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Abstract In this manuscript, we use the conformal killing
vectors to solve the Einstein–Maxwell field equations in the
background of modified f (G) gravity. We consider the obser-
vational data for four different stars namely PSR J1614 −
2230, PSR J1930 + 327, Cen X − 3 and Vela X − 1
respectively. By using the data, we derive the physical param-
eters from the matching criteria using conformal killing vec-
tors and the exterior Bardeen geometry. Furthermore, several
physical properties of compact stellar structures are exam-
ined in order to achieve the physical validity and stability for
considered models. The graphical analysis including energy
density, pressure components, equation of state parameters,
and energy conditions are examined. Moreover, the equi-
librium conditions through Tolman–Oppenheimer–Volkoff
equation and stability criteria through adiabatic index for the
charged stellar structure study are investigated. It is worth
noting that all of these compact objects are physically viable
and stable under conformal motion in context of Bardeen
geometry for two different models of f (G) theory of grav-
ity. Conclusively, the results show that f (G) gravity with
Bardeen model may provide more massive stellar objects as
compared to general relativity.

1 Introduction

Although general relativity (GR) is a fantastic, well-established,
and extremely significant theory, several worthwhile improve-
ments have been suggested by academics over the past cen-
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tury. Some of these gravitational theories include f (R) [1–
5], f (R,G) [6,7], f (G) [8], f (R, T ) [9,10], f (Q) [11],
f (R, φ) [12,13] and f (R, φ, X) [14,15] modified theories
of gravity. These theories involve modifications to classical
GR to better understand accelerating universe and to explore
scenarios, where GR may provide an insufficient explana-
tion. It has led to a search for modified or extended gravita-
tional theories capable of addressing such challenges. Cos-
mology has identified two unexplained components, dark
matter (DM) and dark energy (DE), which are responsible for
the universe’s accelerating expansion. It is assumed that these
modified theories of gravity give better explain the issues of
DM and DE [16–23]. Furthermore, these modified theories of
gravities are also very helpful for the investigation of stellar
structures. Mak and Harko [24] discussed the exact analyti-
cal solution describing the interior of a charged strange quark
star under the assumption of spherical symmetry and the exis-
tence of a one-parameter group of conformal motions. Chaisi
and Maharaj [25] investigated the exact interior solutions to
the Einstein field equations for anisotropic spheres and uti-
lized a procedure that necessitates a choice for the energy
density and the radial pressure. Kalam et al. [26] proposed
a de-Sitter model for an anisotropic strange star with the
Krori–Barua spacetime and incorporated the existence of the
cosmological constant on a small scale to study the structure
of anisotropic strange stars.

Modified f (G) theory of gravity has been very attrac-
tive among the researcher for the discussion of stellar struc-
tures. Ilyas [27] investigated some of the interior configu-
ration of static anisotropic spherical stellar charged struc-
tures in the regime of f (G) gravity, and analyzed the solu-
tion with the help of Krori-Barua technique. Felice and Tsu-
jikawa [28] presented a number of explicit f (G) models in
which a cosmic acceleration is followed by the matter era.
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Naz and Shamir [29] investigated the dynamical behavior of
stellar structures in f (G) theory of gravity by using Tolman-
Kuchowicz spacetime. Shamir and Naz [30] explored some
relativistic configurations of stellar objects for static spheri-
cally symmetric structures in the context of modified f (G)

gravity, and developed the equations of motion for spher-
ically symmetric spacetime in the presence of anisotropic
matter distribution. The same authors [31] investigated some
possible emergence of relativistic compact stellar objects in
modified f (G) gravity using Noether symmetry approach
and constructed Noether symmetry generators along with
associated conserved quantities by considering the standard
choice of viable f (G) gravity model. Malik et al. [32] investi-
gated the anisotropic stellar structures using Bardeen geom-
etry in Modified f (G) theory of gravity.

Symmetries can play an important role to investigate the
natural relation between geometry and matter through the
Einstein’s equations. Among the well known symmetries,
conformal killing vector (CKV) can provide some better
results as they provide a deeper insight into the spacetime
geometry. Herrera et al. [33–35] were among the pioneers
who gave the general treatment of the spheres admitting a
one parameter group of conformal motions. Maartens and
Maharaj [36] investigated the solutions of the Einstein–
Maxwell equations for static spheres of charged imperfect
fluids, where the space-time geometry was assumed to admit
a conformal symmetry. Bhar et al. [37] provided a new class
of interior solutions for anisotropic stars admitting confor-
mal motion in higher-dimensional noncommutative space-
time. Usmani et al. [38] proposed a new model of a gravas-
tar admitting conformal motion, which was assumed to be
internally charged, with an exterior defined by a Reissner–
Nordstrom instead of a Schwarzschild line element. Das et al.
[39] provided a set of exact spherically symmetric solutions
describing the interior of a relativistic star under f (T ) mod-
ified gravity and studied several cases of interest to explore
physically valid features of the solutions. Zubair et al. [40]
discussed the interior solutions of fluid sphere in f (R, T )

gravity admitting CKV .
Equation of state (EoS) is extremely useful for studying

the equilibrium structures of a compact objects within the
context of GR. Researchers have worked on the topic of
physical properties of strange quark configurations utilizing
the EoS specifically MIT bag model in recent years. A quark
bag model with an appropriate EoS was used to calculate the
accelerating expansion of the early universe [32]. Deb et al.
[41] attempted to find a singularity free solution of Einstein’s
field equations for compact stellar objects by using MIT bag
model, and considering Schwarzschild metric as the exte-
rior spacetime. Coley and Tupper [42] studies the perfect
fluid spherically symmetric spacetimes admitting a proper
inheriting CKV. Abbas and Shahzad [43] studied a new solu-
tion for an isotropic compact star model admitting confor-

mal motion in the background of Rastall theory and several
physical aspects of the model were explored analytically to
observe the behavior of compact stars. Jape et al. [44] gen-
erated a new generalized regular charged anisotropic exact
model that admitted conformal symmetry in static spheri-
cally symmetric spacetime and that model was examined for
physical acceptability as a realistic stellar model.

In the preceding framework, we are primarily interested
in studying the evolution of compact stellar objects accept-
ing CKV utilizing two distinct models of f (G) theory of
gravity. This work is the continuation of a recently reported
investigation in which Shamir and Rashid [45] studied the
stellar structures in f (R) modified theory of gravity admit-
ting conformal motion. We specifically extend this approach
to investigate the dynamical behaviour of compact sphere in
modified f (G) gravity. Moreover, we use Bardeen geometry
as an exterior space-time and presume the isotropic matter
for our current analysis. The organization of this paper is
as follows: Sect. 2 presents a basic formulation of modified
f (G) gravity with an isotropic matter distribution, includ-
ing a detailed discussion of CKV . Moving on to Sect. 3, we
use the modified field equations to obtain the expressions for
physical quantities like energy density and pressure for two
different f (G) gravity models. Section 4 employs matching
conditions to determine the values of physical parameters. In
Sect. 5, a thorough analysis of the physical characteristics is
conducted. Finally, in Sect. 6, we provide a comprehensive
discussion of our key findings.

2 Gauss–Bonnet gravity and Einstein–Maxwell field
equation

In current section, we present details of equation of motion
of Gauss Bonnet f (G) gravity in presences of charge. The
modified Einstein–Hilbert action with charge is given as

S =
∫

d4x
√−g[ R

2κ
+ f (G)] + Le + Lm, (1)

where, f is the function of Gauss Bonnet invariant G, the
Lagrangian is represented by Lm , g is the determinant of
metric tensor gμν and the lagrangian of electromagnetic field
is denoted by Le. We have the following expression of G and
Le

G = R2 − 4Rαβ R
αβ + RαβμνR

αβμν, (2)

Le = 1

16π
FξηFαβg

ξαgηβ. (3)

In Eq. (2) R, Rαβ and Rαβμν are Ricci scalar, Ricci tensor and
Riemannian tensors. In Eq. (3) Fξη represents an electromag-
netic field tensor along with electromagnetic four potential
vector Aξ given as

Fξη = Aξ,η − Aη,ξ . (4)
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The Einstein Maxwell Field Equations (EMFE) are given by
the following expression

Fξη

;η = −4π j ξ . (5)

There is single non-vanishing element of EMFE i.e. F01,
and obtained with the help of Eqs. (4) and (5)

F01 = q

r2 e
− χ+λ

2 , (6)

where, q exhibit total charge

q = 4π

∫
4σω2e− λ

2 dω. (7)

Moreover, we get the electric intensity E as

E = −F01F01 = q

r2 . (8)

In Eq. (5), j ξ = σνξ is called electromagnetic four current
vector along with the charge density σ . The following form
of space-time is considered

ds2 = −(eλdr2 + r2dθ2 + r2 sin2 θdφ2) + eχdt2. (9)

The energy momentum tensor in presences of charge is
given by

Tχξ = (ρ + p)uχuξ − pgχξ − 1

4π

(
gξβF

αβFξα

−1

4
gχξ Fαψ Fαψ

)
. (10)

The ρ and p are energy density and pressure in Eq. (10)
respectively. The velocity four vectors are satisfying the fol-
lowing conditions

uχuχ = 1, νχνχ = −1. (11)

The modified field equations of f (G) gravity are as fol-
lows

Gef f
χξ = κT ef f

χξ , (12)

where, Te f f
χξ is the effective energy momentum tensor given

as

T ef f
χξ = Tχξ + Eχξ− 8

κ

[
Rχαξβ+Rαgβχ−Rαβgξχ−Rχξ gαβ

+Rχβgξα + R

2
(gχξ gαβ − gχβgξα)

]
�α�β fG

−(G fG − f )gχξ . (13)

All the aforementioned information is utilized to derive
the field equations presented as

ρe f f + E2 = ρ−8e−2λ( fGGGG
′2 + fGGG

′′
)

(
eλ − 1

r2

)

+4e−2λλ′G ′
fGG

(
eλ − 3

r2

)
− (G fG − f ),

(14)

pef f − E2 = p − 4e−2λχ
′G ′

fGG
(
eλ − 3

r2

)

+(G fG − f ), (15)

σ = e− λ
2

4πr2 (r2E)
′
. (16)

Furthermore, in order to examine the intrinsic structure of
compact stars, we use the MIT bag model [47] that illustrates
relation between p and ρ in interior of the sphere given as,

p = 1

3
(ρ − 4B). (17)

In above equation, B is the bag constant. Based on the previ-
ously provided information, the E2 is given by the following
expression

E2 = − e−λ(r)

4r2

(
4Br2eλ(r) + 2r2 f (G)eλ(r) − 2Gr2 fGeλ(r)

+8 fGGG
′′
eλ(r)−8 fGGG

′′−4 fGGG
′
eλ(r)λ

′+12 fGGG
′
λ

′

−12 fGGG
′
eλ(r)χ

′ + 36 fGGG
′
χ

′ + 8 fGGGG
′2eλ(r)

−8 fGGGG
′2 + 3pr2eλ(r) − ρr2eλ(r)

)
. (18)

CKV deliver favorable results due to their ability to pro-
vide a more detailed and comprehensive understanding of
the geometry of spacetime. These vectors play a crucial role
in the analysis of space geometry, offering intricate insights
and facilitating a more thorough exploration of the underly-
ing structures and properties of the spacetime manifold. Pre-
vious work on these equations exhibit that CKV in manifold
is helpful technique for determining the analytical solution
of the EMFE and given as

£ηgcd = �gcd , (19)

where, we have taken c, d=0 to 3 that illustrate space-time to
be four-dimensional and £ηgcd represents the Lie derivative
of metric tensor with respect to a vector field η. Further, by
employing Eqs. (9) and (19), CKV can be written as

η0 = L , η1χ1 = �, η1 = �r

2
,

η1λ
′ + 2ξ1

,1 = �. (20)

We derive expressions for physical quantities by solving the
set of simultaneous equations mentioned above, resulting in
the following expressions

eχ = H2r2, eλ =
(
I

�

)2

, ξ i = Wδi4 +
(
r�

2

)
δi1,

(21)

where,W , H and I are constant parameters. A linear function
� is considered i.e. � = H + Jr , where J be the constant
parameter.
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3 Relativistic models of f (G) gravity

The analysis in this study is carried out by utilizing two dis-
tinct and effective models of f (G) gravity. The specifics are
provided in upcoming sub-sections:

3.1 Model 1

We begin with the logarithmic model as described in [27,29,
46]

f (G) = αGn + βGLog(G), (22)

with constant parameters α and β. By employing Eqs. (14)
– (16), Eqs. (21) and, (22), we obtain the expressions for
effective energy density and pressure as

ρe f f = 1

4r12 I 10s3
1

(
4Br12s3

1 I
10 + α23n+2r12s3

1 I
10sn11

+3pr12s3
1 I

10 + 3ρr12s3
1 I

10 + 32βr9s4
1 I

6 J log (s11)

−48r9s4
1 s9 I

6 J+2r9s3
1s10 I

6+24r5s1s
2
3 s7 I

4 J (r J + H)

−8r5s0s
2
3 s7 I

6 J−32r5s2
0 s

2
3 s7 I

4 J−72r4s1s
2
3 s7 I

4(r J+H)2

−48r4s1s2s3s7 I
4(r J+H)2−64

(
3r4s1s2s3s7 I

4 + 4s2
3 s8 J

)

×
(
I 2 − (r J + H)2

)
+ 24r4s1s

2
3 s7 I

6 + 48r4s1s2s3s7 I
6

−64s2
3 s8 J (r J + H)2 + 64s2

3 s8 I
2 J

)
, (23)

pef f = 1

4r12s3
1 I

10

(
− 4Br12s3

1 I
10 + α23n+2r12s3

1 I
10sn11

+pr12s3
1 I

10 + ρr12s3
1 I

10 + 32βr9s4
1 I

6 J log (s11)

−16r9s9 I
6Js4

1 − 2r9s3
1s10 I

6 − 24r5s1s
2
3 s7 I

4 J (r J + H)

+8r5s0s
2
3 s7 I

6 J + 72r4s1s
2
3 s7 I

4(r J + H)2

+48r4s1s2s3s7 I
4(r J + H)2 + 32r4s1s

2
3 s7 I

4

×
(
I 2 − 3(r J + H)2

)
− 24r4s1s

2
3 s7 I

6

−48r4s1s2s3s7 I
6

+64s2
3 s8 J (r J + H)2 − 64s2

3 s8 I
2 J

)
, (24)

where all expressions of si are mentioned in Appendix.

3.2 Model 2

In this study, we select another model to analyze the compact
objects with conformal motion as presented in [51] and [48]

f (G) = ξGγ
(
ηGψ + 1

)
, (25)

where ξ , γ , η and ξ are arbitrary parameters. It is worthwhile
to mention here that these are really important parameters as
their values will help us in obtaining the physically realistic
values of energy density and pressure. Now manipulating
Eqs. (14) – (16), Eqs. (21), and (25), we attain following
expression for effective density (ρe f f ) and effective pressure

(pef f )

ρe f f = −1

4r12t2
1 t

4
3 I

10(r J + H)3

(
− r12t4

3 t
2
1 I

10n

×(4B + 3(p + ρ))(r J + H)3

+3ηξr12t4
3 I

1023γ+3ψ+1(γ + ψ − 1)(r J + H)3

×tγ+ψ+2
1 + 8γ+2ξr6t2

2 t7 I
8tγ+3

1 (r J + H)

−3 8γ+1ξr t2t
4
3 t6 J

2tγ1 (r J + H)2(t2(2r J + H)

×(3r2 J 2 + 6r H J + 3H2 − I 2)

+2t4(r J + H)(r2 J 2 + 2r H J + H2 − I 2))

+23γ+1ξr3t3 I
6tγ+2

1

×(3(γ − 1)r9t3
3 I

4(r J + H)3 − 32t2
2 t7 J )

+8γ+2ξ t2t
2
3 J t

γ+1
1

×(r J + H)(r2 J 2 + 2r H J + H2 − I 2)

×(3r4t3t4t6 I
4(r J + H) − 4t2t7 J )

)
, (26)

pef f = −1

4r11t2
1 t

4
3 I

10(r J + H)3

×
(
r11t4

3 t
2
1 I

10(4B − p − ρ)(r J + H)3

+ηξr11t4
3 I

1023γ+3ψ+1(γ + ψ − 1)

×(r J + H)3tγ+ψ+2
1

−8γ+2ξr5t2
2 t7 I

8tγ+3
1 (r J + H)

−8γ+1ξ t2t
4
3 t6 J

2tγ1 (r J + H)2(t2(2r J + H)

×(3r2 J 2 + 6r H J + 3H2 − I 2)

−6t4(r J + H)

×(r2 J 2 + 2r H J + H2 − I 2))

+23γ+1ξr2t3 I
6tγ+2

1 ((γ − 1)

r9t3
3 I

4(r J + H)3 + 32t2
2 t7 J )

)
, (27)

where, all expressions of ti are mentioned in Appendix.

4 Matching with Bardeen geometry

Bardeen model is used to determine the solution and given
by the following expression

ds2 = L(r)−1dr2 + r2dθ2 + r2sin2θd2 − L(r)dt2, (28)

where,

L(r) = 1 − 2Mr2

(q2 + r2)
3
2

, (29)

where M is the mass and this equation can be re-written as

L(r) = 1 − 2M

r
+ 3Mq2

r3 + O

(
1

r5

)
. (30)
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In Eq. (30), the presence of the term involving the fraction
r3 sets Bardeen’s model apart from the Reissner-Nordstrom
solution. In our study, we adopt the expression for L(r) as

L(r) = 1 − 2M

r
+ 3Mq2

r3 . To analyze certain attributes,

we conduct a comparison between the exterior and interior
configurations at the boundary (r = Rb) of the stars. In
order to determine the values of eχ and eλ at this boundary,
we utilize continuity conditions and results obtained from
Eq. (21). This process leads us to the following matching
constraints

1 − 2M

r
+ 3Mq2

r3 = H2r2, (31)

(
1 − 2M

r
+ 3Mq2

r3

)−1 = I 2

(H + Jr)2 , (32)

∂g−
t t

∂r
= ∂g+

t t

∂r
, (33)

here, (−) and (+) represents the interior and exterior solu-
tion respectively. Now for the further analysis, we assume

q2 = gkr5

gr+1 [45,49]. Solving the Eqs. (31)–(33), we have the
following expressions of constant parameters

H = −
√

Rb(1 + gRb) − 2M(1 + gRb) + 3MgkR3
b

R3
b + gR4

b

, (34)

I = −
√

−2M+Rb−2qMRb+gR2
b+3gkMR3

b − J R
5
2
b

√
1+gRb

−Rb

√
−2M+Rb−2qMRb+gR2

b + 3gkMR3
b

,

(35)

J = − 2
√

1+gRb(Rb+gR2
b−2M−2MgRb+3MgkR3

b)
3
2

R
5
2
b (2Rb(1+gRb)2−6M−12MgRb−6Mg2R2

b+3Mg2kR3
b)

.

(36)

These parameters play a major role in defining the behav-
ior of a charged compact star, as they provide vital details
about its charge distribution, geometry and the interaction of
electromagnetic forces and gravity. Accurate determination
of these parameters is essential for understanding the char-
acteristics, stability and observational properties of charged
compact stars.

5 Physical analysis

In this section, we demonstrate the detailed analysis of energy
density, pressure distribution, EoS parameter, energy condi-
tions, equilibrium conditions, and adiabatic parameter for
the physical validity of stellar structure. We fix the constants
α = 0.1 and β = 0.01 for model 1 and the information about
the rest of the constants is provided in Table 1. Moreover, the
constants η = 1.2 and ψ = 1.4 are fixed for model 2 and the
assumed values of the rest of all other constants are listed in
the Table 2. The analysis is carried out by selecting the stars

PSR J1614 − 2230, PSR J1930 + 327, Cen X − 3 and
Vela X − 1 with radius at least 9.

5.1 Profile of energy density and pressure distribution

The behavior of ρe f f and pef f in the context of the f (G) the-
ory of gravity exhibits credible characteristics. As depicted
in Figs. 1 and 2, both ρe f f and pef f demonstrate a consis-
tent pattern of decreasing values while remaining positive.
Notably, as we approach the boundary of the star at r = Rb,
the pressure approaches zero. The concave up graphical rep-
resentations of ρe f f and pef f is a consequence of both con-
formal motion and the presence of electric charge within the
system. We further analyze the gradients of energy density

( dρ
e f f

dr ) and pressure ( dp
e f f

dr ) for both models, and their graphi-
cal representations can be found in Figs. 3 and 4, respectively.
These aligns with physical expectations, notably their nega-
tive behavior, further affirming their physical acceptability. It
may be noted that though the analysis is done for four stars,
however, the graphical behavior in Figs. 1, 2, 3 and 4 is shown
only for PSR J1614 − 2230. The other three stars exhibit
the similar behavior of energy density and pressure profiles
for both f (G) models.

5.2 The energy conditions

In GR, the energy conditions (ECs) are essential in demon-
strating the stability of the compact stars. Numerous researchers
have presented the splendid characteristics of ECs. For a
charged compact star to be considered physically viable, it
must satisfy the ECs, ensuring that the energy density and
pressures associated with the star’s matter distribution meet
certain criteria and do not violate fundamental principles of
physics. Such conditions are null energy conditions (NEC),
the weak energy condition (WEC), the strong energy condi-
tion (SEC) and the dominant energy condition (DEC). The
ECs are provided by the following expressions

• Null energy conditions

ρe f f + pef f ≥ 0, ρe f f + q2

4πr4 ≥ 0. (37)

• Weak energy condition

ρ + q2

8πr4 ≥ 0, ρ + p ≥ 0, ρ + p + q2

4πr4 ≥ 0.

(38)

• Strong energy conditions

ρe f f + pef f ≥ 0, ρe f f + 3pef f + q2

4πr4 ≥ 0. (39)
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Table 1 Values of unknown parameters for Model-I

Parameter Stars PSR J1614 − 2230 PSR J1903 + 327 Vela X − 1 Cen X − 3

n = 1.5 M(M�) 1.97 1.667 1.77 1.49

R 10.30 9.82 9.99 9.61

k 3.9 3.9 3.9 3.9

H − 1.63546 − 1.53397 − 1.56966 − 1.46317

I − 0.135973 − 0.142638 − 0.140204 − 0.145769

J − 0.0635965 − 0.0625936 − 0.0629489 − 0.0610304

n = 1.55 M(M�) 1.97 1.667 1.77 1.49

R 10.30 9.82 9.99 9.61

k 4 4 4 4

H − 1.65626 − 1.55347 − 1.58961 − 1.48176

I − 0.135972 − 0.142636 − 0.140202 − 0.145767

J − 0.0644034 − 0.0633865 − 0.0637468 − 0.0618025

n = 1.6 M(M�) 1.97 1.667 1.77 1.49

R 10.30 9.82 9.99 9.61

k 4.1 4.1 4.1 4.1

H − 1.67681 − 1.57273 − 1.60933 − 1.532

I − 0.135971 − 0.142634 − 0.140201 − 0.145762

J − 0.0652002 − 0.0641696 − 0.0645348 − 0.0638895

n = 1.65 M(M�) 1.97 1.667 1.77 1.49

R 10.30 9.82 9.99 9.61

k 4.2 4.2 4.2 4.2

H − 1.6971 − 1.59176 − 1.6288 − 1.55052

I − 0.13597 − 0.142633 − 0.140199 − 0.14576

J − 0.0659874 − 0.0649432 − 0.0653133 − 0.064659

n = 1.7 M(M�) 1.97 1.667 1.77 1.49

R 10.30 9.82 9.99 9.61

k 4.3 4.3 4.3 4.3

H − 1.71716 − 1.61056 − 1.64804 − 1.56883

I − 0.135969 − 0.142631 − 0.140198 − 0.145758

J − 0.0667654 − 0.0657078 − 0.0660826 − 0.0654196

n = 1.75 M(M�) 1.97 1.667 1.77 1.49

R 10.30 9.82 9.99 9.61

k 4.4 4.4 4.4 4.4

H − 1.73698 − 1.62914 − 1.66706 − 1.58692

I − 0.135968 − 0.14263 − 0.140196 − 0.145756

J − 0.0675344 − 0.0664635 − 0.0668431 − 0.0661713

n = 1.8 M(M�) 1.97 1.667 1.77 1.49

R 10.30 9.82 9.99 9.61

k 4.5 4.5 4.5 4.5

H − 1.75658 − 1.64751 − 1.68586 − 1.60481

I − 0.135967 − 0.142628 − 0.140195 − 0.145755

J − 0.0682947 − 0.0672108 − 0.067595 − 0.0669147
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Table 2 Values of unknown parameters for Model-II

Parameter Stars PSR J1614 − 2230 PSR J1903 + 327 Vela X − 1 Cen X − 3

ξ = 0.1 M(M�) 1.97 1.667 1.77 1.49

R 10.30 9.82 9.99 9.61

γ 0.01 0.01 0.01 0.01

H − 1.63546 − 1.53397 − 1.56966 − 1.46317

I − 0.135973 − 0.142638 − 0.140204 − 0.145769

J − 0.0635965 − 0.0625936 − 0.0629489 − 0.0610304

ξ = 0.2 M(M�) 1.97 1.667 1.77 1.49

R 10.30 9.82 9.99 9.61

γ 0.02 0.02 0.02 0.02

H − 1.63546 − 1.53397 − 1.56966 − 1.46317

I − 0.135973 − 0.142638 − 0.140204 − 0.145769

J − 0.0635965 − 0.0625936 − 0.0629489 − 0.0610304

ξ = 0.3 M(M�) 1.97 1.667 1.77 1.49

R 10.30 9.82 9.99 9.61

γ 0.04 0.04 0.04 0.04

H − 1.63546 − 1.53397 − 1.56966 − 1.46317

I − 0.135973 − 0.142638 − 0.140204 − 0.145769

J − 0.0635965 − 0.0625936 − 0.0629489 − 0.0610304

ξ = 0.4 M(M�) 1.97 1.667 1.77 1.49

R 10.30 9.82 9.99 9.61

γ 0.07 0.07 0.07 0.07

H − 1.64589 − 1.54375 − 1.57967 − 1.47249

I − 0.135973 − 0.142637 − 0.140203 − 0.145768

J − 0.0640012 − 0.0629913 − 0.0633491 − 0.0614177

ξ = 0.5 M(M�) 1.97 1.667 1.77 1.49

R 10.30 9.82 9.99 9.61

γ 0.09 0.09 0.09 0.09

H − 1.65626 − 1.55347 − 1.58961 − 1.48176

I − 0.135972 − 0.142636 − 0.140202 − 0.145767

J − 0.0644034 − 0.0633865 − 0.0637468 − 0.0618025

ξ = 0.6 M(M�) 1.97 1.667 1.77 1.49

R 10.30 9.82 9.99 9.61

γ 0.1 0.1 0.1 0.1

H − 1.67681 − 1.57273 − 1.60933 − 1.50012

I − 0.135971 − 0.142634 − 0.140201 − 0.145765

J − 0.0652002 − 0.0641696 − 0.0645348 − 0.0625651

ξ = 0.7 M(M�) 1.97 1.667 1.77 1.49

R 10.30 9.82 9.99 9.61

γ 0.12 0.12 0.12 0.12

H − 1.68698 − 1.58227 − 1.61909 − 1.50921

I − 0.13597 − 0.142634 − 0.1402 − 0.145764

J − 0.065595 − 0.0645576 − 0.0649252 − 0.062943
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Fig. 1 Behavior of energy density ρe f f and pressure pef f for Model-1

Fig. 2 Behavior of energy density ρe f f and pressure pef f for Model-2

Fig. 3 Behavior of derivative of ρe f f and pressure pef f for Model-1

It can be noticed from Figs. 5 and 6 that all the ECs are satis-
fied for both models for PSR J1614 − 2230, which means
that our considered models are viable. It is worthwhile to
mention here that the graphical behavior of ECs for other
three stars is same as PSR J1614 − 2230 and it is not pro-
vided just to avoid the repetition of similar figures.

5.3 Equilibrium condition

Here, we discuss the equilibrium condition in the scenario of
Bardeen geometry with conformal motions for the existing
charged stellar structure. The Tolman Oppenheimer Volkof
(T OV ) equation is very useful to examine the equilibrium
condition for stellar structure. The T OV equation in pres-
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Fig. 4 Behavior of derivative of ρe f f and pressure pef f for Model-2

Fig. 5 Behavior of EC for star PSR J1614 − 2230 for Model-I

Fig. 6 Behavior of EC of star PSR J1614 − 2230 for Model-II
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Fig. 7 Behavior of Fh ,Fg and Fe for Model-I (Left plot) and Model-II (Right plot)

Fig. 8 Evolution of EoS parameter w for Model-I (Left plot) and Model-II (Right plot)

ences of charged isotropic distribution are given as

− χ
′

2
(ρe f f + pef f ) + σ(r)E(r)e

λ(r)
2 − dpef f

dr
= 0. (40)

This equation can also be expressed as

Fg + Fe + Fh = 0. (41)

• Gravitational force

Fg = −χ
′

2
(ρe f f + pef f ). (42)

• Electric force

Fe = σ(r)E(r)e
λ(r)

2 . (43)

• Hydrostatic force

Fh = −dpef f

dr
. (44)

Figure 7 exhibits that the equilibrium condition is fulfilled
for the presented f (G) models for PSR J1614 − 2230. The
equilibrium condition is also satisfied for the other three com-
pact stars (though not shown here).

5.4 Equation of state parameter

In this sub-section, we conduct an investigation of EoS
parameters, which are represented by the following expres-
sion

w = pef f

ρe f f
. (45)

The graphical behaviors ofw of both models for PSR J1614−
2230 are shown in Fig. 8, which indicate that the EoS of the
selected f (G) models falls within a range that corresponds to
normal matter, and ensuring the stability of the stars. Further,
the high degree of compactness observed in these models
suggests that they exhibit a dense and compact nature.
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Fig. 9 Graphical illustration of adiabatic index for Model-I (Left plot) and Model-II (Right plot)

5.5 Casuality condition and adiabatic index

We have checked the casuality condition according to Her-
rera’s cracking concept, which is defined as

v2 = dpef f

dρe f f
. (46)

This sound speed v2 lies between the limits 0 and 1, which
demonstrates the consistency of our f (G) models. Chan-
darshekhar [50] introduced criteria for insatiability based on
the adiabatic parameter, where it serves as an effective barrier
between a large gravitational field and a small nuclear force.
The formula for this is given as

� =
(

1 + ρe f f

pe f f
dpe f f

dρe f f

)
. (47)

According to Chandarshekhar’s criteria, the adiabatic index
should be greater than 4/3. Figure 9 shows that the our both
models are stable.

6 Conclusion

In current study, we select the Bardeen black hole geometry
with conformal motion and apply the matching condition
to two different models of modified f (G) gravity, namely
f (G) = αGn + βGLog(G) and f (G) = ξGγ

(
ηGψ + 1

)
in the presence of an electric charge with isotropic energy
momentum tensor. The analysis is tabulated for four different
stars: PSRJ1614 − 2230, PSRJ1930 + 327, Cen X − 3,
and Vela X − 1. It may be noted that the graphical behavior
is shown only for PSR J1614 − 2230. The other three stars
exhibit the similar behavior for both f (G) models as that of
PSR J1614 − 2230. To achieve feasible results, we analyze
model 1 for different values of n and model 2 for different
values of ξ . The final outcomes of our work are as follows:

• The solutions found with conformal symmetries for the
metric potentials are finite, bounded and singularity free
across the star and also at the boundary i.e. r = Rb. The
analysis of ρe f f and pef f are shown in Figs. 1 to 2. The
negative behavior of derivatives dρe f f /dr and dpef f /dr
show that they are acceptable for the present study as
shown in Figs. 3 and 4.

• We also study the ECs such that NEC, WEC, DEC,
and SEC for both f (G) models. It can be noticed from
Figs. 5 and 6 that both models satisfy all of the given ECs
under conformal motion, which means that our consid-
ered models are viable.

• The equilibrium condition for the current charged stellar
configuration utilizing T OV equations in the presence of
Bardeen geometry along with CKV is illustrated in Fig. 7.
It can be seen that the equilibrium condition is satisfied
for the presented f (G) models, which means that our both
models are valid and reliable in the presence of electric
charge.

• It can be observed from Fig. 8 that both models satisfy
the EoS parameter which implies that the stars are stable.
Moreover, the graphical analysis of adiabatic index for
both f (G) models can be seen in Fig. 9, which means that
our considered stars are stable.

In nutshell, we are able to create an effective and stable
stellar configuration in the existence of charge by employing
two different f (G) gravity models along with Bardeen black
hole geometry with conformal motion. It is important to men-
tion here that the results of our manuscript agree with already
reported work in general relativity [49]. It is interesting to
notice that modified f (G) theory of gravity supports more
massive stars (upto a solar mass 1.97 and radius 10.30km)
as compared to general relativity [49].
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Appendix

Where all si and ti used in Sect. 3 are given as

s0 = 3r2 J 2 + 6r H J + 3H2 − I 2

s1 = (r J + H)
(

3r2 J 2 + 6r H J + 3H2 − I 2
)

s2 = (r J + 2H)
(

3r H J + 3H2 − I 2
)

s3 = 9r2H J 2 + 18r H2 J − 2r I 2 J + 9H3 − 3H I 2

s4 = α(6H(3r5 J 5 − r I 4 J ) − 72H3(r3 J 3 − r I 2 J )

+ 6H4(5I 2 − 33r2 J 2) − 2r2 I 2 J 2(3r2 J 2 + I 2)

+ H2(27r4 J 4 + 48r2 I 2 J 2 − 5I 4) − 162r H5 J − 45H6)

s5 = α(18H3(3r3 J 3 + 2r I 2 J ) + 18H4(I 2 − 3r2 J 2)

− r2 I 2 J 2(9r2 J 2 + I 2) + 3H(9r5 J 5 − 6r3 I 2 J 3 − r I 4 J )

+ H2(81r4 J 4 + 9r2 I 2 J 2 − 3I 4) − 81r H5 J − 27H6)

s6 = 8J (r J + H)(162H5(25r3 J 3 − 3r I 2 J )

− 81H6(I 2 − 27r2 J 2)

+ 27H4(165r4 J 4 − 44r2 I 2 J 2 + I 4)

+ 108r H3 J (27r4 J 4 − 14r2 I 2 J 2 + I 4)

− 2r2 I 2 J 2(27r4 J 4 − 12r2 I 2 J 2 + I 4)

+ 6H(27r7 J 7 − 63r5 I 2 J 5

+ 17r3 I 4 J 3 − r I 6 J ) − 3H2(−351r6 J 6 + 351r4 I 2 J 4

− 53r2 I 4 J 2 + I 6) + 648r H7 J + 81H8)

s7 = α(−8n)n2r3 I 4
(

s1 J

r3 I 4

)
n + α8nnr3 I 4

(
s1 J

r3 I 4

)
n − 8βs1 J

s8 = α8nn3r3s2
3 I

4
(

s1 J

r3 I 4

)
n + 3 8nn2r3s4 I

4
(

s1 J

r3 I 4

)
n

− 23n+1nr3s5 I
4
(

s1 J

r3 I 4

)
n + βs6

s9 = β + α8n−1n

(
s1 J

r3 I 4

)
n−1 + β log

(
8s1 J

r3 I 4

)

s10 = α8nr3 I 4
(

s1 J

r3 I 4

)
n + 8βs1 J log

(
8s1 J

r3 I 4

)

s11 = s1 J

r3 I 4

t1 = J (r J + H)
(
3r2 J 2 + 6r H J + 3H2 − I 2

)
r3 I 4

t2 = 9r2H J 2 + 18r H2 J − 2r I 2 J + 9H3 − 3H I 2

t3 = 3r2 J 2 + 6r H J + 3H2 − I 2

t4 = (r J + 2H)
(

3r H J + 3H2 − I 2
)

t5 = 2r J (r J + H)
(

9r H J + 9H2 − I 2
)

t6 = γ 2
(
η8ψ tψ1 + 1

)
+ γ

(
η8ψ(2ψ − 1)tψ1 − 1

)

+ η8ψ(ψ − 1)ψ tψ1

t7 = 4t2t3t6(r J + H) + ηt2
2 8ψψ(

γ 2 + γ (2ψ − 1) + (ψ − 1)ψ
)
tψ1

− (2 − γ )t2
2 t6 − t5t3t6
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