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MONOPOLE CONTRIBUTION TO THE WILSON LOOP IN THE 3D SU(2)
LATTICE GAUGE MODEL

S. Voloshina, O. Borisenkob

N.N.Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine

Using a plaquette formulation for lattice gauge models we describe monopoles of the 3D SU(2) theory which
appear as configurations in the complete axial gauge and violate the continuum Bianchi identity. Furthemore
we derive a dual representation for the Wilson loop in arbitrary representation and calculate the form of the
interaction between generated electric flux and monopoles in the region of weak coupling relevant for the
continuum limit. The effective theory which controls the interaction is a generalized version of the sine-Gordon
model. The mechanism of confinement is proposed on the basis of the effective model obtained.

1 Introduction

The problem of the permanent confinement of quarks inside hadrons attracts attention of the theoretical physi-
cists for the last three decades (see [1] and refs. therein for a recent review of the problem). Two of the most
popular and the most elaborated mechanisms of confinement are based on the condensation of certain topologi-
cally nontrivial configurations - the so-called center vortices or monopoles. In this paper we are interested in the
second of these configurations. It was proposed in [2] in the context of continuum compact three dimensional
(3D) electrodynamics that the string tension is nonvanishing in this theory at any positive coupling constant,
and the contribution of monopoles to the Wilson loop was estimated in the semiclassical approximation. Later
this consideration was extended to U(1) lattice gauge theory (LGT) in 3D [3]. It turns out that these are pre-
cisely monopole configurations which make the string tension nonvanishing at all couplings. A rigorous proof of
this property was done in [4]. While monopoles of abelian gauge models can be given a gauge invariant definition
it is not the case for nonabelian models. The most popular approach consists in a partial gauge fixing such that
some abelian subgroup of the full nonabelian group remains unbroken. Then, one can define monopoles in a
nonabelian theory as monopoles of the unbroken abelian subgroup. Here we propose a different route to define
monopoles in nonabelian models. Its main feature is complete gauge fixing. Monopoles appear as defects of
smooth gauge fields which violate the Bianchi identity in the continuum limit, in the full analogy with abelian
models. Our principal approach is to rewrite the compact LGT in the plaquette (continuum field-strength)
representation and to find a dual form of the nonabelian theory. The Bianchi identity appears in such formu-
lation as a condition on the admissible configurations. This allows to reveal the relevant field configurations
contributing to the partition function and various observables. Such a program was accomplished for the abelian
LGT in [3]. Here we are going to work out the corresponding approach for nonabelian models on the example
of 3D SU(2) LGT.

2 Plaquette formulation and monopoles

The standard and possibly the only one available now tool of an investigation of such nonperturbative phe-
nomenon like confinement is a quantization of the gauge fields on the lattice. Originally, LGT was formulated
by K. Wilson in terms of group valued matrices on links of the lattice as fundamental degrees of freedom [5].
The partition function reads

Z =

∫
DU exp{−βS[Uµ(x)]}, (1)

where S is the standard Wilson action and the integral is calculated over the Haar measure on the group at
every link of the lattice.

The plaquette representation has been invented originally in the continuum theory by M. Halpern and
extended to lattice models by G. Batrouni [6]. In this representation the plaquette matrices play the role of the
dynamical degrees of freedom and satisfy certain constraints expressed through Bianchi identities in every cube
of the lattice. In papers [7], [8], [9] we have developed a different plaquette formulation which we outline below.
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In the complete axial gauge

U3(x, y, z) = U2(x, y, 0) = U1(x, 0, 0) = I (2)

the partition function (1) can be identically rewritten on the dual lattice as

Z =

∫ ∏

l

dVl exp[β
∑

l

Re TrVl]

4∏

i=1

∏

x(i)

J
(
V (i)
x

)
. (3)

Here, Vl is a plaquette (dual link l) matrix which satisfies constraint expressed through the group delta-function

J(Vx) =
∑

r

drχr (Vx) , (4)

where the sum over r is a sum over all representations of SU(N) , χr is character of r-th representation and
dr = χr(I). Vx is a certain product of plaquette matrices around a cube (dual site x) of the lattice taken with
the corresponding connectors. Connectors provide correct parallel transport of opposite sites of a given cube
for nonabelian theory. In abelain models connectors are canceled out of group delta-functions. There appear
four different types of connectors in our construction. E.g., Vx for the first type is of the form

V (1)
x = V †

l5
Vl1V

†
l6
C~x(1) Vl2Vl3V

†
l4
C†
~x(1), (5)

C~x(1) =
1∏

k=zi−1

Vn2
(xi, yi − 1, k)

zi−1∏

p=1

Vn1
(xi − 1, yi, p). (6)

In what follows we consider the SU(2) gauge group. In this case it is easy to show that the constraint (4)
expressed through elements of an algebra of SU(2) reads

[
∑

k

ω2
k(x)

]1/2

= 2πm(x), (7)

where m(x) is arbitrary integers and

ωk(x) =
6∑

i=1

θk(li)− εkmn




6∑

i<j

θm(li)θn(lj) + 2
∑

b∈C
θm(b)

6∑

i=4

θn(li) + . . .


 . (8)

In the continuum limit the last constraint reduces to the familiar Bianchi identity if one takes m(x) = 0 for
all x. However, when m(x) differs from zero one gets violation of the continuum Bianchi identity at the point
x. This is genuine feature of compact gauge models. Below we want to clarify a role of these configurations
in producing the string tension. Clearly, m(x) 6= 0 configuration corresponds to the monopole configuration of
nonabelian gauge field. Therefore, we may interpret the summation overm(x), appearing below, as a summation
over monopole charges which exist due to the periodicity of SU(2) delta-function (in close analogy with U(1)
model).

Substituting (7) into (4) one can prove that the partition function (3) can be exactly rewritten to the
following form [10]

ZSU(2) =

∫ ∏

l

[
sin2Wl

W 2
l

∏

k

dωk(l)

]
exp

[
2β
∑

l

cosWl

]
∏

x

Wx

sinWx

∏

x

∞∑

m(x)=−∞

∫ ∏

k

dαk(x) exp

[
−i
∑

k

αk(x)ωk(x) + 2πim(x)α(x)

]
, (9)

where α(x) = (
∑
k α

2
k(x))

1/2.
The Wilson loop of the size R× T in some representation j gets the following form

Wj(C) = Tr

0∏

n=R/2−1

(
z+T−1∏

z1=0

V †
1 (x, y + 2n+ 1, z1)

0∏

z2=z+T−1

V †
1 (x, y + 2n, z2)

)
. (10)

We have supposed, for simplicity that the loop contour lies in the y − z plane, one side of the loop lies in the
plane z = 0 and R, T are even.
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3 Effective monopole model for the Wilson loop

Here we would like to calculate the contribution of monopole configurations to the Wilson loop and estimate
the string tension. We remind first the computations for the U(1) compact model and then proceed to the
nonabelian theory.

3.1 Monopoles in U(1) LGT

The plaquette formulation of the U(1) LGT on the dual lattice reads

Z(h) =

∫ 2π

0

∏

l

dωl exp [β cosωl]

∫ ∞

−∞

∏

x

drx

∞∑

mx=−∞
exp

[
i
∑

l

ωl(rx − rx+n) + 2πi
∑

x

rxmx + i
∑

l

ωlhl

]
, (11)

where the Bianchi identity has the form

ωx =
∑

l∈x
ωl = 2πmx. (12)

Sources hl have been introduced to represent the Wilson loop. Configurations withmx 6= 0 violate the continuum
Bianchi identity in the same way as they do for the compact SU(2) model.

Consider the Wilson loop in the representation j. Let Sdxy be some surface dual to the surface Sxy which is
bounded by the loop C and consisting of links dual to plaquettes of the original lattice. Let b denote links from
Sdxy. Then, the expectation value of the Wilson loop takes the following form

〈W (C)〉 =
1

Z(0)
exp


− j

2

4β

∑

b,b′∈Sd
xy

Gbb′




∞∑

mx=−∞
exp


−π2βmxGx,x′mx′ + iπj

∑

b∈Sd
xy

Db(x
′)mx′


 , (13)

where we have introduced the link Green functions Gll′ and Dl(x) (see [7]). Following strategy of [2], [3] one
can use the dilute monopole gas approximation to perform summation over mx. We skip all technical details
which are well known. The resulting theory appears to be of the sin-Gordon type

〈W (C)〉 = exp


− j

2

4β

∑

bb′∈Sd
xy

Gbb′



∫ ∏

x

dφx exp

[
− 1

2β

∑

x,n

(φx − φx+n)2
]

× exp


2m2

∑

x

cos


πφx + πj

∑

b∈Sd
xy

Db(x)




 1

Z(0)
, (14)

where m2 is a mass of the dual photons (it is exponentially small in β). To analyze this theory one can use the
semiclassical approximation. The saddle-point equation is

∆α(x) = 2πjδ
′

(x)−m2 sinα(x) . (15)

Far from the boundaries of the contour C the saddle-point equation (15) is essentially one dimensional and has
the solution for j = 1

α(z) =

{
4 arctan(e−mz), z > 0

−4 arctan(emz), z < 0 .

Substituting this solution into (14) one can easily gets the area law for the Wilson loop

〈Wj(C)〉 = e−σ(j=1)S

with the string tension given by

a2σ(j = 1) =
8√

2π2β
exp

[
−1

2
π2βG0

]
. (16)

Here, β = 1/(g2a) is dimensionless coupling constant and G0 ≈ 0.5054 is zero-distance Green function. A
rigorous proof of permanent confinement was given in [4]. It was shown that the semiclassical expression (16)
gives lower bound on the string tension.
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3.2 SU(2) LGT. Representation for the Wilson loop

Here we would like to extend calculations of the previous section to SU(2) gauge theory. In doing this we
use three approximations. First of all, we neglect connectors of the Bianchi identity because they do not
contribute to the string tension in the leading orders of the strong coupling expansion. We thus assume that at
weak couplings connectors produce smooth corrections to spin waves. The second approximation consists in an
expansion of the Wilson loop in a power series 1/β. Finally, we restrict ourselves to monopole configurations
m = 0,±1, precisely like for the U(1) model. At large β, and using first of our approximations one obtains from
(9) the following expression

ZSU(2) =

∞∑

m(x)=−∞

∫ ∞

−∞

∏

l,k

dωk(l)

∫ ∞

−∞

∏

x,k

dαk(x)×

exp[−1

2
ω2
k(l)− iωk(l) (αk(x+ en)− αk(x)) + 2πi

√
2β
∑

x

α(x)m(x)]. (17)

Obviously, the last expression is an analog of the formula (11) for the U(1) model. However, even in this case
all integrations cannot be done exactly due to non-linear couplings of monopoles with auxiliary fields.

As before, Sdxy denotes some surface dual to the surface Sxy which is bounded by the loop C. Then, the
expectation value of W (C) at β →∞ we present in the form

〈Wj(C)〉 =
∏

l∈S

∫ π

0

sinαldαl

∫ 2π

0

ϕl√
4π

TR(C) Hj ,

where

Hj ≡ Hj(αl, ϕl) =

〈
∏

l∈S
Qj(l)

〉
(18)

and

TR(C) =

j∑

ml=−j

ν[S]∏

l=1

1

2j + 1

∑

λ,k

√
2λ+ 1 Cjnjm λkYλk (α,ϕ) .

Here Ccγaα bβ is the Clebsch-Gordan coefficient, Yλk is the spherical function and ν(S) is a number of dual links
that belong to the Wilson loop. Since at large β the plaquette matrix fluctuates smoothly around unit matrix
ω(l) ≈ 0 it is allowed to use asymptotics of Qj(l) in (18) at ω ≈ 0 uniformly valid in j. This asymptotics is

Qj(l) = exp[−ijk(l)ωk(l)] ,

where
ω1 = ω cos θ, ω2 = ω sin θ cosφ, ω3 = ω sin θ sinφ

and
j1 =

√
j(j + 1) cosα, j2 =

√
j(j + 1) sinα cosϕ, j3 =

√
j(j + 1) sinα sinϕ .

Introducing sources like

Jk(l) =

{
jk(l)/

√
2β, l ∈ S

0, l 6= S
(19)

the effective monopole theory can be written down as

Hj =
1

Z

∞∑

m(x)=−∞

∫ ∞

−∞

∏

l,k

dωk(l) exp

[
−ω

2
k(l)

2
− iωk(l) [αk(x+ en)− αk(x)]

+2πi
√

2β
∑

x

α(x)m(x)− iJk(l)ωk(l)
]
. (20)

We use the following representation to perform the integration over αk(x)

∞∑

m(x)=−∞
exp[2πi

√
2β
∑

x

α(x)m(x)] =

∞∑

m(x)=−∞

√
m(x)

(
1 + ξ

∂

∂ξ

)

×
∫ 3∏

k=1

dσk(x)
δ(m2(x)−∑k σ

2
k(x))

V (S2)
exp [iξαk(x)σk(x)] , (21)
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where ξ = 2π
√

2β. Integration over ωk(l) and αk(x) gives

Hj = Hgl
j Hmon

j , (22)

Hgl
j = exp[−1

4
Jk(l)Gll′Jk(l

′)] ,

Hmon
j =

1

Z

∞∑

m(x)=−∞

√
mx

(
1 + ξ

∂

∂ξ

)∫ 3∏

k=1

dσk(x)
δ
(∑

k σ
2
k(x)− 1

)

V (S2)
exp [Seff ]

where the effective action Seff is of the form

Seff = −1

4
ξxm(x)σk(x)Gxx′σk(x

′)m(x′)ξx′ +
i

2
Dl(x)ξxm(x)σk(x)Jk(l) .

Derivatives are calculated at ξx = ξ = 2π
√

2β. One proves that at large j this leads to the representation

〈Wj(C)〉 =

∫ π

0

sinαdα

∫ 2π

0

dϕ√
4π

Hj(α,ϕ).

As is known the dual photon contribution Hgl
j produces only the perimeter law. In the next subsection we

evaluate in the semiclassical approximation contribution of Hmon
j to the Wilson loop.

3.3 SU(2) LGT. Sine-Gordon type model

In order to perform the summation over monopole configurations mx = 0,±1 we follow the strategy of Refs.[4],
[11]. Using decomposition

Gxx′ = Bxx′ +Gxx′(M) ,

where

Gxx′(M) =
1

L3

∑

kn

e
2π
L
kn(x−x′)n

3−∑n cos[ 2πL kn] +
1
2M

2
,

Gxx′ = Gxx′(M = 0) , Bxx′ = Gxx′ −Gxx′(M)

we rewrite the effective action in the form (ηk(x) = ξxm(x)σk(x))

Seff = −1

4
ηk(x)Bxx′ηk(x

′)− 1

4
G0

∑

x

ξ2xm
2
x

− 1

4

∑

x6=x′

ηk(x)Gxx′(M)ηk(x
′) +

i

2
Dl(x)ηxJk(l). (23)

The first term in (23) is presented as

exp

[
−1

4
ηk(x)Bxx′ηk(x

′)

]
= (detB−1

xx′)
3/2

×
∫ ∞

−∞

∏

x,k

dαk(x) exp
[
−αk(x)B−1

xx′αk(x
′) + iαk(x)ηk(x)

]
. (24)

The behaviour of Gxx′(M) in the thermodynamic and continuum limits is well known

Gxx′(M) =
2

πR
e−MR/2, R =

[
∑

k

(xk − x′k)2
]1/2

. (25)

This behaviour allows us to keep only self-energy of monopoles if MR� 1, i.e. the term

SSEeff = −1

4
G0(M)ξ2

∑

x

m2
x . (26)

Inserting (24) into (23) and taking into account (26) one can integrate out σk(x). After taking all derivatives
we keep in the sums over monopoles only configurations m = 0,±1. This finally gives the effective model which
appears to be of the sine-Gordon type

Hmon
j =

∫ ∞

−∞

∏

x,k

dαk(x) exp

[
−αk(x)B−1

xx′αk(x
′) + γ

∑

x

V [α(x)]

]
,
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where

V [α(x)] = cos ξµ(x)− 1

2
G0(M)ξ

sin(ξµ(x))

ξµ(x)
,

γ = 2 exp[−2π2βG0(M)], µ(x) =

(
∑

k

µ2
k(x)

)1/2

,

µk(x) = αk(x) +
1

2
Dl(x)Jk(l).

Collecting all formulae together we get for the Wilson loop

〈Wj(C)〉 = exp

[
−1

4
Jk(l)Gll′Jk(l

′)

] ∫ π

0

sinαdα

∫ 2π

0

dϕ√
4π

Hmon
j . (27)

Making use of the fact that B−1
xx′(M) ≈ G−1

xx′ for M sufficiently large, one obtains after a shift

αk(x)→ αk(x)−
1

2

∑

l

Dl(x)Jk(l) ≡ αk(x)− hk(x) (28)

the following expression for the monopole contribution

Hmon
j =

∫ ∞

−∞

∏

x,k

dαk(x) exp[−Smeff ], (29)

where
Smoneff [αk(x)] = − [αk(x)− hk(x)]G−1

xx′ [αk(x
′)− hk(x′)] + γ

∑

x

V [α(x)] , (30)

V [α(x)] = cos ξα(x)− 1

2
G0(M)ξ

sin(ξα(x))

α(x)
. (31)

To make semiclassical calculations we take the continuum limit. In this limit the saddle-point equation reads

∆αk(x) = 2πµk(x)−m2αk(x)

α(x)
W [α(x)] , (32)

µk(x) =
∑

l∈S
jk(l)θ(l) =

∑

y∈S
jk(y, n)θn(x− y) ,

where n is fixed and orthogonal to S and

θn(x− y) =





−1, x = y

+1, x = y + n

0, otherwise .

Here we have introduced the Debye mass

m2 = 16π2β exp
[
−2π2βG0(M)

]
. (33)

In the continuum limit one has

W [α(x)] = sinα(x) + 4π2βG0(M)

[
cosα(x)

α(x)
− sinα(x)

α2(x)

]
,

µk(x) =

∫

y∈S
dy jk(y, n = 3) δ

′

3(x− y).

To find a solution of the saddle-point equation we insert the anzatz

αk(x) = jk(z, n = 3)α(z).

This gives

∆α̃(z) = π(2j + 1)δ
′

z(z)−m2

(
sin α̃(z) + 4π2βG0(M)

[
cos α̃(z)

α̃(z)
− sin α̃(z)

α̃2(z)

])
,
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where
α̃(z) = (2j + 1)α(z) .

One can easily construct the approximate solution if one takes βG0(M) ≈ 0. Then for j = 1/2 the saddle-point
equation reduces to the form (15). It leads to the desirable area law

〈Wj(C)〉 = e−σ(j=1/2)S

with the string tension

σ =
4m

π2β
.

The mass of dual photons are given in (33). This result coincides with that qouted in [11].

4 Conclusion

In this paper we calculated nontrivial 2D theory for the expectation value of the Wilson loop at large values of
β valid for all values of representations j and which takes into account both the dual photon and the monopole
contributions. For the fundamental representation in the semiclassical approximation we have found that the
Wilson loop obeys the area law and σ(j = 1/2) ∼ m. The most important conclusion is that the monopole
contribution is sufficient to produce the area law and thus to explain confinement in 3D nonabelian models.
It remains unclear at the moment if this contribution is also necessary condition of confinement. Another
open problem is to compute the Wilson loop in the adjoint representation. It is well known that the adjoint
string tension vanishes at large distances therefore it is important to understand if the proposed mechanism of
confinement is able to reproduce this essential feature of the theory.
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