

## Shape evolution of nuclei in $A \sim 55$ region

S. Basu<sup>1,2\*</sup> and G. Mukherjee<sup>1,2</sup>

<sup>1</sup>Variable Energy Cyclotron Centre, Kolkata 700064, India and

<sup>2</sup>Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India

### Introduction

The nuclear structure of  $A \sim 55$  region are governed by  $1f2p$  and intruder  $g_{9/2}$  orbitals across  $N = Z = 28$  shell closure. The nature of this shell closure, which is the first shell closure originated due to the spin-orbit coupling term, is in debate from various theoretical and experimental findings. Further, the presence of shape driving orbitals like  $1f_{7/2}$  and  $1g_{9/2}$  can induce deformation in the system. There are limited informations regarding the observation of different nuclear shapes in this mass region with nuclei around doubly magic  $^{56}\text{Ni}$  ( $Z = 28, N = 28$ ).

In this work, we have calculated the deformations for even-even nuclei from  $Z = 22$  (Ti) to  $Z = 28$  (Ni) for different  $N$  to get an idea regarding the evolution of nuclear shapes with change in proton and neutron Fermi surfaces in this mass region. The transition rate and quadrupole moment,  $B(E2)$  and  $Q_t$ , have been deduced from the deformation parameters, obtained from the calculation, and compared with the experimental ones. The experimental  $B(E2)$  and  $Q_t$  values were deduced from the measured lifetimes ( $\tau$ ) reported for the  $1^{st}$  ( $2^+$ ) and using the equations given in [1]. These calculations have been performed for lower rotational frequencies corresponding to spin value of  $2\hbar$ .

### Method of the calculation

The shape of a nucleus has been obtained from the Total Routhian Surface (TRS) calculations. In this method, the potential energies in the body-fixed frame are calculated in the Nilsson-Strutinsky formalism [2]. A deformed Woods-Saxon potential with universal param-

eters is used to calculate the single particle energies. The nuclear deformation is defined by the  $\beta_2$ ,  $\beta_4$  and  $\gamma$  parameters. In the Lund convention, used here,  $\gamma = 0^\circ$  ( $-60^\circ$ ) is for axially deformed prolate (oblate) shape and any other value of  $\gamma$  indicate triaxial shape. The detailed technical procedure has been given in [3, 4]. The total Routhians are obtained at different values of  $\beta_2, \beta_4, \gamma$  and are plotted in the  $\beta_2, \gamma$  surface after minimizing on  $\beta_4$ . The calculations are done for different quasi-particle configurations and at several rotational frequencies ( $\hbar\omega$ ). The shape of a nucleus for a particular  $\hbar\omega$  at a particular configuration is obtained from the values of  $\beta_2$  and  $\gamma$  corresponding to the minimum of the TRS at that  $\hbar\omega$  for that configuration.

### Results and Discussions

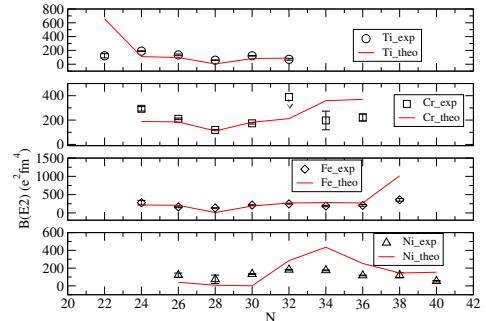



FIG. 1: The experimental values (symbols) of  $B(E2)$  for the Ti, Cr, Fe and Ni isotopes are compared with those obtained from the  $\beta_2$  and  $\gamma$  deformation parameters obtained from the TRS calculations (solid line) in this work.

The theoretical results are summarized in Table I. It contains the deformation parameters  $\beta_2$  and  $\gamma$ , obtained from the present calculation, for various nuclei with even  $Z$  from Ti ( $Z = 22$ ) isotopes to Ni ( $Z = 28$ )

\*Electronic address: s.basu@vecc.gov.in

TABLE I: Deformation parameters ( $\beta_2$  and  $\gamma$ ) of the nuclei near the ground state obtained in this work.

| Z  | N  | Nucleus   | $\beta_2$ | $\gamma$ | $B(E2)(e^2 fm^4)$ |
|----|----|-----------|-----------|----------|-------------------|
| 22 | 22 | $^{44}Ti$ | 0.4       | -21.8    | 656.83            |
| 22 | 24 | $^{46}Ti$ | 0.19      | -2.7     | 110.55            |
| 22 | 26 | $^{48}Ti$ | 0.17      | -5.6     | 97.06             |
| 22 | 28 | $^{50}Ti$ | 0.03      | -30      | 3.49              |
| 22 | 30 | $^{52}Ti$ | 0.15      | -5.4     | 82.67             |
| 22 | 32 | $^{54}Ti$ | 0.14      | -21      | 88.76             |
| 24 | 24 | $^{48}Cr$ | 0.22      | -2.2     | 188.75            |
| 24 | 26 | $^{50}Cr$ | 0.21      | -3.6     | 184.96            |
| 24 | 28 | $^{52}Cr$ | 0.15      | -14.8    | 110.83            |
| 24 | 30 | $^{54}Cr$ | 0.2       | -2.8     | 182.07            |
| 24 | 32 | $^{56}Cr$ | 0.2       | -9.6     | 212.24            |
| 24 | 34 | $^{58}Cr$ | 0.26      | -3.9     | 359.08            |
| 24 | 36 | $^{60}Cr$ | 0.26      | -3.1     | 370.49            |
| 26 | 24 | $^{50}Fe$ | 0.21      | -3.4     | 216.32            |
| 26 | 26 | $^{52}Fe$ | 0.2       | -4       | 207.50            |
| 26 | 28 | $^{54}Fe$ | 0.04      | -18.6    | 9.30              |
| 26 | 30 | $^{56}Fe$ | 0.18      | -5.4     | 187.32            |
| 26 | 32 | $^{58}Fe$ | 0.2       | -12.4    | 269.95            |
| 26 | 34 | $^{60}Fe$ | 0.21      | -4.8     | 282.47            |
| 26 | 36 | $^{62}Fe$ | 0.2       | -6.1     | 271.44            |
| 26 | 38 | $^{64}Fe$ | 0.38      | -0.7     | 1016.86           |
| 28 | 26 | $^{54}Ni$ | 0.08      | -8.7     | 40.07             |
| 28 | 28 | $^{56}Ni$ | 0.03      | -30      | 6.58              |
| 28 | 30 | $^{58}Ni$ | 0.01      | -23.8    | 0.75              |
| 28 | 32 | $^{60}Ni$ | 0.18      | -36.8    | 284.07            |
| 28 | 34 | $^{62}Ni$ | 0.23      | -52.3    | 435.01            |
| 28 | 36 | $^{64}Ni$ | 0.17      | -47.9    | 251.91            |
| 28 | 38 | $^{66}Ni$ | 0.13      | -50.4    | 144.88            |
| 28 | 40 | $^{68}Ni$ | 0.18      | -77.8    | 153.61            |

isotopes. These shapes are calculated near the ground state at lower  $\hbar\omega$ . The calculated values of the deformation parameters are used to calculate the other parameters like the quadrupole moment  $Q_t$  and the transition strengths  $B(E2)$ . The experimental values of these parameters are extracted from the measured lifetimes ( $\tau$ ) reported in the ENSDF [5]. The expressions used for determining these quantities in both the cases are taken from reference [1]. These

measured quantities are for the  $1^{st} 2^+$  states in all these cases. The experimental and theoretical values of  $Q_t$  and  $B(E2)$  are compared in Fig. 1. It can be seen that the experimental values are well reproduced by the calculations.

## Summary and Conclusion

The calculated results predict different shapes for different N/Z. At  $N = 28$ , which is the magic number, in all the isotopes the deformation seems to decrease and shape tends towards triaxiality. For Ti and Cr isotopes, the shapes are mostly prolate except  $N = 28$ . In Fe isotope,  $N=28$  and 32 are triaxial while other N are prolate in shape. Thus the evolution of shapes from prolate to triaxial and again to prolate are predicted for these isotopes from these calculations. The Ni isotope ( $Z = 28$ ) is predicted to have evolution of shape from prolate to oblate via triaxial shape with increase in N. The experimental  $B(E2)$  values are well reproduced by the theoretical calculations which validate the present calculations. Experimental observations of this shape evolution in these nuclei will be interesting.

## Acknowledgments

S. Basu acknowledge UGC, Govt. of India for providing PhD fellowships.

## References

- [1] G. Mukherjee et al., Nucl. Phys. **A 829**, 137 (2009).
- [2] W. Nazarewicz et al., Nucl. Phys. **A 435**, 397 (1985).
- [3] Satya Samiran Nayak and G. Mukherjee, Nucl. Phys. **A 1023**, 122449 (2022).
- [4] Satya Samiran Nayak and G. Mukherjee, Int. Jour. Mod. Phys. E **31**, 2250048 (2022).
- [5] <https://www.nndc.bnl.gov/ensdf/>