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Coherent Manipulation of Rydberg

Polaritons

Nicholas Leonard Robert Spong

Abstract

This thesis contains a statistical analysis of the resonant transmission of

photons through an ensemble of cold Rubidium 87 atoms in-vacuo, where

the resonant excited state is coupled to one or two highly-excited Rydberg

states via optical and microwave fields. Transient emission with decay

rates far below the excited state decay rate Γe are observed. Analysis of

the second-order auto-correlation statistic reveals Rydberg-mediated anti-

bunching of transient photons, a signature of Rydberg blockade. The

application of resonant microwave fields creates strong resonant interactions

between Rydberg atoms. This presents a new, transient regime for the

study of interaction-induced dephasing and blockade physics in cold atomic

ensembles. A demonstration of a collective Rydberg qubit is presented.

Quantum information is encoded into a superposition of Rydberg polariton

states with a direct photonic interface suitable for applications in quantum

networking. The coherence of Rydberg qubits is demonstrated through

Ramsey interferometry. Sensitivity to AC and DC electric fields through

differential Stark shifts of the qubit states is confirmed through a study of

interferometric fringe shifts and dephasing. Controlled removal of atoms

from the collective qubit under the action of a resonant scattering beam is

shown to diminish readout fidelity but have little effect upon coherence due

to the collective nature of the encoding. Theoretical models of the effect of

photon scattering and electrical noise on the Rydberg qubit are confirmed

experimentally. Ramsey fringe visibility is observed to scale with the fourth

power of an applied noise field, matching a theoretical model.
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Chapter 1

Introduction

Now is a privileged time in the history of science and technology,

as we are witnessing the opening of the NISQ era

- John Preskill - 2018

Photons - the fundamental bosonic quanta of the electromagnetic field

- fulfill five out of the seven DiVincenzo criteria [1] for constructing a quan-

tum computer1. The remaining two criteria, those of universal gates and

conversion to stationary qubits, are more challenging to achieve [2]. Pho-

tons have a tiny cross section for photon-photon scattering events, negligi-

ble under most experimental conditions [3, 4]2. Interactions between pho-

tons and the environment are generally weak. In many cases this is useful.

Careful control of environmental conditions can be used to suppress inter-

actions, effectively decoupling the photon from environmentally-induced

decoherence. The lack of self-interaction combined with suppression of

environmental interactions makes photons useful information carriers [7].

Encoded photonic quantum information is robust and can retain coherence

during propagation over long distances, realising a useful ‘flying qubit’ and

1The first criterea, scalability, has recently been satisfied by the advent of multiplexed

quantum memories [106].
2Proposals to observe photon-photon scattering test the limits of available laser power

[5, 6].
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securing applications in quantum networking and interfacing [8, 9]. The

ability to transmit photons over huge distances without loss-inducing in-

teractions using optical fibers underpin the global telecoms industry [10].

Proposals to realise similar quantum networks carrying photonic quantum

information exist, with authors recently heralding the imminent birth of

the quantum internet [11].

Conversely, the implementation of quantum computation relies upon

interacting qubits supporting two-qubit logic [12]. Thus photonic isolation

from the environment limits the scope of photonic quantum computing

[2, 13], and makes photons poorly suited for processing quantum infor-

mation. The Knill-Laflamme-Milburn (KLM) scheme[14, 15] provides a

route towards universal all-optical quantum computation without relying

on photonic interactions, relying instead upon effective interactions imple-

mented through post-selection of photon detection events. However the

KLM scheme is resource-heavy. Fabrication of silicon waveguide circuits

have improved the overhead [16, 17] and lead to experimental demonstra-

tions of Shor’s algorithm [18] and Grover’s algorithm [19]. However, the

technique scales poorly and requires application-specific, prefabricated cus-

tom waveguide circuits.

To move beyond KLM restrictions, there is scientific research interest

in the development of photonic interactions and nonlinear materials that

work at the single-photon level. Interactions between photons and their

environment can be strong under specific experimental conditions, as with

resonant interaction with atomic systems [20]. The atomic cross-section

for resonant absorption can be enhanced by confining an atom within an

optical cavity [21] spawning the field of cavity quantum electrodynamics

(CQED) [22]. Early demonstrations of nonlinear materials were based on

the intrinsic ‘blockade’ phenomena of a single atomic emitter [23]. CQED

has since yielded optical non-linearities [24] leading to the successful imple-

mentation of blockade [25] and controlled phase gates [26] which might form
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1.1. Rydberg Systems 17

Figure 1.1: Left a coherent probe pulse enters an atomic medium in a super-

position of number states. center A probe pulse propagates under Rydberg

electronically induced transparency (EIT) conditions. Upon absorption of a sin-

gle photon, Rydberg Blockade destroys the EIT condition. Subsequent photons

are scattered by the medium, rendering an effective two-level system, termed a

Rydberg Superatom implementing free space CQED [27]. Strong suppression of

occupation numbers of the outgoing photon field N > 1 is observed leading to

photon anti-bunching in the outgoing light field. Right the probe pulse exits

the medium in a superposition of Fock states |0〉, |1〉.

the building blocks of a quantum computer as specified by DiVincenzo.

1.1 Rydberg Systems

The field of Rydberg physics concerns atoms promoted to highly excited

quantum ‘Rydberg states’, with large principal quantum numbers n and ex-

aggerated atomic properties. Pairs or ensembles of Rydberg atoms possess

strong dipole-dipole interactions [28–30]. These interactions can extend

over distances larger than typical interatomic spacings in cold atomic en-

sembles or atomic arrays and thus lends many-body character to dense

Rydberg gases. The presence of a single Rydberg excitation in an atomic

medium can dramatically alter its optical properties. This can be leveraged

to turn an ultra-cold ensemble of Rubidium 87 into an effective superatom

[27, 31–34], a phenomenon known as ‘Rydberg blockade’ [35]. Superatoms

possess enhanced light matter coupling with Rabi frequencies ∝
√
N in-

trinsic to dense systems of atomic dipoles, [36, 37]. Thus superatoms can
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1.1. Rydberg Systems 18

circumvent some technical complexities of CQED implementation whilst

retaining useful light-matter coupling and blockade, effectively simulating

the Jaynes-Cummings Hamiltonian [38, 39].

In traditional CQED devices, the state of a single atom interacting

with a cavity mode can modify the propagation of a second cavity pho-

ton due to the enhanced light-matter coupling afforded by small accessible

mode volumes [Zubairy2003]. A blockaded superatom can similarly mod-

ify the propagation of photons in free space. A conceptual picture is given

in Figure 1.1. Photons traveling under Rydberg electromagnetically in-

duced transparency (EIT) [40] experience resonant transmission for low

incident photon rates. If the incident photon rate is increased, blockade

limits the degree of EIT coherence that can build in the medium. Thus

resonant transmission is reduced. Suppression of resonant transmission in

an interacting EIT system was first observed in Durham [41]. The quan-

tum nonlinear nature of this phenomenon has since been demonstrated

[42–45], proving the viability of Rydberg mediated quantum nonlinearities

at the single-photon level in strongly interacting Rydberg systems. The

huge strength of dipolar Rydberg interactions can extend the blockade ef-

fect over optically resolvable distances in the tens of microns. This has lead

to the demonstration of effective Rydberg-mediated photon-photon inter-

actions between photons in spatially separate optical modes [46], and to

entanglement between ensembles and atoms [47], extending applications in

quantum networking.

Furthermore, demonstration [48] of dark-state polaritons, quasiparticles

that can be adiabatically tuned from photonic to atomic excitations, [49]

opens the possibility of light storage within atomic atomic ensembles for

retrieval on demand[31, 50–55]. Slowlight techniques have been applied

to store photons as Rydberg polaritons [51, 55], demonstrating a route to

stationary photonic qubits, and photon memories [52, 56]. Thus a route

towards the creation of stationary photonic qubits as excitations of atomic
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ensembles exists.

Two-qubit logic implemented through Rydberg interactions [35, 57] has

been demonstrated [58–61]. Array registers based on neutral atom ensem-

bles have also been demonstrated [62], providing a route towards scalable

superatom qubits [63–65].

1.2 Collective Rydberg Ensembles

Underpinning modern photonic devices, quantum light-matter interactions

are of fundamental interest to the scientific community. Dicke’s description

of the cooperative behaviour of dense quantum emitters [36] revealed the

potential strength of cooperative phenomena, with an
√
N enhancement of

Rabi frequencies for a system of strongly coupled dipoles and a decay rate

which can be N times faster than the natural linewidth Γ 3 [37]. An ex-

tension of Dicke’s formalism to dilute gases [66] shortly followed revealing

the density dependence of coherent emission and superradiance. Density-

dependent modifications to the susceptibility of an ensemble of cold atoms

have been extensively studied. Dependence of fluorescence decay upon

the optical depth has been systematically reported [67–71] . superradi-

ance has also been reported in many other systems including nuclei [72],

atomic arrays [73] and coupled atom-waveguide systems [74, 75] to name

but a few. Subradiance, the corresponding phenomena involving decay rates

lower than natural Γ, due to excitation modes which couple weakly to the

environment, have also been reported [76, 77]. Several studies observe sub

and super-radiance in the same systems [50, 78].

The natural extension to the study of transient behavior of collective

three-level systems are prevalent [79, 80], with characteristic features such

as electromagnetically induced transparency (EIT ‘overshoot’ [81]) and

transient modifications [82, 83]. Recent interest in the decay of three-

3Where N denotes the number of coupled dipoles.
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level EIT systems has been sparked by the increasing implementation of

EIT in mapping light on to Rydberg excitations. This has lead to the ob-

servation of nontrivial photon statistics [42, 84, 85] within Rydberg EIT

transients. These studies hint at a rich physics that can reveal information

about the internal dynamics of Rydberg ensembles [86]. In this thesis, tran-

sient photon emission from two, three and four-level systems are presented,

where the third and fourth level are Rydberg states linked by a microwave

transition. Through application of resonant control fields, the decay rate

of transient emission can be modified [84]. This transient exhibits strong

Rydberg-mediated photon anti-bunching due to suppression of the under-

lying EIT coherences due to Rydberg interactions as reported recently in

a similar system [42]. The envelope of the decay can be modulated by

driving Rabi oscillations within the Rydberg manifold, to Rydberg states

that do not couple to the radiative state [29]. Microwave driving replaces

Van der Waals interactions with stronger resonant dipole-dipole interac-

tions [29, 48]. Interaction induced-dephasing of the collective excitation is

observed to enhance anti-bunching of photon emission in this regime [84].

Finally, strong dressing of the Rydberg manifold by a resonant microwave

field can suppress photon emission through Autler Townes splitting. Re-

moving this microwave field is shown to reverse this suppression, and can be

used to obtain precise temporal control over a pulse of anti-bunched pho-

tons with higher efficiency than recent demonstrations of transient photon

storage based on Stark-shifted subradiant excitations [50]. Enhanced inter-

action induced dephasing might be used to improve the photon statistics

of single-photon sources based on Rydberg EIT [87].

1.3 Mesoscopic Rydberg Qubits

The dawn of the age of quantum computing has been heralded by the

creation of Noisy Intermediate-Scale Quantum Computers (NISQCs) [88].

Existing NISQCs exploiting Rydberg interactions to implement two-qubit
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gates typically feature an arrays of single atoms held in far off-resonant

microtraps. Recent NISQCs have relied upon optical atomic transport

using movable tweezers to overcome the probabilistic loading of atomic

arrays due to collisional blockade [89, 90]. This limits the stochastic loading

probability to 0.5 4. In spite of this drawback, NISQCs based on Rydberg

atoms have found significant success; demonstrating entanglement [92–95],

simulating Ising Hamiltonians [96–98] and simulating spin liquids [99].

Single photons stored in atomic ensembles with strong Rydberg-mediated

interactions support the implementation of collective qubits based on Ry-

dberg polaritons [27, 35, 64, 100–103]. Multi-qubit systems based on Ry-

dberg Superatoms in arrays of mesoscopic ensembles could overcome the

need for complicated single atom loading schemes. Arrays of mesoscopic

ensembles have been recently demonstrated, proving scalability to at least

hundreds of ensembles [62]. These schemes might be used to achieve deter-

ministic loading of quantum registers based on arrays of atomic ensembles

with enhanced light-matter coupling. Motivated by proposals to reduce

the sensitivity of the polaritons to thermal dephasing [104], this thesis re-

ports on the implementation of qubits based on two atomic Rydberg energy

states, linked via a microwave dipole transition, with a natural light-matter

interface through collectively enhanced light-matter coupling in combina-

tion with the Dark State Polariton storage (DSP) protocol5 [35, 49]. Figure

1.2 shows a schematic of the qubit implementation. Adiabatic preparation

of collective Rydberg state |0R〉 is achieved through DSP storage [49]. Sin-

gle qubit gates are achieved through microwave fields. Two qubit gates6 are

supported by strong Rydberg interactions [105]. Huge Rydberg dipole ma-

trix elements support fast qubit rotations through commercial microwave

sources with precise timing [65]. Issues of thermal dephasing of qubits

4with a record 0.91 by limiting pair loss [91].
5In this thesis, ‘polariton’, ‘spin-wave’, and ‘timed-Dicke state’ are used interchange-

ably to highlight various physical aspects of collective excitations.
6Not demonstrated in this work.
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Figure 1.2: a The application of control fields to the ensemble of atoms causes

each atom to become an effective four level system. b The dark state polariton

(DSP) storage technique is used to transfer excitations from |E〉 to |0〉. Ryd-

berg blockade prohibits multiple excitations. Microwave fields manipulate the

qubit. c Visualisation of a collective spin-wave excitation encoded as a Rydberg

polariton in an ensemble of ultra-cold atoms trapped in an optical tweezer.

encoded in Rydberg polaritons, apparent in this thesis, can be overcome

through excitation of uniform spin waves [104]. Thus ensemble arrays of

collective Rydberg qubits are an interesting candidate for quantum net-

working and photonic interfacing [106, 107].

1.4 Thesis Structure

This thesis details the study of resonant light transmission through an en-

semble of cold Rubidium 87. The excited state of the D2 line is coupled

to a highly-excited Rydberg state via optical fields. Microwave fields pro-

vide coupling to a fourth Rydberg state. This work reports observations

of nontrivial photon statistics observed in transmitted light, and upon the

proof-of-principle implementation of mesoscopic Rydberg qubits as super-

positions of Rydberg polariton excitations of the underlying ensemble. This

work was carried out in Durham from 2016 - 2021 and follows on from pre-

vious demonstrations of controllable quantum non-linear optics and con-

tactless photon-photon interactions by previous project members.
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Chapter 2 provides an overview of the properties of Rydberg atoms

and ensembles that underpin this work, including an overview of the Ryd-

berg blockade mechanism, polariton storage and interactions between Ry-

dberg atoms and fields. Chapter 3 details elements of the experimental

setup that the author altered significantly in support of this work. Major

upgrades were made to the experimental apparatus in order to increase ex-

perimental uptime and expand the scope of the work including the addition

of a high-finesse optical cavity, novel Zeeman-shifted modulation transfer

locking scheme, additional cross-dipole trap to enhance confinement and

optical cooling system rebuild. Chapter 4 showcases observations of col-

lective effects in our system. Building on principles of coherent emission

from a three-level system previously reported in the literature, we demon-

strate that Rydberg dressing dramatically increases the intensity and ex-

tends the lifetime of the transient decay of a driven ensemble. Statistical

analysis of transient coherent emission reveals the signature of blockade,

and of interaction induced dephasing. This leads to a simple scheme for

studies of Rydberg mediated photon anti-bunching and interaction-induced

dephasing in mesoscopic systems. Control over the temporal envelope using

strong microwave fields is also demonstrated, with applications in produc-

ing instantaneous bursts of single photons. Chapter 5 demonstrates an

experimental implementation of a collective qubit based on multilevel Ryd-

berg polaritons. Coherent control is demonstrated using microwave pulses,

culminating in the first demonstration of a Rydberg polariton interferom-

eter to our knowledge7. The robustness of Rydberg polariton qubits are

probed by subjecting them to electrical noise. The highly entangled na-

ture of the polariton is shown to make the qubit robust to the loss of atoms

from the ensemble. Chapter 6 concludes this thesis and considers future

directions.

7 Our group is aware of a Rydberg dressed interferometer [63] and a polariton inter-

ferometer [108]
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Chapter 2

Theoretical Background

It is the purpose of this chapter to revisit the useful properties of Rydberg

atoms which provide for this rich field of research, and to derive expressions

characterising the mean-field optical response of an ensemble of atomic sys-

tems which is later applied to experimental data. First, an overview of

relevant Rydberg physics is given, and phenomena attributable to strong

Rydberg transition dipole moments including blockade and Stark shifts are

traced back to a strong dependence of interactions on the position of the

Rydberg valence electron and ultimately the electron energy through the

principal quantum number. The optical responses of atoms are described

in terms of their steady-state atomic susceptibilities which are calculated

from two, three, or four-level Optical Bloch equations (OBEs). Extracted

susceptibilities are used in later chapters to describe the optical response of

an atomic ensemble. Several optical phenomena relevant to this thesis such

as electromagnetically induced transparency, Autler Townes splitting, and

modifications to this optical response by Rydberg interactions are consid-

ered. An outline of the photon storage and retrieval protocol used to store

photons as collective Rydberg excitations in cold atomic ensembles is given.

Particular attention is paid to the derivation of atomic susceptibilities, and

implications for the interaction of light and matter.
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2.1 Rydberg Atoms

A quantum-mechanical description of the valence electron of a Hydrogenic

system like Rubidium is commonly achieved through a simple set of quan-

tum numbers. The principal quantum number n determines the binding

energy of the electron. Orbital angular momentum is quantised through L.

Electron spin is represented by s. Nuclear spin is described by I. The term

‘Rydberg atom’ is applied to atoms of any species, so long as the principal

quantum number n is large.

Rydberg physics concerns the nature of highly excited atoms with large

principle quantum numbers n. The nomenclature is attributable to Jo-

hannes Rydberg’s revision [145] of Johann Balmer’s formula [146] describ-

ing emission wavelengths of Hydrogen measured by Anders Ångström. Ry-

dberg’s reformulation emphasised the transitional nature of the equation

describing the Balmer series of Hydrogen.

1

λvac
= RyH

(
1

n2
i

− i

n2
f

)
, (2.1.1)

where λvac is the emission wavelength, ni,f are integers and RyH is the

Rydberg constant for Hydrogen.

Twenty years later, the Bohr model of the atom [147] introduced a zero

dimensional ionic core orbited by a zero dimensional electron under the

influence of a Coulombic potential,

VE = − 1

4πǫ0

Ze2

r
, (2.1.2)

where Z is the atomic number of the nucleus giving rise to nuclear charge.

This provided insight that linked the ni,f in Rydberg’s formula to elec-

tron orbitals. Bohr’s model provided the theoretical insight justifying the

derivation of RyH from fundamental constants.

RyH =
mee

4

8ǫ20h
3
, (2.1.3)
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Element Configuration n∗ δs

Li 2s 1.59 0.41

Na 3s 1.63 1.37

K 4s 1.77 2.23

Rb 5s 1.81 3.19

Cs 6s 1.87 4.13

Table 2.1: Ground state quantum defects δs (s orbitals) and effective principal

quantum number n∗ of alkali-earth metals, commonly used in atomic physics

due to their simple Hydrogenic structure. Shifts are largest when the orbital

angular momentum is low, due to overlap between the electron wavefunction

and screened charge [20, 148].

This is valid for hydrogenic atoms with a single valence electron having

large orbital angular momentum l. Under these restrictions, the energy

of the valence electron can be derived by considering that it orbits the

nucleus under the action of a VE. For Hydrogenic atoms with a single

valence electron, there is a significant deviation from this formula for low

l ≤ 3 states, due to penetration of the nucleus by the wavefunction of the

electron [20]. Within the ionic core, deviations from the Coulomb potential

cause a shift in energy level known as a ‘quantum defect’ which increases the

binding energy of the low l states. The quantum defects for common alkali

metals with a single valence electron are given in table 2.1. To account for

these quantum defects, the observed binding energy is commonly presented

in the following form.

En =
RyH

(n− δnlj)
2 , (2.1.4)

where δnlj is the quantum defect of state 〈nlj|, and j is the total angular

momentum j − l + s. The δnlj characterise divergences of the true energy

levels from Rydberg’s formula. The δnlj can be represented as an expan-

sion of even terms due to the spherical symmetry of a combined Coulomb
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Figure 2.1: Radial Rydberg S Wave Functions. a The wave functions of Rydberg

atoms are strongly dependent on the principal quantum number. The Probabil-

ity Density Function (PDF) for the electron position shows that the electron is

found far from the nucleus with strong probability (〈r〉 ≫ a0). b The cumula-

tive distribution function (CDF) for the radial position of the valence electron of

a Rydberg atom. The CDFs show that there is a low probability of finding the

electron within 0.5 µm of the nucleus for at n = 80. This strong scaling leads to

the properties of table 2.2. Calculated using ARC [152].

potential and short-range correction [149].

δnlj = δ0 +
δ2

(n− δ0)2
+

δ4
(n− δ0)4

+ · · · . (2.1.5)

The δi are determined by comparison with precision measurements of

atomic energy levels [150, 151]. Some δnlj for the valence electrons of alkali

metals in ground S states (l = 0) are summarised in table 2.1. States with

l > 3 have δ = 0 and are known as Hydrogenic states, with ground state

energy levels matching equation 2.1.3.

2.1.1 Rydberg Wave Functions

The Schrödinger equation for a Hydrogenic atom in a highly excited state

exposes the physical origin of many of the interesting properties of Rydberg

atoms. The Hydrogenic Schröding equation in atomic units is written
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[
−∇2

2µ
+ VCF(r)

]
ψ(r, θ, φ) = Eψ(r, θ, φ), (2.1.6)

where r, θ, φ are the atomic coordinates, µ is the reduced mass of the elec-

tron and VCF(r) is the potential energy of the system under the central

field approximation.

The central potential relevant to this work is a modified Coulomb po-

tential with additional potential terms. A modification due to polarisation

of core electrons by the valence electron resulting in the quantum defects

is made to VE. For states with low angular momentum, there is a signif-

icant probability for the electron to be found close to the nucleus. When

close to the nucleus, the effect of the inner electrons can no longer be ap-

proximated to a point charge. Polarisation of the inner electrons by the

valence electron is introduced to the model through the modified Coulomb

potential [153].

− Znl(r)

r
→ −Znl(r)

r
− αc

2r4

[
1 − e−(r/rc)6

]
+ Vso. (2.1.7)

Here, αc describes the static dipole polarisability of the core [153]. The

cutoff wavelength rc represents the spatial extent of the core, and is deter-

mined empirically. The modified Coulomb potential Znl is Coulombic far

from the core, but is modified for the low l states due to core penetration

by the valence electron at short range [153]

Zl = 1 + (z − 1)e−a1r − r(a3 + a4r)e
−a2r, (2.1.8)

where Z is the nuclear charge. The parameters a1, · · · , a4 are be obtained

through fits to precise measurements of electron energy levels [153].

The electron orbiting the nucleus creates an additional potential due to

the effective magnetic field of the nucleus in the frame of the electron, which

couples to the electron’s intrinsic spin, through the spin-orbit interaction

[154].

VSO =
α2

2r2
l · s, (2.1.9)
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Figure 2.2: Dipole Matrix Elements µif for a σ+ transition between ψi =

|niS1/2,mi = 0.5〉 and ψi = |nfP3/2,mf = 1.5〉 for nf > ni. Dipole matrix el-

ements between states with nf ≈ ni become large as ni,f increases. For typ-

ical n ∈ [60, 80] used in later chapters, the dipole matrix element approaches

10000ea0. For comparison, the D2 transition dipole moment in Rubidium is

4.227ea0 [155]. Matrix elements are calculated using ARC, an atomic physics

package for Python [156].

where α is ths fine structure constant, and s, l are the spin and angular

momentum operators.

With the above modifications to the coulomb potential, the Schrödinger

equation is separable in spherical coordinates r, θ, φ as follows.

[
− 1

2µ

(
d2

dr2
+

2

r

d

dr

)
− l(l + 1)

r2
+ VCF(r)

]
Rnl(r) = EnljR(r),

[
sin θ

Θ

d

dθ

(
sin θ

d

dθ

)
+
l(l + 1)

Θ
sin2 θ

]
Θm

l (θ) = m2,

[
− 1

Φ

d2

dφ2

]
Φm(φ) = −m2. (2.1.10)

where Ylm(θ, φ) = Θm
l (θ)Φm(φ) is a spherical harmonic and Rnl(r) are gen-

eralised Laguerre polynomials. Thus, equation 2.1.10 is fully parameterised

and can be numerically integrated to obtain Rydberg wave functions with

careful treatment of the range of integration due to the divergence of the

Coulomb potential at r = 0.
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2.1.2 Dipole Transitions

Under the dipole approximation, atoms couple to electric fields E through

their electric dipole moment d 1

E · d. (2.1.11)

Thus interaction between atomic systems and an electromagnetic field is

primarily determined by the dipole matrix elements (DMEs), which governs

the strength of the atomic dipole (in atomic units)

µif = 〈ψnlm| r |ψn′l′m′〉 . (2.1.12)

The dipolar strength is proportional to 〈r〉, the radius of the electronic

orbit. For n = 60/80 the mean orbital radius approaches one micron.

Figure 2.1 shows the scaling of the radial wave function over the range of

principal quantum numbers used in later chapters.

The electronic wave functions R(r)Y m
l (θ, φ) can be integrated to calcu-

late DMEs that determine the exaggerated atomic properties of Rydberg

atoms. We can simplify the computation of the dipole matrix elements µif

between states through the application of the Wigner-Eckart theorem [157]

which arises due to the separability of Equation 2.1.10, and the algebra of

spherical harmonics, which satisfy the equations for θ, φ.

The quantity µ = r · ê can be represented in a spherical basis

µ−1 =
1√
2

(x− iy) µ0 = z µ+1 =
1√
2

(x+ iy). (2.1.13)

The µq are defined as µq = r
√

4π/3Y q
1 (θ, φ) where q = ±1, 0 drive σ∓, π

transitions respectively. Spherical operators provide for direct application

of the Wigner-Eckart theorem, stating 〈µif〉 can be evaluated by simple

algebra of spherical tensor operators combined with a reduced matrix ele-

ment, which quantifies the radial dependence and depends on l, r through

1Higher order electronic couplings, and magnetic couplings can also occur.
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equation 2.1.10. The following general relationship for a tensor operator

defines the Wigner-Eckart theorem for a tensor operator µq

〈nlml|µq|n′l′m′
l〉 = (−1)l−ml 〈l||µ||l′〉


 l 1 l′

−ml q m′
l


 . (2.1.14)

The expression in parentheses is the Wigner 3j symbol and is related to the

Clebsch Gordan coefficient through

〈j1j2m1m2|j1j2jm〉 = (−1)−j1+j2−m3
√

2j3 + 1


 j1 j2 j3

m1 m2 −m′
3


 .

(2.1.15)

The properties of the Wigner 3j function determine selection rules for dipole

transitions, requiring ∆l = ±1,∆m = q for nonzero evaluation. With the

dipole operator expressed in terms of spherical harmonics µq through Equa-

tions 2.1.13, the reduced matrix element can be evaluated by performing

the radial integral, to determine the dependence upon the overlap of radial

wavefunctions, which depends only on l, l′ through wavefunction2.

〈nl|r|n′l′〉 =

∫
Rn,l(r)rRn′,l′(r)r

2dr, (2.1.16)

which can be used to define the reduced radial matrix element in the

Wigner-Eckart theorem (Equation 2.1.14)

〈l||µ||l′〉 = (−1)l
√

(2l + 1)(2l′ + 1)


 l 1 l′

0 0 0


 〈nl|er|n′l′〉 . (2.1.17)

Thus the calculation of matrix elements between orbital angular momentum

eigenstates can be reduced through the Wigner-Eckart Theorem (Equations

2.1.14 - 2.1.17) to terms defining the dependence upon the radial wavefunc-

tion at specific l, l′, a coupling between orbital angular momenta through

interaction with the photon and another defining the coupling between the

specific ml,ml′ .

2Typically achieved by numerical integration
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The values for µif for several states ψi, ψf are shown in figure 2.2 for the

transitions ψi = |niS1/2,m = 0.5〉 ↔ ψf = |nfP3/2,m = 1.5〉. The dipole

matrix elements between close lying Rydberg states used in later chapters

to define a qubit |nS1/2,m = 0.5〉 ↔ |nS1/2,m = 0.5〉 are shown as black

data points and scale as n2.

Fine Structure

The Wigner Eckart theorem can be extended to calculate dipole matrix

elements in the fine structure basis [157]. The reduced matrix element is

related to equation 2.1.17 through

〈j||µ||j′〉 = δs,s′(−1)l+s+j′+1
√

(2j + 1)(2j′ − 1)




j 1 j′

l′ s l



 〈l||µ||l′〉 .

(2.1.18)

Where the quantity in curly braces represents the Wigner - 6j coefficient,

which is defined as a sum over products of four Wigner-3j symbols. The

s, s′ define the initial and final spin states of the system, introducing the

selection rule δss′ . Equations 2.1.14 through 2.1.18 can be used in con-

junction to calculate the coupling between two states of the hydrogenic

Hamiltonian with fine-structure interaction.

〈nlj|µq|n′l′j′〉 = (−1)j−mj+s+j′+1
√

(2j + 1)(2j′ + 1)(2l′ + 1)(2l′ + 1)

...×




j 1 j′

l′ s l






 j 1 j′

−m q m′




 l 1 l′

0 0 0


 〈nlj|r|n′l′j′〉 .

(2.1.19)

Hyperfine Structure

Atomic states often depend commonly on total angular momentum |l, s, j, F,mf〉
due to the interaction of the electronic and nuclear spin [20]

HHFS = µI ·Be ≡ AI · s. (2.1.20)

Under the action of this Hamiltonian, j is no longer a good quantum num-

ber, and instead total angular momentum F = J + I, with eigenvalue f ,
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Property Scaling Law

Binding Energy n−2

Energy difference of adjacent states n−3

Orbital radius n2

Polarisability n7

Radiative lifetime n3

Ionisation energy n−4

Resonant dipole interactions (C3) n4

Resonant dipole blockade radius r
(3)
b n4/3

Van der Waals interactions (C6) n11

Van der Waals blockade radius r
(6)
b n11/6

Table 2.2: Rydberg Scaling Laws. Many of the properties of Rydberg atoms

are exaggerated due to the likelihood that the valence electron is predominately

found far from the nucleus (see Figure 2.1). This leads to large polarisability

and strong interactions through the huge dipole matrix elements e 〈r〉. Excellent
background & derivations can be found in many texts including [115, 119, 156,

158].

which remains constant under the interaction, is used.

Energy splittings caused by the Hyperfine interaction are typically small

for Rydberg states [151], on the order of hundreds of kilohertz for principal

quantum nuumbers used in this thesis. Values for the zero field HFS and

Landé g factors, which determine Zeeman splitting of mf states in weak

magnetic fields can be found in [155].

2.1.3 DC Stark Shift

DC electric fields polarise atoms, and the induced dipole-field interaction

energy can cause energy shifts [159] or state mixing. The DC Stark effect

was first communicated by J. Stark to Nature in 1913 [160]. The AC

equivalent was observed sometime later by Bonch-Bruevich and colleagues
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in 1969 [161] after the development of the ruby laser. Stark shifts ∆EStark

caused by applied electric fields E cause shifts of the the bare atomic energy

levels. DC electric fields couple to atoms through the dipole moment (now

in SI units)

HStark = H0 + eE · d. (2.1.21)

Analysis of the above equation shows that the electric field couples to the

atom through the dipole matrix operator µi,j and acts to polarise the atom

for a field in the z direction. The degeneracy of states with low angular

momentum l ≤ 3 is lifted by the quantum defects δn,l. As such, for low

values of the electric field and low l, the energy shift ∆EStark can also be

calculated using second-order perturbation theory. Thus the selection rules

for dipole transitions can again be applied to determine the states coupled

by the interaction Hamiltonian.

∆EStark = e2|E|2
∑

n′ℓ′j′ 6=nℓj

|〈n, ℓ, j,mj|ẑ|n′, ℓ′, j′,m′
j〉|2

En′ℓ′j′ − Enℓj

. (2.1.22)

The summation which contains contributions to the AC Stark effect due

to interactions with states n′l′j′ is often interpreted as the polarisability of

the atom.

α0 = e2
∑

i 6=j

|µij|2
Ei − Ej

. (2.1.23)

Whereafter the DC stark effect can be compactly represented as.

∆EStark = α0|E|2. (2.1.24)

The numerator and denominator in equation 2.1.23 vanish for states with

dissimilar n, and so the the summation is dominated by couplings between

states of similar n. Empirical functions exist to obtain approximate values

[162]. For the S states with the relationship

α0 = 2.202(28)× 10−9n∗6 + 5.53(15)× 10−11n∗7[MHz / (V/cm)2] (2.1.25)
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The n7 scaling dominates above ∼ n = 40, as α0 becomes proportional to

the ratio of the dipole matrix element squared (r4) to state energy differ-

ences (r−3). Stark shifts can provide extreme sensitivity to electric fields.

When probing transitions shifted by the Stark effect (as in chapter 5), the

relative shift of the transition is observed

∆Stark
i,f = ∆E1,Stark − ∆E2,Stark = (∆α)|E|2, (2.1.26)

where ∆(1,2)Stark are the stark shifts of the two coupled states and thus

∆α = α1 − α2.

Strong fields can not be treated perturbatively, as the basis of zero-

field states |ψ0〉 is not diagonal at high field strength. The form of the

Stark Hamiltonian causes states that obey the selection rules for dipole

transitions to become coupled. For the general case of strong fields, HStark

must be diagonalised to obtain the eigenstates of the coupled basis along

with their associated energy levels. This is particularly relevant at high

principal quantum numbers, where dipole moments are large.

Eigenstate mixing due to strong DC Stark shifts outside of the pertur-

bative regime is shown in Figure 2.3. The Stark map for state |60S1/2〉
shown in panel a is initially quadratic due to state defects lifting the de-

generacy of the l = 0 state, as opposed to the |57, l > 3〉 manifold at −1012

GHz with linear shift due to negligible quantum defects between states with

l > 3.

2.1.4 AC Stark Shift

Describing the effect of AC fields on atomic energy levels in full generality

can only be achieved numerically, and approximately [163, 164]. When

the field strength is far below the saturation intensity, the Stark effect can

be calculated via perturbation theory [163]. A semiclassical electric field

defined by

E(t) =
E
2

[exp(iωt) + exp(−iωt)] , (2.1.27)
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Figure 2.3: Stark maps for Rubidium 87 showing energy level shifts as a result

of an applied electric field for some of the states used in later chapters. (a) Stark

map for |ψi〉 = |60S1/2mj = 0.5〉. A strong avoided crossing with the nearby

|n = 57〉 manifold is reached at around 2 V/cm. (b) Stark map for |ψi〉 =

|59P3/2mj = 1.5〉. States up to l = 20 are diagonalised. Colour coding in a, b

represents the inner product between |ψi〉, and diagonalised states |ψi′〉 which

are eigenvectors of the Stark Hamiltonian (Equation 2.1.21). Matrix elements

are calculated using ARC [156].

again couples to the electron through the dipole moment d̂ ·E = −e|E|µif .

In general, even a perturbative approach requires complex mathematics

requiring many body relativistic calculations see e.g. [165] to take account

of the polarisation of core electrons by the field. A simpified derivation

applies to the far detuned atom field coupling where only dispersive effects

are relevant. Dressed state energies E ′ for the combined atom-field system

must be used3. The coupled atom-field system field has n photons thus

energy n~ω. When the atom is excited by the field to state |j〉, the energy

of the system is E ′ = ~ω0 + (n − 1)~ω. The equation for the energy shift

via second order perturbation theory is [163]

∆Eg = e2
E2

4

∑

i 6=g

|µei|2
(

1

Eg − Ei − ω
+

1

Eg − Ei + ω

)
, (2.1.28)

where the two terms in the brackets correspond to the energies of an atom

having emitted or absorbed a photon at frequency ω. Thus the approxi-

3for a full derivation, see [166, 167]
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Figure 2.4: The polarisability of Rubidium 87 calculated via Equation 2.1.29. In

yellow, only the D1, D2 transitions are used to calculate αe(ω). In red, transi-

tions to nP1/2, nP3/2 are included for n < 9. The 852 nm trapping wavelength is

identified by a vertical black line. The D1, D2 transitions dominate the polaris-

ability at the frequency of the dipole trap laser. A common trapping frequency

of 1064 nm is shown as a vertical purple line, highlighting the increased polaris-

ability of Rubidium 87 at 852 nm.

mation is made that the atom can only absorb or emit one photon, and

higher order effects corresponding to absorption and emission of multiple

photons are not considered. Rearranging for the polarisability , we obtain

[163]

δEg =
1

2
·
[
e2|µgi|2

∑

i

ωgi

ω2
ei − ω2

]
· E

2

4
≡ −1

2
αg(ω)

E2

4
, (2.1.29)

where ωei is the transition frequency between the two states Eg −Ei. The

quantity αg(ω) is known as the dynamic polarisability and characterises

the polarisation of the medium in response to an AC field. This expres-

sion is valid provided that the detunings from all transitions remains large

µgiE ≪ |ω − ωgi|. The polarisability of Rubidium 87 is shown in Figure

2.4, calculated via Equation 2.1.29. This is used to calculate trap depths

in section 3.3.4.
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Figure 2.5: Electric field amplitudes |E| of dipolar radiation fields in the x, y, z

planes for a dipole oscillating in z situated at the origin x = 0, y = 0, z = 0.

Calculated using equation 2.1.30. The logarithm of the absolute value of the

field is shown. The singularity at the origin is clipped.

2.1.5 Dipole - Dipole Interactions

Strong interactions with electric fields due to the huge dipole moments also

lead to strong interactions between Rydberg atoms. Dipoles separated by

a distance r interact via their dipole fields

El(rj) =
k3

4πǫ0
eikr

{
(r̂× dl) × r̂

1

kr
+ [3r̂ (r̂ · dl) − dl]

(
1

(kr)3
− i

(kr)2

)}
,

(2.1.30)

where r̂ ≡ ra−rb is the position vector separating the two atomsic nuclei at

positions ra, rb. The dipolar field is depicted in Figure 2.5. For r ≫ n2a0,

where the atoms are separated by a distance much greater than the atomic

radius 〈r〉, the potential of the dipolar interaction can be written as [115]

Vdd(r) =
e2

r3
· (rj · rl − 3[rj · r][r · rl]) , (2.1.31)

where r is the inter-atomic separation as shown in Figure 2.6 and rl, rj

are the positions of the electrons of atom j, l measured from the nuclear

core. The implications of these interactions are profound and form the
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basis of this thesis. Assuming that the dipoles are separated along z, the

dot products can be expanded in terms of spherical operators

Vdd(R) =
1

r3
(µ1+µ2− + µ1−µ2+ − 2µ1zµ2z) , (2.1.32)

where µiq are defined in 2.1.13 and i denotes one of the interacting atoms.

Evaluating 2.1.32 introduces the transition dipole matrix elements and is

thus dependent on the magnitude of the dipolar matrix elements µij. This

matrix element is almost isotropic for |nS1/2〉 states, whilst for l > 0 there

is significant angular dependence [152, 168]. This highlights the nature of

the interaction as the exchange of virtual photons, which must adhere to

selection rules, and does not affect the total angular momentum projection,

preserving m1j +m2j.

The Hamiltonian for two pair states |rr〉 , |r′r′′〉 coupled via equation

2.1.32 is modified to include the dipolar interaction Vdd(R) between these

two states

Hdd =


 0 Vdd(R)

V ∗
dd(R) ∆∞


 . (2.1.33)

where ∆∞ is the energy difference between pair states |rr〉 , |r′r′′〉 at infi-

nite separation. As the atoms are brought into proximity, the energy of

the interacting atoms increases and the Hamiltonian must be diagonalised,

revealing modified energy levels for the coupled system.

Edd,± =
∆∞ ±

√
∆2

∞ + 4V 2
dd(R)

2
. (2.1.34)

First Order Resonant Dipolar Interactions (V (r) ≫ ∆∞)

The limit of strong interactions Vdd(r) ≫ ∆∞ is known as the resonant

dipole regime, where the energy scale of the system is set by the inter-

action potential Vdd, which has a 1/r3 scaling. In this regime, first-order

perturbation theory can be used, and the shift in energy is first order in

Vdd
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∆Edd,± ≈ ±Vdd(r) = ±C
n,l,j
3

r3
. (2.1.35)

The C3 parameter characterises the interaction strength and is a func-

tion the principal quantum number n, scaling ∝ n4 through the dipole

matrix elements (c.f. Equation 2.1.31). The total energy shift scales as the

underlying dipolar interaction strength ∝ r−3.

Second Order Van der Waals Interactions V (r) ≪ ∆∞

The limit of weak interactions Vdd(r) ≪ ∆∞ is known as the Van der

Waals (VdW) regime, where the modification to the non-interacting pair

state energy levels can be calculated using a perturbative approximation

which results in a second order correction.

∆Edd,± ≈ ±− V 2
dd(r)

∆∞
= ±C

n,l,j
6

r6
. (2.1.36)

The Cn
6 parameter characterises the interaction strength. Since V (r) ∝ n4

through the dipole matrix elements, and the energy separation ∝ n−3, the

C6 parameter scales as n11.

The transition between resonant and VdW interactions occurs at the

Van der Waals radius Rvdw and occurs at Vdd(r) = ∆∞, thus scaling as

n7/3. For the excited pair state |r′r′′〉 = |60S1/260S1/2〉, the interaction is

characterised by a Cn,l,j
6 parameter of C6/h = 150 GHz µm−6. The C6

parameter can have positive or negative sign, and is repulsive (C6 < 0) for

highly excited |nS1/2〉.
It is possible to use the DC stark shift to tune VdW interactions between

the resonant dipolar and Van der Waals regimes through Förster resonance.

Selective Stark shifts that bring two Rydberg pair states into (or out of)

resonance under an applied E field can effect the transition. Resonant

dipole couplings cause strong interactions, and an avoided crossing in the

absorption profile can be observed [132, 168–170]. Alternatively, the same

can be achieved through resonant interaction with microwave fields, where
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Figure 2.6: Dipole - dipole interactions between a pair of atoms lead to energy

level shifts. a The magnitude of the energy shift ∆E can be large for near-

resonant pair states coupled by the dipole-dipole interaction. b Geometry of

interacting atoms in equation 2.1.31.

oscillations of pair state superpositions are brought in and out of resonance

[48].

2.1.6 Blockade

Energy shifts caused by strong dipolar interactions between Rydberg atoms

can modify the bulk optical response of an atomic medium [119]. In dense

media, ∆Edd can be large enough to shift pair states by more than the

linewidth of a corresponding dipolar transition, or excitation laser. This

effectively decouples the pair state from the excitation field and heavily

suppresses excitation of states corresponding to multiple Rydberg excita-

tions. This phenomenon is known as Rydberg blockade [35].

Conceptual Rydberg blockade is outlined in Figure 2.7 and is an exten-

sion of the consideration of two atoms separated by r given in section 2.1.5.

Consider an ensemble of atoms driven by a probe laser. The electric field

of the probe laser has Rabi frequency Ωp/2π, resonant with a transition

between the ground state |g〉 and Rydberg state |r〉 of the non-interacting

atoms (R = ∞). Initially, no Rydberg excitations are present in the en-

semble. A resonant coupling beam seeds a single Rydberg excitation, and
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thus population of the symmetric state |W〉 is achieved

|W〉 =
1√
N

N∑

j=1

e−ik·r |g1g2...rj...gn−1gn〉 . (2.1.37)

Excitation of multiply excited states within the blockade radius are pro-

hibited by blockade. For the approximately isotropic Rydberg S states, the

Rydberg blockade radius is defined as

rb = i

√
Ci/~Ωp, (2.1.38)

where i = 3 for resonant dipolar interactions and i = 6 for Van der Waals

interactions.

Evidence for this effect was initially observed in continuous wave ex-

periments through supression of excitations [171, 172]. Blockade has since

been realised in many contexts and for many purposes. Blockaded ensem-

bles show strong, and even quantum optical nonlinearities [45, 116, 124].

The natural length scale set by rb can partition the ensemble and lead to

crystalisation of excitations [173–178].

When the blockaded system is driven by Ωp, Rabi oscillations occur

between the symmetric ground state and the singly excited state with a

Rabi frequency
√
NΩp/2π, exhibiting a collective enhancement [115]. This

effective two level system has been used to implement effective free-space

CQED, where strong light matter coupling is achieved without use of an

optical cavity [27]. This blockade radius can extend over tens of microns

leading to the demonstration of interactions between spatially separate,

optically resolvable media [105]. Blockaded media with enhanced light

matter coupling might find applications in quantum networking to interface

‘flying qubits’ [8, 9].

Suppression of multiple excitations imparts a many body character to

Rydberg ensembles, and thus makes them useful for entanglement gen-

eration [129] and multi-qubit gates that rely on one-to-many interactions

[142]. Rydberg interactions have further been exploited for the implemen-
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Figure 2.7: a Pair state energy level shift for states close in energy to |rr(r)〉 =
|60S1/2(rj)60S1/2(rl)〉. As r = rj − rl is decreased, VdW interactions cause en-

ergy shifts. For r <4 µm, strong interactions cause state mixing. Calculated

with ARC [152]. b Pair state energy shifts can decouple |φ〉 from a resonant

coupling Ω. i, ii Single Rydberg excitations lacking Vdd interactions are per-

missible at any r. (iii) Vdd causes strong shifts. If the pair state shift of |rr〉
is greater than the linewidth γ of the coupling field, excitaions are not possible

(blockade regime). d when r > rb multiple excitations are not blockaded. In-

stead, small interactions cause phase shifts, which can cause dephasing. Note,

that for small r, perturbation theory is no longer useful and strong state mixing

occurs. This is known as ‘Rydberg Spaghetti’ [60].

tation of single photon transistors [135, 136], switches [179], phase gates

[133, 180], entangling gates [181, 182], CNOT gates [92] and strong sin-

gle photon non-linearities [45, 51, 183]. Rydberg blockade is extensively

utilised in the creation of modern NISQCs e.g. in implementing fast gates

[92], creating robust qubits from topological spin liquids [99] implementing

multi-qubit gates and even solving the maximum independent set problem

[184].
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2.2 Atom Light Interactions

We now turn our attention to the semi-classical interaction between a light

field and an ensemble of atoms. Whilst cooperative phenomena are absent

from these models, they are useful in defining a base case against which

to measure cooperative phenomena. We first derive the response of a two-

level atomic ensemble and obtain the absorption and dispersion relations for

a monochromatic light wave propagating in two-level media. Extensions

to three and four-level media include effects such as Electromagnetically

Induced Transparency (EIT) [40], Autler Townes splitting [185] and photon

storage [49], which underpin work presented in chapters 4 and 5.

2.2.1 Electromagnetic Waves in Dielectric Media

Maxwells’ equations [186] for electric fields E and magnetic fields H in di-

electric media are written in terms of D, the electric displacement field

D = ǫ0E + P and the magnetic field strength B = µ0H. In an un-

magnetized medium, where the magnetisation vector M is assumed to have

zero norm,

∇ ·D = ρf , (2.2.39)

∇ ·B = 0,

∇× E = −Ḃ, (2.2.40)

∇×H = Jf + Ḋ. (2.2.41)

where ρf is the charge density and Jf is the free current density, both pre-

sumed to be zero in an atomic ensemble. Newtonian time derivatives are

used [186]. From these equations, we obtain the equation of a monochro-

matic plane wave traveling in a linear dielectric medium.

∇2E = µǫ
∂2E

∂t2
. (2.2.42)
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In a linear dielectric, the permittivity ǫ is given by

ǫ ≡ ǫ0(1 + χe), (2.2.43)

where χe is the electric susceptibility of the medium to polarisation by the

electric field. Thus the polarisation is defined through

P = ǫ0χeE, (2.2.44)

where ǫ0 is the electric permittivity. Assuming that the electric field is a

monochromatic plane traveling wave with fixed frequency, the wave equa-

tion then becomes

k2E +
(ω
c

)2
[1 + χe]E = 0, (2.2.45)

Thus the complex k is defined through

k2 = k2
0 [1 + χe] . (2.2.46)

and we define an effective k vector through the complex refractive index

k = (ñ− iκ) · k0, (2.2.47)

where k0 is the wave vector of the particle in vacuum. The refractive index

of the medium for this plane wave is thus n =
√

1 + χe through equation

2.2.45. Where χe is small, we are able to take a Taylor expansion about

n = 1, whence we obtain the common approximation n ≈ 1 + χe/2. The

real and imaginary parts of the refractive index ñ and κ are defined through

the susceptibility as

ñ = 1 + Re [χe/2] , (2.2.48)

κ = Im [χe/2] . (2.2.49)

and so a plane wave with frequency ωp has a modified amplitude and phase

after transmission through such a polarisable medium of length l

ET = E0 exp[−kκl/2] exp[i(kñl/2 − ωt)]. (2.2.50)
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The real part of the susceptibility causes a relative phase ∆φ shift com-

pared to propagation through free space. Absorption into the dielectric

medium also causes an exponential decay through the Beer-Lambert law.

IT/I0 = exp[−κkl], (2.2.51)

∆φ = ηkl, (2.2.52)

where η = Re [χe/2]. We thus turn our attention to deriving the suscep-

tibility of an atomic ensemble, in order to derive the effect of propagation

upon light transmission.

2.2.2 Lindblad Dynamics

It is rarely necessary to model the full manifold of atomic states. In the

field of atomic and molecular physics, it is common to reduce a multi-level

atom to an m-level sub-system. Hamiltonians of atomic systems often nat-

urally separate into subsystems through dipole selection rules and resonant

excitation. Figure 2.8 shows how the state manifold of Rubidium 87 can

be reduced to an effective four-level system, used in chapter 4. As the ex-

perimental timescale in later chapters is around 1 µs, only processes acting

on timescales faster than this are included in the basic model.

The electric susceptibility determines the linear response of a medium

to an electric field.

P = ε0χeE. (2.2.53)

This polarization field must be equivalent to the sum of the dipolar radia-

tion field of the individual dipoles that constitute the medium.

P = ̺d =
1

2
ǫ0E

[
χee

iωt + χ∗
ee

−iωt
]
. (2.2.54)

Here, d is the atomic dipole moment and ̺ = N/V is the density of N

atoms in a volume V . To calculate χe for an ensemble of identical atoms
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Figure 2.8: Energy landscape of atomic Rubidium 87. Real atoms have a mani-

fold of electronic energy levels. States are isolated during modelling and exper-

iment through resonant interactions and dipole selection rules. Above, the m

level Rubidium atom is reduced to a four level system of (arbitrary) ground |g〉,
excited |e〉 and upper |r〉, |r′〉 states, with couplings Ωi. Note that the quantum

defect of δs = 3.19 state 5S1/2 significantly increases the binding energy of the

ground state, which is energetically below the 2S1/2 state of Hydrogen. Energy

levels calculated with ARC [152].
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forming a macroscopic medium, we introduce the density matrix formalism.

The wave-function of a single atom is

|Ψ〉 =
∑

i

ci |ψi〉 ≈
∑

i∈{e,g,r,r′}
ci |ψi〉 . (2.2.55)

These are the most natural choice for the {|ψi〉}, and are eigenstates of

the Hamiltonian that describes the atomic system. Introducing the density

operator,

ρ̂ij = |Ψ〉 〈Ψ| = |ψi〉 cic∗j 〈ψj| . (2.2.56)

Moving to the ensemble picture, the cic
∗
i can be re-labelled pi, and represent

the probability of finding the atom in a particular state i. The off-diagonal

terms cic
∗
j are the coherences, and represent the degree to which ψi,ψj

superpositions are present and coherent among the many atoms of the en-

semble. For an ensemble of two level dipoles, these coherences are maximal

when all dipoles are oscillating in phase and are minimal when there is no

phase coherence between dipoles, or no superposition. The dipole operator

is given by

d = eµeg |e〉 〈g| + eµ∗
eg |g〉 〈e| . (2.2.57)

Thus dipole moments only exist for states in superposition. Stationary

states have no dipole moments. The expectation value of the dipole oper-

ator is

Tr{ρ̂d} = e(µegρege
iωpt + µ∗

egρ
∗
gee

−iωpt), (2.2.58)

and so we have the result that the linear susceptibility of the medium is

directly attributable to coherent excitation of the underlying atoms. This

adds another equivalence relation to equation 2.2.54.

1

2
ǫ0E
[
χeiωt + χ∗e−iωt

]
=
∑

ij

̺e(µgeρgee
iωijt + µ∗

geρege
−iωijt), (2.2.59)

Where ̺ is the atomic density N/V . From this equation, it is clear that

the linear susceptibility is proportional to the off-diagonal matrix elements

of the density matrix [116].

χ = − 2̺µ2
eg

ǫ0~Ωij

ρeg, (2.2.60)
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where we have introduced the Rabi Frequency Ωp = µeg · E/~. Our experi-

ments are primarily concerned with systems of dim(H) ≤ 4. The suscepti-

bilities to a probe beam of two [20], three [40] and four level systems [187]

are well documented, and can be conveniently derived from the Lindblad

equation [188],

ρ̇ =
i

~
[ρ,H] −

∑

n,m

D [Anm] = ρH−Hρ−
∑

nm

D [Anm] . (2.2.61)

Here, ρ is the density matrix of the system, and D is the Lindblad dephasor

which arises due to tracing over the states of the universe that are neglected

from the dynamics. The dephasor acts on operators An which form a basis

of the Hilbert space under consideration.

Dnm = hnm

(
AnρA

†
m − 1

2

{
A†

mAn, ρ
}+
)
, (2.2.62)

where An,m are the states of the system, and the hnm define the dephasing

coefficients which determine the dephasing dynamics [189]. Braces repre-

sent the anti-commutator.

For cold atomic Rydberg systems, the dominant dephasing mechanism

is often spontaneous emission from an excited state. The Lindblad equation

can simulate this kind of dephasing by setting the hmn associated with

the transition |n〉 〈m| to
√
γnm/2, where γnm is the relevant excited state

lifetime. Ensemble dephasing due to Van der Waals interactions can also

be simulated by a including a dephasing term proportional to the Rydberg

population hrr =
√

Γdd/2.

2.2.3 Two Level Media

One of the simplest cases of atomic dynamics concerns a single atomic

electron (or ensemble of non-interacting atoms) with internal states |g〉, |e〉
interacting with a radiation field under the electric dipole approximation.

The two level system is depicted inset on figure 2.10. The Schrödinger

equation for the electron is [20]

i~
∂

∂t
|ψ(rt)〉 = [H0 + er · E(r0, t)] |ψ(rt)〉 , (2.2.63)

February 22, 2022



2.2. Atom Light Interactions 52

where H0 corresponds to the bare atomic Hamiltonian of Equation 2.1.6,

and E(r0, t) = E0 cos(k · r− ωt).

We now shift to the interaction picture |g〉 → eiEgt/~ |g〉, where Eg are

the energies of the states under the atomic Hamiltonian. The Hamiltonian

of the atomic system can then be written in the interaction picture as

H(2) =
~

2


 0 Ω∗

pe
iωegt

Ωpe
−iωegt 2ωeg


 . (2.2.64)

Here, we have redefined the zero-energy point to be equal to the energy

level of |g〉, thus ωeg = Ee − Eg, the difference in energy between states.

ωeg is equal to the detuning of the laser field ωeg = ωp − ωeg. The coupling

Ωp = eµegE0, (2.2.65)

is also introduced, and is defined as a product of the electric field and the

dipole matrix element defined in equation 2.1.12. The prefactor comes from

the electric field susceptibility definition in terms of counterpropagating

exponentials. In order to simplify the result, we now make a switch to a

frame that rotates at the frequency of the probe beam, at which point the

Hamiltonian adopts the simple form

H(2) =
~

2~


 0 Ω∗

p

Ωp 2∆p


 . (2.2.66)

Diagonalising this Hamiltonian gives dressed energy levels

E = ±~

2

(
∆ ±

√
∆2 − Ω2

)
. (2.2.67)

We can use the Lindblad equation 2.2.61 to simulate dynamics under the

action of this Hamiltonian. For the dephasing terms, we include a single

dephasor

∑

ij

Dij [Amn] = Deg

[√
Γe/2 |g〉 〈e|

]
. (2.2.68)
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Figure 2.9: Rabi oscillations a function of rotation angle Ωpt. aDephasing caused

by Γe causes damped Rabi oscillations. b, c This dephasing causes the system

to relax towards ρee = 0.5, when the system described by the density matrix is

maximally out of phase. Figure legend shows Ωp/2π. Decay of oscillations due

to dephasing on the Bloch sphere for Ωp = 2π · [4.6, 50] MHz.

Propagating this Hamiltonian and Dephasor through the Lindblad equa-

tion reveals the following equations for the time dependence of the density

matrix elements ρij

ρ̇gg =
iΩp

2
(ρge − ρeg) + Γeρee, (2.2.69)

ρ̇ge =
iΩp

2
(ρgg − ρee) + ρge

(
−i∆p −

Γe

2

)
, (2.2.70)

ρ̇eg =
iΩp

2
(ρee − ρgg) + ρeg

(
i∆p −

Γe

2

)
, (2.2.71)

ρ̇ee =
iΩp

2
(ρeg − ρge) − Γeρee. (2.2.72)

These are the two-level Optical Bloch Equations (OBEs), governing the

motion of the optical Bloch vector. The OBEs can be used to calculate

the evolution of the density matrix under a certain set of initial conditions

ρ(0). Numerical integration can be performed to simulate the response of

the system to complex, time-dependent fields.
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Rabi oscillations are one simple consequence of driving the system with

an electric field. Starting in the ground state, ρij(t = 0) = δigδjg the dy-

namics can be simply solved by applying the Schrödinger equation to the

two level Hamiltonian of equation 2.2.66 and matching boundary condi-

tions. The solution shows that in the absence of dephasing, the probability

that the atom is found in states the excited state ρee is

ρee =
Ω2

p

Ω2
p + ∆2

[
sin

(√
Ω2

p + ∆2

2
t

)]2
. (2.2.73)

On resonance, this reduces to the simple formula

ρee(t)
∣∣
∆=0

= sin (Ωpt/2)2 , (2.2.74)

where Ωpt defines the rotation of the state vector. Resonant Rabi oscilla-

tions for various Rabi frequencies are shown in figure 2.9. The curves are

calculated through numerical integration of the OBEs including a dephas-

ing term representing the natural linewidth of the Rubidium D2 line at

Γe = 6.065 MHz showing the transition from strongly damped oscillation

at low Ωc to coherent oscillation at high Ωc. Corresponding Bloch sphere

evolution is also shown.

When the coupling Ωp is very weak, we can make the approximations

that the system remains in the ground state ρij = δigδjg and that the

population of the excited state remains low Ω ≪ Γ =⇒ ρee ≈ 0. Under

these assumptions, we can rearrange the OBEs to obtain a simple form for

the magnitude of the steady state atomic coherence by setting the time

derivative to zero.

ρeg =
iΩp/2

Γ2 − i∆p

. (2.2.75)

The susceptibility of an atomic transition with the linewidth of the

Rubidium D2 line at Γe = 6.065 MHz is shown in Figure 2.10.
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Figure 2.10: The real and imaginary parts of the susceptibility of a two level

ensemble with spontaneous decay rate Γe, matching that of the the Rubidium

87 D2 line. The real and imaginary parts have been normalised to Im[χ(2)](∆ =

0) = 2Nd2eg/ǫ0~Ω. The transmission of a media composed of such two-level

scatterers having OD = 3 is also shown. Inset: The two level system considered

in this section, defined by Rabi frequency Ωp, decay rate Γe and detuning ∆p.
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2.2.4 Three Level Media

In this section, we consider the same two level system coupled to an addi-

tional state state |r〉, interacting with a second electric field that couples

states |e〉, |r〉 We also introduce the decay constant Γr, defining radiative

decay from state |r〉. This system is depicted in figure 2.11. The Hamilto-

nian for this system in the interaction picture can be derived by following a

process analogous to the derivation of the two-level system. The following

three-level Hamiltonian applies to the system depicted in figure 2.11

H(3) =
~

2




0 Ωp 0

Ωp −2∆p Ωc

0 Ωc −2(∆p + ∆c)


 . (2.2.76)

Diagonalising this Hamiltonian gives the eigenstates of the coupled system.

Making the variable substitutions

tan(θ) = Ωp/Ωc, (2.2.77)

tan(2φ) =
√

Ω2
p + Ω2

c/∆p, (2.2.78)

allows us to write the eigenstates of the system in the following simple

forms.

|+〉 = sin θ sinφ |g〉 + cos θ |e〉 + cos θ sinφ |r〉 , (2.2.79)

|D〉 = cos θ |g〉 − sin(θ) |r〉 , (2.2.80)

|−〉 = sin θ cosφ |g〉 + sinφ |e〉 + cos θ cosφ |r〉 . (2.2.81)

These equations introduce the important concept of the ‘dark state’ |D〉.
State |D〉 is a superposition of |g〉 and |r〉, having no |e〉 component. The

dark state |D〉 is approximately stable and non-radiative. Decay from |D〉
can only occur via radiative decay of |r〉, which is often slow compared to

other experimental timescales. The lack of decay via photon emission jus-

tifies the etymology of the dark state. Conversely, the bright states |+〉,
|−〉 can decay due to their |e〉 component. The consequence of a three-level
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system with two rapidly decaying states leads to the phenomenon of co-

herent population trapping, where the state vector of the system converges

upon the dark state over time.

One surprising corollary of H(3) is the physical phenomenon of electro-

magnetically induced transparency (EIT). EIT is the term for a coherent

phenomena that can occur when the two-photon detuning ∆p + ∆c = 0 of

the medium is equal to zero whence the medium is rendered transparent to

the probe beam. The energies of the eigenstates of H(3) (equations 2.2.81)

are

E|±〉 = E|D〉 +
~

2

(
∆p ±

√
∆2

p + Ω2
pΩ

2
c

)
. (2.2.82)

The conceptual dressed atom picture is shown in Figure 2.12. For Ωp ≫ Ωc,

states |±〉 have equal magnitudes of the excited state |e〉, but with opposite

sign. The probability amplitudes of absorption of a probe beam by |±〉 thus

cancel and so the cross-section for probe absorption is reduced on resonance.

In the weak probe regime, Ωp ≪ Ωc, the equations for the diagonal states

simplify to

|±〉 =
1√
2

(|r〉 + |e〉), (2.2.83)

|D〉 = |g〉 . (2.2.84)

In this regime, dipole coupling to |±〉 occurs with equal and opposite am-

plitude, thus interfering destructively on resonance. This results in zero

absorption of the probe by the medium. This resonant transmission is the

defining feature of electromagnetically induced transparency (EIT) [40].

When the probe is detuned such that ∆p matches the energy level split-

ting of the dressed atom (equation 2.2.82), absorption reaches a maximum,

as the absorption cross-sections for |±〉 are no longer equal and so do not

cancel. Resonant transparency is the defining feature of EIT and is shown

in Figure 2.12. The width of the transparency window is given by

∆EIT =
Ω2

c

Γe

. (2.2.85)
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If the strength of the coupling beam is increased, the energy splitting of

the dressed states increases. When the energy splitting is much larger than

the line-width of the |e〉 ↔ |g〉 transition, Ωc ≫ Γe then the cross-section for

probe absorption by either of |±〉 is approximately zero on resonance, and

thus trivial probe transmission occurs. In this case, however transmission

is a result of the states being shifted fully out of resonance with the probe

beam and is not due to the interference of probability amplitudes. It is

instead a result of the large Autler-Townes splitting, depicted in Figure

2.12 [185]. In the AT regime, the peak splitting is equal to the coupling

Rabi Frequency ∆AT ≈ Ωc .

In order to generate the optical Bloch equations for this system, the

operators which model this dissipation are included as

D [Anm] = D
[√

Γe/2 |e〉 〈g|
]

+ D
[√

Γr/2 |e〉 〈r|
]
. (2.2.86)

Propagating H3 and the dephasing terms through the Lindblad equation

2.2.61 results in the three-level Optical Bloch equations. In propagating

the Hamiltonian, we have introduced a second dephasing term to account

for decay from the excited state4

Amn =

√
Γr

2
|g〉 〈r| . (2.2.87)

For brevity, only the equations defining the coherences are shown here.

ρ̇eg =
iΩp

2
(ρee − ρgg) +

(
i∆p −

Γe

2

)
ρeg −

iΩc

2
ρrg, (2.2.88)

ρ̇rg =
iΩp

2
ρre +

(
i(∆p + ∆c) −

Γr

2

)
ρrg −

iΩc

2
ρeg, (2.2.89)

ρ̇re =
iΩc

2
(ρrr − ρee) −

iΩp

2
ρrg +

(
i∆c +

Γr + Γe

2

)
ρre. (2.2.90)

If H(3) is partitioned by setting Ωp = 0, we decouple |r〉 from the dy-

namic Hamiltonian and the OBEs collapse to the two-level case, supporting

4For experiments reported in this thesis, decay from Rydberg states is often domi-

nated by other, faster decay mechanisms, especially interaction-induced dephasing and

thermal dephasing due to atomic motion.
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all of the associated physical phenomena of the previous section. As with

the two-level system, we can extract the steady-state susceptibility in the

weak probe regime by assuming a small Ωp ≈ 0 and negligible population

of the excited states ρee ≈ ρrr ≈ 0. Making these substitutions and setting

ρ̇ii = 0, the ρrg coherence is given by [190, 191].

0 = (i[∆p − ∆c] − Γrg/2) ρrg −
i

2
Ωcρeg, (2.2.91)

=⇒ ρrg =
1

2

[
Ωc

([∆p − ∆c] + iΓba/2)

]
. (2.2.92)

And so, the susceptibility of the three-level medium is given by

χ = −iN|µeg|2
ǫ0~Ω

/(
(Γe/2 − i∆p) +

[
(Ωc/2)2

(Γr/2 − i∆2)

])
. (2.2.93)

Here, we have introduced the two photon detuning, ∆2 = ∆p −∆c. Again,

the real and imaginary parts of the atomic susceptibility determine the

response of the optical medium through equation 2.2.46 and is shown in

Figure 2.11.

This reveals a steep gradient in Re[χ] on the two photon resonance

∆p = 0. The group velocity is defined as the gradient of the dispersion

relation

vg =
∂ω(k)

∂k
. (2.2.94)

We can relate the group velocity to the coupling Rabi frequency Ωc through

equation 2.2.47.

vg =
c

ñ
=

1

1 + Re[χ]/2
. (2.2.95)

The general form of the group velocity in the medium is

vg =
c

1 + Re[χ]/2 + ∂ω (Re[χ])
. (2.2.96)

And so the group velocity is

6c̺π

k2
· Γ2

Ω2
c + ΓrΓe

. (2.2.97)
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Figure 2.11: Three level atomic susceptibility and level scheme. a The real and

imaginary parts of the susceptibility of a three level system with spontaneous

decay rate Γe and Γr = 2π · 1 kHz, reflective of Rydberg lifetimes. Ωc = 2π· 10
MHz and Ωp = 2π· 0.1 MHz. The real and imaginary parts are normalised as

with figure 2.10. The parameterisation of the three - level ladder scheme is also

shown. b, c The effect of varying Ωc = 2π · [10, 30, 50] MHz is shown. Increased

Rabi frequency broadens the resonant transmission window. d, e Upper state

lifetimes of Γr = 2π · [0, 2, 6] MHz are shown. Finite Rydberg lifetime causes the

dark state to decay, limiting resonant transmission. f,g Coupling detunings of

∆p = 2π · [5, 15] MHz are shown in red and orange, respectively. Probe detuning

causes a shift in the two photon resonance condition where the medium is least

optically thick. February 22, 2022
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Figure 2.12: Autler-Townes Splitting vs. EIT. Diagonalisation of the three level

Hamiltonian coupled by weak Ωp and Ωc ≫ Γe leads to the emergence of dressed

states |±〉. The medium is rendered transparent to a resonant probe χI(∆p = 0)

= 0. At low Ωc, this transparency arises due to cancellation of excitation am-

plitudes of |±〉, known as EIT. At larger Ωc, Autler Townes splitting of the

resonance causes a transmission window due to the vanishing probability of ex-

citing either of |±〉. For Ωc = 0, the susceptibility reduces to the two level system

(grey line). Autler Townes splitting of |r〉 is also possible through couplings to

a fourth state |r′〉, similarly detuning the coupling beam from resonance as in

chapter 4.
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This reveals another defining feature of EIT, that of slow light. Through

tuning the coupling strength, one is able to reduce the group velocity of

photons propagating in the medium [52, 191, 192]. This phenomenon is

known as slow light. Group velocities on the order of 10ms−1 have been

observed [193, 194]. A photon pulse travelling under slow light conditions

is compressed within the medium due to change in group index.

2.2.5 Dark State Polariton Storage

... the quantum state of light is ideally transferred to collective

atomic excitations and vice versa ...

- M. Fleischauer & M. D. Lukin - 2000.

Dark state polaritons (DSP) were introduced in 2000 [49, 128], and pro-

vide a theoretical framework describing light storage in three-level systems

of atomic dipoles through adiabatic ramping of Ωc to zero. In their seminal

articles [49, 128], Fleischauer and Lukin introduced a new quantised field

composed of a superposition of atomic excitations and electric field quanta.

This provides insight into the effect of the group velocity modification. The

electric field is quantised as

E(z, t) =
∑

k

ak(t)eikze−i ν
c
(z−ct). (2.2.98)

A bosonic field is then introduced through the transformation

|Ψ(z, t)〉 = cos θ(t)E(z, t) − sin θ(t)
√
Nσ̂gr(z, t), (2.2.99)

where σgr = |g〉 〈r|. Quasiparticle excitations of this field are known as

polaritons, composed of a superposition of electric field quanta and atomic

excitations. The mixing angle θ determines the relative weights of each
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contribution to the polariton field. The mixing angle is defined through

cos θ(t) =
Ωc(t)√

Ω2
c(t) + g2N

, (2.2.100)

sin θ(t) =
g
√
N√

Ω2
c(t) + g2N

, (2.2.101)

tan θ(t) =
g
√
N

Ωc(t)
. (2.2.102)

The atom field coupling g =
√
ωp/1~ǫ0V [49], defines the coupling strength

between probe beam at frequency Ωp in quantisation volume V . The state

mixing angle θ depends on the Rabi frequency, and the atom light coupling.

Control over the mixing angle can be used to tune the field between a

photonic form, with the group velocity of the photon in a vacuum, and

an atomic form, with a group velocity ∝ c cos θ. When the coupling field

is strong, Ωc ≫
√
N , θ = π, the polariton is a purely electric excitation,

E(r, t). At θ = π/2, |Ψ〉 the polariton is purely atomic σ̂gr(z, t). When

the coupling strength is reduced to zero, θ = π/2 and the velocity of the

polariton is zero [128], and the field is ‘stored’ as an atomic excitation

2.2.97. Photon storage has since been demonstrated many times in various

research groups [51, 52, 195, 196].

This defines the Dark State Polariton (DSP) storage technique and is

referenced throughout this work. DSP storage provides an effective light

matter interface and is used in later chapters to convert excitations from

photons propagating in vacuum, to excitations of an atomic ensemble.

2.2.6 Quantum Polariton Description

The DSP technique can be used to store an excitation as a polariton, also

referred to in the literature as a spin wave [54, 55, 128] or a timed Dicke

state [197]. To realise a quantum mechanical description of the spin wave,

consider an optical medium composed of N atoms in a macroscopic volume

V . Each atom has three internal energy states |g〉 , |e〉 , |r〉 as in section
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Figure 2.13: Polariton Storage Concept. With Ωc initially high, photons pass

through the medium under EIT conditions. Adiabatic ramping of the coupling

beam to zero writes the photon into the ensemble, reducing the velocity of the

photon to zero through equation 2.2.97. This causes excitations of the electric

field E propagating through the medium to be coherently converted to a collective

excitation of the atomic media, known as a polariton. The envelope of the

atomic and photonic components of the polariton field are shown. When Ωc = 0,

the polariton is stored inside the medium. The storage duration, tStorage is

represented by a purple arrow.
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2.2.4. The N particle ground state is defined as

|G〉 =
N⊗

i=1

|gi〉 . (2.2.103)

The ground state is adiabatically excited via the DSP technique to the

symmetric state through application of the spin wave creation operator

S† =
1√∑
j E(rj)

N∑

i=1

E(rj)e
φ(rj) |rj〉 〈gj| , (2.2.104)

where E(rj) defines the electric field amplitude at atomic position rj, and

|rj〉 , |gj〉 denote the ground and Rydberg states of atom j [198, 199]. The

local phase factors associated with each term in the summation φ(rj) define

the spin wave, determined by the interference of the probe and coupling

fields at the position of each atomic dipole φ(rj) = keff ·rj and keff = kp−kc.

In the case of uniform illumination by a probe and coupling beam we obtain

S† =
N∑

j=1

eφ(rj) |rj〉 〈gj| . (2.2.105)

The state of the ensemble after initialisation via DSP storage is then

|0r〉 = S† |G〉 , (2.2.106)

where subsicript r is short hand for a full set of quantum numbers and

defines the Rydberg state excited by the DSP scheme. The retrieval process

can be imagined as the inverse of the creation process, that which returns

the spin wave to the ground state through collective emission of a photon

|G〉 = S |0r(tStorage)〉 , (2.2.107)

where the retrieval is performed some time tStorage after an initial storage

event. The dynamic coupling beam ramps which are required to effect

storage and later retrieval are shown in figure 2.13

It is worth remembering, that the form of |R(tStorage)〉 at the point of

retrieval may have accrued global or local phase during storage, and any

such phase will cause a modification to the form of collective emission at the
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point of retrieval [102, 200]. Dephasing of the spatial spin-wave correlations

degrades the directionality of emission [37, 201]. In this work, the primary

dephasing mechanism is motional dephasing, which limits storage efficien-

cies to ∼ 5% and storage times to ∼1 µs. Interaction-induced dephasing

also degrades the directionality of emission [116, 202]. Experimental po-

lariton retrieval decays exponentially with time due to these effects, and

the effects of thermal motion of the atomic dipoles.

2.2.7 Four Level Media

An effective four level medium can be obtained by introducing a fourth state

|r′〉. In this thesis, we are concerned with four-level ladder-type Hamiltoni-

ans, and thus couple |r〉 to |r′〉 with Rabi frequency Ωµ. The OBEs for the

four-level system can again be obtained by solving the Lindblad equation

to obtain the equations of motion for ρij under Hamiltonian

H(4) =
~

2




0 Ωp 0 0

Ω∗
p −2∆p Ωc 0

0 Ω∗
c −2(∆p + ∆c) Ωµ

0 0 Ω∗
µ

−2(∆p + ∆c + ∆µ)



. (2.2.108)

Cranking the handle on equation 2.2.61 can be used to derive the Op-

tical Bloch Equations of this system [185].
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ρ̇gg =
iΩp

2
(ρge − ρeg) + Γeρee, (2.2.109)

ρ̇ee =
iΩc

2
(ρer − ρre) +

iΩp

2
(ρeg − ρge) + Γrρrr − Γeρee, (2.2.110)

ρ̇rr =
iΩµ

2
(ρrr′ − ρr′r) +

iΩc

2
(ρre − ρer) + Γµρr′r′ − Γrρrr, (2.2.111)

ρ̇r′r′ =
iΩµ

2
(ρr′r − ρrr′) − Γµρr′r′ , (2.2.112)

ρ̇eg =
iΩp

2
(ρee − ρgg) −

iΩc

2
ρrg − teρeg, (2.2.113)

ρ̇rg =
Ωp

2
ρre −

Ωµ

2
ρr′g +

Ωc

2
ρeg − trρrg, (2.2.114)

ρ̇r′g =
iΩp

2
ρr′e −

Ωµ

2
ρrg − tµρr′g, (2.2.115)

ρ̇re =
Ωc

2
(ρrr − ρee) +

Ωp

2
ρrg −

iΩµ

2
ρr′r − (γre + i∆c)ρre, (2.2.116)

ρ̇r′r =
Ωµ

2
(ρr′r′ − ρrr) + +

Ωc

2
ρr′e − (γr′r + i∆µ), (2.2.117)

ρ̇42 =
iΩp

2
ρr′g +

iΩc

2
ρr′r −

iΩµ

2
ρre − (γr′e + i(∆c + ∆µ)). (2.2.118)

Here, the complex detunings t2,3,4 are defined as

te = Γe + i∆p, (2.2.119)

tr = Γr + i(∆p + ∆c), (2.2.120)

tµ = Γr′ + i(∆p + ∆c + ∆µ). (2.2.121)

We have also defined the γij = (Γi + Γj)/2, and have introduced further

dissipation through the operator

D [Anm] = D
[√

Γr′/2 |e〉 〈r|
]
. (2.2.122)

Once more applying the weak probe approximation, Ωp ≈ 0, ρee ≈ 0, we

can solve these equations for the coherence ρeg, obtaining

ρeg = Ωp

Ω2
µ
− t3t4

Ω2
µ
t2 − t2t3t4 + Ω2

ct4
. (2.2.123)

And then the susceptibility of the four-level system is related to the co-

herence through equation 2.2.59. Figure 2.14 shows the form of the real
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and imaginary parts of the susceptibility of a four level system. The re-

sponse can be understood by diagonalising the Hamiltonian H(4) for the for

level system. In the weak probe limit, Ωp ∼ 0, eigenstates of the four-level

system are [203]

|g〉 = |g〉 , (2.2.124)

|+〉 =
1√
2Ω′

(Ωc |e〉 + Ω′ |r〉 + Ωµ |r′〉) , (2.2.125)

|0〉 =
1

Ω′ (Ωc |r′〉 + Ωµ |e〉), (2.2.126)

|−〉 =
1√
2Ω′

(Ωc |e〉 − Ω′ |r〉 + Ωµ |r′〉) . (2.2.127)

Since the states |0〉 , |±〉 have some contribution from the radiative state

|e〉, transitions from |g〉 driven by the probe beam are electric dipole allowed

to all three states. Thus the probe field couples to all three dressed states

and as such we observe three peaks in the susceptibility. Transitions from

|g〉 to |0〉, |±〉 are known as Autler Townes (AT) transitions.

One of the most striking changes to the three-level susceptibility by the

imposition of |r′〉 is the resonant absorption, where for the three-level sys-

tem we have resonant transmission. Assuming Γr′ is much smaller than the

other relevant timescales (Ωc,µ,Γe,r), we are able to split the transmission

window of the three-level system in two, as shown in Figure 2.14 a,b.

February 22, 2022



2.2. Atom Light Interactions 69

0.00

0.25

0.50

0.75

1.00

χ
(3
)

I
/

χ
(3
),

m
ax

I

AT Splitting

a

Increasing Γr′

c

0.00

0.25

0.50

0.75

1.00

Increasing ∆µ

e

−25 0 25

∆p/2π (MHz)

−0.5

0.0

0.5

χ
(3
)

I
/

χ
(3
),

m
ax

I

b

−25 0 25

∆p/2π (MHz)

d

−25 0 25

∆p/2π (MHz)

−0.5

0.0

0.5
f

Figure 2.14: RF Splitting of EIT. Starting at the basic EIT susceptibility of

Figure 2.11, the effect of applying RF dressing upon ξI,R is shown. Γe is the

lifetime of the Rubidium 87 D2 line. Γr ≈ Γ′
r ≈ 0, Ωc = 2π · 20 MHz, Ωµ =

2π· 5 MHz. a, b Ωµ = 2π · 20 MHz. The case Ωµ = 0 is shown in light

gray. Increasing Ωµ quickly creates resonant susceptibility, and |±〉 appear,

increasing in separation with Ωµ (not shown). c, d Increased dephasing of |r′〉
with γr′ = 2π · 20 MHz. The two transparency windows which form as a result

of interference in between AT states diminish in magnitude due to fast decay via

|r′〉. |±〉 become indistinguishable from the main susceptibility peak at large Γr′ .

e,f Increasing detuning ∆µ = 2π · 20 MHz causes asymmetry of the line-shape.
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Chapter 3

Experimental Methods

As with many experimental studies of cold matter, the experimental ap-

paratus is the culmination of the collective effort of several generations of

Ph.D. students over the past decade. The current generation1 of the exper-

iment takes much inspiration from previous experimental hardware used

in the same group for the investigation of Rydberg physics, employing a

more compact experimental setup [41]. The current generation of hardware

was commissioned in 2016 [204] by Hannes Busche, Paul Huillery & Simon

Ball with input from many members of Durham Quantum Light & Matter

group. For a more in-depth discussion of the experimental platform, the

reader is referred to these references, as well as to the following theses of

previous project members [41, 46, 205, 206]. Likewise, full details FPGA

control hardware and software (DExTer2) can be found in the thesis of Tim

Wiles [207]. Details of extensions to DExTer to allow for high-frequency

control pulses which underpin this work can be found in the thesis of Si-

mon Ball [205]. The experimental platform orchestrates rapid production

of microscopic, ultracold ensembles of Rubidium that form the object of all

later experiments. Design elements are also shared with systems found at

Universität Heidelberg [208, 209].

1Loosely based upon which particular vacuum chamber was in use.
2Durham Experimental Terminal
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Several upgrades and modifications have been made during the author’s

engagement with the project. Additional dipole trapping capability paves

the way towards higher density ensembles needed to increase the strength

of many-body Rydberg interactions. Flexible locking schemes have been

added, extending the range of frequencies available to the experimental-

ist for atomic manipulations. The installation of an ultra-low-expansion

(ULE) cavity has further improved the rate of data acquisition by improv-

ing frequency stability and allowing for longer periods of continuous oper-

ation. Figures included in this thesis rely on some 400 Gb of experimental

data. A suite of data analysis software has been developed to facilitate

rapid analysis and exploration of vast quantities of statistical data gener-

ated by the experiment. It is the purpose of this chapter to describe the

main principles of the experiment and to document the significant upgrades

that have been made to the system [41, 46, 205, 206].

In this section, use is made of the excellent SVG optics library created

by Alexander Franzen [210]. The symbol key can be found in appendix

A.1.

This chapter is in part based on the following publication

• Chloe So et al. “Zeeman-tunable modulation transfer spectroscopy”.

In: Optics Letters 44.21 (Nov. 2019), p. 5374. doi: 10.1364/OL.44.

005374

3.1 Ensemble Preparation

The experimental apparatus used in this work is designed to enable the

study of atom-light interactions in the pursuit of optical nonlinearities at

the single-photon level. The methodology of creating samples of ultracold

atomic ensembles in well-defined quantum states through laser cooling,

trapping, and state preparation are well-established [20] and shared across
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Figure 3.1: Implementation of optical control fields at 780, 480, and 852 nm

discussed in the text. 480 nm light is generated in a commercial SHG system

offset-locked to a ULE cavity, providing excellent frequency stability and tunable

locking. The 780 cooling and repump systems are locked to atomic references via

Modulation Transfer Spectroscopy (MTS) and Zeeman-tunable MTS (ZTMTS).

AOMs provide optical 80/20 switching speeds of ∼ 40 ns. An FPGA controller

with Labview UI (DExTer) coordinates AOMs, as discussed in the text.
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a range of experiments. Magneto-optic trapping, laser cooling and the for-

mation of FORTs requires ultra-high vacuum (UHV) conditions to limit

background atomic collisions which can prohibit laser cooling. Trapped

ensembles require high optical depth for strong light-matter coupling. Fre-

quency stable control fields locked to atomic resonances or optical cav-

ities are necessary for state manipulation and interaction. Commercial

microwave sources are available for interaction with Rydberg dipole mo-

ments.

The study of single-photon nonlinearities brings some additional chal-

lenges. Sufficient statistical data to evidence optical nonlinearities at the

single-photon level must be obtained [211]. This ambition conflicts with the

extremely low photon numbers per experimental run 〈n〉 ∼ 1 required to

observe sensitive quantum nonlinearities. For this reason, experiments in

quantum nonlinear optics are particular in requiring high sensitivity detec-

tion schemes and ideally high repetition rates [204, 205]. For this purpose,

a capable FPGA control system is implemented which interfaces to single-

photon avalanche detectors to produce time-tagged photon statistics with

a 5 ns timing resolution.

A functional drawing of the vacuum chamber at the heart of this sys-

tem is presented in figure 3.2. Efficient loading of a 3D magneto-optic

trap (MOT)[212, 213] is achieved through the pre-cooling of atoms in a 2D

MOT [214]. This creates a high atomic flux for 3D MOT loading, reduc-

ing loading time to around ∼ 100 ms and thus increasing data acquisition

rates. Repeated experiments performed upon the same ensemble further

increases data acquisition rates. It is possible to perform upwards of 10000

experiments upon the atomic ensemble before observing a significant re-

duction in optical depth. Including the loading sequence, the experimental

apparatus is capable of performing automated experiments at repetition

rates upwards of 100 kHz, with MOT reloads occurring at a frequency of

around 10 Hz.
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The assembly of this capable system was not performed by the author.

This section provides an overview of the experimental apparatus and the

experimental sequence required to load a macroscopic sample of ultra-cold

Rubidium into an Far Off-Resonant (FORT) at the center of a UHV vacuum

chamber and perform rapid manipulations via control fields. Studies of

this fascinating form of matter have produced the results presented in this

thesis.

3.1.1 2D Magneto-Optic Trap

The objective of the experimental sequence is to create an ultra-cold en-

semble of atomic Rubidium confined within the FORT described in section

3.3.4 within a controlled environment. The experimental sequence used to

load and pre-cool an ensemble of atoms is shown in figure 3.3. This se-

quence starts with cooling in two dimensions via 2D magneto-optic trap

indicated on figure 3.2.

The upper 2D MOT chamber is constructed from a UHV glass cell with

internal dimensions 25×25×150 mm. Within this cell, a current activated

Rubidium source maintains high vapor pressure3. The 2D MOT is similar

to a traditional six-beam MOT, but with only four beams providing cooling

in only two axes. The trapping volume is an elongated pencil shape [204,

214, 215].

The 2D MOT chamber is attached to the main Science chamber through

a stainless steel gate valve4 and steel junction and which connects the glass

cell containing the 2D MOT trapping volume, the main science chamber

containing the 3D MOT trapping volume and an ion pump. Atoms pass

3The upper chamber has two 250 mg Rubidium dispensers at natural abundance,

one of which expired after approximately four years use over Christmas 2019/20.
4Zoning the vacuum chamber can be used to maintain vacuum conditions in one part

of the system whilst the other is brought up to air, e.g. for replacing the dispensers

when necessary.
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Figure 3.2: Functional drawing of the UHV vacuum chamber (internal). An en-

semble of ultracold atomic Rubidium 87 is loaded into FORT at the focus of two

in-vacuo high-NA lenses. Magnetic and electric field compensation is possible

in this setup. The FORTs share a focus with the probe beam whilst the cou-

pling beam is collimated between lenses. Microwave antennae constructed from

unshielded coaxial cable drive microwave transitions. Lenses are ITO coated to

reduce stray electric fields in the vicinity of the atoms. Electrodes and MOT

quadrupole coils are built in-vacuo.
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through a differential pumping tube with an aperture of 0.8 mm between

the 2D MOT and 3D MOT chambers. The differential pumping tube pre-

vents the buildup of pressure in the main chamber, which maintains a

pressure of less than 1 × 10−10 Torr. A ‘pushing’ beam [216], is directed

along the axis of the 2D MOT. Photon scattering from the pushing beam

forces atoms cooled by the 2D MOT through the differential pumping tube

and into the main chamber. The pushing beam is red detuned to selec-

tively address atoms with velocities directed away from the 3D chamber,

towards the push beam collimator. This has the effect of enhancing the

atomic flux through the differential pumping tube.

3.1.2 3D MOT

In the main ‘science’ chamber, a magnetic quadrupole is produced by a set

of in-vacuo coils. The quadrupole is located directly beneath the differen-

tial pumping tube and can be offset with external shim coils. The atom

flux from the 2D MOT, entering through the differential pumping tube,

is caught in the 3D MOT [20, 213, 217] consisting of three red-detuned

retro-reflected beams driving σ± transitions aligned onto the quadrupole.

This light is delivered to the experiment via optical fibers from the cooling

system described in section 3.3.1. Thermal fluctuations in the lab lead to

polarization drifts at the output. One inch polarizing beam cubes5 are posi-

tioned directly after the outputs of all three ports of the fiber beam splitter

for polarisation purity at the MOT, reducing the need for maintenance.

The MOT quadrupole is located at the joint focus of two high numerical

aperture (NA) lenses, overlapped with their common focus to prepared for

dipole trap loading. The lenses have a numerical aperture of 0.6 and an

effective focal length of 10 mm. The lenses are coated with an ITO coating

connected to a ground reference plane. This reduces static build-up which

5Thorlabs PBS252
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might perturb the atoms, and provide a resolution limit ∼1 µm at 780

nm. The electronic environment about the atoms can be controlled via the

four split-ring electrodes which surround each of the high NA lenses6. The

position of the quadrupole can be controlled by a set of ex-vacuo magnetic

field offset coils which are used to position the MOT quadrupole and to

compensate background magnetic fields for the grey molasses stage7.

3.1.3 Dipole Trapping

Trapping atoms in the ∼ 1 mK dipole traps requires a pre-cooled, dense

ensemble of atoms. FORT is positioned centrally within the MOT trapping

volume and is switched on at full power throughout MOT loading. FORT

positioning is optimised by maximising optical depth to the probe beam

during experimental runs. The FORT loading sequence used in experiments

presented in this thesis involves the following steps, with a summary of

powers and timings in Figure 3.3.

1. 2D MOT and 3D MOT run at full power for ∼ 100 ms achieving 3D

MOT loading 2.5±0.2 ·107 atoms at temperatures of ∼ 100 µK [218].

2. In the CMOT8 stage, The MOT magnetic field gradient is increased

and the cooling, repump powers are reduced. Cooling detuning is in-

creased to ∼ 5Γ. The MOT is compressed and phase-space density

increases [212, 213].

3. In the dark molasses stage, the field gradient and repump is switched

off, and the cooling powers and detunings of the CMOT stage are

6Used to apply noise fields in chapter 5
7There is a seven Tesla electromagnet opposite PH54. If the MOT unaccountably

disappears in an instant, the magnet has probably been switched on.
8MOT Compression.
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Figure 3.3: FORT Loading Sequence. After initial MOT loading, number density

is increased by implementing a compression (CMOT) stage. The ensemble is then

cooled via dark molasses, in the absence of repump light. Finally, the cooling

light is ramped through resonance to eject the MOT, leaving only stark-shifted,

trapped atoms in the FORT. A final stage of evaporative cooling further reduces

the ensemble temperature.
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maintained [219, 220]. Stark shifts of the bright state enact Sisyphus

cooling, reducing the temperature of the MOT to ∼ 50 µK [221].

This leaves the atoms in the 5S1/2F = 1 ground state hyperfine level.

4. The cooling beams are then ramped from negative to positive detun-

ing, imparting momentum to atoms not held in the dipole trap, and

thus not experiencing Stark shifts.

5. A variable period of evaporation further reduces the temperature of

atoms in the dipole trap [222].

6. A repumping pulse is applied to transfer atoms from 5S1/2F = 1 to

5S1/2F = 2 ground-state hyperfine levels. Magnetic sublevels are not

resolved at this point.

7. A quantization coil is enabled, splitting the Zeeman degeneracy giving

access to well-defined energy states 9.

For a thorough analysis of the experimental application of these techniques

in Durham, see the thesis of Hannes Busche [46]. These experimental stages

produce optically thick (OD ∼ 4) ensembles of Rubidium trapped within

the FORTs described in section 3.3.4. Performance of FORTs is exhaus-

tively documented [46, 68, 204, 206]. The measured MOT temperature at

the end of the molasses stage via time-of-flight imaging is ∼ 50 µK. Dipole

trap temperature is expected to be significantly lower, although the elon-

gated shape of the ensemble, exceeding the depth of field of the imaging

9Optical pumping is precluded by the lack of a suitable pumping axis, due to restric-

tive chamber geometry.

February 22, 2022



3.2. Optical Adressing & Detection 80

system available, makes direct temperature measurement challenging. Re-

sults presented throughout this thesis all rely upon the fast and efficient

loading of atomic ensembles into FORTs.

Once trapped, we are able to perform up to 20,000 experiments on each

ensemble10. During each experiment, the atomic ensemble is released from

the FORT to remove unwanted AC stark shifts associated with the strong

electric field of the FORT. FORT light is pulsed at ∼ 200 kHz with a duty

cycle of 60%. In combination with the fast MOT loading facilitated by

the 2D MOT, we are able to perform upwards of 100,000 experiments per

second.

3.2 Optical Adressing & Detection

Figure 3.4 shows a reduced energy level diagram for Rubidium 87 [155],

highlighting the key transitions addressed by optical fields in this exper-

iment. The dipole trap is addressed by Gaussian control fields co- or

counter-propagating with the dipole traps. Input optics for the probe and

dipole traps are shown schematically in Figure 3.5. The input optics for

the counter-propagating circularly polarised coupling beam addressing the

σ+ transition is shown in figure 3.6. The high NA lenses used to produce

the FORTs described in section 3.3.4 focus probe light (780 nm light ad-

dressing D2 F = 3 → F ′ = 4) onto the ensemble as shown schematically

on figure 3.5 a, inset. The focal shift of the lens, shown on figure 3.5 b,

can exceed the size of the dipole trap which would limit probe absorption.

Thus collimation of the dipole traps is adjusted using lenses CA1, CA2 in

figure 3.12 to compensate for the wavelength dependent focal shift. After

compensation, we typically observe OD = 3-4.

The coupling system is designed to provide a constant Rabi frequency

10This number depends on the particular experimental sequence and associated heat-

ing, but is always more than 5,000.
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Figure 3.4: 87Rb D2 Level Diagram. Overview of optical transitions ad-

dressed. Magneto-optic trapping and cooling ares implemented using D2 line

of 87Rubidium. Cooling light is detuned from the cycling transition F = 2 →
F ′ = 3 by ∼ 2Γe by 2Γ. Repump light addresses the F = 1 → F ′ = 2 transition

returning atoms to the cycling transition and thus providing continuous cooling.

Energy level data provided by D. Steck [155].
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Figure 3.5: Two in-vacuo high NA lenses (a inset) at the heart of this experiment

provides colinear optical addressing and FORT traps. a 852 nm Gaussian laser

is focussed to create optical FORTs with w0 = 4.5 µm. A Gaussian probe beam

(red) is focussed by the same lenses to w0 = 1 µm. A diverging 480 nm coupling

beam is collimated by the in-vacuo lenses to w0 = 25 µm at the position of the

atoms. b The collimation of the dipole trap is adjusted to compensate for the

focal shift of the lenses such that the dipole trap and probe beam have a common

focal plane. Focal shifts shown are predicted by Zemax via the ray tracing (RT)

method and propagation of paraxial Gaussian beams (PA). Ensemble length is

represented by a red ellipse, projected horizontally to show the sensitivity of the

experiment to wavelength-dependent focal shifts.

Ωc across the ensemble. This is achieved by using the in-vacuo lenses to

collimate, rather than focus the 480 nm light. Input optics for the coupling

light (coupling the 5P3/2 → nS1/2) are designed such that the coupling

beam is divergent as it enters the in-vacuo lens, whereafter it is roughly

collimated with a waist of w0 ∼ 25 µm. Fine adjustment of the collimation

is achieved with an ex-vacuo lens at the output of the coupling beam fiber

collimator, as shown on figure 3.6, CA3.

A basic experimental sequence demonstrating single-photon spectroscopy

of the ensemble is shown in Figure 3.3.
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3.2.1 Hanbury-Brown-Twiss Detection Circuit

Figure 3.6 shows the Hanbury-Brown-Twiss (HBT) [223] detection circuit

and associated optics. The experiment currently implements two FORTs

at the focus of the in-vacuo lenses. Probe light interacting with ensembles

in the FORTs is reimaged by a 4f setup consisting of the in-vacuo asphere

and an external 400 mm lens providing an overall magnification of m = 38.

Traps are separated in the reimaging plane by a D-shaped edge mirror and

directed towards one of two HBT detection circuits. Probe light is split

by an NPBS and fiber-coupled into a commercial single-photon avalanche

module (SPAD)11. The reader is directed to the thesis of Simon Ball for

more information on the performance and limitations of the SPADS [205].

DExTer interfaces to the HBT detector and records time-tagged photon

arrival data providing for the analysis of photon statistics [211]. Figure 3.6

demonstrates the capabilities of the experimental hardware. By reducing

the MOT loading time, the optical depth of the ensemble is reduced to

OD = 1.8. The experimental sequence shown in a is repeated 10,000 times

as described in section 3.2. The weak, coherent probe contains ñ = 0.25

photons. In b, the HBT detector signal is shown for probe detunings

∆p in the range -20 to 20 MHz. The single-photon absorption profile of

the ensemble shows the transition from an effective two-level system to a

four-level system as Ωc, Ωµ dress the ensemble. Solid lines represent fits to

equations in chapter 2 for the susceptibility of a weakly probed system. Fits

of this nature can be used to determine the values of Ωc, Ωp experimentally.

Section 4.3 shows that it is also possible to measure Ωµ directly.

11Currently in use are Perkin-Elmer SPCM-AQRH-14-FC and Excelitas SPCM-780-

14-FC.
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Figure 3.6: Detection and Coupling Optics. Probe waists interacting with spa-

tially separate ensembles at the center of the chamber (far right) are re-imaged

by a 400mm lens, magnifying the separation by m = 40. An edge mirror is used

to separate probe light originating from the two ensembles at the imaging plane.

Light from both traps couples to a Hanbury-Brown-Twiss detection circuit, con-

sisting of a beam splitter and two fiber-coupled commercial SPADs. Time-tagged

photon arrival data is collected by DExTer with a 5 ns resolution. Fiber inputs

are protected from FORT intensity with two 780 nm bandpass filters. A coupling

beam counter-propagates with the probe.
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Figure 3.7: Single photon Rydberg spectroscopy. a Experimental pulse sequence

showing 1 µs probe pulse with overlapping Rydberg couplings Ωc, Ωµ. b Sin-

gle photon spectroscopy. Each data point is obtained by summing photon de-

tection events across 50,000 experiments. The transition from two level (red

data, Ωp only) to three level EIT (blue data, Ωp,Ωc) to four level AT (yel-

low data, Ωp,Ωc,Ωµ) is observed. Fits to equations for atomic susceptibility

can be used to obtain Rabi frequencies Ωi. Here, Ωc/2π = 9.6 ± 0.2 MHz,

Ωµ/2π = 13.8± 0.4 MHz. Measured OD = 1.8.

3.2.2 Statistical Analysis

Due to the very low incident photon numbers (< 1.5/experiment) , we

adopt a modified τ parameter for the analysis of photon correlations. We

define a discrete g(2)(τ) parameter which can be applied to situations where

the average incident photon number is less than one. g(2)(τ) does not com-

pare photon arrivals across a true time delta, but instead across experimen-

tal runs. Photons propagating in the spatial mode of the probe pulse that

intersects the first (second) ensemble are collected by SPADs (see Figure

3.6), with two SPADs per ensemble. Photons reaching detector 1 (3) in ex-

perimental run A, and detector 2 (4) in experimental run B are compared.

The following section describes the statistical analysis of probe photons

reaching two spads coupled to an ensemble. This analysis is performed in

duplicate when analysing two ensembles held in two dipole traps.
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We start with the usual definition

g(2)(τ) ≡ 〈n(A)
1 (n

(B)
2 − 1)〉

〈n(A)
1 〉 〈n(B)

2 〉
. (3.2.1)

Here, n(A) corresponds to the number of photons arriving in experimental

run A, and B = A + τ . Subscripts in n
(A)
1(2) represent photon events reg-

istered on SPAD 1 (2). τ is thus a discrete parameter corresponding to

the experimental run number, with τ = 1 corresponding to a separation

of roughly 5 µs, the experimental repetition period. We next restrict the

formal definition of g(2)(τ) to the case of very low photon numbers, where

counts of greater than two photons are vanishingly rare. Disregarding pos-

sible incident photon numbers above two, we have that

g(2)(τ) =
2 · Pτ (2)

[P (1) + 2 · P (2)]2
. (3.2.2)

Here, Pτ (2) compares the correlated probability of obtaining a photon de-

tection event on both of the HBT detectors in experimental runs A,B,

against the sum of uncorrelated probabilities of obtaining a photon detec-

tion event on one P (1) or both P (2) detectors. Thus the g(2)(τ) statistic

represents correlations within runs (τ = 0), and between runs (τ 6= 0). At

the end of each experimental sequence, the atoms are left in their ground

state through de-pumping by Ωc,Ωµ and spontaneous decay at rate Γe.

Thus no correlation is expected between runs g(2)(τ 6= 0) ≈ 1. Within

a single experimental sequence (τ = 0), Rydberg interactions can cause

anti-bunching of emitted photons due to Rydberg blockade.

Values for g(2) quoted in later chapters are corrected for the relative

efficiencies of the two detectors ǫα, ǫβ.

ǫ1 ≡
n1

n1 + n2

, ǫβ ≡ n2

n1 + n2

, (3.2.3)

where n1,2 are the number of counts received by detectors 1, 2. We can

then express the probabilities in equation 3.2.2 in terms of detection events

P1(A), P2(B), Pτ (AB), which are the probabilities of detector 1, 2, or both
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1 and 2 registering a photon event across experimental runs A, B.

2ǫ1ǫ2P (1) =

(
ǫ2P1(A) + ǫ1P1(B) −

[
2 − 3

2
(ǫ1 + ǫ2)

]
Pτ (AB)

)
, (3.2.4)

2ǫ1ǫ2Pτ (2) = Pτ (AB). (3.2.5)

which can be substituted into equation 3.2.2 to give

g(2)(0) =
ǫ1ǫ2

(P (A)ǫ2 + P (B)ǫ1 + 3Pτ (AB)/2)2
. (3.2.6)

This equation is used to calculate values for g(2) presented in later chapters.

3.3 Laser System Upgrades

Stable optical and microwave fields used to manipulate atomic Rubidium 87

are fundamental to this work. Figure 3.1 shows an overview of the optical

systems used to manipulate atoms in this project. Our laser system con-

tains four subsystems, The cooling system provides optical fields addressing

the ground to excited state transition |5S1/2F = 2〉 ↔ |5P3/2F
′ = 3〉. The

repump system addresses the |5S1/2F = 1〉 ↔ |5P3/2F
′ = 2〉 transition and

is used to optically pump atoms into the cycling transition addressed by

the cooling system. The 480 nm laser system couples the excited state to

Rydberg states, driving the transition |e〉 = |5P3/2F
′ = 3〉 ↔ |nS1/2〉 where

n ∈ [30, 100]. A free-running ECDL at 852 nm provides seed light for the

far off-resonant traps (FORT) utilised for the trapping of ensembles in this

experiment.

3.3.1 Cooling System - 780 nm

The 780 nm cooling system provides light resonant or near-resonant with

the closed |5S1/2F = 2〉 ↔ |5P3/2F
′ = 3〉 transition in Rubidium 87 for

cooling, imaging and excitation. This system was recently rebuilt to remove

an aging DL-100 including the replacement of the master laser, which is
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now upgraded to a commercial laser system12 consisting of a DL-Pro ECDL,

a tapered amplifier, and two in-line optical isolators. Amplified light from

the TA output provides ∼ 1.5 W of 780 nm light. The system also provides

∼ 20 mw of light directly from the ECDL via a sampler placed in between

the ECDL and TA input. A double-pass AOM setup driven at the center

frequency adds a blue detuning of ∆lock = 140 MHz. This detuned ECDL

output is locked to the |5S1/2F = 2〉 ↔ |5P3/2F
′ = 3〉 transition. Thus

the ECDL output light is stable at 140 MHz below the |5S1/2F = 2〉 ↔
|5P3/2F

′ = 3〉 resonance. Frequency stabilisation is achieved via a PID

controller13 locking to an error signal generated via modulation transfer

spectroscopy (MTS) [224, 225].

An overview of the lock setup is given in figure 3.8. Frequency sidebands

at ±10 MHz are added to the ECDL output by a Photonics Technologies

EOM14 driven with a 2V peak to peak electric field supplied by an arbitrary

function generator15. This modulated pump beam then counter-propagates

in a room-temperature vapor cell with an unmodulated probe beam. The

10 kHz modulation of the pump beam is transferred onto the probe beam

via a four-wave mixing (FWM) process [225–227]. The modulated probe

beam is detected on a fast photodiode16. Beats are observed where the

MTS process is efficient (in the vicinity of closed transitions). The beat

signal from the photodiode is downmixed to obtain an error signal using

a commercial PDH module17. MTS produces large error signals with high

SNR18 for closed transitions. Open transitions and crossover features do

not support efficient MTS due to the two-photon absorption required for

FWM. For closed transitions, MTS produces error signals with lower noise

12Toptica TA-Pro
13Toptica FALC.
14Photonics Technologies EOM-02-10-V
15Tektronix AFG3022B
16Hammamatsu CI10508-01
17Toptica PDH 110
18Signal to noise ratio.
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Figure 3.8: Cooling system frequency stabilisation via Modulation Transfer Spec-

troscopy. The ECDL output is detuned by 140 MHz by a double pass AOM and

then reaches the MTS lock. The ECDL light is split into two arms. An EOM

driven at 10 MHz imparts frequency sidebands to one of the arms (the pump).

Both arms (pump & probe) are then expanded and are overlapped in a Rubid-

ium vapor cell in a counter-propagating geometry. When the probe is detected

on a photodiode, modulation transfer from pump to probe in the vicinity of a

closed transition causes an observable beat at the modulation frequency. The

signal is mixed down to extract the beat magnitude which takes the form of an

error signal. This error signal is supplied to a PID controller which generates

feedback, stabilising the ECDL.
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and increased lock stability as compared to traditional frequency modula-

tion (FM) spectroscopy. A commercial PID19 controller creates piezo and

current feedback from the MTS error signal which stabilises the 780 nm

ECDL to the MTS transition.

IR AOMs from several suppliers20 are used to provide frequency and

amplitude control, as well as fast switching. AOMs all have similar char-

acteristics, with a specification of 80% diffractive efficiency into the first

order and a bandwidth of ∆AOM = 20 MHz about fAOM. The AOMs shift

the detuned TA light to resonance21 or near resonance22 when driven at the

center frequency fAOM before delivery to the experiment. In double pass

configuration, light reaching the experiment can be detuned over roughly

±2∆AOM, centered on the atomic resonance. Some paths on figure 3.1 show

single pass AOM configuration. Here, 110 MHz aoms are used to provide

large detunings from the atomic resonance ∆ > 30 MHz.

Magneto-optic trapping and resonant interaction with qubits occurs at

vastly different energy scales, with the former requiring hundreds of mil-

liwatts and the latter requiring picowatts of power. Beam splitters in the

probe path are not sufficient for this magnitude of attenuation. Low probe

intensity also can not be obtained by reducing AOM drive power as this

leads to undesirable transient effects. Thus, the intensity is reduced by a

series of neutral density filters with a nominal optical depth of 7. AOMs are

then driven at maximum power, achieving acceptable pulse train envelopes

at low intensities. Fine intensity adjustment is performed by photon count-

ing using the Hanbury-Brown-Twiss detection circuits described in section

3.2.1.

19Toptica FALC110
20AA Opto, Gooch & Housego, Isle optics.
21In the case of the probes and imaging light
22In the case of cooling light, pushing light.
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3.3.2 Repump System - 780 nm

The 780 nm repumping system addresses the |5S1/2F = 1〉 ↔ |5P3/2F
′ = 2〉

transition and is used to optically pump atoms out of the F = 1 state during

magneto-optic trapping.

The repump system was previously the least stable system in the lab,

and the only system locked to an FM spectroscopy signal [224]. FM spec-

troscopy is extremely sensitive to relative phase shifts in the modulation

and demodulation signals which can cause frequent unlock events and limit

experimental uptime. To stabilise the system, the technique of Zeeman -

tunable MTS [110, 228] was developed to enable locking the system via

the more stable MTS technique to an open transition that does not natu-

rally support the FWM technique underlying traditional MTS. This tech-

nique was developed due to considerations of relatively low SNR [229, 230]

of shifted locking schemes and previous lack of tuning in Zeeman shifted

schemes [231].

Figure 3.9 shows the experimental implementation of a tunable MTS

lock. As with the cooling system, an AOM imparts a 70 MHz red detuning

for locking (not shown) and subsequent switching AOMs to return the

system to resonance. Much of the setup is identical to a traditional MTS

lock (figure 3.8)23. A small (2 mm thick, 22mm diameter) cell containing

Rubidium at natural abundance is heated to 80 degrees centigrade by a

pair of standard ceramic disk heaters24. The cell and heaters are held in a

custom cell assembly 3D printed in Acrylonitrile Butadiene Styrene (ABS),

with a glass transition temperature of 105 degrees centigrade. Heating the

cell increases the negligible ambient optical depth to ∼ 5.

The small vapor cell is held in a high magnetic field at the center of the

permanent magnet assembly which can exert fields of up to 7 kG25. Zeeman

23EOM:Photonics Technologies EOM-02-12.5-V, Photodiode: Hamamatsu C10508-01
24Thorlabs HT19R
25Neodymium magnets were manufactured to specification by Shanghai Jinmagnets
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shifts of atomic energy levels associated with the hyperfine Paschen-Back

regime are observed. We apply a 4.7 kG field to shift the MTS-supporting

F = 2 → F′ = 3 manifold by ±6.6 GHz, with the negative shift overlapping

the repumping transition F = 1 → F′ = 2. Quarter wave plates flanking the

magnet assembly select the σ− transition. The setup requires only 4.6 mW

of power, split into a 3.5 mW pump beam and a 1.1 mW probe , each with

a 500 µm beam waist. In contrast to the MTS system depicted in figure

3.8, small beams are imposed by the 3 mm aperture in the permanent

magnets. Small beams do not lead to significant power or transit time

broadening. Long-term stability measurements via beat note detection

against a separate MTS-locked laser system show a combined instability of

< 1 MHz which is more than sufficient to lock to the repump transition

with linewidth 6.065(9) MHz [155]. The combination of Zeeman shifted

MTS error signal reduces the frequency of unexpected repump lock errors

to less than one per day. Zeeman shifts associated with the background

magnetic fields are calculated to be less than 1 MHz.

3.3.3 Coupling - 480 nm

A commercial ECDL with integrated second harmonic generation (SGH)

cavity26 provides 250 mW of light over the range 479 nm - 481 nm. This

system can be tuned into resonance with transitions |5P3/2〉 ↔ |nS1/2〉,
where n > 30.

Figure 3.10 shows an overview of the 480 nm laser system. The laser

frequency is referenced to a ULE cavity, consisting of one flat mirror and

one mirror with a radius of curvature rm2 of 50 cm, separated by a block of

zerodur with length 100 mm. The cavity has a free spectral range (FSR)

of 1.5 GHz a finesse of 100,000 and a FWHM of 15 kHz. The cavity has a

Indistrial co. LTD, No.1602, Song Yun Shui Yuan, 1000 Wenxiang Road, Songjiang

District, Shanghai, 201620,China
26Toptica SHG-Pro.
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Figure 3.9: Zeeman-Tunable MTS Setup. The MTS scheme is similar to figure

3.8. The four-wave mixing process takes place in a small vapor vell with a

(variable) applied B field of 4.7 kG derived from two powerful N52 Neodymium

magnets flanking the cell. The Zeeman effect causes a shift in the position of

the closed transitions and a corresponding shift in the derived MTS error signal

of 6.6 GHz, whence the D2 closed transition can be used to lock to the D2

repumping transition (see text). The lock point can be tuned by adjusting the

magnet separation.

quoted drift of 25 kHz / day and a shorter-term variation of 2 kHz.

The 480 nm master laser is locked to the cavity via the electronic side-

band technique [232–234]. A schematic of the implementation appears in

figure 3.10. Light from the master diode passes through a commercial

fiber-coupled EOM27. The EOM is driven at two RF frequencies, ferror,

fSB, combined using an RF mixer. The EOM modulates the light entering

the cavity, imposing sidebands. To first order, sidebands at both modula-

tion frequencies are created. These sidebands are equally spaced about the

cavity resonance at f0 ± ferror, f0 ± fSB. Each of these sidebands is modu-

lated with a set of second-order sidebands f0± fSB± ferror. The reflectance

from the cavity is detected using a fast photodiode and downmixed by

ferror. A primary error signal at the frequency of the cavity resonance is

27Jenoptic custom 980 nm fiber-coupled EOM from the PMxxx range. Two identical

EOMs were purchased in anticipation of a second coupling system requiring a second

lock to the same cavity following the same scheme.
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Figure 3.10: a Offset Locking Scheme. Sidebands at fSB = ±200 MHz are driven

by a tunable source with fmax
SB exceeding the lock cavity FSR. Mode matching

is performed using a bare fiber and a single lens. The lens is adjusted to create

a waist of the correct size, and then the lens and fiber arrangement are moved

to the correct distance dMM to couple into the cavity b Cavity transmission

Tcavity. An error signal is generated at the carrier and sideband frequencies

using a PDH technique with ferror = 15 MHz. Feedback stabilises the SHG

system via a commercial PID controller. The ECDL is scanned 600 MHz across

a cavity resonance. First and second order sidebands are observed. A vapour

EIT transmission profile (cyan, offset) shows EIT resonance detuned from the

carrier by fSB.

observed, with second-order error signals offset by fSB. A schematic of

locking electronics as well as a typical cavity reflectance scan showing side-

band alignment with the |5P3/2〉 ↔ |60S1/2〉 EIT peak is shown in figure

3.10.

The position of the second-order error signal relative to the cavity reso-

nance can be tuned by adjusting fSB at source28, with a range of 0.005 GHz-

13.6 GHz, far exceeding the FSR of the cavity. As such, the lock point can

be tuned over the full FSR of the cavity, establishing an arbitrary lock

point for Rydberg EIT spectroscopy as shown in Figure 3.10. Coupling

28Commercial WindFreakTech SynthHD PRO v1.4.
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Figure 3.11: Sideband tuning demonstration. a An avoided crossing

becomes visible in the absorption spectrum of the three level system

|5S1/2F = 2〉 ↔ |5P3/2F = 3〉 ↔ |60S1/2〉 when the coupling field Ωc linking

states |5P3/2F = 3〉 ↔ |60S1/2〉 is swept across resonance. b Spectroscopy of a

cold atomic ensemble held in a dipole trap with Ωc/2π = 9± 1 MHz. Fits to the

data are used to locate the resonance. Two datasets identified by dotted lines in

the colour map have, ∆c/2π = 0.5± 0.4 MHz and 4.8± 0.2 MHz, matching the

detuning of the RF source supplying fSB (4 MHz). IHBT is defined in section

3.2.1.

light is supplied to the experiment via a single pass, AOMs at the focus of

a pair of 100mm lenses for fast switching, giving rise and fall times of 40 ns.

Figure 3.11 exhibits the precision adjustment of the cavity lock point over

the |5P3/2〉 ↔ |60S1/2〉 through EIT spectroscopy of an ultra-cold ensemble

of Rubidium 87 at 50 µK, in the weak probe limit. Fits to the data us-

ing equations developed in chapter 2 are used to locate the coupling beam

resonance.

The flexible electronic sideband technique is well suited for wavelength

switching to address various Rydberg states. The frequency of the 480 nm

system is routinely and seamlessly tuned across the range 479 nm to 482 nm

to address these transitions. Data presented in this thesis were primarily

taken at principal quantum numbers n = 30, 60, 80.
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3.3.4 Trapping - 852 nm

The finite Rydberg blockade radius rb for accessible principal quantum

numbers is on the order of tens of microns29. Thus blockaded media can

only be fully realised through confinement to similar dimensions. A far-

off-resonance trapping (FORT) scheme common amongst experiments in

atomic physics is implemented. The trapping force can be derived by con-

sidering the effect of the Gaussian laser field upon the atoms [235]. Far from

resonance, the energy shifts to the atomic energy levels can be treated per-

turbatively as AC Stark shifts. The potential energy of the dipole force is

given by Equation 3.3.7 and is quadratic in the time averaged electric E
field [235].

UFORT = −1

2
〈d · E〉 =

1

2ǫ0c
Re(α)|E|2. (3.3.7)

Trapping light for optical potentials derive from a commercial ECDL

system with integrated tapered amplifier providing 2 W of power at 852 nm30.

The power P of a Gaussian beam is related to intensity I through I =

2P/πω2
0 and to the electric field through I = 2ǫ0c|E|2. The equation for

the trap depth at the focus is then

U0 = −Re(α)
P

ǫ0cπω2
0

. (3.3.8)

Light is fiber coupled to the experiment, where it is focussed by high NA

in-vacuo lenses to produce FORTs with w0 = 5 µm as shown in figure 3.13

(left). Millikelvin trap depths are achieved at relatively low powers. The

150 mW FORT traps each have trap depths of U0 = 2.2 mK. Trapping

frequencies are wr = 32 kHz, wz = 1.38 kHz, where r represents the radial

polar coordinate, and z represents the direction of propagation of the trap,

left to right on figure 3.12.

Due to the fixed scaling factor between the axial and radial lengths of

the trap produced by a single focussed beam, blockade is only possible in

29For 3 MHz laser linewidth
30Toptica TA-Pro
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Probe 2

Probe 1

Tweezer 1

Tweezer 2

f

CA2

CA1

D2

D1
fffθNPBS

df

Cross FORT

Figure 3.12: 4f setup providing convenient adjustment of the distance between

two in-vacuo optical dipole traps. The 4F setup maps rotations of the NPBS into

separations df at the focus of the in-vacuo lenses. Probe and trapping beams

remain overlapped when varying the distance between traps and require min-

imal realignment after changing df . Collimation adjustment lenses CA1, CA2

compensate for the focal shift of the in-vacuo lenses between 852 and 780 nm.

A cross-trap consisting of a simple retro-reflected 852 nm beam exists to confine

atoms in the direction of probe propagation.
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the axial direction for accessible principal quantum numbers n > 90. The

desirability of shortening the ensemble in the axial direction has prompted

the installation of a cross-dipole trap [236] (also referred to as reservoir

/ dimple traps [237]). The cross-dipole trap intersects the FORTs to re-

duce the ensemble length in the direction of propagation that such that

blockade can occur at lower n. Additionally, the larger crossed dipole trap

is expected to facilitate the loading of FORTs [238]. The cross trap is

formed from a focused beam which enters the chamber orthogonal to the

probe beams as shown in figure 3.12. The FORT has a measured waist of

w0 = 27±1 µm. The additional cross dipole trap brings the total predicted

trap depth to 2.5 mK as shown in figure 3.13, right. Trapping frequency

in the direction of propagation is doubled to wz = 2.33 kHz. The size of a

thermal ensemble of atoms in a FORT with trapping frequency wi is [235]

σi =
1

wi

√
kbT

m
, (3.3.9)

thus the increased trapping frequency achieved with the crossed dipole trap

is predicted to reduce the size of loaded ensembles in the direction of prop-

agation. The ensemble length is predicted to scale as w1/w2, reducing the

length of the ensemble from σz = 8 µm to σz = 4 µm at 50 µK. Although

this reduction in length is modest, it critically reduces the size of the en-

semble such that it fits within the blockade radius of accessible principal

quantum numbers. This provides for the possibility of fully blockaded me-

dia in the future.

The FORT input optics have recently been upgraded to simplify the

process of adjusting the lateral distance between two FORTs for future

through the implementation of a 4f imaging system as shown in figure 3.12.

The 4f system reimages angular deflections of the dipole trapping beam by

an non-polarising beam splitter (NPBS) onto the face of the in-vacuo lens.

Thus angular deflections introduced by the NPBS are mapped into lateral

trap offsets at the focus of the in-vacuo lenses. This 4f setup provides a

convenient method of controlling the lateral distance between the foci of
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Figure 3.13: Theoretical dipole trap geometry and depth without (left) and with

(right) the cross dipole trap. Color maps with upper and lateral projections

show trap depth for FORTs with (left) and without (right) a cross dipole trap.

Blockade radius at n = 80 is indicated by a dashed white circle. The cross

trap was implemented to overcome the unfavourable FORT aspect ratio. The

direction of propagation, z, is marked. The radial direction r extends outward

in the vertical direction from the center of each trap.

two optical dipole traps. Probe beams are combined with trapping beams

using dichroic mirrors before the NPBS and are colinear at the NPBS. Thus

the same lateral translation is effected for both probe and trapping beams

by NPBS angular deflection. This minimises realignment of the probe onto

the ensemble after lateral translation of the dipole trap.

With the crossed dipole trap in operation, an optical depth of 5.48 ±0.1

was observed. Further details on the characterisation of the crossed dipole

trap can be found in the thesis of Teodora Ilieva [206]. FORTs used to

obtain data for this thesis commonly achieved optical depths of 3-4.
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Chapter 4

Cooperative Rydberg

Ensembles

This chapter outlines experiments demonstrating control over the statistical

and temporal nature of light through controlled interaction with an atomic

ensemble. Dipolar couplings between ground and Rydberg states in two,

three, and four-level systems modify optical properties of the ensemble.

This becomes apparent through a study of the temporal and statistical

nature of light passing through the ensemble. Observation of the density

dependence of superradiant emission is described in terms of a theoretical

model based on dipolar emitters coupled via dipole-dipole interactions.

Interference between geometric eigenmodes of an ensemble of atoms is used

to explain a density-dependent decay rate of the two-level atomic sample.

This density dependence is witnessed through a study of transient optical

emission which occurs immediately after the falling edge of a probe pulse,

known as free-induction decay (FID) [239].

Control over the decay rate of emission from a three-level system is

obtained through Rydberg dressing. Larger and more intense transient

emissions are obtained with non-classical, anti-bunched photon statistics

at high principal quantum numbers. The effect of interaction-induced de-

phasing upon the form of the decay is determined through master equation
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simulations of the system. Anti-bunching of transient emission is enhanced

through coupling Rydberg states with a microwave field, thus injecting

resonant C3 interactions, effectively increasing the strength of blockade.

Weaker microwave dressing is shown to modulate the temporal envelope of

the transient emission. Weak measurement of Rabi oscillations between Ry-

dberg levels is possible through monitoring the coupled optical field. This

demonstrates that Rydberg transients present a new tool for the study of

interaction-induced dephasing and Rydberg blockade of mesoscopic Ryd-

berg ensembles.

Overview

Cooperative systems are those whose properties cannot be understood by

consideration of their parts in isolation. In 1954, Dicke [36] reported that

emission from a dense gas of N emitters could decay faster than for a sin-

gle atom of the same species, assuming atomic confinement to a volume

smaller than the cube of the optical wavelength of the driven transition.

Emission from such gas was found to decay N times faster than from a sin-

gle atom. This quantum enhancement is termed ‘superradiance’ and has

been observed in many systems since Dicke’s publication including atomic

ensembles [72] and Rydberg ensembles [240]. Such collective (many-body)

behaviour can be used to create the entanglement which is central to the ad-

vancement of modern quantum technology. Systems exhibiting collective

interactions can be used to generate entanglement [94, 241], implement

single-photon sources [242] and enhance [243] or modify [244] light-matter

coupling. Collective behaviour is ubiquitous among modern quantum de-

vices including the latest NISQCs [96, 99, 245].

To utilise superpositions of collective Rydberg excitations of a cold

atomic gas as a collective qubit requires a thorough understanding of coop-

erative excitations and interactions with the photonic pulses which carry in-

put and output information in Rydberg systems. Moving beyond the Dicke
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picture to more accurately describe the emission of real systems requires a

relaxation of Dicke’s assumption of two-level emitters with sub-wavelength

confinement [66]. The emission of a system of coupled dipoles with rel-

atively low density requires careful consideration of the dipolar couplings

between atoms [68, 243, 246, 247]. Each excited atomic dipole produces

a field of dipolar radiation which couples to the dipole moment of nearby

atoms. Dipole coupled systems require diagonalisation to obtain the nat-

ural modes of the system of dipoles. This process can be used to extract

resonance shifts and decay rate modifications that can be expected from a

driven system of coupled dipoles. We experimentally measure the trans-

mission of our system and observe a collective enhancement of the decay

rate of FID [71, 248] due to interference between the normal excitational

modes of the ensemble, coupled via dipole dipole interactions [68].

Collective behaviour driven by Rydberg interactions can further modify

the optical response of a medium beyond that of the coupled dipole models

outlined above into the regime of Rydberg super-atoms [27]. Rydberg cou-

pling is shown to dramatically modify both the temporal envelope of tran-

sient collective emission [76, 86, 249, 250], and the photon statistics of the

emitted light [44, 45, 251] which are analyzed in line with the super-atom

picture. Rabi oscillations between Rydberg states in the absence of probe

light are used to enhance interactions and thus suppress g(2) (see chapter 3).

The experimental platform used to collect data in this thesis has a rich his-

tory of research into novel Rydberg interactions. Quantum states of light

have been prepared and manipulated through utilisation of Rydberg block-

ade [48, 51] with similar results reported elsewhere by many others in the

field [43–45, 116, 135, 252–256]. Quantum non-linearities giving rise to ef-

fective photon-photon interactions have been previously observed through

storage of Rydberg polaritons in two atomic ensembles in close proximity

[105]. Microwave electrometry has also been extensively studied in Durham

[205] and elsewhere [257, 258] due to utility in hybrid atom-resonator de-
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vices and microwave sensing. These previous experiments provide a rich

physical backdrop, establishing cooperative Rydberg excitations as inter-

esting and versatile quantum material.

This chapter extends previous work by studying the transient effects of

Rydberg coupling on atomic ensembles. Many studies of the steady-state

EIT condition are already available [113]. However there is now interest

[82, 83] in understanding the dynamics of three (or more) level Rydberg

systems to push the performance limits of Rydberg quantum devices in-

cluding switches [136], transistors [135] and quantum memories [137]. In

the section 4.2, Rydberg dressing is shown to dramatically modify the pro-

file of two-level transient decay. Master equation simulations are presented

showing how this modification is driven by the accumulation and dissipa-

tion of Rydberg coherences due to the Rydberg coupling. The presence of

Rydberg coherences causes light transmitted by the atomic ensemble to ex-

hibit anti-bunching, raising the possibility of using dynamic EIT pulses as

single-photon sources capable of providing hundreds of single photons per

second localised to a time window spanning hundreds of nanoseconds.

Whilst high n Rydberg states with huge blockade radii are technically

possible [259], lower principle quantum numbers around n = {60, 80} are

more commonly utilised due to their ease of preparation and reasonable

coupling strengths associated with the rydberg coupling transition. The

blockade strength scales with n, but can be increased by placing an en-

semble in a superposition of nS and n′P Rydberg states. In section 4.3,

superpositions of cooperative Rydberg excitations are used to amplify the

optical nonlinearities associated with Rydberg media. Experiments show-

ing the ability to deterministically transfer collective Rydberg excitations

between Rydberg states, and to place these excitations in superpositions of

Rydberg states using resonant microwave fields are reported. Then, weaker

Van der Waals interactions governed by the C6 parameter are replaced by

a stronger resonant dipolar interaction governed by the C3 parameter [30].
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Light emission from the driven system carries the signature of strength-

ened Rydberg interactions due to stronger interaction-induced dephasing,

exhibiting a lower g(2) parameter than for excitations stored in single-state

Rydberg polaritons of similar n.

This chapter is based upon the following publications:

• Robert J. Bettles et al. “Collective Mode Interferences in Light–

Matter Interactions”. In: (Aug. 2018). arXiv: 1808.08415

• Charles Möhl et al. “Photon correlation transients in a weakly block-

aded Rydberg ensemble”. In: Journal of Physics B: Atomic, Molec-

ular and Optical Physics (Feb. 2020). doi: 10.1088/1361-6455/

ab728f

Data presented in this chapter was taken jointly with Y. Jiao, T. Ilieva,

H. Busche, S. Ball, P. Huillery, and C. Möhl, with significant input, insight,

and theoretical modeling from R. Bettles.
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4.1 Optical Transients

This section concerns the transient response of a medium composed of two-

level scatterers to an incident pulse of resonant light. Early research into

coherent emission of systems composed of two-level emitters borrowed ter-

minology from NMR. Transient, coherent optical phenomena occur after

a resonant probe beam propagating through an absorptive medium is ex-

tinguished. The transient phenomenon was initially termed ‘free induction

decay (FID)’ [239] after a similar phenomenon in NMR spectroscopy. The

associated phenomena occurring when a resonant probe enters a medium

was first predicted in 1914 by Sommerfield and Brillouin [260, 261] in 1914,

and has since been termed a ‘forerunner’ or ‘optical precursor’ [262]. The

form of these transient effects in atomic gases depends on the properties

of the system such as the density and number of atoms. Optical precur-

sors and FID can thus be used to study the properties of optical media

composed of two-level systems.

The scattered field can be derived from the form of dipolar radiation

G(r), the dipole strength µge and the strength of coherences built between

|e〉 and |g〉.
EHBT = Ep + G(r)dgeρge(t), (4.1.1)

where ρge(t) is a time-dependent coherence. The optical Bloch equations

derived in chapter 2 can be used to show that the coherences ρeg which give

rise to a radiative dipolar field arise when an atom is driven by the probe.

They have a complex phase associated with the laser detuning and decay

due to the excited state lifetime.

ρ̇ge(t) = (i∆ − Γ0/2)ρge +
i

~
µgeEp. (4.1.2)

In the weak driving limit (ρee ≈ 0) we obtain a a solution that shows

that the signal received by the photon detectors has both steady-state and

transient features.
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ρge = ρssge(1 − e(i∆−Γ0/2)t) + e(i∆−Γ0)/2ρ0ge. (4.1.3)

On resonance (∆ = 0), and with all atoms initially in the ground state

(ρ0ge = 0) we can combine with equation 4.1.1 to find the form of the electric

field reaching the HBT detectors.

EHBT = Ep
(

1 + αG(r)
µge

|µge|
(1 − e−Γ0/2t)

)
, (4.1.4)

= Ep
(

1 + αG(r)
µge

|µge|
− αG(r)

µge

|µge|
e−Γ0/2t

)
, (4.1.5)

where Γ0 is the lifetime of the |g〉 , |e〉 transition. In equation 4.1.5, terms

are grouped. The steady-state response involves the interference of the

driven field of the dipoles ∝ ρge and the incident laser beam. The exponen-

tial term describes a transient electric field. By setting χ = αµgeG(r)/|µge|
we find that upon illuminating the medium with a probe beam, the electric

field recorded by the HBT detectors will be

|EHBT|/|Ep| = |χ|2 − (χ+ χ∗)eχe
−Γ0 t. (4.1.6)

In the above equation, the first term gives the asymptotic steady state

solution consisting of the laser field interfering with the field of the driven

dipoles, causing the cancellation of the laser field in the forward direction

and thus a steady-state optical depth. The second term governs the tran-

sient dynamics and stems from the timescale required to build coherence

that establishes the dipolar field. This timescale is set by the excited state

lifetime and is observed as an initial peak in intensity as the medium is

transparent for a short time before coherences that cancel the field propa-

gating toward the detectors is established.

Likewise, if the medium is initially illuminated and undergoes a rapid

extinction of the probe beam at t = 0, the electric field received by the

detectors will be
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Figure 4.1: Optical Bloch Equation simulation of the optical response of a two-

level atomic medium coupled with a resonant probe beam. a A resonant probe

field Ep (solid red) is applied to a dense two-level atomic medium. Ep polarises

the medium creating dipolar field EHBT (purple line) through equation 2.2.53.

This field is out of phase with the incident field leading to destructive interfer-

ence. b Intensity of the summed incident and dipolar field and atomic response

(c.f. equation 4.1.5). The steady-state between t = 5τ0, 10τ0 is flanked by two

transient phenomena which occur when the drive field is switched on c and off

d. The final transient decays with time constant Γ0, whereas the initial tran-

sient decays slower, at Γ0/2 due to interference with the drive field. Background

shading in b, c, d identify the initial (blue) and final (yellow) transient.
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|E| = |ρssgee−Γ0t/2|2 = e−Γ0t. (4.1.7)

This transient response of the detector signal to a probe extinguished

at t = 0 again stems from the finite bandwidth of the medium. Once the

probe beam is extinguished, atomic coherences decay over a timescale set

by the excited state lifetime Γ0. Both theoretical transient forms are shown

in Figure 4.1, where the Optical Bloch equations (see chapter 2) have been

integrated numerically to obtain ρge under the influence of a pulsed electric

field. Study of coherent emission can provide insight to improve the latest

quantum hardware [263–266]. FID has been observed in many experimental

systems [67, 71, 267, 268].

Figure 4.2 (b) shows the measured response of our atomic system sig-

nal including optical precursor (equation 4.1.6) and FID (equation 4.1.7)

transients. Both Γi and Γf are larger than predicted by the optical Bloch

equations for an ensemble of non-interacting atoms [74]. This departure

from the above theory is explored in the next section.

4.1.1 Dicke Superradiance

The interaction of light with a dense atomic gas can be remarkably different

from the single atom picture. At high densities, cooperative behaviour can

become the dominant factor in determining physical characteristics such as

decay rates, energy levels, and light-matter coupling.

Dicke first described in 1954 [36] that spontaneous emission from a dense

ensemble of excited atoms, modeled as two-level emitters, has a variable

decay rate which depends upon the excitation number (Dicke’s M). This

collective effect occurs when a dense gas of N two-level emitters are con-

fined to a volume much smaller in its dimensions than the characteristic

wavelength of the scatterer, and when the scatterers are all resonant with

common electromagnetic field mode. In this scenario, with all scatterers

indistinguishable, the atomic system is excited into a symmetric state of
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Figure 4.2: a The HBT signal showing normalised photon counts I/Imax emitted

from an atomic ensemble when illuminated with a pulse from a resonant probe.

The rising and falling edge of the probe are shown as dashed lines. b The

initial transient decays with a FID Γi = 2.49 ± 0.13Γ0 (black line fit). b, inset

Oscillations visible in the optical response as the coherent response that creates

optical depth is established. c The final transient decays with decay rate Γf =

3.9 ± 0.3Γ0 (black line fit), roughly double that of the initial transient as per

equation 4.1.5. The probe has an 80/20 switching time of ∼ Γ0. Finite probe

switching reduces the visibility of the superradiant FID signal.
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emitters. The full system of indistinguishable two-level emitters is modeled

as a symmetric system of spin - 1
2

particles.

⊕N
j |S = 1/2,ms〉 = |J = N/2,mj〉 , (4.1.8)

with states that can be derived by repeated application of the creation

operator
∑

i σ
−
i

|J,M〉 =

√
(J +M)!

(N !(J −M)!)

(
∑

i

σ
(J−M)
i |g, g, g, ..., g〉

)
. (4.1.9)

When such a system of two level scatterers undergoes spontaneous emission,

there is a significant increase in the emission rate as a result of the N atoms

acting as a macroscopic dipole [37].

D̂ =
N∑

j=1

D̂j = (Ĵ+ + Ĵ−)µeg ǫ̂, (4.1.10)

where the J± =
∑
σ±
j are the sum of the individual transition operators

for the N dipoles. The ǫ̂ and µeg are the normalised vectors defining the

polarisation of the |g〉 ↔ |e〉 transition and the electric dipole operator,

respectively.

When such a system undergoes spontaneous emission from a fully ex-

cited state, each emitted photon corresponds to a single de-excitation (c.f.

equation 4.1.9). Thus the system traverses from a fully excited state to

a fully de-excited state in single-quantum jumps, passing through every

possible value for M as shown in Figure 4.3.

Due to the form of D̂, the macroscopic dipole, is dependent on the

excitation number M . Dipolar radiation is much stronger when M is small,

because states with small M have have the largest |g〉 ↔ |e〉 coherence. The

intensity of emitted photons is then proportional to 〈J+J−〉.

Ĵ± |J,M〉 =
√

(J ∓M)(J ± +1‘) |J,M ± 1〉 , (4.1.11)

I ∝ (J +M)(J −M + 1). (4.1.12)
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Figure 4.3: Conceptual Dicke Picture. A system of dense two-level scatterers

interacting with a coherent laser field can be treated as a single coherent dipole

with macroscopic state |J,M〉, where J = N , and |M | < J . The internal states

of a macroscopic dipole for J = 2, consisting of four discrete two-level atoms, are

shown. Emission from this macroscopic dipole occurs when one of four dipoles

emits a photon ~ω. When progressing from fully excited to the ground state,

the system is found in a symmetric state with a certain excitation number M

and uncertain, symmetric configuration. This correspondence between M states

and underlying excitations is represented here as a sum of kets with four atoms

either red (excited) or blue (ground state). The macroscopic dipole is strongest

for the intermediate state |J, 0〉, where the underlying dipoles are equally split

between |g〉 and |e〉, resulting in maximal |e〉 ↔ |g〉 coherence and therefore the

largest macroscopic dipole matrix element.
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And so in the Dicke limit, when atoms are confined to volumes much

smaller than one wavelength, the gas exhibits a modified emission rate.

This rate is equal toNΓ when all of the dipoles are excited (|J = N/2,M = N/2〉).
The emission rate reaches a maximum when half of the dipoles are excited

|J = N/2,M = 0〉 where the emission rate is N2Γ, although in practice this

is strongly suppressed by interactions [37]. Since the initial proposition by

Dicke, this collective enhancement of the decay rate has been observed in

many physical systems [70, 72, 269–271].

4.1.2 Dilute Gas

Dicke superradiance stems from the treatment of a tightly confined atomic

sample as a coherent macroscopic dipole interacting with an EM field. The

Dicke picture requires dipoles to be confined to a small volume V 1/3 ≪ λ,

the so-called Dicke limit. However, this is not a necessary condition for the

modification of the optical response of a medium. Rehler and Eberly’s [66]

theoretical treatment relaxes the requirement of the Dicke limit. Atoms

are now known to exhibit collective effects when confined to volumes much

larger than that imposed by the Dicke limit [272]. As noted in the previous

section, this leads to observable superradiance and subradiance in cold

atomic systems [50, 70, 76], Rydberg systems [27, 86] and many others

[72].

When atoms in a dilute gas interact with an electromagnetic field, the

action of the electromagnetic field promotes each atom into a superposition

of |±〉, such that the state of an individual atom |φi〉 after the pulse is given

by

|ψi〉 = eiηi/2 sin θ
2
|e〉 + e−iηi/2 cos θ

2
|g〉 , (4.1.13)

where state rotation angle θ determines the likelihood that atom i is excited,

and the ηi determine the phase of the dipole after excitation. The state of

the full system after the excitation pulse is then
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|Ψ〉 =
N∑

i=1

eiηi/2 sin θ
2
|e〉 + e−iηi/2 cos θ

2
|g〉 . (4.1.14)

The dipole matrix operator for a single atom in this system is given by

Di = deg(Ri,− +Ri,+)ẑ (c.f. equation 4.1.10), where the R± are the raising

and lowering operators of the individual atomic dipoles such that

Rl,+ |e〉 = Rl,− |g〉 = 0, (4.1.15)

Rl,+ |g〉 = |e〉 , (4.1.16)

Rl,− |e〉 = |g〉 , (4.1.17)

Rl,3 |i〉 = Ei |i〉 . (4.1.18)

We can then evaluate the amplitude and phase of the atomic dipoles in

state |ψi〉

〈Dl(t)〉 = ẑµeg sin θ exp [−i(ωt+ φi − ηi)] + h.c., (4.1.19)

where φi is the initial phase of the dipole and ηi is the phase advance due

to the action of the electric field. We assume that the relative phases of

the dipoles are set by the phase of the incoming electromagnetic wave at

the position of each dipole ri, then

φi − ηi = −k · ri, (4.1.20)

where k is the wave vector of the electromagnetic wave, and ri is the po-

sition of the i’th dipole. The relationship given by equation 4.1.20 defines

the spin wave which is established in a dilute optical medium by the action

of a resonant plane wave. Assuming that the dephasing processes which

alter the phase relationship between dipoles can be neglected, radiation

from these dipoles can be calculated using the system raising and lowering

operators

S± =
N∑

i=0

R±e
±i(k·ri). (4.1.21)
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In combination with equation 4.1.19 we obtain[66]

〈I(k̂, t)〉 = I0(k̂) 〈Ψ|S+S− |Ψ〉 , (4.1.22)

= I0(k̂)
N

2

(
1 − cos θ(t) +

1

2
sin2 θ(t)

[
η(k̂, k̂p) − 1/N

])
.

(4.1.23)

Above, the quantity η(k̂, k̂p) arises due to the differing phases of the indi-

vidual dipoles and defines the intensity radiated in a particular direction

determined by the outgoing wavevector k. It is defined as an average over

the phases of all dipoles at positions ri

η(k̂, k̂p) =

∣∣∣∣∣

N∑

j=1

exp (i(k− kp) · rj)
∣∣∣∣∣

2

. (4.1.24)

Thus η(k̂, k̂p) determines the degree to which dipolar radiation in direc-

tion k̂ interferes constructively or destructively. If all dipoles are at the

origin, this term is equal to one (1) and we obtain the N2 dependence of

intensity of the radiation field on atom number (the Dicke limit) through

equation 4.1.23. We can then define the total radiation from the system in

all directions by integrating equation 4.1.23
∫

〈I(k̂, t)〉 dΩk̂ = (µ~ω/τ0)[
1
2
N +W (t)][1

2
N −W (t) + 1/γ]. (4.1.25)

Here τ0 = ~ω/I0 is the single atomic lifetime. We have also substituted the

total energy of the system W = −N
2

cos θ to remove the dependence on θ.

The effect of dipole phase on the total radiated intensity is characterised

through equation 4.1.24 by a parameter γ which takes account of the effect

the interference of the individual dipoles in the ensemble.

γ =
1

N
+

1

I0

∫
I0(k̂)η(k̂, k̂p)dΩk̂, (4.1.26)

where I0 defines the total radiative intensity from a single dipole, I0 =
∫
I0(k̂)dΩk̂. In this way, both the decay rate and angular profile of the

emission from N dipoles is a function of initial arrangement of their atoms

due to interference between emission from each of the dipoles which make

up the extended atomic sample [66].
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4.1.3 Coupled Dipole Model

Superradiance observed in these dilute systems can enhanced through col-

lective mode interferences [68, 273, 274]. To further understand the col-

lective emission of a dense ensemble of Rubidium atoms, it is necessary

to examine the explicit form of the radiation field of a dipole driven by

an electric field. The steady-state electric field in the vicinity of a driven

electric dipole is

E(r) = Ep(r) + G(r)µgeρge, (4.1.27)

where Ep is the driving field, ρge is the coherence between the two energy

levels of the dipole and G(r) is the electric field of dipole at position r.

The strength of the dipolar field created is proportional to coherence ρge.

In the weak driving limit, the optical Bloch equations stipulate

ρ̇ge(t) = (i∆p − Γe/2)ρge + iΩp(✟✟ρee − ρgg), (4.1.28)

where ~Ωp = Ep · µge. In the weak probe regime, ρee ≈ 0. On resonance,

with ∆p = 0, the equation for the evolution of coherence immediately after

the coupling Ω has been turned off is found by calculating equation 4.1.28

through approximating a continuous media. with Ωp = 0,

ρge(t) =

∫ t

t=t0

−Γe

2
ρge(t

′)dt′ = ρeg(t0)(1 − e−Γet/2). (4.1.29)

Thus the transient atomic response is determined by the decay rate of the

excited state, through the exponential decay with rate Γe/2 (as in equation

4.1.5). Substituting this form of ρge(t) into equation 4.1.27 for the total

electric field E(r) gives the intensity of the driven atomic system as

|E(r)|2 = |Ep(r)|2
∣∣∣∣1 +

α

|µge|
G(r)µge(1 − e−Γ0t)

∣∣∣∣
2

, (4.1.30)

where we have used the equation for the atomic polarisability µgeρge = αE .

The response of a single atomic dipole at position rj to a driving field in
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the interaction picture (RWA) can be rewritten in terms of equation 4.1.28,

again making use of the equation for the Rabi frequency ~Ωp = Ep · µge.

d

dt
dj = µgeρ̇ge, (4.1.31)

=

(
i∆ − Γe

2

)
dj + i

|µge|2
~

[Ep(rj)] . (4.1.32)

Above, ∆p = ωp − ω0 is the detuning of the probe field ωp from the bare

atomic resonance frequency ω0. Γe is the bare spontaneous decay rate of

an individual atom.

When multiple atoms are considered, the above expression for the evo-

lution of a single atomic dipole becomes

d

dt
dj = ρeg

(
ı∆ − Γe

2

)
+ i

|µeg|2
~

[
Ep(rj) +

∑

l 6=j

Gjldl

]
, (4.1.33)

where the original expression has been modified by inclusion of a sum of

contributions to the electric field at the point of dipole j from the radiated

fields of the remaining dipoles l 6= j. This coupling matrix G characterises

the couplings between dipoles for a specific ensemble geometry, and its ele-

ments Gij are defined here as the dipolar field emitted by atom j evaluated

at position i [68]

Gjldjl ≡ El(rj), (4.1.34)

in conjunction with the equation for the electric field of a single oscillating

dipole (Equation 2.1.30) at position rl evaluated at position rj .

In the steady state, where d
dt
dj = 0, this equation can be rearranged to

give (
1

α
I
N −

∑

l 6=j

Gl,j

)
−→
d ≡ M

−→
d =

−→Ep. (4.1.35)

Here, the matrix M acts upon the column vector of dipoles
−→
d , and I

N is

the N dimensional identity matrix corresponding to the number of dipoles

N .

For a dilute gas, typical R = |ri − rj| are large, and thus dipole-dipole

interactions are small, and the matrix M is contains contributions largely
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Figure 4.4: Left: The energy eigenmodes of two dipoles evolve as they are

brought into close proximity. Energy shifts and decay rates of two dipoles at

R = [5, 0.35, 0.26]λ are shown. The continuous evolution of eigenmodes between

these values is shown as a grey spiral. Middle: The coupling matrix M is shown

for the separations highlighted left demonstrating the transition from a diagonal

matrix at R = 5λ to strong coupling at R = 0.26λ, resulting in a significant

eigenvalue shift. The magnitude |Mij | is shown. Right: plot of the intensity of

the electric field for the intermediate (d = 0.35λ) case. Arbitrary contours are

provided to highlight the form of the electric field.

from the 1
α

term which defines the bare polarisability. In this case, M is

almost diagonal and thus degenerate in the original basis of bare atomic

dipoles
−→
d . However, for a dense sample, where the average inter-atomic

spacing |kR| < 1, off-diagonal couplings appear due to the dipole-dipole

interactions specified in equation 4.1.33 through G. In this case, the ma-

trix is no longer diagonal in the original basis of
−→
d . Diagonalisation yields

a new basis
−→
d′ . The eigenvectors of

−→
d′ describe the linear combinations

of dipoles contributing to the coupled geometric eigenmodes of the sys-

tem. The eigenvalues of these new eigenmodes have real and imaginary

parts corresponding to modified resonant frequencies and decay rates, re-

spectively.

Figure 4.4 shows this effect on the collective modes of a system con-

sisting of two such coupled dipoles. Three different coupling regimes are

shown. At large separations d≫ λ, the dipoles have little effect upon each

other. The two possible geometric modes of the system correspond to one
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Figure 4.5: a Simulated ensemble, representative of our experimental geometry

shown for the case n = 400. b The 50 × 50 coupling matrix |M| for n = 50.

The |M|ij show dipolar couplings between individual atoms (Equation 2.1.30).

c Energy eigenmodes of n dipoles in a Gaussian ensemble of size σx, σy = 2λ,

σz = 25λ for n = 10, 50, 400. Dipole-dipole coupling shifts eigenenergies and

decay rates. d Logarithmic colour map of |M| revealing many-body couplings.

e, f Logarithmic |M|, with a shared color map. e shows |M| through Equation

2.1.30. f shows |M| with the term ∝ 1/R in Equation 2.1.30 omitted. Strong

many body interactions due to the long range couplings ∝ 1/R are absent.

Weaker weaker interactions∝ R−2 orR−3 are not sufficient for density dependent

superradiance in our system.
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or other of the dipoles being driven. The energies E(r) ≈ E(r = ∞) = Ee

and decay rates Γ(r) ≈ Γ(r = ∞) = Γe are not significantly modified.

When the dipoles are in close proximity d ≈ λ, off-diagonal elements in the

coupling matrix M appear. In this case, the natural mode of the system

is a linear superposition of the two initial dipoles, with one mode oscillat-

ing in-phase and one oscillating out of phase. Modifications to the decay

rate and energies become more pronounced as the atoms are brought to-

gether. At d = 0.25λ, the fastest mode decays at Γ = 1.35Γ0 and has

energy E = 1.35E0.

This simple picture can be easily extended to a random ensemble of

atoms. Figure 4.5 shows the effect of a ensemble of 10, 100 and 400 atoms

whose positions are drawn from a 3D Gaussian distribution with σx = σy =

2λ and σz = 25λ upon the decay rates and energy shifts of the individual

geometric modes. Higher atom numbers cause stronger and more numerous

dipole-dipole couplings, increasing the strength of the geometric effect.

The shifting eigenmodes and eigenenergies of these collective modes

also affect the temporal envelope of emission from the system of coupled

dipoles. In the coupled basis, each eigenmode has a distinct shifted fre-

quency and decay rate. An immediate consequence is that when the ex-

cited system emits, superradiant eigenmodes decay quickly with sub ra-

diant modes taking longer to decay. Moreover, the shifted frequencies of

the individual modes cause interference upon emission. This interference

causes a time-dependent overall decay rate Γ(t), which can be defined as

Γ(t) = −∂ log(Ptot/P0)/∂t. Thus Γ(t) is a measure of the instantaneous

change in emission. Due to interference upon emission from shifted modes,

Γ(t) can be faster than the decay rate of the fastest of any of the individual

eigenmodes. Once the drive field is switched off, the macroscopic dipole D
decays as

D(t) =
N∑

i=1

d′
i exp(−Γ′

it− i∆′
it). (4.1.36)
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For the case of non-interacting dipoles, where |kR| ≫ 1, the decay rates

and detunings are all equal to the bare atomic case Γ′
i = Γe, ∆′

j = 0. As

the density is increased, the decay rates and detunings vary as shown in

Figure 4.5, giving rise to such variable decay rates.

4.1.4 Observation of Two-Level Transient

The experimental apparatus detailed in chapter 3 is an ideal platform to

investigate coherent emission from ensembles of atomic Rubidium. Ultra-

cold atoms held in optical dipole traps provide a means by which to freeze

thermal motion and isolate optical phenomena such as superradiance [275].

The high data acquisition rate supports the study of superradiance at the

single photon level, avoiding interactions that can destroy the effect [37].

Preparation of a sample of Rubidium 87 at 50 µK supports the resolution of

atomic dynamics. Figure 4.6 shows an overview of the pulse sequence and

trap geometry used to witness the collective superradiance of an ensemble

of Rubidium 87.

An atomic ensemble is loaded into a dipole trap with waist wd =5 µm.

Probe light is focused to wp = 1.1 µm at the center of the atomic ensemble,

having length σz = 40 µm in the direction of propagation and width σx =

σy = 3 µm in the axial direction. Atoms are optically pumped into the

|5S1/2F = 2, mf = 2〉 stretched state with σ+ coupling light. The trap

amplitude is modulated with a square wave control signal at 2.2 MHz to

avoid excessive AC Stark shifts during each experimental run as shown in

Figure 4.6 (c). The duty cycle is adjusted such that the trap confines the

atoms for 3 µs and releases them for 1 µs of this cycle.

During the time when the trapping light is switched off a weak coherent

probe pulse with circular polarisation couples states

|g〉 = |5S1/2F = 2, mf = 2〉 ↔ |e〉 = |5S1/2F = 3, mf = 3〉 , (4.1.37)

with detuning ∆p = 0 and Rabi frequency Ωp. The probe pulse has du-

ration tp = 0.35 µs and mean photon number 1.5. This the probe beam
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Figure 4.6: Experimental schematic for coherent FID observation. a The atomic

ensemble is simplified to a system of two-level emitters coupled with a resonant

probe beam (∆ = 0) having Rabi frequency Ωp. b Geometry of probe (red) and

dipole (black) trapping beams. The probe beam is focused into an ensemble of

Rubidium atoms forming a waist of wp = 1.1 µm at the center of the ensemble.

The transition is the D2 line of Rubidium with decay rate Γe = 6.065(9) MHz

[276]. c Timing sequence of probe and trapping beams. The dipole trap is

turned off at t = 0.1 µs, followed by a probe pulse lasting 0.35 µs. d, e Histogram

of photon arrivals at the HBT detection circuit, coupled to the incoming probe

beam. Histograms shown in absence (d) and presence (e) of the atomic ensemble.

The process of absorption causes two characteristic transient features upon the

rising and falling edge of the probe pulse. τ0 is the lifetime of the |e〉 ↔ |g〉
transition.
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is coupled to the HBT detection circuit (see chapter 3) in absence of the

ensemble. During the experimental sequence, the HBT detection circuit

records transmission of the probe as well as emission from the ensemble.

A typical histogram of photon counts extracted from the HBT detection

circuit for both probe and reference pulses is shown in Figure 4.6 d & e,

where the initial and final experimental transients of equations 4.1.6, 4.1.7

are observable.

Due to the density-dependent nature of this effect, the optical depth

of the ensemble is monitored during experiments to ensure the validity of

experimental data. Heating by the probe causes a steady loss of atoms from

the trap. When the optical depth begins to decrease, the optical dipole trap

is refreshed by reloading atoms from a MOT. For these experiments, the

pulse sequence shown in Figure 4.6, c is implemented between 4000 and

10000 times before optical depth is degraded.

4.1.5 Density Dependence

To study the effects of variable atomic density without changing other ex-

perimental parameters we chose to control the number of atoms of the

ensemble that interact with the probe beam by selectively pumping atoms

into resonance. At the beginning of the experiment, the atoms are in

the ground state |5S1/2F = 1〉. To keep the ensemble parameters con-

stant whilst varying the optical depth, we control the number of atoms

addressed by the probe beam by selectively pumping atoms into the cy-

cling transition addressed by the probe. From here, a re-pumping pulse

of variable duration of between 10 and 100 µs addresses the transition

|5S1/2F = 1〉 ↔ |5P3/2F
′ = 2〉 with circular polarised light. This pulse ef-

fects optical pumping. Atoms are promoted out of the dark |5S1/2F = 1〉
state, into |5S1/2F

′ = 2, mf = 2〉 where they becomeresonant with the

probe beam. Thus varying the duration of this pumping process allows

us to chose the number of atoms that can interact with the probe pulse
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Figure 4.7: Experimental measurement of the density dependence of the response

of an atomic medium to a resonant probe beam. Left panels correspond to low

optical depth, OD = 1. Right panels correspond to high optical depth, OD = 4.

The signal in the absence of atoms is indicated by the grey shaded region in all

panels. a, b Total power collected by a single mode fiber during the interaction

between probe and ensemble, showing initial and final two-level transients. c, d

The decay rate of the final transient Γ (blue line) is a strong function of optical

depth. At OD = 1, the decay rate of the transient is ≈ Γ0 (c). At OD = 4.9,

the decay rate increases to Γ ≈ 4Γ0 (d). Figure reproduced from [68], which

includes an extended analysis of this density-dependent phenomenon.

and therefore select an optical depth.

Progressive absorption of photons during subsequent experiments pumps

atoms into the |5S1/2F = 2mF = 2〉 state during the first few thousand ex-

periments, which ends when atoms are predominately cycling the

|5S1/2F = 2, mF = 2〉 ↔ |5P3/2F
′ = 3, mF ′ = 3〉 (4.1.38)

transition. During this pumping, the optical depth of the ensemble is seen

to vary and so experimental analysis is performed on data taken after opti-

cal depth fluctuations have stabilised. Data corresponding to the first few

thousand shots are discarded.

Figure 4.7 shows the result of two such experiments where a density-

dependent geometric eigenmode decay is observed. Figure 4.7 (a), shows

the response of the ensemble at low optical depth. The HBT reference
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signal is shown in grey, which corresponds to photon events due to the probe

beam in absence of absorption by an atomic ensemble, coupled directly into

the HBT detection circuit. Red data points show the observed response

of the medium to the probe, with characteristic initial and final transient

following the two edges of the reference signal.

The optical depth is characterised by the steady-state absorption of the

probe beam. Figure 4.7 (a) shows the full transient optical response of the

medium at low optical depth, OD = 1 to the resonant probe beam. The

low-OD response is typified by low steady state absorption and small final

transient. The ρeg coherence for relatively low effective atomic density is

not sufficient to cancel the drive field. Figure 4.7 (c) highlights the portion

of this signal corresponding to the low OD final transient. The transient

decay rate Γf is calculated to match the atomic decay rate Γf ≈ Γe. Rela-

tively low coupling between atoms leads to a small collective enhancement

of the decay rate as set out in section 4.1.5. The atomic response is not dra-

matically modified from the response of atoms in the absence of geometric

couplings at low OD.

Figure 4.7 b & d show the atomic response at high optical depth

OD = 4.9. In contrast to the case of low optical depth, the steady-state ab-

sorption is high, as higher atom numbers interacting with the probe pulse

increase the susceptibility of the medium. The initial and final transient

are well resolved and large in magnitude, being proportional to the larger

ρeg coherence generated at high OD due to the larger number of atoms in-

teracting with the probe. The decay of the final transient is detailed in

Figure 4.7, d and should be viewed in comparison with figure 4.7, c. The

high OD transient is observed to have a much faster decay rate Γ ≈ 4Γ0

due to the interference of the emission from shifted geometric eigenmodes.
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4.2 EIT Transients

In the previous section, the consideration of the geometric modes of a two-

level medium leads to a modified optical response. By moving to a medium

with three coupled transitions (|g〉 ⇔ |e〉 ⇔ |r〉), it is possible to witness

a richer variety of phenomena such as electromagnetically induced trans-

parency [40, 277], photon storage [49] and the Kerr effect [278]. Amplifica-

tion of the cooperative nature of the optical response of a medium can be

achieved in a three-level system by choosing the state |r〉 from amongst the

Rydberg states, conferring larger dipole moments and thus achieving strong

many-body interactions. Recent interest in strongly interacting Rydberg

transients was sparked by proposals to use Rydberg ensembles as nodes of

quantum communication networks [279] where Rydberg media might use-

fully interface remote quantum hardware whilst simultaneously performing

gate operations [35]. Understanding of the nature of photon emission from

Rydberg dressed systems is essential to achieving robust light-matter in-

terfaces in Rydberg based network nodes [27, 280–282], which leverage

existing all-optical gates [26, 134, 283]. In support of these aims, studies

of three-level Rydberg transients have thus recently come to the fore [85,

284]. Three-level transients can also give insight into the internal dynamics

of Rydberg systems [83, 86].

This section presents observations of the optical response of a driven

three-level ensemble to resonant probe photons under a variable Rydberg

dressing. The effect of Rydberg dressing on the temporal and statistical

nature of light transmitted by an atomic ensemble is reported. The tem-

poral envelope is modelled with Master equations in the superatom picture

[27, 31–33, 126]. Statistical analysis of transmitted photons reveals Ryd-

berg mediated photon anti-bunching [45, 116]. In this section 4.2, we show

that by weakly dressing our atomic ensemble, we can effectively modify

the temporal profile and statistical nature of light emitted from a pumped

ensemble via spontaneous decay through imposition of Rydberg blockade.
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By inclusion of a fourth Rydberg state |3〉, we show control over the sta-

tistical nature of light transmitted by the ensemble due to the associated

increased strength of resonant-dipole interactions. In section 4.3, the block-

ade mechanism is enhanced through application of a resonant microwave

field, introducing resonant dipolar interactions [29, 48].

Equation 4.1.1 defining the electric field of an atom interacting with

an electric field can also be used to describe the response of driven three-

level superatoms [27]. The master equation used to calculate ρeg is solved

the three-level context as set out chapter 2. Figure 4.8 shows a numeri-

cal simulation of the dynamic three-level system highlighting key features

of experimentally observable dynamics. Parameters used in the model are

shown in the figure caption and are representative of experimental condi-

tions under the action of the pulse sequence set out in figure 4.11. Were

Ωc = 0, this figure would match precisely the dynamics of a two-level sys-

tem observed in the previous section. This section extends the analysis

of two-level systems to describe dynamically driven three-level polaritons

under Ξ-EIT (ladder) conditions where the coupling constants Ωp,c(t) are

time-dependent quantities.

Figure 4.8 a, c presents the temporal profile of the coherences ρeg that

arise in response to the driving with Ωp,Ωc. Figure 4.8 b shows the theo-

retical observable profile of the forward scattered light. Operating in the

weak probe regime, the system interacts with a probe pulse lasting a few

hundred nanoseconds. The initial small transient at t = 0 in Figure 4.8

b is precisely the initial transient studied in the previous section, which is

followed by a short period of high optical depth, corresponding to two-level

absorption. At t = 5τ0, Ωc is rapidly increased from Ωc ≈ 0 to a steady-

state value of Ωc ∈ 2π · [0, 30] MHz with an 80/20 rise time of 120 ns. The

resultant |e〉 ↔ |r〉 coherences create an EIT transmission window, and

thus the optical thickness of the medium is reduced. At t = 22τ0 the probe

beam is rapidly extinguished such that coupling Ωp = 0, quenching the sys-
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Figure 4.8: Solution of equation 4.1.1 through numerical integration of three

level optical Bloch equations for the optical pulse sequence shown in 4.11, where

Ωc = 2π · 2.52 MHz, Ωp = 2π· 0.1 MHz and Γe = 2π · 6.06 MHz. Ωc is applied

at t = 5τ0, where τ0 corresponds to the lifetime of the D2 line of Rubidium

87. Figures a, b (c.f. Figure 4.1) shows the form of the dipolar field EHBT, in

response to incident Ep and the summed intensity that is detected by the HBT

detection circuit IHBT. The extended decay observed when the atomic ensemble

is weakly driven by Ωc is identified in b as the dressed flash. c details the atomic

coherence ρeg upon the extinction of the probe propagating through a dressed

media. The zero crossing gives rise to a dip in the HBT signal, followed by a

revival and the slow decay associated with the dressed flash, shown in d. The

ρeg zero crossing can give rise to a EHBT transient with two intensity peaks (see

Figure 4.9).
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tem. Thereafter, the system exhibits a dynamic optical response. Rydberg

excitations pumped into the medium decay via |e〉 due to a combination

of spontaneous emission from |r〉 and resonant driving from |r〉 to |e〉 by

Ωc followed by spontaneous decay from |e〉. These processes can be signifi-

cantly slower and can produce a much higher intensity transient than in the

associated two-level system. In this thesis, the intense transient associated

with de-pumping of Rydberg excitations is termed the dressed flash.

At the point that the probe beam is switched off, the EIT condition is

satisfied. Under ideal steady state resonant EIT conditions, the population

of |e〉 is zero, and the atomic system exists in a superposition |±〉 ∝ |g〉±|r〉.
Thus initially ρer > 0 and ρeg ≈ 0. For Rydberg systems, decay from the

excited state is much faster than decay from the Rydberg state. It is

also much faster than experimental timescales of 1 µs implemented in this

thesis, and so we make the approximation that 0 ≈ Γr ≪ Γe. After the

probe beam is extinguished, we have the condition Ωp = 0. Resonant probe

and coupling beams also allow us to set ∆p,∆c,∆2 = 0. The optical Bloch

equations for ρeg, ρer of the three level system as derived in chapter 2

ρ̇eg =
iΩp

2
(ρee − ρgg) −

iΩc

2
ρrg +

(
i∆p −

Γe

2
ρeg

)
, (4.2.39)

ρ̇rg =
iΩp

2
ρre −

iΩc

2
ρeg +

(
i(∆p + ∆c) −

Γr

2

)
ρre, (4.2.40)

can thus be simplified to the following coupled ODEs.

ρ̇eg
ρ̇rg


 =

1

2


 Γe −iΩc

−iΩc 0




ρeg
ρrg


 . (4.2.41)

Solving for the time dependence of the eigenstates of the density matrix

we obtain the following equation for the decay rate of coherence ρeg.

Γdressed,± =
1

4
Γe

[
1 ±

√
1 − C2

]
. (4.2.42)

Here, C = 2Ωc/Γe. When Ωc = 0, we have that Γdressed = Γe/2, re-

producing the two level dynamics. This simple picture gives rise to three

dynamical regimes for the decay rate of the dressed flash determined by C.
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Figure 4.9: Flash dynamics are dictated by the balance of C = 2Ωc/Γp, shown

above for three distinct regimes. For C ≪ 1, ρgr (black line) coherences remain

small. Upon extinction of the probe, the two-level flash is visible as a sharp

intensity maximum, followed by a three-level flash of low intensity and slow

decay. Two and three-level flashes are separated by intensity minima due to the

change in the sign of the atomic coherence term that gives rise to each flash.

For C ≈ 1, significant ρgr coherence builds in the medium. Ωc drives population

from |r〉 to |e〉 where it can decay. This creates a flash that extends well beyond

the initial two-level flash. For C ≫ 1, fast de-pumping of |r〉 causes fast flash

decay and can cause dressed flash oscillation. For C ≫ 0, the initial flash is

usually not observed experimentally due to the finite probe switching speed as

reproduced in the above simulation.
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Figure 4.10: Numerical optical Bloch simulations of dressed flash coherences ρeg

are shown for C ∈ [0, 3]. Other parameters match Figure 4.9. For weak Ωc,

the coherences closely match Figure 4.1. For intermediate Ωc, a dipolar field

builds as in the previous section. Upon probe extinction, the initial negative

coherence revives as a positive coherence due to de-pumping of |r〉, highlighted
in black. Experimentally, this leads to a double flash. For higher Ωc, the EIT

condition is better satisfied, and so little |e〉 , |g〉 coherence is observed. In this

regime, only the flash originating from Rydberg de-pumping is observed. Ωc

can dramatically extend the two-level flash, causing observable coherence well

beyond that of the two-level case. inset The decay rates of the coherence for

an atom with Γe = 6.06 MHz extracted from fits to optical Bloch simulations.

The decay of the coherence rises to a maximum value of Γ/2 through equation

4.2.42.
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• For C ≫ 1, the Rabi frequency is the dominant factor determining

the dynamics of the dressed flash, being greater in magnitude than

the decay rate of the two-level flash 1
2
Γe. Thus weakly damped Rabi

oscillations of the flash are observed. The flash lifetime is limited by

the rate at which the excited state decays via spontaneous emission.

• For C ≈ 1, this dominance is lost. Critical damping causes the loss

of oscillation in the flash signal, but the flash still decays with a rate

close to that of the excited state through equation 4.2.42 .

• For C ≪ 1, Ωc, the atomic response is similar to that of the atom in

the absence of dressing. The decay rate is close to that of the bare

atom, with minimal contribution to the decay rate from the Rydberg

dressing.

Atomic coherence and resultant dressed flashes are shown in Figure 4.9

for the three dynamical regimes, where the probe beam is extinguished

at t = 0. Figure 4.9 c,d show the time evolution of ρeg as well as the

predicted HBT signal. In c, these coherences are observed to change sign

at the point where the probe is extinguished. An initial negative atomic

coherence counteracts the drive field during steady state EIT and causes

steady state optical depth OD > 0 during EIT. Observation of this negative

atomic coherence in the form of a two-level flash requires the experimental

physicist to extinguish the coupling Ωc enough to observe this small, fast

decaying field. After extinguishing Ωc, ρeg, which is initially negative, again

becomes positive giving rise to the dressed flash. In the two level case, the

transient flash arises purely as a result of the decay of the interference

field which initially cancels the probe beam due to negative ρeg. In the

three-level case the dressed flash has its origins in positive ρeg emission of

photons in phase with the drive field. This positive ρeg arises due to the
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optical pumping of excitations into state |r〉 which can decay to ground

over a much longer timescale than the lifetime of the excited state due to

the bottleneck at low Ωc in state transfer from |r〉 to the radiative state

|e〉.
Master equations of the atomic coherence ρeg are shown in detail on

figure 4.10. Parameters used for simulation are the same as figure 4.9

excepting variable Ωc parameterised through C. The case C = 0.5 is high-

lighted, for which significant ρer and ρeg coherences build. In this regime,

it is possible to obtain strong dressed flash in tandem with strong initial

two-level emission. The magnitude and interplay of positive and negative

ρeg coherences provides for a more complete picture of the dynamics of the

driven system in the three regimes for C

• C ≪ 1: The sign change in transient ρeg leads to two discrete flashes.

The two-level flash is dominant after which a very slow flash decay

due to slow de-pumping of |r〉 by weak Ωc, or Γr in the limiting case.

The magnitude of the dressed flash is small due to minimal EIT co-

herence during the probe window.

• C ≈ 1: The Rydberg flash appears large due to significant ρeg co-

herence during EIT. De-pumping of |r〉 by intermediate Ωc leads to

a large, extended dressed flash.

• C ≫ 1: The magnitude of the initial flash is large, but decay is rapid

due to fast de-pumping of |r〉 by strong Ωc. Emission from the en-

semble can oscillate after the probe beam is extinguished through

equation 4.2.42. De-pumping limited by Γe.
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Figure 4.11: Dressed Flash Experiment Outline. a Probe and coupling beams

Ωp,c couple states |g〉 ↔ |e〉 and |g〉 ↔ |r〉 with single photon detunings ∆p,c.

Spontaneous emission from |e〉 → |g〉 sets the timescale for the dynamic sys-

tem, dominating Γr ≪ Γe for Rydberg systems. b The geometry of probe (red),

trapping (black) and coupling (blue) beams. Probe and coupling beams counter-

propagate. Waists are overlapped in the center of the atomic ensemble. c Pulse

timing. The sequence is similar to that of the two-level flash. The probe pulse

is bisected by the rising edge of the coupling beam creating ρeg coherence. The

coupling beam remains after probe extinction giving rise to the dressed flash. d

Histogram of photon counts in the absence of an atomic ensemble revealing the

shape of the probe pulse. e Histogram of photon counts in the presence of an

ensemble showing the appearance of the dressed flash after the probe is extin-

guished. Steady state two-level absorption and three-level EIT are observable

at t = 15, 33 τ0, respectively. τ0 is the lifetime of the |g〉 ↔ |e〉 transition in

Rubidium 87 Γe = 6.06 MHz [276].
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4.2.1 Observation of EIT Transients

Figure 4.11 b shows the experimental geometry used to study three-level

Rydberg transients. A few thousand atoms are loaded into a dipole trap

with dimensions 3 µm×40 µm as with the two level flash observation of

figure 4.6. Figure 4.11 c shows the temporal profile of the probe, coupling

and trapping beams. The probe beam is focused to w0 = 1.1 µm into the

center of the atomic ensemble. The coupling pulse is focused to w0 =

30 µm. This waist is large such that variation in Ωc across the ensemble is

minimised.

Trapping amplitude is modulated with a square wave amplitude profile

at 2.2 MHz as with previous two-level flash experiments. Atoms experience

the confining force of the dipole trap for a duration of 3 µs. The duty cycle

is adjusted such that the atoms are released from the trap for 1 µs. During

release, the pulse sequence shown in Figure 4.11 c is implemented. This

experimental sequence is identical to that of the two-level flash with an

additional of Rabi frequency Ωc coupling to a Rydberg state |r〉 provided

by the coupling beam. Probe photons are resonant with the

|g〉 = |5S1/2F = 2, mf = 2〉 ↔ |5P3/2F
′ = 3, mf ′ = 3〉 = |e〉 (4.2.43)

transition, ∆p = 0. Probe and coupling beams have opposing circular

polarisation such that they both drive the σ+ transition. A quantisation

field is again applied along the propagation axis. A probe pulse lasting

0.75 µs couples states |g〉 , |e〉. Whilst the probe pulse is interacting with

the medium, the ensemble is dynamically coupled to a Rydberg state |r〉 =

|nS1/2〉 with a coupling pulse lasting 0.7 µs and with a rising edge that

bisects the probe pulse as shown in Figure 4.11, c. The Rabi frequency of

Ωc is variable, and we can typically obtain Ωc . 30 MHz for n = 60.

The transmission of the ensemble is measured using the HBT detection

circuit as a series of time-tagged photon events as outlined in section 3. This

allows us to obtain the temporal profile of transmitted light whilst giving

simultaneous access to the underlying statistical nature of the incident pho-
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tons as outlined in chapter 3. Figure 4.11 e shows typical histograms of the

summed photon counts from both detectors of the HBT detection circuit

of the ensemble during the pulse sequence shown in Figure 4.11. Photons

are counted in 5 ns time bins from the start of each experimental sequence.

Figure 4.12 gives a comparison between the experimentally observed EHBT

for a driven three-level system and simulations of the optical response of

the same system via numerical integration of equation 4.1.1. The rising

edge of the probe occurs at t = 8τ0. The medium at this time is precisely

that of the two-level system, and so the optical response is the same. At

t ≈0.8 µs, an initial transient followed by high optical depth OD≈ 4 as in

the case of the two-level system is observed. At this time Ωc = 0. The op-

tical dipole trap is reloaded with a fresh ensemble of atoms after every five

thousand runs. Photon arrival histograms are averaged over one million

experimental runs.

At t ≈ 20τ0, the coupling frequency Ωc(t) is increased to a maximum

value Ωmax
c (t), and an EIT transmission window opens. Steady-state EIT

transmission occurs around t ≈30τ0. The probe beam is then switched off

and slow decay of photon counts is observed, with a lifetime that is much

longer than that observed in the two-level system. This transition can be

seen on the raw data presented in Figure 4.12 b, the fast two-level flash at

Ωc = 0 gives way to the dressed flash at Ωc ≈ 2π · 5 MHz.

The effect of varying the amplitude of Ωc(t) between extreme values

Ωc ∈ [0,30] MHz upon the temporal evolution of the dressed flash is detailed

in Figure 4.12 where panels a, b show the HBT signal histograms and

panels c, d show a master equation simulation of the same. Ωc is obtained

from fits to EIT transmission spectra using the EIT susceptibility derived

in chapter 2. For small values of Ωc(t), we observe the optical response of a

dense two-level system as described in section 4.1.4, with two characteristic

emission peaks are corresponding to the rising and falling edges of the

probe beam (purple data, Figure 4.12, a). As Ωc increases, the optical
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response of the medium shifts towards the dressed flash picture following

the progression set out in Equation 4.2.42. The presence of the coupling

beam and probe beam in the medium gives rise to an EIT transparency

window during the overlap of the probe and coupling beam. The time

constant associated with the rising edge of this window is determined by

the Ωc coupling frequency (or, in the case of strong coupling, the form of the

rising edge of Ωc) and represents the time required for the coherences that

underpin EIT to build between the ground and Rydberg states |g〉 ↔ |r〉.
Figure 4.12 a highlights three data sets corresponding to C ≈ 0, 0.5

and 1. The decay rate of the excited |e〉 = |5P3/2F = 4〉 of Rubidium 87

is Γe = 2π · 6.065(9) MHz and so Rabi frequencies 1.7, 2.7 and 3.6 MHz

are highlighted. Rabi frequencies are extracted from fits to EIT transmis-

sion spectra using the equation for EIT susceptibility presented in chapter

2. The red data set show low Ωmax
c (t) = 1.7 MHz. For such low coupling

strengths, two-level dynamics are dominant. Despite a small EIT window

building, insufficient ρgr coherences build to produce a significant Rydberg

dressed flash. The peak flash intensity exceeds the intensity of the trans-

mission during the transparency window.

At stronger Ωc = 2.7 MHz, stronger EIT is observed due to a more

significant ρgr coherence. At the extinction of the probe, these coherences

decay via the excited state. However, the EIT transmission is still low due

to the low Ωmax
c (t) , and as such, there is also significant ρeg coherence

suppressing probe transmission. Two flashes in intensity are observed, one

from the fast decay of negative ρeg coherences and one from the slower

decay of positive ρeg coherence which occurs after the initial probe flash

has decayed. The zero crossing of the ρeg coherence can clearly be seen as a

dip in intensity between the initial flash associated with two-level dynamics

and the longer Rydberg dressed flash associated with dressed dynamics.

At Ωc = 3.6 MHz, the EIT transmission window is large due to increased

ρgr coherence. The corresponding dressed flash is much larger in magnitude
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Figure 4.12: Excitation pulse dynamics vs. coupling Rabi frequency (Ωc), show-

ing the transition from an ensemble exhibiting two-level flash to a three-level

ensemble exhibiting dressed flash. a, b Experimentally measured transmission

data in the form of photon counts detected by the HBT detection circuit binned

in 5ns time intervals. a Data for Ωc = 2π · 1.7 MHz (purple), Ωc = 2π · 2.7 MHz

(red) and Ωc = 2π · 3.6 MHz (blue) corresponding to C ≈ 0, 0.5, 1 are detailed.

b Color plot of transmitted intensity showing the variation of the flash signal for

Ωc in the range 2π · [0, 30] MHz. c Three-level mean-field optical Bloch Equa-

tionof the dressed flash for the same coupling strengths as described in the text.

d Colour map showing full ME simulation of the transmitted intensity over the

parameter space of b. The three regimes of two-level flash, mixed flash and

dressed flash are present in both the experimental and theoretical data.
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and the initial ρeg coherence small due to stronger EIT. Thus the flash

associated with two-level dynamics is not observed. Instead an intensity

minimum in the HBT signal is still observed due to the time required for

ρeg coherence to build after probe switching. Figure 4.12 b, shows that

an increased magnitude of Ωc leads to more rapid flash, limited by Γe.

Increasing Ωc is observed to lead to faster de-pumping of the Rydberg

manifold.

Figure 4.12 also shows the results of the numerical integration of three-

level OBEs derived in chapter 2. The data are simulated for the same

range of Ωc as the experimental data. A superradiant excited state decay

rate of 3Γ0 is used in the calculation of the Rydberg dephasor due to the

geometric speedup detailed in section 4.1.5. The optical depth and pulse

timings match the experimental sequence.

Rydberg interaction-induced dephasing reduces resonant optical depth

under EIT conditions, which strongly depends on the coupling frequency

Ωc and principal quantum number n due to the scaling of the underlying

Rydberg interaction. Strong dephasing occurring for ensembles with mul-

tiple |r〉 excitations which diminishes resonant transmission [113]. In the

dressed-flash context, Van der Waals dephasing causes suppression. This

suppression is particularly apparent at low Ωc << Γr, where the decay rate

of the dressed flash in the absence of VdW dephasing would be associated

with decay from the Rydberg state Γr. To account for Van der Waals de-

phasing, the Lindblad dephasor used for master equation simulation was

calculated to include a term proportional to the Rydberg population by

inclusion of a mean-field Hilbert-Schmidt dephasor [285] with a jump op-

erator [85] taking the form
√

ΓV dW/2σrr. This term causes dephasing of

the Rydberg state without population transfer out of |r〉. Figure 4.9 shows

that for C = 0.15, where the coupling frequency does not dominate over

decay from the Rydberg state, a lack of consideration of Rydberg dephas-

ing causes an extended flash, which can only decay from the Rydberg state
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Figure 4.13: The effect of Rydberg dephasing upon the dressed flash is particu-

larly impactful for the case C ≪ 1 shown in the above data set and simulation.

The dressed flash are well fit with master equation simulations which include

a Hilbert-Schmidt VdW dephasing operator ∝ |r〉 〈r|. These fits were used to

determine the dephasing rate γV dW /2π = 1.5± 0.2 MHz. Optical Bloch simula-

tions for γrr = 0 show a prediction of incorrect magnitude and decay rate of the

experimentally observed dressed flash. Data and theory are shown normalised

to probe transmission with an experimentally verified optical depth of OD=3.2.

An accelerated excited state decay rate of 3Γ0 was implemented to account for

geometric mode interference of the two-level flash decay.

at rate Γr. Rydberg dephasing causes the flash to become foreshortened as

shown in Figure 4.13. Where C ≪ 1, ΓVdW 6= 0 causes a dramatic reduction

in the extent of the Rydberg flash. The dephasing rate γVdW was obtained

by fitting master equation simulations to experimental data with γVdW as a

free parameter. The dephasing rate was found to be γVdW = (1.5±0.2) ·2π
MHz, which reproduces the form of the foreshortened flash. In Figure 4.13,

simulations are shown for the fit value of γVdW and γVdW = 0, highlighting

the effect of Rydberg dephasing upon the dressed flash.

It is possible to view the dressed flash using a simplified pulse sequence,

where Ωc is never switched off. This provides the requisite condition of

a coupled three-level system at the falling edge of the probe beam. Our
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Figure 4.14: Rydberg blockade causes suppression of the dressed flash for high

incident photon numbers 〈n〉. Saturation of the medium occurs at 〈nFlash〉 ≈ 2,

and is marked by a dashed line. The efficiency of flash photon generation ǫ is

heavily suppressed for indicent photon numbers 〈np〉 ≫ 1, reducing the number

〈nFlash〉 of detected flash photons due to Rydberg dephasing and blockade. Data

presented in this chapter correspond to the range 〈np〉 ∈ [0, 1].

sequence stipulates that the coupling field is switched on during probe

absorption. This is to allow monitoring of the optical depth of the ensemble

during data acquisition. The optical depth of the ensemble determines the

level of absorption in the steady state absorption region (between t =0.8 µs

and t =1.1 µs in Figure 4.12) and ODb determines the value of g(2) during

EIT transmission. Thus consistent data sets require a constant optical

depth. The pulse sequence of Figure 4.11 enables both the optical depth

of the sample and the form of the dressed flash to be monitored within

a single experimental data set. The number of experimental runs that

can be performed on the same ensemble is limited to that which does

not significantly alter the optical depth. As such, 5000 experiments are

performed on each ensemble before they are refreshed from the magneto-

optic trap.
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4.2.2 Transient Anti-Bunching

Figure 4.14 demonstrates the blockade of the flash for quantum state |80S1/2〉.
As the incident photon number is increased, the number of photons emit-

ted by a superatom during the transient flash plateaus [35]. The slight

reduction in emission at higher incident photon rate matched observations

of this phenomenon in other experiments [85]. The observed suppression

of the dressed flash was attributed to mutual dephasing of multiple excita-

tions which are supported due to the spatial extent of the ensemble, which

is larger than rb. Rydberg dephasing also increases the decay rate of the

dressed flash. The signature of Rydberg dephasing is also present in the

supported excitation numbers in the atomic medium. These statistics are

imprinted upon photons emitted by the medium which can lead to a strong

modification of the statistical nature of the emission. The first optical non-

linearities induced by VdW interactions were observed in Durham by the

group of Charles Adams [113]. Since that time, optical nonlinearities due to

Rydberg interactions have received interest due to their projected applica-

tions in quantum technology [116, 119, 121, 286]. Statistical modifications

due to a restriction of the possible geometric arrangement of excitations

within optical media due to Rydberg blockade are observable as changes

to the second-order correlation function of light emitted from the medium,

g(2)(τ).

Figure 4.15 shows the emission profile and g(2)(τ) statistics of photons

emitted during the dressed flash. The pulse sequence and level diagram are

exactly as outlined in Figure 4.11 with the exception that Rydberg state

|r〉 = |80S1/2〉 is selected to increase the blockade radius and thus increase

the optical depth per blockade volume, ODb. The coupling frequency is set

to Ωc = 1.29 ± 0.04 · 2π MHz.

Figure 4.15 shows calculated values for g(2)(τ) during the dressed flash

pulse sequence of Figure 4.11. The experiment produces requisite photon

statistics to analyse g(2)(τ) across runs for matching 50 ns time bins high-
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Figure 4.15: Strong VdW interactions affect transmitted photon statistics, ob-

servable through their effect on the g(2)(τ) statistic as defined in the text. Inset

histograms show g(2)(τ) associated with two-level transmission in red (g(2)(τ) =

1.00±0.12), during steady-state EIT in blue (g(2)(τ) = 0.79±0.04), during early

flash in olive (g(2)(τ) = 0.20± 0.04) and late flash in gold (g(2)(τ) = 0.40± 0.11)

are shown. This demonstrates characteristic (g(2)(0)) suppression during the

dressed flash associated with Rydberg blockade. Suppression is weak during

the EIT window due to our elongated ensemble geometry and imperfect optical

depth per blockade sphere ODb. (a-d) g(2)(τ) histograms for corresponding 50

ns time bins. Figure adapted from [84].
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lighted giving an insight into the evolution of g(2)(τ) during the dynamical

pulse sequence. Time bins used for calculation are indicated by shaded re-

gions in red, blue, olive, and yellow. This minimum bin width is chosen to

build the requisite statistics to calculate g(2)(τ) with low error. A suppres-

sion of g(2)(0) given by Equation 3.2.2 corresponds to anti-bunching within

the time bins used for calculation and within a single experimental run.

Histograms of g(2)(τ) are inset in Figure 4.15.

In red, the statistical nature of light transmitted by a two-level ensemble

before Ωc is applied matches that of the incident laser, with g(2)(0) ≈ 1.

The data for g(2)(τ) are noisy due to the high OD at this time leading to

low numbers of photon events. Light detected during this time window is

simply that which is not absorbed by the two-level medium with OD ≈ 4,

and has g(2) associated with the light source, in this case, an ECDL.

An EIT transmission window occurs from t = 0.5 µs to t = 0.75 µs. In

blue, the g(2)(τ) statistics of continuous EIT are shown. Rydberg blockade

of the two-level medium causes a weak suppression of g(2)(0) arising due to

the suppression of the |r〉 excitations and thus |g〉 → |r〉 coherences that

are required for EIT. In this regime the medium acts as a photon filter.

Single photons pass the medium naturally under EIT conditions. Multi-

ple photons require greater excitation of (blockaded) Rydberg population.

Thus the medium becomes increasingly opaque to higher photon numbers

due to the progressive detuning of multiply excited polariton states from

the coupling beam. Once the medium becomes saturated with Rydberg

excitations, subsequent incident photons experience an effective two-level

medium and thus strong scattering occurs due to high OD ≈ 4. During

steady-state EIT, photon anti-bunching is observed (g(2)(0) < 1).

Experimental g(2)(0) does not reach zero, as the finite optical depth

of the medium dictates that some photons propagate without interacting

with the ensemble at all. The spatial extent of the ensemble is larger than

the blockade radius and multiple Rydberg excitations are supported. Thus

February 22, 2022



4.2. EIT Transients 144

20 40 60 80 100
n

0.00

0.25

0.50

0.75

1.00

g
(2

)
(0
)

Figure 4.16: Flash g(2)(0) Vs. Principal Quantum Number. Photons detected

during the flash are anti-bunched due to Rydberg blockade, reflected by low

values of g(2)(0). The degree of anti-bunching scales strongly with the principal

quantum number due to the strong scaling of the underlying Rydberg blockade

volume. Values above reflect the average g(2)(0) of all photons emitted by the

ensemble after the probe beam is extinguished, although at a fixed principal

quantum number there is some temporal variation in g(2) as detailed in Figure

4.15. Data reflect average values of g(2)(τ) of multiple experiments with error

bars reflecting SEM.

the statistics of photons arriving at the HBT detection circuit during the

EIT window are a mixed picture of the coherent input laser, and weakly

blockaded EIT transmission and thus the value of g(2)(0) = 0.8 ± 0.04 is

relatively high, a statistical mixture of the transmitted probe beam, and

anti-bunched light propagating under EIT conditions.

The dressed flash gives access to the delayed release of excitations from

the medium, and thus observation of photon statistics in the absence of

probe light. Purple and gold histograms in Figure 4.15 show the g(2)(τ)

statistic for photons events recorded during two 50 ns time bins which

both fall within the dressed flash. This gives access to direct observation

of the statistics associated with light emitted from the blockaded Ryd-

berg manifold in the absence of photon counts attributable to the probe

beam and thus mixed photon statistics of probe and ensemble. Initially,

(olive shaded region) a very low value of g(2)(0) is observed. The value of

g(2)(0) = 0.20±0.04 diverges from the ideal value of zero due to the atomic
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ensemble being larger in spatial extent than a single Rydberg blockade vol-

ume and thus supporting multiple Rydberg excitations. It was observed

that the emitted flash exhibited larger values of g(2)(0) at later times (olive

data in Figure 4.15) associated with weaker anti-bunching. This observed

variation of g(2)(0) suggests that the dynamics for the emission of single and

multiple excitations are distinct and non trivial and thus present an inter-

esting avenue for further study. The dressed flash represents a very simple

alternative to photon storage experiments allowing for simplified study of

dynamic evolution of Rydberg systems as recently reported [287].

Figure 4.16 shows the value of g(2)(τ = 0) for calculated for all pho-

tons counted during a dressed flash for principal quantum numbers n ∈
{30, 60, 80} . The observed reduction in the value of g(2)(0) at high prin-

ciple quantum numbers is as a direct result of rb scaling with principle

quantum number. At n = 30, flash photon statistics are consistent with

uncorrelated photon events due to the smaller Rydberg blockade radius.

At n = 80, g(2)(τ = 0) falls to (0.38± 0.03) at n = 80 when all photons re-

trieved after the probe is extinguished are considered. Figure 4.15 shows

that this can be even lower for narrow time windows.

In the introduction, Figure 1.1 showed an idealised conceptual picture of

the conversion of photon statistics from a coherent laser source due to inter-

action with an atomic ensemble, lowering g(2)(0) to zero. Photons enter the

ensemble as a coherent pulse with photonic statistics. Suppression of mul-

tiple Rydberg excitations leads to the transmission of one photon. Other

photons in the pulse experience a system of two-level scatterers with high

optical depth and do not pass the medium. The outgoing pulse contains

a single photon having g(2)(0) = 0. A device approaching this idealised

picture might be implemented using our scheme by interfacing photons

emitted during the flash to fast atomic switches currently in development

[288] which might be used to isolate the part of the flash where g(2)(0) is

extremely low ≈ 0.2. Low photon efficiency is the main draw back for this
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scheme. The photon efficiency of the dressed flash can be optimised to

∼ 20% by matching the duration of the input probe pulse to the rise time

of the EIT transmission window [289].

4.3 Microwave-dressed EIT Transients

Rydberg states with high principal quantum numbers converge in energy

with a n−3 scaling. Optical transitions between lower adjacent energy lev-

els give way to microwave couplings between states of high n, n′. State

manipulation by modern microwave sources can be powerful, accurate, and

precise. Microwave transitions extend the utility of Rydberg systems by

providing a convenient interface to other quantum devices [257, 290]. Mi-

crowave driving can further enhance the blockade by modifying the scale of

the Rydberg-Rydberg interactions [29, 48, 114, 129]. The VdW blockade

radius between states |nS1/2〉, |nS1/2〉 is determined by the strength of the

C6 parameter interaction with an r−6 scaling. Microwave driving places

the single atom system into a superposition |ψ1〉 ∼ |nP3/2〉 + |n′S1/2〉. The

energy degeneracy with other excitations in |ψ2〉 = |nS1/2〉 + |n′P3/2〉 leads

to effective elimination of the pair state energy defect and thus a strong

first order perturbative energy shift with r−3 scaling. At n = 60, n′ = 59,

the strong direct dipole-dipole coupling is large between 1 − 10 MHz for

atoms separated by 10 µm [29, 152]. This amplifies suppression of multiple

excitations and the degree of anti-bunching observed in emitted light.

This subsection details precision manipulation of the optical response

of a collective system of emitters using a microwave source capable of pro-

viding coupling between Rydberg states with a Rabi frequency over 100

MHz. The 80/20% switching speed of the microwave source is 10ns, and

pulse timing can be controlled by gating, with a timing resolution of 5 ns.
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Figure 4.17: Outline of experimental pulse sequences and geometry used to

investigate four-level transient dynamics of Rydberg systems. a, b Level diagram

and beam geometry. The geometry and coupling scheme is the same as that of

Figure 4.11 with the addition of a microwave field generated by an in-vacuo

quarter wave stub antenna coupling Rydberg states |r〉, |r′〉 with Rabi frequency

Ωµ and detuning ∆µ = 0. c Representative pulse sequence. Modulated flash

can be observed by applying a pulse of resonant microwaves as soon as the

probe is extinguished. Microwaves are applied for a variable duration of up to

1 µs. d Solid line: Histogram of photon arrivals in 5 ns time bins for a typical

modulated flash. Dashed line: detector signal in absence of atoms. A microwave

dressing field (Ωµ in c) drives population between states |r〉 = |60S1/2〉, |r′〉 =
|59P3/2〉 causing modulated flash emission. Characteristic modulation of the

dressed flash emission (c.f. Figure 4.11), detected via the HBT detection circuit.

The 80/20% switching speed of the microwave source is 10 ns.
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4.3.1 Observation of Four-Level Transients

The experimental sequence used to observe the effects of microwave dress-

ing upon the dressed flash is presented in Figure 4.17, which should be

considered an extension of the dressed flash pulse sequence in figure 4.11.

As with previous pulse sequences, atoms experience the confining force of

the dipole trap for 3 µs between experiments. The dipole trap is switched off

at t = 0. After 0.2 µs, a probe pulse enters the medium with mean photon

number ñ ≈ 0.5 and duration tp = 0.9 µs. The probe pulse is again bisected

by the rising edge of the coupling beam providing coupling Rabi frequency

Ωc/2π. The dressed flash pulse sequence shown in Figure 4.11 is used to

seed a transient Rydberg population. A microwave pulse from an in-vacuo

quarter-wave microwave antenna is then applied as soon as the probe pulse

is extinguished providing microwave Rabi frequency Ωµ/2π. The variable

amplitude microwave field addresses the |nS1/2〉 ↔ |(n′ ± 1)P3/2〉 transi-

tion, coupling these two Rydberg states. Thus microwave coupling is ini-

tiated at the start of the transient decay witnessed in section 4.2.1. The

ensemble geometry is the same as that of the dressed flash (c.f. Figure

4.11). The HBT detection circuit is again coupled to the mode of the in-

coming probe.

Strong microwave dressing of the |r〉 , |r′〉 manifold drives oscillation of

the super-atom population between ρrr and ρr′r′ . Population transfer out

of the qubit states via spontaneous decay is negligible on the experimen-

tal timescale, with τr ≈ τr′ ≈ 500 µs ≫ texp for n=60 [152]. However

continuous coupling to the bright state |e〉 via Ωc provides a continuous,

weak transfer of population between |rS1/2〉 and |e〉 with lifetime 26.34(1)

ns [276]. Thus photon emission due to weak coupling to the excited state

is observed on the experimental timescale, with intensity proportional to

the population of |nS1/2〉. This provides a form of continuous weak mea-

surement [291] which allows for the continuous monitoring of the state of

the superatom. The upper state |nP3/2〉 does not share the coupling via Ωc
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to |e〉 and so remains dark.

Figure 4.18 shows histograms of photon arrival times registered by the

HBT detection circuit during the modulated flash, exhibiting the interac-

tion between microwave field and decaying superatom. Both microwave

and coupling fields are switched off at the point at which the dipole trap

is extinguished at texp. In order to acquire the requisite number of photon

events for statistical analysis, experiments are repeated ten million times.

The modulated flash extends the duration of the dressed flash and conse-

quently the experimental duration texp is extended to 2.2 µs allowing for

observation of the extended flash in absence of AC Stark shifts from the

dipole trap. Modulation of the 〈n〉 for the outgoing optical field is ob-

served, as Rabi oscillations are driven between effective dark and bright

states of the Rydberg manifold. Occupation number oscillations between

|0〉 and |1〉 of the outgoing optical mode are observed. Modulated transient

decay occuring after the probe beam is extinguished are termed modulated

flash for this work. Modulated flash is a natural extension of the dressed

flash occuring during a microwave drive.

Figure 4.18 shows a calibration of the frequency of Rabi oscillation

against microwave drive frequency. The experimental pulse sequence of

Figure 4.11 drives the atomic ensemble. The frequency of Rabi oscillation

is observed through the modulated flash mapping. Photon emissions arriv-

ing at the HBT detection circuit are placed in 5ns time bins. Oscillations

are visible up to approaching the technical limit of our detection circuit of

100 MHz1. The probe beam is callibrated with 〈n〉 = 1 within each experi-

mental run. The probability of photon emission during the modulated flash

1This technical limitation derives from the experimental control system which reg-

isters and time-tags photon arrival data from SPAD detectors. It is the Nyquist fre-

quency of this system. Plans to overcome this technical limitation through the use of

faster commercial photon-counting cards e.g, Becker and Hickl SPC-150NXX TCSPC

FLIM Module are in motion.
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within a single experimental run2 is 1.2±0.1%. This corresponds to 78±3%

of the power of the dressed flash emission. Coherent oscillations between

effective bright |r〉 and dark |r′〉 states are observed as a modulation of the

envelope of the decaying optical field |0̂〉 at the microwave Rabi frequency

Ωµ, constituting a weak measurement of the state of the Rydberg mani-

fold. No significant dephasing of the Rabi oscillations was observed during

the ∼0.5 µs duration of Ωµ as is apparent from Figure 4.18 a, b (inset)

demonstrating the spatial uniformity and coherence of the drive field.

The application of resonant microwaves also causes AT splitting of the

Rydberg manifold {|r〉 , |r′〉}. As Ωµ is increased, the energy shift of the

dressed Rydberg states increases, and causes an increased detuning of the

|e〉 ↔ |r〉 transition. At the point of microwave field extinction, this transi-

tion is returned to resonance with coupling field Ωc, and ensemble emission

is re-established. This provides for the storage and release of transient Ry-

dberg excitations, similar to previous schemes exploiting natural long-lived

cooperative subradiant states [50, 292]. Ideally, Rydberg population de-

cays slowly with natural lifetime τr, τr′ ∼ 0.5 ms during this time, however

the observation of such slow transient effects are limited in out experiment

by thermal dephasing of the ensemble. Thermal dephasing limits us to the

observation of coherent phenomena lasting less than the lifetime associated

with thermal dephasing of τT ∼ 1 µs.

Figure 4.19 shows the temporal envelope of the HBT detector signal

IHBT alongside single-body master equation simulations of the response

of the system. The coupling frequency is obtained by fitting a master

equation simulation to the measured response of the medium in the absence

of microwave dressing as Ωc/2π = 4.2 ± 0.1 MHz. In the same way, the

linewidth induced dephasing term is determined to be γer = 2.0± 0.2µs−1,

γrr = 2.35 ± 0.5 µs−1. Microwaves address the transition |e〉 = |5P3/2〉 ↔
|r′〉 = |60S1/2〉. Rabi frequency Ωµ/2π is varied over the range [0, 100] MHz.

2Also conversion efficiency due to incident 〈n〉 = 1.
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Figure 4.18: A microwave field resonant with the |60S1/2〉 ↔ |59P3/2〉 transition
modulates the dressed flash. a shows modulation frequency calibration. Data

are fit to a numerical master equation simulation with power scaling as a single

free parameter. Fits close to the 100 MHz Nyquist frequency are poor. b shows

microwave modulation of the flash with a sinusoidal envelope determined by the

Rabi frequency Ωµ is observed as Rydberg population oscillates between |r〉, |r′〉.
Three data series are shown corresponding to 8, 23, 50 MHz modulation. Rabi

oscillations with a decaying envelope are observed due to spontaneous emission

via |e〉, where t = 1 µs corresponds to the start of the dressed flash. All data are

normalised to peak modulated flash emission. Ωc is fixed at 2π ·5 MHz. b, inset

Rabi frequency Ωµ can be precisely extracted through normalised fits, producing

the calibration in b. with a value of Ωµ = 33.60 ± 0.04 · 2π MHz for the data

inset. Error bars are derived from these fits and shown in a to be negligible.
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Figure 4.19: Modulation and Suppression of Dressed Flash. a shows dressed

flash with Ωc = 2π · 5.20 ± 0.02 MHz modulated by Ωµ = 2π · [0, 8.8, 33] MHz.

The extended duration of the dressed flash is clearly shown. A vertical dashed

line at 2.1 µs shows the falling edge of the microwave pulse. An emission peak

is observed after the extinction of the pulse. b shows a colormap of the same

data as in a, taken over an extended range of Ωµ ∈ [0, 100] MHz. Modulation

and delayed emission are present across all data sets shown. Discrete y axis

labels represent Rabi frequencies extracted from decaying sinusoidal fits to data

sets shown. Ωc is held constant across all data sets in a, b. c, d show optical

Bloch equation simulations of the modulated flash emission, using experimental

parameters for pulse timings and Ωc,p as described in the text. Ωµ shown are

the same as in a, and are a close match to observed photon emission, however

the observed final emission peak is larger than the model predicts.

February 22, 2022



4.3. Microwave-dressed EIT Transients 153

The coupling beam is held at a constant Ωc/2π = 13.4 ±0.3 MHz. Panel

a shows the progression from dressed flash Ωc = 0 (dashed purple line) to

microwave decay supression. Panel b contains a colormap showing the full

dataset. Master equation simulations of the same data are shown in panels

c, d. To account for VdW dephasing, we introduce phenomenological

values γr′r′ = 0.6µs−1, γrr′ = 0.6µs−1. Thus the size of the delayed emission

depends upon the state of the Rydberg manifold3 at Ωµ extinction. For the

data presented in the figure, the microwave pulse duration was manually

adjusted to leave population in |r〉, maximising the intensity of the final

emission peak.

Figure 4.20 details the dependence of the decay rate of the stored ex-

citation upon Ωc. The lifetime of the stored excitation is measured to

be 0.50 ± 0.01 µs for Ωc/2π = 14 MHz, falling to 0.4 ± 0.041 µs for

Ωc/2π = 23 MHz. There is dependence on Ωc due to saturation of spon-

taneous emission. Ideally, Rydberg population decays slowly with natural

Γr,Γr′ ∼ 0.5 ms during storage. However, retrieval is severely limited by

thermal dephasing causing due to phase distortion due to atomic motion

[128, 238]. Thus relatively low lifetimes are observed for dark state polari-

ton storage observed in this [48, 105] and similar systems [59].

During storage, an atom with mass m and temperature T typically

moves by
√

2kBT/m · t. Thus lowering the temperature of the atomic

ensemble through techniques such as Raman sideband cooling might give

access to longer storage times [293].

Figure 4.21 compares the experimental saturation of photon storage,

which occurs at around Ωµ = 2π · 100 MHz. In panel a, Window A identi-

fies the region of photon emission during microwave application. Window B

begins at the extinction of Ωµ, and contains the delayed emission (c.f. Fig-

ure 4.22 and associated discussion). The integrated photon counts during

3Emission is maximal (minimal) when population resides in |r〉 (|r′〉) at the end of

the microwave pulse.
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Figure 4.20: Microwave Suppression of Flash Emission. a A strong microwave

pulse is applied immediately after the probe is extinguished during a dressed

flash sequence. The microwave pulse is reinsated at t = 1.8 µs (solid lines) or

t = 2.2 µs (dashed lines), delaying emission. Three values of Ωµ are shown in the

range 2π · [14, 42] MHz. The |r〉 ↔ |e〉 coupling depumps Rydberg excitations

faster at higher Ωc. Red regions flanking the data represent the dipole trapping

beam. b Colormap showing full data series for Ωc = 2π · 11 MHz. Decay rates

are extracted by counting the photons arriving during the retrieval pulse as the

microwave suppression time tsup is varied. c Decay of population is exponential,

and is slightly faster for higher Ωc, due to more efficient Rydberg depumping.
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window A(B) is defined as the sum of the individual photon counts regis-

tered by the HBT detectors during each window and is denoted nA(B). The

total integrated photon events in both windows are described by the quan-

tity NAB = nA+nB. In b, the normalised photon events nA(B)/NA+B show

the probability that a photon is emitted during either window. The pho-

ton counts nB are proportional to the excitations in the Rydberg manifold

at the extinction of the microwaves. The corresponding quantity nA is pro-

portional to the number of excitations emitted from the Rydberg manifold

during the modulated flash.

The relative probability of emission in window A or B varies as a func-

tion of Ωµ shown in Figure 4.21 b. As Ωµ increases, nA is diminished as

AT splitting detunes dressed states |r〉 ± |r′〉 from resonance with the cou-

pling beam. Suppression of emission during window A causes an increase

in emission during window B, when the Rydberg manifold is brought back

into resonance with the coupling beam. Thus for Ωµ >> Ωc, we observe

saturation in photon storage. The colour data are ovelaid with simulation

extracted from the master equation simulation presented in Figure 4.19

(solid line).

The master equation simulation predicts a higher storage efficiency for

realistic dephasing rates obtained through previous analyses of the modu-

lated flash emission as the model fails to take account of our strong thermal

dephasing mechanism.

The apparent protection of the superatom from emission during strong

driving opens up an interesting experimental avenue into the effects of

quantum rifling [294] and weak measurement [291] in this sub-Zeno limit

[295].

4.3.2 Interaction-Induced Dephasing

The increased interaction strength associated with C3 interactions causes

rapid interaction induced dephasing of multiple excitations [114, 129] due to
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Figure 4.21: Microwave suppression of EIT transient. a Retrieval associated

with flash (Ωc = 0) and delayed emission (Ωc ≫ 0). A large number of photons

are emitted from the ensemble when a strong Ωµ is switched off. Intensity is

normalised to the peak flash intensity. b The degree of decoupling of Rydberg

excitations from the radiative transition scales with Ωµ, with a corresponding

increase in nB. Data points in b are normalised to the total number of photons

NA+B observed after the probe beam is switched off, NA+B = nA + nB. A

master equation simulation (solid line) predicts higher storage efficiency for Ωµ ≫
0. Thermal dephasing limits efficiency in practice. The dashed line shows an

adjustment for thermal dephasing reducing retrieval efficiency to 0.8.
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the spatial dependence of the dipolar couplings (through Equation 2.1.31).

Strong dephasing with spatial dependence destroys spatial phase coherence

of the ensemble and outgoing photons from the mode matched detection

HBT detection circuit. This approach causes further suppression of the

observation of multiple excitations leading to enhanced anti-bunching of

outgoing photons and lower g(2)(0).

Figure 4.22 shows the timescale associated with Rydberg spin-wave de-

phasing associated with enhanced C3 interactions through the effect on

observed g(2)(0). Modulated flash emission is shown as a grey shaded data

set, under the action of the pulse sequence matching that of Figure 4.19.

This modulated flash is observed with characteristic delayed emission oc-

curring at t ≈1.45 µs. The incoming probe pulse has a mean photon number

〈n〉 = 0.25. This provides a sufficient number of photon events to extract

values of g(2)(0) during 50 ns time intervals as with Figure 4.15. A rep-

resentative interval is shown in Figure 4.17 highlighted in cyan. Time bin

centres are indicated by the positions of the red data points, which rep-

resent the value of g(2)(0) evaluated for data within the respective time

bin.

Upon microwave application g(2)(0) steadily falls from an initial value

of close to g(2)(0) ≈ 1 during EIT transmission. After around 200 ns of

enhanced interactions, the value of g(2)(0) falls to 0.38 ± 0.2. Comparison

with Figure 4.15 shows that this level of anti-bunching is representative of a

dressed flash anti-bunching at |80S1/2〉, confirming enhanced anti-bunching

due to resonant interactions. Despite the huge number of experimental

runs, experimental SNR is too low to quote a meaningful value for g(2)(0)

after t ≈ 200 ns of microwave driving due to exponential decay of the

signal once the probe beam has been switched off. This is represented

by the absence of data points corresponding to g(2)(0) between t = 1.1 and

1.5 µs. Extinguishing the microwaves at later times permits an extension

of this study of g(2)(0) to longer microwave applications. The final value
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Figure 4.22: Resonant g(2)(0) suppression. The evolution of g(2)(0) for a dressed

flash emission from state |60S1/2〉 modulated by a microwave field providing res-

onant coupling to |59P3/2〉 as a function of microwave duration is shown during

the flash. Typical modulated and un-modulated flash envelopes are shown, nor-

malised to the peak intensity of the un-modulated flash. The value of g(2)(0)

quickly plummets after application of the Ωµ = 67.4± 0.3 MHz microwave field,

and in less than 500ns, the value of g(2)(0) is reduced to 0.39± 0.07. This value

of g(2)(0) is sustained, as can be observed by turning off the microwave coupling,

whereupon a large number of photons are retrieved from the medium. Analysis

of photons retrieved during this large window shows them to have a similarly low

value of g(2)(0), here 0.39±0.08 associated with strong resonant dipolar interac-

tions. This is much lower than the dressed flash at the same principal quantum

number. The g(2)(0) statistic for the dressed flash at n = 80 is shown as a purple

data point for comparison.
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for g(2)(0) at t =1.45 µs is calculated using a 100 ns time window covering

the delayed emission peak. So it is confirmed that g(2)(0) suppression for

states 60S1/2, 59P3/2 is limited at 0.38± 0.2. The atomic ensemble is larger

than the blockade radius with 10σr ∼ σz ∼ 2rC3
b for n = 60 and is thus

only partially blockaded by the interaction [28, 114].

Thus emission suppression through the application of strong microwave

fields can be used to both enhance g(2)(0), and to exercise control over the

temporal release of the excitation. Implementing microwave g(2)(0) sup-

pression at a higher principal quantum numbers might achieve a useful

single-photon source with an emission window of ∼ 100 ns, with a tem-

poral mode tunable over several microseconds. This microwave emission

suppression can be used to extend the duration of interaction-induced de-

phasing, enhancing g(2)(0) suppression. In this system, conversion efficien-

cies of ∼ 50% have been observed [289]. This conversion efficiency might

be increased by engineering the mode of the incident photon to match that

of emission [296].

4.3.3 Cleaning Pulse

The inclusion of a ‘cleaning pulse’[205] was found to be essential to obtain-

ing low values of g(2)(0) and for the preservation of optical depth across

experimental runs. The cleaning pulse rids the medium of Rydberg pollu-

tants; excitations remaining in the Rydberg manifold after the experiment

is concluded [85, 297]. This cleaning pulse consists of a pulse of Ωµ lasting

0.5 µs applied at the end of each experimental run, before the reinstatement

of the dipole trap. The experimental duration texp is extended to accom-

modate this cleaning pulse where it is used. Ωµ is unchanged between the

cleaning pulse and modulation pulse. The application Ωµ during Ωc > 0

again causes any population in |r〉, |r′〉 to decay via radiative state |e〉. Thus

a relatively long pulse of this nature causes any Rydberg population to de-

cay via spontaneous emission. Without this active de-pumping, Rydberg
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excitations promoted in one experimental run can remain in the medium

and are observed to corrupt experimental data extracted from subsequent

experimental runs.
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Chapter 5

Collective Rydberg Qubits

What kind of computer are we going to use to simulate physics?

- R. Feynman - 1981

The search for systems with properties that support quantum informa-

tion processing, summarised by DiVincenzo [1], is a global research effort

[298]. Quantum networks are expected to hold importance in linking early

quantum devices to leverage the advantages of diverse quantum hardware

[279], and promise secure communication, distributed quantum computing

and enhanced sensing. ‘Flying’ photonic qubits provide a route towards a

quantum internet [7], for which collective qubits are naturally suited [64].

Collective enhancement of light-matter coupling ∝
√
N confers a natural in-

terface between a dense atomic ensemble and a photonic qubit [201]. Light

storage in atomic ensembles might also underpin quantum repeaters [299].

Directional emission [199] from atomic ensembles can facilitate coupling

to optical fibers for routing. Strong dipole-dipole interactions can provide

coupling between ensemble qubits for the implementation of quantum logic

gates [35, 179, 281, 300, 301] and interfacing [202] within computational

nodes.

Collective qubits might also be applied in modern Noisy Intermediate-

Scale Quantum Computers (NISQCs). Most prospective NISQCs [88] based

on neutral atoms implement registers of neutral atom arrays held in far off-
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resonant optical dipole traps generated by Fourier imaging [120, 121]. The

first demonstrations of quantum supremacy across narrow problem sets are

emerging [96, 99, 144, 302]. Single atom trapping schemes rely on stochastic

loading of FORT arrays , typically with a 50% stochastic load probabil-

ity. Loaded traps are then rearranged to create deterministic dense arrays

[303, 304]. Recent advances in the preparation of atomic ensembles and

ensemble arrays [62] using acousto-optic deflectors or spatial light modula-

tors have enabled the preparation of hundreds of individually addressable

atomic ensembles. The |W〉 state encoding of quantum information in col-

lective qubits causes them to be robust against atom loss [241, 305], and

information loss can be remedied by error correction [306]. These collective

Rydberg qubits represent a novel and interesting qubit implementation for

quantum networking and computation.

This chapter serves as the first demonstration of collectively encoded

Rydberg qubits. Fast single-qubit gates are made possible through mi-

crowave control fields which couple strongly to the qubit. Gate times for

π/2 rotations are limited by microwave switching to ∼ 20 ns. A direct

photonic interface is demonstrated in the form of DSP storage/retrieval.

Thermal dephasing degrades the coupling of retrieved photons to the opti-

cal retrieval mode, and therefore the fidelity of retrieval is ∼ 5%. In spite

of lack of fidelity, rapid data acquisition and post selection enables the im-

plementation of Ramsey interferometry. Sensing of external AC and DC

electrical fields is demonstrated. Qubit decoherence matches a predicted

quartic scaling with an applied noise field. Finally, the qubit is shown to

be resilient to atom loss due to the nature of the underlying |W〉 state.

In summary, Rydberg qubits might serve as an effective quantum in-

terface due to the collective enhancement which provides strong coupling

to directional emission in free space [201, 299]. Collective Rydberg qubits

are defined as superpositions of two stationary Rydberg polaritons [49] sup-

ported by a macroscopic atomic ensemble containing a few thousand atoms
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Figure 5.1: a Atomic states supporting a collective Rydberg qubit as described

in the text. b Polariton states |G〉 , |E〉 provide a two level photonic interface via

dark state polariton (DSP) light-matter interface, termed the emitter. Qubits are

prepared in polariton state |0〉 DSP. Qubit rotations are implemented through

microwave fields as described in section 4.3. DSP retrieval coherently maps the

qubit state on to radiative state |E〉. Collective emission into the mode of the

incident photon, coupled to the HBT detection circuit occurs at DSP retrieval.

Bright state |e〉 decays at Γeg = 38.11× 106s−1, defining the readout rate.

[48, 51, 105].

This chapter is based upon the following publications:

• Nicholas L. R. Spong et al. “Collectively Encoded Rydberg Qubit”.

In: Physical Review Letters 127.6 (Aug. 2021), p. 063604. doi: 10.

1103/PhysRevLett.127.063604

• Yuechun Jiao et al. “Single-photon stored-light Ramsey interferome-

try using Rydberg polaritons”. In: Optics Letters 45.20 (Oct. 2020),

p. 5888. doi: 10.1364/OL.405143

Data presented in this chapter were acquired jointly with Y. Jiao with

theoretical modeling and insight from I. Lesanovsky.
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5.1 Light-Matter Interface

The availability of a fiducial state1 is a pre-requisite for any qubit candidate.

Direct excitation of the collective qubit with high fidelity is challenging

for ensemble qubits, due to the cooperative nature of the Rabi frequency

[37] which exhibits
√
NΩ dependence, where Ω is the single atom Rabi

frequency and N is the number of atoms in the ensemble [35, 307]. If the

number of trapped atoms is unknown, population inversion by a single laser

pulse is associated with a non-deterministic state preparation.

Adiabatic state transfer schemes have been demonstrated to overcome

this limitation and in doing so, provide a direct photonic interface. The

DSP technique facilitates coherent transfer of photonic quantum informa-

tion into the collective Rydberg qubit, leveraging the dependence of the

group velocity νg on the strength of a coupling field Ω2
c in a three-level

system (see Equation 2.2.97). Adiabatic reduction of the photonic group

velocity to zero converts an incoming photonic qubit into a stationary col-

lective Rydberg polariton |R〉. The qubit can also be initiated from a coher-

ent laser input, whereupon a sufficiently strong blockade can enforce single

excitation. The DSP technique has been demonstrated in many groups

worldwide and forms the basis of several quantum technology proposals

from quantum memories [256, 308, 309] and optical information processing

[35, 138, 307]. Alternative schemes via STIRAP2 have also been demon-

strated which can provide deterministic loading of Rydberg qubits [307,

310].

1The DiVincenzo criteria require The ability to initialize qubits to a simple (fiducial)

state, such as |000〉 [1].
2Stimulated Raman Adiabatic Passage.
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5.1.1 DSP Storage & Retrieval

For N atoms within a blockade volume [35], the polariton storage technique

excites the N -atom ground state into the super-atom polariton 3 state [49,

105, 300]

|0r〉 =
1√
N

N∑

j=1

ei(keff ·rj−ωrt)|g1g2 . . . rj . . . gN〉 , (5.1.1)

where gj and rj denote the jth atom of the ensemble, with position Rj in

states |g〉 and |r′〉, respectively. The effective polariton wave vector is de-

noted keff = kp − kc, and is defined as the difference between the wave

vectors of probe and coupling beams due to the counter-propagating ge-

ometry. The phase at each atom contains both local phase terms keff · rj,
and a global phase factor, −ωrt, where ωr is the angular frequency of the

two-photon transition |g〉 ↔ |r〉. Thus |0r〉 is a collective symmetric su-

perposition of individually excited atoms interacting with the probe beam.

Each term in Equation 5.1.1 contains a single excitation due to the sup-

pression of multiple excitations provided by Rydberg blockade.

The state |0r〉 is coupled to a second polariton state |1r′〉

|1r′〉 =
1√
N

N∑

j=1

ei(k·Rj−ωr′ t)|g0g1 . . . r
′
j . . . gN〉 , (5.1.2)

where r′j denotes a second Rydberg state |r′〉, see Figure 5.1 a and b. The

two states [|0〉 , |1〉] form fiducial states of a collective qubit, linked by a

transition with frequency ∆Err′/~ = Er − Er′ = ωrr′
4. For work presented

in this chapter, states |r〉 = |60S1/2〉 and |r′〉 = |59P3/2〉 are used as fiducial

states5. Arbitrary Rydberg states can be used to support the internal qubit

states in principle.

3Also known as a spin-wave [198], or timed Dicke state [197]
4For typical dipole matrix elements, see figure 2.2.
5The microwave generator limits ωrr′ < 40 GHz and therefore r, r′ to nr > 40.
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Figure 5.2: Qubit initialisation and readout via the DSP technique. Solid lines

are histograms of photon counts registered by the HBT detectors. Reference

data show the incoming pulse envelope. Signal data show qubit initialisation

through tuning coupling Ωc (dashed blue line). Incoming photons are stored

in the medium at t = 0.3 µs by adiabatically reducing Ωc to zero coherently

mapping an incoming photon onto the Rydberg qubit. Polariton retrieval is

achieved by reversing the DSP technique at t = 1 µs. Retrieval of polaritons

from the medium gives rise to the characteristic retrieval peak at t = 1.1 µs.

Efficiency is limited to < 10% due to thermal spin wave dephasing.
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The experimental geometry used to implement polariton storage and

retrieval is identical to that used for the study of modulated flash phenom-

ena, Figure 4.17, b. A few thousand atoms are loaded into a FORT with

waist wd = 5 µm. This realises an ensemble with dimensions σx = σy =

1.5 µm, σz = 20 µm [311]. Ensemble loading is followed by a period of evap-

orative cooling to further reduce the temperature after optical pre-cooling.

Probe light is focused to wp = 1.1 µm at the center of the atomic ensemble.

The amplitude of the FORT is modulated with a square wave control sig-

nal at 200 kHz to avoid excessive AC Stark shifts during interaction and

control of the ensemble. This was achieved by rapidly switching the RF

power to a dedicated switching AOM, where the first diffracted order pro-

vides light for the dipole trap. The duty cycle is adjusted such that the

trap confines the atoms for 2.4 µs and releases them for 2.6 µs of this cycle

as shown in Figure 4.17.

Figure 5.2 shows the experimental demonstration of invertable adia-

batic transfer between photon and the Rydberg polariton qubit via the DSP

storage protocol. A probe pulse resonant with the |5S1/2, F = 2mf = 2〉 ↔
|5P3/2F = 3,mf = 3〉 is applied to the medium via a fast AOM switch with

80/20 switching time of 40 ns. The probe pulse is derived from a commer-

cial laser system attenuated with neutral density filters and thus enters the

medium in a coherent state. The probe beam is initially coupled into the

HBT circuit which is used to adjust the intensity of the probe pulse to inte-

grated photon number ñ = 0.5 per experiment. The temporal envelope of

this pulse is shown in figure 5.2. As the probe traverses the medium under

EIT conditions, the coupling Rabi frequency Ωc = 2π · 30 MHz is adiabat-

ically tuned to zero. The DSP is fully converted to an atomic spin wave,

freezing it inside the medium in state |0r〉 (Equation 5.1.1). Rydberg block-

ade suppresses multiple excitations of the Rydberg medium, justifying the

omission of multiply excited states in the qubit definition, Equation 5.1.1.

Where multiple excitations do occur, interaction-induced dephasing makes
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their retrieval unlikely [129]. Thus, post selecting for experiments where

a photon was successfully retrieved, a single stored polariton is realised in

state |0r〉.
The excitation remains in the medium for duration tstorage whereupon

the storage procedure is reversed via reinstatement of Ωc = 30 MHz. At this

time, the polariton is converted back into an optical photon, and collective

emission into the same optical mode as the incoming mode occurs due to

coherent, directional emission [199]. The coherent nature of emission from

the super-atom causes the mode of the outgoing photon to match that

of the original stored photon. This couples the outgoing photon to the

HBT detection circuit which registers the photon emission. The polariton

retrieval process, governed by the dynamical rising edge of the coupling

beam, emits photons within a time window lasting 100 ns.

Implementing qubits via the DSP storage mechanism confers a natu-

ral coherent light-matter interface via a strong measurement that takes the

form of Equations 2.2.107, 2.2.106. Coupling qubit state |0r〉 to the emitter

via the DSP technique provides measurement of the population ρ00. Pop-

ulation found in ρ11 remains dark, as it does not couple to Ωc (See figure

5.1).

This fast photonic interface can be used to give access to strong col-

lective Rydberg dynamics with high repetition rates [46, 204]. Ground

state hyper fine qubits underpinning modern Rydberg NISQCs suffer from

lengthy non-destructive state selective read-out techniques, typically achieved

by detecting photons scattered from a cycling transition and requiring tens

of microseconds or greater [312], whereas experimental repetition rates via

the DSP protocol can be in excess of 100 kHz. The time delay between

DSP storage and retrieval constitutes a photonic memory, a critical ele-

ment of entanglement distribution [87, 211, 313]. Recent demonstrations

of multiplexed photonic memories have proven the utility of atomic spin

waves as photonic storage states through demonstrations of atom-ensemble
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entanglement [107, 314].

Comprehensive characterisation of the DSP retrieval interface was car-

ried out by Simon Ball and documentation of the readout scheme can be

found in his thesis [205]. This includes novel time-resolved state tomogra-

phy and single-photon pulse shaping not featured in this work.

5.1.2 Spin Wave Dephasing

Thermal motion of the atomic ensemble represents the primary limitation

to storage lifetime, limiting the experimental duration to around one mi-

crosecond. Sensitive phase information encoded in local phase factors in

equation 5.1.1 decohere with thermal motion. After optical molasses, the

ensemble temperature is 50 µK. At this temperature, residual energy im-

parts a mean velocity of v =
√

3kBT/mRb, where mRb is the mass of the

rubidium atom, and kbB is the Boltzmann constant. This formula gives a

mean velocity of v ∼1 m s−1, compared to typical spin wavelengths of Λ ≈
0.1 µm for n > 30. Atoms lose phase information over a timescale set by

Λ/v ∼ 1 µs, destroying phase information required for collective emission

into the optical mode coupled to the HBT detectors.

The efficiency of the storage retrieval process is ∼5% at n = 60 6 for

storage times of 1 µs. The measured 1/e lifetime of this thermal dephasing

is γthermal = 163±8 ns at n = 80 [205]. Qubit operations are limited to this

duration. Recent proposals to eliminate sensitivity to atomic motion fea-

ture Doppler-free photon storage via a four wave mixing process for which

the effective wavelength of the spin wave is infinite [104]. Strong coupling to

engineered materials composed of atoms confined to the Lamb-Dicke regime

might also be resilient to such thermal dephasing [315]. Rydberg lifetimes

set an upper limit for T1 type coherence, which for circular states can be

more than 1000 s [316]. Storage efficiencies of up to 20% have been re-

6For details on the thorough experimental characterisation of storage/retrieval effi-

ciencies, see the thesis of Hannes Busche [204, 218]
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ported in Rydberg systems with similar principle quantum numbers [133]

with higher optical depth (OD=26). The optical depth of our medium,

OD=4, is a limiting factor, and the improved dipole/reservoir trap geom-

etry is expected to improve efficiency for future experiments. Reducing

ensemble temperature through Raman side-band cooling may also present

an avenue for improved efficiency [317].

In principle, photon storage and retrieval is possible with near unity ef-

ficiency if thermal dephasing is controlled or absent. This is often achieved

through use of lambda EIT between hyperfine levels of atomic ensembles,

where the effective spin wave vector leads to lower spatial phase periodic-

ity and thus rendering it less sensitive to motional dephasing. Optimised

storage in thermal cells has been demonstrated with near unity efficiency

[52]. Schemes to excite uniform spin waves promise to severely dampen

sensitivity to thermal dephasing [104].

5.1.3 Interaction Induced Dephasing

Local phase factors are also sensitive to other dephasing mechanisms. When

multiple Rydberg excitations are stored in the ensemble, their interactions

are long range and inhomogenous due to the form of the dipole interac-

tion (Equation 2.1.30). The Rydberg blockade radius is of order 10 µm

for n used in this work. The ensemble can not be fully blockaded by this

strength of interaction due to an extended geometry which stems from the

FORT optical design. This work employed an elongated trapping geome-

try with σz = 20 µm. Where multiple excitations are stored, interaction

induced phase shifts [45, 51, 129, 198] are amplified due to the extended in-

teraction time during photon storage [318], which introduces an additional

pairwise interaction phase δφj,k = V (rj, rk)tstorage upon atom k due to a

Rydberg excitation at atom j [105]. Local phase factors accrued by ele-

ments of the spin wave superposition (Equation 5.1.1) add to the effects of

motional dephasing and further decouple the spin wave from the detected
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optical mode. This was demonstrated in chapter 4 through suppression of

g(2)(0)7.

5.1.4 Rydberg Qubit Control

Interaction induced and thermal dephasing mechanisms currently prohibit

access to T1 coherence times on the order of the Rydberg lifetime. How-

ever, the collective Rydberg qubit is still a useful device. Fast resonant

microwave operations are possible on nanosecond timescales due to exag-

gerated dipole matrix elements associated with Rydberg atoms. We find

1 µs more than sufficient to perform useful single-qubit gates.

Coherent interaction with the qubit is facilitated by two in-vacuo mi-

crowave antennae. These antennae are of quarter-wave type and designed

for emission at 18.5 GHz. Each antenna can be independently controlled

via a microwave feed-through. The feed-throughs support frequencies of

DC - 40 GHz, and this limits our qubits to principle quantum numbers

above n = 46, where the transition frequency Ωµ for transition between

|nS1/2〉 ↔ |nS3/2〉 are below this 40 GHz cutoff. Rabi frequencies greater

than 100 MHz are attainable as demonstrated in chapter 4 due to the large

Rydberg dipole moment >1000 Debye. Thus we are able to perform many

single qubit rotations within the ∼ 1 µs experimental timescale.

To perform single qubit gate operations, qubit states |0r〉and |1r′〉are

coupled by a microwave field with angular frequency ωµ, detuning ∆µ =

ωµ− (ωr′ −ωr) and an amplitude characterised by a Rabi frequency Ωµ ap-

plied to the |r〉 ↔ |r′〉 transition, as depicted in figure 5.1. After qubit

initialisation Ωc = 0 and therefore the Rydberg qubit is decoupled from

the radiative state |e〉. The decay pathways from the Rydberg manifold

supporting the qubit (|r〉 , |r′〉) due to radiative lifetimes (τr = 252µs,

7To note, whilst uncontrolled local phase factors are destructive, careful control over

local phase has been leveraged for precise beam steering of the directional emission,

realised through careful application of AC stark shifts [319].
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τr′ ≈ 422µs [320]) are greater than texp. During texp ∼1 µs, blockaded

states |0r〉, |1r′〉 can be treated as an effective two level system. Effective

isolation of the qubit Hamiltonian subspace on the experimental timescale

leads to the definition of the ‘qubit’, consisting of collective states of the

blockaded super-atom |0r〉, |1r′〉 and the ‘emitter’, consisting of states |G〉,
|E〉. Transfer between these two sub-spaces only occurs during the DSP

protocol. During (texp), there is no coupling between the sub-spaces.

An applied microwave field Ωµ implements single-qubit gates during

DSP storage, performing qubit rotations. State tomography is performed

by reversing the polariton storage technique. State |1〉 is not resonant with

the DSP retrieval beam Ωc. Therefore, at the point of retrieval, population

in ρrr is adiabatically converted into an optical photon and counted by the

HBT detection circuit. Population in ρr′r′ remains in the Rydberg manifold

The number of counts IHBT retrieved when implementing the polariton

retrieval sequence is proportional to the population of |0r〉. This figure

is then normalised to the maximum retrieval IHBT(max) from the ensemble

during qubit rotation.

At the end of an experimental sequence, any population remaining in

|1r′〉 experiences Rydberg anti-trapping in the field of the FORT. This

rapidly degrades the optical depth of the ensemble. Rydberg excitations

remaining in |1r′〉 feel a ponderomotive force from the dipole trap. In the

presence of the rapidly varying trapping field E = E0 cos Ωtrapt, the charged

electron of a Rydberg excitation is driven by the field, creating an extra

kinetic energy term

〈KE〉 =
ωtrap

2π

e2E2
0

2meω2
trap

∫ 2π/ωtrap

0

sin2 ωtraptdt, (5.1.3)

where e,me are the charge and mass of the electron. This gives a pondero-

motive energy of

Up =
e2E2

0

4meω2
trap

. (5.1.4)

In the case where E0 has some spatial dependence (E0 → E0(r)), the

electron experiences a force F = −∇Up, repelling the excited atom from
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the trap [321, 322]. This quickly degrades the optical depth of the ensemble.

The necessity of implementing a ‘cleaning pulse’ for the preservation of

optical depth to overcome this issue was realised and highlighted by Simon

Ball [205]. Driving the qubit with a microwave pulse after photon retrieval

(whence Ωc has been reinstated) couples population remaining in |1r′〉 to

the radiative state of the emitter |E〉 via the two-photon transition |1r′〉 →
|0r〉 → |E〉. This provides a decay mechanism for the anti-trapped Rydberg

population. Fast decay from |E〉 returns the ensemble to ground state |G〉
at the end of the experimental sequence. This extends the lifetime of the

ensemble. Excited atoms that are not ejected from the dipole trap can

also cause interaction-induced dephasing of subsequently initialised qubits.

For a thorough treatment of the effect of Rydberg pollution’ [85, 297] as it

affects this experiment, the reader is referred to the thesis of Simon Ball

[205].

5.2 Polariton Interferometry

In this section, coherent control of the Rydberg qubit is demonstrated

through the realisation of polariton interferometry. The huge dipole mo-

ment of Rydberg atoms confers a high degree of sensitivity to external

fields and interaction potentials. Rydberg interferometry has many specific

applications, from measuring Förster defects [323] to probing many-body

dynamics [324–326]. In this section, we achieve coherent control over the

Rydberg qubit through demonstrations of Rydberg polariton interferome-

try.

Figure 5.3 compares a polariton interferometer to a conventional optical

interferometer. a shows a conventional Mach-Zehnder, which operates on

the principle of optical interference based on an optical path length differ-

ence [327]. Photons are incident on a beam-splitter, which splits the pho-

tons into two separate paths. Light interferes at the output port of a second,

output beam-splitter. Difference in the optical path lengths ∆l = l1 − l2
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of the two arms of the interferometer causes a relative phase difference

φ∆l
= 2π∆l/λ, where λ is the wavelength of the light in the interferometer.

The relative phase difference is detected when the light from both paths in-

terferes at the second beam-splitter. This interference can be constructive

or destructive depending on the relative phase of the light from each arm

at the point of interference. Precise measurements of variations in spatial

path length between the two arms can be obtained due to the definition of

φ∆l
, where a π phase difference is measured for ∆l = λ/2, typically hun-

dreds of nanometers for optical interferometers. This causes a full contrast

shift in interferometer output intensity and can thus be used to accurately

measure optical path length differences of order λ.

Figure 5.3 b shows a conceptual Ramsey interferometer based on in-

terference between Rydberg polaritons. A quantum state is driven into an

equal superposition of states differing in energy by ∆E. Unitary evolution

of these states causes a time-dependent phase to accumulate φ∆t
= ei∆Et.

Thus superposition time tint takes the place of length in the conventional

interferometer. Figure 5.4 a-e shows the evolution of the Bloch vector of

an interferometer during measurement, in a frame rotating at the angu-

lar frequency of the energy splitting. In this figure, the qubit is initially

in state |0r〉 (a). A microwave π/2 pulse about x drives the polariton into

an equal superposition of |0r〉 and |1r′〉, (b). The superposition undergoes

unitary evolution. Relative phase differences between the qubit superposi-

tion and the resonant microwave field can accumulate during the period of

unitary evolution tint. The figure shows evolution of the Bloch vector as it

accumulates a relative difference of π/2 radians, causing the Bloch vector

to point along −x8. A second microwave pulse, phase-coherent with the

first pulse and rotating in resonance with the frequency of the qubit tran-

sition drives a second π/2 pulse (d), again rotating the qubit about x. The

8In general, a phase φ is acquired, rotating the Bloch vector within the Equatorial

plane
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qubit phase then determines the action of the final π/2 pulse. This process

is commonly known as Ramsey interferometry [328, 329], and can demon-

strate extreme sensitivity to perturbations of the energy levels of internal

states in quantum superposition. As the superposition time occurs during

the atomic polariton stage, this also gives the outgoing photon matter-like

sensitivity to gravity and other inertial effects [330].

Leveraging the DSP storage protocol creates a photonic interferometer

free from limitations of physical size. The maximal 450ns superposition

time reported here is equivalent to a 135 m free-space interferometer path

length, whilst the atomic ensemble measures just 40 µm in length. The

limit to the superposition time is set by thermal dephasing, or by the max-

imum achievable group index [331] where this is absent. Hybrid atom-light

interferometers based on atomic spin waves have previously been demon-

strated [332, 333] and optical control of cavity polariton interference also

exists in the literature [108]. Rydberg polaritons are particularly useful

due to the sensitivity to external fields through exaggerated polarisability.

Electric field detection has previously been demonstrated using individual

Rydberg atoms [334], and atomic beams [335]. A similar interferometer

based on collective hyperfine states of Potassium dressed with Rydberg in-

teractions showed sensitivity to electric fields through dephasing, with a

resolution of 17(1) mV/cm [63].

5.2.1 Experimental Implementation

The experimental pulse sequence used to perform polariton interferometry

is shown in Figure 5.5. Applying these pulses realised polariton interferome-

try as shown in Figure 5.6. After loading the dipole trap, a storage/retrieval

sequence is effected via adiabatic ramping of Ωc. The mean photon num-

ber in the incoming probe pulse is ñ = 1.3. In the absence of microwaves,

this stores an incoming photon in the medium in state |0r〉. The photon

is retrieved after a storage time of tstorage ∼ 0.5 µs. Whilst the photon is
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Figure 5.3: Conventional Vs. Polariton Interferometry a. In an optical interfer-

ometer, a relative phase difference ∆φ occurs in light traveling via two unequal

paths. Light from each path thus interferes when recombined. b. For polariton

interferometry, a single polariton initially in state |0r〉 is split into an equal su-

perposition of polaritons in states |0r〉 and |1r′〉 by applying a π/2 pulse. Unequal

unitary evolution leads to a relative phase difference ∆φ. Quantum interference

is observed upon recombination via a second π/2 pulse.

|+〉
|−〉

|0r〉

|1r′〉a

|+〉
|−〉

|0r〉

|1r′〉b

|+〉
|−〉

|0r〉

|1r′〉c

|+〉
|−〉

|0r〉

|1r′〉d

|+〉
|−〉

|0r〉

|1r′〉e
0

1
t

(a
rb

)

Figure 5.4: Bloch spheres showing qubit states during interferometry. a The

interferometer is initialised in state |0r〉. b. A microwave field implements a π/2

pulse. The Bloch vector is rotated to the equator, a superposition of |0r〉, |1r′〉.
c. The relative phase of two interferometric states is sensitive to perturbations of

relative energies. A shift in the energy level of either state causes an accumulation

of relative phase. d. A microwave field drives a second π/2 pulse. e. The state of

the qubit is read by measuring the population in |0r〉, |1r′〉via polariton retrieval.

February 22, 2022



5.2. Polariton Interferometry 177

S
ig

n
al

Retrieval

Ω
p

0.3 µs
Ω

c

Storage Retrieval

Ω
µ π/2

pulses
Cleaning
Pulse

-1 0 1 2 3 4

time / µs

O
D

T

texp = 2.4µs

Figure 5.5: Interferometry pulse timing diagram. The DSP protocol is used

to store a probe pulse lasting tp =0.3 µs. The falling edge of Ωc bisects the

probe pulse. During storage, Ωµ drives microwave π/2 pulses lasting 25 ns to

drive the Ramsey interferometry sequence conceptualised in figure 5.4 and shown

experimentally in Figure 5.6. The time between Ramsey pulses is variable such

that the period of free evolution can be measured tint <0.45 µs. After retrieval,

a microwave cleaning pulse lasting 0.5 µs depumps any population left in |1r′〉 at
the end of the experimental sequence.

stored in the medium, two 25 ns microwave pulses address the |0r〉 ↔ |1′
r
〉

transition and each effect π/2 rotations. The first pulse places the system

into an equal superposition of the two polariton states |0r〉, |1r′〉. After a

period of free evolution lasting <∼ 450 ns, the second resonant π/2 pulse

is applied, and the resultant population in |0r〉 is read out via the DSP re-

trieval protocol. This defines the basic Ramsey interferometry sequence,

built upon later in this chapter. No perturbation is applied. Oscillation in

populations of |0r〉, |1r′〉 are entirely due to the relative phase accumulated

between the resonant microwave source and atomic system due to unitary

time evolution.

Figure 5.7 shows the use of the interferometer to locate the resonance

of the |1r′〉, |0r〉transition through varying the length of the interferom-

eter tint. Figure 5.7 a shows the number of photons retrieved from the
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Figure 5.6: A probe photon (red arrows in a) is stored as a DSP by ramping

coupling Ωc to zero as shown in b (blue arrows in a). This stores the photon as

a collective polariton excitation of the ensemble in state |0r〉. Interferometry is

effected with the addition of two microwave π/2 pulses during storage, separated

by tint as shown in b. When the first microwave π/2 pulse is applied, the

polariton is placed in a superposition of |0r〉and |1r′〉as shown in a. Between

pulses, differential phase evolution ∆φ = |φ1 − φ2| can occur due to microwave

detuning or perturbation of either qubit state energy levels. The second π/2

pulse implements interferometry, and the final state of the qubit is dependent

upon this differential phase, which is driven to |1r′〉 if ∆φ = 0 , or to |0r〉 if

∆φ = π. The final state of the qubit detemines the magnitude of the retrieval

from the medium at t = 1 µs, since |1r′〉 is not resonant with the coupling beam.
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medium upon implementing the DSP retrieval protocol as a function of

the interferometer length tint. Contours show the positions of the expected

maxima, which is determined by the predicted phase offset between the

microwave source and interferometer ∆φ = ∆µtint which fit experimental

data well. Two data sets highlighted with arrows are shown in Figure 5.7

b. The data correspond to interferometric pulse sequences taken with res-

onant microwave pulses (purple data) and off-resonant microwave pulses

(∆µ = 2π · 9 MHz, red data). When the microwaves are resonant, there is

zero differential phase evolution between states |1r′〉, |0r〉. The combination

of two π/2 pulses driving a π pulse on resonance is observed, and retrieval

minima are indistinguishable from the noise floor. When the microwaves

are set to |∆µ| > 0, characteristic oscillation of the retrieved fraction is ob-

served, presenting a measurement of the relative phase of the qubit and

the microwave field. When the phase difference is ∆φ(t) mod 2π = 0, a π

pulse is effected and no photons are retrieved from the medium. However,

when ∆φ(t) mod 2π = π, two π/2 pulses perform zero net rotation, and a

maxima of photon counts is observed upon DSP retrieval.

The relationship between microwave detuning and fringe frequency was

used to locate the qubit resonance |60S1/2〉 ↔ |59P3/2〉 as shown in Figure

5.7 c. The fringe frequencies were fit using sinusoidal fit functions as tint

was varied. This process was repeated at detunings spanning ∆µ/2π =

[−12, 15] MHz9. Extracted frequencies are plotted on Figure 5.7 c. The

fit shows that the data are highly linear, with a gradient 1.00 ± 0.03. Due

to the maximum interferometry length of 400 ns, a full interference period

is observed for detunings above 2.5 MHz. Fit values below this detuning

diverge from the linear trend.

After calibrating the microwave source to the resonance of the qubit

transition, the unperturbed resonant interferometric pulse sequence is im-

plemented. Two microwave pulses separated by a time tint = 0.25 µs per-

9Due to lacking ab-initio knowledge of the exact position of the resonance
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Figure 5.7: The unperturbed interferometer. Two π/2 pulses with detuning

∆µ and separation tint drive a Ramsey sequence. a: Varying ∆µ or tint reveals

interferometric fringes. Two data sets (∆µ = 0MHz, 9MHz) are highlighted by

arrows. Some maxima of the surface cos(2π∆µtint + 0.1) are overlaid in yellow.

b: Varying interferometer length tint. On resonance (purple), two π/2 pulses

transfer population to |1r′〉, minimising retrieval for all tint. For |∆µ| = 9 MHz

(red), the retrieved photon number exhibits sinusoidal variation as a function

of time. Sinusoidal fits are shown as solid lines. c: Microwave detuning ∆µ

causes modulation of photon retrieval as a function of interometer length, with

frequency δint, equal to ∆µ. Thus the linear fit has gradient 1.00 ± 0.03. The

resonant frequency was located at 18.517 ± 0.001 GHz. Low frequency fits are

unreliable, due to the slowly varying nature of the experimental data (see b).
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form single-qubit rotations in the |0r〉 and |1r′〉 basis. The microwave de-

tuning is varied over the range −50, 50 MHz and photons are counted upon

DSP retrieval. The retrieved photon counts I, normalised to the maximum

retrieved counts Imax, as a function of the microwave detuning, ∆µ, for two

values of the microwave pulse duration, tµ, are shown in Figure. 5.8a and

b. In Fig. 5.8a the power, P , and duration, tµ, of each microwave pulse

are chosen to give Ωµtµ = π/2. In this case the sequence of two π/2 ro-

tations about the x axis in the Bloch sphere, see Fig. 5.8c, separated by

a rotation about z (free evolution) results in familiar Ramsey fringes. In

Fig. 5.8b the duration of the pulses is increased to give Ωµtµ ∼
√

2π/2.

For the special case, ∆µ = Ωµ, this pulse performs a Hadamard opera-

tion (π rotation about a Bloch vector 45◦ from the z axis), see Fig. 5.8d.

Consequently, the maximum fringe visibility in Fig. 5.8c is observed at

|∆µ| = Ωµ = 2π(12 MHz). Scanning the frequency of the microwave

coupling field Ωµ across the microwave resonance breaks the simplifying

assumption of a resonant coupling field in the RWA, and introduces the

detuning terms into Hamiltonian 5.2.5.

Hif =
1

2


 ∆µ Ωµ(t)

Ω∗
µ
(t) −∆µ


 , (5.2.5)

where ∆µ defines the detuning of the microwave field, and Ωµ(t) defines the

Rabi frequency of the microwave field The zero of energy has been defined

as ~(ωr +ωr′)/2. Thus, with tint fixed, progressive detuning causes the for-

mation of Ramsey interference fringes in the broad microwave resonance.

The data are compared to the theoretical response of the interferometer

through simulation of the optical Bloch equations developed in chapter 2.

Hif is used to model the output of the interferometer via numerical integra-

tion of the Lindblad Equation (2.2.61) using Qutip [120]. The amplitude

of Ωµ(t) is set to drive two π/2 pulses with separation tint as shown in

Figure 5.5. using the Optical Bloch Equations for a two-level system de-

veloped in Chapter 2. Pulse timings are detailed in Figure 5.5. Only the
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Figure 5.8: Ramsey Interference Fringes. Ωµ pulses separated by tint = 250 ns

defining the Ramsey sequence. Scanning the microwave detuning produces famil-

iar Ramsey fringes. a: Normalised photon counts I/Imax (red circles) as a func-

tion of the π/2 pulse detuning, ∆µ, for the case of Ωµtµ = π/2 at ∆µ = 0. c: The

same as b except that Ωµtµ =
√
2π/2, such that at |∆µ| = Ωµ = 2π(12MHz),

we obtain a Hadamard gate. c The evolution on the Bloch sphere for a reso-

nant Ramsey interferometry, and d double Hadamard operations. Monte Carlo

simulations of both data are overlaid (yellow line), described in the text. The

population left in |0r〉is measured via DSP retrieval.

Ramsey sequence is simulated and it is assumed that all excitations left

in |0r〉will be retrieved. Cleaning pulses and the DSP protocol are omit-

ted from the simulation. For simulation, Ωmax
µ

= 2π · 10 MHz during π/2

pulses, realising the observed π/2 duration of 25 ns. Realistic |Ωµ(t)| pulse

envelopes were used for the simulation10. Atomic dephasing is negligible on

our timescale and so are omitted from the simulation. Thermal dephasing

is offset through post-selection and normalisation.

10Based on error functions, with switching speed matching the 10 ns specification of

the microwave source.
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5.2.2 DC Sensitivity

The use of Rydberg atoms in modern quantum information science has

inspired interest in the interaction between electric fields (AC/DC) and

cold Rydberg atoms [63, 334]. Sensitive Ramsey sequences developed in

section 5.2 are ideal for measuring the effect of electric fields on Rydberg

polaritons, turning them into a viable, non-invasive electric field sensor.

Figure 5.9 shows a master equation simulation of resonant interferometry

using the two level system defined in Equation 5.2.5. Two π/2 pulses where

Ωµ 6= 0 are shown as yellow shaded regions. After the initial π/2 rotation,

the system is in a superposition |φ〉 = 1√
2
(|1r′〉 + |0r〉). In the interaction

picture with a resonant microwave field, there is no phase evolution. Figure

5.9a shows this resonant case, where two resonant π/2 pulses drive a π

pulse.

Rydberg atoms are highly polarisable, interacting with electric fields

via the electric dipole moment.

H = Hint + ~d · E ẑ, (5.2.6)

E denotes the electromagnetic field magnitude, and ẑ a unit vector in the

z direction. Application of this Hamiltonian results in a Stark shift ∆E =

−1
2
α0E2, defined through the static polarisability α0. The interferometer

shift is then the differential DC Stark shift of the upper and lower states

of the interferometric transition.

∆(Er − Er′) =
1

2
[α0,r − α0,r′ ] E2, (5.2.7)

observed through a shift of interferometric fringes. Sensitivity to the quadratic

Stark shift of a nondegenerate level scales as n7 through the fundamental

scaling of electric dipole moment ∝ n211 and state energy difference, ∝ n3,

listed in table 2.2, giving a dynamic range of three orders of magnitude for

states accessible in this system.

11(squared).
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Figure 5.9: Master Equation Simulation of the perturbed interferometer. Bloch

equation simulations demonstrate the principle behind the interferometer. The

time evolution of populations ρrr, ρr′r′ are shown in the Bloch sphere (left) plot-

ted (right). Bloch vectors are colour coded to show their timing, which can be

compared to the colour bar shown beneath plots. In a, the interferometer is

driven by two π/2 pulses about x (Yellow shading) separated by time t. The

qubit is transferred from state |0〉 to |1〉 in the absence of perturbations. In b,

a perturbation causes detuning, and differential evolution changes the relative

phase of states |0r〉, |1r′〉by π. The second rotation of π/2 about x, drives popula-

tion back to |0r〉. In c, the perturbation is larger than in b and not a multiple of

π. The second π/2 pulse leaves the interferometer in a superposition of |0r〉and
|1r′〉.
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Figure 5.10: Sensing DC Electric fields with a contact-less polariton interferome-

ter. a a quadratic differential Stark shift of Ramsey fringes close to the zero field

microwave resonance under the influence of an applied electric field, b: Interfer-

ence fringes obtained by varying tint. |E| shifts the qubit resonance, increasing

fringe frequency from an initial 7.30 ± 0.07 MHz in zero field, to 18.94 ± 0.02

MHz for the maximum applied DC field. The electric field associated with each

dataset is identified by a colour coded arrow above a. c shows the expected

quadratic dependence of frequency shifts δif upon DC field over the range [0,

0.163] V/cm. DC fields are calibrated through the known relative AC Stark

shift of |60S1/2〉 , |59P3/2〉 [152].

Figure 5.9b shows an Optical Bloch Equation simulation of the per-

turbed interferometer during the period of free evolution through appli-

cation of a differential energy level shift of δif = π, which causes phase

evolution of π radians. In this case, the second microwave pulse at t = tµ,2

returns population into state |0r〉.
In this way, φ∆ω1,2 at the end of the period of free evolution governs the

relative population of |0〉 , |1〉. Figure 5.9c shows one further example of a

level shift, this time π < δif < 2π. The qubit is left in a superposition of

states after the second π pulse. Perturbations effectively detune the inter-

ferometer from resonance, providing a method of measuring the strength

of interactions.
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Figure 5.10 shows Rydberg qubit sensitivity to electric fields during

Ramsey interferometry. The qubit is initialised into |0r〉via the DSP stor-

age technique, and a resonant Ramsey pulse sequence was applied. An

electric field of between 0 and 0.163 V/cm was applied12 throughout the

experimental sequence, shifting the atomic energy levels of the ensemble

through the DC Stark shift. In a, a colour map shows a detail of the cen-

tral (near-resonant) Ramsey fringes under the action of an applied electric

field during free evolution. The quadratic level shift of the Ramsey fringes

predicted by Equation 2.1.23 is observed.

Figure 5.10, b shows retrieval intensity fringes obtained by scanning

the interferometer time and thus directly observing the relative phase of

the microwave field and the qubit. Data are shown for |E| = 0 V/cm and

|E| = 0.163 V/cm, corresponding data are indicated by the red and purple

arrows at the top of panel a, respectively. In order to enhance sensitiv-

ity to electric fields, the interferometer is detuned when the electric field is

absent, such that when E0 = 0, ∆µ = 7.30 ± 2π · 0.07 MHz. Application

of an electric field can send the interferometer towards or away from res-

onance, depending on the sign of the interaction. Energy level shifts are

calculated by extracting the frequency shifts from this data, referenced to

the frequency shift at E0 = 0. We observe a smooth quadratic relation-

ship between applied electric field and level shift up to a maximum electric

field strength of 0.163V/m, where the energy level shift reaches a maximum

value of 18.94±0.02 MHz, giving a maximum differential shift of 11.68±0.07

MHz across the [0,0.163] V/cm range. In Figure 5.10 c, energy level shifts

extracted from interferometric fringes obtained across the range of applied

electric fields follows the predicted quadratic scaling law of Equation 2.1.23

with high precision. The data in Figure 5.10 c were used in combination

with the known polarisability of the underlying |59P3/2〉 , |60S1/2〉 states,

12This range corresponds to voltages of zero to five volts applied to one plane of the

in-vacuo electrodes, whilst the other plane is grounded.
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α
(r)
0 /h = 185 MHz cm2V−2 and α

(r′)
0 /h = 1138 MHz cm2V−2, giving a dif-

ferential shift of ∆rr′

Stark/h = 953 MHz cm2V−2 [152].

The visibility V of Ramsey fringes is reduced when strong fields are

applied. The visibility for |E| = 0 is V = 0.89 ± 0.02. When subjected to

the maximum applied electric field of 0.163 V/cm, the visibility is reduced

to 0.14±0.03. In this case, the interferometric superposition is not properly

established. Perturbation of underlying atomic energy levels reduces Ωc and

thus efficiency of storage and retrieval. Finally, the electric field constitutes

a form of global phase noise, and amplitude fluctuation thus enacts a T2

type decoherence which acts across experimental runs. These effects act to

reduce the visibility of interference fringes, however due to the wide range

of sensitivities available to the experimental physicist, it is possible to pick

a Rydberg state which has an appropriate sensitivity for the fields under

measurement. In these experiments, we do not approach the regime of

strong state mixing due to the Stark effect.

5.2.3 AC Sensitivity

Collective Rydberg Qubits are naturally sensitive to AC Stark shifts due

to the underlying large dipole moments µrr′ through the AC Stark effect.

This strong interaction can be leveraged for wideband AC sensing [336],

successfully implemented in thermal vapor cells [337] with sensitivities of

less than ∼ 3[µV/cm]/
√

Hz [338].

In order to study the effects of the AC Stark shift, a polariton interfer-

ometer based on the states |r〉 = 60S1/2 and |r′〉 = 59P3/2 are implemented.

A second microwave field Ωµ2 is introduced, coupling state |59P3/2〉 to state

|59S1/2〉 with detuning ∆µ2 = 0. When Ωµ2 is on resonance (∆µ2 = 0) is

found at 18.512 ± 0.001 GHz. The dipole moment of the transition is

4107 D [152]. Ωµ2 is applied in between interferometric π/2 pulses for du-

ration 200 ns to perturb the interferometer through the AC Stark effect.

The AC Stark shift is measured in the same way as the DC Stark shift in
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section 5.2.2.

Figure 5.11 shows the response of the polariton interferometer to the

second microwave field. The first microwave field Ωµ is detuned from the

qubit resonance by ∆µ = 2π · 8 MHz to increase sensitivity as in section

5.2.2. A dotted line in a identifies the position of the first intensity max-

ima in the absence of microwaves, occurring at t = 170 ns. The frequency

of the second microwave field is swept across the |59P3/2〉 ↔ |59S1/2〉 res-

onance. Figure 5.11, a shows photon retrievals when Ωµ2 is varied over

the range 2π · [−50, 50] MHz. The interferometer length is also varied up

to a maximum length of 400 ns. Red data show the visibility of inter-

ference fringes as a function of detuning of the second microwave source

|∆µ2| <3 MHz in 0.5 MHz steps. A grey dashed line shows a Lorentzian fit

to the data, which has a line-width of 1.3 ± 0.1 MHz, consistent with the

Fourier transform of the pulse duration tµ2. Interferometric fringes can be

seen to asymptotically converge upon this line at large detunings, and di-

verge in opposite directions as Ωµ2 approaches resonance due to the change

in sign of the dispersive shift either side of resonance (c.f. figure 2.10).

The AC field strength can be measured through the magnitude of the

dispersive frequency shift, or by the destructive power of the field when

tuned near to resonance which causes the visibility V of interferometric

fringes to fall. Scattering and saturation are both increased close to res-

onance, invalidating the perturbative derivation of the AC Stark shift. A

reduction in V occurs due to the polariton states |1r′〉, |0r〉becoming dis-

tinguishable in the presence of a near-resonant microwave field, which per-

forms an effective measurement of the system. Information on the state

of the system is carried by the microwave field, destroying superposition

analogous to the classic decoherence experiment of Brune et al. [339].

At large detunings, the microwave field carries little information on

the state of the interferometer. In this regime, the dispersive effect of

the AC stark shift upon the interferometer can be directly extracted from
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the frequency shift of interference fringes, referenced to the frequency of

fringes in absence of any microwave coupling. Ωµ. Panel c shows extracted

resonance shifts whilst the microwave field is scanned over a wider range

of −50, 50 MHz (data in panel a). The interferometric shift δint in Panel

c has a dispersive line shape which is a good fit to equation 2.1.29. Loss

of coherence is more frequency-selective than Stark shift measurements,

and could be used for high-resolution measurements of Rydberg transition

frequencies, which are important in the determination of quantum defects

[151].
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Figure 5.11: Sensing AC Electric fields with a contact-less polariton interferome-

ter. An external microwave field couples polariton state |1r′〉to a third polariton

state |2r′′〉. a shows single-photon interference fringes as external field detun-

ing ∆µ2 and superposition time, tint are varied. Detuning ∆µ/(2π) is fixed at

8 MHz. b Visibility V is destroyed by an external resonant microwave field. Red

data points show the visibility of interference fringes close to resonance. The

grey dotted line shows a Lorentzian fit with line-width 1.3± 0.1 MHz. c shows

the frequency shift of Ramsey fringes δfringes has a dispersive relationship with

the external microwave detuning ∆µ2 > 5 MHz. The dotted line in c presents a

good fit to Equation 2.1.29.

The current sensitivity of the experiment is limited by thermal dephas-

ing due to a maximal superposition time of ∼1 µs, which diminishes photon

readout. Hyperfine qubits can have longer lifetimes due to shorter effec-
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tive wave vectors however these qubits have weak intrinsic interactions and

must be dressed with Rydberg interactions to establish sensing. Dressed

hyperfine qubits less sensitive to electric fields than the Rydberg qubit in-

terferometer have been demonstrated [63]. To the best of our knowledge,

this represents the first proof-of-principle demonstration of interferometry

of Rydberg polaritons.

5.3 Robustness of Rydberg Qubits

Entanglement is at the heart of modern developments in quantum infor-

mation and quantum technology [88, 340]. The collective Rydberg qubit

is one example of a strongly entangled system, where the state of spatially

separate particles defines a composite quantum state. The polariton en-

coding dictates that quantum information is shared between atoms of the

ensemble due to the W-like form of the polariton wavefunction (Equation

2.2.106). This sharing of quantum information confers robustness against

tracing over the state of any of the individual atoms which make up the

collective state, and thus exhibits multipartite entanglement [241, 305, 341]

making them amenable to error correction schemes [306]. The collective

system is robust against the loss of information from the ensemble due to

atom loss. This section explores the loss of quantum information from the

collective qubit. Electrical noise is shown to affect the qubit matching a

quartic model based on theoretical dephasing of a two-level with stochastic

Stark shifts. We demonstrate that quantum information stored in the qubit

is robust against atom loss in a way that has no analogue in traditional

atomic qubits.

5.3.1 Atom Loss

Collective qubits encoded in |W〉 states are known to posess intrinsic ro-

bustness as a result of the distribution of quantum information over the
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Figure 5.12: The effect of electrical noise and probe driving upon the qubit

was observed through the implementation of a perturbative pulse during the

superposition time of the interferometer sequence shown in Figure 5.5. The

timings of the probe, coupling, microwave pulses, and dipole trap are the same

as in Figure 5.5. The effect of the same perturbation upon qubit rotation is also

observed by leaving the microwave drive field in-between π pulses. Again, other

parameters match Figure 5.5.

many members of the multipartite system [241, 305, 306]. To characterise

the effect of atom loss on our collective qubit, we employ the pulse se-

quence shown in Figure 5.12, which augments the pulse sequence designed

to witness Ramsey interferometry in Figure 5.5. Experiments are per-

formed at an intermediate quantum number of n = 60 to maximise storage

efficiency. For interferometric experiments, we operate with fixed duration

tint = 0.25 µs. To observe the effect of noise upon the oscillating qubit, we

operate the same interferometric pulse sequence, but do not switch the mi-

crowave pulse off during tint, resulting in tRabi = tint =0.3 µs. During these

pulse sequences, we apply a perturbation Hp during the interferometric

superposition time (or, during the corresponding Rabi oscillations for the

Rabi pulse sequence).

The study of atom loss is implemented by applying a non-Hermitian

perturbation in the form of resonant driving by a probe beam [342]. The

density matrix of the initial state of the system is ρi = |0r〉 〈0r|. Expanding

the initial state gives (c.f. Equation 5.1.1)
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ρi =
1√
N

N∑

i

N∑

j

eiKeff ·(Rj−Ri) |g0, g1..ri..gn−1, gN〉 〈g0, g1..rj..gn−1, gN | .

(5.3.8)

Examining the terms in this summation, we have that

ρ
(i,j)
i ∝ |g0, g1..ri..gn−1, gN〉 〈g0, g1..rj..gn−1, gN | . (5.3.9)

This multipartite system can be decomposed into product terms

ρ
(i,j)
i ∝ |g0〉 〈g0| ⊗ |g1〉 〈g1| ⊗ ...⊗ |ri〉 〈rj| ⊗ ...⊗ |gn〉 〈gn| ⊗ |gn−1〉 〈gn−1| .

(5.3.10)

Each atom in the superposition undergoes dissipative dynamics as deter-

mined by the Lindblad dephasor 2.2.62 under the action of a scattering

Hamiltonian

Hp =
Ωs

2
[|g〉 〈e| + |e〉 〈g|] , (5.3.11)

and decay via spontaneous emission from |e〉

D = Γe |g〉 〈e| . (5.3.12)

As discussed in previous sections, the long lifetimes of the Rydberg states

and absence of coupling to |g〉 during qubit operation means that the el-

ements |ri〉 |rj〉 do not evolve when i = j. Likewise, the 6 MHz linewidth

of the excited state dictates that any population in |e〉 〈e| does evolve in

time, but will decay back to the ground state by the end of the experimen-

tal sequence, as this decay process is much faster than the experimental

timescale of 2.4 µs. Thus it does not contribute to the Rydberg spin wave

after the interaction is complete. Thus the only element in the summation

with nontrivial dynamics are the Rydberg coherences, which evolve as

∂t |g〉 〈r| = −iΩ |e〉 〈r| , (5.3.13)

∂t |e〉 〈r| = −iΩ |g〉 〈r| − Γe

2
|e〉 〈r| . (5.3.14)
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These differential equations are solved subject to the initial condition that

the adiabatic polariton storage protocol is effective in transferring all ex-

cited state population to the Rydberg state |r〉, |e〉 〈r|t=0 = 0. The time

evolution of the Rydberg coherences is then given by

|g〉 〈r|ts = e−
γ

4
ts

(
cosh(ωsts) +

γ

4ωs

sinh(ωsts)

)
|g〉 〈r| ... (5.3.15)

− ie−γts
Ω

ωs

sinh(ωsts) |e〉 〈r| , (5.3.16)

where ωs = 1
4

√
γ2 − 16Ω2. Under the assumption that the population of

the excited state is negligible due to fast decay, the scattering beam affects

the critical ground-Rydberg coherences as

|g(t)〉 〈r(t)| → α(ts) |g〉 〈r| = e−
Γe
4
ts

(
cosh(ωsts) +

γ

4ωs

sinh(ωsts)

)
|g〉 〈r| .

(5.3.17)

And so equation 5.3.8, under the influence of the scattering field becomes

ρi =
1√
N

N∑

i

N∑

j

eiKeff ·(Rj−Ri) |g0, g1..ri..gn−1, gN〉 〈g0, g1..rj..gn−1, gN |

· (1 − δij)α(t). (5.3.18)

Represented as an N-particle density matrix, the system evolves from a

coherent entangled collective excitation towards a mixed state,

ρf =
1

N
|α(t)|2




1 . . 1

. 1 . .

. . 1 .

1 . . 1




+
1

N

(
1 − |α(t)|2

)




1 . . 0

. 1 . .

. . 1 .

0 . . 1



. (5.3.19)

As time increases, α(t) evolves from α(0) = 0 towards α(t → ∞) =

1. The left hand matrix represents the maximally entangled |W〉 state

which is established as the photon is stored as a polariton13. As the qubit

13 Note that this conceptual picture would not account for variations in Rabi frequen-

cies Ωc,Ωp across the ensemble, the effects of optical depth and of geometric modes.

February 22, 2022



5.3. Robustness of Rydberg Qubits 194

scatters probe photons, multipartite entanglement is diminished due to

the exponent in α(t) in equation 5.3.17 and the system asymptotically

approaches a mixed state represented by the right hand matrix.

The read-out fidelity F can be calculated as the overlap between the

state of the polariton after it is written into the medium |i〉, and the state

of the qubit before retrieval |f〉, such that

F = 〈i|ρf |f〉 . (5.3.20)

Diminishing the coherence between the qubit and the emitter diminishes

the readout fidelity.

F(t) =
1

N
+
N − 1

N
|α(t)|2. (5.3.21)

The effect of this scattering field on the collective qubit Rabi oscillation

and Ramsey fringes are shown in Figs. 5.13b and c, respectively. Increas-

ing the amplitude of the scattering field is observed to reduce the visibility

of both the Rabi oscillations and the Ramsey fringes. Figure 5.13d demon-

strates the reduction in interferometric fringe amplitude due to progressive

atom loss. The scattering field is varied between Ωc ∈ 2π · [0, 2] MHz. Data

corresponding to Ωs ∈ 2π · [0, 1, 2] MHz are shown. The scattering field

causes atom loss which reduces the fidelity of the read-out. For Ωs ≫ Γe

and a many atom ensemble N ≫ 1, the readout fidelity is simplified to

F(t) = exp

(
−4

Ω2
p

Γe

t

)
, (5.3.22)

where Ωp is the amplitude of the scattering field and Γe is the lifetime of

the emitter. Note that the dephasing due to the scattering field does not

depend on the number of atoms N in the limit of a large N due to the

increasingly negligible effect of tracing over a single degree of freedom in a

large, multipartite system [241, 305].

Figure 5.14 (a) shows the effect of scattering from the probe beam upon

the optical depth of the medium. The probe beam has duration tp =0.25 µs

and Rabi frequency Ωp ∈ [0, 2] MHz. Data are extracted from five million
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Figure 5.13: Robustness of the collectively-encoded qubit to atom loss:

The effect of light scattering on the |g〉 → |e〉 transition upon Rydberg qubit

dynamics. a, b show colourmaps of both Rabi oscillations and Ramsey fringes

respectively, under the action of an applied scattering field Ωs as it is increased

up to a maximum value Ωmax
s /2π = 2 MHz. c Shows Ramsey fringes for three

scattering amplitudes indicated in d by vertical lines. d The visibility of the Rabi

oscillations (red squares) and Ramsey fringes (purple diamonds) as function of

Ωs. F is also shown, integrated across all experiments (pink diamonds). F is

reduced to ∼ 0.1, whilst V remains above 0.6 for strong scattering. This provides

proof of the robustness of the multipartite encoding offered by by the |W〉 state.
Figure adapted from [65].

February 22, 2022



5.3. Robustness of Rydberg Qubits 196

0.5 1.0 1.5
Ωs/2π (MHz)

0

1

2

3

4

O
D

a

0.0 0.5 1.0 1.5
Ωs/2π (MHz)

10−2

10−1

100

F

F
0-1000

2-3000, fit

4-5000, fit

6-7000, fit

8-9000, fit

b

Figure 5.14: Photon scattering diminishes OD and F (Equation 5.3.2) due to

atom loss. a High Ωs causes nonlinear reduction of OD due to total atom loss for

high shot numbers > 6000 and scattering fields Ωs > 1. Dashed lines represent

linear fits to the highlighted data. In b scattering is observed to diminish F .

This is in line with for low shot numbers < 1000 where the optical depth remains

high (black line). Dashed lines represent fits of F(Γe) to the data.

experimental runs, corresponding to one hundred thousand runs for each

data point. The experiment is repeated ten thousand times in between

dipole trap reloading, and OD is shown as a function of experimental run

number nexp, measured from the dipole trap reloading. As the experimen-

tal run number increases, OD is diminished due to compound scattering

events of previous experimental runs. The analysis of the first two thou-

sand experimental runs reveals an initial OD of ∼ 3.4. Atom loss is severe

for large Ωs, saturating at the highest incident photon rates.

Figure 5.14 (b) shows a comparison between Equation 5.3.2 for F and

experimental data. Experimental F = Iret/I0 are determined by normalis-

ing observed photon retrieval counts Iret by the number of counts observed

in the absence of any scattering beam I0. The data are again analysed as

a function of the experimental run number. The effect of diminished op-

tical depth causes the fidelity to diminish much faster than predicted for

larger scattering fields. However, for low nexp, experimental F are a good
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fit to equation 5.3.2, shown as a solid line.

Figure 5.13 shows the effect of Ωs on both Rabi and Ramsey sequences

presented in Figure 5.12. Colormap 5.13 a shows retrieval amplitude during

a Rabi sequence across the range Ωµ ∈ 2π · [2.0, 5.3] MHz. Data are nor-

malised to the retrieval at Ωs = 0. Colormap 5.13 b shows a similar effect

during a Ramsey sequence, again normalised to retrieval at Ωs = 0. Central

Ramsey fringes (|∆µ| < 10) are shown for tint =0.25 µs. The Rabi frequency

of the scattering field is varied over the range range Ωs ∈ 2π · [0, 2] MHz. In

both panels, retrieval fidelity F is reduced under the action of the resonant

scattering beam. The qubit and emitter become dephased as per equation

5.3.17.

Rabi oscillations and central Ramsey fringes are shown in Figure 5.13

a, b. Simple sinusoidal fits with free parameters of frequency, ω, phase φ,

amplitude A and offset O are used to obtain visibility V = A/O. Figure

5.13 c shows these fits for a subset of data from b. Corresponding scat-

tering amplitudes are represented by vertical lines on d. Each data point

corresponds nexp = 10000, and so each sinusoidal data set represents four

million experiments. Extracted V of both Rabi oscillations (red squares)

and Ramsey fringes (purple triangles) are shown in Figure 5.13 d as a

function of Ωs. Pink triangles show corresponding F extracted from data

presented in Figure 5.14, a and averaged over all colour runs. Fidelity F is

shown normalised to the case where Ωs = 0. Visibility V of both Rabi os-

cillations and Ramsey fringes versus the amplitude of the scattering field

Ωs is shown.

This brings us to one of the most interesting outcomes of this work. The

visibility of Ramsey interference fringes and Rabi oscillations of Rydberg

polariton qubits are persistent even under the action of destructive photon

scattering. Figure 5.14 shows the loss of optical depth as a function of the

shot number, which proves atom loss during the experimental sequence.

In fact, the ensemble is effectively destroyed across experimental runs for
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Ωs = Ω max
s . At the largest Ωs, this causes a reduction in F of an order

of magnitude. However, even in this extreme case, V is reduced by less

than a factor of two across both Rabi and Ramsey sequences. Thus this

polariton qubit state is robust to atom loss due to multipartite encoding

[241, 305], which can be further mitigated through error correction schemes

that advantage the collective nature of these qubits [306]. This provides an

advantage over similar schemes based on single atoms which are much more

sensitive to qubit loss [343], requiring expensive loss correction schemes

[344].

5.3.2 Environmental Noise

Many schemes exist to overcome decoherence and dissipation in open quan-

tum systems such as those used to implement qubits in NISQCs [345, 346].

To assess the feasibility of collective Rydberg qubits in modern NISQs, it

is important to understand the degree of coupling between the qubit and

the environment, causing decoherence. A stochastic Hamiltonian can be

used to simulate environmental coupling, revealing the susceptibility of the

collective encoding scheme to environmental noise [342].

Dissipation is introduced through the application of a stochastic electric

field exploiting the strong electric dipole moment of Rydberg atoms to

simulate environmental noise

Hstochastic(t) = −d · E(t), (5.3.23)

where E = E0ẑ. The noise field can be expanded as a sum of static field

terms. In the perturbative regime, this gives rise to an average quadratic

Stark shift through the polarisability as described in chapter 2, and a

stochastic dephasing term. Assuming alignment between dipole and field,

the square of the time averaged electric field can be obtained from the
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integral14

〈E2(t)〉 =
1

2E0

∫ E0

−E0

E2(t) dE(t) =
E2

0

3
. (5.3.24)

Thus equation 5.3.23 can be rewritten as

H′ =
E2

0

6


αr′ 0

0 αr


+

1

2


αr′ 0

0 αr


 ξ2(t), (5.3.25)

where αj is the polarizability of state |j〉, and ξ2(t) = E2(t) − 〈E2(t)〉
represents the stochastic fluctuations of the squared electric field amplitude

about the average value E2
0/6. Since each of the terms in the definition

of the polariton qubit (Equations 5.1.1, 5.1.2) contains a single Rydberg

excitation, Equation 5.3.23 acts globally on all terms in the summation.

Temporal correlations at times t, t′ can be written

〈ξ2(t)ξ2(t′)〉 = 〈(E2(t) − 〈E2(t)〉)(E2(t′) − 〈E2(t′)〉)〉

= 〈E2(t)E2(t′)〉 − 2 〈E2(t)〉 〈E2(t′)〉 + 〈E2(t)〉 〈E2(t′)〉

= 〈E2(t)E2(t′)〉 − 〈E2(t)〉2 .

To evaluate this equation, we calculate the value of 〈E2(t)E2(t′)〉 as in

equation 5.3.24.

〈E2(t)E2(t′)〉 =
1

2E0

∫ E0

−E0

E2(t)E2(t′)dE(t) =
E4

0

5
. (5.3.26)

Then, for t = t′, we have that

〈ξ2(t)ξ2(t)〉 = ηE4
0 , (5.3.27)

where η = 4
45

is a proportionality factor arising from the calculation of the

strength of fluctuations of E(t) about the average value. We assume that

the exponential decay of correlations for unequal times t 6= t′ such that

〈ξ2(t)ξ2(t′)〉 ≈ 〈ξ2(t)ξ2(t)〉 exp

[
−|t− t′|

τcorr

]
= ηE4

0 exp

[
−|t− t′|

τcorr

]
.

(5.3.28)

14For a stochastic electric field amplitude over the interval ([−E0, E0]) with equal

probability such that P (E) = 1
2E0

; E ∈ [−E0, E0]
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where τcorr represents the timescale associated with the temporal decay of

noise correlations. If the noise correlation time is much shorter than other

experimental (texp) decay (Γe,Γr) and dephasing (γthermal) mechanisms, we

can approximate τcorr ≈ 0, then

〈ξ2(t)ξ2(t′)〉 ≈ 2ητcorrE
4
0 δ(t− t′). (5.3.29)

We next calculate the Lindblad dynamics of this physical system. The form

of the Lindblad dissipator in Equation 2.2.61 is given through Equation 10

in [342].

D(ρ(t)) = −2η

~2
τcorrE

4
0


1

2


 αr′ 0

0 αr


 ,


1

2


 αr′ 0

0 αr


 , ρ(t)






= −2η

~2
τcorrE

4
0δ

2
ασ̂x. (5.3.30)

We have introduced the relative polarisability of the two states δα = αr′−αr.

Thus evolution of atomic coherence is proportional to Pauli operator σx

∂

∂t
σx(t) = −γdeph

2
σ̂x(t), (5.3.31)

where we have defined the dephasing rate of atomic coherences under the

action of HStochastic through Equations 2.2.61, 5.3.30, 5.3.31 as

γdeph = η · τcorr ·
δ2α
~2

· E4
0 . (5.3.32)

Qubit dephasing is proportional to E4
0 under the action of the applied

electrical noise field with stochastic amplitude drawn from a uniform dis-

tribution spanning [−E0, E0].

To simulate the effect of a stochastic electric field, we employ the pulse

sequence of Figure 5.12, where the perturbation takes the form of the ap-

plied noise Hamiltonian of Equation 5.3.2515. The noise pulse is applied in

between the π/2 pulses for duration 250 ns.

15Electrical noise with a Gaussian probability distribution generated using a Tektronix

AFG3252 arbitrary function generator with a bandwidth of 240 MHz.
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Figure 5.15: Driving the qubit with a noise field during Rabi (a) or Ramsey

(b) pulse sequences leads to both dephasing and Stark shifts. a The collective

qubit is driven with the Ramsey pulse sequence as in Figure 5.12, with the

addition of a stochastic perturbation due to an electric field as per equation

5.3.25. Colourmaps show retrievals from the ensemble normalised to their peak

value. c Central Ramsey fringes low noise, (E0 = 0.6 )V (purple stars) and high

noise, E0 = 1.6 V (blue crosses) with sinusoidal fits. d Visibility V normalised

to V(E0 = 0) as a function of the noise amplitude for Ramsey fringes (purple)

and Rabi oscillations (red) data. The star and the cross correspond to the

datasets detailed in c. F is not degraded by noise [black triangles, normalised

to F(E0 = 0)]. HStochastic degrades V, following the quartic relationship as per

Equation 5.3.32 (dotted lines). For E > 1.6 V/cm, the model fails due to the

breakdown of the perturbative approach.
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The noise perturbation is applied to the qubit during both Ramsey and

Rabi sequences. A simulated noise pulse with a peak-to-peak amplitude

2E0 is applied to in-vacuo electrodes described in chapter 3. The effect on

the Ramsey fringes is shown in Figure 5.15b. Both the quadratic level

shift and the dephasing caused by the two terms in Equation 5.3.25 are

observed.

The global perturbation causes a T1 type dephasing which imparts no

significant reduction in readout fidelity F (see equation ), in contrast to

previous measurements of progressive T2 type dephasing due to gradual loss

of local coherence in section 5.3.1. Thus the electric field is truly global

in nature, causing no significant decoherence of the Rydberg spin-wave

during texp. Therefore we conclude that the reduction in V shown in figure

5.12 c can be attributed to the dephasing as per Equation 5.3.32. The

predicted E4
0 -scaling is a good fit to experimental V, see Figure 5.15. Panel

b highlights two sets of Ramsey fringes taken at different noise amplitudes.

Figure 5.15c shows retrieval efficiency remains constant under application

of H′. Thus, dephasing of local phase factors is not observed. However, in

the same Figure, the pulse of electronic white noise is seen to reduce the

visibility of Rabi and Ramsey oscillations. The visibility of both Rabi and

Ramsey fringes is found to have a quartic dependence on field amplitude,

c.f. equation (5.15).

The experimental data diverges slightly from the model for large E0.

At high field strength, the foundational assumption of a quadratic Stark

shift in equation 5.3.25 loses validity. An analysis of the breakdown of

the model is presented in figure 5.16. Panel a shows fits to the data for

quartic (V = 1− aE4
0) and quadratic (V = 1− bE2

0) models, where a, b are

fit parameters. Data points for E0 < 1.6 V/cm (indicated by the yellow

shaded regions) were used to fit the data and the quartic model performs

better in this region. Panel b shows the average residual for both quartic

and quadratic fits when only the first N data points are included in the
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Figure 5.16: Analysis of quadratic noise dephasing evidencing quartic scaling. a

Fringe visibilities V(E0) are fit well by a quartic scaling (purple line) and are not

accurately described by a quadratic (red line) model. b A quadratic model is a

better fit to the full dataset as large E0, showing the breakdown of the pertur-

bative model. Fits are made to the first N data points from a. The perturbative

assumptions of equation 5.3.32 are satisfied in the region E0 < 1.6 V/cm where

the goodness of fits to V ∝ E4
0 exceeds fits to V ∝ E2

0 . The breakdown of the

perturbative assumption can also be clearly seen in the divergence from V ∝ E4
0

in the region E0 < 1.6.

fit. The quartic model vastly outperforms the quadratic model at low field

strengths. The strong departure from the quartic model at field strengths

E0 > 1.6 V/cm is apparent as a dramatic increase of the residuals of the

quartic fit. Thus collective qubit coherence is robust against this kind of

noise to second order.

5.3.3 Conclusion

In summary, we have described an implementation of a collective Rydberg

qubit [64, 65]. We find the qubit to have excellent coherence properties

allowing for the implementation of fast Rabi oscillations, Ramsey inter-

ferometry, and Hadamard gates. We have shown that collective atomic
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qubits encoded in Rydberg polaritons are robust against atom loss and

global phase distortions due to environmental noise [241, 305]. For the lat-

ter, we observe a quartic dependence on the noise amplitude profile that

matches theoretical predictions. Further resilience might be obtained by

utilising ‘magic’ Rydberg states [347], where the polarizabilities of the Ry-

dberg states are matched. Qubit sensitivity to AC and DC fields may also

have applications in sensing [63, 334].

This work prepares for the implementation of quantum gates between

collective qubits mediated by Rydberg interactions. Tunable, contactless

interactions between collective Rydberg excitations have previously been

reported [105] and phase gate proposals implemented with collective qubits

are also available [138, 348]. The emitter-qubit coupling provides a pho-

tonic interface to the qubit, making collective encoding useful for the cre-

ation of flying qubits, plus hybrid light-matter interfaces for quantum com-

puting and communication.
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Chapter 6

Conclusion

This thesis reports on the coherent collective response of driven Rydberg

polaritons. A new method for the study of blockade phenomena through

slow decay of Rydberg EIT transients is introduced. Fast microwave pulses

are used to suppress the decay of Rydberg EIT transients entirely through

Autler Townes splitting of Rydberg states, leading to a new method of

photon storage. Microwave pulses are also shown to enhance interaction

induced dephasing of the stored excitations through injection of resonant

dipole interactions, enhancing outgoing photon anti-bunching. Thus driven

Rydberg transients present opportunities for the analysis of interaction

induced dephasing of Rydberg spin-waves. A novel implementation of a

collective Rydberg qubit, a superposition of polariton excitations of an

ultracold ensemble of Rubidium 87, is demonstrated through several proof-

of-principle experiments. Coherent control of the qubit is demonstrated.

Manipulation of the qubit Hamiltonian is achieved through Rabi oscilla-

tions and applied electric fields. A study of the response of the qubit to

stochastic noise reveals a quartic dependence matching theoretical model-

ing. The distributed nature of the qubit encoding is demonstrated through

studies of atom loss, revealing the high degree of entanglement inherent

in multipartite qubits. Qubit readout is critically limited by thermal de-

phasing, however recent proposals aim to remove this limitation, making
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Rydberg qubits worthy of further study.

6.1 Cooperative Rydberg Ensembles

Coherent manipulation of an atomic ensemble of Rubidium 87 was demon-

strated through a series of experiments that extend knowledge of transient

phenomena in three and four-level ensembles. Three-level Rydberg ensem-

bles are shown to exhibit transient decay with a decay rate governed by

the strength of the coupling field. This transient decay was found to be

many orders of magnitude more intense than the corresponding two-level

transient observable in the same system [263]. The susceptibility of the en-

semble was successfully modelled through mean-field, non-interacting opti-

cal Bloch equations. Divergences from mean-field behavior were observed

through studies of the statistical nature of outgoing photons. Photon block-

ade of the transient decay is demonstrated through intensity saturation

[85]. Statistical analysis of the emitted light showed strong anti-bunching

[84]. Thus the EIT transient gives access to sub-Poissonian light due to

Rydberg-mediated effective photon-photon interactions [105] without the

complexity of storage and retrieval protocols [51]. This technique may find

applications in the analysis of collective dynamics through observation of

EIT transients [86].

Further control over the EIT transient was achieved through the intro-

duction of a fourth level through microwave coupling to a second Rydberg

state [205]. Modulation of the flash due to Rabi oscillations within the Ry-

dberg manifold was observed, with a concomitant increase in anti-bunching

as the transition from VdW interactions to resonant dipole-dipole interac-

tions imparts enhanced interaction-induced dephasing [29]. Dressing the

system with resonant microwaves detunes the Rydberg manifold from the

dominant decay mechanism via coupling to the excited state. Control over

the timing of photon emission from the ensemble is achieved through the

application of strong microwave pulses. Photon emission can be separated
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from the probe pulse by several microseconds. This adds a new method of

photon storage similar to previous schemes based on photon storage [51,

128], weaker subradiant states [50, 292] or AT splitting of EIT [349, 350].

6.2 Collective Rydberg Qubits

Demonstration of collective Rydberg qubits [65] complement previous demon-

strations of collective hyperfine qubits [300], Rydberg dressed qubits [63],

and similar Rydberg superatoms based on atomic arrays [126]. Photons

were stored as long-lived collective Rydberg excitations of an ensemble of

Rubidium 85 [49, 51]. Coupling between collective Rydberg states was im-

plemented via resonant microwave fields. Coherent control of the qubit was

established and Bloch sphere rotations were implemented. Ramsey inter-

ferometry of Rydberg polaritons was demonstrated, confirming sensitivity

to DC fields and constituting the first such demonstration of interferometry

using Rydberg polaritons1 [109]. Dispersive energy level shifts and reso-

nant exchanges were observed via interferometric sensing of near-resonant

AC electric fields. The sensitivity of the qubit to many-body decoher-

ence was investigated through the controlled application of an electric field

with a simulated stochastic amplitude applied during interferometric su-

perposition. Qubit dephasing was found to scale with the fourth power

of the applied noise field, matching theoretical predictions. These results

are in agreement with the theoretical model presented in the text [342].

Progressive removal of atoms from the ensemble during qubit operation

was found to reduce readout fidelity, attributable to the sensitivity of local

atomic phase factors encoding quantum information in the determination

of the outgoing optical mode of the stored photon [199]. Conversely, due to

the highly entangled nature of the |W〉-like blockaded polariton [241, 305],

qubit coherence was not significantly degraded after adjustment for loss of

1To the knowledge of this research group.
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read-out fidelity [306].

6.3 Experimental Upgrades

The experimental setup carefully prepared by previous generations of stu-

dents has been extended and stabilised. A cross dipole trap has been

installed, intersecting a set of optical tweezers at a ninety-degree angle.

Enhanced trapping prepares for the future realisation of fully blockaded

media. This should enable experiments to be performed in fully blockaded

regimes, and preliminary results show an improvement in optical depth

and g(2)2. The technique of Zeeman-tunable MTS [110] has been developed

and implemented, conferring increased stability to the optical pumping sys-

tem upon which this experiment relies and increasing experimental uptime.

Offset-locking [232] the coupling system to an optical cavity has increased

the number of addressable principal quantum numbers by circumventing

the power requirements associated with Rydberg spectroscopy [152]. It also

provides a tunable lock point for subsequent experiments. The experimen-

tal analysis steps have been formalised, and automated analysis code was

written by the author currently facilitates rapid data analysis is crucial to

the agile use of this capable system.

6.4 Outlook

This thesis presents proof of the feasibility of the implementation of collec-

tive Rydberg qubits following on from previous demonstrations of Rydberg

superatoms [27] and collective hyperfine qubits [102, 103, 300]. The qubit

implementation in this thesis does not yet pass DiVinchenzo’s five criteria

for a useful qubit [1]. Addressing the first criteria of scalability, several re-

cent demonstrations of hundreds of ensembles trapped in optical tweezers

2Detailed in [206].
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are present in the literature [62]. These schemes seek to simplify com-

plex single atom loading protocols based on light assisted collisions [90]

and rearrangement using optical tweezers [351]. Simplified ensemble load-

ing combined with Rydberg blockade might produce hundreds of identical

superatoms for quantum information processing [35]. A route to scalability

exists. Much progress has been made in the optical engineering methodol-

ogy required for the generation of larger arrays of optical potentials which

might facilitate the implementation of hundreds of Rydberg qubits. Traps

might be generated via Fourier imaging of spatial light modulators [352] or

acousto-optic deflectors.

Allowing for post-selection, the system is initialised into a well defined

fiducial state fulfilling the second of DiVinchenzo’s criteria. The efficiency

of the qubit storage and retrieval (DSP) process is intolerably low for effi-

cient two-qubit gates. Higher efficiencies approaching unity [353, 354] have

been reported for lower principal quantum numbers due to the the shorter

effective wavelength of the polariton spin-wave. However, storage at lower

principal quantum numbers does not confer the Rydberg character without

dressing schemes [355–359]. This presents the most glaring need for inno-

vation. A recent scheme for storage in spin waves with uniform phase [104]

suggests that it may be possible to mitigate thermal dephasing by imple-

menting storage based on four-wave mixing, with the light fields arranged

at angles of incidence such that the effective wave vector is zero. This is

expected to dramatically increase storage efficiencies of these systems and

may overcome the dominant loss mechanism of Rydberg qubits based on

photon storage.

Successful implementation of Doppler-free storage and retrieval would

also address shortcomings of this system when measured against the fourth

criteria. A Doppler-free configuration would dramatically reduce the scram-

bling of phase information contained in the qubit spin-wave due to thermal

motion. This would greatly extend the effective coherence time of collec-
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tive Rydberg qubits. If spin-wave dephasing can be mitigated, coherence

times might be expected to be limited by the Rydberg lifetime, a dramatic

improvement over lifetimes observed for qubits presented in this thesis.

The fifth criteria of effective qubit readout is demonstrated in this thesis

and by others on this project via polariton retrieval [51, 65, 105]. If the

efficiency of the storage and retrieval process can be improved, mapping

the polariton state onto a well defined optical mode via polariton retrieval

might demonstrate an efficient readout process.

Photonic readout conveniently satisfies DiVinchenzo’s criteria for quan-

tum communication. The minimal coupling between ‘flying’ photonic qubits

and the environment allows them to be transmitted across large distances

via optical fiber networks [9, 10, 360]. Thus interacting collective Ryd-

berg qubits and associated gate schemes may be useful in interfacing ex-

isting quantum hardware for quantum networking [57]. Extensions of this

scheme to qutrits and qudits [103] can be easily achieved using additional

microwave fields.
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A.1 Symbol Key for Optics Drawings

This thesis makes use of the excellent SVG optics library created by Alexan-

der Franzen [210]. Symbol meanings are as below. Dichroic mirrors are

signified by any coloured mirror. The symbols are provided under an

Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) license. Some

changes were made to colors used in symbols and so these symbols may

differ from those available elsewhere in this regard.

Lens

Aspheric Lens

Half Wave Plate

Quarter Wave Plate

Polarising Beam Splitter

Non Polarising Beam Splitter

Aperture

Dichroic Mirror

Photodiode

Fiber Optic

Optical Cavity

Rubidium Cell

Mirror

ECDL

Acousto-Optic Modulator

Electro-Optic Modulator

Amplifier

Frequency Source

Phase Shifter

Mixer

PID Controller

Oscilloscope

Camera

A.2 Double Pass AOM Description

Double pass AOMs in the cooling, repump system are positioned at the

focus of two 150 mm lenses to increase switching speed. Probe and 3D

MOT AOMs are measured to have 80/20 rise time of 40 ns. An overview of
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L1 L2 M1

λ/4

B1

In

Out

Figure A.1: Principle of double pass AOM. Placing an AOM at the focus of

two lenses (L1, L2) corrects the angular deflection and causes the output beam

of the lens pair to propagate parallel to the the input beam. Use of a quarter

wave plate (λ/4) and a beam cube can then separate the beams, whereafter the

output beam does not change pointing as a function of AOM drive frequency.

the 780 system is presented in Figure 3.1. The double pass configuration has

the added advantage of stabilising the beam pointing when changing AOM

frequency. Figure A.1 shows a schematic of our double pass AOMs. The

AOM diffractive element is sited at the focus of a lens pair, and so the beam

is brought to a focus inside the AOM by lens L1. Deflection φaom caused

by the AOM originates from the focus of lens L2, and is made to propagate

in the z direction after collimation by lens L2. Light reflects from mirror

M1 and is again brought to a focus within the AOM diffractive element

by lens L2. This diffractive element then corrects the initial deflection

by causing second, equal deflection to the beam −φaom. Thus the output

beam is ideally colinear with ths input beam. Due to passing twice through

the AOM, the beam picks up a frequency shift equal to twice the drive

frequency of the AOM ∆out = 2fAOM.

The beam passes the Λ/4 twice, and so picks up a total polarization

rotation of π/2. Thus the beam is transmitted by beam cube B1. With this

arrangement, we are able to maintain sufficient colinearity of the output

beam to achieve a 50% variation in fiber coupling efficiency across a 30

MHz range of probe beam detunings.
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