 1
60

)
1
ℓ4

]
gab+α1m

4gab+
3α2m2

ℓ2
gab. (4.14)

A choice of the renormalisation constants with the correct flat-spacetime limit gives, in the
Neumann case,

ω(N) (Tab) =− 1

2(2π)2


(
4
(
4ν2 − 9

)(
4ν2 − 1

)
H−ν− 1

2
− 80ν4 + 280

3 ν
2 + 47

5

)
256ℓ4

+
3ξ
[
2
(
4ν2 − 1

)
H−ν− 1

2
− 4ν2 − 1

3

]
8ℓ4

gab− 1

2(2π)2

[
−3

(
ξ − 1

6

)
m2

ℓ2

+

(
18

(
ξ − 1

6

)2

− 1
60

)
1
ℓ4

]
gab

−αµ (ξ)
m2

ℓ2
gab. (4.15)

We note that, because the stress-energy tensors (4.12) and (4.14) are proportional to
the spacetime metric, they are completely determined by their trace, i.e. ω(D/N)(Tab) =
(1/4)ω(D/N)(Tcc)gab. In the conformally coupled case, m2 = 0 and ξ = 1/6, the trace con-
tribution comes only from the trace anomaly and is state-independent. Thus, in this case,
ω(D)(Tab) = ω(N)(Tab). As we shall see, the same equivalence between Dirichlet and Neumann
holds for what we call here ‘effectively conformal’ fields, which will be introduced below, for
reasons that we will explain, although not owing to the trace anomaly in this case.

5. Semiclassical gravity in PAdS4

We present some solutions to the equations(
3
ℓ2

+Λ

)
gab = 8πGNω(D/N) (Tab) (5.1)

in PAdS4 with Dirichlet and Neumann boundary conditions. The solution space is character-
ised by the parameters of the theory, as the equations (5.1) reduce to an algebraic relations due
to the symmetries of the spacetime, as was observed in the de Sitter case [30, 31].

If one does not demand that ℓ2 =−3/Λ a priori, and keeps things as general as possible
[31], one needs not impose the flat spacetime limit of section 3.2. We therefore use
equation (4.12)/(4.14) for the right-hand side of equation (5.1).
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5.1. Dirichlet boundary conditions

The solutions to equation (5.1) with Dirichlet boundary conditions are the solutions to the
algebraic equation

1
8πGN

(
3
ℓ2

+Λ

)
−α1m

4 − 3α2m
2

ℓ2

=− 1

2(2π)2


(
4
(
4ν2 − 9

)(
4ν2 − 1

)
Hν− 1

2
− 80ν4 + 280

3 ν2 + 47
5

)
256ℓ4

+
3ξ

[
2
(
4ν2 − 1

)
Hν− 1

2
− 4ν2 − 1

3

]
8ℓ4

+
m4

8
−
(
ξ − 1

6

)
3m2

ℓ2
+

[
18

(
ξ − 1

6

)2

− 1
60

]
1
ℓ4

 .

(5.2)

Each solution is a point in the space of parameters (Λ, ℓ,m2, ξ,α1,α2), with positive ℓ, non-
negative m2,

−∞< ξ ⩽ 4ℓ2m2 + 9
48

, (5.3)

and real Λ, α1 and α2.
Absorbing the parametersα1 andα2 intoΛ and the definition ofGN, we can reduce the space

of parameters to (Λ, ℓ,m2, ξ). This means that the space of solutions is a subset ofR4; for every
admissible m2 ⩾ 0, ξ obeying (5.3), ℓ > 0, one can find a Λ by imposing equation (5.2).

In physical terms, equation (5.2) constraints the space of parameters where semiclassical
gravity solutions with strict Anti-de Sitter symmetry exist in the Poincaré fundamental domain.
I.e., some AdS spacetimes admit semiclassical solutions with a scalar field with Dirichlet
boundary conditions, while other do not, given a suitable fixing (or absorption) of renorm-
alisation ambiguities.

Since there are a priori no physical reasons to constraint the parameters beyond the ranges
that we have given, we proceed to study a few distinguished cases. Namely, the massless, and
massive minimally coupled scenarios and the ‘effectively conformal’ case, which includes the
conformal coupling case. (The terminology for this last case is explained in section 5.1.3.)

5.1.1. The massless minimally coupled field. In this case, m2 = ξ = 0 and ν = 3/2. Each
point along the solid curve of figure 1 represents a solution. The equations (5.2) simplify to

Λ =− 3
ℓ2

+
29GN

120πℓ4
(5.4)

It is easy to see that Λ attains a minimum value when ℓ=
√

29GN/180, for which Λ =
−270π/(29GN). As ℓ→ 0+, Λ→∞, and as ℓ→∞, Λ→ 0, see figure 1,

5.1.2. The massive minimally coupled field. In this case, m2 > 0, ξ= 0 and ν =√
9/4+ ℓ2m2. The semiclassical equations do not have a simple closed form, but we sample

numerically the space of solutions. Each point in the 3-dimensional plot of figure 2 represents
a solution.
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Figure 1. The solid curve represents semiclassical PAdS4 solutions with a massless and
minimally coupled field with Dirichlet boundary conditions. The dashed curve repres-
ent semiclassical PAdS4 solutions with a conformally coupled field with Dirichlet or
Neumann boundary conditions.

Figure 2. Semiclassical PAdS4 solutions with a massive and minimally coupled field
with Dirichlet boundary conditions.

5.1.3. Effectively conformal field. For the value ν = 1/2, the Klein–Gordon equation in
PAdSn takes the form of a massless Klein–Gordon equation in the Minkowski half-space by a
conformal transformation [2]. For n= 4, this occurs when ξ = (ℓ2m2 + 2)/12. The semiclas-
sical gravity equations simplify to

Λ =− 3
l2
−
GN
(
1− 5ℓ2m2

)
120π l4

(5.5)
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Figure 3. Semiclassical PAdS4 solutions with an effectively conformal field with
Dirichlet or Neumann boundary conditions.

It is straightforward to see that, for fixed m2 as ℓ→ 0+, Λ→−∞, and as ℓ→∞, Λ→ 0.
At fixed ℓ, the sign of Λ depends onm2. In particular, asm→∞, solutions exist even if Λ> 0,
with Λ = 0 whenever m2 = (5GNℓ

2)−1(3ℓ2 +GN). This should not alarm the reader, the Anti-
de Sitter character of the solution is controlled by the radius of curvature of spacetime, ρ2 =
−ℓ2, which remains negative. The case m2 = 0, ξ = 1/6 gives solutions for a conformal field
with Dirichlet boundary conditions in PAdS4. In this case, Λ, when viewed as a function of
ℓ, is a monotonically increasing, negative function. The solutions for the conformally coupled
field are displayed along the dashed curve of figure 1. The effectively conformal field solutions
appear in figure 3.

5.2. Neumann boundary conditions

The solutions to equation (5.1) with Neumann boundary conditions are the solutions to the
algebraic equation

1
8πGN

(
3
ℓ2

+Λ

)
−α1m

4 − 3α2m2

ℓ2

=− 1

2(2π)2


(
4
(
4ν2 − 9

)(
4ν2 − 1

)
H−ν− 1

2
− 80ν4 + 72ν2 + 64

3 m
2ℓ2 − 256ξ + 281

3

)
256ℓ4

+
3ξ
[
2
(
4ν2 − 1

)
H−ν− 1

2
− 4ν2 − 1

3

]
8ℓ4

+
m4

8
−
(
ξ − 1

6

)
3m2

ℓ2

+

[
18

(
ξ − 1

6

)2

− 1
60

]
1
ℓ4

 , (5.6)

which are points in the space of parameters (Λ, ℓ,m2, ξ), with Λ ∈ Rℓ > 0, m2 ⩾ 0 and

4ℓ2m2 + 5
48

< ξ <
4ℓ2m2 + 9

48
. (5.7)
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The physical interpretation of equation (5.6) is analogous to the Dirichlet case. It constraints
the space of parameters where semiclassical gravity solutions with strict Anti-deSitter sym-
metry exist in the Poincaré fundamental domain, given a suitable fixing (or absorption) of
renormalisation ambiguities.

Note that, in view of (5.7), Neumann boundary conditions do not admit solutions with
minimal coupling. In the case of the effectively conformal field, the Dirichlet and Neumann
boundary conditions yield the same spacetime geometry, see figure 1. This includes the case
m2 = 0, ξ = 1/6, which represents a conformal field with Neumann boundary conditions in
PAdS4.

In the case of the conformal coupling, the explanation for the equivalence between Dirichlet
andNeumann boundary conditions relies in the fact that, as is well known, for conformal fields,
the trace anomaly is state-independent, and depends only on the local geometry of spacetime.
Taking the trace of equation (5.1), we see that the semiclassical equation is equivalent to(

3
ℓ2

+Λ

)
= 2πGNω(D/N) (Ta

a) , (5.8)

for which the right-hand side is independent of the Dirichlet or Neumann choice.
Furthermore, as we have mentioned above, in the effectively conformal case in PAdS4 the

Klein–Gordon equation is conformal to a massless field equation in Minkowski half-space.
In this case, m2 + ξR= R/6 holds, even if m2 ̸= 0 and ξ ̸= 1/6. This means that the Klein–
Gordon equation in PAdS4 behaves as if the field were a conformally coupled field. The defini-
tion of the stress-energy tensor, however, is different to the conformally coupled case, because
the parameters m2 and ξ take different values. In this case, the trace of the stress-energy tensor
should not be seen as anomalous, since it will generically not vanish classically. Indeed, it
is easy to verify that, for a classical configuration ϕ, Taa = (6ξ− 1)ϕ;aϕ;a+ 6ξ ϕ□ϕ − (ξ −
2m2)ϕ2, which fails to vanish on-shell unlessm2 = 0 and ξ = 1/6 and will not vanish if merely
m2 + ξR= R/6. However, it continues to hold that the Dirichlet and Neumann stress-energy
tensors coincide in this case. This can be verified at the level of equations (4.12) and (4.14).

6. Final remarks

This paper has dealt with the question of constructing semiclassical gravity exact solutions in
Anti-de Sitter spacetime. We have focused our attention in particular to PAdS4 with a Klein–
Gordon field in the vacuum obeying Dirichlet or Neumann boundary conditions. Under a suit-
able re-definition of parameters, the solutions are characterised by a four-dimensional para-
meter space, including the mass term, m2, curvature coupling, ξ, AdS radius, ℓ, and the cos-
mological constant, Λ.

We present some solutions for the minimally coupled case and the ‘effectively conformal’
case, which includes the conformal field. These solutions are points in the plots of section 5,
which depict (2- and 3-dimensional) sections of the space of solutions (as subsets of the para-
meter space).

An interesting future direction is to extend this work to other field theories, such as the
Dirac or Maxwell fields. In particular, it is interesting to see what are the appropriate boundary
conditions that preserve the spacetime symmetries in these cases. It is also interesting to study
the case of self-interacting field theories, extending the globally hyperbolic literature [41, 42]
to the case of spacetimes with timelike boundary, for which Anti-de Sitter spacetime is the
simplest test-bed. For example, for a self-interacting scalar field, is it still the case that Dirichlet
andNeumann boundary conditions respect the spacetime symmetries?We suspect that this will
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be the case, since, as we have seen, the Hadamard bi-distribution, which plays a crucial role
in the renormalisation procedure, is invariant under the spacetime symmetries.

The situation is drastically different if one choses Robin boundary conditions. In the first
place, the semiclassical Einstein equations do not take the simple form of equation (5.1).
Instead, in this case, the lack of symmetry of the states breaks the maximal symmetry of
spacetime and one should see corrections to the spacetime that leave the Anti-de Sitter class,
for example, using semiclassical backreaction. As a result, there are generically no AdS semi-
classical solutions for fields with Robin boundary conditions. Semiclassical corrections in this
case give a deviation from the AdS class of spacetimes.

As we have seen, semiclassical gravity with what we have called here an effectively con-
formal field is insensitive to whether the boundary conditions are of Dirichlet or Neumann
type, and one might wonder if this feature holds for the whole Robin class of boundary condi-
tions. The answer is in the negative. In fact, the two-point function with Robin boundary con-
ditions for ν = 1/2 is generically expressed as a mode sum which includes so-called bound
state modes, which spoil the symmetry of the state [2]. As a result, the expectation value of
the stress-energy tensor is not proportional to the spacetime metric and cannot be fully char-
acterised by the trace anomaly.

In this paper we have also given details on how to perform the renormalisation of non-linear
observables in maximally symmetric spacetimes à la Hadamard in a computationally efficient
way. The method relies on noting that the Hadamard bi-distribution shares the spacetime sym-
metries and takes a simplified form. This makes the computation of the Hadamard coefficients
efficient and encompasses a number of situations that have been of interest in recent literature,
as discussed in the Introduction.
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