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MONOPOLE CONTRIBUTION TO THE WILSON LOOP IN THE 3D SU(2)
LATTICE GAUGE MODEL

S. Voloshin?, O. Borisenko®

N.N.Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine

Using a plaquette formulation for lattice gauge models we describe monopoles of the 3D SU(2) theory which
appear as configurations in the complete axial gauge and violate the continuum Bianchi identity. Furthemore
we derive a dual representation for the Wilson loop in arbitrary representation and calculate the form of the
interaction between generated electric flux and monopoles in the region of weak coupling relevant for the
continuum limit. The effective theory which controls the interaction is a generalized version of the sine-Gordon
model. The mechanism of confinement is proposed on the basis of the effective model obtained.

1 Introduction

The problem of the permanent confinement of quarks inside hadrons attracts attention of the theoretical physi-
cists for the last three decades (see [1] and refs. therein for a recent review of the problem). Two of the most
popular and the most elaborated mechanisms of confinement are based on the condensation of certain topologi-
cally nontrivial configurations - the so-called center vortices or monopoles. In this paper we are interested in the
second of these configurations. It was proposed in [2] in the context of continuum compact three dimensional
(3D) electrodynamics that the string tension is nonvanishing in this theory at any positive coupling constant,
and the contribution of monopoles to the Wilson loop was estimated in the semiclassical approximation. Later
this consideration was extended to U(1) lattice gauge theory (LGT) in 3D [3]. It turns out that these are pre-
cisely monopole configurations which make the string tension nonvanishing at all couplings. A rigorous proof of
this property was done in [4]. While monopoles of abelian gauge models can be given a gauge invariant definition
it is not the case for nonabelian models. The most popular approach consists in a partial gauge fixing such that
some abelian subgroup of the full nonabelian group remains unbroken. Then, one can define monopoles in a
nonabelian theory as monopoles of the unbroken abelian subgroup. Here we propose a different route to define
monopoles in nonabelian models. Its main feature is complete gauge fixing. Monopoles appear as defects of
smooth gauge fields which violate the Bianchi identity in the continuum limit, in the full analogy with abelian
models. Our principal approach is to rewrite the compact LGT in the plaquette (continuum field-strength)
representation and to find a dual form of the nonabelian theory. The Bianchi identity appears in such formu-
lation as a condition on the admissible configurations. This allows to reveal the relevant field configurations
contributing to the partition function and various observables. Such a program was accomplished for the abelian
LGT in [3]. Here we are going to work out the corresponding approach for nonabelian models on the example
of 3D SU(2) LGT.

2 Plaquette formulation and monopoles

The standard and possibly the only one available now tool of an investigation of such nonperturbative phe-
nomenon like confinement is a quantization of the gauge fields on the lattice. Originally, LGT was formulated
by K. Wilson in terms of group valued matrices on links of the lattice as fundamental degrees of freedom [5].
The partition function reads

Z= / DU exp{—BS[U, ()]}, (1)

where S is the standard Wilson action and the integral is calculated over the Haar measure on the group at
every link of the lattice.

The plaquette representation has been invented originally in the continuum theory by M. Halpern and
extended to lattice models by G. Batrouni [6]. In this representation the plaquette matrices play the role of the
dynamical degrees of freedom and satisfy certain constraints expressed through Bianchi identities in every cube
of the lattice. In papers [7], [8], [9] we have developed a different plaquette formulation which we outline below.
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In the complete axial gauge
Us(x,y,z) = Usz(x,y,0) = Uy (x,0,0) =T (2)
the partition function (1) can be identically rewritten on the dual lattice as
4 .
7 - /HdVl exp[8Y Re i T] [T 7 (V;“) . (3)
1 1 i=1 (i)

7

Here, V] is a plaquette (dual link [) matrix which satisfies constraint expressed through the group delta-function
T(Ve) =Y dexr (Vi) (4)

where the sum over r is a sum over all representations of SU(N) , x, is character of r-th representation and
d, = xr(I). V; is a certain product of plaquette matrices around a cube (dual site z) of the lattice taken with
the corresponding connectors. Connectors provide correct parallel transport of opposite sites of a given cube
for nonabelian theory. In abelain models connectors are canceled out of group delta-functions. There appear
four different types of connectors in our construction. E.g., V,, for the first type is of the form

v =vivivil Cay view Vil L), (5)
1 z;i—1
k=z;—1 p=1

In what follows we consider the SU(2) gauge group. In this case it is easy to show that the constraint (4)
expressed through elements of an algebra of SU(2) reads

1/2
[Z wz(m)] = 2mm(x), (7)
k

where m(z) is arbitrary integers and

6 6 6
wi(@) =Y 0k(1) = €kmn | D Om )00 (1) +2D_ 0m() D 0n(li) + ... | - (8)
i=1 i<j beC i=4

In the continuum limit the last constraint reduces to the familiar Bianchi identity if one takes m(z) = 0 for
all . However, when m(z) differs from zero one gets violation of the continuum Bianchi identity at the point
2. This is genuine feature of compact gauge models. Below we want to clarify a role of these configurations
in producing the string tension. Clearly, m(x) # 0 configuration corresponds to the monopole configuration of
nonabelian gauge field. Therefore, we may interpret the summation over m(x), appearing below, as a summation
over monopole charges which exist due to the periodicity of SU(2) delta-function (in close analogy with U(1)
model).

Substituting (7) into (4) one can prove that the partition function (3) can be exactly rewritten to the
following form [10]

sin® W, W
Zsu(2) = /H [T/Vlzl H dwi (1) | exp |28 Z cos W, H .U
1 k 1

x

H Z /H day(z) exp l—i Z o (x)wi (z) + 2m’m(x)a(x)] , 9)
k k

T m(z)=—o0

where a(z) = (3, a2(z))Y/2.
The Wilson loop of the size R x T' in some representation j gets the following form

0 24T-1 0
W;(C) =Tr H ( H Vf(x,y +2n+1,2) H Vf(x,y + 2n, 22)> . (10)
n=R/2—1 z1=0 zo=2z+4+T—1

We have supposed, for simplicity that the loop contour lies in the y — 2z plane, one side of the loop lies in the
plane z = 0 and R, T are even.
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3 Effective monopole model for the Wilson loop

Here we would like to calculate the contribution of monopole configurations to the Wilson loop and estimate
the string tension. We remind first the computations for the U(1) compact model and then proceed to the
nonabelian theory.

3.1 Monopoles in U(1) LGT
The plaquette formulation of the U(1) LGT on the dual lattice reads

oo

27 00
Z(h) = / Hdwl exp 8 coswl]/ Hde Z exp iZwl(rx — Tyan) + QWinxmx +i2wlhl , (11)
0 l g l T 1

Mg =—00

where the Bianchi identity has the form

Wy = Zwl = 2TMm,. (12)

lex

Sources h; have been introduced to represent the Wilson loop. Configurations with m, # 0 violate the continuum
Bianchi identity in the same way as they do for the compact SU(2) model.

Consider the Wilson loop in the representation j. Let S’gy be some surface dual to the surface Sy, which is
bounded by the loop C' and consisting of links dual to plaquettes of the original lattice. Let b denote links from
Sgy. Then, the expectation value of the Wilson loop takes the following form

oo

(W(C)) = ﬁ exp Z Gy Z exp | —m2Bm,G o0 Mgy + 1] Z Dy (" )ymy |, (13)

bb/esd Mg=—00 besd,

where we have introduced the link Green functions Gy and D;(z) (see [7]). Following strategy of [2], [3] one
can use the dilute monopole gas approximation to perform summation over m,. We skip all technical details
which are well known. The resulting theory appears to be of the sin-Gordon type

(W) = exp|-P Z G / [T déwexp |- Z — bin)’

bb’eSd

1
X exp QmQZcos Thg +7J Z TOY (14)
besd

Ty

where m? is a mass of the dual photons (it is exponentially small in 3). To analyze this theory one can use the

semiclassical approximation. The saddle-point equation is
Aa(z) = 2756 (z) —m?sina(z) . (15)

Far from the boundaries of the contour C' the saddle-point equation (15) is essentially one dimensional and has
the solution for j =1

4arctan(e”™%), z >0
a(z) =
—4arctan(e™?), z <0 .

Substituting this solution into (14) one can easily gets the area law for the Wilson loop
(W;(C)) = e=oU=DS

with the string tension given by

exp |:—;7T2ﬂG0:| . (16)

2 . _ 8

Here, 3 = 1/(g%a) is dimensionless coupling constant and Go =~ 0.5054 is zero-distance Green function. A
rigorous proof of permanent confinement was given in [4]. It was shown that the semiclassical expression (16)
gives lower bound on the string tension.



234 Voloshin S., Borisenko O.

3.2 SU(2) LGT. Representation for the Wilson loop

Here we would like to extend calculations of the previous section to SU(2) gauge theory. In doing this we
use three approximations. First of all, we neglect connectors of the Bianchi identity because they do not
contribute to the string tension in the leading orders of the strong coupling expansion. We thus assume that at
weak couplings connectors produce smooth corrections to spin waves. The second approximation consists in an
expansion of the Wilson loop in a power series 1/3. Finally, we restrict ourselves to monopole configurations
m = 0, +1, precisely like for the U(1) model. At large /3, and using first of our approximations one obtains from
(9) the following expression

Zsu(2) = Z / [ der @) / [ de () x
o0 Lk =% 1.k
1
exp[—ﬁwi(l) —iwg (1) (g (z + en) — ag(z)) + 2miy/2 Z (17)
Obviously, the last expression is an analog of the formula (11) for the U(1) model. However, even in this case
all integrations cannot be done exactly due to non-linear couplings of monopoles with auxiliary fields.

As before, S,jfy denotes some surface dual to the surface S;, which is bounded by the loop C. Then, the
expectation value of W(C') at 8 — oo we present in the form

i
|| d —— TR(C) H; ,
/mnalal/o N (C) H;

les
where
Hj = Hi(ay, 1) = <HQ; > (18)
les
and
i v[S] '
TR(C)= Y 2A+1CI Yok (a, )
mi=—j l=1

Here C7 ps is the Clebsch-Gordan coefficient, Yy is the spherical function and »(S) is a number of dual links
that belong to the Wilson loop. Since at large 3 the plaquette matrix fluctuates smoothly around unit matrix
w(l) ~ 0 it is allowed to use asymptotics of Q;(!) in (18) at w ~ 0 uniformly valid in j. This asymptotics is

Q; () = exp[=ij(Dwr(D)] ,

where
w1 = wcosl, wo = wsinfcos¢p, w3 = wsinfsin@
and
J1 = Vi(G+Dcosa, jo = j(G+1)sinacosy, j3 = /j(j+1)sinasing .

Introducing sources like

_ Ja®/vV2B, 1€ s
Je(l) = {07 (%5 (19)

the effective monopole theory can be written down as

w2
Z / Hdwk(l) exp {— kz(l) jwi (1) [ (@ + ) — o (20)]

m(ac)——oo Lk

+2m\ﬁz — iy (Dwr(l )1 . (20)

We use the following representation to perform the integration over ay(z)

S eplrivIEYa@m@l= Y. V@ (1+£ )
m(z)=—oo 2 (@)oo

/ Hdak (@) - SZZ)'C %@ op li€an(@)on(@)] (21)
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where £ = 2m/20. Integration over wy(l) and ag(x) gives

l
H] = H;] H}non y (22)

1
ngl = exp[—*Jk(l)Gll’Jk(ll)]v

= S v (1eel) /] Hdvk P& s,y

m(z)=—o0

where the effective action Scy¢ is of the form

Sets = = Em(@)on(@)Gawron(& (& Voo + 5 Dil)m (@) (@) Tu(D)

Derivatives are calculated at £, = £ = 2mv/23. One proves that at large j this leads to the representation

aien = [0 bmada/%j%ff o).

As is known the dual photon contribution H jgl produces only the perimeter law. In the next subsection we
evaluate in the semiclassical approximation contribution of H;**" to the Wilson loop.

3.3 SU(2) LGT. Sine-Gordon type model

In order to perform the summation over monopole configurations m, = 0,41 we follow the strategy of Refs.[4],
[11]. Using decomposition
G;cac’ = Bya + Gmc’ (M) s

where
e L kn(w x )n

Gmm’ )
L323 >, cos[2ky] + 2 M2

Ga:a:/ = GLI/( = O) 5 IJ;’ = GJ:J;’ - GLI/(M)
we rewrite the effective action in the form (n(z) = {em(x)or(z))

1

Sefr = —an( ) Byarni(z —*Gozjf2
Y )G M)+ D1 () (29
rH#x!

The first term in (23) is presented as
1
exp [4nk(:c)Bm/77k(:E’)] (det B, 1)3/2
/ H day,(z) exp [~ (2) B, oy (2) + i (z)ni(2)] - (24)

The behaviour of G4, (M) in the thermodynamic and continuum limits is well known

1/2
2
Goo (M) = Ee—MR/Q, R=|) (ax— x;f] . (25)

k

This behaviour allows us to keep only self-energy of monopoles if MR > 1, i.e. the term
1
S5 = —ZGO(M)@Zmi : (26)

Inserting (24) into (23) and taking into account (26) one can integrate out o (z). After taking all derivatives
we keep in the sums over monopoles only configurations m = 0,+1. This finally gives the effective model which
appears to be of the sine-Gordon type

mpen = [ TLdow@yess [—am)Bm/ak 1 Vi
0 z.k
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where

Via(z)] = cosépu(z) — %GO(M)g Sinf(ié(;f)),

1/2
v = 2exp[-2m°BGo(M)], pu(x) = <Z ui(ﬂ) :
k

(@) = k(@) + 5 Do) (D)

Collecting all formulae together we get for the Wilson loop

1 ™ ] 2m d(p om
<WJ(C)> = exp l:_4Jk(l)Gll/Jk(l/):| /0 smada/o \/T? Hj .

Making use of the fact that B;xl, (M) = G;zl, for M sufficiently large, one obtains after a shift
1
ax(z) — ax(z) = 35 zl: Di(x)Ji(l) = an(z) — hi(x)

the following expression for the monopole contribution

H;non — / Hdak(fﬁ) CXP[_Sen}f]’
T gk

where
o o ()] = — lon(@) — he(@)] G [ar(a) — ()] +4 Y Viaa)]
V]a(z)] = coséa(z) — %GO(M)g Sin((fégx)) )

(30)

(31)

To make semiclassical calculations we take the continuum limit. In this limit the saddle-point equation reads

Aar() = 2ma(z) — m? D o))

a(z)
(@) = k00 = jk(y:m)0n(z —y) ,
les yes
where 7 is fixed and orthogonal to S and
-1, =y

Oz —y)=<+1, 2=y+n
0, otherwise .

Here we have introduced the Debye mass
m? = 16w B exp [—QWZBGO(M)].

In the continuum limit one has

cosa(z) sina(z)
a(z) a?(x) |’

Wa(z)] = sina(x) + 47%3Go (M) [

pr(z) = dy jk(y,n = 3) d3(z — y).
yes

To find a solution of the saddle-point equation we insert the anzatz
ar(z) = je(z,n = 3)a(z).

This gives

AG(z) = m(2f +1)0,(2) — m? (Sin&('z) + 4 3Go (M) CO;Z()Z) a Siéﬁg)D ,

(32)
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where
a(z) =(2j+1)a(z) .

One can easily construct the approximate solution if one takes SGo(M) = 0. Then for j = 1/2 the saddle-point
equation reduces to the form (15). It leads to the desirable area law

(W;(C)) = e~oU=1/29

with the string tension
4m

2B
The mass of dual photons are given in (33). This result coincides with that qouted in [11].

4 Conclusion

In this paper we calculated nontrivial 2D theory for the expectation value of the Wilson loop at large values of
[ valid for all values of representations j and which takes into account both the dual photon and the monopole
contributions. For the fundamental representation in the semiclassical approximation we have found that the
Wilson loop obeys the area law and o(j = 1/2) ~ m. The most important conclusion is that the monopole
contribution is sufficient to produce the area law and thus to explain confinement in 3D nonabelian models.
It remains unclear at the moment if this contribution is also necessary condition of confinement. Another
open problem is to compute the Wilson loop in the adjoint representation. It is well known that the adjoint
string tension vanishes at large distances therefore it is important to understand if the proposed mechanism of
confinement is able to reproduce this essential feature of the theory.
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