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Abstract: In general coordinate invariant gravity theories whose Lagrangians contain arbitrarily
high order derivative fields, the Noether currents for the global translation and for the Nakanishi’s
I0Sp(8|8) choral symmetry containing the BRS symmetry as its member are constructed. We generally
show that for each of these Noether currents, a suitable linear combination of equations of motion
can be brought into the form of a Maxwell-type field equation possessing the Noether current as its
source term.
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1. Introduction

The equation of motion for the Yang-Mills field Aj, in the covariant gauge is given in
the form

D'F%,, +0,B" — igf pe0uc’ - ¢ = 8 1)

where DFY, is the covariant divergence of the field strength F,; ji; is the color current
from the matter field; and B*, ¢” and ¢* are Nakanishi-Lautrup (NL), Faddeev-Popov (FP)
ghost, and anti-ghost fields, respectively. This equation was first noted by Ojima [1] to be
rewritten into the form of the Maxwell-type equation of motion:

aVFa;lv+{QBrD;IEa} :g]f[- (2)

Here, Qp is the BRS charge, and ]f, in the RHS is the Noether current for the global
gauge transformation (=color rotation) under which all the gauge fields A}, NL, and FP
ghost fields, B, c?, ¢*, transform as adjoint representations, given by

Ji = (AY % Fyp)" + ji + (Ay x B)" — (¢ x D)™ + (3,8 x ¢)", 3)

with (A x B)* = f%, AYBC. This form of YM field Equation (2) is particular, firstly, in the
simple divergence form for the field strength, d, F*#", and secondly, in the BRS exact form
for the NL and FP ghost contribution terms.

This form of YM field equation, which we call the “Maxwell-type equation of motion”,
played very important roles in discussing [2,3]

1. the existence of an elementary BRS quartet of asymptotic fields;
2. the spontaneous breaking of color symmetry and the Higgs phenomenon;
3. the unbroken color symmetry and color confinement.

From the technical viewpoint, it was also useful to simplify the computations of
equal time commutation (ETC) relations for some field variables, as well as to derive
Ward-Takahashi identities.

In addition, in gravity theory, there is a beautiful canonical formulation given by
Nakanishi in a series of papers [4-10] based on the Einstein—Hilbert action with BRS gauge
fixing in de Donder gauge. It is summarized in his textbook [11], co-authored with Ojima.
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He remarked there that the Einstein gravity field equation can also be rewritten in the
form of the Maxwell-type [12]. In this formulation, he also found a beautiful theorem [11]
together with Ojima in which the graviton can be identified with a Nambu—Goldstone
(NG) massless tensor particle accompanying the spontaneous breaking of GL(4) symmetry
down to SO(1, 3) Lorentz symmetry, thus proving the exact masslessness of the graviton
in Einstein gravity theory. (Ogievetsky, independently, identified the graviton with the
Nambu-Goldstone tensor in his non-linear realization theory for GL(4)/SO(1,3) [13]).
This is a gravitational extension of the Ferrari-Picasso theorem [14], which proves that the
photon is an NG vector boson accompanying the spontaneous breaking of a vector-charge Qy,
symmetry, corresponding to the gauge symmetry with a transformation parameter linear
in x*. Nakanishi also found in his GL(4)-invariant de Donder gauge that there exists an
8 + 8 dimensional Poincaré-like IOSp(8|8) supersymmetry, which he called choral symmetry,
containing (as its member) BRS and FP ghost scale symmetries as well as the GL(4) and
rigid translation corresponding to the GC transformation with transformation parameter
¢ linear in x*, e = alx¥ + bH.

However, this work is a formal theory based on the Einstein—-Hilbert action. It is
perturbative non-renormalizable and may not give a well-defined theory, although there
is a possibility that it may satisfy the so-called asymptotic safety [15] and give a UV
complete theory. (There recently appeared an interesting paper [16] which proposes a novel
perturbative approach to the Einstein—Hilbert gravity using the quadratic gravity terms as
regulators which, the authors claim, can eventually be removed without harm.)

On the other hand, however, there are many investigations of higher derivative gravity
theories. In particular, quadratic gravity [17-19] attracted much attention in connection
with the perturbative renormalizability [20], Weyl invariant theory [21-23], and asymptotic
freedom [24-26].

These higher derivative theories suffer from the massive (negative metric) ghost
problem in the perturbative regime, although there have been many proposals for possible
ways out (see, e.g., [19] for a review). This ghost problem is, however, outside the scope of
this paper.

Even if we are much less ambitious than making gravity theory UV-complete, we still
have several motivations to consider higher derivative gravity theories.

From the low energy effective field theory viewpoint, it is quite natural to consider
the actions containing higher and higher order derivative fields, successively, from low
to high energies. The Einstein-Hilbert action is the lowest derivative order, the quadratic
gravity actions are the next derivative order, and so on.

Or, alternatively, one may simply want a gravity theory with a UV cut-off M valid only
in the low energy region E < M. A simple momentum cut-off does not work here since it
breaks the GC-invariance. Pauli-Villars regulators respecting the GC-invariance can be
supplied by considering the covariant higher derivative terms. As noted by Stelle, the
gravity field propagator behaves as ~1/p* in the quadratic gravity and sufficiently cuts off
the UV contribution to make the theory renormalizable in 4D.

For regulators to work sufficiently enough to make all the quantities finite in 4D,
however, the propagator must drop as fast as ~1/p°. Such behavior would be supplied, for
instance, by the quadratic term of covariant quantities which contain third order derivatives
of the gravity field.

In this paper, we will consider a general gravity theory which is invariant under the
general coordinate (GC) transformation and contains arbitrarily high order derivatives of
gravity and matter fields, and we

1. derive a concrete form of the Noether current for the rigid translation, i.e., energy
momentum tensor;

2. derive the Maxwell-type gravity equation of motion in a gauge-unfixed, i.e., classical
system;

3. derive the Maxwell-type equation analogous to Equation (2) in a gauge-fixed quantum
system in the de Donder-Nakanishi gauge;
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4.  and derive the Noether currents of the IOSp(8|8) symmetry present in the de Donder-
Nakanishi gauge.

The original motivation for the present author to consider this problem is to give a
sound proof for the existence theorem [27] of the massless graviton, claiming that there
should exist a spin 2 massless graviton in any GC invariant theory, insofar as it realizes a
translational invariant vacuum with a flat Minkowski metric. This is a generalization of the
Ferrari-Picasso theorem for the massless photon and the Nakanishi-Ojima theorem for the
massless graviton. Those theorems were proved explicitly assuming the renormalizable
QED and Einstein gravity, respectively. To prove the existence theorem generally, however,
it is necessary to have the Maxwell-type gravity equation of motion in any GC invariant
system assuming no particular form of action.

This paper is organized as follows. In Section 2, we present a totally general classical
system containing arbitrarily high order derivative fields, which is only assumed to be
GC transformation invariant. To treat such a system, we introduce a series of generalized
both-side derivatives and prove some formulas they satisfy. Based on these, we derive
an expression for the energy-momentum tensor for such a general system as the Noether
current for the translation invariance and show that the gravity field equation of motion
can be cast into the form of the Maxwell-type equation. In Section 3, these results are
generalized in the gauge-fixed system by adopting the GL(4)-invariant de Donder gauge a
la Nakanishi. In Section 4, using the same technique, we show that each of the Noether
currents of the IOSp(8]8) symmetry can be written in a form of the source current of a
Maxwell-type equation. Section 5 is devoted to the conclusion. Some technical points on
OSp transformations are discussed in Appendices A and B. In Appendix A, the OSp(8|8)
transformation of the gauge-fixing plus Faddeev—Popov term is computed for the x*-
dependent transformation parameter. In Appendix B, to obtain some familiarity with
the OSp-symmetry, we briefly study the simplest model, a OSp(2|2)-invariant scalar field
system on flat Minkowski background; the OSp(2|2) Noether current is derived, and the
I0Sp(2|2) algebra is confirmed from the canonical (anti-)commutation relations.

2. Gravity Equation of Motion in a Generic Higher Derivative System

We consider a generic system whose action contains higher order derivative fields up
to the N-th order 0.y :

Slgl = / d*x L(¢p, 0ud, I, Aot -+ s Oyun®)

where ¢ stands for a collection of fields { ¢/ } (whose index i may be suppressed when
unimportant), and we use abbreviations such as

Qe ® = Oy 0, @
- ?
L:]‘fﬂlﬁz Hn = 887,6] | . (5)
Qg iy pn P’ ) weight 1

The suffix ‘weight 1’ in the latter means that we always keep the weight as one,
irrespective of whether the n indices 1, y2, - - - , #n take the same values or not; namely, for
the case £ = a"V9,,,¢, for instance, dL/9(d11¢) = a'! and 9L/ (012¢) = a'? + a*!, but we

define 0L /9(0,v¢) ‘weight | = (a" +a¥t) /2! always. The functional derivative of the action

S with respect to ¢/ is given by
05 _ 9L i i £ iHvp
opi  op = Ol A QL = Qup LT A

N s cen
= Z(_)na]llﬂnﬁ]’yl ]’ln, (6)
n=0
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where N is the highest order n of the derivative fields 9, ...,,¢ contained in £ (so that
Ej;”lm”” = 0forn > N +1), and, for the n = 0 case of empty set {1 -}, Oy, = 1

and £ ]” vk = 9L£/9¢) are understood. The Euler-Lagrange equations are given by
5S/6¢l = 0.

The Lagrangian generally changes under an infinitesimal transformation ¢p — ¢ + ¢, as
oL . i i v i & LH i
oL = aT)],z54> + L70,0¢) + L7009 + - 2 I @)

where summation over the repeated j is also implied. We consider the system which is
invariant under the gauge transformation taking the form

5l (x) = szsp(x) + Tﬁz,aysp(x). 8)

For the GC transformation x? — xP = xP — ¢°(x), this field transformation reads
more explicitly

91 (x) = € ()3p9) + [¢/] 9y (x)
ie, Gy =9, T =[p]". ©)
P

(Here, we are taking ¢’ with an opposite sign to Nakanishi’s so that the definitions of
Gi), T P; and [¢/ H; all have an opposite sign to Nakanishi’s.) For a general tensor field

¢/ = Ty,...,, """, the symbol [¢/] Z is defined by [11]:

q
.. oy -0, Jj O1 O Ui C,
{Tvl Vp ] q}p Zlévaw Vi—1PViy1Vp "= Z 1‘557 TVl"'Vp B G (10)
1= =

The GC invariance of the system implies that the Lagrangian is a scalar density so that
the change of L is given by a total divergence:

5L =3y (Let). 11)

For the GC transformation ¢ in Equation (8), we can equate expression (11) for §£
with Equation (7) and obtain an identity:

N . .
D [0y, (Ghe () + Thyaef (x)) ] — 2y (L) =0, 12)
n=0

This equation, if expanded in a power of derivatives d,, on the gauge transformation
parameter (function) e (x), yields

N .
(Z LIy, G — ap.c> e

=0

({Z (n+1) L0y, 0, G) +Zc“1 1 an:r”}-&sﬁ)aysp
=0 n=0

+ Z Ik, Dy g (x) = 0, (13)
k=1
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where 's (k=0,1,2,- - -) are defined by

N—k—1 ,

_ V1V i j

Ko =} w1 Coen £ 040, Gy
n=0

N—k ,
SV Vgly e
+ ) kG £ 0y, T, (14)
n=0

with ,Cy denoting the binomial coefficient (}) = n!/k!(n — k)!. Note that the first sum-
mation term { YN M(---) + XN (- +)} in the coefficient of d,&° in the second line in
Equation (13) is only identical with the quantity K" """/}, for the case k = 0.

Since the functions &, d,¢f,- - -, 9y, ..., € are mutually independent, the coefficients
should vanish separately, implying the following N + 2 identities, which we shall refer to
as 0 L-identities below:

N .
zoc]f’“ 00y G — 9L =0 (15)
n=|
Koly — £8h =0 (16)
Sym (/CkV1"'Wp) —0 for k=1,2,---,N. 17)
{v1-vp}

Here, Symy,, .., ., implies the totally symmetric part with respect to the k + 1 indices
vy, -+, Vg and p. Note that only the totally symmetric part of ;"1 "/, should vanish since
it vanishes when multiplied by the totally symmetric function 9y, ..., ,€° (x). Note also that
"k, is manifestly symmetric with respect to the first k indices vy, - - -, v, as is clear
from the defining Equation (14).

Now, we can derive useful identities for rewriting the suitable linear combination of
equations of motion (6)

N
=) () e £ (18)

(We call the quantities §S/é¢/ ‘equations of motion’, although it is an abuse of terminology,
since the equation of motion itself is the equation 65 /d¢/ = 0.)

First, a linear combination — (65 /J¢/) G{J of the equations of motion is rewritten into
the following form by adding the first § L-identity (15):

N , e
—(68/6¢1)Gh = Y (L] o G = (=) By oy £ G ) = 0oL (19)
n=0

To rewrite this more concisely, we introduce a generalized ‘both-side’ derivative
defined for n > 0 by [28]:

—
Foupy iy G = Foppiy-oon G = O F - Opipeen, G
9 F g G — -+ ()" F - G, (20)

—
for two arbitrary functions F and G, with understanding 9y, ,...u, = 1 when n = 0. This

derivative is no longer symmetric under permutation of the indices but satisfies a useful
formula [28]:

—
Ay [F1 19y o) G = FF1U" %190 o G+ (=) g iy F " - G, (21)
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for any totally symmetric function FF*1* with respect to the n + 1 indices { jt, aq, - - - , a0, }.
Applying this formula, we can rewrite the identity (19) as

(SS ] u
_WGP =l
N-1 . PR e .
Jlo= Y LM " 000, Gy = p L - (22)
n=0

This | ;;3 is the Noether current for the global GC transformation with x-independent
e (=translation), i.e., energy-momentum tensor, for the higher derivative system. This
identity shows that it is indeed conserved when the equations of motion 6S/5¢/ = 0
are satisfied.

Now, in order to derive various identities from the rest of the § L-identities, (16) and (17),
we need to introduce generalized both-side derivatives and some formulas for them.

We define k-th both-side derivative by induction both in the number k and the
differential order n:

k k k-1
a"‘1"'0‘71 = a0‘1""";1—1 ’ a"‘n + a"‘l"'an (23)
with initial condition
k d . 9 for V
=-1 : e, = (— or Vn>0
06; Kn ( ) Kp-lpy - ] (24)
—
n=0 : Ouy-ay 0= 1 for Vk > —1

It is easy to see that the £ s just the same as the original ‘both-side’ derivative
+— introduced above in Equation (20); indeed, it satisfies the above recursive defining
relation (23) for k = 0 as follows:

— n f—
a“l"“xn = Z(_) /aal"'“(j 'aﬂéul'“ﬂn
(=0
n—1 ¢ “—
= Y () (Bagray  Fagyovain 1 ) D + (=) Dagoa,
(=0
k=—1
— s
= Ouy-ty_1 " Oy 1 Ouyoroaty - (25)

Then, as a generalization of the k = 0 formula (21), we have the following formula,
which holds for all k > 0,7 > 0 and for any totally symmetric function F#41"% with
respect to the n + 1 indices { p, a1, - -+, an }:

k k—1
ay [Fyaq.--zxn aalman G} — FHay-an (n+k+1ck a}mlman _ a}lﬂq"'lxn) G. (26)

The proof easily goes by induction in the number N = k + n in the region k > 0 and

n > 0. First, note that this formula holds at k = 0 boundary as shown above for Vn > 0

and also clearly holds at n = 0 boundary with Yk > 0 since the relevant k-th both-side
k k—1

S —
derivatives there are dy,...q, |,,_, = 1 and that of a single derivative d, which is simply, by

n=

Equation (23),
k—1 k—2, -1
— T s —
dy =0dy+ 9y =k, + 9y =koy —9y. (27)

Thus, it is sufficient to prove the formula only for k > 1 and n > 1. Now, assume
that formula (26) holds for all k > 0 and n > 0 values in the region k +n < 3N, and let us
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evaluate the LHS of the formula for any k > 1 and n > 1 with k +n = N + 1. If we use the
defining Equation (23),

. . k=1
— —
PR ng oG = FMU g (3, G) + FFUTY, G (28)

the two terms on the RHS have lower values k + n = N by one than the LHS, to which we
can apply the formula by the induction assumption, so that

k k-1

" "
a# [le---ﬂcnaalman G} = Frartin <n+kck an"'lxn—l - a,”“l"""n—l) (atan>
k-2

ey
+ FHaran <n+kck71 a;wq“'ﬂtn - ayaln-an) G

— FHar-an [(n+kck + n+kck—l) a}lﬂél"'an G

— (s 1 Py + Oy ) G (29)

If we note an identity (of Pascal’s triangle) ,, xCx + ;1 xCx—1 = n1x+1Cx and again
apply the defining Equation (23) with k — k — 1, then we see that the last expression is
simply reproducing the RHS of formula (26), finishing the proof.

Now, we are ready to derive the Maxwell-type form of gravity equation of motion.
For this purpose, let us introduce the following quantity Jj fork =0,1,2,---:

k

N—k—-1 — ,
VA oV _ V1 VP - ]
VARG Z Ej " Oy, Gp
n=0
N=k V1Vl = j
+ Y LT O ). (30)
n=0

The first of this quantity \70;; with k = 0 is a combination of the equation of motion,
(65/6¢N)T g , Lagrangian £, and the energy-momentum tensor ]%:
oS

Ho_ qH I Jn

This can be seen from Equations (22) and (18) which are rewritten by using the
definition of the k-th both-side derivative with k = 0 and —1, respectively, into

N-1 PR

SHoy jo_ qh o sH
Zoﬁj "Ouyay Go = Jp + 6 L
n=

N eans " ju 05
205].""1 M Oy T = =Tl (32)
n=

o7

Owing to the general formula (26), the two quantities, J introduced here (30) and i
defined previously in Equation (14), satisfy the following recurrence relation:

]Cle"'VkVp — jle“'VkVp = arijrlTVl'“Vka' (33)

When applying the formula (26) to derive this equality, we should note that the
summation over the set of n + 1 dummy indices {7, a7 - - - @, } contained in the RHS quantity
Ot i1V, s identified with the summation over the set {a - - - &, 41} contained in the
LHS quantities /C;"t ", — J; 1", by identifying a1 as 7. This implies that the n = 0
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terms existing in the summations }_,,_ in K and Jj on the LHS do not appear on the RHS.
However, the n = 0 terms in Ky and Jj are seen to be the same, thus canceling themselves
on the LHS.

From this relation (33), we find, suppressing the tensor indices,

T = K = 0Jk41 = K — 0Kjey1 + 0> Tesa

K
== Y (=) Ky + (=) Tprkya - (34)
=0

Since L1 = 0 for k > N, J; and K vanish for k > N + 1. Thus, we find the
following expression for jopé, reviving the tensor indices:

N
Tty = Y (=) 0y KMV (35)
k=0

We now insert Equation (31) into Jy on the LHS; then, noting that the term (55 L there
cancels the Ko term on the RHS due to the second §L-identity (16), ICO’; = (55 L, we find
the gravity field equation in the form

35
5l

This is still not the final form. The last summation term can be written as a divergence
form of a ‘field-strength’ tensor F VE , but it is not yet vy antisymmetric:

. N
T = =5+ Y (=) 0y K1 (36)
k=1

N
;;(_)kavlkafck”l“'”k”p = -3, F"

N-1

= Z (_)kavl“'vklck-i-lvlmvkwp . (37)
k=0

.7:1/

™=

However, thanks to the remaining dL-identities (17), we can modify it into an vy
antisymmetric field strength F Vg , satisfying

WF'h =0, F"h. (38)

As noted before, the tensor ;"' ", defined in Equation (14) is manifestly totally
symmetric with respect to the first k-indices {vy, - - - ,vx}. The dL-identities (17) say that
it vanishes if further symmetrized, including the last index u; namely, taking the cyclic
permutation of the k + 1 indices {vy, - - - , v, u},

]Ckvl”'vkl"p + ]CkVZ"'VkP“/lP + ]Ckvy'l/klﬂ/ll’zp 4+ 4 ]Cklﬂ/l"'Vkp =0. (39)

If we apply k-ple divergence dy, ...y, to this, the v; indices become dummy, and, due to
the manifest total symmetry among the first k indices of K, the k terms from the second to
the last yield the same quantity, and we obtain

Doy KV 4 K Dy K2V, = 0, (40)
1 Vk P 1 Vk 4

Or, taking k — k + 1 and renaming v1 — v in the first term and v; — v in the second
term, we have

00 (g 5 M (4 1) 0y O ) = 0. (41)



Symmetry 2021, 13, 1408

9 of 22

This means that K, "/, can be replaced by a vu antisymmetric tensor, which we
can define as

~ e k+1
v Vv vy VY
K o= m(’ckﬁl o =K p)- (42)

Indeed, the difference between Ky, 1 and l€k+1 is given by

=y 1
V1 VRV ViUV V1 VRV V1 VR PV

Kir o =K P_m(KkJ:l ot (k+ 1)K p)f (43)
whose (k + 1)-ple divergence 0,0y, ..., is guaranteed to vanish by Equation (41). Thus, we
find that the ‘field-strength” 7 Vz in Equation (37) can be replaced by the vy antisymmet-

ric one:
N-—1

Fh = kzo (=) By I (44)

With this antisymmetric field strength, the gravity equation of motion is finally written
in the desired form of the Maxwell-type equation:

oS ~
JH _ TH (4
f(sT)ij_]p—av]:p. (45)

This is an equation for the gauge-unfixed classical system.

Here, we note a more explicit expression for K in terms of the Lagrangian. Sub-
stituting expression (14) for K into Definition (42), we note that the Gé—proportional part
contained in Kj1"1"" is v symmetric so that only the T'-proportional part contributes
to K1, and obtain

S VVE k+1 N—k-1 WU -y in
n=0
for k=0,1,2,---. (46)

3. Quantum Theory with de Donder Gauge

Let us now consider the quantum system. We add the gauge-fixing and corresponding
Faddeev-Popov (FP) term to the classical GC invariant Lagrangian £,. (We call the
Lagrangian £ in the previous section L hereafter.) We actually adopt Nakanishi’s simpler
form of Lgg + Lrp = Lgrrrp [4,5]:

Lcripp = hon(in 'gM0,8,) = —x~1§"0,by — igh" - 9,C, - D’
- 5B(iK*1gW8yc‘V)—E)y(ig)"’aAc‘v-c”), (47)

with h = /—g and §"Y = hg"Y. Here, the usual BRS transformation g (obtained by
replacing —e"(x) — xc#(x) for the usual gravity/matter fields) is given by a sum of
Nakanishi’s BRS &y and the translation —xc"9,:

pd = OND — In(x1)0,D,
In(xY) = xch, OIND = —K0c” - [CID]Z,
ogt’ = K(aAc?‘ gV 49 - g — aA(cAgV”))
Opcy = By,  OnCu=iby, By =D, +ixc*d)ey,
onct = 0, Spct = —kcto,ct. (48)

We call this gauge specified by the gauge-fixing and FP term Lgpipp in (47) “de
Donder-Nakanishi gauge”. It corresponds to the de Donder-Landau gauge possessing
no ay" B, B, term, violating GL(4) invariance by the use of #/". Since the present Lgr., rp
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for the de Donder-Nakanishi gauge is given in a usual BRS exact form for the de Donder—
Landau gauge up to a total derivative term as shown in the last expression in Equation (47),
it is also invariant under the usual BRS transformation dg. The use of Nakanishi’s BRS dy,
which represents the tensorial transformation part of the usual BRS transformation Jp, and
the use of the b, = i’15Nc‘V field, in particular, make manifest the existence of much larger
I0Sp(8]8) symmetry, called choral symmetry by Nakanishi, which contains symmetries of
energy-momentum, GL(4), BRS, FP-ghost scale transformation, etc., as will be discussed
explicitly in the next section.

We still consider the GC transformation x¥ — x’¥ = xP — ¢°(x) in this quantum theory
to derive identities. The gravity/matter fields ¢/ are transformed in the same way as before:

6l (x) = Gz,sp(x) + T”;)B},sp(x), with G{, = apqﬂ', Tj]jo = {cpf] " (49)
0

We call the newly added fields by, ¢, and c¥ ghost fields collectively, and treat them all
as scalar fields under GC transformation, namely denoting ghost fields by M = (b, ¢, c*)
collectively:

SpM(x) = GMeP (x) + T} 9, (x), with GM =9,¢M, T"}' =0.  (50)

Of course, Lgp4rp is not invariant under the GC transformation, but we can easily
calculate the change by noting the structure of the Lgg, pp, which is written formally as a
scalar density:

Lcrirp = —k '§"Eu, Euw = 0uby + ik - 3,8, - dyc’ (51)

If the ghost part tensor E;, truly behaved as a pv covariant tensor, Lgrrp would be a
scalar density transforming only into the total divergence 9, (Lgr4rpe"). This is actually
true for the FP ghost part ix - ayc‘p - dycf in E,y since ¢, and ¢ are regarded as scalars, so
that their simple derivatives d,,¢, and d,c” behave as y and v vectors, giving the desired
uv tensor as a product. But the NL field part d,,b, transforms only as a y vector since
by is regarded as a scalar, so that the v leg rotation part of the transformation of §*, i.e.,
08" O —ghPape”, is not canceled. We thus see

SLGr+Fp = K '§M"0,by - 0pe” + 9y (Lrrpe") - (52)
Thus, the total Lagrangian in our quantum gravity theory
L = Lq+ Lcrirp (53)
changes under the GC transformation as
6L = 0,(Lel) + Kk 1gM0uby - 0pe” = 0oL - & + (L3 + 171§ dyby)dyel . (54)

This namely differs from Equation (11) in the classical system case, only in the point
that the 1 §"aybp term is added in the first order derivative term o 9. Therefore, the
0 L-identities in the previous section almost all remain the same and only the first order
o dy,ef identity (16) is slightly changed into

Koly — (L3 +x1§"d,by) = 0. (55)

Note that we should now understand that £ is the total Lagrangian containing the
ghost part Lgpp, and the fields ¢/ cover not only the gravity /matter fields ¢/ but also
the ghost fields ™ = (b, ¢, c'). The equation of motion 8S /¢, of course, takes the same
form (18) as before. The zeroth order § L-identity (15), in particular, remains the same, and
the global translation current (energy-momentum tensor) is given by the same form of
equation as Equation (22):
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_WGP =]
N-1 e
Jo= 3 LM 0.0, Gp = G L. (56)
n=0

Thus, Equation (31) for Jy holds unchanged. The identity (35) also holds as it stands.
In going from Equation (35) to the gravity Equation (36), however, the E(Sﬁ term from
Jo now does not totally cancel the first term ICkZOP; = E(SK + %1 g””avbp but leaves the
k1", b, term. Thus, Equation (36) is now replaced by

3S s al
@ng = —Jh+x 18" by + Y (=) By T (57)
k=1

Note, here, that the implicit summation over ¢/ also contains the ghost fields ¢M
which contribute only to the n = 0 terms since the ghost fields appear only in the first order
derivatives in the de Donder-Nakanishi gauge Lagrangian (47).

The final form of the Maxwell-type gravity field equation is therefore given by

_ 95
5

in place of the previous classical one (45). The expressions in Equation (44) for the field-
strength J- 5 and Equation (46) for the quantities IEZHV"W p remain the same as before. Here,
L is understood to be the total Lagrangian, but only the classical Lagrangian part actually
contributes in this case, because all the ghost fields 4)M = {b;,,q,,c?‘} have vanishing
contributions since TMZ = 0 for them. That is, the field-strength is in fact the same as that in
the classical theory with Lagrangian L.

One may wonder why the final Maxwell-type gravity equation of motion (58) is
slightly different from the Yang-Mills case, since the present ghost field term x g9, b,
is not written in a BRS exact form such as {Qp, D¢} in the latter. It is actually possible to
rewrite Equation (58) into such a form. Indeed, the term x 18"V, b, is in fact BRS exact up
to a divergence of an antisymmetric tensor:

Tl = I — k7 1g"a,b, — 9, Fy . (58)

— KMy = 8p (iK1 0uE,) — B, (i("T — ¢'§M)auc, ) (59)

The gravity field Equation (58), therefore, can be rewritten into quite a similar form as
the Maxwell-type YM equation:

07"y +{ Qs k10,5 | = I, (60)

where we have written dg(- - - ) = {iQg, - - - } in terms of the BRS charge Qp and defined a
modified field strength F IFV):

FH = F o i(ch g — ¢'gM)apcy . (61)

This form of the Maxwell-type equation (60) with the BRS exact term was also derived
for the Einstein theory case by Nakanishi [12].

4. Noether Current for the Choral Symmetries in a Generic Higher Derivative System

BRS symmetry or, more generally, choral symmetries I0Sp(8|8) exist for any GC
transformation invariant systems if one adopts the gauge-fixing Lagrangian (47) of the de
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Donder-Nakanishi gauge [11]. This is because the currents of the choral symmetries are
conserved as far as the equations of motion

(g, xM) =0 (62)
hold for the 16 component ‘fields” (=4d coordinate x* and three fields) [9,10].
XM = (&F, by, ', ¢u), £ = xH/x. (63)

Indeed, this equation of motion for the coordinate XM o x¢ actually implies the de
Donder condition on the gravity field:

0,(§"0yxf) = 0,8" =0. (64)
In addition, the FP ghost equations of motion

oLrp

- oL
i i(ga —0, O

dacP

+id,, (" dvcp) =0 (65)

directly follow from the gauge-fixing Lagrangian (47), implying the equations for XM = ¢*
and ¢,. The equation for XM = b, may be a bit non-trivial, but we now already know the
Maxwell-type gravity equation of motion (58), the divergence d,, of which immediately
leads to

0,(§"0vb,) = 0. (66)

These 16 components’ d’Alembert’s equations of motion hold if and only if the gauge-
fixing Lagrangian Lgp, pp is given by that of the de Donder-Nakanishi (47), which can be
written in a manifestly OSp(8|8) invariant form. (The following discussion on the OSp(8|8)
invariance may be viewed as a mere recapitulation of Nakanishi’s paper [10,11], but we
have simplified and made in particular the signs and 7 factors more tractable by introducing
a hermitian OSp(8|8) metric (68). The derivation of the OSp(8|8) Noether current in the
higher derivative system is, of course, new.)

LGrirp = —k 'hE = —x 'hg"'E,,,
1 .
B = 5 (uby + 59,8 - uc? + (3 > 1)
_ %(a”bp -0y xf + K0, Cp - 0P + (p v))

K
= EqNMa,xMava. (67)
where 77y is the OSp(8|8) metric given by

O
1
o =™ (inverse). (68)

—id)
Note the symmetry property of this (c-number) metric:

v = (—)M N = ()Ml = (=) Nl = (69)

where the statistics index |M| is 0 or 1 when XM is bosonic or fermionic, respectively.
This property (69) is because # is ‘diagonal” in the sense that its off-diagonal, bose-
fermi, and fermi-bose matrix elements vanish, i.e., 7y = 0 when |M| # |N]|, so that
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IM| = |N| = |M]| - |N| in front of 7. Note also that the 7y introduced here is simply
the transposed metric 174, = 77y Thus, we have

K K -
S XMXN = o XM XN
1 55 o
K, _ 1) b
— E(xP‘chP‘CV) v _1.55 Cz
+iol Cy

Ko ou oH g L i N -
= E(x} by + by gt —ictc, +icuct) = byxt + ixcct

Noting the d’Alembert’s equations of motion for X, Nakanishi constructed the
conserved currents.

<~
MM = g (xMg XN (70)
—
PMI = g9, xM = g (19,XM). (71)
(Our current MMN# presented here is not exactly equal to Nakanishi’s original one [11],
MH(XM, XN), but the precise relation reads M# (XM, XN) = jIMIINI A(MNp 1

He showed from the equal-time commutation relations (ETCR) derived in the Einstein
gravity theory that their charge operators

MMN = /deMMNO — (—)HIMEIN N
pPM = / BBy pMO (72)

generate the following transformations on all the fields ®, gravity and matter fields ¢/, and
the OSp(8|8) ghost-‘fields’ XM = (£#,b,,, c#,¢,):

[(iMM, @} = Mo = 5N D — x(53N#0)9, D, (73)

where the Nakanishi transformation 5 is an OSp rotation for the OSp(8|8) ghost-fields
Xt, given by

This transformation, in particular, gives for the coordinate £¢
OMN#p = — N XM 4 gME XN = () ~1gMNp (75)

which is nonvanishing only when X or/and X" is b,. Additionally, the Nakanishi
transformation of the gravity /matter fields ¢/ is given by

SINGi = 5, MV MZ . (76)

Therefore, if either XM or XV equals by, the § MN transformation is just the GC transfor-

mation with transformation parameter ¢ (x) — EMVP = —(5MN%P) for the gravity /matter
fields ¢/,

é.]\ANgb] — g]V]Nsz) _‘_aygAANP . T]p}‘ (G‘{J = ap¢], T]i; = |:47]i| p)’

with field dependent parameter EMVP = —x(5MNzP) (77)
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and, for the OSp(8/8) ghost-fields X!, the GC transformation as scalar fields plus an OSp
rotation:

SYNXL = gMNeGE  (FNLXM (=) MEINIGMLYN) (Gl = 3,xT). (78)

Note, here, that the ‘transformation parameter’ £YNf may now be fermionic when
IM| + |N| = 1. We have therefore put the factors Gi) and T]g linear in ¢/ behind the

parameter EMNP in Equations (77) and (78) to avoid the sign factor (—1) [#/|(IMI+INT),

The choral invariance of our total Lagrangian £ = L + Lgp+pp is now clear; the
gravity /matter fields only receive a special GC transformation with parameter & (x) =
EMNP in Equation (77), and so the £ part is invariant. The gauge-fixing Lagrangian
Lcr+rp is also clearly invariant since in this form of the Lagrangian (67), the OSp-vector
field components XM including the coordinate £, are treated as scalar fields, and hence
E,y is clearly pv tensor, and hg''E,, is manifestly a GC scalar density. Moreover, E;;
written in the form (67) is manifestly invariant under (global) OSp(8|8) rotation. Note that
this invariance is made manifest by making the mere parameter coordinate x* transform
as if being a field both under the GC transformation and the OSp rotation; in fact, those
two transformations on £# cancel each other, and the coordinate x* remains intact under
MN as any non-field parameters should be: indeed, Equation (73) indicates for ® = ##,

oMNgh = sz — k(8MN2P)9, 8" = 0, (79)

where the first term is the OSp rotation, and the second term is the GC transformation of
£# regarded as a ‘scalar field’.

Let us now compute the Noether currents corresponding to these choral symmetries
in our general higher derivative GC invariant system. We shall show that the Noether
currents coincide with the Nakanishi’s simple form (70), aside from the divergence of an
antisymmetric tensor.

To do this systematically, we devise a local version of the choral symmetry transforma-
tion (73), or (77) and (78). We multiply them by a local graded transformation parameter
enm(x) from the left, so that it reduces to the original OSp(8|8) transformation in the global
limit enpr(x) — enpiconst.; namely, we define the transformation,

Sl = (enpEMNP) Gé + 0y (enp EMNP) - ij” for gravity /matter fields ¢/,

XL = (enpyEMNP) GE (80)
—enp (FNEXM — (—)‘M"‘N‘ﬁMLXN) for OSp coordinate fields X*.
We take our parameter ¢yy; Grassmann even or odd according to [N| + |[M| = 0

or 1, respectively, so that the product (exyEMVP) always becomes an ordinary bosonic

‘parameter’ and hence can be moved to anywhere without worrying about sign changes.

Note, however, that, in order to correctly obtain the Noether current corresponding to the
OSp transformation SMN in Equation (73), or Equations (77) and (78), we have to factor
out the parameter ey from the left since it is multiplied from the left here. However, the
general procedure explained in the previous sections to derive the Noether current in the
higher derivative theories, which we follow now, has placed the transformation parameter
at the most right end, and the troublesome point is that the transformation parameter for
the OSp transformation is the graded one, exp, but not the bosonic product (enpEMNP).
It is necessary to move these graded quantities separately and freely to apply the general
procedure to this case, although the transformation parameter eny eventually has to be
factored out from the left. The best way to forget about the bothering sign factors appearing
in changing the order of the graded quantities is to adopt a convention similar to the
so-called ‘implicit grading’ [29]. We take as a natural order of those graded quantities, enp

first, EMNP second, and other graded quantities such as XM Gé, and T/m p third. Initially,
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these quantities appear in this natural order, since the product factor (expEMVP) appearing
in Equation (80) is bosonic and can be placed on the most left in any case. Then, from
this natural order, we freely move those factors separately anywhere without writing any
sign factors. The implicit grading scheme means that the correct sign factors should be
recovered when necessary; that is, in any terms containing those graded quantities, the
necessary sign factor can be found by counting how many instances of changing order are
necessary to bring those factors into the natural order. We hereafter adopt this implicit
grading scheme.

We should note that the GC transformation part of this transformation (80) now takes
exactly the same form as the GC transformation (8) with the (bosonic) transformation
parameter &’ (x) = ey EMVP:

6/ = Ghe® + T/J'0ye, (81)

for all the fields ® = (¢/, XM), and so the total action is still invariant, meaning that the
total Lagrangian transforms as a scalar density: £ = 9, (Le) = 9, (L enpEMNP).
As for the remaining OSp(8|8) rotation part of the OSp coordinate ‘fields” X%,

§OPXL = —enuyr (ﬁNLXM - (—)‘Ml"NlﬁMLXN) , (82)

However, the Lgp4pp in Equation (67) is no longer invariant under the rotation with
the x-dependent parameter €. As shown explicitly in Appendix A, we can immediately
find the change of Lgp, pp as Equation (A6):

<~ <~
SLGr+rp = §" Openm - (XM, XN) = g (XM, XN) duenm, (83)

where it should be noted that we have already used ‘implicit grading’ in the last equality.
Following this implicit grading scheme, we can write the change of our total Lagrangian
L = L+ Lgpypp under our transformation (80) in the form

nd
6L =3y, (LEMMenpyy) + g (XM, XN) - denm

= (L EMH) ey + (L EMNH +gVV(XMS>VXN)>8HeW : (84)

Now, we can rewrite our transformation in the same form as the general gauge
transformation (8), which contains the zero-th and first order differentiation of the trans-
formation parameter enys; that is, it is unifiedly given for gravity /matter and ghost fields
®! = (¢/, XL) in the form

! = gIMNENM + TIW’*E)VSNM , (85)
where the coefficients G!MN and TIMNH are given as
G{;SMNP + nga;,gMNﬂ for ® = ¢/: gravity/matter
G"™MY = { GL gMNp

— (FNEXM — (—)‘M|"N|ﬁMLXN) for ®' = X!: ghost

86
0 for ®! = XL: ghost 6

TIMNy _ {T]ngNP for &1 = ¢/: gravity/matter.

Thus, we can now follow the general discussions presented in the previous two
sections to derive the Noether currents in this system. We should also note that the
Lagrangian change £ is now given by Equation (84) in place of Equation (11). Then, we
see that the previous dL-identities following from the coefficients of n-th order derivatives
Oy; -, € of the transformation parameter ¢’, Equations (15) and (17), now also hold with
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the understanding that the coefficients G, and Tg of the gauge transformation (8) are now
replaced by those of the present transformation: that is, by making the replacement

G, — g!™N, Tl - TIMNE (87)

and taking account of the form of 6L given in Equation (84), we find the identities as
coefficients of n-th order derivatives dy,...;,,eny with n = 0,1 and n > 2, respectively,

N
Z [:Irﬂl..-ﬂnammyngll\/ﬂ\] _ ap(ﬁ gMNp) -0 (88)
n=0
End
Ko™MNH — L eMNE v (xMg, xN) =0 (89)
Sym (/ckMNVl'“W) -0 for k=1,2,---, (90)
{vi-ven}

where G MV Ykl now reads

N—k—1
MNv--- o V1V IMN
/Ck VImE = Z n+k+1ck+1 E] ! aal“"’lng
n=0
N IMN
JUT Vgl e
+ Z n+kCr Ejl e aa1~-anT . 91)
n=0

Then, by combining the equation of motion (6), we first obtain a conservation equation
for the OSp(8|8) Noether current from the 0-th order 6 L-identity (88) as an analogue of
Equation (22) or (56):

_ 95

sord =0t

N-1 =
]]VIN}! _ Z Ei’ml ﬂlnaalmangIMN o EgMN]J . (92)
n=0

Second, as an analogue of Equation (45) or Equation (58), we find the desired equation
from the first order 5 L-identity (89) and second or higher order 5 L-identity (90):

6S

<~ ~
—sgr T = MR — g (XM 9, XN) — 9, FMNI. (93)

where FMNVI js the antisymmetric tensor (as an ambiguity term of OSp Noether current)
given by
N-1

]f—Mva — Z (_)kavl"'vkﬁmm“ww (94)
k=0
with
S MNvy -V v
}Ck+1 o
k+1 NI Vp VRV IMN
=5 2wtk G (L7 00, T — (v 6 )
k+2 & " ( ! )
for k=0,1,2,---. (95)

Equation (93) shows that the Noether current of OSp(8|8) symmetry takes the form
on-shell:

— ~
]MNH — g}lU(XMava) + avf‘]\/ﬂ\]}n/ , (96)
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so that the charge can be given by Nakanishi’s simple form:
<~
MMN = / Px hg® (XMa, XN) (97)

as symmetry generators for any local operators.(It is, however, quite another problem
whether the RHS volume integral of (97) gives a well-defined charge even when the
symmetry is spontaneously unbroken. Generally, the volume integral converges only
when the current contains the ambiguity term 9, FMN"” with a suitable coefficient, which
is, in fact, a key point when discussing the spontaneous breaking or non-breaking of the
symmetry of the charge.)

Finally, recall that we are adopting implicit grading. Then, the factor EMV¥ or its
derivatives contained in GIMN or TIMN in the definitions of the current JNM# (92), the field
strength F MNvi (94), and Ky (95) should be placed at the furthest left, and if they are kept
in the place as written, then the grading sign factor should be set as necessary for bringing
them there from the furthest left. Fortunately, however, the sign factors actually turn out
to be unnecessary here. This is because the other graded quantities to jump over when
bringing the factor EMV¥ to the furthest left are essentially only the bosonic Lagrangian £
as a whole. For instance, the Noether current (92) contains the terms

LI gy GV — £ EMN (98)

In the second term, it is the Lagrangian £ itself for EMV¥ to jump over. In the first term,
on the other hand, £ I;” fretn — gy a;mr.,xngbl is fermionic when the field ¢! is a fermion.
However, it is immediately followed by the factor GFI, = 9! in the GIMN = G{,é'MNP,
so that the net factor £;"“1"*" Gé in front of EMNP is always bosonic, carrying the same
statistics as the original L.

5. Conclusions

In this paper, we considered the general GC invariant theory which contains arbitrarily
high order derivative fields. We identified the explicit expression for the energy-momentum
as the Noether current corresponding to the rigid case of GC transformation and showed
that a linear combination of the equations of motion can be rewritten into the form of a
Maxwell-type field equation, which has the total energy-momentum as its source. This was
done both for the gauge-unfixed classical system and for the gauge-fixed quantum system
in the de Donder-Nakanishi gauge. The Maxwell-type field equation in the latter formally
has an additional term coming from the gauge-fixing compared with that in the former,
which was shown to take a BRS-exact form, just as in the well-known Yang-Mills case.

By using the same technique, we derived similar expressions of Maxwell-type equa-
tions for the Noether currents for the IOSp(8|8) choral symmetries. It confirmed that
Nakanishi’s original result persists to any GC invariant system.

These results will be useful for proving the existence theorem [27] of the graviton
(photon) in any GC (local U(1)) gauge invariant system as far as the translation (global
U (1)) symmetry is not spontaneously broken. We hope we can report on this matter in the
near future.

The techniques used for the higher derivative systems in this paper will also be
useful for studying more general problems. For instance, basic problems such as the
(non-)equivalence between canonical quantization and path-integral quantization may
be discussed in a general fashion for the higher derivative systems. This is because the
present technique can easily be combined with Ostrogradsky’s canonical formalism for
higher derivative systems [30].

[Note added in proof] We are informed by the author of Ref. [31] in which similar results to
ours were obtained in arbitrary higher derivative gravity systems. We see that he essentially
proved the gravity equations of motion taking the form of Maxwell-type equations in the
case of gauge-unfixed classical system, although the detailed comparison of equations is not
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easy since rather different notations are used. His assumption on the gauge transformation
is, however, more restrictive than ours to prove the anti-symmetric property of the field
strength (which he calls quasilocality).
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Appendix A. OSp Transformation of Lgr4rp

Note that the parameter eny; and the metric 7yy = 7™ have the following statistics
and transposition properties:
lem| = M|+ N[, ie, enmXE= (—)HIMFIND XL,
enm = (€N = (=) TIMFINTg

= (1N = (=) M = (=) Ny = i (A1)

Using these properties and also noting that the metric 77,y is a usual c-number (i.e.,
bosonic) quantity, we can rewrite the two terms in the OSp transformation (82) of the OSp
coordinates X! as

—eami XM = N XM = —(eX)"
+£NM(_)IM|-\NI,7MLXN - (_)\M\-\NIUUVI(_)HIMHN\SM\]XN
= —ﬂLMsMNXN. = —(n_leX)L, (A2)

where X, 771, and ¢ are regarded as a column vector and matrices in the final expressions.

Thus, the two terms reduce to the same expression, and so the OSp transformation (82) is
rewritten concisely into

OFPXM = 2 (y~tex)M = —2yMNeyy XL, (A3)

Now, it is easy to see how the gauge-fixing Lagrangian Lgppp = —k '§"'E,, changes
under the OSp transformation (82). Noting the expression of E;;, in Equation (67), we find

6PV Lgpipp = 6PP(—x 1" E )
- _%gwﬂNM5OSp(ayXMavXN) = " im (6%, XM)9, XN
= —§" namdu (=27 1eX)Ma, XN = 2¢#9,, (enma XM)9, XN
= 2gH" (aFENM - XM, XN 4 enpd, XM, XN ) (A4)
Now, we note that the OSp transformation parameter ey, must be graded antisymmetric

enmt = —(—) N Mlgppy (A5)

in order for the Lagrangian to be global OSp invariant. Indeed, only the second term
remains in the global transformation, and it vanishes if and only if enps is graded antisym-
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metric since 9, XMa, XN, multiplied by §"¥, is graded symmetric. The second term thus
also vanishes here, and the remaining first term is rewritten into
8PP Loppp = 28" dpenm - (XM, XY)
= §"0uenm - (XM, XN — (—)IMIINIxNg, xM)
= §"9uenm - (XM, XN — 9, XM . XN)
= 3" (XM, XN A6
§"0uenm - ( vX), (A6)

where, in going to the second line, we have exchanged the dummy indices N <+ M and
used the graded antisymmetry property of ey, (A5).

Appendix B. OSp(2|2)-Invariant Scalar Field System

To see the property of the OSp symmetry, let us consider here the OSp-invariant
system on a flat Minkowski background in which scalar fields belong to an OSp(2|2)
vector representation.

1
L= —EUNManyMaﬂfPN/ (A7)

where ¢M is a 2 4 2-component OSp-vector whose first 2-components are bosons and the
remaining 2-components are fermions, and the OSp(2|2) metric is given by

1o
INM = ( ! _(72) = 17NM. (A8)

Note that we have added an overall minus sign to our Lagrangian (A7) in order to make
it coincide with the convention of the gauge-fixing Lagrangian Lgp4pp in Equation (67),
although it is not physically important, in any case, since the OSp metric is neither positive-
nor negative-definite.

The infinitesimal OSp rotation is parametrized as

opM = M oV, (A9)

Under this rotation, the quadratic kinetic Lagrangian (A7) is transformed as

1
oL = ~57INM ("0 ot N + 9, pMe" oM p")

(UNMfNiay‘PLaH(PN + aM‘PMUNMSNLaH (PL)

(enpOu " ¢N + 9, pM (—)Mlepg ot L)

— N =N =

= — = (et 0y 0" PN + ey 0 L0, pM) = —enmidupMor PN (A10)

N

with eny = UNLSLM. This can further be rewritten as
5NMay¢May4’N = SMNE)V‘PNBM‘PM = (_)IMIV‘lel\/ﬂ\Iay‘PMaH‘PN
= (M N ey + enag) Mot (A11)
Thus, if the transformation parameter enp; is graded antisymmetric, i.e.,

enm = — (=) M Ny, (A12)

then the Lagrangian (A7) is OSp-invariant.
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We define the canonical conjugate variable 7Ty by the right-derivative
v = 0L/IPM = —ingN . (A13)
Then, the ETCR is given by
[p", 7w} = o) — [pM, @y = =M} = —ptisy = —ig™,(A14)
so that
[, ¢V} = —i(=)NyM = =g, (M, gV} = (=) V™ =i (A15)
(If the conjugate momentum 775 were defined by the left derivative, then the ETCR should
be given by [my, N} = —idh.)
The Noether current JMN# for the OSp(2|2) transformation is defined by
el N = (DL/2(30™))5pM = oMM gt
= — ()N pNen gt = —en gt N
= —ENM%@MWN — ()N MIgNgr i)
= —enay (919N — M ) = Zenn(9MIN),  (A16)

where we have used the graded-antisymmetry property of exp in going from the second
to third lines. Thus, we have

d
JrE = gMarg, (A17)
so that the charge is given by
MMV — /d?stMNO _ /d3x(¢M4-)N — gMgN). (A18)

This actually generates the original OSp rotation by the ETCRs:

MM, gLy = [ @x(igMgN, 9t} — (=) NIH[§M, gL} gN)

= —pMitt + () NHHMEN

_ _4,M~NL+ (—)INHMIpN ML (A19)
MMV, Gy = [ @x(i(—) VLM, N — igM g, ¢1)

- (*)‘N‘ ILIGMEGN — MiNE

_ _4‘,M,7NL+ (_)\NHM\d)NﬁML, (A20)
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The IOSp(2|2) algebra is confirmed as
[iMMN, MBS} = [iMM, / Px(pt§® — R 9°)}
_ /d3x[_¢MﬁNR¢S + MRS
+ (_)(\M\+|N|)\R| (_4)124-)1\/1171\15 + ¢R¢MﬁNS) _ (_)\MHN\ (M o N)}
— _ MMSGNR | (_)IRLIS| ppMR NS
— (=) IMEINT( NS MR () IRFIS| R 7 MS)
= —MMGNR 4 (3 graded antisymmetrization terms
under (M <> N) and (R > 5)) )
[iMMY, PR} — [iMMY, [ @x(¢F))

- /d3x[—4>M;7NR + ()MN (M e )]

= —PMjNR ¢ (—)IMIIN[pN MR (A21)
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