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ABSTRACT

A formal study of quark models with interactions due to scalar, pseudoscalar
or vector fields is presented. It is shown that all the results which have been
derived in quark parton models in which the details of the nucleon's constitution
are not specified can be obtained formally using naive canonical manipulations of
operators. In the case that there is no vector field some new results are obtained
which would provide an experimental measurement of the proportion of scalar or

pseudoscalar gluons in the nucleon.
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Introduction

Some time ago we studied generalized quark parton models and abstracted
those results which might be true more generallyl. In fact, we showed1 that the
most easily tested consequences of the model cauld all be derived formally in the
gluon model using the Bjorken limit with naive canonical values for the equal time
commutators. In this paper we show that all the old results of generalized parton
models can be formally derived in renormalizable quark models. We also present
some new results which depend essentially on the assumption that none of the
partons travels backwards in the infinite momentum frame; it turns out that these
results can be rederived formally if the interaction between the quarks is due to a
scalar or pseudoscalar field but not if it is due to a vector field (the conventional
gluon model)2 .

”

In perturbation theory the formal arguments used in this paper are invalids’ 6
.

and scale invariance is broken by logarithmic terms. Although they are not ex-
cluded by the data we shall assume that such terms are absent and that therefore
arguments based on perturbation theory may be irrelevant. In this sense perhaps
" Nature reads books on free field theory"7.

We will not dwell on the experimental implications of the results which have
been reviewed elsewheres. After completing this work we received an elegant
preprint from Gross and TJc'eiman9 who have independently rederived the ' old"

parton results in the gluon model. 10 They have actually gone further and derived

the explicit form of the light cone expansion in the presence of a vector interaction.



Formal derivation of all ""old" parton model results

Inelastic electron and neutrino scattering processes in which only the final

lepton is observed are described by the tensors:
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where v = q-P, J‘;’ is the electromagnetic current, J; (J; = (J+)+) is the current
which couples to the neutrino (antineutrino) current, _f indicates an average over
the spin states of the target and the states are normalized to 2E per unit volume.
We assume the conventional Cabibbo current and work in the approximation E)C =0,
i. e. our results apply to the structure functions for the production of non-strange

final states. It is easy to generalize to the case GC # 0; the results are given in

reference 8. With GC = 0 the isovector nature of the weak current gives:

w.t = wr . )



Bjorken's scaling hypothesisn, which we assume to be correct, is

lim v — Wl(v,qz) = Fl(w)
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The derivation of relations for the Fi starts from the scaling lilrnit11 of the

Cornwall-Norton sum ruleslz:
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where the upper (lower) sign holds for n even (odd) and
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In the electromagnetic case:
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When n = 0 equations 4 give all the sum rules which relate integrals over the

13,14,15

Fi to numbers, For n = 1 we must specify the interaction Hamiltonian

which we take to be a sum of renormalizable interactions:

Hy = g 0 VY +igpon T vl tayBY VY . (7

We consider first the case gy = 0. The equal time commutators in Eq. 4)
and (6) are formally constructed using JKI Only those parts which are components
of tensors of rank n +1 or higher can grow rapidly enough to contribute when we
take the limit | P| — e, Using the fact that the equal time commutators never
introduce inverse powers of the masses or fields it is easy to show (as we do ex-
plicitly in Appendix 1) that the only possible tensor operators whose matrix elements

grow like | Pl n+l and have the appropriate dimensions are
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where the second operator does not contribute if we consider spin averaged matrix elements

(there areno appropriate operators whose matrix elements grow faster than | P | n+ 1).

Therefore that part of the equal time commutators which contributes in
Egs. (4) and (6) is the same as in a free field theory of massless quarks in the
case gy, = 0. Hence the structure functions are related in the same way as in free

field theory. This gives the Callan-Gross relation O‘L/O'T =0, or

2F) = wF,, 9)

since the quarks have spin 1. 16 It implies that in the deep inelastic region the

axial currents are conserved (chiral symmetry) so that:

2F, = F
1 5 10)

F 4= 0
The first of these relations actually follows from Eq. (9) and the inequalities

8,17

satisfied by the Fi' (It is interesting to note that the inequalities imply that if

either Eq. (9) or Eq. (10) is satisfied then the T violating structure function F6

is zerow.) Furthermore, we obtain the two relations18

824 YDy o vp - vn
12 (F1 F1 ) F3 F3 (11)
vp vn _ 18 _yp vn
FI + F1 = E (F1 + F1 ) (12)

Previously we had derived these relations in the parton model and the moment
Jg% of them in models with the interaction in Eq. (7).1

w
In the case gy # 0 it seems at first that the previous argument might fail

since the free field commutator
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can introduce inverse powers of MV which spoil our dimensional reasoning. That
this is not the case is almost obvious since we know that the SMBVA term in the
propagator is irrelevant when we calculate Feynman diagrams because the vector
field is coupled to a conserved current. In Appendix 2 we show that vector field
theory can easily be formulated in such a way that the troublesome term in the
commutator is absent. Therefore the operators which can contribute have the
forms given inEq. (8) except that aa can anywhere be replaced by Ba'

In calculating the equal time commutators the non-canonical operator Iéli
must be replaced by canonical operators using the field equations (]'3” = VZBH +
gV'J)' ')/#Z/)) whenever it is encountered. However, we note that the interaction gv
can be set equal to zero in this replacement since it introduces terms involving at
least four fields ¥ which cannot contribute in the limit | P| — «. Therefore that
part of the equal time commutators which contributes in Egs. (4) and (6) is the
same as in a field theory of massless quarks interacting with an external massless
C number vector field. This observation was also made independently by Gross
and Treiman9 who used it to derive the explicit form of the light cone expansion
in the case gy # 0.

With gy # 0 it is well known that Eq. (9) still obtains. 16,19 According to our
prescription the effective parts of the equal time commutators are chirally sym-
metric. This gives all the other results above except Eg. (I1). However itiseasyto

show that this equation still holds when gy # 0, as we do in Appendix 1.



New Results

We consider the explicit forms of two of the n =1 sum rules of Egs. (4) and

(6) obtained using Eqg. (7):
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where Q, B and Y are the usual 3 x 3 SU(3) matrixes and Q2 =2B/3 +Y/6 + 13/3.
An important point in the following is that the matrices B, B-Y and 2B+Y + 213
make positive semidefinite contributions whenever they appear on the right hand
side of Egs. (14)1 (this was used in deriving Eq. (12)). If we call one of these
matrixes A then we can consider a structure function Fg defined in terms of

] y“A;b just as F;’ is defined in terms of 'zﬁyuQZ,b . In the analogue of Eq. (14)

for F; , Q2 will be replaced by )\2 o« A . The left hand side is positive semidefinite
(since Fy= 0) and hence the right hand side must be so also. In parton language
this corresponds fo the fact that the contribution of each type of parton to Fy is

positive semidefinite,

Next we note that with our normalization:
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where QIJV is the energy momentum tensor, ny the energy momentum tensor of
a free gluon and % the Lagrangian density. In Eq. (14) we used the fact
<P 16 |P >=0and € is actually the contribution of 65 .
zZ 2z z 77
Provided 8y = 0 (i. e. the interaction is due to scalar or pseudoscalar fields

only) we can combine Egs. (14) and (15) to obtain

_ n 9 n,| dw
€ _HJ.[% (F’2’p+F2)--2—(ng+F27’ )}? (16)
This result has been derived independently by Fritzsch and Grell—MaJrnrl7 in the par-
ticular case that there are no gluons at all and € = 0. Using the SLAC-MIT datazo
extrapolated to infinity assuming Regge behaviour and the value of the total neutrino
cross section obtained at CERN21 Eq. (16) gives € = 0.52 + 0.38.

Egs. (16) and (12) together give the absolute upper bound:

‘,(}E‘gp+}_«‘:g/n)(—i-c—LJ = % (17)
w
which is satisfied by the data (unless quite unexpected behaviour occurs at unex-
plored w). We can also obtain the lower bound (still assuming gy = 0):
IFZVP’ vh g—‘-; = §1'(1—E) . 18)
w

This provides a possible test of the indication that € # 0 which has the advantage of
involving electromagnetic data alone. 22 However, the left hand side is certainly
> 1/9 for the proton and very likely also for the neutron.20

These results (Egs. (16)-(18)) are true in any quark parton model in which all

the partons travel in the same direction when the proton has infinite momentum

and € is justthe fraction of the proton's momentum carried by the gluons



-10 -

(they are therefore true in every particular parton model which has previously
been considered but their generality does not seem to have been noticed before).
We might be tempted to interpret the fact that we were unable to derive these
results when gy # 0 by saying that partons can travel backwards in this case.
However, doubt is cast on this interpretation by the fact that the sum rules for F

1’
14,13,15
F2 and F3

are independent of the interaction yet, in parton language,
they depend on the assumption that certain combinations of quarks and antiquarks

travel forwards.

Conclusions

From a practical point of view we have not progressed far beyond reference 1.
Theoretically, however, it does seem remarkable that we can formally rederive
all the old parton model results in interacting field theory. Neutral scalar and
pseudoscalar fields play no role in the appropriate infinite momentum commutators
(or, equivalently, in the leading terms in the light cone expansion). In this case we
have therefore ""derived" the parton model since the process is described by the
same one body operator as in free field theory. The vector field enters in such a

way that the old free field (parton) theory results are unchanged.

The new results do depend on the interaction. They require that gy = 0 and
are therefore untrue in the conventional vector gluon model. Unfortunately, they
cannot be used to establish that gy = 0. However, we think it is interesting that
we can obtain an absolute upper bound on the data in this case (Eq. 17)(it is unfor-
tunate that this was not known before the data were obtained). Other results
which depended on the interaction would be very interesting.

The only other obvious application of these techniques is to the case of

polarized targets. Bjorken derived a sum rule for the scattering of polarized
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electrons from polarized targets some years ago. 23 It is easy to derive a
similar relation for neutrino scattering from polarized targets and relations
between the structure functions can also be obtained in this case. However, such
experiments are so remote that it does not seem worth stating the results. By
the time they are carriéd out the ideas discussed here will either be already
accepted or long since forgotten. In fact neutrino experiments at NAL will not
only be able to test the scaling hypothesis but also the quark algebra in the near
future since the predicted value of the F3 sum rule15 (which is the easiest sum
rule to test) depends essentially on the nonintegral baryon number attributed to
the quark fields (the value 6 changes to 2 in the Sakata or Fermi-Yang models;

Egs. (11) and (12) also depend critically on the quark algebras).
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Appendix 1

In this appendix we prove some assertions in Section 2. We wish to find

that part of

Ouv

9"0% (%)
= o b 4
-j' —m 5O 6(xyd x

whose matrix elements

<T5IOWIP>

. + - .
can grow like | P ntl as | P| — «. Note that Ouv is not a second rank Lorentz
tensor despite its appearance. It is a sum of terms each of which is a component

of a Lorentz tensor of the form:

T = J(0)A ¥ (0)9 (0)B P (OdC Y.,
ozlaz...ﬁl...-yi... ( 00+ ,81... v

The highest rank tensor which can be built from the y matrices is o so that in

the case 8y = 0 T has the symbolic structure:

T @9 e, M

P=0, Q=0
QL .S T U V ,Q-S-T-U-V_ .,
(M= Mquark scalar M p_scalar ¢S ¢p : 8, T, U, V= 0).
gluon gluon

The indices are positive semidefinite because the commutation relations and field

equations never introduce inverse powers of the masses or fields.
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We consider the tensor T after any explicit factors EM and guv have

vap

been removed so that the rank r and dimension n + 3 are given by
r =R+P
n+3=3N+P+Q

r =R+n+3-3N~-Q@Q=n+3- N-Q=n-+2.

Note that UW can give at most one power of | Pl to that the only two solutions

with r= n+1 whose matrix elements grow like | Pl n+l are:

Ty 8 ...8 A%y (0)
y0‘1 % %n+1

OO B ...D A% (0)
A% X3 %paa
In the case gy # 0, the only change is that derivatives Boz may be replaced

by the vector field Boz'
We now wish to show that Eq. (11) obtains if gy # 0. A necessary and suf-

ficient condition is that

8"3) X, 0) , 0"3Y %, 0) .
< pl|—=—,3%© |l p> - < nl ,3%0) | I n >
atn X atn X
L "ITE 0
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o 1 —
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1 atn X X atn

where here and below the symbol ~ indicates that the terms in the spin averaged

n+l1

matrix elements which may grow like | B} when P — « along the z axis are
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equal. The only part of BnJ?/ 8t" which can contribute is a bilinear in ¥ which

we write as JAi)\azp . Using the chiral symmetry, the necessary and sufficient

condition may now be written:

w70 [vohy Vored O~ -4 "0 [yohy vory5)Y ©

where we have chosen Ai to correspond to the nth time derivative of the vector

current. In constructing the part of Ai which contributes (using the Dirac equation

for massless quarks) we may put ax =0_= BX = By =0 since B — along the

y
z axis. Therefore each term in the effective part of A, has either the ¢y matrix

structure ~ Y OF ~YiYY, The necessary and sufficient condition is satisfied

in the first case (trivially) and in the second Q. E. D.
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Appendix 2

In this appendix we prove some almost obvious properties of theories with
neutral vector fields coupled to conserved currents. Although many related dis-
cussions are contained in the literature (see e.g. reference 24) and our results
may be well known, we could not find the theory formulated anywhere in exactly
the desired form.

We consider the Lagrangian density

M

—
2

B J*

_ v
¢ =-30B,)@B)+ -gyB,

B B
7]

which gives
2
+M,)B =g J .
(O My)B, =gy,

This is entirely equivalent to the usual equations of motion in the case 8 J =0

provided we impose the subsidiary condition:

Proceeding to quantise this theory in the traditional way the free field commutation

relations

[B,09.B, ()] = -ig,, A-x', M)

or, in momentum space:

[0, ®0,EN ] = -g,, ko B-KY,

indicate that we are faced with a theory with an indefinite metric. It is convenient

to introduce the ""vector! and "scalar! operators:
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Since kO = MV we may associate a positive metric with the creation and anni-
hilation operators VZ and V; but we must associate a negative metric with S .
The subsidiary condition ensures that the negative metric part of the Hilbert
space never enters into the calculation of physical quantites. In exact analogy
with quantum electrodynamics, the subsidiary condition restricts the states | ¢ >

allowed in the theory which are required to satisfy

i
[

(BHB“(X))_ [y >

or

sﬂa’?ﬂ $ >

l
e

(The separation of BHB’“L into positive and negative frequency parts is relativistically
invariant since ( O + M‘%])BHB“ = 0.) Having imposed this condition initially, transi-

tions to states for which it is not satisfied are impossible since current conservation
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ensures that
[s , H] = 0.
74 I
It is easy to see that the energy is positive for the allowed states. We therefore
have a consistent theory (which is equivalent to the usual one) in which the various

components of BM commute with each other and with ¢ at equal times.
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